1
|
Luo G, Gong R, Ai Y, Zhu T, Ren Z. Identification of N6-Methyladenosine-Related Factors and the Prediction of the Regulatory Mechanism of Hair Follicle Development in Rex and Hycole Rabbits. BIOLOGY 2023; 12:1448. [PMID: 37998047 PMCID: PMC10669094 DOI: 10.3390/biology12111448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/13/2023] [Accepted: 11/14/2023] [Indexed: 11/25/2023]
Abstract
Hair follicle development directly affects the development of the rabbit fur industry. The growth and development of a hair follicle is modified and regulated by many genes and mechanisms. M6A is an important RNA modification. However, there are few studies on the effects of the regulation of m6A on hair follicle growth and development. In this study, hematoxylin-eosin (HE) staining was used to explore the difference in hair follicle development between Rex rabbits and Hycole rabbits, and we performed m6A sequencing to identify the key genes with m6A modification in hair follicle growth. The results showed that the hair length, coarse hair percentage, primary hair follicle ratio, and skin thickness of Hycole rabbits were significantly higher than those of Rex rabbits. However, the proportion of secondary hair follicles in Hycole rabbits was significantly lower than that in Rex rabbits. In addition, we found five differential methylases, 20 differential genes, and 24 differential signaling pathways related to hair growth and development. The results of the Sankey diagram showed that 12 genes were related to 13 signal pathways. Finally, we found that five methylases regulated the development of hair follicles through differential genes/signal pathways. These findings laid a molecular foundation for the function of m6A modification in hair development.
Collapse
Affiliation(s)
- Gang Luo
- College of Animal Science and Technology, Northwest A&F University, Xianyang 712100, China; (G.L.); (R.G.); (Y.A.); (T.Z.)
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou 350000, China
| | - Ruiguang Gong
- College of Animal Science and Technology, Northwest A&F University, Xianyang 712100, China; (G.L.); (R.G.); (Y.A.); (T.Z.)
| | - Yaotian Ai
- College of Animal Science and Technology, Northwest A&F University, Xianyang 712100, China; (G.L.); (R.G.); (Y.A.); (T.Z.)
| | - Tongyan Zhu
- College of Animal Science and Technology, Northwest A&F University, Xianyang 712100, China; (G.L.); (R.G.); (Y.A.); (T.Z.)
| | - Zhanjun Ren
- College of Animal Science and Technology, Northwest A&F University, Xianyang 712100, China; (G.L.); (R.G.); (Y.A.); (T.Z.)
| |
Collapse
|
2
|
Skieresz-Szewczyk K, Jackowiak H. Pattern Distribution of Connexins in the Ortho- and Parakeratinized Epithelium of the Lingual Mucosa in Birds. Cells 2023; 12:1776. [PMID: 37443811 PMCID: PMC10341081 DOI: 10.3390/cells12131776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/27/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
Connexins are important proteins involved in cell-to-cell communication and cytodifferentiation during renewal and cornification of the multilayered epithelia. So far, there is a lack of reports on this subject in birds' structurally different ortho- and parakeratinized epithelium of the tongue. The study aims to describe the distribution and expression profiles of the α-connexins (Cx40 and 43) and β-connexins (Cx26, 30, and 31) in those epithelia in duck, goose, and domestic turkey. Research revealed the presence of the mentioned connexins and the occurrence of interspecies differences. Connexins form gap junctions in the cell membrane or are in the cytoplasm of keratinocytes. Differences in connexin expression were noted between the basal and intermediate layers, which may determine the proliferation of keratinocytes. Cx40, 43, and Cx30 in the gap junction of the keratinocytes of the intermediate layer are related to the synchronization of the cornification process. Because of the exfoliation of cornified plaques, a lack of connexins was observed in the cornified layer of orthokeratinized epithelium. However, in parakeratinized epithelium, connexins were present in the cell membrane of keratinocytes and thus maintained cellular integrity in gradually desquamating cells. The current studies will be useful in further comparative analyses of normal and pathological epithelia of the oral cavity in birds.
Collapse
Affiliation(s)
- Kinga Skieresz-Szewczyk
- Department of Histology and Embryology, Faculty of Veterinary Medicine and Animal Science, Poznan University of Life Sciences, Wojska Polskiego 71C, 60-625 Poznan, Poland;
| | | |
Collapse
|
3
|
Ma SX. Low Electrical Resistance Properties of Acupoints: Roles of NOergic Signaling Molecules and Neuropeptides in Skin Electrical Conductance. Chin J Integr Med 2021; 27:563-569. [PMID: 34319572 DOI: 10.1007/s11655-021-3318-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/08/2021] [Indexed: 10/20/2022]
Abstract
Early studies from several independent laboratories demonstrated that acupoints possess the characteristics of low electrical resistance. New devices are developing to increase the reliability of electrical skin impedance measurements for counteracting the factors including skin dryness, skin thickness, size of the sensing electrode, pressure applied on the electrode, interelectrode distance, room temperature, and humidity. Morphological studies have identified that blood vessels, hair follicles, and nervous components are enhanced in the meridians/acupoints, which represent areas of potentially high neuronal activity. Recent evidence shows that nitric oxide (NO) concentrations are enhanced in skin acupoints/meridians. L-arginine-derived NO synthesis modifies skin norepinephrine (NE) synthesis/release in acupoints/meridians, and NO-NE activations play an important role in mediating the skin conductance responses to electrical stimulation. NOergic signaling molecules interact with gap junction and transient receptor potential vanilloid type-1. Other studies reported that the high conductance at acupoints is a result of the release of the neuropeptides substance P and calcitonin gene-related peptide during neurogenic inflammation in the referred pain area. Pathological body conditions caused considerable changes in skin conductance or impedance at acupoints. Although systematic research with an improved equipment and research design to avoid the influencing factors are requested for a definite answer in this field, the results from anatomical and biochemical studies consistently show that acupoints exist higher levels of nervous components, and NOergic signaling molecules and neuropeptides involved in the skin low resistance at acupoints. The increased interest in the acupoints/meridians has led to an open-minded attitude towards understanding this system, which is fundamental important to establish the valid aspects of scientific basis of Chinese medicine mechanisms and therapies.
Collapse
Affiliation(s)
- Sheng-Xing Ma
- Lundquist Institute for Biomedical Innovation at Harbor-University of California at Los Angeles (UCLA) Medical Center and Department of Obstetrics and Gynecology, David Geffen School of Medicine at UCLA and Harbor-UCLA Medical Center, Torrance, CA, 90502, United States.
| |
Collapse
|
4
|
Sha RN, Dai B, Ren LQ, Han XY, Yuan JL, Liu DJ. Cx43 promotes SHF-DPCs proliferation in the hair follicle of Albas cashmere goats from anagen to telogen. Res Vet Sci 2020; 133:92-97. [PMID: 32957063 DOI: 10.1016/j.rvsc.2020.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 08/30/2020] [Accepted: 09/07/2020] [Indexed: 11/16/2022]
Abstract
Connexin 43 (Cx43), known to form gap junction transmembrane channels between the cytoplasm of two adjacent cells, plays a key role in physiological functions, such as regulating cell growth, differentiation, and maintaining tissue homeostasis. Cashmere goat is an important farm animal that provides cashmere, which was produced by secondary hair follicles (SHF), for human consumption; however, there is no report about the role of Cx43 on the growth and development of SHF in cashmere goat. In this study, we investigated the effect of Cx43 on proliferation secondary hair follicle dermal papilla cells (SHF-DPCs) in Albas cashmere goat. In SHF-DPCs, Cx43 overexpression promoted cell proliferation and upregulated the expression of IGF-1, whereas Cx43 knockdown was associated with the opposite effects. These results suggested that Cx43 may promote cell proliferation by inducing IGF-1. Overall, our research not only contributes to a better understanding of the mechanism of the growth and development of SHF in cashmere goat, but also shed light on cashmere quality control in the future.
Collapse
Affiliation(s)
- Ri-Na Sha
- Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China; Department of Pathology, the Affiliated Hospital of Inner Mongolia Medical University, Inner Mongolia Medical University, Hohhot, China
| | - Bai Dai
- Reproductive Medicine Center, the Affiliated Hospital of Inner Mongolia Medical University, Inner Mongolia Medical University, Hohhot, China
| | - Li-Qing Ren
- Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Xiao-Yu Han
- Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Jian-Long Yuan
- Clinical laboratory, the Affiliated Hospital of Inner Mongolia Medical University, Inner Mongolia Medical University, Hohhot, China
| | - Dong-Jun Liu
- Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China.
| |
Collapse
|
5
|
Flores AF, Varela-Vazquez A, Mayan MD, Fonseca E. Expression of connexin 43 in the human hair follicle: emphasis on the connexin 43 protein levels in the bulge and through the keratinization process. J Cutan Pathol 2017; 45:8-15. [DOI: 10.1111/cup.13050] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 09/13/2017] [Accepted: 09/21/2017] [Indexed: 12/22/2022]
Affiliation(s)
- Angel Fernandez Flores
- Department of Cellular Pathology; Hospital El Bierzo; Ponferrada Spain
- Department of Cellular Pathology; Hospital de la Reina; Ponferrada Spain
- CellCOM-SB Group, Institute for Biomedical Research of A Coruña (INIBIC); University of A Coruña (UDC); A Coruña Spain
| | - Adrian Varela-Vazquez
- CellCOM-SB Group, Institute for Biomedical Research of A Coruña (INIBIC); University of A Coruña (UDC); A Coruña Spain
| | - Maria D. Mayan
- CellCOM-SB Group, Institute for Biomedical Research of A Coruña (INIBIC); University of A Coruña (UDC); A Coruña Spain
| | - Eduardo Fonseca
- CellCOM-SB Group, Institute for Biomedical Research of A Coruña (INIBIC); University of A Coruña (UDC); A Coruña Spain
- Department of Dermatology; University Hospital of A Coruña; A Coruña Spain
| |
Collapse
|
6
|
Zhang XF, Cui X. Connexin 43: Key roles in the skin. Biomed Rep 2017; 6:605-611. [PMID: 28584630 DOI: 10.3892/br.2017.903] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 03/17/2017] [Indexed: 12/26/2022] Open
Abstract
Gap junctions are tightly packed intercellular channels that serve a common purpose of allowing the intercellular exchange of small metabolites, second messengers and electrical signals. Connexins (Cxs) are gap junction proteins. Currently, 20 and 21 members of Cxs have been characterized in mice and humans, respectively. Connexin 43 (Cx43) is the most ubiquitously expressed type of Cx in the skin. It is produced by various different types of skin cell, such as keratinocytes, fibroblasts, endothelial and basal cells, melanocytes and dermal papilla cells. At present, more evidence indicates that Cx43 has an important role in skin repair and skin tumor development, as well as in skin cell invasion and metastasis. In this review, current knowledge regarding the regulation and function of Cx43 is summarized and the therapeutic potential of regulating Cx43 activity is discussed.
Collapse
Affiliation(s)
- Xiao-Fei Zhang
- Department of Biological Sciences and Biotechnology, School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, Hubei 430070, P.R. China
| | - Xiaofeng Cui
- Department of Biological Sciences and Biotechnology, School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, Hubei 430070, P.R. China
| |
Collapse
|
7
|
Connexin26 Mutations Causing Palmoplantar Keratoderma and Deafness Interact with Connexin43, Modifying Gap Junction and Hemichannel Properties. J Invest Dermatol 2016; 136:225-235. [PMID: 26763442 PMCID: PMC4731051 DOI: 10.1038/jid.2015.389] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Revised: 09/03/2015] [Accepted: 09/21/2015] [Indexed: 12/23/2022]
Abstract
Mutations in GJB2 (Cx26) cause either deafness, or deafness associated with skin diseases. That different disorders can be caused by distinct mutations within the same gene suggests that unique channel activities are influenced by each class of mutation. We have examined the functional characteristics of two human mutations, Cx26-H73R and Cx26-S183F, causing palmoplantar keratoderma (PPK) and deafness. Both failed to form gap junction channels or hemichannels when expressed alone. Co-expression of the mutants with wild-type Cx43 showed a trans-dominant inhibition of Cx43 gap junction channels, without reductions in Cx43 protein synthesis. In addition, the presence of mutant Cx26 shifted Cx43 channel gating and kinetics towards a more Cx26-like behavior. Co-immunoprecipitation showed Cx43 being pulled down more efficiently with mutant Cx26, than wild-type, confirming the enhanced formation of heteromeric connexons. Finally, the formation of heteromeric connexons resulted in significantly increased Cx43 hemichannel activity in the presence of Cx26 mutants. These findings suggest a common mechanism whereby Cx26 mutations causing PPK and deafness trans-dominantly influence multiple functions of wild-type Cx43. They also implicate a role for aberrant hemichannel activity in the pathogenesis of PPK, and further highlight an emerging role for Cx43 in genetic skin diseases.
Collapse
|
8
|
Geyfman M, Plikus MV, Treffeisen E, Andersen B, Paus R. Resting no more: re-defining telogen, the maintenance stage of the hair growth cycle. Biol Rev Camb Philos Soc 2015; 90:1179-96. [PMID: 25410793 PMCID: PMC4437968 DOI: 10.1111/brv.12151] [Citation(s) in RCA: 103] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Revised: 09/12/2014] [Accepted: 10/07/2014] [Indexed: 12/17/2022]
Abstract
The hair follicle (HF) represents a prototypic ectodermal-mesodermal interaction system in which central questions of modern biology can be studied. A unique feature of these stem-cell-rich mini-organs is that they undergo life-long, cyclic transformations between stages of active regeneration (anagen), apoptotic involution (catagen), and relative proliferative quiescence (telogen). Due to the low proliferation rate and small size of the HF during telogen, this stage was conventionally thought of as a stage of dormancy. However, multiple lines of newly emerging evidence show that HFs during telogen are anything but dormant. Here, we emphasize that telogen is a highly energy-efficient default state of the mammalian coat, whose function centres around maintenance of the hair fibre and prompt responses to its loss. While actively retaining hair fibres with minimal energy expenditure, telogen HFs can launch a new regeneration cycle in response to a variety of stimuli originating in their autonomous micro-environment (including its stem cell niche) as well as in their external tissue macro-environment. Regenerative responses of telogen HFs change as a function of time and can be divided into two sub-stages: early 'refractory' and late 'competent' telogen. These changing activities are reflected in hundreds of dynamically regulated genes in telogen skin, possibly aimed at establishing a fast response-signalling environment to trauma and other disturbances of skin homeostasis. Furthermore, telogen is an interpreter of circadian output in the timing of anagen initiation and the key stage during which the subsequent organ regeneration (anagen) is actively prepared by suppressing molecular brakes on hair growth while activating pro-regenerative signals. Thus, telogen may serve as an excellent model system for dissecting signalling and cellular interactions that precede the active 'regenerative mode' of tissue remodeling. This revised understanding of telogen biology also points to intriguing new therapeutic avenues in the management of common human hair growth disorders.
Collapse
Affiliation(s)
- Mikhail Geyfman
- Department of Ophthalmology, University of California, Irvine, CA 92697, USA
| | - Maksim V. Plikus
- Department of Developmental and Cell Biology, Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, CA 92697, USA
| | - Elsa Treffeisen
- Department of Dermatology, Kligman Labouratories, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | - Bogi Andersen
- Department of Biological Chemistry, University of California Irvine, CA 92697, USA
- Department of Medicine, University of California Irvine, CA 92697, USA
- Institute for Genomics and Bioinformatics, University of California, Irvine, CA 92697, USA
| | - Ralf Paus
- Department of Dermatology, University of Luebeck, Luebeck, Germany
- Institute of Inflammation and Repair, and Dermatology Centre, University of Manchester, Stopford Building, Oxford Road, Manchester M13 9PL, UK
| |
Collapse
|
9
|
Faniku C, Wright CS, Martin PE. Connexins and pannexins in the integumentary system: the skin and appendages. Cell Mol Life Sci 2015; 72:2937-47. [PMID: 26091749 PMCID: PMC11113313 DOI: 10.1007/s00018-015-1969-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 06/11/2015] [Indexed: 10/23/2022]
Abstract
The integumentary system comprises the skin and its appendages, which includes hair, nails, feathers, sebaceous and eccrine glands. In this review, we focus on the expression profile of connexins and pannexins throughout the integumentary system in mammals, birds and fish. We provide a picture of the complexity of the connexin/pannexin network illustrating functional importance of these proteins in maintaining the integrity of the epidermal barrier. The differential regulation and expression of connexins and pannexins during skin renewal, together with a number of epidermal, hair and nail abnormalities associated with mutations in connexins, emphasize that the correct balance of connexin and pannexin expression is critical for maintenance of the skin and its appendages with both channel and non-channel functions playing profound roles. Changes in connexin expression during both hair and feather regeneration provide suggestions of specialized communication compartments. Finally, we discuss the potential use of zebrafish as a model for connexin skin biology, where evidence mounts that differential connexin expression is involved in skin patterning and pigmentation.
Collapse
Affiliation(s)
- Chrysovalantou Faniku
- Department of Life Sciences and Institute for Applied Health Research, Glasgow Caledonian University, Glasgow, G4 0BA UK
| | - Catherine S. Wright
- Department of Life Sciences and Institute for Applied Health Research, Glasgow Caledonian University, Glasgow, G4 0BA UK
| | - Patricia E. Martin
- Department of Life Sciences and Institute for Applied Health Research, Glasgow Caledonian University, Glasgow, G4 0BA UK
| |
Collapse
|
10
|
Keratitis-ichthyosis-deafness syndrome-associated Cx26 mutants produce nonfunctional gap junctions but hyperactive hemichannels when co-expressed with wild type Cx43. J Invest Dermatol 2015; 135:1338-1347. [PMID: 25625422 PMCID: PMC4801018 DOI: 10.1038/jid.2015.20] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Revised: 01/13/2015] [Accepted: 01/14/2015] [Indexed: 11/09/2022]
Abstract
Mutations in Cx26 gene are found in most cases of human genetic deafness. Some mutations produce syndromic deafness associated with skin disorders, like the Keratitis-Ichthyosis-Deafness syndrome (KID). Because in the human skin connexin 26 (Cx26) is co-expressed with other connexins, like Cx43 and Cx30, and as the KID syndrome is inherited as autosomal dominant condition, it is possible that KID mutations change the way Cx26 interacts with other co-expressed connexins. Indeed, some Cx26 syndromic mutations showed gap junction dominant negative effect when co-expressed with wild-type connexins, including Cx26 and Cx43. The nature of these interactions and the consequences on hemichannels and gap junction channel (GJC) functions remain unknown. In this study, we demonstrate that syndromic mutations, at the N terminus segment of Cx26, change connexin oligomerization compatibility, allowing aberrant interactions with Cx43. Strikingly, heteromeric oligomer formed by Cx43/Cx26 (syndromic mutants) shows exacerbated hemichannel activity but nonfunctional GJCs; this also occurs for those Cx26 KID mutants that do not show functional homomeric hemichannels. Heterologous expression of these hyperactive heteromeric hemichannels increases cell membrane permeability, favoring ATP release and Ca(2+) overload. The functional paradox produced by oligomerization of Cx43 and Cx26 KID mutants could underlie the severe syndromic phenotype in human skin.
Collapse
|
11
|
Alibardi L. Formation of adherens and communicating junctions coordinate the differentiation of the shedding-layer and beta-epidermal generation in regenerating lizard epidermis. J Morphol 2014; 275:693-702. [DOI: 10.1002/jmor.20249] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Lorenzo Alibardi
- Comparative Histolab and Dipartimento di Biologia; Geologia e Scienze Ambientali, Universita' di Bologna; Bologna 40126 Italy
| |
Collapse
|
12
|
Churko JM, Laird DW. Gap junction remodeling in skin repair following wounding and disease. Physiology (Bethesda) 2013; 28:190-8. [PMID: 23636264 DOI: 10.1152/physiol.00058.2012] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In the present review, we provide an overview of connexin expression during skin development and remodeling in wound healing, and reflect on how loss- or gain-of-function connexin mutations may change cellular phenotypes and lead to diseases of the skin. We also consider the therapeutic value of targeting connexins in wound healing.
Collapse
Affiliation(s)
- Jared M Churko
- Department of Anatomy and Cell Biology, University of Western Ontario, London, Ontario, Canada
| | | |
Collapse
|
13
|
Davis NG, Phillips A, Becker DL. Connexin dynamics in the privileged wound healing of the buccal mucosa. Wound Repair Regen 2013; 21:571-8. [PMID: 23627777 DOI: 10.1111/wrr.12054] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Accepted: 02/25/2013] [Indexed: 12/13/2022]
Abstract
Wound closure is fundamental to maintaining tissue homeostasis; a plethora of processes and signals must be coordinated, and gap junctions play a critical role. Some tissues exhibit privileged healing, such as buccal mucosa, repairing more rapidly, but gap junction connexin dynamics during wound healing in such tissues have not been investigated. To determine connexin changes during this rapid healing process, incisional wounds were made in the cheeks of mice and microscopically observed. We discovered that buccal mucosa wound edge keratinocytes do not form a thin tongue of migratory cells like epidermis; instead, a wedge of cells rapidly moves into the wound. The dorsal surfaces of opposing sides of the wounds then touch and join in a "V," which subsequently fills up with cells to form a "delta" that remodels into a flat sheet. Immunostaining showed that connexin26, connexin30, and connexin43 are expressed at significantly higher levels in the buccal mucosa than the epidermis and that, unlike the skin, all three are rapidly down-regulated at the wound edge within 6 hours of wounding. This rapid down-regulation of all three connexins may in part underlie the rapid healing of the buccal mucosa.
Collapse
Affiliation(s)
- Nicola G Davis
- Department of Cell and Developmental Biology, University College London, London, United Kingdom.
| | | | | |
Collapse
|
14
|
Ongstad EL, O'Quinn MP, Ghatnekar GS, Yost MJ, Gourdie RG. A Connexin43 Mimetic Peptide Promotes Regenerative Healing and Improves Mechanical Properties in Skin and Heart. Adv Wound Care (New Rochelle) 2013; 2:55-62. [PMID: 24527326 DOI: 10.1089/wound.2011.0341] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2011] [Indexed: 01/26/2023] Open
Abstract
SIGNIFICANCE Evidence is building that the gap junction protein connexin43 (Cx43) is an important molecule in regenerative healing of skin and heart. Excess scarring from skin wound healing is a continuing clinical problem. Humans generally lack the ability to regenerate tissue following injury, and some degree of fibrotic repair occurs. In the skin, this results in unsightly scars with inferior mechanical properties. In the heart, scarring causes disruption in the contractility of cardiac muscle and increases the risk of deadly arrhythmia. Therapies that tip the balance of wound healing away from scar tissue and toward regeneration would thus represent a significant medical advance. RECENT ADVANCES A cell-permeant peptide, αCT1 (alpha connexin carboxyl-terminal peptide), based on the carboxyl-terminus of connexin43, has been shown to elicit changes in gap junction organization and intracellular communication. In the skin, αCT1 applied at acute time points results in decreased inflammatory response, reduced area of scar progenitor tissue, and restoration of more normal dermal structure and mechanical strength. αCT1 application to infarcted hearts improved cardiac contractility, reduced the propensity for arrhythmia, and increased conduction velocity through the injured heart. CRITICAL ISSUES Application of therapies like αCT1 could reduce cutaneous scarring and improve mechanical properties of healed skin and the contractile function and electrical stability of the heart following injury or surgery. FUTURE DIRECTIONS αCT1 is a potential therapy for cutaneous wounds that could lead to reduced scarring and improvements in the mechanical properties of healed skin. For injured myocardial tissues, this Cx43 mimetic peptide may also provide a therapeutic approach for targeting pathological fibrosis and reducing the likelihood of sudden death from cardiac arrhythmias.
Collapse
Affiliation(s)
- Emily L Ongstad
- Department of Bioengineering, Clemson University , Clemson, South Carolina
| | - Michael P O'Quinn
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina , Charleston, South Carolina
| | | | - Michael J Yost
- Department of Surgery, Medical University of South Carolina , Charleston, South Carolina
| | - Robert G Gourdie
- Department of Bioengineering, Clemson University , Clemson, South Carolina. ; Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina , Charleston, South Carolina
| |
Collapse
|
15
|
Abstract
Melanoma differentiation associated gene-9 (MDA-9)/syntenin is a PDZ domain-containing adaptor protein involved in multiple diverse cellular processes including organization of protein complexes in the plasma membrane, intracellular trafficking and cell surface targeting, synaptic transmission, and cancer metastasis. In the present study, we analyzed the expression pattern of MDA-9/syntenin during mouse development. MDA-9/syntenin was robustly expressed with tight regulation of its temporal and spatial expression during fetal development in the developing skin, spinal cord, heart, lung and liver, which are regulated by multiple signaling pathways in the process of organogenesis. Recent studies also indicate that MDA-9/syntenin is involved in the signaling pathways crucial during development such as Wnt, Notch and FGF. Taken together, these results suggest that MDA-9/syntenin may play a prominent role during normal mouse development in the context of cell proliferation as well as differentiation through modulating multiple signaling pathways as a crucial adaptor protein. Additionally, temporal regulation of MDA-9/syntenin expression may be required during specific stages and in specific tissues during development.
Collapse
|
16
|
Scott CA, Tattersall D, O'Toole EA, Kelsell DP. Connexins in epidermal homeostasis and skin disease. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2012; 1818:1952-61. [DOI: 10.1016/j.bbamem.2011.09.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2011] [Revised: 08/30/2011] [Accepted: 09/06/2011] [Indexed: 12/20/2022]
|
17
|
Investigation on the effects of experimental STZ-induced diabetic rat model on basal membrane structures and gap junctions of skin. Int J Diabetes Dev Ctries 2012. [DOI: 10.1007/s13410-012-0070-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
|
18
|
Becker DL, Thrasivoulou C, Phillips ARJ. Connexins in wound healing; perspectives in diabetic patients. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2011; 1818:2068-75. [PMID: 22155211 DOI: 10.1016/j.bbamem.2011.11.017] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2011] [Revised: 11/07/2011] [Accepted: 11/18/2011] [Indexed: 11/19/2022]
Abstract
Skin lesions are common events and we have evolved to rapidly heal them in order to maintain homeostasis and prevent infection and sepsis. Most acute wounds heal without issue, but as we get older our bodies become compromised by poor blood circulation and conditions such as diabetes, leading to slower healing. This can result in stalled or hard-to-heal chronic wounds. Currently about 2% of the Western population develop a chronic wound and this figure will rise as the population ages and diabetes becomes more prevalent [1]. Patient morbidity and quality of life are profoundly altered by chronic wounds [2]. Unfortunately a significant proportion of these chronic wounds fail to respond to conventional treatment and can result in amputation of the lower limb. Life quality and expectancy following amputation is severely reduced. These hard to heal wounds also represent a growing economic burden on Western society with published estimates of costs to healthcare services in the region of $25B annually [3]. There exists a growing need for specific and effective therapeutic agents to improve healing in these wounds. In recent years the gap junction protein Cx43 has been shown to play a pivotal role early on in the acute wound healing process at a number of different levels [4-7]. Conversely, abnormal expression of Cx43 in wound edge keratinocytes was shown to underlie the poor rate of healing in diabetic rats, and targeting its expression with an antisense gel restored normal healing rates [8]. The presence of Cx43 in the wound edge keratinocytes of human chronic wounds has also been reported [9]. Abnormal Cx43 biology may underlie the poor healing of human chronic wounds and be amenable therapeutic intervention [7]. This article is part of a Special Issue entitled: The Communicating junctions, composition, structure and characteristics.
Collapse
Affiliation(s)
- David L Becker
- Department of Cell and Developmental Biology, University College, London, WC1E 6BT, UK.
| | | | | |
Collapse
|
19
|
Mese G, Sellitto C, Li L, Wang HZ, Valiunas V, Richard G, Brink PR, White TW. The Cx26-G45E mutation displays increased hemichannel activity in a mouse model of the lethal form of keratitis-ichthyosis-deafness syndrome. Mol Biol Cell 2011; 22:4776-86. [PMID: 22031297 PMCID: PMC3237621 DOI: 10.1091/mbc.e11-09-0778] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Mutations in the GJB2 gene (Cx26) cause deafness in humans. Most are loss-of-function mutations and cause nonsyndromic deafness. Some mutations produce a gain of function and cause syndromic deafness associated with skin disorders, such as keratitis-ichthyosis-deafness syndrome (KIDS). Cx26-G45E is a lethal mutation linked to KIDS that forms constitutively active connexin hemichannels. The pathomechanism(s) by which mutant Cx26 hemichannels perturb normal epidermal cornification are poorly understood. We created an animal model for KIDS by generating an inducible transgenic mouse expressing Cx26-G45E in keratinocytes. Cx26-G45E mice displayed reduced viability, hyperkeratosis, scaling, skin folds, and hair loss. Histopathology included hyperplasia, acanthosis, papillomatosis, increased cell size, and osteal plugging. These abnormalities correlated with human KIDS pathology and were associated with increased hemichannel currents in transgenic keratinocytes. These results confirm the pathogenic nature of the G45E mutation and provide a new model for studying the role of aberrant connexin hemichannels in epidermal differentiation and inherited connexin disorders.
Collapse
Affiliation(s)
- Gulistan Mese
- Department of Physiology and Biophysics, Stony Brook University, Stony Brook, NY 11794, USA
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Abstract
Cx (connexin) proteins are components of gap junctions which are aqueous pores that allow intercellular exchange of ions and small molecules. Mutations in Cx genes are linked to a range of human disorders. In the present review we discuss mutations in β-Cx genes encoding Cx26, Cx30, Cx30.3 and Cx31 which lead to skin disease and deafness. Functional studies with Cx proteins have given insights into disease-associated mechanisms and non-gap junctional roles for Cx proteins.
Collapse
|
21
|
The G60S connexin43 mutant regulates hair growth and hair fiber morphology in a mouse model of human oculodentodigital dysplasia. J Invest Dermatol 2011; 131:2197-204. [PMID: 21716323 DOI: 10.1038/jid.2011.183] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Patients expressing mutations in the gene encoding the gap junction protein Cx43 suffer from a disease called oculodentodigital dysplasia (ODDD). Patients with ODDD are often reported to develop hair that is dry, dull, sparse, and slow growing. To evaluate the linkage between Cx43 and hair growth, structure, and follicle density we employed a mouse model of ODDD that harbors a Cx43 G60S point mutant. Regionally sparse and overall dull hair were observed in mutant mice compared with their wild-type (WT) littermates. However, histological analysis of overall hair follicle density in mutant and WT mice did not reveal any significant differences. After epilation, mutant mouse hair grew back slower, and hair growth was asynchronous. In addition, ultrastructural scanning electron microscopic imaging of hair fibers taken from mutant mice and two patients harboring the G143S mutation revealed severe cuticle weathering. Nodule formation was also observed in the proximal region of hair fibers taken from mutant mice. These results suggest that the G60S mutant mouse model mimics the hair phenotype found in at least some ODDD patients and suggests an important role for Cx43 in hair regeneration, growth, and cuticle formation.
Collapse
|
22
|
Dey A, Kusljic S, Lang RJ, Exintaris B. Role of connexin 43 in the maintenance of spontaneous activity in the guinea pig prostate gland. Br J Pharmacol 2011; 161:1692-707. [PMID: 20735413 DOI: 10.1111/j.1476-5381.2010.01001.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND AND PURPOSE To investigate the role of connexin 43 in the maintenance of spontaneous activity in prostate tissue from young and old guinea pigs. EXPERIMENTAL APPROACH Conventional intracellular microelectrode and tension recording techniques, coupled with Western blot analysis and immunohistochemistry for connexin 43 (CX43) were used. The effects of three gap junction uncouplers, 18β glycyrrhetinic acid (10 µM, 40 µM), carbenoxolone (10 µM, 50 µM) and octanol (0.5 mM, 1 mM), were studied in cells displaying slow wave activity and on spontaneously contracting tissue from prostate glands of young (2-5 months) and old (9-16 months) guinea pigs. KEY RESULTS 18β Glycyrrhetinic acid (40 µM), carbenoxolone (50 µM) or octanol (0.5 mM) abolished slow wave activity in prostate tissue from young and old guinea pigs and depolarized membrane potential by approximately 5 mV. These treatments also abolished all contractions in both sets of prostate tissue. These effects were reversed upon washout. Western blot analysis and CX43 immunohistochemistry showed that there was no age-related difference in the expression and distribution of CX43 in prostate tissues. CONCLUSION AND IMPLICATIONS When gap junctional communication via CX43 was disrupted, spontaneous activity was abolished at a cellular and whole tissue level; CX43 is therefore essential for the maintenance of spontaneous slow wave activity and subsequent contractile activity in the guinea pig prostate gland.
Collapse
Affiliation(s)
- Anupa Dey
- Medicinal Chemistry & Drug Action, Monash Institute of Pharmaceutical Sciences, Parkville, Victoria, Australia
| | | | | | | |
Collapse
|
23
|
Expression patterns of astrocyte elevated gene-1 (AEG-1) during development of the mouse embryo. Gene Expr Patterns 2010; 10:361-7. [PMID: 20736086 DOI: 10.1016/j.gep.2010.08.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2010] [Revised: 08/18/2010] [Accepted: 08/19/2010] [Indexed: 01/29/2023]
Abstract
Expression of astrocyte elevated gene-1 (AEG-1) is elevated in multiple human cancers including brain tumors, neuroblastomas, melanomas, breast cancers, non-small cell lung cancers, liver cancers, prostate cancers, and esophageal cancers. This gene plays crucial roles in tumor cell growth, invasion, angiogenesis and progression to metastasis. In addition, over-expression of AEG-1 protects primary and transformed cells from apoptosis-inducing signals by activating PI3K-Akt signaling pathways. These results suggest that AEG-1 is intimately involved in tumorigenesis and may serve as a potential therapeutic target for various human cancers. However, the normal physiological functions of AEG-1 require clarification. We presently analyzed the expression pattern of AEG-1 during mouse development. AEG-1 was expressed in mid-to-hindbrain, fronto-nasal processes, limbs, and pharyngeal arches in the early developmental period from E8.5 to E9.5. In addition, at stages of E12.5-E18.5 AEG-1 was localized in the brain, and olfactory and skeletal systems suggesting a role in neurogenesis, as well as in skin, including hair follicles, and in the liver, which are organ sites in which AEG-1 has been implicated in tumor development and progression. AEG-1 co-localized with Ki-67, indicating a role in cell proliferation, as previously revealed in tumorigenesis. Taken together, these results suggest that AEG-1 may play a prominent role during normal mouse development in the context of cell proliferation as well as differentiation, and that temporal regulation of AEG-1 expression may be required during specific stages and in specific tissues during development.
Collapse
|
24
|
Zhuravskiy SG, Kurus AA, Taraskina AE, Ivanov SA. Ultrastructure of the Hair in Genetic Prelingual Deafness Associated with the 35delG Mutation in the Connexin 26 Gene (GJB2). Bull Exp Biol Med 2009; 148:79-81. [DOI: 10.1007/s10517-009-0637-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
25
|
Abstract
Gap junctions allow the exchange of ions and small molecules between adjacent cells through intercellular channels formed by connexin proteins, which can also form functional hemichannels in nonjunctional membranes. Mutations in connexin genes cause a variety of human diseases. For example, mutations in GJB2, the gene encoding connexin-26 (Cx26), are not only a major cause of nonsyndromic deafness, but also cause syndromic deafness associated with skin disorders such as palmoplantar keratoderma, keratitis-ichthyosis deafness syndrome, Vohwinkel syndrome, hystrix-ichthyosis deafness syndrome and Bart-Pumphrey syndrome. The most common mutation in the Cx26 gene linked to nonsyndromic deafness is 35DeltaG, a frameshift mutation leading to an early stop codon. The large number of deaf individuals homozygous for 35DeltaG do not develop skin disease. Similarly, there is abundant experimental evidence to suggest that other Cx26 loss-of-function mutations cause deafness, but not skin disease. By contrast, Cx26 mutations that cause both skin diseases and deafness are all single amino acid changes. Since nonsyndromic deafness is predominantly a loss-of-function disorder, it follows that the syndromic mutants must show an alteration, or gain, of function to cause skin disease. Here, we summarise the functional consequences and clinical phenotypes resulting from Cx26 mutations that cause deafness and skin disease.
Collapse
|
26
|
Ghatnekar GS, O'Quinn MP, Jourdan LJ, Gurjarpadhye AA, Draughn RL, Gourdie RG. Connexin43 carboxyl-terminal peptides reduce scar progenitor and promote regenerative healing following skin wounding. Regen Med 2009; 4:205-23. [PMID: 19317641 DOI: 10.2217/17460751.4.2.205] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
AIM Gap-junctional connexin43 (Cx43) has roles in multiple aspects of skin wound healing - including scarring. The aim here was to study the effects of a cell-permeant peptide from the Cx43 carboxyl-terminus (CT) on scarring and regeneration following cutaneous injury. MATERIALS & METHODS The effects of Cx43 CT peptide were studied in mouse and pig models of cutaneous injury. The parameters assessed included neutrophil density, wound closure, granulation, regeneration and skin tensile properties. RESULTS Cx43 CT-peptide prompted decreases in area of scar progenitor tissue and promoted restoration of dermal histoarchitecture and mechanical strength following wounding of skin. These changes in healing were preceded by peptide-induced reduction in inflammatory neutrophil infiltration and alterations in the organization of epidermal Cx43, including increased connexon aggregation. CONCLUSION Cx43 CT peptide promotes regenerative healing of cutaneous wounds and may have applications in tissues other than skin, including heart, cornea and spinal cord.
Collapse
Affiliation(s)
- Gautam S Ghatnekar
- Comparative Medicine, Medical University of South Carolina, Charleston, SC, USA
| | | | | | | | | | | |
Collapse
|
27
|
Wang CM, Lincoln J, Cook JE, Becker DL. Abnormal connexin expression underlies delayed wound healing in diabetic skin. Diabetes 2007; 56:2809-17. [PMID: 17717278 DOI: 10.2337/db07-0613] [Citation(s) in RCA: 126] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
OBJECTIVE Dynamically regulated expression of the gap junction protein connexin (Cx)43 plays pivotal roles in wound healing. Cx43 is normally downregulated and Cx26 upregulated in keratinocytes at the edge of the wound as they adopt a migratory phenotype. We have examined the dynamics of Cx expression during wound healing in diabetic rats, which is known to be slow. RESEARCH DESIGN AND METHODS We induced diabetes with streptozotocin and examined Cx expression and communication in intact and healing skin. RESULTS We found that diabetes decreased Cx43 and Cx26 protein and communication in the intact epidermis and increased Cx43 protein and communication in the intact dermis. Diabetes also altered the dynamic changes of Cxs associated with wound healing. Within 24 h, Cx43 was upregulated in a thickened bulb of keratinocytes at the wound edge (rather than downregulated as in controls, which formed a thin process of migratory cells). Cx43 decline was delayed until 48 h, when reepithelialization began. Although Cx26 was upregulated as normal after wounding in diabetic skin, its distribution at the wound edge was abnormal, being more widespread. Application of Cx43-specific antisense gel to diabetic wounds prevented the abnormal upregulation of Cx43 and doubled the rate of reepithelialization, which exceeded control levels. CONCLUSIONS Cx expression in diabetic skin is abnormal, as is the dynamic response of Cx43 to injury, which may underlie the delayed healing of diabetic wounds. Preventing the upregulation of Cx43 in diabetic wounds significantly improves the rate of healing and clearly has potential therapeutic value.
Collapse
Affiliation(s)
- Chiuhui Mary Wang
- Department of Anatomy and Developmental Biology, University College London, Gower Street, London, WC1E 6BT, UK
| | | | | | | |
Collapse
|
28
|
|
29
|
Blount M, Goff S, Slusarewicz P. In vitro degradation of the inner root sheath in human hair follicles lacking sebaceous glands. Br J Dermatol 2007; 158:22-30. [PMID: 17970807 DOI: 10.1111/j.1365-2133.2007.08245.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND Cultured hair follicles lacking sebaceous glands do not appear to degrade the inner root sheath (IRS), suggesting that the gland may be involved in this process. OBJECTIVES To examine this supposition in cultured hair follicles. METHODS Pilosebaceous units were isolated from hair follicles cultured in vitro, and IRS degradation was studied by histology. RESULTS When grown in culture, the fibres of follicles lacking sebaceous glands were encased in a layer of translucent tissue. During hair growth in vitro this tissue remained intact at the distal end of the follicle but disappeared further down towards the bulb and then reappeared towards the proximal end. Transection within the region lacking this tissue resulted in the release of a naked hair fibre and the production of hair with no attached tissue upon subsequent hair growth. The translucent tissue represented the IRS, thereby demonstrating that this tissue is indeed degraded in vitro. Histological comparison with freshly isolated pilosebaceous units indicated that IRS degradation in vitro strongly resembled the process that occurs in vivo. CONCLUSIONS These data suggest that the sebaceous gland does not itself participate in IRS degradation. Indeed, this phenomenon appears to be a function of the follicle itself and is probably intimately linked with the processes of cellular proliferation, differentiation and death that occur during hair biogenesis.
Collapse
Affiliation(s)
- M Blount
- Department of Clinical Biochemistry, University of Cambridge, Addenbrooke's Hospital, Cambridge, U.K
| | | | | |
Collapse
|
30
|
A murine living skin equivalent amenable to live-cell imaging: analysis of the roles of connexins in the epidermis. J Invest Dermatol 2007; 128:1039-49. [PMID: 17960178 DOI: 10.1038/sj.jid.5701125] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Three-dimensional (3D) organotypic models are increasingly used to study the aspects of epidermal organisation and cutaneous wound-healing events. However, these are largely dependent on laborious histological analysis and immunohistochemical approaches. Despite the large resource of transgenic and knockout mice harboring mutations relevant to skin disorders, few organotypic mouse skin models are available. We have developed a versatile in vitro 3D organotypic mouse skin equivalent that reflects epidermal organisation in vivo. The system is optically transparent and ideally suited to real-time analysis using a variety of integrated in situ imaging techniques. As a paradigm for coordination of cellular events, the epidermal gap junction network was investigated and the model displayed predominant connexin 43 (Cx43) expression in basal proliferating cells and Cx26 and Cx30 expression in differentiated keratinocytes. We show that attenuation of Cx43-mediated communication by a Cx mimetic peptide enhanced wound closure rates in keratinocyte monocultures and in the living skin equivalent system, emphasising the utility of the model to systematically unravel the molecular mechanisms underlying epidermal morphogenesis, assess promising therapeutic strategies, and reduce animal experimentation. Furthermore, we visualise epidermal regeneration following injury in real time, thereby facilitating avenues to explore distinctive modes of wound re-epithelialisation in a non-invasive manner.
Collapse
|
31
|
Langlois S, Maher AC, Manias JL, Shao Q, Kidder GM, Laird DW. Connexin Levels Regulate Keratinocyte Differentiation in the Epidermis. J Biol Chem 2007; 282:30171-80. [PMID: 17693411 DOI: 10.1074/jbc.m703623200] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
To understand the role of connexin43 (Cx43) in epidermal differentiation, we reduced Cx43 levels by RNA-mediated interference knockdown and impaired its functional status by overexpressing loss-of-function Cx43 mutants associated with the human disease oculodentodigital dysplasia (ODDD) in rat epidermal keratinocytes. When Cx43 expression was knocked down by 50-75%, there was a coordinate 55-65% reduction in Cx26 level, gap junction-based dye coupling was reduced by 60%, and transepithelial resistance decreased. Importantly, the overall growth and differentiation of Cx43 knockdown organotypic epidermis was severely impaired as revealed by alterations in the levels of the differentiation markers loricrin and involucrin and by reductions in vital and cornified layer thicknesses. Conversely, although the expression of Cx43 mutants reduced the coupling status of rat epidermal keratinocytes by approximately 80% without altering the levels of endogenous Cx43 or Cx26, their ability to differentiate was not altered. In addition, we used a mouse model of ODDD and found that newborn mice harboring the loss-of-function Cx43(G60S) mutant had slightly reduced Cx43 levels, whereas Cx26 levels, epidermis differentiation, and barrier function remained unaltered. This properly differentiated epidermis was maintained even when Cx43 and Cx26 levels decreased by more than 70% in 3-week-old mutant mice. Our studies indicate that Cx43 and Cx26 collectively co-regulate epidermal differentiation from basal keratinocytes but play a more minimal role in the maintenance of established epidermis. Altogether, these studies provide an explanation as to why the vast majority of ODDD patients, where Cx43 function is highly compromised, do not suffer from skin disease.
Collapse
Affiliation(s)
- Stéphanie Langlois
- Department of Anatomy and Cell Biology, The University of Western Ontario, London, Ontario, N6A 5C1, Canada
| | | | | | | | | | | |
Collapse
|
32
|
Zheng-Fischhöfer Q, Schnichels M, Dere E, Strotmann J, Loscher N, McCulloch F, Kretz M, Degen J, Reucher H, Nagy JI, Peti-Peterdi J, Huston JP, Breer H, Willecke K. Characterization of connexin30.3-deficient mice suggests a possible role of connexin30.3 in olfaction. Eur J Cell Biol 2007; 86:683-700. [PMID: 17728008 DOI: 10.1016/j.ejcb.2007.01.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2006] [Revised: 01/05/2007] [Accepted: 01/08/2007] [Indexed: 12/31/2022] Open
Abstract
We have generated connexin30.3-deficient mice in which the coding region of the connexin30.3 gene was replaced by the lacZ reporter gene. The expression pattern of this connexin was characterized using beta-galactosidase staining and immunoblot analyses. In skin, beta-galactosidase/connexin30.3 protein was expressed in the spinous and granulous layers of the epidermis. Specific beta-galactosidase/connexin30.3 expression was also detected in the thin ascending limb of Henle's loop in the kidney. In addition, we found beta-galactosidase/connexin30.3 in progenitor cells of the olfactory epithelium and in a subpopulation of cells in the apical layer of the vomeronasal organ. Connexin30.3-deficient mice were fertile and displayed no abnormalities in the skin or in the chemosensory systems. Furthermore, they showed normal auditory thresholds as measured by brain stem evoked potentials. These mice did, however, exhibit reduced behavioural responses to a vanilla scent.
Collapse
|
33
|
Thomas T, Shao Q, Laird DW. Differentiation of Organotypic Epidermis in the Presence of Skin Disease-Linked Dominant-Negative Cx26 Mutants and Knockdown Cx26. J Membr Biol 2007; 217:93-104. [PMID: 17638039 DOI: 10.1007/s00232-007-9036-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2007] [Accepted: 05/14/2007] [Indexed: 10/23/2022]
Abstract
In this study, we chose a differentiation-competent rat epidermal keratinocyte (REK) cell line to examine the role of Cx26 and disease-linked Cx26 mutants in organotypic epidermal differentiation. First, we generated stable REK cell lines expressing three skin disease-linked mutants (G59A, D66H and R75W). Second, we used an RNAi approach to knock down the expression of Cx26 in REKs. Interestingly, the three-dimensional (3D) architecture of the organotypic epidermis altered the intracellular spatial distribution of the mutants in comparison to 2D cultured REKs, highlighting the importance of using organotypic cultures. Unexpectedly, the presence of disease-linked mutants or the overexpression of wild-type Cx26 had little effect on the differentiation of the organotypic epidermis as determined by the architecture of the epidermis, expression of molecular markers indicative of epidermis differentiation (keratin 10, keratin 14, involucrin, loricrin) and stratification/cornification of the epidermis. Likewise, organotypic epidermis continued to differentiate normally upon Cx26 knockdown. While Cx26 has been reported to be upregulated during wound healing, no reduction in wound closure was observed in 2D REK cultures that expressed loss-of-function, dominant Cx26 mutants. In conclusion, we demonstrate that gain or loss of Cx26 function does not disrupt organotypic epidermal differentiation and offer insights into why patients harboring Cx26 mutations do not frequently present with more severe disease that encompasses thin skin.
Collapse
Affiliation(s)
- Tamsin Thomas
- Department of Anatomy and Cell Biology, University of Western Ontario, London, ON, Canada
| | | | | |
Collapse
|
34
|
Maher AC, Thomas T, Riley JL, Veitch G, Shao Q, Laird DW. Rat epidermal keratinocytes as an organotypic model for examining the role of Cx43 and Cx26 in skin differentiation. ACTA ACUST UNITED AC 2007; 12:219-30. [PMID: 16531317 DOI: 10.1080/15419060500511818] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
In order to characterize connexin expression and regulation in the epidermis, we have characterized a rat epidermal keratinocyte (REK) cell line that is phenotypically similar to basal keratinocytes in that they have the ability to differentiate into organotypic epidermis consisting of a basal cell layer, 2-3 suprabasal cell layers, and a cornified layer. RT-PCR revealed that REK cells express mRNA for Cx26, Cx31, Cx31.1, Cx37, and Cx43, which mimics the reported connexin profile for rat tissue. In addition, we report the expression of Cx30, Cx30.3, Cx40, and Cx45 in rat keratinocytes, highlighting the complexity of the connexin complement in rat epidermis. Furthermore, 3-dimensional analysis of organotypic skin revealed that Cx26 and Cx43 are exquisitely regulated during the differentiation process. The life-cycle of these connexins including their expression, transport, assembly into gap junctions, internalization, and degradation are elegantly depicted in organotypic epidermis as keratinocytes proceed from differentiation to programmed cell death.
Collapse
Affiliation(s)
- Amy C Maher
- Department of Anatomy and Cell Biology, University of Western Ontario, London, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
35
|
Levin M. Gap junctional communication in morphogenesis. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2007; 94:186-206. [PMID: 17481700 PMCID: PMC2292839 DOI: 10.1016/j.pbiomolbio.2007.03.005] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Gap junctions permit the direct passage of small molecules from the cytosol of one cell to that of its neighbor, and thus form a system of cell-cell communication that exists alongside familiar secretion/receptor signaling. Because of the rich potential for regulation of junctional conductance, and directional and molecular gating (specificity), gap junctional communication (GJC) plays a crucial role in many aspects of normal tissue physiology. However, the most exciting role for GJC is in the regulation of information flow that takes place during embryonic development, regeneration, and tumor progression. The molecular mechanisms by which GJC establishes local and long-range instructive morphogenetic cues are just beginning to be understood. This review summarizes the current knowledge of the involvement of GJC in the patterning of both vertebrate and invertebrate systems and discusses in detail several morphogenetic systems in which the properties of this signaling have been molecularly characterized. One model consistent with existing data in the fields of vertebrate left-right patterning and anterior-posterior polarity in flatworm regeneration postulates electrophoretically guided movement of small molecule morphogens through long-range GJC paths. The discovery of mechanisms controlling embryonic and regenerative GJC-mediated signaling, and identification of the downstream targets of GJC-permeable molecules, represent exciting next areas of research in this fascinating field.
Collapse
Affiliation(s)
- Michael Levin
- Forsyth Center for Regenerative and Devlopmental Biology, Forsyth Institute, and Developmental Biology Department, Harvard School of Dental Medicine, Boston, MA 02115, USA.
| |
Collapse
|
36
|
|
37
|
King TJ, Lampe PD. Temporal regulation of connexin phosphorylation in embryonic and adult tissues. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2005; 1719:24-35. [PMID: 16137642 PMCID: PMC1760550 DOI: 10.1016/j.bbamem.2005.07.010] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2005] [Revised: 07/14/2005] [Accepted: 07/25/2005] [Indexed: 10/25/2022]
Abstract
Gap junctions, composed of proteins from the connexin family, allow for intercellular communication between cells in tissues and are important in development, tissue/cellular homeostasis, and carcinogenesis. Genome databases indicate that there are at least 20 connexins in the mouse and human. Connexin phosphorylation has been implicated in connexin assembly into gap junctions, gap junction turnover, and cell signaling events that occur in response to tumor promoters and oncogenes. Connexin43 (Cx43), the most widely expressed and abundant gap junction protein, can be phosphorylated at several different serine and tyrosine residues. Here, we focus on the dynamic regulation of Cx43 phosphorylation in tissue and how these regulatory events are affected during development, wound healing, and carcinogenesis. The activation of several kinases, including protein kinase A, protein kinase C, p34cdc2/cyclin B kinase, casein kinase 1, mitogen-activated protein kinase, and pp60src kinase, can lead to the phosphorylation of different residues in the C-terminal region of Cx43. The use of antibodies specific for phosphorylation at defined residues has allowed the examination of specific phosphorylation events both in tissue culture and in vivo. These new antibody tools and those under development will allow us to correlate specific phosphorylation events with changes in connexin function.
Collapse
Affiliation(s)
- Timothy J King
- Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, M5C800, Box 19024, Seattle, WA 98109, USA
| | | |
Collapse
|
38
|
Kretz M, Maass K, Willecke K. Expression and function of connexins in the epidermis, analyzed with transgenic mouse mutants. Eur J Cell Biol 2005; 83:647-54. [PMID: 15679109 DOI: 10.1078/0171-9335-00422] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Eight different connexins are expressed in mouse epidermis with overlapping expression patterns in different epidermal layers. Analyses of mice with deficiency or modifications of distinct connexins yielded insights into the large variety of connexins in the epidermis. Connexin43 (Cx43) deficiency in mouse epidermis resulted in a significant acceleration of wound closure. Truncation by 125 amino acid residues of the Cx43 C-terminal region led to an altered epidermal expression pattern of Cx43 and defective development of the epidermal water barrier in transgenic mice, although the truncated Cx43 protein could still form open gap junctional channels in transfected HeLa cells. Thus, the phenotypic abnormalities observed in mice with truncated Cx43 protein (Cx43K258Stop) are more likely due to defective regulation of this protein rather than the closed Cx43 channel. Our studies of connexin-deficient mice revealed an extensive redundancy of connexins expressed in mouse epidermis. Epidermal connexins seem to form two functional groups in which deficiency of one connexin isoform can be compensated by other connexin isoforms of the same group.
Collapse
Affiliation(s)
- Markus Kretz
- Institut für Genetik, Abteilung Molekulargenetik, Universität Bonn, Bonn, Germany
| | | | | |
Collapse
|
39
|
Chanson M, Derouette JP, Roth I, Foglia B, Scerri I, Dudez T, Kwak BR. Gap junctional communication in tissue inflammation and repair. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2005; 1711:197-207. [PMID: 15955304 DOI: 10.1016/j.bbamem.2004.10.005] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2004] [Revised: 10/12/2004] [Accepted: 10/14/2004] [Indexed: 11/18/2022]
Abstract
Local injury induces a complex orchestrated response to stimulate healing of injured tissues, cellular regeneration and phagocytosis. Practically, inflammation is defined as a defense process whereby fluid and white blood cells accumulate at a site of injury. The balance of cytokines, chemokines, and growth factors is likely to play a key role in regulating important cell functions such as migration, proliferation, and matrix synthesis during the process of inflammation. Hence, the initiation, maintenance, and resolution of innate responses depend upon cellular communication. A process similar to tissue repair and subsequent scarring is found in a variety of fibrotic diseases. This may occur in a single organ such as liver, kidneys, pancreas, lung, skin, and heart, but fibrosis may also have a more generalized distribution such as in atherosclerosis. The purpose of this review is to summarize recent advances on the contribution of gap junction-mediated intercellular communication in the modulation of the inflammatory response and tissue repair.
Collapse
Affiliation(s)
- Marc Chanson
- Laboratory of Clinical Investigation III, Department of Pediatrics, HUG-P.O. BOX 14, Micheli-du-Crest, 24, 1211 Geneva 14, Switzerland.
| | | | | | | | | | | | | |
Collapse
|
40
|
Kjaer KW, Hansen L, Eiberg H, Leicht P, Opitz JM, Tommerup N. Novel Connexin 43 (GJA1) mutation causes oculo-dento-digital dysplasia with curly hair. Am J Med Genet A 2005; 127A:152-7. [PMID: 15108203 DOI: 10.1002/ajmg.a.20614] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Oculo-dento-digital dysplasia (ODDD) [OMIM 164200] is a rare autosomal dominant pleiotropic disorder comprising ocular, craniofacial, and digital anomalies, caused by mutations in the gap junction alpha-1 gene (GJA1 or Connexin 43 (CX43)) [Paznekas et al., 2003]. In a Danish family affected over five generations, we found a novel mutation, 286G --> A, resulting in Val96Met. We provide an easy method for mutation detection by use of the restriction enzyme Nde1 and discuss possible pathogenetic mechanisms, arguing that loss of function cannot be excluded. This is the second article reporting ODDD mutations.
Collapse
Affiliation(s)
- Klaus W Kjaer
- Wilhelm Johannsen Centre for Functional Genome Research, The Panum Institute Building 24.4, Department of Medical Genetics, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark.
| | | | | | | | | | | |
Collapse
|
41
|
Richards TS, Dunn CA, Carter WG, Usui ML, Olerud JE, Lampe PD. Protein kinase C spatially and temporally regulates gap junctional communication during human wound repair via phosphorylation of connexin43 on serine368. ACTA ACUST UNITED AC 2004; 167:555-62. [PMID: 15534005 PMCID: PMC2172473 DOI: 10.1083/jcb.200404142] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Phosphorylation of connexin43 (Cx43) on serine368 (S368) has been shown to decrease gap junctional communication via a reduction in unitary channel conductance. Examination of phosphoserine368 (pS368) in normal human skin tissue using a phosphorylation site–specific antibody showed relatively even distribution throughout the epidermal layers. However, 24 h after wounding, but not at 6 or 72 h, pS368 levels were dramatically increased in basal keratinocytes and essentially lost from suprabasal layers adjacent to the wound (i.e., within 200 μm of it). Scratch wounding of primary human keratinocytes caused a protein kinase C (PKC)-dependent increase in pS368 in cells adjacent to the scratch, with a time course similar to that found in the wounds. Keratinocytes at the edge of the scratch also transferred dye much less efficiently at 24 h, in a manner dependent on PKC. However, keratinocyte migration to fill the scratch required early (within <6 h) gap junctional communication. Our evidence indicates that PKC-dependent phosphorylation of Cx43 at S368 creates dynamic communication compartments that can temporally and spatially regulate wound healing.
Collapse
Affiliation(s)
- Theresa S Richards
- Division of Basic and Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | | | | | | | | | | |
Collapse
|
42
|
Qiu C, Coutinho P, Frank S, Franke S, Law LY, Martin P, Green CR, Becker DL. Targeting connexin43 expression accelerates the rate of wound repair. Curr Biol 2004; 13:1697-703. [PMID: 14521835 DOI: 10.1016/j.cub.2003.09.007] [Citation(s) in RCA: 222] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The repair of tissue damage is a key survival process in all organisms and involves the coordinated activation of several cell types. Cell-cell communication is clearly fundamental to this process, and a great deal is known about extracellular communication within the wound site via cytokines. Here we show that direct cell-cell communication through connexin 43 (Cx43) gap junction channels also plays a major role in the wound healing process. In two different wound healing models, incisional and excisional skin lesions, we show that a single topical application of Cx43 antisense gel brings about a transient downregulation of Cx43 protein levels, and this results in a dramatic increase in the rate of wound closure. Cx43 knockdown reduces inflammation, seen both macroscopically, as a reduction in swelling, redness, and wound gape, and microscopically, as a significant decrease in neutrophil numbers in the tissue around the wound. One long-term consequence of the improved rate of healing is a significant reduction in the extent of granulation tissue deposition and the subsequent formation of a smaller, less distorted, scar. This approach is likely to have widespread therapeutic applications in other injured tissues and opens up new avenues of research into improving the wound healing process.
Collapse
Affiliation(s)
- Cindy Qiu
- Department of Anatomy and Developmental Biology, University College London, Gower St., WC1E 6BT London, UK
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Gerido DA, White TW. Connexin disorders of the ear, skin, and lens. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2004; 1662:159-70. [PMID: 15033586 DOI: 10.1016/j.bbamem.2003.10.017] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2003] [Revised: 10/08/2003] [Accepted: 10/08/2003] [Indexed: 12/31/2022]
Abstract
Gap junctions provide coupled cells with a direct pathway for sharing ions, nutrients, and small metabolites, thus helping to maintain homeostasis in various tissues. Abnormal function and/or expression of specific connexin genes has been linked to several diseases, including genetic deafness, skin disease, peripheral neuropathies, and cataracts. Research has provided significant insight into the function of gap junction proteins in both in vitro and in vivo models; however, questions regarding the exact mechanisms by which connexin related diseases occur in mammalian systems remain. Here, we discuss the disease states that are related to three human connexin genes, Cx26 (GJB2), Cx46 (GJA3) and Cx50 (GJA8), and recent scientific evidence characterizing those diseases in various experimental models.
Collapse
Affiliation(s)
- Dwan A Gerido
- Department of Physiology and Biophysics, State University of New York, T5-147, Basic Science Tower, Stony Brook, NY 11794-8661, USA
| | | |
Collapse
|
44
|
Filippov MA, Hormuzdi SG, Fuchs EC, Monyer H. A reporter allele for investigating connexin 26 gene expression in the mouse brain. Eur J Neurosci 2003; 18:3183-92. [PMID: 14686892 DOI: 10.1111/j.1460-9568.2003.03042.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A variety of connexins are expressed in the diverse cell types of the central nervous system and are thought to regulate some of the functional properties exhibited by immature and mature cells. A proper understanding of the role of specific connexins in these processes requires an unambiguous characterization of their spatial and temporal pattern of expression. In order to define the cellular distribution of connexin 26 (Cx26) in the mouse we have generated a reporter allele (Cx26lacZ) by genetically manipulating the locus so that the beta-galactosidase (lacZ) gene is expressed from the endogenous Cx26 promoter. This modification decreased expression from the allele and resulted in embryonic lethality for the Cx26lacZ/lacZ genotype in accordance with previous studies on Cx26 knock-out animals indicating that Cx26-containing gap junctions are necessary for embryonic development. Despite the lower than expected transcript levels, the amount of lacZ protein produced in heterozygous mice was sufficient to label tissues known to contain Cx26, such as liver, kidney, skin, cochlea, small intestine, placenta and thyroid gland. In the embryonic and mature central nervous system, however, lacZ was restricted to meningeal cells and could not be detected in either neurons or glia. The absence of Cx26 mRNA in these cells could also be confirmed by reverse transcription-polymerase chain reaction and in situ hybridization. Our experiments indicate that the Cx26lacZ mouse line can be used as a reporter of Cx26 gene expression and suggest that Cx26, contrary to previous reports, is restricted to the meninges in both embryonic and adult brain.
Collapse
Affiliation(s)
- Mikhail A Filippov
- Department of Clinical Neurobiology, University Hospital of Neurology, Im Neuenheimer Feld 364, 69120 Heidelberg, Germany
| | | | | | | |
Collapse
|
45
|
Laux-Fenton WT, Donaldson PJ, Kistler J, Green CR. Connexin expression patterns in the rat cornea: molecular evidence for communication compartments. Cornea 2003; 22:457-64. [PMID: 12827052 DOI: 10.1097/00003226-200307000-00012] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE To identify and localize candidate connexin family members in adult rat cornea that may be important in coordinating corneal cell biology. METHODS To identify candidate connexin family members in adult rat cornea, a RT-PCR-based screening approach was initially adopted. Fourteen pairs of connexin isoform-specific primers were used to amplify connexin transcripts from two populations of RNA isolated from either the central cornea or the whole cornea. Immunohistochemistry and confocal microscopy were then used to confirm the presence and localization of connexins. RESULTS Eight connexin transcripts (Cxs 26, 30.3, 31, 31.1, 33, 37, 43, 50) are present in central cornea, and the peripheral cornea additionally expresses Cxs 30, 40, 45, and 46. No Cx32 or Cx36 transcripts were amplified. Immunohistochemistry revealed that Cxs 26, 30, 31.1, 37, and 43 are expressed in spatially distinct patterns within the cornea. Cx26 and Cx43 occur in basal cells of the whole corneal epithelium and between endothelial cells. Cx26 also immunolocalizes to the first layer of intermediate epithelial cells, and Cx43 antibody labels stromal keratocytes. Cx30 is expressed in the peripheral corneal epithelium and disappears toward the central cornea. Cx31.1 expression is restricted to superficial corneal epithelial cells, and Cx37 spans the intermediate corneal epithelium. CONCLUSION The spatially distinct cellular expression patterns of Cxs 26, 30, 31.1, 37, and 43 in the corneal epithelium imply that gap junctions play important roles in controlling corneal epithelial proliferation and differentiation and overall corneal maintenance.
Collapse
Affiliation(s)
- Wilda T Laux-Fenton
- Department of Anatomy with Radiology, Faculty of Mmedical and Health Sciences, University of Auckland, New Zealand
| | | | | | | |
Collapse
|
46
|
Iguchi M, Hara M, Manome H, Kobayasi H, Tagami H, Aiba S. Communication network in the follicular papilla and connective tissue sheath through gap junctions in human hair follicles. Exp Dermatol 2003; 12:283-8. [PMID: 12823442 DOI: 10.1034/j.1600-0625.2003.120308.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Epithelial-mesenchymal interactions play a crucial role in the induction of life-long cyclic transformations of hair follicles. Many studies have already demonstrated several candidates for the soluble factors secreted from the mesenchymal components of the hair follicle, i.e. the follicular papilla (FP) and connective tissue sheath (CTS), which may be responsible for hair cycling. In this paper, we focused on cell-cell contact between FP cells (FPCs), between CTS cells (CTSCs), and between FPCs and CTSCs that may allow these mesenchymal components to function as a syncytium during hair cycling. Electron microscopic examination of the FP and the CTS obtained from human scalp revealed a tri-lamellar structure of the plasma membranes, which is a characteristic of gap junctions at the cell-cell contacting area. The immunohistochemical study with anticonnexin 43 Ab using a confocal laser scanning microscope demonstrated numerous spotted positive signals scattered throughout the FP. In the CTS, spotted positive signals were arranged linearly along the basement membrane of the hair follicle. In particular, these positive spots were aggregated in the transitional region between the FP and the CTS. By Western blot analysis of total protein extracts from the cultured FPCs and neonatal human dermal fibroblasts using anticonnexin 43 antibody, a positive band corresponding to connexin 43 was detected at 43 kDa on both the FPC lane and fibroblast lane. These findings suggest that the FP and the CTS form a communicating network through gap junctions, which may play a role in controlling the dynamic structural changes of hair follicles during hair cycling.
Collapse
Affiliation(s)
- Makiko Iguchi
- Department of Dermatology, Tohoku University School of Medicine, Sendai, Japan
| | | | | | | | | | | |
Collapse
|
47
|
Matic M, Simon M. Label-retaining cells (presumptive stem cells) of mice vibrissae do not express gap junction protein connexin 43. J Investig Dermatol Symp Proc 2003; 8:91-5. [PMID: 12895002 DOI: 10.1046/j.1523-1747.2003.12179.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We investigated whether connexin 43, a gap junction protein present in human epidermis and mouse hair follicle, can serve as a negative marker for keratinocyte stem cells. Experiments carried out in mouse pelage and vibrissae hair follicles demonstrated that most of the slowly cycling cells, detected as label-retaining cells, do not express connexin 43. In humans, cells with immunohistochemically undetectable levels of connexin 43 are found in the epidermal basal layer of neonatal foreskin, and in the follicular bulge region. About 10% of the basal keratinocytes are connexin 43 negative, as determined by flow cytometry. These cells are uniformly small and low in granularity suggesting that presumptive keratinocyte stem cells can be identified and separated based on connexin 43 expression.
Collapse
Affiliation(s)
- Maja Matic
- Department of Oral Biology and Pathology, Health Science Center, SUNY at Stony Brook, NY 11794, USA.
| | | |
Collapse
|
48
|
Arita K, Akiyama M, Tsuji Y, McMillan JR, Eady RAJ, Shimizu H. Changes in gap junction distribution and connexin expression pattern during human fetal skin development. J Histochem Cytochem 2002; 50:1493-500. [PMID: 12417615 DOI: 10.1177/002215540205001109] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Gap junctions are intercellular channels composed of connexin subunits that mediate cell-cell communication. The functions of gap junctions are believed to be associated with cell proliferation and differentiation and to be important in maintaining tissue homeostasis. We therefore investigated the expression of connexins (Cx)26 and 43, the two major connexins in human epidermis, and examined the formation of gap junctions during human fetal epidermal development. By immunofluorescence, Cx26 expression was observed between 49 and 96 days' estimated gestational age (EGA) but was not present from 108 days' EGA onwards. Conversely, Cx43 expression was observed from 88 days' EGA onwards. Using electron microscopy, the typical structure of gap junctions was observed from 120 days' EGA. The number of gap junctions increased over time and they were more common in the upper layers, within the periderm and intermediate keratinocyte layers rather than the basal layer. Immunoelectron microscopy revealed Cx43 labeling on the gap junction structures after 105 days' EGA. Formation of gap junctions increased as skin developed, suggesting that gap junctions may play an important role in fetal skin development. Furthermore, the changing patterns of connexin expression suggest that Cx26 is important for early fetal epidermal development.
Collapse
Affiliation(s)
- Ken Arita
- Department of Dermatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan.
| | | | | | | | | | | |
Collapse
|
49
|
Kołcz J, Rajwa B, Drukała J, Dobrucki J, Korohoda W, Malec E. Three-dimensional visualization of connexin 43 on the human cardiomyocytes. Appl Immunohistochem Mol Morphol 2002; 10:247-52. [PMID: 12373152 DOI: 10.1097/00129039-200209000-00011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Gap junctions created by a family of connexin proteins play an important role in the development of human heart. It has been previously shown that the abnormalities of right ventricular outflow tract are related to an altered level of expression of connexin 43. The right ventricular outflow tract narrowing, stenosis, or atresia of the main pulmonary artery and hypertrophy of the right ventricle are observed in tetralogy of Fallot. The aim of the current study was to determine the distribution of connexin 43 on the surface of human cardiomyocytes obtained during reparative surgery for tetralogy of Fallot. Connexin 43 distribution in these cells was compared with distribution of connexin 43 in cardiomyocytes obtained from patients without right ventricular outflow tract pathology. Cardiomyocytes isolated from tissue biopsy were cultured on collagen substratum, fixed with paraformaldehyde, and incubated with goat antihuman connexin 43 antibodies and secondary donkey antigoat antibodies conjugated with fluorescent indocarbocyanine. Z-series of optical sections were recorded using a laser scanning confocal microscope. Three-dimensional data stacks were visualized using volume-rendering techniques. Images of connexin 43 fluorescence revealed a pattern of three-dimensional distribution of connexin on the surface of an individual cardiomyocyte. Cardiomyocytes from tetralogy of Fallot and hearts with normal right ventricular outflow tract differ in the organization of connexin 43. Cardiomyocytes from tetralogy of Fallot hearts revealed disturbed distribution of connexin 43. The protein is located irregularly on the entire surface of the cell. In the controls, connexin 43 can be visualized within the intercalated disks only. These disturbances may influence heart maturation, cause hypertrophy of the right ventricle, and induce severe arrhythmias in children with tetralogy of Fallot.
Collapse
Affiliation(s)
- Jacek Kołcz
- Department of Pediatric Cardiac Surgery, Polish-American Children's Hospital, Collegium Medicum, Jagiellonian University, Cracow, Poland
| | | | | | | | | | | |
Collapse
|
50
|
Habermann H, Ray V, Habermann W, Prins GS. Alterations in gap junction protein expression in human benign prostatic hyperplasia and prostate cancer. J Urol 2002; 167:655-60. [PMID: 11792947 DOI: 10.1097/00005392-200202000-00057] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE Gap junctions composed of connexin proteins have an essential role in intercellular communication and differentiation. Dysregulation of connexin expression is believed to have a role in carcinogenesis. The human prostate has been reported to express connexin 32 and 43. However, the expression pattern in prostate cancer is controversial, while to our knowledge connexin expression has not been reported in benign prostatic hyperplasia (BPH). To understand the potential involvement in prostate disease connexin 32 and 43 expression was evaluated in a series of normal prostate, BPH and prostate cancer specimens that were surgically removed due to bladder outlet obstruction. MATERIALS AND METHODS Frozen sections of 23 normal, 43 BPH and 40 cancer involved prostates were evaluated for the presence, staining intensity and pattern of connexin 32 and 43 by immunocytochemical testing. RESULTS In all specimens examined connexin 43 stain was punctate along the borders of the basal epithelial cells, whereas connexin 32 immunolocalized to luminal epithelial cells. In normal prostate connexin 43 and 32 were present in 87% and 65% of specimens, respectively, at low to moderate stain intensity. Importantly none of the normal samples were negative foreach connexin. In BPH specimens there was a marked increase in the incidence and intensity of connexin 43 and 32 immunostaining within epithelial cells. In addition, 23% of BPH samples showed strong connexin 43 expression in stromal cells. In contrast, connexin was decreased in prostate cancer specimens, of which 65% and 38% were negative for connexin 43 and 32, respectively, and 28% were negative for each type. In poorly differentiated tumors connexin 43 and 32 were present in only 10% and 40% of tumors, respectively, at low immunostaining intensity. CONCLUSIONS In normal human prostate basal cells communicate via connexin 43 gap junctions, whereas luminal cells communicate via connexin 32 gap junctions. In BPH gap junctional intercellular communication is increased in epithelial and stromal cells, which may have a role in BPH pathogenesis. In prostate cancer gap junctional intercellular communication is decreased, is as indicated by decreased expression of connexin 43 and 32 with severe loss in poorly differentiated prostate cancer. These alterations in connexin expression may have a role in dedifferentiation and tumor progression.
Collapse
|