1
|
Le Gloanec C, Gómez-Felipe A, Alimchandani V, Branchini E, Bauer A, Routier-Kierzkowska AL, Kierzkowski D. Modulation of cell differentiation and growth underlies the shift from bud protection to light capture in cauline leaves. PLANT PHYSIOLOGY 2024; 196:1214-1230. [PMID: 39106417 PMCID: PMC11444300 DOI: 10.1093/plphys/kiae408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 07/11/2024] [Accepted: 07/16/2024] [Indexed: 08/09/2024]
Abstract
Plant organs have evolved into diverse shapes for specialized functions despite emerging as simple protrusions at the shoot apex. Cauline leaves serve as photosynthetic organs and protective structures for emerging floral buds. However, the growth patterns underlying this dual function remain unknown. Here, we investigate the developmental dynamics shaping Arabidopsis (Arabidopsis thaliana) cauline leaves underlying their functional diversification from other laminar organs. We show that cauline leaves display a significant delay in overall elongation compared with rosette leaves. Using live imaging, we reveal that their functional divergence hinges on early modulation of the timing of cell differentiation and cellular growth rates. In contrast to rosette leaves and sepals, cell differentiation is delayed in cauline leaves, fostering extended proliferation, prolonged morphogenetic activity, and growth redistribution within the organ. Notably, cauline leaf growth is transiently suppressed during the early stages, keeping the leaf small and unfolded during the initiation of the first flowers. Our findings highlight the unique developmental timing of cauline leaves, underlying their shift from an early protective role to a later photosynthetic function.
Collapse
Affiliation(s)
- Constance Le Gloanec
- Département de Sciences Biologiques, Institut de Recherche en Biologie Végétale, Université de Montréal, 4101 Sherbrooke St E, Montréal, QC H1X 2B2, Canada
| | - Andrea Gómez-Felipe
- Département de Sciences Biologiques, Institut de Recherche en Biologie Végétale, Université de Montréal, 4101 Sherbrooke St E, Montréal, QC H1X 2B2, Canada
| | - Viraj Alimchandani
- Département de Sciences Biologiques, Institut de Recherche en Biologie Végétale, Université de Montréal, 4101 Sherbrooke St E, Montréal, QC H1X 2B2, Canada
| | - Elvis Branchini
- Département de Sciences Biologiques, Institut de Recherche en Biologie Végétale, Université de Montréal, 4101 Sherbrooke St E, Montréal, QC H1X 2B2, Canada
| | - Amélie Bauer
- Département de Sciences Biologiques, Institut de Recherche en Biologie Végétale, Université de Montréal, 4101 Sherbrooke St E, Montréal, QC H1X 2B2, Canada
| | - Anne-Lise Routier-Kierzkowska
- Département de Sciences Biologiques, Institut de Recherche en Biologie Végétale, Université de Montréal, 4101 Sherbrooke St E, Montréal, QC H1X 2B2, Canada
| | - Daniel Kierzkowski
- Département de Sciences Biologiques, Institut de Recherche en Biologie Végétale, Université de Montréal, 4101 Sherbrooke St E, Montréal, QC H1X 2B2, Canada
| |
Collapse
|
2
|
Wang H, Li X, Meng B, Fan Y, Khan SU, Qian M, Zhang M, Yang H, Lu K. Exploring silique number in Brassica napus L.: Genetic and molecular advances for improving yield. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:1897-1912. [PMID: 38386569 PMCID: PMC11182599 DOI: 10.1111/pbi.14309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/31/2024] [Accepted: 02/02/2024] [Indexed: 02/24/2024]
Abstract
Silique number is a crucial yield-related trait for the genetic enhancement of rapeseed (Brassica napus L.). The intricate molecular process governing the regulation of silique number involves various factors. Despite advancements in understanding the mechanisms regulating silique number in Arabidopsis (Arabidopsis thaliana) and rice (Oryza sativa), the molecular processes involved in controlling silique number in rapeseed remain largely unexplored. In this review, we identify candidate genes and review the roles of genes and environmental factors in regulating rapeseed silique number. We use genetic regulatory networks for silique number in Arabidopsis and grain number in rice to uncover possible regulatory pathways and molecular mechanisms involved in regulating genes associated with rapeseed silique number. A better understanding of the genetic network regulating silique number in rapeseed will provide a theoretical basis for the genetic improvement of this trait and genetic resources for the molecular breeding of high-yielding rapeseed.
Collapse
Affiliation(s)
- Hui Wang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, College of Agronomy and BiotechnologySouthwest UniversityBeibeiChongqingP.R. China
| | - Xiaodong Li
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, College of Agronomy and BiotechnologySouthwest UniversityBeibeiChongqingP.R. China
| | - Boyu Meng
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, College of Agronomy and BiotechnologySouthwest UniversityBeibeiChongqingP.R. China
| | - Yonghai Fan
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, College of Agronomy and BiotechnologySouthwest UniversityBeibeiChongqingP.R. China
| | - Shahid Ullah Khan
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, College of Agronomy and BiotechnologySouthwest UniversityBeibeiChongqingP.R. China
| | - Mingchao Qian
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, College of Agronomy and BiotechnologySouthwest UniversityBeibeiChongqingP.R. China
| | - Minghao Zhang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, College of Agronomy and BiotechnologySouthwest UniversityBeibeiChongqingP.R. China
| | - Haikun Yang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, College of Agronomy and BiotechnologySouthwest UniversityBeibeiChongqingP.R. China
| | - Kun Lu
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, College of Agronomy and BiotechnologySouthwest UniversityBeibeiChongqingP.R. China
- Engineering Research Center of South Upland Agriculture, Ministry of EducationChongqingP.R. China
- Academy of Agricultural SciencesSouthwest UniversityBeibeiChongqingP.R. China
| |
Collapse
|
3
|
Takeda S, Yoza M, Ueda S, Takeuchi S, Maeno A, Sakamoto T, Kimura S. Exploring the diversity of galls on Artemisia indica induced by Rhopalomyia species through morphological and transcriptome analyses. PLANT DIRECT 2024; 8:e619. [PMID: 38962171 PMCID: PMC11219473 DOI: 10.1002/pld3.619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 06/07/2024] [Indexed: 07/05/2024]
Abstract
Plant galls generated by insects have highly organized structures, providing nutrients and shelter to the insects living within them. Most research on the physiological and molecular mechanisms of gall development has focused on single galls. To understand the diversity of gall development, we examined five galls with different morphologies generated by distinct species of Rhopalomyia (gall midge; Diptera: Cecidomyiidae) on a single host plant of Artemisia indica var. maximowiczii (Asteraceae). Vasculature developed de novo within the galls, indicating active transport of nutrients between galls and the host plant. Each gall had a different pattern of vasculature and lignification, probably due to differences in the site of gall generation and the gall midge species. Transcriptome analysis indicated that photosynthetic and cell wall-related genes were down-regulated in leaf and stem galls, respectively, compared with control leaf and stem tissues, whereas genes involved in floral organ development were up-regulated in all types of galls, indicating that transformation from source to sink organs occurs during gall development. Our results help to understand the diversity of galls on a single herbaceous host plant.
Collapse
Affiliation(s)
- Seiji Takeda
- Graduate School of Life and Environmental SciencesKyoto Prefectural UniversityKyotoJapan
- Biotechnology Research Department, Kyoto Prefectural Agriculture Forestry and Fisheries Technology CenterSeikaJapan
| | - Makiko Yoza
- Graduate School of Life and Environmental SciencesKyoto Prefectural UniversityKyotoJapan
| | - Sawako Ueda
- Graduate School of Life and Environmental SciencesKyoto Prefectural UniversityKyotoJapan
| | - Sakura Takeuchi
- Graduate School of Life and Environmental SciencesKyoto Prefectural UniversityKyotoJapan
| | - Akiteru Maeno
- Cell Architecture LaboratoryNational Institute of GeneticsShizuokaJapan
| | | | - Seisuke Kimura
- Center for Plant SciencesKyoto Sangyo UniversityKyotoJapan
- Department of Industrial Life Sciences, Faculty of Life SciencesKyoto Sangyo UniversityKyotoJapan
| |
Collapse
|
4
|
Yang T, Wang Y, Li Y, Liang S, Yang Y, Huang Z, Li Y, Gao J, Ma N, Zhou X. The transcription factor RhMYB17 regulates the homeotic transformation of floral organs in rose (Rosa hybrida) under cold stress. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:2965-2981. [PMID: 38452221 PMCID: PMC11103112 DOI: 10.1093/jxb/erae099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 03/06/2024] [Indexed: 03/09/2024]
Abstract
Low temperatures affect flower development in rose (Rosa hybrida), increasing petaloid stamen number and reducing normal stamen number. We identified the low-temperature-responsive R2R3-MYB transcription factor RhMYB17, which is homologous to Arabidopsis MYB17 by similarity of protein sequences. RhMYB17 was up-regulated at low temperatures, and RhMYB17 transcripts accumulated in floral buds. Transient silencing of RhMYB17 by virus-induced gene silencing decreased petaloid stamen number and increased normal stamen number. According to the ABCDE model of floral organ identity, class A genes APETALA 1 (AP1) and AP2 contribute to sepal and petal formation. Transcription factor binding analysis identified RhMYB17 binding sites in the promoters of rose APETALA 2 (RhAP2) and APETALA 2-LIKE (RhAP2L). Yeast one-hybrid assays, dual-luciferase reporter assays, and electrophoretic mobility shift assays confirmed that RhMYB17 directly binds to the promoters of RhAP2 and RhAP2L, thereby activating their expression. RNA sequencing further demonstrated that RhMYB17 plays a pivotal role in regulating the expression of class A genes, and indirectly influences the expression of the class C gene. This study reveals a novel mechanism for the homeotic transformation of floral organs in response to low temperatures.
Collapse
Affiliation(s)
- Tuo Yang
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing, China
| | - Yi Wang
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing, China
| | - Yuqi Li
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing, China
| | - Shangyi Liang
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing, China
| | - Yunyao Yang
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing, China
| | - Ziwei Huang
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing, China
| | - Yonghong Li
- School of Food and Drug, Shenzhen Polytechnic University, Shenzhen, China
| | - Junping Gao
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing, China
| | - Nan Ma
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing, China
| | - Xiaofeng Zhou
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing, China
| |
Collapse
|
5
|
Davis GV, Glover BJ. Characterisation of the R2R3 Myb subgroup 9 family of transcription factors in tomato. PLoS One 2024; 19:e0295445. [PMID: 38530835 DOI: 10.1371/journal.pone.0295445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 11/21/2023] [Indexed: 03/28/2024] Open
Abstract
Tomato (Solanum lycopersicum) has many epidermal cell outgrowths including conical petal cells and multiple types of trichomes. These include the anther-specific trichome mesh which holds the anthers connate. The R2R3 Myb Subgroup 9 family of transcription factors is involved in development of epidermal cell outgrowths throughout the angiosperms. No previous study has examined all members of this transcription factor family in a single species. All 7 R2R3 Myb Subgroup 9 genes were isolated from tomato. They were ectopically expressed in tobacco to assess their ability to induce epidermal cell outgrowth. Endogenous expression patterns were examined by semi-quantitative RT-PCR at different stages of floral development relative to the development of anther trichomes. We report variation in the degree of epidermal cell outgrowth produced in transgenic tobacco by each ectopically expressed gene. Based on expression profile and ectopic activity, SlMIXTA-2 is likely involved in the production of leaf trichomes. SlMIXTA-2 is expressed most strongly in the leaves, and not expressed in the floral tissue. SlMYB17-2 is the best candidate for the regulation of the anther trichome mesh. SlMYB17-2 is expressed strongly in the floral tissue and produces a clear phenotype of epidermal cell outgrowths when ectopically expressed in tobacco. Analysis of the phenotypes of transgenic plants ectopically expressing all 7 genes has revealed the different extent to which members of the same transcription factor subfamily can induce cellular outgrowth.
Collapse
Affiliation(s)
- Gwendolyn V Davis
- Department of Life Sciences, University of Warwick, Coventry, United Kingdom
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Beverley J Glover
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
6
|
Chen W, Wang J, Wang Z, Zhu T, Zheng Y, Hawar A, Chang Y, Wang X, Li D, Wang G, Yang W, Zhao Y, Chen D, Yuan YA, Sun B. Capture of regulatory factors via CRISPR-dCas9 for mechanistic analysis of fine-tuned SERRATE expression in Arabidopsis. NATURE PLANTS 2024; 10:86-99. [PMID: 38168608 DOI: 10.1038/s41477-023-01575-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 10/29/2023] [Indexed: 01/05/2024]
Abstract
SERRATE (SE) plays an important role in many biological processes and under biotic stress resistance. However, little about the control of SE has been clarified. Here we present a method named native chromatin-associated proteome affinity by CRISPR-dCas9 (CASPA-dCas9) to holistically capture native regulators of the SE locus. Several key regulatory factors including PHYTOCHROME RAPIDLY REGULATED 2 (PAR2), WRKY DNA-binding protein 19 (WRKY19) and the MYB-family protein MYB27 of SE are identified. MYB27 recruits the long non-coding RNA-PRC2 (SEAIR-PRC2) complex for H3K27me3 deposition on exon 1 of SE and subsequently represses SE expression, while PAR2-MYB27 interaction inhibits both the binding of MYB27 on the SE promoter and the recruitment of SEAIR-PRC2 by MYB27. The interaction between PAR2 and MYB27 fine-tunes the SE expression level at different developmental stages. In addition, PAR2 and WRKY19 synergistically promote SE expression for pathogen resistance. Collectively, our results demonstrate an efficient method to capture key regulators of target genes and uncover the precise regulatory mechanism for SE.
Collapse
Affiliation(s)
- Wei Chen
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China.
| | - Jingyi Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Zijing Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Tao Zhu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Yuchen Zheng
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Amangul Hawar
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Yongsheng Chang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Xin Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Dongbao Li
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Guangling Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Wen Yang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Yanjie Zhao
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Dijun Chen
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Yuren Adam Yuan
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore, Singapore
| | - Bo Sun
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China.
| |
Collapse
|
7
|
Liu X, Wang Q, Jiang G, Wan Q, Dong B, Lu M, Deng J, Zhong S, Wang Y, Khan IA, Xiao Z, Fang Q, Zhao H. Temperature-responsive module of OfAP1 and OfLFY regulates floral transition and floral organ identity in Osmanthus fragrans. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 203:108076. [PMID: 37832366 DOI: 10.1016/j.plaphy.2023.108076] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 09/14/2023] [Accepted: 09/30/2023] [Indexed: 10/15/2023]
Abstract
The MADS-box transcription factor APETELA1 (AP1) is crucially important for reproductive developmental processes. The function of AP1 and the classic LFY-AP1 interaction in woody plants are not widely known. Here, the OfAP1-a gene from the continuously flowering plant Osmanthus fragrans 'Sijigui' was characterized, and its roles in regulating flowering time, petal number robustness and floral organ identity were determined using overexpression in Arabidopsis thaliana and Nicotiana tabacum. The expression of OfAP1-a was significantly induced by low ambient temperature and was upregulated with the floral transition process. Ectopic expression OfAP1-a revealed its classic function in flowering and flower ABC models. The expression of OfAP1-a is inhibited by LEAFY (OfLFY) through direct promoter binding, as confirmed by yeast one-hybrid and dual luciferase assays. Arabidopsis plants overexpressing OfAP1-a exhibited accelerated flowering and altered floral organ identities. Moreover, OfAP1-a-overexpressing plants displayed variable petal numbers. Likewise, the overexpression of OfLFY in Arabidopsis and Nicotiana altered petal number robustness and inflorescence architecture, partially by regulating native AP1 in transformed plants. Furthermore, we performed RNA-seq analysis of transgenic Nicotiana plants. DEGs were identified by transcriptome analysis, and we found that the expression of several floral homeotic genes was altered in both OfAP1-a and OfLFY-overexpressing transgenic lines. Our results suggest that OfAP1-a may play important roles during floral transition and development in response to ambient temperature. OfAP1-a functions as a petal number modulator and may directly activate a subset of flowers to regulate floral organ formation. OfAP1-a and OfLFY mutually regulate the expression of each other and coregulate genes that might be involved in these phenotypes related to flowering. The results provide valuable data for understanding the function of the LFY-AP1 module in the reproductive process and shaping floral structures in woody plants.
Collapse
Affiliation(s)
- Xiaohan Liu
- Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, School of Landscape Architecture, Zhejiang Agriculture and Forestry University, Hangzhou, 311300, China; Key Laboratory of National Forestry and Grassland Administration on Germplasm Innovation and Utilization for Southern Garden Plants, Hangzhou, 311300, China
| | - Qianqian Wang
- Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, School of Landscape Architecture, Zhejiang Agriculture and Forestry University, Hangzhou, 311300, China; Key Laboratory of National Forestry and Grassland Administration on Germplasm Innovation and Utilization for Southern Garden Plants, Hangzhou, 311300, China
| | - Gege Jiang
- Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, School of Landscape Architecture, Zhejiang Agriculture and Forestry University, Hangzhou, 311300, China; Key Laboratory of National Forestry and Grassland Administration on Germplasm Innovation and Utilization for Southern Garden Plants, Hangzhou, 311300, China
| | - Qianqian Wan
- Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, School of Landscape Architecture, Zhejiang Agriculture and Forestry University, Hangzhou, 311300, China; Key Laboratory of National Forestry and Grassland Administration on Germplasm Innovation and Utilization for Southern Garden Plants, Hangzhou, 311300, China
| | - Bin Dong
- Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, School of Landscape Architecture, Zhejiang Agriculture and Forestry University, Hangzhou, 311300, China; Key Laboratory of National Forestry and Grassland Administration on Germplasm Innovation and Utilization for Southern Garden Plants, Hangzhou, 311300, China
| | - Mei Lu
- Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, School of Landscape Architecture, Zhejiang Agriculture and Forestry University, Hangzhou, 311300, China; Key Laboratory of National Forestry and Grassland Administration on Germplasm Innovation and Utilization for Southern Garden Plants, Hangzhou, 311300, China
| | - Jinping Deng
- Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, School of Landscape Architecture, Zhejiang Agriculture and Forestry University, Hangzhou, 311300, China; Key Laboratory of National Forestry and Grassland Administration on Germplasm Innovation and Utilization for Southern Garden Plants, Hangzhou, 311300, China
| | - Shiwei Zhong
- Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, School of Landscape Architecture, Zhejiang Agriculture and Forestry University, Hangzhou, 311300, China; Key Laboratory of National Forestry and Grassland Administration on Germplasm Innovation and Utilization for Southern Garden Plants, Hangzhou, 311300, China
| | - Yiguang Wang
- Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, School of Landscape Architecture, Zhejiang Agriculture and Forestry University, Hangzhou, 311300, China; Key Laboratory of National Forestry and Grassland Administration on Germplasm Innovation and Utilization for Southern Garden Plants, Hangzhou, 311300, China
| | - Irshad Ahmad Khan
- Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, School of Landscape Architecture, Zhejiang Agriculture and Forestry University, Hangzhou, 311300, China; Key Laboratory of National Forestry and Grassland Administration on Germplasm Innovation and Utilization for Southern Garden Plants, Hangzhou, 311300, China
| | - Zheng Xiao
- Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, School of Landscape Architecture, Zhejiang Agriculture and Forestry University, Hangzhou, 311300, China; Key Laboratory of National Forestry and Grassland Administration on Germplasm Innovation and Utilization for Southern Garden Plants, Hangzhou, 311300, China
| | - Qiu Fang
- Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, School of Landscape Architecture, Zhejiang Agriculture and Forestry University, Hangzhou, 311300, China; Key Laboratory of National Forestry and Grassland Administration on Germplasm Innovation and Utilization for Southern Garden Plants, Hangzhou, 311300, China.
| | - Hongbo Zhao
- Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, School of Landscape Architecture, Zhejiang Agriculture and Forestry University, Hangzhou, 311300, China; Key Laboratory of National Forestry and Grassland Administration on Germplasm Innovation and Utilization for Southern Garden Plants, Hangzhou, 311300, China.
| |
Collapse
|
8
|
Basu U, Parida SK. Restructuring plant types for developing tailor-made crops. PLANT BIOTECHNOLOGY JOURNAL 2023; 21:1106-1122. [PMID: 34260135 PMCID: PMC10214764 DOI: 10.1111/pbi.13666] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 07/08/2021] [Accepted: 07/12/2021] [Indexed: 05/27/2023]
Abstract
Plants have adapted to different environmental niches by fine-tuning the developmental factors working together to regulate traits. Variations in the developmental factors result in a wide range of quantitative variations in these traits that helped plants survive better. The major developmental pathways affecting plant architecture are also under the control of such pathways. Most notable are the CLAVATA-WUSCHEL pathway regulating shoot apical meristem fate, GID1-DELLA module influencing plant height and tillering, LAZY1-TAC1 module controlling branch/tiller angle and the TFL1-FT determining the floral fate in plants. Allelic variants of these key regulators selected during domestication shaped the crops the way we know them today. There is immense yield potential in the 'ideal plant architecture' of a crop. With the available genome-editing techniques, possibilities are not restricted to naturally occurring variations. Using a transient reprogramming system, one can screen the effect of several developmental gene expressions in novel ecosystems to identify the best targets. We can use the plant's fine-tuning mechanism for customizing crops to specific environments. The process of crop domestication can be accelerated with a proper understanding of these developmental pathways. It is time to step forward towards the next-generation molecular breeding for restructuring plant types in crops ensuring yield stability.
Collapse
Affiliation(s)
- Udita Basu
- Genomics‐Assisted Breeding and Crop Improvement LaboratoryNational Institute of Plant Genome Research (NIPGR)New DelhiIndia
| | - Swarup K. Parida
- Genomics‐Assisted Breeding and Crop Improvement LaboratoryNational Institute of Plant Genome Research (NIPGR)New DelhiIndia
| |
Collapse
|
9
|
Liu Y, Wang X, Li Z, Tu J, Lu YN, Hu X, Zhang Q, Zheng Z. Regulation of capsule spine formation in castor. PLANT PHYSIOLOGY 2023; 192:1028-1045. [PMID: 36883668 PMCID: PMC10231378 DOI: 10.1093/plphys/kiad149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 02/16/2023] [Accepted: 02/17/2023] [Indexed: 06/01/2023]
Abstract
Castor (Ricinus communis L.) is a dicotyledonous oilseed crop that can have either spineless or spiny capsules. Spines are protuberant structures that differ from thorns or prickles. The developmental regulatory mechanisms governing spine formation in castor or other plants have remained largely unknown. Herein, using map-based cloning in 2 independent F2 populations, F2-LYY5/DL01 and F2-LYY9/DL01, we identified the RcMYB106 (myb domain protein 106) transcription factor as a key regulator of capsule spine development in castor. Haplotype analyses demonstrated that either a 4,353-bp deletion in the promoter or a single nucleotide polymorphism leading to a premature stop codon in the RcMYB106 gene could cause the spineless capsule phenotype in castor. Results of our experiments indicated that RcMYB106 might target the downstream gene RcWIN1 (WAX INDUCER1), which encodes an ethylene response factor known to be involved in trichome formation in Arabidopsis (Arabidopsis thaliana) to control capsule spine development in castor. This hypothesis, however, remains to be further tested. Nevertheless, our study reveals a potential molecular regulatory mechanism underlying the spine capsule trait in a nonmodel plant species.
Collapse
Affiliation(s)
- Yueying Liu
- State Key Laboratory of Tree Genetics and Breeding, College of Forestry, Northeast Forestry University, Harbin 150040, China
- The Center for Basic Forestry Research, College of Forestry, Northeast Forestry University, Harbin 150040, China
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Xinyu Wang
- State Key Laboratory of Tree Genetics and Breeding, College of Forestry, Northeast Forestry University, Harbin 150040, China
- The Center for Basic Forestry Research, College of Forestry, Northeast Forestry University, Harbin 150040, China
| | - Zongjian Li
- State Key Laboratory of Tree Genetics and Breeding, College of Forestry, Northeast Forestry University, Harbin 150040, China
- The Center for Basic Forestry Research, College of Forestry, Northeast Forestry University, Harbin 150040, China
| | - Jing Tu
- State Key Laboratory of Tree Genetics and Breeding, College of Forestry, Northeast Forestry University, Harbin 150040, China
- The Center for Basic Forestry Research, College of Forestry, Northeast Forestry University, Harbin 150040, China
| | - Ya-nan Lu
- State Key Laboratory of Tree Genetics and Breeding, College of Forestry, Northeast Forestry University, Harbin 150040, China
- The Center for Basic Forestry Research, College of Forestry, Northeast Forestry University, Harbin 150040, China
| | - Xiaohang Hu
- Academy of Modern Agriculture and Ecology Environment, Heilongjiang University, Harbin 150080, China
| | - Qingzhu Zhang
- State Key Laboratory of Tree Genetics and Breeding, College of Forestry, Northeast Forestry University, Harbin 150040, China
- The Center for Basic Forestry Research, College of Forestry, Northeast Forestry University, Harbin 150040, China
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Zhimin Zheng
- State Key Laboratory of Tree Genetics and Breeding, College of Forestry, Northeast Forestry University, Harbin 150040, China
- The Center for Basic Forestry Research, College of Forestry, Northeast Forestry University, Harbin 150040, China
| |
Collapse
|
10
|
McQuinn RP, Leroux J, Sierra J, Escobar-Tovar L, Frusciante S, Finnegan EJ, Diretto G, Giuliano G, Giovannoni JJ, León P, Pogson BJ. Deregulation of ζ-carotene desaturase in Arabidopsis and tomato exposes a unique carotenoid-derived redundant regulation of floral meristem identity and function. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 114:783-804. [PMID: 36861314 DOI: 10.1111/tpj.16168] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 02/05/2023] [Accepted: 02/26/2023] [Indexed: 05/27/2023]
Abstract
A level of redundancy and interplay among the transcriptional regulators of floral development safeguards a plant's reproductive success and ensures crop production. In the present study, an additional layer of complexity in the regulation of floral meristem (FM) identity and flower development is elucidated linking carotenoid biosynthesis and metabolism to the regulation of determinate flowering. The accumulation and subsequent cleavage of a diverse array of ζ-carotenes in the chloroplast biogenesis 5 (clb5) mutant of Arabidopsis results in the reprogramming of meristematic gene regulatory networks establishing FM identity mirroring that of the FM identity master regulator, APETALA1 (AP1). The immediate transition to floral development in clb5 requires long photoperiods in a GIGANTEA-independent manner, whereas AP1 is essential for the floral organ development of clb5. The elucidation of this link between carotenoid metabolism and floral development translates to tomato exposing a regulation of FM identity redundant to and initiated by AP1 and proposed to be dependent on the E class floral initiation and organ identity regulator, SEPALLATA3 (SEP3).
Collapse
Affiliation(s)
- Ryan P McQuinn
- Australian Research Council Centre of Excellence in Plant Energy Biology, Research School of Biology, Australian National University, Canberra, ACT, 2601, Australia
| | - Julie Leroux
- Australian Research Council Centre of Excellence in Plant Energy Biology, Research School of Biology, Australian National University, Canberra, ACT, 2601, Australia
| | - Julio Sierra
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, Cuernavaca, Morelos, 62210, Mexico
| | - Lina Escobar-Tovar
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, Cuernavaca, Morelos, 62210, Mexico
| | - Sarah Frusciante
- Italian National Agency for New Technologies, Energy, and Sustainable Development (ENEA), Casaccia Research Center, Rome, 00196, Italy
| | | | - Gianfranco Diretto
- Italian National Agency for New Technologies, Energy, and Sustainable Development (ENEA), Casaccia Research Center, Rome, 00196, Italy
| | - Giovanni Giuliano
- Italian National Agency for New Technologies, Energy, and Sustainable Development (ENEA), Casaccia Research Center, Rome, 00196, Italy
| | - James J Giovannoni
- US Department of Agriculture-Agricultural Research Service, Robert W. Holley Center for Agriculture and Health, Ithaca, NY, 14853, USA
| | - Patricia León
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, Cuernavaca, Morelos, 62210, Mexico
| | - Barry J Pogson
- Australian Research Council Centre of Excellence in Plant Energy Biology, Research School of Biology, Australian National University, Canberra, ACT, 2601, Australia
| |
Collapse
|
11
|
Chahtane H, Lai X, Tichtinsky G, Rieu P, Arnoux-Courseaux M, Cancé C, Marondedze C, Parcy F. Flower Development in Arabidopsis. Methods Mol Biol 2023; 2686:3-38. [PMID: 37540352 DOI: 10.1007/978-1-0716-3299-4_1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
Like in other angiosperms, the development of flowers in Arabidopsis starts right after the floral transition, when the shoot apical meristem (SAM) stops producing leaves and makes flowers instead. On the flanks of the SAM emerge the flower meristems (FM) that will soon differentiate into the four main floral organs, sepals, petals, stamens, and pistil, stereotypically arranged in concentric whorls. Each phase of flower development-floral transition, floral bud initiation, and floral organ development-is under the control of specific gene networks. In this chapter, we describe these different phases and the gene regulatory networks involved, from the floral transition to the floral termination.
Collapse
Affiliation(s)
- Hicham Chahtane
- CNRS, Université Grenoble Alpes, CEA, INRAE, IRIG, BIG-LPCV, Grenoble, France
- Institut de Recherche Pierre Fabre, Green Mission Pierre Fabre, Conservatoire Botanique Pierre Fabre, Soual, France
| | - Xuelei Lai
- CNRS, Université Grenoble Alpes, CEA, INRAE, IRIG, BIG-LPCV, Grenoble, France
- Huazhong Agricultural University, National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Wuhan, China
| | | | - Philippe Rieu
- CNRS, Université Grenoble Alpes, CEA, INRAE, IRIG, BIG-LPCV, Grenoble, France
- Structural Plant Biology Laboratory, Department of Botany and Plant Biology, University of Geneva, Geneva, Switzerland
| | | | - Coralie Cancé
- CNRS, Université Grenoble Alpes, CEA, INRAE, IRIG, BIG-LPCV, Grenoble, France
| | - Claudius Marondedze
- CNRS, Université Grenoble Alpes, CEA, INRAE, IRIG, BIG-LPCV, Grenoble, France
- Department of Biochemistry, Faculty of Medicine, Midlands State University, Senga, Gweru, Zimbabwe
| | - François Parcy
- CNRS, Université Grenoble Alpes, CEA, INRAE, IRIG, BIG-LPCV, Grenoble, France.
| |
Collapse
|
12
|
Curci PL, Zhang J, Mähler N, Seyfferth C, Mannapperuma C, Diels T, Van Hautegem T, Jonsen D, Street N, Hvidsten TR, Hertzberg M, Nilsson O, Inzé D, Nelissen H, Vandepoele K. Identification of growth regulators using cross-species network analysis in plants. PLANT PHYSIOLOGY 2022; 190:2350-2365. [PMID: 35984294 PMCID: PMC9706488 DOI: 10.1093/plphys/kiac374] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 07/05/2022] [Indexed: 05/11/2023]
Abstract
With the need to increase plant productivity, one of the challenges plant scientists are facing is to identify genes that play a role in beneficial plant traits. Moreover, even when such genes are found, it is generally not trivial to transfer this knowledge about gene function across species to identify functional orthologs. Here, we focused on the leaf to study plant growth. First, we built leaf growth transcriptional networks in Arabidopsis (Arabidopsis thaliana), maize (Zea mays), and aspen (Populus tremula). Next, known growth regulators, here defined as genes that when mutated or ectopically expressed alter plant growth, together with cross-species conserved networks, were used as guides to predict novel Arabidopsis growth regulators. Using an in-depth literature screening, 34 out of 100 top predicted growth regulators were confirmed to affect leaf phenotype when mutated or overexpressed and thus represent novel potential growth regulators. Globally, these growth regulators were involved in cell cycle, plant defense responses, gibberellin, auxin, and brassinosteroid signaling. Phenotypic characterization of loss-of-function lines confirmed two predicted growth regulators to be involved in leaf growth (NPF6.4 and LATE MERISTEM IDENTITY2). In conclusion, the presented network approach offers an integrative cross-species strategy to identify genes involved in plant growth and development.
Collapse
Affiliation(s)
- Pasquale Luca Curci
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium
- Institute of Biosciences and Bioresources, National Research Council (CNR), Via Amendola 165/A, 70126 Bari, Italy
| | - Jie Zhang
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium
| | - Niklas Mähler
- Department of Plant Physiology, Umea Plant Science Centre (UPSC), Umeå University, 90187 Umeå, Sweden
| | - Carolin Seyfferth
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium
- Department of Plant Physiology, Umea Plant Science Centre (UPSC), Umeå University, 90187 Umeå, Sweden
| | - Chanaka Mannapperuma
- Department of Plant Physiology, Umea Plant Science Centre (UPSC), Umeå University, 90187 Umeå, Sweden
| | - Tim Diels
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium
| | - Tom Van Hautegem
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium
| | - David Jonsen
- SweTree Technologies AB, Skogsmarksgränd 7, SE-907 36 Umeå, Sweden
| | - Nathaniel Street
- Department of Plant Physiology, Umea Plant Science Centre (UPSC), Umeå University, 90187 Umeå, Sweden
| | - Torgeir R Hvidsten
- Department of Plant Physiology, Umea Plant Science Centre (UPSC), Umeå University, 90187 Umeå, Sweden
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, 1432 Ås, Norway
| | - Magnus Hertzberg
- SweTree Technologies AB, Skogsmarksgränd 7, SE-907 36 Umeå, Sweden
| | - Ove Nilsson
- Department of Forest Genetics and Plant Physiology, Umea Plant Science Centre (UPSC), Swedish University of Agricultural Sciences, 90183 Umeå, Sweden
| | - Dirk Inzé
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium
| | - Hilde Nelissen
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium
| | - Klaas Vandepoele
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium
- Bioinformatics Institute Ghent, Ghent University, Technologiepark 71, 9052 Ghent, Belgium
| |
Collapse
|
13
|
Chen L, Lei W, He W, Wang Y, Tian J, Gong J, Hao B, Cheng X, Shu Y, Fan Z. Mapping of Two Major QTLs Controlling Flowering Time in Brassica napus Using a High-Density Genetic Map. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11192635. [PMID: 36235500 PMCID: PMC9571212 DOI: 10.3390/plants11192635] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/01/2022] [Accepted: 10/05/2022] [Indexed: 05/31/2023]
Abstract
Research on the flowering habit of rapeseed is important for the selection of varieties adapted to specific ecological environments. Here, quantitative trait loci (QTL) for the days-to-flowering trait were identified using a doubled haploid population of 178 lines derived from a cross between the winter type SGDH284 and the semi-winter type 158A. A linkage map encompassing 3268.01 cM was constructed using 2777 bin markers obtained from next-generation sequencing. The preliminary mapping results revealed 56 QTLs for the days to flowering in the six replicates in the three environments. Twelve consensus QTLs were identified by a QTL meta-analysis, two of which (cqDTF-C02 and cqDTF-C06) were designated as major QTLs. Based on the micro-collinearity of the target regions between B. napus and Arabidopsis, four genes possibly related to flowering time were identified in the cqDTF-C02 interval, and only one gene possibly related to flowering time was identified in the cqDTF-C06 interval. A tightly linked insertion-deletion marker for the cqFT-C02 locus was developed. These findings will aid the breeding of early maturing B. napus varieties.
Collapse
Affiliation(s)
- Lei Chen
- College of Agriculture, Anhui Science and Technology University, Fengyang 233100, China
| | - Weixia Lei
- Crop Institute, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - Wangfei He
- College of Agriculture, Anhui Science and Technology University, Fengyang 233100, China
| | - Yifan Wang
- College of Agriculture, Anhui Science and Technology University, Fengyang 233100, China
| | - Jie Tian
- College of Agriculture, Anhui Science and Technology University, Fengyang 233100, China
| | - Jihui Gong
- College of Agriculture, Anhui Science and Technology University, Fengyang 233100, China
| | - Bing Hao
- Bengbu Ludu Crop Residue Biotechnology Co., Ltd., Bengbu 233000, China
| | - Xinxin Cheng
- College of Agriculture, Anhui Science and Technology University, Fengyang 233100, China
| | - Yingjie Shu
- College of Agriculture, Anhui Science and Technology University, Fengyang 233100, China
| | - Zhixiong Fan
- Crop Institute, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| |
Collapse
|
14
|
Strader L, Weijers D, Wagner D. Plant transcription factors - being in the right place with the right company. CURRENT OPINION IN PLANT BIOLOGY 2022; 65:102136. [PMID: 34856504 PMCID: PMC8844091 DOI: 10.1016/j.pbi.2021.102136] [Citation(s) in RCA: 73] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/29/2021] [Accepted: 10/04/2021] [Indexed: 05/15/2023]
Abstract
Transcriptional regulation underlies many of the growth and developmental processes that shape plants as well as their adaptation to their environment. Key to transcriptional control are transcription factors, DNA-binding proteins that serve two essential functions: to find the appropriate DNA contact sites in their target genes; and to recruit other proteins to execute transcriptional transactions. In recent years, protein structural, genomic, bioinformatic, and proteomic analyses have led to new insights into how these central functions are regulated. Here, we review new findings relating to plant transcription factor function and to their role in shaping transcription in the context of chromatin.
Collapse
Affiliation(s)
- Lucia Strader
- Department of Biology, Duke University, Durham, NC, USA
| | - Dolf Weijers
- Wageningen University, Laboratory of Biochemistry, Wageningen, the Netherlands
| | - Doris Wagner
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
15
|
Yamaguchi N. LEAFY, a Pioneer Transcription Factor in Plants: A Mini-Review. FRONTIERS IN PLANT SCIENCE 2021; 12:701406. [PMID: 34290727 PMCID: PMC8287900 DOI: 10.3389/fpls.2021.701406] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 06/01/2021] [Indexed: 05/25/2023]
Abstract
A subset of eukaryotic transcription factors (TFs) possess the ability to reprogram one cell type into another. Genes important for cellular reprograming are typically located in closed chromatin, which is covered by nucleosomes. Pioneer factors are a special class of TFs that can initially engage their target sites in closed chromatin prior to the engagement with, opening of, or modification of the sites by other factors. Although many pioneer factors are known in animals, a few have been characterized in plants. The TF LEAFY (LFY) acts as a pioneer factor specifying floral fate in Arabidopsis. In response to endogenous and environmental cues, plants produce appropriate floral inducers (florigens). During the vegetative phase, LFY is repressed by the TERMINAL FLOWER 1 (TFL1)-FD complex, which functions as a floral inhibitor, or anti-florigen. The florigen FLOWERING LOCUS T (FT) competes with TFL1 to prevent the binding of the FD TF to the LFY locus. The resulting FT-FD complex functions as a transient stimulus to activate its targets. Once LFY has been transcribed in the appropriate spatiotemporal manner, LFY binds to nucleosomes in closed chromatin regions. Subsequently, LFY opens the chromatin by displacing H1 linker histones and recruiting the SWI/SNF chromatin-remodeling complex. Such local changes permit the binding of other TFs, leading to the expression of the floral meristem identity gene APETALA1. This mini-review describes the latest advances in our understanding of the pioneer TF LFY, providing insight into the establishment of gene expression competence through the shaping of the plant epigenetic landscape.
Collapse
|
16
|
LEAFY is a pioneer transcription factor and licenses cell reprogramming to floral fate. Nat Commun 2021; 12:626. [PMID: 33504790 PMCID: PMC7840934 DOI: 10.1038/s41467-020-20883-w] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 12/22/2020] [Indexed: 01/31/2023] Open
Abstract
Master transcription factors reprogram cell fate in multicellular eukaryotes. Pioneer transcription factors have prominent roles in this process because of their ability to contact their cognate binding motifs in closed chromatin. Reprogramming is pervasive in plants, whose development is plastic and tuned by the environment, yet little is known about pioneer transcription factors in this kingdom. Here, we show that the master transcription factor LEAFY (LFY), which promotes floral fate through upregulation of the floral commitment factor APETALA1 (AP1), is a pioneer transcription factor. In vitro, LFY binds to the endogenous AP1 target locus DNA assembled into a nucleosome. In vivo, LFY associates with nucleosome occupied binding sites at the majority of its target loci, including AP1. Upon binding, LFY 'unlocks' chromatin locally by displacing the H1 linker histone and by recruiting SWI/SNF chromatin remodelers, but broad changes in chromatin accessibility occur later. Our study provides a mechanistic framework for patterning of inflorescence architecture and uncovers striking similarities between LFY and animal pioneer transcription factor.
Collapse
|
17
|
Zhu Y, Klasfeld S, Jeong CW, Jin R, Goto K, Yamaguchi N, Wagner D. TERMINAL FLOWER 1-FD complex target genes and competition with FLOWERING LOCUS T. Nat Commun 2020; 11:5118. [PMID: 33046692 PMCID: PMC7550357 DOI: 10.1038/s41467-020-18782-1] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 09/01/2020] [Indexed: 12/15/2022] Open
Abstract
Plants monitor seasonal cues to optimize reproductive success by tuning onset of reproduction and inflorescence architecture. TERMINAL FLOWER 1 (TFL1) and FLOWERING LOCUS T (FT) and their orthologs antagonistically regulate these life history traits, yet their mechanism of action, antagonism and targets remain poorly understood. Here, we show that TFL1 is recruited to thousands of loci by the bZIP transcription factor FD. We identify the master regulator of floral fate, LEAFY (LFY) as a target under dual opposite regulation by TFL1 and FT and uncover a pivotal role of FT in promoting flower fate via LFY upregulation. We provide evidence that the antagonism between FT and TFL1 relies on competition for chromatin-bound FD at shared target loci. Direct TFL1-FD regulated target genes identify this complex as a hub for repressing both master regulators of reproductive development and endogenous signalling pathways. Our data provide mechanistic insight into how TFL1-FD sculpt inflorescence architecture, a trait important for reproductive success, plant architecture and yield.
Collapse
Affiliation(s)
- Yang Zhu
- Department of Biology, University of Pennsylvania, 415S. University Ave, Philadelphia, PA, 19104, USA
| | - Samantha Klasfeld
- Department of Biology, University of Pennsylvania, 415S. University Ave, Philadelphia, PA, 19104, USA
| | - Cheol Woong Jeong
- Department of Biology, University of Pennsylvania, 415S. University Ave, Philadelphia, PA, 19104, USA
- LG Economic Research Institute, LG Twin tower, Seoul, 07336, Korea
| | - Run Jin
- Department of Biology, University of Pennsylvania, 415S. University Ave, Philadelphia, PA, 19104, USA
| | - Koji Goto
- Research Institute for Biological Sciences, Okayaka Prefecture, 7549-1, Kibichuoh-cho, Kaga-gun, Okayama, 716-1241, Japan
| | - Nobutoshi Yamaguchi
- Department of Biology, University of Pennsylvania, 415S. University Ave, Philadelphia, PA, 19104, USA
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara, 630-0192, Japan
| | - Doris Wagner
- Department of Biology, University of Pennsylvania, 415S. University Ave, Philadelphia, PA, 19104, USA.
| |
Collapse
|
18
|
Li X, Li J, Cai M, Zheng H, Cheng Z, Gao J. Identification and Evolution of the WUSCHEL-Related Homeobox Protein Family in Bambusoideae. Biomolecules 2020; 10:biom10050739. [PMID: 32397500 PMCID: PMC7278010 DOI: 10.3390/biom10050739] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 04/28/2020] [Accepted: 04/29/2020] [Indexed: 02/08/2023] Open
Abstract
Bamboos (Bambusoideae) are fast-growing species due to their rapid growth rate and ability to reproduce annually via cloned buds produced on the rhizome. WUSCHEL-related homeobox (WOX) genes have been reported to regulate shoot apical meristem organization, lateral organ formation, cambium and vascular proliferation, and so on, but have rarely been studied in bamboos. In this study, the WOXs of both herbaceous bamboo species (12 OlaWOXs and nine RguWOXs) and woody bamboo species (18 GanWOXs, 27 PheWOXs, and 26 BamWOXs) were identified and categorized into three clades based on their phylogenetic relationship-ancient, intermediate, or WUS clade. Polyploidy is the major driver of the expansion of the bamboo WOX family. Eight conserved domains, besides the homeodomain, were identified by comparatively analyzing the WOXs of dicot and monocot species. Intensive purifying selection pressure in the coding region of specific domains explained the functional similarity of WOXs between different species. For Bambusoideae WOXs, polyploidy is the major driver of the expansion of the WOX family. Stronger purifying selection was found in orthologous WOXs of Bambusoideae, especially for WOX4s and WOX5s, which are conserved not only at the translational levels, but also at the genome level. Several conserved cis-acting elements were discovered at similar position in the promoters of the orthologous WOXs. For example, AP2/ERF protein-binding elements and B3 protein-binding elements were found in the promoters of the bamboo WOX4, while MYB protein-binding elements and Dof protein-binding elements were found in the promoters of bamboo WOX5, and MADS protein-binding sites was found in the promoters of bamboo WUS, WOX3, and WOX9. These conserved positions may play an important role in regulating the expression of bamboo WOXs. Our work provides insight into the origin and evolution of bamboo WOXs, and will facilitate functional investigations of the clonal propagation of bamboos.
Collapse
Affiliation(s)
| | | | | | | | | | - Jian Gao
- Correspondence: or ; Tel.: +86-010-8478-9801
| |
Collapse
|
19
|
The SWI/SNF ATP-Dependent Chromatin Remodeling Complex in Arabidopsis Responds to Environmental Changes in Temperature-Dependent Manner. Int J Mol Sci 2020; 21:ijms21030762. [PMID: 31979421 PMCID: PMC7037086 DOI: 10.3390/ijms21030762] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 01/20/2020] [Accepted: 01/22/2020] [Indexed: 01/13/2023] Open
Abstract
SWI/SNF ATP-dependent chromatin remodeling complexes (CRCs) play important roles in the regulation of transcription, cell cycle, DNA replication, repair, and hormone signaling in eukaryotes. The core of SWI/SNF CRCs composed of a SWI2/SNF2 type ATPase, a SNF5 and two of SWI3 subunits is sufficient for execution of nucleosome remodeling in vitro. The Arabidopsis genome encodes four SWI2/SNF2 ATPases, four SWI3, a single SNF5 and two SWP73 subunits. Genes of the core SWI/SNF components have critical but not fully overlapping roles during plant growth, embryogenesis, and sporophyte development. Here we show that the Arabidopsis swi3c mutant exhibits a phenotypic reversion when grown at lower temperature resulting in partial restoration of its embryo, root development and fertility defects. Our data indicates that the swi3c mutation alters the expression of several genes engaged in low temperature responses. The location of SWI3C-containing SWI/SNF CRCs on the ICE1, MYB15 and CBF1 target genes depends on the temperature conditions, and the swi3c mutation thus also influences the transcription of several cold-responsive (COR) genes. These findings, together with genetic analysis of swi3c/ice1 double mutant and enhanced freezing tolerance of swi3c plants illustrate that SWI/SNF CRCs contribute to fine-tuning of plant growth responses to different temperature regimes.
Collapse
|
20
|
Zhu Y, Wagner D. Plant Inflorescence Architecture: The Formation, Activity, and Fate of Axillary Meristems. Cold Spring Harb Perspect Biol 2020; 12:cshperspect.a034652. [PMID: 31308142 DOI: 10.1101/cshperspect.a034652] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The above-ground plant body in different plant species can have very distinct forms or architectures that arise by recurrent redeployment of a finite set of building blocks-leaves with axillary meristems, stems or branches, and flowers. The unique architectures of plant inflorescences in different plant families and species, on which this review focuses, determine the reproductive success and yield of wild and cultivated plants. Major contributors to the inflorescence architecture are the activity and developmental trajectories adopted by axillary meristems, which determine the degree of branching and the number of flowers formed. Recent advances in genetic and molecular analyses in diverse flowering plants have uncovered both common regulatory principles and unique players and/or regulatory interactions that underlie inflorescence architecture. Modulating activity of these regulators has already led to yield increases in the field. Additional insight into the underlying regulatory interactions and principles will not only uncover how their rewiring resulted in altered plant form, but will also enhance efforts at optimizing plant architecture in desirable ways in crop species.
Collapse
Affiliation(s)
- Yang Zhu
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Doris Wagner
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
21
|
Ranade SS, Delhomme N, García-Gil MR. Transcriptome analysis of shade avoidance and shade tolerance in conifers. PLANTA 2019; 250:299-318. [PMID: 31028482 DOI: 10.1007/s00425-019-03160-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 04/02/2019] [Indexed: 05/26/2023]
Abstract
Gymnosperms respond differently to light intensity and R:FR; although some aspects of shade response appear conserved, yet underlying mechanisms seem to be diverse in gymnosperms as compared to angiosperms. Shade avoidance syndrome (SAS) is well-characterized in the shade intolerant model species Arabidopsis thaliana whereas much less is known about shade tolerance response (STR), yet regulation of SAS and STR with reference to conifers remains poorly understood. We conducted a comparative study of two conifer species with contrasting responses to shade, Scots pine (shade-intolerant) and Norway spruce (shade-tolerant), with the aim to understand mechanisms behind SAS and STR in conifers. Pine and spruce seedlings were grown under controlled light and shade conditions, and hypocotyl and seedling elongation following different light treatments were determined in both species as indicators of shade responses. Red to far-red light ratio (R:FR) was shown to trigger the shade response in Norway spruce. In Scots pine, we observed an interaction between R:FR and light intensity. RNA sequencing (RNA-Seq) data revealed that SAS and STR responses included changes in expression of genes involved primarily in hormone signalling and pigment biosynthesis. From the RNA-Seq analysis, we propose that although some aspects of shade response appear to be conserved in angiosperms and gymnosperms, yet the underlying mechanisms may be different in gymnosperms that warrants further research.
Collapse
Affiliation(s)
- Sonali Sachin Ranade
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, 901 83, Umeå, Sweden
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, 901 87, Umeå, Sweden
| | - Nicolas Delhomme
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, 901 83, Umeå, Sweden
| | - María Rosario García-Gil
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, 901 83, Umeå, Sweden.
| |
Collapse
|
22
|
Abla M, Sun H, Li Z, Wei C, Gao F, Zhou Y, Feng J. Identification of miRNAs and Their Response to Cold Stress in Astragalus Membranaceus. Biomolecules 2019; 9:biom9050182. [PMID: 31083391 PMCID: PMC6572118 DOI: 10.3390/biom9050182] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Revised: 04/29/2019] [Accepted: 05/09/2019] [Indexed: 12/17/2022] Open
Abstract
Astragalus membranaceus is an important medicinal plant widely cultivated in East Asia. MicroRNAs (miRNAs) are endogenous regulatory molecules that play essential roles in plant growth, development, and the response to environmental stresses. Cold is one of the key environmental factors affecting the yield and quality of A. membranaceus, and miRNAs may mediate the gene regulation network under cold stress in A. membranaceus. To identify miRNAs and reveal their functions in cold stress response in A. membranaceus, small RNA sequencing was conducted followed by bioinformatics analysis, and quantitative real time PCR (qRT-PCR) analysis was performed to profile the expression of miRNAs under cold stress. A total of 168 conserved miRNAs belonging to 34 families and 14 putative non-conserved miRNAs were identified. Many miRNA targets were predicted and these targets were involved in diversified regulatory and metabolic pathways. By using qRT-PCR, 27 miRNAs were found to be responsive to cold stress, including 4 cold stress-induced and 17 cold-repressed conserved miRNAs, and 6 cold-induced non-conserved miRNAs. These cold-responsive miRNAs probably mediate the response to cold stress by regulating development, hormone signaling, defense, redox homeostasis, and secondary metabolism in A. membranaceus. These cold-corresponsive miRNAs may be used as the candidate genes in further molecular breeding for improving cold tolerance of A. membranaceus.
Collapse
Affiliation(s)
- Merhaba Abla
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China.
| | - Huigai Sun
- School of Pharmacology, Hebei University of Chinese Medicine, Shijiazhuang 050200, China.
| | - Zhuyun Li
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China.
| | - Chunxiang Wei
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China.
| | - Fei Gao
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China.
| | - Yijun Zhou
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China.
| | - Jinchao Feng
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China.
| |
Collapse
|
23
|
Chen H, Wang JP, Liu H, Li H, Lin YCJ, Shi R, Yang C, Gao J, Zhou C, Li Q, Sederoff RR, Li W, Chiang VL. Hierarchical Transcription Factor and Chromatin Binding Network for Wood Formation in Black Cottonwood ( Populus trichocarpa). THE PLANT CELL 2019; 31:602-626. [PMID: 30755461 PMCID: PMC6482634 DOI: 10.1105/tpc.18.00620] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 01/15/2019] [Accepted: 02/07/2019] [Indexed: 05/18/2023]
Abstract
Wood remains the world's most abundant and renewable resource for timber and pulp and is an alternative to fossil fuels. Understanding the molecular regulation of wood formation can advance the engineering of wood for more efficient material and energy productions. We integrated a black cottonwood (Populus trichocarpa) wood-forming cell system with quantitative transcriptomics and chromatin binding assays to construct a transcriptional regulatory network (TRN) directed by a key transcription factor (TF), PtrSND1-B1 (secondary wall-associated NAC-domain protein). The network consists of four layers of TF-target gene interactions with quantitative regulatory effects, describing the specificity of how the regulation is transduced through these interactions to activate cell wall genes (effector genes) for wood formation. PtrSND1-B1 directs 57 TF-DNA interactions through 17 TFs transregulating 27 effector genes. Of the 57 interactions, 55 are novel. We tested 42 of these 57 interactions in 30 genotypes of transgenic P. trichocarpa and verified that ∼90% of the tested interactions function in vivo. The TRN reveals common transregulatory targets for distinct TFs, leading to the discovery of nine TF protein complexes (dimers and trimers) implicated in regulating the biosynthesis of specific types of lignin. Our work suggests that wood formation may involve regulatory homeostasis determined by combinations of TF-DNA and TF-TF (protein-protein) regulations.
Collapse
Affiliation(s)
- Hao Chen
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150040, China
- Forest Biotechnology Group, Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, North Carolina 27695
- Department of Genetics, North Carolina State University, Raleigh, North Carolina 27695
| | - Jack P. Wang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150040, China
- Forest Biotechnology Group, Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, North Carolina 27695
| | - Huizi Liu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150040, China
| | - Huiyu Li
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150040, China
| | - Ying-Chung Jimmy Lin
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150040, China
- Department of Life Sciences, College of Life Science, National Taiwan University, Taipei, 10617, Taiwan
- Institute of Plant Biology, College of Life Science, National Taiwan University, Taipei 10617, Taiwan
| | - Rui Shi
- Forest Biotechnology Group, Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, North Carolina 27695
| | - Chenmin Yang
- Forest Biotechnology Group, Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, North Carolina 27695
| | - Jinghui Gao
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150040, China
| | - Chenguang Zhou
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150040, China
| | - Quanzi Li
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China
| | - Ronald R. Sederoff
- Forest Biotechnology Group, Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, North Carolina 27695
| | - Wei Li
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150040, China
- Forest Biotechnology Group, Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, North Carolina 27695
| | - Vincent L. Chiang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150040, China
- Forest Biotechnology Group, Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, North Carolina 27695
- Department of Forest Biomaterials, North Carolina State University, Raleigh, North Carolina 27695
| |
Collapse
|
24
|
Schultz JC, Edger PP, Body MJA, Appel HM. A galling insect activates plant reproductive programs during gall development. Sci Rep 2019; 9:1833. [PMID: 30755671 PMCID: PMC6372598 DOI: 10.1038/s41598-018-38475-6] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 12/28/2018] [Indexed: 12/02/2022] Open
Abstract
Many insect species have acquired the ability to redirect plant development to form unique organs called galls, which provide these insects with unique, enhanced food and protection from enemies and the elements. Many galls resemble flowers or fruits, suggesting that elements of reproductive development may be involved. We tested this hypothesis using RNA sequencing to quantify the transcriptional responses of wild grapevine (Vitis riparia) leaves to a galling parasite, phylloxera (Daktulosphaira vitifoliae). If development of reproductive structures is part of gall formation, we expected to find significantly elevated expression of genes involved in flower and/or fruit development in developing galls as opposed to ungalled leaves. We found that reproductive gene ontology categories were significantly enriched in developing galls, and that expression of many candidate genes involved in floral development were significantly increased, particularly in later gall stages. The patterns of gene expression found in galls suggest that phylloxera exploits vascular cambium to provide meristematic tissue and redirects leaf development towards formation of carpels. The phylloxera leaf gall appears to be phenotypically and transcriptionally similar to the carpel, due to the parasite hijacking underlying genetic machinery in the host plant.
Collapse
Affiliation(s)
- Jack C Schultz
- Division of Plant Sciences, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA.
- Department of Environmental Sciences, Bowman-Oddy Laboratories, University of Toledo, Toledo, OH, 43606, USA.
| | - Patrick P Edger
- Division of Plant Sciences, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA
- Department of Horticulture, Michigan State University and Ecology, Evolutionary Biology and Behavior, Michigan State University, East Lansing, MI, 48824, USA
| | - Mélanie J A Body
- Division of Plant Sciences, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA
- Department of Environmental Sciences, Bowman-Oddy Laboratories, University of Toledo, Toledo, OH, 43606, USA
| | - Heidi M Appel
- Division of Plant Sciences, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA
- Department of Environmental Sciences, Bowman-Oddy Laboratories, University of Toledo, Toledo, OH, 43606, USA
| |
Collapse
|
25
|
Sullivan AM, Arsovski AA, Thompson A, Sandstrom R, Thurman RE, Neph S, Johnson AK, Sullivan ST, Sabo PJ, Neri FV, Weaver M, Diegel M, Nemhauser JL, Stamatoyannopoulos JA, Bubb KL, Queitsch C. Mapping and Dynamics of Regulatory DNA in Maturing Arabidopsis thaliana Siliques. FRONTIERS IN PLANT SCIENCE 2019; 10:1434. [PMID: 31798605 PMCID: PMC6868056 DOI: 10.3389/fpls.2019.01434] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 10/16/2019] [Indexed: 05/04/2023]
Abstract
The genome is reprogrammed during development to produce diverse cell types, largely through altered expression and activity of key transcription factors. The accessibility and critical functions of epidermal cells have made them a model for connecting transcriptional events to development in a range of model systems. In Arabidopsis thaliana and many other plants, fertilization triggers differentiation of specialized epidermal seed coat cells that have a unique morphology caused by large extracellular deposits of polysaccharides. Here, we used DNase I-seq to generate regulatory landscapes of A. thaliana seeds at two critical time points in seed coat maturation (4 and 7 DPA), enriching for seed coat cells with the INTACT method. We found over 3,000 developmentally dynamic regulatory DNA elements and explored their relationship with nearby gene expression. The dynamic regulatory elements were enriched for motifs for several transcription factors families; most notably the TCP family at the earlier time point and the MYB family at the later one. To assess the extent to which the observed regulatory sites in seeds added to previously known regulatory sites in A. thaliana, we compared our data to 11 other data sets generated with 7-day-old seedlings for diverse tissues and conditions. Surprisingly, over a quarter of the regulatory, i.e. accessible, bases observed in seeds were novel. Notably, plant regulatory landscapes from different tissues, cell types, or developmental stages were more dynamic than those generated from bulk tissue in response to environmental perturbations, highlighting the importance of extending studies of regulatory DNA to single tissues and cell types during development.
Collapse
Affiliation(s)
| | - Andrej A. Arsovski
- Department of Biology, University of Washington, Seattle, WA, United States
| | - Agnieszka Thompson
- Department of Genome Sciences, University of Washington, Seattle, WA, United States
| | - Richard Sandstrom
- Department of Genome Sciences, University of Washington, Seattle, WA, United States
| | - Robert E. Thurman
- Department of Genome Sciences, University of Washington, Seattle, WA, United States
| | - Shane Neph
- Department of Genome Sciences, University of Washington, Seattle, WA, United States
| | - Audra K. Johnson
- Department of Genome Sciences, University of Washington, Seattle, WA, United States
| | - Shawn T. Sullivan
- Department of Genome Sciences, University of Washington, Seattle, WA, United States
| | - Peter J. Sabo
- Department of Genome Sciences, University of Washington, Seattle, WA, United States
| | - Fidencio V. Neri
- Department of Genome Sciences, University of Washington, Seattle, WA, United States
| | - Molly Weaver
- Department of Genome Sciences, University of Washington, Seattle, WA, United States
| | - Morgan Diegel
- Department of Genome Sciences, University of Washington, Seattle, WA, United States
| | | | | | - Kerry L. Bubb
- Department of Genome Sciences, University of Washington, Seattle, WA, United States
- *Correspondence: Kerry L. Bubb,
| | - Christine Queitsch
- Department of Genome Sciences, University of Washington, Seattle, WA, United States
| |
Collapse
|
26
|
Kryvokhyzha MV, Krutovsky KV, Rashydov NM. Differential expression of flowering genes in Arabidopsis thaliana under chronic and acute ionizing radiation. Int J Radiat Biol 2018; 95:626-634. [PMID: 30570374 DOI: 10.1080/09553002.2019.1562251] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
PURPOSE Chronic and acute irradiations have drastic effects on flowering stage that plays an important role in further seed development and can determine seed yield. The expression of the key flowering genes, AP1, CO, GI, FT, FLC, and LFY, sensitive to irradiation repair gene RAD51 and the proliferation gene PCNA2 were studied in the wild-type Arabidopsis thaliana (Columbia ecotype) under chronic and acute irradiations. MATERIALS AND METHODS Chronic irradiation was performed using the radioactive isotope 137СsCl in two total doses of 3 cGy and 17 cGy, with the dose rate of 10-7 cGy/s and 6.8 10-6 cGy/s, respectively. The plants were grown under chronic irradiation during 6 weeks, from seeds till the 6.3 stage of flowering. For acute exposure, the plants were X-ray irradiated one time at the 5.0 development stage (20 days old) by a total dose of 15 Gy with the dose rate of 89 cGy/s. RESULTS After chronic irradiation with the 3 cGy dose the irradiated plants demonstrated 8 ± 2.8 days earlier flowering than in the control group. However, at the 17 cGy chronic and at the 15 Gy acute doses plants showed 14 ± 3.7 and 2 ± 1.4 days later flowering, respectively. The 3 cGy chronic exposure significantly increased the expression of the CO gene by a factor of 1.152 (1.087-1.217 95% C.I.) and decreased the expression of the FT gene by a factor of 0.128 (0.021-0.396 95% C.I.). The 17 cGy chronic exposure decreased expression of the AP1 gene by a factor of 0.872 (0.803-0.940 95% C.I.) and the LFY gene by a factor of 0.471 (0.306-0.687 95% C.I.). The 15 Gy acute exposure decreased the expression of the AP1 gene by a factor of 0.104 (0.074-0.144 95% C.I.) and the PCNA2 gene by a factor of 0.346 (0.238-0.488 95% C.I.). CONCLUSIONS The increased expression of the CO gene and decreased expression of the AP1 and FT genes under the lower dose of chronic exposure were associated with earlier flowering. The acute exposure increased the expression of the PCNA2 gene and decreased the expression of the flowering genes, except AP1. The flowering was delayed under both the higher dose of chronic exposure and under acute exposure, but it was less affected by the latter. Presumably, it was related to the activation of DNA repair under the 3 cGy chronic and 15 Gy acute irradiations.
Collapse
Affiliation(s)
- Maryna V Kryvokhyzha
- a Institute of Cell Biology and Genetic Engineering , National Academy of Sciences of Ukraine , Kiev , Ukraine
| | - Konstantin V Krutovsky
- b Department of Forest Genetics and Forest Tree Breeding , Georg-August University of Göttingen , Göttingen , Germany.,c Vavilov Institute of General Genetics , Russian Academy of Sciences , Moscow , Russia.,d Genome Research and Education Center , Siberian Federal University , Krasnoyarsk , Russia.,e Department of Ecosystem Science and Management , Texas A&M University , College Station , TX , USA
| | - Namik M Rashydov
- a Institute of Cell Biology and Genetic Engineering , National Academy of Sciences of Ukraine , Kiev , Ukraine
| |
Collapse
|
27
|
Qian Y, Zhang S, Yao S, Xia J, Li Y, Dai X, Wang W, Jiang X, Liu Y, Li M, Gao L, Xia T. Effects of vitro sucrose on quality components of tea plants (Camellia sinensis) based on transcriptomic and metabolic analysis. BMC PLANT BIOLOGY 2018; 18:121. [PMID: 29914362 PMCID: PMC6007066 DOI: 10.1186/s12870-018-1335-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Accepted: 05/31/2018] [Indexed: 05/29/2023]
Abstract
BACKGROUND Tea plants [Camellia sinensis (L.) O. Kuntze] can produce one of the three most widely popular non-alcoholic beverages throughout the world. Polyphenols and volatiles are the main functional ingredients determining tea's quality and flavor; however, the biotic or abiotic factors affecting tea polyphenol biosynthesis are unclear. This paper focuses on the molecular mechanisms of sucrose on polyphenol biosynthesis and volatile composition variation in tea plants. RESULTS Metabolic analysis showed that the total content of anthocyanins, catechins, and proanthocyanidins(PAs) increased with sucrose, and they accumulated most significantly after 14 days of treatment. Transcriptomic analysis revealed 8384 and 5571 differentially expressed genes in 2-day and 14-day sucrose-treated tea plants compared with control-treated plants. Most of the structural genes and transcription factors (TFs) involved in polyphenol biosynthesis were significantly up-regulated after 2d. Among these transcripts, the predicted genes encoding glutathione S-transferase (GST), ATP-binding cassette transporters (ABC transporters), and multidrug and toxic compound extrusion transporters (MATE transporters) appeared up regulated. Correspondingly, ultra-performance liquid chromatography-triple quadrupole mass spectrometry (UPLC-QQQ-MS/MS) analysis revealed that the content of non-galloylated catechins and oligomeric PAs decreased in the upper-stem and increased in the lower-stem significantly, especially catechin (C), epicatechin (EC), and their oligomeric PAs. This result suggests that the related flavonoids were transported downward in the stem by transporters. GC/MS data implied that four types of volatile compounds, namely terpene derivatives, aromatic derivatives, lipid derivatives, and others, were accumulated differently after in vitro sucrose treatment. CONCLUSIONS Our data demonstrated that sucrose regulates polyphenol biosynthesis in Camellia sinensis by altering the expression of transcription factor genes and pathway genes. Additionally, sucrose promotes the transport of polyphenols and changes the aroma composition in tea plant.
Collapse
Affiliation(s)
- Yumei Qian
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 West Changjiang Rd, Hefei, 230036 Anhui China
- School of Biological and Food Engineering, Suzhou University, 49 Middle Bianhe Rd, Suzhou, 234000 Anhui China
| | - Shuxiang Zhang
- School of Life Science, Anhui Agricultural University, 130 West Changjiang Rd, Hefei, 230036 Anhui China
| | - Shengbo Yao
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 West Changjiang Rd, Hefei, 230036 Anhui China
| | - Jinxin Xia
- School of Life Science, Anhui Agricultural University, 130 West Changjiang Rd, Hefei, 230036 Anhui China
| | - Yanzhi Li
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 West Changjiang Rd, Hefei, 230036 Anhui China
| | - Xinlong Dai
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 West Changjiang Rd, Hefei, 230036 Anhui China
| | - Wenzhao Wang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 West Changjiang Rd, Hefei, 230036 Anhui China
| | - Xiaolan Jiang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 West Changjiang Rd, Hefei, 230036 Anhui China
| | - Yajun Liu
- School of Life Science, Anhui Agricultural University, 130 West Changjiang Rd, Hefei, 230036 Anhui China
| | - Mingzhuo Li
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 West Changjiang Rd, Hefei, 230036 Anhui China
| | - Liping Gao
- School of Life Science, Anhui Agricultural University, 130 West Changjiang Rd, Hefei, 230036 Anhui China
| | - Tao Xia
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 West Changjiang Rd, Hefei, 230036 Anhui China
| |
Collapse
|
28
|
Rains MK, Gardiyehewa de Silva ND, Molina I. Reconstructing the suberin pathway in poplar by chemical and transcriptomic analysis of bark tissues. TREE PHYSIOLOGY 2018; 38:340-361. [PMID: 28575526 DOI: 10.1093/treephys/tpx060] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 05/18/2017] [Indexed: 05/09/2023]
Abstract
The tree bark periderm confers the first line of protection against pathogen invasion and abiotic stresses. The phellogen (cork cambium) externally produces cork (phellem) cells that are dead at maturity; while metabolically active, these tissues synthesize cell walls, as well as cell wall modifications, namely suberin and waxes. Suberin is a heteropolymer with aliphatic and aromatic domains, composed of acylglycerols, cross-linked polyphenolics and solvent-extractable waxes. Although suberin is essentially ubiquitous in vascular plants, the biochemical functions of many enzymes and the genetic regulation of its synthesis are poorly understood. We have studied suberin and wax composition in four developmental stages of hybrid poplar (Populus tremula x Populus alba) stem periderm. The amounts of extracellular ester-linked acyl lipids per unit area increased with tissue age, a trend not observed with waxes. We used RNA-Seq deep-sequencing technology to investigate the cork transcriptome at two developmental stages. The transcript analysis yielded 455 candidates for the biosynthesis and regulation of poplar suberin, including genes with proven functions in suberin metabolism, genes highlighted as candidates in other plant species and novel candidates. Among these, a gene encoding a putative lipase/acyltransferase of the GDSL-motif family emerged as a suberin polyester synthase candidate, and specific isoforms of peroxidase and laccase genes were preferentially expressed in cork, suggesting that their corresponding proteins may be involved in cross-linking aromatics to form lignin-like polyphenolics. Many transcriptional regulators with possible roles in meristem identity, cork differentiation and acyl-lipid metabolism were also identified. Our work provides the first large-scale transcriptomic dataset on the suberin-synthesizing tissue of poplar bark, contributing to our understanding of tree bark development at the molecular level. Based on these data, we have proposed a number of hypotheses that can be used in future research leading to novel biological insights into suberin biosynthesis and its physiological function.
Collapse
Affiliation(s)
- Meghan K Rains
- Department of Biology, Biosciences Complex, Queen's University, 116 Barrie St., Kingston, ON, Canada K7L 3N6
- Department of Biology, Essar Convergence Centre, Algoma University, 1520 Queen Street East, Sault Ste Marie, ON, Canada P6A 2G4
| | - Nayana Dilini Gardiyehewa de Silva
- Department of Biology and Institute of Biochemistry, Nesbitt Biology Building, Carleton University, 1125 Colonel By Drive, Ottawa, ON, Canada K1S 5B6
| | - Isabel Molina
- Department of Biology, Biosciences Complex, Queen's University, 116 Barrie St., Kingston, ON, Canada K7L 3N6
- Department of Biology, Essar Convergence Centre, Algoma University, 1520 Queen Street East, Sault Ste Marie, ON, Canada P6A 2G4
| |
Collapse
|
29
|
Uemura A, Yamaguchi N, Xu Y, Wee W, Ichihashi Y, Suzuki T, Shibata A, Shirasu K, Ito T. Regulation of floral meristem activity through the interaction of AGAMOUS, SUPERMAN, and CLAVATA3 in Arabidopsis. PLANT REPRODUCTION 2018; 31:89-105. [PMID: 29218596 DOI: 10.1007/s00497-017-0315-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 11/28/2017] [Indexed: 05/23/2023]
Abstract
Floral meristem size is redundantly controlled by CLAVATA3, AGAMOUS , and SUPERMAN in Arabidopsis. The proper regulation of floral meristem activity is key to the formation of optimally sized flowers with a fixed number of organs. In Arabidopsis thaliana, multiple regulators determine this activity. A small secreted peptide, CLAVATA3 (CLV3), functions as an important negative regulator of stem cell activity. Two transcription factors, AGAMOUS (AG) and SUPERMAN (SUP), act in different pathways to regulate the termination of floral meristem activity. Previous research has not addressed the genetic interactions among these three genes. Here, we quantified the floral developmental stage-specific phenotypic consequences of combining mutations of AG, SUP, and CLV3. Our detailed phenotypic and genetic analyses revealed that these three genes act in partially redundant pathways to coordinately modulate floral meristem sizes in a spatial and temporal manner. Analyses of the ag sup clv3 triple mutant, which developed a mass of undifferentiated cells in its flowers, allowed us to identify downstream targets of AG with roles in reproductive development and in the termination of floral meristem activity. Our study highlights the role of AG in repressing genes that are expressed in organ initial cells to control floral meristem activity.
Collapse
Affiliation(s)
- Akira Uemura
- Biological Sciences, Nara Institute of Science and Technology, 8916-5, Takayama, Ikoma, Nara, 630-0192, Japan
| | - Nobutoshi Yamaguchi
- Biological Sciences, Nara Institute of Science and Technology, 8916-5, Takayama, Ikoma, Nara, 630-0192, Japan
- Precursory Research for Embryonic Science and Technology, Japan Science and Technology Agency, 4-1-8, Honcho, Kawaguchi-shi, Saitama, 332-0012, Japan
| | - Yifeng Xu
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore, 117604, Republic of Singapore
| | - WanYi Wee
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore, 117604, Republic of Singapore
| | - Yasunori Ichihashi
- Precursory Research for Embryonic Science and Technology, Japan Science and Technology Agency, 4-1-8, Honcho, Kawaguchi-shi, Saitama, 332-0012, Japan
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa, 230-0045, Japan
| | - Takamasa Suzuki
- Department of Biological Chemistry, College of Bioscience and Biotechnology, Chubu University, 1200 Matsumoto-cho, Kasugai, Aichi, 487-8501, Japan
| | - Arisa Shibata
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa, 230-0045, Japan
| | - Ken Shirasu
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa, 230-0045, Japan
- Graduate School of Science, The University of Tokyo, Bunkyo, Tokyo, 113-0033, Japan
| | - Toshiro Ito
- Biological Sciences, Nara Institute of Science and Technology, 8916-5, Takayama, Ikoma, Nara, 630-0192, Japan.
| |
Collapse
|
30
|
Monniaux M, McKim SM, Cartolano M, Thévenon E, Parcy F, Tsiantis M, Hay A. Conservation vs divergence in LEAFY and APETALA1 functions between Arabidopsis thaliana and Cardamine hirsuta. THE NEW PHYTOLOGIST 2017; 216:549-561. [PMID: 28098947 DOI: 10.1111/nph.14419] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2016] [Accepted: 11/28/2016] [Indexed: 05/13/2023]
Abstract
A conserved genetic toolkit underlies the development of diverse floral forms among angiosperms. However, the degree of conservation vs divergence in the configuration of these gene regulatory networks is less clear. We addressed this question in a parallel genetic study between the closely related species Arabidopsis thaliana and Cardamine hirsuta. We identified leafy (lfy) and apetala1 (ap1) alleles in a mutant screen for floral regulators in C. hirsuta. C. hirsuta lfy mutants showed a complete homeotic conversion of flowers to leafy shoots, mimicking lfy ap1 double mutants in A. thaliana. Through genetic and molecular experiments, we showed that AP1 activation is fully dependent on LFY in C. hirsuta, by contrast to A. thaliana. Additionally, we found that LFY influences heteroblasty in C. hirsuta, such that loss or gain of LFY function affects its progression. Overexpression of UNUSUAL FLORAL ORGANS also alters C. hirsuta leaf shape in an LFY-dependent manner. We found that LFY and AP1 are conserved floral regulators that act nonredundantly in C. hirsuta, such that LFY has more obvious roles in floral and leaf development in C. hirsuta than in A. thaliana.
Collapse
Affiliation(s)
- Marie Monniaux
- Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829, Köln, Germany
| | - Sarah M McKim
- Plant Sciences Department, University of Oxford, South Parks Rd, Oxford, OX1 3RB, UK
| | - Maria Cartolano
- Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829, Köln, Germany
| | - Emmanuel Thévenon
- Laboratory of Plant & Cell Physiology, CNRS, CEA, University of Grenoble Alpes, INRA, 38000, Grenoble, France
| | - François Parcy
- Laboratory of Plant & Cell Physiology, CNRS, CEA, University of Grenoble Alpes, INRA, 38000, Grenoble, France
| | - Miltos Tsiantis
- Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829, Köln, Germany
| | - Angela Hay
- Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829, Köln, Germany
| |
Collapse
|
31
|
Denay G, Vachon G, Dumas R, Zubieta C, Parcy F. Plant SAM-Domain Proteins Start to Reveal Their Roles. TRENDS IN PLANT SCIENCE 2017; 22:718-725. [PMID: 28668510 DOI: 10.1016/j.tplants.2017.06.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 06/02/2017] [Accepted: 06/05/2017] [Indexed: 06/07/2023]
Abstract
Proteins often act in complexes assembled via protein-protein interaction domains. The sterile alpha motif (SAM) domain is one of the most prominent interaction domains in animals and is present in proteins of diverse functions. This domain allows head-to-tail closed oligomerisation or polymer formation resulting in homo- and/or heterocomplexes that have been shown to be important for proper protein localisation and function. In plants this domain is also present but has been poorly studied except for recent studies on the LEAFY floral regulator and the tRNA import component (TRIC)1/2 proteins. Here we catalogue SAM domain-containing proteins from arabidopsis (Arabidopsis thaliana), compare plant and other eukaryotic SAM domains, and perform homology modelling to probe plant SAM domain interaction capabilities.
Collapse
Affiliation(s)
- Grégoire Denay
- LPCV, CEA, CNRS, INRA, Université Grenoble-Alpes, BIG, 38000 Grenoble, France; Institute for Developmental Genetics, Heinrich-Heine-Universität Düsseldorf, Universitätstraße, D-40225 Düsseldorf, Germany
| | - Gilles Vachon
- LPCV, CEA, CNRS, INRA, Université Grenoble-Alpes, BIG, 38000 Grenoble, France
| | - Renaud Dumas
- LPCV, CEA, CNRS, INRA, Université Grenoble-Alpes, BIG, 38000 Grenoble, France
| | - Chloe Zubieta
- LPCV, CEA, CNRS, INRA, Université Grenoble-Alpes, BIG, 38000 Grenoble, France
| | - François Parcy
- LPCV, CEA, CNRS, INRA, Université Grenoble-Alpes, BIG, 38000 Grenoble, France.
| |
Collapse
|
32
|
Wang P, Karki S, Biswal AK, Lin HC, Dionora MJ, Rizal G, Yin X, Schuler ML, Hughes T, Fouracre JP, Jamous BA, Sedelnikova O, Lo SF, Bandyopadhyay A, Yu SM, Kelly S, Quick WP, Langdale JA. Candidate regulators of Early Leaf Development in Maize Perturb Hormone Signalling and Secondary Cell Wall Formation When Constitutively Expressed in Rice. Sci Rep 2017; 7:4535. [PMID: 28674432 PMCID: PMC5495811 DOI: 10.1038/s41598-017-04361-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 05/15/2017] [Indexed: 12/22/2022] Open
Abstract
All grass leaves are strap-shaped with a series of parallel veins running from base to tip, but the distance between each pair of veins, and the cell-types that develop between them, differs depending on whether the plant performs C3 or C4 photosynthesis. As part of a multinational effort to introduce C4 traits into rice to boost crop yield, candidate regulators of C4 leaf anatomy were previously identified through an analysis of maize leaf transcriptomes. Here we tested the potential of 60 of those candidate genes to alter leaf anatomy in rice. In each case, transgenic rice lines were generated in which the maize gene was constitutively expressed. Lines grouped into three phenotypic classes: (1) indistinguishable from wild-type; (2) aberrant shoot and/or root growth indicating possible perturbations to hormone homeostasis; and (3) altered secondary cell wall formation. One of the genes in class 3 defines a novel monocot-specific family. None of the genes were individually sufficient to induce C4-like vein patterning or cell-type differentiation in rice. A better understanding of gene function in C4 plants is now needed to inform more sophisticated engineering attempts to alter leaf anatomy in C3 plants.
Collapse
Affiliation(s)
- Peng Wang
- Department of Plant Sciences, University of Oxford, South Parks Rd, Oxford, OX1 3RB, UK
| | - Shanta Karki
- International Rice Research Institute, Los Banos, 4030, Laguna, Philippines.,Ministry of Agricultural Development, Government of Nepal, Singhadurbar, Kathmandu, Nepal
| | - Akshaya K Biswal
- International Rice Research Institute, Los Banos, 4030, Laguna, Philippines.,Department of Biology, University North Carolina, Chapel Hill, NC, 27599, USA
| | - Hsiang-Chun Lin
- International Rice Research Institute, Los Banos, 4030, Laguna, Philippines
| | | | - Govinda Rizal
- International Rice Research Institute, Los Banos, 4030, Laguna, Philippines.,Baniyatar-220, Tokha-12, Kathmandu, Nepal
| | - Xiaojia Yin
- International Rice Research Institute, Los Banos, 4030, Laguna, Philippines
| | - Mara L Schuler
- Department of Plant Sciences, University of Oxford, South Parks Rd, Oxford, OX1 3RB, UK.,Department of Biology, Heinrich Heine University, D-40225, Düsseldorf, Germany
| | - Tom Hughes
- Department of Plant Sciences, University of Oxford, South Parks Rd, Oxford, OX1 3RB, UK
| | - Jim P Fouracre
- Department of Plant Sciences, University of Oxford, South Parks Rd, Oxford, OX1 3RB, UK.,Department of Biology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Basel Abu Jamous
- Department of Plant Sciences, University of Oxford, South Parks Rd, Oxford, OX1 3RB, UK
| | - Olga Sedelnikova
- Department of Plant Sciences, University of Oxford, South Parks Rd, Oxford, OX1 3RB, UK
| | - Shuen-Fang Lo
- Institute of Molecular Biology, Academia Sinica, Taipei, 11529, Taiwan
| | | | - Su-May Yu
- Institute of Molecular Biology, Academia Sinica, Taipei, 11529, Taiwan
| | - Steven Kelly
- Department of Plant Sciences, University of Oxford, South Parks Rd, Oxford, OX1 3RB, UK
| | - W Paul Quick
- International Rice Research Institute, Los Banos, 4030, Laguna, Philippines
| | - Jane A Langdale
- Department of Plant Sciences, University of Oxford, South Parks Rd, Oxford, OX1 3RB, UK.
| |
Collapse
|
33
|
Wagner D. Key developmental transitions during flower morphogenesis and their regulation. Curr Opin Genet Dev 2017; 45:44-50. [PMID: 28314174 DOI: 10.1016/j.gde.2017.01.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2016] [Revised: 01/29/2017] [Accepted: 01/30/2017] [Indexed: 11/16/2022]
Abstract
The arrangement of flowers on flowering stems called inflorescences contributes to the beauty of the natural world and enhances seed yield, impacting species survival and human sustenance. During the reproductive phase, annual/monocarpic plants like Arabidopsis and most crops form two types of lateral structures: indeterminate lateral inflorescences and determinate flowers. Their stereotypical arrangement on the primary inflorescence stem determines the species-specific inflorescence architecture. This architecture can be modulated in response to environmental cues to enhance reproductive success. Early botanists already appreciated that flowers and lateral inflorescences are analogous structures that are interconvertible. Here I will discuss the molecular underpinnings of these observations and explore the regulatory logic of the developmental fate transitions that lead to the formation of a flower.
Collapse
Affiliation(s)
- Doris Wagner
- Department of Biology, University of Pennsylvania, 415 S. University Ave, Philadelphia, PA 19104, United States.
| |
Collapse
|
34
|
Frerichs A, Thoma R, Abdallah AT, Frommolt P, Werr W, Chandler JW. The founder-cell transcriptome in the Arabidopsis apetala1 cauliflower inflorescence meristem. BMC Genomics 2016; 17:855. [PMID: 27809788 PMCID: PMC5093967 DOI: 10.1186/s12864-016-3189-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2016] [Accepted: 10/22/2016] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Although the pattern of lateral organ formation from apical meristems establishes species-specific plant architecture, the positional information that confers cell fate to cells as they transit to the meristem flanks where they differentiate, remains largely unknown. We have combined fluorescence-activated cell sorting and RNA-seq to characterise the cell-type-specific transcriptome at the earliest developmental time-point of lateral organ formation using DORNRÖSCHEN-LIKE::GFP to mark founder-cell populations at the periphery of the inflorescence meristem (IM) in apetala1 cauliflower double mutants, which overproliferate IMs. RESULTS Within the lateral organ founder-cell population at the inflorescence meristem, floral primordium identity genes are upregulated and stem-cell identity markers are downregulated. Additional differentially expressed transcripts are involved in polarity generation and boundary formation, and in epigenetic and post-translational changes. However, only subtle transcriptional reprogramming within the global auxin network was observed. CONCLUSIONS The transcriptional network of differentially expressed genes supports the hypothesis that lateral organ founder-cell specification involves the creation of polarity from the centre to the periphery of the IM and the establishment of a boundary from surrounding cells, consistent with bract initiation. However, contrary to the established paradigm that sites of auxin response maxima pre-pattern lateral organ initiation in the IM, auxin response might play a minor role in the earliest stages of lateral floral initiation.
Collapse
Affiliation(s)
- Anneke Frerichs
- Institute of Developmental Biology, University of Cologne, Cologne Biocenter, Zuelpicher Strasse 47b, D-50674, Cologne, Germany
| | - Rahere Thoma
- Present address: Department of Plant Breeding and Genetics, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, D-50829, Cologne, Germany
| | - Ali Taleb Abdallah
- CECAD Research Center, University of Cologne, Joseph-Stelzmann-Str. 26, 50931, Cologne, Germany
| | - Peter Frommolt
- CECAD Research Center, University of Cologne, Joseph-Stelzmann-Str. 26, 50931, Cologne, Germany
| | - Wolfgang Werr
- Institute of Developmental Biology, University of Cologne, Cologne Biocenter, Zuelpicher Strasse 47b, D-50674, Cologne, Germany
| | - John William Chandler
- Institute of Developmental Biology, University of Cologne, Cologne Biocenter, Zuelpicher Strasse 47b, D-50674, Cologne, Germany.
| |
Collapse
|
35
|
Gene-regulatory networks controlling inflorescence and flower development in Arabidopsis thaliana. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2016; 1860:95-105. [PMID: 27487457 DOI: 10.1016/j.bbagrm.2016.07.014] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 07/21/2016] [Accepted: 07/22/2016] [Indexed: 11/23/2022]
Abstract
Reproductive development in plants is controlled by complex and intricate gene-regulatory networks of transcription factors. These networks integrate the information from endogenous, hormonal and environmental regulatory pathways. Many of the key players have been identified in Arabidopsis and other flowering plant species, and their interactions and molecular modes of action are being elucidated. An emerging theme is that there is extensive crosstalk between different pathways, which can be accomplished at the molecular level by modulation of transcription factor activity or of their downstream targets. In this review, we aim to summarize current knowledge on transcription factors and epigenetic regulators that control basic developmental programs during inflorescence and flower morphogenesis in the model plant Arabidopsis thaliana. This article is part of a Special Issue entitled: Plant Gene Regulatory Mechanisms and Networks, edited by Dr. Erich Grotewold and Dr. Nathan Springer.
Collapse
|
36
|
Ye L, Wang B, Zhang W, Shan H, Kong H. Gains and Losses of Cis-regulatory Elements Led to Divergence of the Arabidopsis APETALA1 and CAULIFLOWER Duplicate Genes in the Time, Space, and Level of Expression and Regulation of One Paralog by the Other. PLANT PHYSIOLOGY 2016; 171:1055-69. [PMID: 27208240 PMCID: PMC4902614 DOI: 10.1104/pp.16.00320] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 04/04/2016] [Indexed: 05/05/2023]
Abstract
How genes change their expression patterns over time is still poorly understood. Here, by conducting expression, functional, bioinformatic, and evolutionary analyses, we demonstrate that the differences between the Arabidopsis (Arabidopsis thaliana) APETALA1 (AP1) and CAULIFLOWER (CAL) duplicate genes in the time, space, and level of expression were determined by the presence or absence of functionally important transcription factor-binding sites (TFBSs) in regulatory regions. In particular, a CArG box, which is the autoregulatory site of AP1 that can also be bound by the CAL protein, is a key determinant of the expression differences. Because of the CArG box, AP1 is both autoregulated and cross-regulated (by AP1 and CAL, respectively), and its relatively high-level expression is maintained till to the late stages of sepal and petal development. The observation that the CArG box was gained recently further suggests that the autoregulation and cross-regulation of AP1, as well as its function in sepal and petal development, are derived features. By comparing the evolutionary histories of this and other TFBSs, we further indicate that the divergence of AP1 and CAL in regulatory regions has been markedly asymmetric and can be divided into several stages. Specifically, shortly after duplication, when AP1 happened to be the paralog that maintained the function of the ancestral gene, CAL experienced certain degrees of degenerate evolution, in which several functionally important TFBSs were lost. Later, when functional divergence allowed the survival of both paralogs, CAL remained largely unchanged in expression, whereas the functions of AP1 were gradually reinforced by gains of the CArG box and other TFBSs.
Collapse
Affiliation(s)
- Lingling Ye
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China (L.Y., B.W., W.Z., H.S., H.K.); andUniversity of the Chinese Academy of Sciences, Beijing 100049, China (L.Y., B.W., W.Z.)
| | - Bin Wang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China (L.Y., B.W., W.Z., H.S., H.K.); andUniversity of the Chinese Academy of Sciences, Beijing 100049, China (L.Y., B.W., W.Z.)
| | - Wengen Zhang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China (L.Y., B.W., W.Z., H.S., H.K.); andUniversity of the Chinese Academy of Sciences, Beijing 100049, China (L.Y., B.W., W.Z.)
| | - Hongyan Shan
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China (L.Y., B.W., W.Z., H.S., H.K.); andUniversity of the Chinese Academy of Sciences, Beijing 100049, China (L.Y., B.W., W.Z.)
| | - Hongzhi Kong
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China (L.Y., B.W., W.Z., H.S., H.K.); andUniversity of the Chinese Academy of Sciences, Beijing 100049, China (L.Y., B.W., W.Z.)
| |
Collapse
|
37
|
Yamaguchi N, Jeong CW, Nole-Wilson S, Krizek BA, Wagner D. AINTEGUMENTA and AINTEGUMENTA-LIKE6/PLETHORA3 Induce LEAFY Expression in Response to Auxin to Promote the Onset of Flower Formation in Arabidopsis. PLANT PHYSIOLOGY 2016; 170:283-93. [PMID: 26537561 PMCID: PMC4704571 DOI: 10.1104/pp.15.00969] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 11/03/2015] [Indexed: 05/06/2023]
Abstract
Proper timing of the onset to flower formation is critical for reproductive success. Monocarpic plants like Arabidopsis (Arabidopsis thaliana) switch from production of branches in the axils of leaves to that of flowers once in their lifecycle, during the meristem identity transition. The plant-specific transcription factor LEAFY (LFY) is necessary and sufficient for this transition. Previously, we reported that the plant hormone auxin induces LFY expression through AUXIN RESPONSE FACTOR5/MONOPTEROS (ARF5/MP). It is not known whether MP is solely responsible for auxin-directed transcriptional activation of LFY. Here, we show that two transcription factors belonging to the AINTEGUMENTA-LIKE/PLETHORA family, AINTEGUMENTA (ANT) and AINTEGUMENTA-LIKE6/PLETHORA3 (AIL6/PLT3), act in parallel with MP to upregulate LFY in response to auxin. ant ail6 mutants display a delay in the meristem identity transition and in LFY induction. ANT and AIL6/PLT3 are expressed prior to LFY and bind to the LFY promoter to control LFY mRNA accumulation. Genetic and promoter/reporter studies suggest that ANT/AIL6 act in parallel with MP to promote LFY induction in response to auxin sensing. Our study highlights the importance of two separate auxin-controlled pathways in the meristem identity transition.
Collapse
Affiliation(s)
- Nobutoshi Yamaguchi
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6018 (N.Y., C.W.J., D.W.); andDepartment of Biological Sciences, University of South Carolina, Columbia, South Carolina 29208 (S.N.-W., B.A.K.)
| | - Cheol Woong Jeong
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6018 (N.Y., C.W.J., D.W.); andDepartment of Biological Sciences, University of South Carolina, Columbia, South Carolina 29208 (S.N.-W., B.A.K.)
| | - Staci Nole-Wilson
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6018 (N.Y., C.W.J., D.W.); andDepartment of Biological Sciences, University of South Carolina, Columbia, South Carolina 29208 (S.N.-W., B.A.K.)
| | - Beth A Krizek
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6018 (N.Y., C.W.J., D.W.); andDepartment of Biological Sciences, University of South Carolina, Columbia, South Carolina 29208 (S.N.-W., B.A.K.)
| | - Doris Wagner
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6018 (N.Y., C.W.J., D.W.); andDepartment of Biological Sciences, University of South Carolina, Columbia, South Carolina 29208 (S.N.-W., B.A.K.)
| |
Collapse
|
38
|
Zhao JL, Pan JS, Guan Y, Zhang WW, Bie BB, Wang YL, He HL, Lian HL, Cai R. Micro-trichome as a class I homeodomain-leucine zipper gene regulates multicellular trichome development in Cucumis sativus. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2015; 57:925-35. [PMID: 25735194 DOI: 10.1111/jipb.12345] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Accepted: 02/27/2015] [Indexed: 05/20/2023]
Abstract
Plant trichomes serve as a highly suitable model for investigating cell differentiation at the single-cell level. The regulatory genes involved in unicellular trichome development in Arabidopsis thaliana have been intensively studied, but genes regulating multicellular trichome development in plants remain unclear. Here, we characterized Cucumis sativus (cucumber) trichomes as representative multicellular and unbranched structures, and identified Micro-trichome (Mict), using map-based cloning in an F2 segregating population of 7,936 individuals generated from a spontaneous mict mutant. In mict plants, trichomes in both leaves and fruits, are small, poorly developed, and denser than in the wild type. Sequence analysis revealed that a 2,649-bp genomic deletion, spanning the first and second exons, occurred in a plant-specific class I homeodomain-leucine zipper gene. Tissue-specific expression analysis indicated that Mict is strongly expressed in the trichome cells. Transcriptome profiling identified potential targets of Mict including putative homologs of genes known in other systems to regulate trichome development, meristem determinacy, and hormone responsiveness. Phylogenic analysis charted the relationships among putative homologs in angiosperms. Our paper represents initial steps toward understanding the development of multicellular trichomes.
Collapse
Affiliation(s)
- Jun-Long Zhao
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jun-Song Pan
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yuan Guan
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Wei-Wei Zhang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Bei-Bei Bie
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yun-Li Wang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Huan-Le He
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Hong-Li Lian
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Run Cai
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
39
|
Lee JH, Jung JH, Park CM. INDUCER OF CBF EXPRESSION 1 integrates cold signals into FLOWERING LOCUS C-mediated flowering pathways in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 84:29-40. [PMID: 26248809 DOI: 10.1111/tpj.12956] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Revised: 07/05/2015] [Accepted: 07/23/2015] [Indexed: 05/04/2023]
Abstract
Plants constantly monitor changes in photoperiod and temperature throughout the year to synchronize flowering with optimal environmental conditions. In the temperate zones, both photoperiod and temperature fluctuate in a somewhat predictable manner through the seasons, although a transient shift to low temperature is also encountered during changing seasons, such as early spring. Although low temperatures are known to delay flowering by inducing the floral repressor FLOWERING LOCUS C (FLC), it is not fully understood how temperature signals are coordinated with photoperiodic signals in the timing of seasonal flowering. Here, we show that the cold signaling activator INDUCER OF CBF EXPRESSION 1 (ICE1), FLC and the floral promoter SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1 (SOC1) constitute an elaborate signaling network that integrates cold signals into flowering pathways. The cold-activated ICE1 directly induces the gene encoding FLC, which represses SOC1 expression, resulting in delayed flowering. In contrast, under floral promotive conditions, SOC1 inhibits the binding of ICE1 to the promoters of the FLC gene, inducing flowering with a reduction of freezing tolerance. These observations indicate that the ICE1-FLC-SOC1 signaling network contributes to the fine-tuning of flowering during changing seasons.
Collapse
Affiliation(s)
- Jae-Hyung Lee
- Department of Chemistry, Seoul National University, Seoul, 151-742, Korea
| | - Jae-Hoon Jung
- Department of Chemistry, Seoul National University, Seoul, 151-742, Korea
- Sainsbury Laboratory, Cambridge University, 47 Bateman Street, Cambridge CB2 1LR, UK
| | - Chung-Mo Park
- Department of Chemistry, Seoul National University, Seoul, 151-742, Korea
- PGBI, Seoul National University, Seoul, 151-742, Korea
| |
Collapse
|
40
|
Winter CM, Yamaguchi N, Wu MF, Wagner D. Transcriptional programs regulated by both LEAFY and APETALA1 at the time of flower formation. PHYSIOLOGIA PLANTARUM 2015; 155:55-73. [PMID: 26096587 PMCID: PMC5757833 DOI: 10.1111/ppl.12357] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Accepted: 06/09/2015] [Indexed: 05/24/2023]
Abstract
Two key regulators of the switch to flower formation and of flower patterning in Arabidopsis are the plant-specific helix-turn-helix transcription factor LEAFY (LFY) and the MADS box transcription factor APETALA1 (AP1). The interactions between these two transcriptional regulators are complex. AP1 is both a direct target of LFY and can act in parallel with LFY. Available genetic and molecular evidence suggests that LFY and AP1 together orchestrate the switch to flower formation and early events during flower morphogenesis by altering transcriptional programs. However, very little is known about target genes regulated by both transcription factors. Here, we performed a meta-analysis of public datasets to identify genes that are likely to be regulated by both LFY and AP1. Our analyses uncovered known and novel direct LFY and AP1 targets with a role in the control of onset of flower formation. It also identified additional families of proteins and regulatory pathways that may be under transcriptional control by both transcription factors. In particular, several of these genes are linked to response to hormones, to transport and to development. Finally, we show that the gibberellin catabolism enzyme ELA1, which was recently shown to be important for the timing of the switch to flower formation, is positively feedback-regulated by AP1. Our study contributes to the elucidation of the regulatory network that leads to formation of a vital plant organ system, the flower.
Collapse
Affiliation(s)
- Cara M. Winter
- Department of Biology, Duke University, Durham, NC, 27708, USA
| | - Nobutoshi Yamaguchi
- Department of Biology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Miin-Feng Wu
- Department of Biology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Doris Wagner
- Department of Biology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| |
Collapse
|
41
|
Sacharowski SP, Gratkowska DM, Sarnowska EA, Kondrak P, Jancewicz I, Porri A, Bucior E, Rolicka AT, Franzen R, Kowalczyk J, Pawlikowska K, Huettel B, Torti S, Schmelzer E, Coupland G, Jerzmanowski A, Koncz C, Sarnowski TJ. SWP73 Subunits of Arabidopsis SWI/SNF Chromatin Remodeling Complexes Play Distinct Roles in Leaf and Flower Development. THE PLANT CELL 2015; 27:1889-906. [PMID: 26106148 PMCID: PMC4531355 DOI: 10.1105/tpc.15.00233] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 06/03/2015] [Indexed: 05/03/2023]
Abstract
Arabidopsis thaliana SWP73A and SWP73B are homologs of mammalian BRAHMA-associated factors (BAF60s) that tether SWITCH/SUCROSE NONFERMENTING chromatin remodeling complexes to transcription factors of genes regulating various cell differentiation pathways. Here, we show that Arabidopsis thaliana SWP73s modulate several important developmental pathways. While undergoing normal vegetative development, swp73a mutants display reduced expression of FLOWERING LOCUS C and early flowering in short days. By contrast, swp73b mutants are characterized by retarded growth, severe defects in leaf and flower development, delayed flowering, and male sterility. MNase-Seq, transcript profiling, and ChIP-Seq studies demonstrate that SWP73B binds the promoters of ASYMMETRIC LEAVES1 and 2, KANADI1 and 3, and YABBY2, 3, and 5 genes, which regulate leaf development and show coordinately altered transcription in swp73b plants. Lack of SWP73B alters the expression patterns of APETALA1, APETALA3, and the MADS box gene AGL24, whereas other floral organ identity genes show reduced expression correlating with defects in flower development. Consistently, SWP73B binds to the promoter regions of APETALA1 and 3, SEPALLATA3, LEAFY, UNUSUAL FLORAL ORGANS, TERMINAL FLOWER1, AGAMOUS-LIKE24, and SUPPRESSOR OF CONSTANS OVEREXPRESSION1 genes, and the swp73b mutation alters nucleosome occupancy on most of these loci. In conclusion, SWP73B acts as important modulator of major developmental pathways, while SWP73A functions in flowering time control.
Collapse
Affiliation(s)
- Sebastian P Sacharowski
- Institute of Biochemistry and Biophysics PAS, Department of Protein Biosynthesis, 02-106 Warsaw, Poland
| | - Dominika M Gratkowska
- Institute of Biochemistry and Biophysics PAS, Department of Protein Biosynthesis, 02-106 Warsaw, Poland
| | | | - Paulina Kondrak
- Institute of Biochemistry and Biophysics PAS, Department of Protein Biosynthesis, 02-106 Warsaw, Poland Warsaw University of Life Sciences, 02-787 Warsaw, Poland
| | - Iga Jancewicz
- Institute of Biochemistry and Biophysics PAS, Department of Protein Biosynthesis, 02-106 Warsaw, Poland Warsaw University of Life Sciences, 02-787 Warsaw, Poland
| | - Aimone Porri
- Max-Planck Institut für Pflanzenzüchtungsforschung, D-50829 Köln, Germany
| | - Ernest Bucior
- Institute of Biochemistry and Biophysics PAS, Department of Protein Biosynthesis, 02-106 Warsaw, Poland Universtity of Warsaw, Faculty of Biology, Institute of Experimental Plant Biology, Department of Plant Molecular Biology, 02-106 Warsaw, Poland
| | - Anna T Rolicka
- Institute of Biochemistry and Biophysics PAS, Department of Protein Biosynthesis, 02-106 Warsaw, Poland Universtity of Warsaw, Faculty of Biology, Institute of Experimental Plant Biology, Department of Plant Molecular Biology, 02-106 Warsaw, Poland
| | - Rainer Franzen
- Max-Planck Institut für Pflanzenzüchtungsforschung, D-50829 Köln, Germany
| | - Justyna Kowalczyk
- Institute of Biochemistry and Biophysics PAS, Department of Protein Biosynthesis, 02-106 Warsaw, Poland
| | - Katarzyna Pawlikowska
- Institute of Biochemistry and Biophysics PAS, Department of Protein Biosynthesis, 02-106 Warsaw, Poland
| | - Bruno Huettel
- Max Planck Genome Centre Cologne, D-50820 Köln, Germany
| | - Stefano Torti
- Max-Planck Institut für Pflanzenzüchtungsforschung, D-50829 Köln, Germany
| | - Elmon Schmelzer
- Max-Planck Institut für Pflanzenzüchtungsforschung, D-50829 Köln, Germany
| | - George Coupland
- Max-Planck Institut für Pflanzenzüchtungsforschung, D-50829 Köln, Germany
| | - Andrzej Jerzmanowski
- Institute of Biochemistry and Biophysics PAS, Department of Protein Biosynthesis, 02-106 Warsaw, Poland Universtity of Warsaw, Faculty of Biology, Institute of Experimental Plant Biology, Department of Plant Molecular Biology, 02-106 Warsaw, Poland
| | - Csaba Koncz
- Max-Planck Institut für Pflanzenzüchtungsforschung, D-50829 Köln, Germany Institute of Plant Biology, Biological Research Center of Hungarian Academy, H-6724 Szeged, Hungary
| | - Tomasz J Sarnowski
- Institute of Biochemistry and Biophysics PAS, Department of Protein Biosynthesis, 02-106 Warsaw, Poland
| |
Collapse
|
42
|
Zhao JL, Wang YL, Yao DQ, Zhu WY, Chen L, He HL, Pan JS, Cai R. Transcriptome profiling of trichome-less reveals genes associated with multicellular trichome development in Cucumis sativus. Mol Genet Genomics 2015; 290:2007-18. [PMID: 25952908 DOI: 10.1007/s00438-015-1057-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Accepted: 04/22/2015] [Indexed: 11/28/2022]
Abstract
Trichomes on plants, similar to fine hairs on animal and human bodies, play important roles in plant survival and development. They also represent a useful model for the study of cell differentiation. Although the regulatory gene network of unicellular trichome development in Arabidopsis thaliana has been well studied, the genes that regulate multicellular trichome development remain unclear. We confirmed that Cucumis sativus (cucumber) trichomes are multicellular and unbranched, but identified a spontaneous mutant, trichome-less (tril), which presented a completely glabrous phenotype. We compared the transcriptome profilings of the tril mutant and wild type using the Illumina HiSeq 2000 sequencing technology. A total of 991 genes exhibited differential expression: 518 were up-regulated and 473 were down-regulated. We further identified 62 differentially expressed genes that encoded crucial transcription factors and were subdivided into seven categories: homeodomain, MADS, MYB, and WRKY domains, ethylene-responsive, zinc finger, and other transcription factor genes. We further analyzed the tissue-expression profiles of two candidate genes, GLABRA2-like and ATHB51-like, using qRT-PCR and found that these two genes were specifically expressed in the epidermis and trichomes, respectively. These results and the tril mutant provide useful tools to study the molecular networks associated with multicellular trichome development.
Collapse
Affiliation(s)
- Jun-Long Zhao
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai, 200240, China
| | - Yun-Li Wang
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai, 200240, China
| | - Dan-Qing Yao
- Shanghai Seed Management Station, 628 Wuzhong Road, Minhang District, Shanghai, 201103, China
| | - Wen-Ying Zhu
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai, 200240, China
| | - Long Chen
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai, 200240, China
| | - Huan-Le He
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai, 200240, China
| | - Jun-Song Pan
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai, 200240, China.
| | - Run Cai
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai, 200240, China.
| |
Collapse
|
43
|
Zhao JL, Pan JS, Guan Y, Nie JT, Yang JJ, Qu ML, He HL, Cai R. Transcriptome analysis in Cucumis sativus identifies genes involved in multicellular trichome development. Genomics 2015; 105:296-303. [PMID: 25666662 DOI: 10.1016/j.ygeno.2015.01.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Revised: 01/12/2015] [Accepted: 01/23/2015] [Indexed: 11/26/2022]
Abstract
The regulatory gene network of unicellular trichome development in Arabidopsis thaliana has been studied intensively, but that of multicellular remains unclear. In the present study, we characterized cucumber trichomes as representative multicellular and unbranched structures, but in a spontaneous mutant, mict (micro-trichome), all trichomes showed a micro-size and stunted morphologies. We revealed the transcriptome profile using Illumina HiSeq 2000 sequencing technology, and determined that a total of 1391 genes exhibited differential expression. We further validated the accuracy of the transcriptome data by RT-qPCR and found that 43 genes encoding critical transcription factors were likely involved in multicellular trichome development. These 43 candidate genes were subdivided into seven groups: homeodomain, MYB-domain, WRKY-domain, bHLH-domain, ethylene-responsive, zinc finger and other transcription factor genes. Our findings also serve as a powerful tool to further study the relevant molecular networks, and provide a new perspective for investigating this complex and species-specific developmental process.
Collapse
Affiliation(s)
- Jun-Long Zhao
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai 200240, China
| | - Jun-Song Pan
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai 200240, China
| | - Yuan Guan
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai 200240, China
| | - Jing-Tao Nie
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai 200240, China
| | - Jun-Jun Yang
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai 200240, China
| | - Mei-Ling Qu
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai 200240, China
| | - Huan-Le He
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai 200240, China
| | - Run Cai
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai 200240, China.
| |
Collapse
|
44
|
Silva CS, Puranik S, Round A, Brennich M, Jourdain A, Parcy F, Hugouvieux V, Zubieta C. Evolution of the Plant Reproduction Master Regulators LFY and the MADS Transcription Factors: The Role of Protein Structure in the Evolutionary Development of the Flower. FRONTIERS IN PLANT SCIENCE 2015; 6:1193. [PMID: 26779227 PMCID: PMC4701952 DOI: 10.3389/fpls.2015.01193] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 12/11/2015] [Indexed: 05/21/2023]
Abstract
Understanding the evolutionary leap from non-flowering (gymnosperms) to flowering (angiosperms) plants and the origin and vast diversification of the floral form has been one of the focuses of plant evolutionary developmental biology. The evolving diversity and increasing complexity of organisms is often due to relatively small changes in genes that direct development. These "developmental control genes" and the transcription factors (TFs) they encode, are at the origin of most morphological changes. TFs such as LEAFY (LFY) and the MADS-domain TFs act as central regulators in key developmental processes of plant reproduction including the floral transition in angiosperms and the specification of the male and female organs in both gymnosperms and angiosperms. In addition to advances in genome wide profiling and forward and reverse genetic screening, structural techniques are becoming important tools in unraveling TF function by providing atomic and molecular level information that was lacking in purely genetic approaches. Here, we summarize previous structural work and present additional biophysical and biochemical studies of the key master regulators of plant reproduction - LEAFY and the MADS-domain TFs SEPALLATA3 and AGAMOUS. We discuss the impact of structural biology on our understanding of the complex evolutionary process leading to the development of the bisexual flower.
Collapse
Affiliation(s)
- Catarina S. Silva
- CNRS, Laboratoire de Physiologie Cellulaire & Végétale, UMR 5168Grenoble, France
- Laboratoire de Physiologie Cellulaire & Végétale, University of Grenoble AlpesGrenoble, France
- Commissariat à l´Energie Atomique et aux Energies Alternatives, Direction des Sciences du Vivant, Laboratoire de Physiologie Cellulaire & Végétale, Institut de Recherches en Technologies et Sciences pour le VivantGrenoble, France
- Laboratoire de Physiologie Cellulaire & Végétale, Institut National de la Recherche AgronomiqueGrenoble, France
| | - Sriharsha Puranik
- European Synchrotron Radiation Facility, Structural Biology GroupGrenoble, France
| | - Adam Round
- European Molecular Biology Laboratory, Grenoble OutstationGrenoble, France
- Unit for Virus Host-Cell Interactions, University of Grenoble Alpes-EMBL-CNRSGrenoble, France
- Faculty of Natural Sciences, Keele UniversityKeele, UK
| | - Martha Brennich
- European Synchrotron Radiation Facility, Structural Biology GroupGrenoble, France
| | - Agnès Jourdain
- CNRS, Laboratoire de Physiologie Cellulaire & Végétale, UMR 5168Grenoble, France
- Laboratoire de Physiologie Cellulaire & Végétale, University of Grenoble AlpesGrenoble, France
- Commissariat à l´Energie Atomique et aux Energies Alternatives, Direction des Sciences du Vivant, Laboratoire de Physiologie Cellulaire & Végétale, Institut de Recherches en Technologies et Sciences pour le VivantGrenoble, France
- Laboratoire de Physiologie Cellulaire & Végétale, Institut National de la Recherche AgronomiqueGrenoble, France
| | - François Parcy
- CNRS, Laboratoire de Physiologie Cellulaire & Végétale, UMR 5168Grenoble, France
- Laboratoire de Physiologie Cellulaire & Végétale, University of Grenoble AlpesGrenoble, France
- Commissariat à l´Energie Atomique et aux Energies Alternatives, Direction des Sciences du Vivant, Laboratoire de Physiologie Cellulaire & Végétale, Institut de Recherches en Technologies et Sciences pour le VivantGrenoble, France
- Laboratoire de Physiologie Cellulaire & Végétale, Institut National de la Recherche AgronomiqueGrenoble, France
| | - Veronique Hugouvieux
- CNRS, Laboratoire de Physiologie Cellulaire & Végétale, UMR 5168Grenoble, France
- Laboratoire de Physiologie Cellulaire & Végétale, University of Grenoble AlpesGrenoble, France
- Commissariat à l´Energie Atomique et aux Energies Alternatives, Direction des Sciences du Vivant, Laboratoire de Physiologie Cellulaire & Végétale, Institut de Recherches en Technologies et Sciences pour le VivantGrenoble, France
- Laboratoire de Physiologie Cellulaire & Végétale, Institut National de la Recherche AgronomiqueGrenoble, France
| | - Chloe Zubieta
- CNRS, Laboratoire de Physiologie Cellulaire & Végétale, UMR 5168Grenoble, France
- Laboratoire de Physiologie Cellulaire & Végétale, University of Grenoble AlpesGrenoble, France
- Commissariat à l´Energie Atomique et aux Energies Alternatives, Direction des Sciences du Vivant, Laboratoire de Physiologie Cellulaire & Végétale, Institut de Recherches en Technologies et Sciences pour le VivantGrenoble, France
- Laboratoire de Physiologie Cellulaire & Végétale, Institut National de la Recherche AgronomiqueGrenoble, France
- *Correspondence: Chloe Zubieta,
| |
Collapse
|
45
|
Pajoro A, Biewers S, Dougali E, Leal Valentim F, Mendes MA, Porri A, Coupland G, Van de Peer Y, van Dijk ADJ, Colombo L, Davies B, Angenent GC. The (r)evolution of gene regulatory networks controlling Arabidopsis plant reproduction: a two-decade history. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:4731-45. [PMID: 24913630 DOI: 10.1093/jxb/eru233] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Successful plant reproduction relies on the perfect orchestration of singular processes that culminate in the product of reproduction: the seed. The floral transition, floral organ development, and fertilization are well-studied processes and the genetic regulation of the various steps is being increasingly unveiled. Initially, based predominantly on genetic studies, the regulatory pathways were considered to be linear, but recent genome-wide analyses, using high-throughput technologies, have begun to reveal a different scenario. Complex gene regulatory networks underlie these processes, including transcription factors, microRNAs, movable factors, hormones, and chromatin-modifying proteins. Here we review recent progress in understanding the networks that control the major steps in plant reproduction, showing how new advances in experimental and computational technologies have been instrumental. As these recent discoveries were obtained using the model species Arabidopsis thaliana, we will restrict this review to regulatory networks in this important model species. However, more fragmentary information obtained from other species reveals that both the developmental processes and the underlying regulatory networks are largely conserved, making this review also of interest to those studying other plant species.
Collapse
Affiliation(s)
- Alice Pajoro
- Plant Research International (PRI) Droevendaalseweg 1, 6708 PB Wageningen, The Netherlands Laboratory of Molecular Biology, Wageningen University, Droevendaalseweg 1, 6708 PB Wageningen, The Netherlands
| | - Sandra Biewers
- Centre for Plant Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Evangelia Dougali
- Department of Plant Systems Biology, VIB, Technologiepark 927, 9052 Ghent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, 9052 Ghent, Belgium
| | - Felipe Leal Valentim
- Plant Research International (PRI) Droevendaalseweg 1, 6708 PB Wageningen, The Netherlands
| | - Marta Adelina Mendes
- Dipartimento di BioScienze, Università degli Studi di Milano, Via Celoria 26, 20133, Milan, Italy
| | - Aimone Porri
- Max Planck Institute for Plant Breeding Research, Carl von Linne Weg 10, D-50829 Cologne, Germany
| | - George Coupland
- Max Planck Institute for Plant Breeding Research, Carl von Linne Weg 10, D-50829 Cologne, Germany
| | - Yves Van de Peer
- Department of Plant Systems Biology, VIB, Technologiepark 927, 9052 Ghent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, 9052 Ghent, Belgium Genomics Research Institute (GRI), University of Pretoria, Private bag X20, Pretoria, 0028, South Africa
| | - Aalt D J van Dijk
- Plant Research International (PRI) Droevendaalseweg 1, 6708 PB Wageningen, The Netherlands Biometris, Wageningen University, Droevendaalseweg 1, 6708 PB Wageningen, The Netherlands
| | - Lucia Colombo
- Dipartimento di BioScienze, Università degli Studi di Milano, Via Celoria 26, 20133, Milan, Italy
| | - Brendan Davies
- Centre for Plant Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Gerco C Angenent
- Plant Research International (PRI) Droevendaalseweg 1, 6708 PB Wageningen, The Netherlands Laboratory of Molecular Biology, Wageningen University, Droevendaalseweg 1, 6708 PB Wageningen, The Netherlands
| |
Collapse
|
46
|
Huang H, Wang S, Jiang J, Liu G, Li H, Chen S, Xu H. Overexpression of BpAP1 induces early flowering and produces dwarfism in Betula platyphylla × Betula pendula. PHYSIOLOGIA PLANTARUM 2014; 151:495-506. [PMID: 24200078 DOI: 10.1111/ppl.12123] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Revised: 09/27/2013] [Accepted: 10/27/2013] [Indexed: 05/04/2023]
Abstract
The involvement of APETALA1 (AP1) in the flowering transition has been the focus of much research. Here, we produced Betula platyphylla × Betula pendula (birch) lines that overexpressed BpAP1 using Agrobacterium-mediated transformation; we obtained five independent 35S::BpAP1 transgenic lines. Polymerase chain reaction (PCR), Southern, northern and western analyses were used to identify the transformants. As determined by quantitative real-time PCR (qRT-PCR), BpAP1 expression in roots, shoots, leaves and terminal buds of 35S::BpAP1 transgenic lines was significantly higher than that in the wild type (WT, P < 0.01). The average height of 2-year-old 35S::BpAP1 plants was significantly lower (41.17%) than that of non-transgenic plants. In the 35S::BpAP1 lines, inflorescences emerged successively beginning 2 months after transplanting. In addition, the length-diameter ratio of fully developed male and female inflorescences were both significantly less than those of the WT (P < 0.05), i.e. the morphological characteristic was stubby. The male inflorescences emerged early, with empty, draped anthers, and pollen was rarely produced, whereas the female floret structure was not different from WT. The pistils developed normally and could accept pollen, leading to the production of hybrid progeny (F1 ). F1 plants completed flowering within only 1 year after sowing. We demonstrate that BpAP1 can be inherited through sexual reproduction. Overexpression of BpAP1 caused early flowering and dwarfism; these lines had an obviously shortened juvenile phase. These results greatly increase our understanding of the mechanisms underlying the flowering transition and enhance genetic studies of birch traits, and they open up new possibilities for the breeding of birch and other woody plants.
Collapse
Affiliation(s)
- Haijiao Huang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, 26 Hexing Road, Harbin, 150040, China
| | | | | | | | | | | | | |
Collapse
|
47
|
Khan D, Millar JL, Girard IJ, Belmonte MF. Transcriptional circuitry underlying seed coat development in Arabidopsis. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2014; 219-220:51-60. [PMID: 24576764 DOI: 10.1016/j.plantsci.2014.01.004] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Revised: 01/18/2014] [Accepted: 01/21/2014] [Indexed: 05/10/2023]
Abstract
We analyzed two sub-regions of the maternal seed coat, chalazal (CZSC) and distal (SC), using transcriptomic and histological analyses in the model plant Arabidopsis thaliana. Hierarchical clustering analysis showed that the CZSC and SC are transcriptionally distinct, though the two sub-regions are more similar during early stages of seed development. Robust statistical and network analysis revealed novel roles for both sub-regions during the course of the seed lifecycle and provides insight into the regulatory circuitry underlying these poorly studied sub-regions of the seed. Data show many of the processes that characterize the SC including starch deposition during the morphogenesis phase, and mucilage deposition and cell wall thickening during the maturation phase, are either absent or expressed to a much lesser extent in the CZSC. We further analyzed the CZSC in detail and show that this sub-region is likely involved in the control of information into the seed from the maternal plant and that some of these processes are predicted to operate through the activity of bZIP transcription factors through the G-box DNA sequence motif.
Collapse
Affiliation(s)
- Deirdre Khan
- Department of Biological Sciences, University of Manitoba, Winnipeg, Canada R3T 2N2
| | - Jenna L Millar
- Department of Biological Sciences, University of Manitoba, Winnipeg, Canada R3T 2N2
| | - Ian J Girard
- Department of Biological Sciences, University of Manitoba, Winnipeg, Canada R3T 2N2
| | - Mark F Belmonte
- Department of Biological Sciences, University of Manitoba, Winnipeg, Canada R3T 2N2.
| |
Collapse
|
48
|
Arabidopsis JAGGED links floral organ patterning to tissue growth by repressing Kip-related cell cycle inhibitors. Proc Natl Acad Sci U S A 2014; 111:2830-5. [PMID: 24497510 DOI: 10.1073/pnas.1320457111] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Plant morphogenesis requires coordinated cytoplasmic growth, oriented cell wall extension, and cell cycle progression, but it is debated which of these processes are primary drivers for tissue growth and directly targeted by developmental genes. Here, we used ChIP high-throughput sequencing combined with transcriptome analysis to identify global target genes of the Arabidopsis transcription factor JAGGED (JAG), which promotes growth of the distal region of floral organs. Consistent with the roles of JAG during organ initiation and subsequent distal organ growth, we found that JAG directly repressed genes involved in meristem development, such as CLAVATA1 and HANABA TARANU, and genes involved in the development of the basal region of shoot organs, such as BLADE ON PETIOLE 2 and the GROWTH REGULATORY FACTOR pathway. At the same time, JAG regulated genes involved in tissue polarity, cell wall modification, and cell cycle progression. In particular, JAG directly repressed KIP RELATED PROTEIN 4 (KRP4) and KRP2, which control the transition to the DNA synthesis phase (S-phase) of the cell cycle. The krp2 and krp4 mutations suppressed jag defects in organ growth and in the morphology of petal epidermal cells, showing that the interaction between JAG and KRP genes is functionally relevant. Our work reveals that JAG is a direct mediator between genetic pathways involved in organ patterning and cellular functions required for tissue growth, and it shows that a regulatory gene shapes plant organs by releasing a constraint on S-phase entry.
Collapse
|
49
|
Hofer JMI, Noel Ellis TH. Developmental specialisations in the legume family. CURRENT OPINION IN PLANT BIOLOGY 2014; 17:153-8. [PMID: 24507507 DOI: 10.1016/j.pbi.2013.11.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 11/26/2013] [Accepted: 11/26/2013] [Indexed: 05/23/2023]
Abstract
The legume family is astonishingly diverse; inventiveness in the form of novel organs, modified organs and additional meristems, is rife. Evolutionary changes can be inferred from the phylogenetic pattern of this diversity, but a full understanding of the origin of these 'hopeful monsters' of meristematic potential requires clear phylogenetic reconstructions and extensive, species-rich, sequence data. The task is large, but rapid progress is being made in both these areas. Here we review specialisations that have been characterised in a subset of intensively studied papilionoid legume taxa at the vanguard of developmental genetic studies.
Collapse
Affiliation(s)
- Julie M I Hofer
- Institute of Biological, Environmental & Rural Sciences, Aberystwyth University, Gogerddan, Aberystwyth, Ceredigion SY23 3EE, UK.
| | - T H Noel Ellis
- Institute of Biological, Environmental & Rural Sciences, Aberystwyth University, Gogerddan, Aberystwyth, Ceredigion SY23 3EE, UK
| |
Collapse
|
50
|
Ó'Maoiléidigh DS, Graciet E, Wellmer F. Gene networks controlling Arabidopsis thaliana flower development. THE NEW PHYTOLOGIST 2014; 201:16-30. [PMID: 23952532 DOI: 10.1111/nph.12444] [Citation(s) in RCA: 155] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Accepted: 07/08/2013] [Indexed: 05/05/2023]
Abstract
The formation of flowers is one of the main models for studying the regulatory mechanisms that underlie plant development and evolution. Over the past three decades, extensive genetic and molecular analyses have led to the identification of a large number of key floral regulators and to detailed insights into how they control flower morphogenesis. In recent years, genome-wide approaches have been applied to obtaining a global view of the gene regulatory networks underlying flower formation. Furthermore, mathematical models have been developed that can simulate certain aspects of this process and drive further experimentation. Here, we review some of the main findings made in the field of Arabidopsis thaliana flower development, with an emphasis on recent advances. In particular, we discuss the activities of the floral organ identity factors, which are pivotal for the specification of the different types of floral organs, and explore the experimental avenues that may elucidate the molecular mechanisms and gene expression programs through which these master regulators of flower development act.
Collapse
Affiliation(s)
| | - Emmanuelle Graciet
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, Ireland
| | - Frank Wellmer
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, Ireland
| |
Collapse
|