1
|
Mayerl S, Ffrench-Constant C. Establishing an Adult Mouse Brain Hippocampal Organotypic Slice Culture System that Allows for Tracing and Pharmacological Manipulation of ex vivo Neurogenesis. Bio Protoc 2021; 11:e3869. [PMID: 33732759 DOI: 10.21769/bioprotoc.3869] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 10/08/2020] [Accepted: 10/20/2020] [Indexed: 11/02/2022] Open
Abstract
The function of the hippocampus depends on the process of adult hippocampal neurogenesis which underpins the exceptional neural plasticity of this structure, and is also frequently affected in CNS pathologies. Thus, manipulation of this process represents an important therapeutic goal. To identify potential strategies, organotypic adult brain slices are emerging as a valuable tool. Over the recent years, this methodology has been refined and here we present a combined protocol that brings together these refinements to enable long-term culture of adult hippocampal slices. We employ a sectioning technique that retains essential afferent inputs onto the hippocampus as well as serum-free culture conditions, so allowing an extended culture period. To sustain the neurogenic potential in the slices, we utilize the gliogenesis-inhibitor Indomethacin. Using EdU retention analysis enables us to assess the effects of pharmacological intervention on neurogenesis. With these improvements, we have established an easy and reliable method to study the effects of small molecules/drugs on proliferation and neuron formation ex vivo which will facilitate future discovery driven drug screenings.
Collapse
Affiliation(s)
- Steffen Mayerl
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, United Kingdom.,University Hospital Essen, Department of Endocrinology, University of Duisburg-Essen, Essen, Germany
| | | |
Collapse
|
2
|
Heppt J, Wittmann MT, Schäffner I, Billmann C, Zhang J, Vogt-Weisenhorn D, Prakash N, Wurst W, Taketo MM, Lie DC. β-catenin signaling modulates the tempo of dendritic growth of adult-born hippocampal neurons. EMBO J 2020; 39:e104472. [PMID: 32929771 PMCID: PMC7604596 DOI: 10.15252/embj.2020104472] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 08/06/2020] [Accepted: 08/11/2020] [Indexed: 01/07/2023] Open
Abstract
In adult hippocampal neurogenesis, stem/progenitor cells generate dentate granule neurons that contribute to hippocampal plasticity. The establishment of a morphologically defined dendritic arbor is central to the functional integration of adult‐born neurons. We investigated the role of canonical Wnt/β‐catenin signaling in dendritogenesis of adult‐born neurons. We show that canonical Wnt signaling follows a biphasic pattern, with high activity in stem/progenitor cells, attenuation in immature neurons, and reactivation during maturation, and demonstrate that this activity pattern is required for proper dendrite development. Increasing β‐catenin signaling in maturing neurons of young adult mice transiently accelerated dendritic growth, but eventually produced dendritic defects and excessive spine numbers. In middle‐aged mice, in which protracted dendrite and spine development were paralleled by lower canonical Wnt signaling activity, enhancement of β‐catenin signaling restored dendritic growth and spine formation to levels observed in young adult animals. Our data indicate that precise timing and strength of β‐catenin signaling are essential for the correct functional integration of adult‐born neurons and suggest Wnt/β‐catenin signaling as a pathway to ameliorate deficits in adult neurogenesis during aging.
Collapse
Affiliation(s)
- Jana Heppt
- Institute of Biochemistry, Emil Fischer Center, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Marie-Theres Wittmann
- Institute of Biochemistry, Emil Fischer Center, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany.,Institute of Human Genetics, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Iris Schäffner
- Institute of Biochemistry, Emil Fischer Center, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Charlotte Billmann
- Institute of Biochemistry, Emil Fischer Center, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Jingzhong Zhang
- Institute of Developmental Genetics, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany.,Suzhou Institute of Biomedical Engineering and Technology (SIBET), Chinese Academy of Sciences, Suzhou, China
| | - Daniela Vogt-Weisenhorn
- Institute of Developmental Genetics, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany
| | - Nilima Prakash
- Institute of Developmental Genetics, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany.,Hamm-Lippstadt University of Applied Sciences, Hamm, Germany
| | - Wolfgang Wurst
- Institute of Developmental Genetics, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany
| | - Makoto Mark Taketo
- Division of Experimental Therapeutics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Dieter Chichung Lie
- Institute of Biochemistry, Emil Fischer Center, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
3
|
Mayerl S, Heuer H, Ffrench-Constant C. Hippocampal Neurogenesis Requires Cell-Autonomous Thyroid Hormone Signaling. Stem Cell Reports 2020; 14:845-860. [PMID: 32302557 PMCID: PMC7220957 DOI: 10.1016/j.stemcr.2020.03.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 03/14/2020] [Accepted: 03/17/2020] [Indexed: 02/07/2023] Open
Abstract
Adult hippocampal neurogenesis is strongly dependent on thyroid hormone (TH). Whether TH signaling regulates this process in a cell-autonomous or non-autonomous manner remains unknown. To answer this question, we used global and conditional knockouts of the TH transporter monocarboxylate transporter 8 (MCT8), having first used FACS and immunohistochemistry to demonstrate that MCT8 is the only TH transporter expressed on neuroblasts and adult slice cultures to confirm a necessary role for MCT8 in neurogenesis. Both mice with a global deletion or an adult neural stem cell-specific deletion of MCT8 showed decreased expression of the cell-cycle inhibitor P27KIP1, reduced differentiation of neuroblasts, and impaired generation of new granule cell neurons, with global knockout mice also showing enhanced neuroblast proliferation. Together, our results reveal a cell-autonomous role for TH signaling in adult hippocampal neurogenesis alongside non-cell-autonomous effects on cell proliferation earlier in the lineage.
Collapse
Affiliation(s)
- Steffen Mayerl
- MRC Centre for Regenerative Medicine, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK.
| | - Heike Heuer
- University of Duisburg-Essen, University Hospital Essen, Department of Endocrinology, Essen, Germany
| | - Charles Ffrench-Constant
- MRC Centre for Regenerative Medicine, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK
| |
Collapse
|
4
|
Yang CH, Di Antonio A, Kirschen GW, Varma P, Hsieh J, Ge S. Circuit Integration Initiation of New Hippocampal Neurons in the Adult Brain. Cell Rep 2020; 30:959-968.e3. [PMID: 31995766 PMCID: PMC7011119 DOI: 10.1016/j.celrep.2019.12.084] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 10/18/2019] [Accepted: 12/19/2019] [Indexed: 11/28/2022] Open
Abstract
In the adult brain, new dentate granule cells integrate into neural circuits and participate in hippocampal functioning. However, when and how they initiate this integration remain poorly understood. Using retroviral and live-imaging methods, we find that new neurons undergo neurite remodeling for competitive horizontal-to-radial repositioning in the dentate gyrus prior to circuit integration. Gene expression profiling, lipidomics analysis, and molecular interrogation of new neurons during this period reveal a rapid activation of sphingolipid signaling mediated by sphingosine-1-phosphate receptor 1. Genetic manipulation of this G protein-coupled receptor reveals its requirement for successful repositioning of new neurons. This receptor is also activated by hippocampus-engaged behaviors, which enhances repositioning efficiency. These findings reveal that activity-dependent sphingolipid signaling regulates cellular repositioning of new dentate granule cells. The competitive horizontal-to-radial repositioning of new neurons may provide a gating strategy in the adult brain to limit the integration of new neurons into pre-existing circuits.
Collapse
Affiliation(s)
- Chih-Hao Yang
- Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, Taiwan; Department of Neurobiology & Behavior, SUNY at Stony Brook, Stony Brook, NY 11794, USA
| | - Adrian Di Antonio
- Program in Neuroscience, SUNY at Stony Brook, Stony Brook, NY 11794, USA
| | - Gregory W Kirschen
- Medical Science Training Program, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY 11794, USA
| | - Parul Varma
- Department of Biology and Brain Health Consortium, The University of Texas at San Antonio, San Antonio, TX 78249, USA
| | - Jenny Hsieh
- Department of Biology and Brain Health Consortium, The University of Texas at San Antonio, San Antonio, TX 78249, USA
| | - Shaoyu Ge
- Department of Neurobiology & Behavior, SUNY at Stony Brook, Stony Brook, NY 11794, USA.
| |
Collapse
|
5
|
Lateral dispersion is required for circuit integration of newly generated dentate granule cells. Nat Commun 2019; 10:3324. [PMID: 31346164 PMCID: PMC6658520 DOI: 10.1038/s41467-019-11206-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 06/28/2019] [Indexed: 11/08/2022] Open
Abstract
The process of circuit integration of newly-generated dentate granule cells of the hippocampus has been presumed to be a dynamic process. In fact, little is known regarding the initial development of newly generated neurons prior to circuit integration and the significance of this stage for circuit integration. Here, using advanced live imaging methods, we systematically analyze the dynamic dispersion of newly generated neurons in the neurogenic zone and observe that cells that are physically adjacent coordinate their lateral dispersion. Whole-cell recordings of adjacent newly generated neurons reveal that they are coupled via gap junctions. The dispersion of newly generated cells in the neurogenic zone is restricted when this coupling is disrupted, which severely impairs their subsequent integration into the hippocampal circuit. The results of this study reveal that the dynamic dispersion of newly generated dentate granule cells in the neurogenic zone is a required developmental stage for circuit integration.
Collapse
|
6
|
Linsley JW, Tripathi A, Epstein I, Schmunk G, Mount E, Campioni M, Oza V, Barch M, Javaherian A, Nowakowski TJ, Samsi S, Finkbeiner S. Automated four-dimensional long term imaging enables single cell tracking within organotypic brain slices to study neurodevelopment and degeneration. Commun Biol 2019; 2:155. [PMID: 31069265 PMCID: PMC6494885 DOI: 10.1038/s42003-019-0411-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 03/18/2019] [Indexed: 02/08/2023] Open
Abstract
Current approaches for dynamic profiling of single cells rely on dissociated cultures, which lack important biological features existing in tissues. Organotypic slice cultures preserve aspects of structural and synaptic organisation within the brain and are amenable to microscopy, but established techniques are not well adapted for high throughput or longitudinal single cell analysis. Here we developed a custom-built, automated confocal imaging platform, with improved organotypic slice culture and maintenance. The approach enables fully automated image acquisition and four-dimensional tracking of morphological changes within individual cells in organotypic cultures from rodent and human primary tissues for at least 3 weeks. To validate this system, we analysed neurons expressing a disease-associated version of huntingtin (HTT586Q138-EGFP), and observed that they displayed hallmarks of Huntington's disease and died sooner than controls. By facilitating longitudinal single-cell analyses of neuronal physiology, our system bridges scales necessary to attain statistical power to detect developmental and disease phenotypes.
Collapse
Affiliation(s)
- Jeremy W Linsley
- Gladstone Center for Systems and Therapeutics, San Francisco, CA 94158 USA
| | - Atmiyata Tripathi
- Gladstone Center for Systems and Therapeutics, San Francisco, CA 94158 USA
| | - Irina Epstein
- Gladstone Center for Systems and Therapeutics, San Francisco, CA 94158 USA
| | - Galina Schmunk
- 2Department of Anatomy, University of California, San Francisco, CA 94158 USA
| | - Elliot Mount
- Gladstone Center for Systems and Therapeutics, San Francisco, CA 94158 USA
| | - Matthew Campioni
- Gladstone Center for Systems and Therapeutics, San Francisco, CA 94158 USA
| | - Viral Oza
- Gladstone Center for Systems and Therapeutics, San Francisco, CA 94158 USA
| | - Mariya Barch
- Gladstone Center for Systems and Therapeutics, San Francisco, CA 94158 USA
| | - Ashkan Javaherian
- Gladstone Center for Systems and Therapeutics, San Francisco, CA 94158 USA
| | - Tomasz J Nowakowski
- 2Department of Anatomy, University of California, San Francisco, CA 94158 USA
| | - Siddharth Samsi
- 3Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Luxembourg, L-4367 Luxembourg
- 9Present Address: MIT Lincoln Laboratory, Lexington, MA 02421 USA
| | - Steven Finkbeiner
- Gladstone Center for Systems and Therapeutics, San Francisco, CA 94158 USA
- 4Neuroscience Graduate Program, University of California, San Francisco, CA 94158 USA
- 5Biomedical Sciences and Neuroscience Graduate Program, University of California, San Francisco, CA 94143 USA
- 6Taube/Koret Center for Neurodegenerative Disease, Gladstone Institutes, San Francisco, CA 94158 USA
- 7Department of Neurology, University of California, San Francisco, CA 94158 USA
- 8Department of Physiology, University of California, San Francisco, CA 94158 USA
| |
Collapse
|
7
|
Time-lapse imaging reveals highly dynamic structural maturation of postnatally born dentate granule cells in organotypic entorhino-hippocampal slice cultures. Sci Rep 2017; 7:43724. [PMID: 28256620 PMCID: PMC5335612 DOI: 10.1038/srep43724] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 01/27/2017] [Indexed: 12/18/2022] Open
Abstract
Neurogenesis of hippocampal granule cells (GCs) persists throughout mammalian life and is important for learning and memory. How newborn GCs differentiate and mature into an existing circuit during this time period is not yet fully understood. We established a method to visualize postnatally generated GCs in organotypic entorhino-hippocampal slice cultures (OTCs) using retroviral (RV) GFP-labeling and performed time-lapse imaging to study their morphological development in vitro. Using anterograde tracing we could, furthermore, demonstrate that the postnatally generated GCs in OTCs, similar to adult born GCs, grow into an existing entorhino-dentate circuitry. RV-labeled GCs were identified and individual cells were followed for up to four weeks post injection. Postnatally born GCs exhibited highly dynamic structural changes, including dendritic growth spurts but also retraction of dendrites and phases of dendritic stabilization. In contrast, older, presumably prenatally born GCs labeled with an adeno-associated virus (AAV), were far less dynamic. We propose that the high degree of structural flexibility seen in our preparations is necessary for the integration of newborn granule cells into an already existing neuronal circuit of the dentate gyrus in which they have to compete for entorhinal input with cells generated and integrated earlier.
Collapse
|
8
|
Kleine Borgmann FB, Gräff J, Mansuy IM, Toni N, Jessberger S. Enhanced plasticity of mature granule cells reduces survival of
newborn neurons in the adult mouse hippocampus. MATTERS SELECT 2016; 2:201610000014. [PMID: 36168317 PMCID: PMC7613637 DOI: 10.19185/matters.201610000014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
| | - Johannes Gräff
- Brain Research Institute, Laboratory of Neuroepigenetics, University of Zurich and Swiss Federal Institute of Technology Zurich, Department of Fundamental Neuroscience, University of Lausanne
| | - Isabelle M Mansuy
- Laboratory of Neuroepigenetics, Brain Research Institute, University of Zurich and Swiss Federal Institute of Technology Zurich
| | - Nicolas Toni
- Departement des neurosciences fondamentales, Universite de Lausanne
| | | |
Collapse
|
9
|
Magdaleno-Madrigal VM, Pantoja-Jiménez CR, Bazaldúa A, Fernández-Mas R, Almazán-Alvarado S, Bolaños-Alejos F, Ortíz-López L, Ramírez-Rodriguez GB. Acute deep brain stimulation in the thalamic reticular nucleus protects against acute stress and modulates initial events of adult hippocampal neurogenesis. Behav Brain Res 2016; 314:65-76. [PMID: 27435420 DOI: 10.1016/j.bbr.2016.07.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 07/09/2016] [Accepted: 07/15/2016] [Indexed: 12/16/2022]
Abstract
Deep brain stimulation (DBS) is used as an alternative therapeutic procedure for pharmacoresistant psychiatric disorders. Recently the thalamic reticular nucleus (TRN) gained attention due to the description of a novel pathway from the amygdala to this nucleus suggesting that may be differentially disrupted in mood disorders. The limbic system is implicated in the regulation of these disorders that are accompanied by neuroplastic changes. The hippocampus is highly plastic and shows the generation of new neurons, process affected by stress but positively regulated by antidepressant drugs. We explored the impact of applying acute DBS to the TRN (DBS-TRN) in male Wistar rats exposed to acute stress caused by the forced-swim Porsolt's test (FST) and on initial events of hippocampal neurogenesis. After the first session of forced-swim, rats were randomly subdivided in a DBS-TRN and a Sham group. Stimulated rats received 10min of DBS, thus the depressant-like behavior reflected as immobility was evaluated in the second session of forced-swim. Locomotricity was evaluated in the open field test. Cell proliferation and doublecortin-associated cells were quantified in the hippocampus of other cohorts of rats. No effects of electrode implantation were found in locomotricity. Acute DBS-TRN reduced immobility in comparison to the Sham group (p<0.001). DBS-TRN increased cell proliferation (Ki67 or BrdU-positive cells; p=0.02, p=0.02) and the number of doublecortin-cells compared to the Sham group (p<0.02). Similar effects were found in rats previously exposed to the first session of forced-swim. Our data could suggest that TRN brain region may be a promising target for DBS to treat intractable depression.
Collapse
Affiliation(s)
- Víctor Manuel Magdaleno-Madrigal
- Laboratorio de Neurofisiología del Control y la Regulación, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Calz México-Xochimilco No. 101, Col. San Lorenzo Huipulco Del. Tlalpan, 14370 Ciudad de México, Mexico; Carrera de Psicología, FES Zaragoza-UNAM Facultad de Estudios Superiores Zaragoza-UNAM, Av. Guelatao 66, Col. Ejército de Oriente Del. Iztapalapa, 09230 Ciudad de México, Mexico.
| | - Christopher Rodrigo Pantoja-Jiménez
- Laboratorio de Neurofisiología del Control y la Regulación, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Calz México-Xochimilco No. 101, Col. San Lorenzo Huipulco Del. Tlalpan, 14370 Ciudad de México, Mexico
| | - Adrián Bazaldúa
- Laboratorio de Neurofisiología del Control y la Regulación, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Calz México-Xochimilco No. 101, Col. San Lorenzo Huipulco Del. Tlalpan, 14370 Ciudad de México, Mexico
| | - Rodrigo Fernández-Mas
- Laboratorio de Neurofisiología del Control y la Regulación, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Calz México-Xochimilco No. 101, Col. San Lorenzo Huipulco Del. Tlalpan, 14370 Ciudad de México, Mexico
| | - Salvador Almazán-Alvarado
- Laboratorio de Neurofisiología del Control y la Regulación, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Calz México-Xochimilco No. 101, Col. San Lorenzo Huipulco Del. Tlalpan, 14370 Ciudad de México, Mexico
| | - Fernanda Bolaños-Alejos
- Laboratorio de Neurogénesis. Subdirección de Investigaciones Clínicas, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Calz México-Xochimilco No. 101, Col. San Lorenzo Huipulco Del. Tlalpan, 14370, Ciudad de México, Mexico
| | - Leonardo Ortíz-López
- Laboratorio de Neurogénesis. Subdirección de Investigaciones Clínicas, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Calz México-Xochimilco No. 101, Col. San Lorenzo Huipulco Del. Tlalpan, 14370, Ciudad de México, Mexico
| | - Gerardo Bernabé Ramírez-Rodriguez
- Laboratorio de Neurogénesis. Subdirección de Investigaciones Clínicas, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Calz México-Xochimilco No. 101, Col. San Lorenzo Huipulco Del. Tlalpan, 14370, Ciudad de México, Mexico
| |
Collapse
|
10
|
Organotypic Cultures as a Model to Study Adult Neurogenesis in CNS Disorders. Stem Cells Int 2016; 2016:3540568. [PMID: 27127518 PMCID: PMC4835641 DOI: 10.1155/2016/3540568] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 03/22/2016] [Indexed: 12/02/2022] Open
Abstract
Neural regeneration resides in certain specific regions of adult CNS. Adult neurogenesis occurs throughout life, especially from the subgranular zone of hippocampus and the subventricular zone, and can be modulated in physiological and pathological conditions. Numerous techniques and animal models have been developed to demonstrate and observe neural regeneration but, in order to study the molecular and cellular mechanisms and to characterize multiple types of cell populations involved in the activation of neurogenesis and gliogenesis, investigators have to turn to in vitro models. Organotypic cultures best recapitulate the 3D organization of the CNS and can be explored taking advantage of many techniques. Here, we review the use of organotypic cultures as a reliable and well defined method to study the mechanisms of neurogenesis under normal and pathological conditions. As an example, we will focus on the possibilities these cultures offer to study the pathophysiology of diseases like Alzheimer disease, Parkinson's disease, and cerebral ischemia.
Collapse
|
11
|
Kleine Borgmann FB, Bracko O, Jessberger S. Imaging neurite development of adult-born granule cells. J Cell Sci 2013. [DOI: 10.1242/jcs.136572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|