1
|
Lewandowski JP, Pursell TA, Rabinowitz AH, Vokes SA. Manipulating gene expression and signaling activity in cultured mouse limb bud cells. Dev Dyn 2014; 243:928-36. [PMID: 24633820 DOI: 10.1002/dvdy.24128] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Revised: 03/11/2014] [Accepted: 03/11/2014] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND The vertebrate limb bud is a well-established system for studying the mechanisms driving growth and patterning of an embryonic tissue. However, approaches for manipulating gene expression are currently limited to time-consuming methods. Culturing primary limb bud cells could potentially be used as a quicker assay. However, limb cells in culture quickly differentiate into cartilage under normal conditions, and approaches delivering DNA and siRNA into primary limb cells in culture are limited. These technical limitations have restricted the utility of limb buds for investigating problems that require higher-throughput approaches. RESULTS In this report, we describe adaptations to a method for culturing primary limb bud cells in a pre-chondrogenic state, and generate a population of mouse primary limb cells that are responsive to Hedgehog (Hh) signaling. Hh-stimulated cells upregulate Hh target genes as well as an exogenous Hh-responsive reporter. We then describe a method for highly efficient delivery of plasmids and siRNAs into cultured primary limb bud cells in a 96-well format. CONCLUSIONS Cultures of primary limb bud cells are amenable to gene manipulation under conditions that maintain the limb cells in an Hh-responsive, undifferentiated state. This approach provides a medium-throughput system to manipulate gene expression, and test DNA regulatory elements.
Collapse
Affiliation(s)
- Jordan P Lewandowski
- Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas
| | | | | | | |
Collapse
|
2
|
Stefanov EK, Ferrage JM, Parchim NF, Lee CE, Reginelli AD, Taché M, Anderson RA. Modification of the zone of polarizing activity signal by trypsin. Dev Growth Differ 2009; 51:123-33. [PMID: 19207183 DOI: 10.1111/j.1440-169x.2009.01089.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Patterning of the developing vertebrate limb along the anterior-posterior axis is controlled by the zone of polarizing activity (ZPA) via the expression of Sonic hedgehog (Shh) and along the proximal-distal axis by the apical ectodermal ridge (AER) through the production of fibroblast growth factors (FGFs). ZPA grafting, as well as ectopic application of SHH to the anterior chick limb bud, demonstrate that digit patterning is largely influenced by these secreted factors. Although signal transduction pathways have been well characterized for SHH and for FGFs, little is known of how these signals are regulated extracellularly in the limb. The present study shows that alteration of the extracellular environment through trypsin treatment can have profound effects on digit patterning. These effects appear to be mediated by the induction of Shh in host tissues and by ectopic AER formation, implicating the extracellular matrix in regulating the signaling activities of key patterning genes in the limb.
Collapse
Affiliation(s)
- Emily K Stefanov
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | | | | | | | | | | | | |
Collapse
|
3
|
Martinez-Ceballos E, Burdsal CA. Differential expression of chicken CYP26 in anterior versus posterior limb bud in response to retinoic acid. THE JOURNAL OF EXPERIMENTAL ZOOLOGY 2001; 290:136-47. [PMID: 11471143 DOI: 10.1002/jez.1043] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Multiple studies indicate that quantitative control of the levels of all-trans-retinoic acid (RA) in the vertebrate embryo is necessary for correct development. The function of RA in cells is regulated by a number of coordinated mechanisms. One of those mechanisms involves controls on the rate of RA catabolism. Recently, enzymes capable of catabolizing RA were found to constitute a new family, called CYP26, within the cytochrome P450 superfamily. CYP26 homologues have been isolated from human, mouse, zebra fish, and recently from the chick. In this study, we examined the regulation of chicken CYP26 (cCYP26) expression by RA during the early phase of chick limb outgrowth. In the anterior limb mesenchyme and apical ectodermal ridge (AER), cCYP26 expression was induced in a concentration dependent manner by implanting beads soaked in 0.1, 1, and 5 mg/ml RA. The RA-induced expression of cCYP26 in anterior limb mesenchyme and the AER was detected as early as 1 hr after treatment and was not affected by the presence of cycloheximide. In contrast to the anterior limb, the induction of cCYP26 was dramatically reduced (or absent) when RA beads were implanted in the posterior limb mesenchyme. Furthermore, induction of cCYP26 expression in the anterior mesenchyme was inhibited by transplantations of the zone of polarizing activity (ZPA) and by Shh-soaked beads. Our data suggest that different mechanisms regulate retinoid homeostasis in the AER and mesenchyme during limb bud outgrowth. J. Exp. Zool. 290:136-147, 2001.
Collapse
Affiliation(s)
- E Martinez-Ceballos
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA 70118, USA
| | | |
Collapse
|
4
|
Akiba E, Yonei-Tamura S, Yajima H, Omi M, Tanaka M, Sato-Maeda M, Tamura K, Ide H. Fibroblast growth factor-induced gene expression and cartilage pattern formation in chick limb bud recombinants. Dev Growth Differ 2001; 43:165-75. [PMID: 11284966 DOI: 10.1046/j.1440-169x.2001.00561.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
To clarify the roles of fibroblast growth factors (FGF) in limb cartilage pattern formation, the effects of various FGF on recombinant limbs that were composed of dissociated and reaggregated mesoderm and ectodermal jackets were examined. Fibroblast growth factor-soaked beads were inserted just under the apical ectodermal ridge (AER) of recombinant limbs and the recombinant limbs were grafted and allowed to develop. Control recombinant limbs without FGF beads formed one or two cartilage elements. Recombinants with FGF-4 beads formed up to five cartilage elements, which were aligned along the anteroposterior (AP) axis. Each cartilage element showed digit-like segmentation. In contrast, recombinants with FGF-2 beads showed formation of multiple thick and unsegmented cartilage rods, which elongated inside and outside the AP plane from the distal end of the recombinants. Recombinants with FGF-8 beads formed a truncated cartilage pattern and recombinants with FGF-10 beads formed a cartilage pattern similar to that of the control recombinants. The expression of the Fgf-8, Msx-1 and Hoxa-13 genes in the developing recombinant limbs were examined. FGF-4 induced extension of the length of the Fgf-8-positive epidermis, or AER, along the AP axis 5 days after grafting, at which time the digits are specified. FGF-2 induced expansion of the Msx-1-positive area, first in the proximal direction and then along the dorsoventral axis. The functions of these FGF in recombinant and normal limb patterning are discussed in this paper.
Collapse
Affiliation(s)
- E Akiba
- Biological Institute, Graduate School of Science, Tohoku University, Aoba, Sendai 980-8578, Japan
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Schaller SA, Li S, Ngo-Muller V, Han MJ, Omi M, Anderson R, Muneoka K. Cell biology of limb patterning. INTERNATIONAL REVIEW OF CYTOLOGY 2001; 203:483-517. [PMID: 11131524 DOI: 10.1016/s0074-7696(01)03014-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Of vertebrate organ systems, the developing limb has been especially well characterized. Morphological studies have yielded a wealth of information describing limb outgrowth and have allowed for the identification of a multitude of important factors. In terms of the latter, key signaling pathways are known to control numerous aspects of limb development, including establishment of the early limb field, determination of limb identity, elongation of the limb bud, specification of digit pattern, and sculpting of the digits. Modification of underlying signaling pathways can thus result in dramatic alterations of the limb phenotype, accounting for many of the diverse limb patterns observed in nature. Given this, it is clear that signaling pathways regulate the highly orchestrated and tightly controlled sequence of cellular events necessary for limb outgrowth; however, exactly how molecular signals interface with the cell biology of limb development remains largely a mystery. In this review we first provide an overview of a number of the morphogenetic signaling pathways that have been identified in the developing limb and then review how a subset of these signals are known to modify cell behaviors important for limb outgrowth.
Collapse
Affiliation(s)
- S A Schaller
- Department of Cell and Molecular Biology, Tulane University, New Orleans, Lousiana 70118, USA
| | | | | | | | | | | | | |
Collapse
|
6
|
Kimura J, Sato-Maeda M, Noji S, Ide H. Synergistic effects of FGF and non-ridge ectoderm on gene expression involved in the formation of the anteroposterior axis of the chick limb bud in cell culture. Dev Growth Differ 2000; 42:219-27. [PMID: 10910128 DOI: 10.1046/j.1440-169x.2000.00512.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Skeletal patterning of the vertebrate limb is controlled by the zone of polarizing activity (ZPA), apical ectodermal ridge (AER) and dorsal ectoderm. In the present study, to understand the involvement of fibroblast growth factor (FGF) and non-ridge ectoderm in anteroposterior (AP) axis formation, gene expression in chick limb bud mesenchymal cells in culture was investigated by reverse transcription-polymerase chain reaction and in situ hybridization. It was found that Shh expression was locally maintained in the mesenchymal cells underneath and near non-ridge ectoderm in coculture with the posterior mesenchymal cells and non-ridge ectoderm in the presence of FGF-4 by in situ hybridization. In Shh-expressing anterior limb bud mesenchymal cells cultured with non-ridge ectoderm, it was also discovered that Bmp-2 was activated in the presence of FGF-2, -4 and -8, while Hoxd-13 was activated in the presence of FGF-4 and that FGF-2 had a similar effect but FGF-8 did not. This result indicates that Hoxd-13 activation by SHH depends on non-ridge ectoderm and FGF-2 or FGF-4, and that there may be a difference in the effect on AP axis formation of the limb bud between FGF-2, -4 and -8. Possible roles of these genes and signal molecules in AP pattern formation are discussed.
Collapse
Affiliation(s)
- J Kimura
- Biological Institute, Graduate School of Science, Tohoku University, Aoba, Sendai, Japan
| | | | | | | |
Collapse
|
7
|
Ngo-Muller V, Muneoka K. Influence of FGF4 on digit morphogenesis during limb development in the mouse. Dev Biol 2000; 219:224-36. [PMID: 10694418 DOI: 10.1006/dbio.2000.9612] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Much of what we currently know about digit morphogenesis during limb development is deduced from embryonic studies in the chick. In this study, we used ex utero surgical procedures to study digit morphogenesis during mouse embryogenesis. Our studies reveal some similarities; however, we have found considerable differences in how the chick and the mouse autopods respond to experimentation. First, we are not able to induce ectopic digit formation from interdigital cells as a result of wounding or TGFbeta-1 application in the mouse, in contrast to what is observed in the chick. Second, FGF4, which inhibits the formation of ectopic digits in the chick, induces a digit bifurcation response in the mouse. We demonstrate with cell marking studies that this bifurcation response results from a reorganization of the prechondrogenic tip of the digit rudiment. The FGF4 effect on digit morphogenesis correlates with changes in the expression of a number of genes, including Msx1, Igf2, and the posterior members of the HoxD cluster. In addition, the bifurcation response is digit-specific, being restricted to digit IV. We propose that FGF4 is an endogenous signal essential for skeletal branching morphogenesis in the mouse. This work stresses the existence of major differences between the chick and the mouse in how digit morphogenesis is regulated and is thus consistent with the view that vertebrate digit evolution is a relatively recent event. Finally, we discuss the relationship between the digit IV bifurcation restriction and the placement of the metapterygial axis in the evolution of the tetrapod limb.
Collapse
Affiliation(s)
- V Ngo-Muller
- Department of Cell and Molecular Biology, Tulane University, New Orleans, Louisiana, 70118, USA
| | | |
Collapse
|
8
|
Abstract
Fibroblast growth factors (FGFs) mediate multiple developmental signals in vertebrates. Several of these factors are expressed in limb bud structures that direct patterning of the limb. FGF4 is produced in the apical ectodermal ridge (AER) where it is hypothesized to provide mitogenic and morphogenic signals to the underlying mesenchyme that regulate normal limb development. Mutation of this gene in the germline of mice results in early embryonic lethality, preventing subsequent evaluation of Fgf4 function in the AER. A conditional mutant of Fgf4, based on site-specific Cre/loxP-mediated excision of the gene, allowed us to bypass embryonic lethality and directly test the role of FGF4 during limb development in living murine embryos. This conditional mutation was designed so that concomitant with inactivation of the Fgf4 gene by excision of all Fgf4-coding sequences, a reporter gene was activated in Fgf4-expressing cells, allowing assessment of the site-specific recombination reaction. Although a large body of evidence led us to predict that ablation of Fgf4 gene function in the AER of developing mice would result in abnormal limb outgrowth and patterning, we found that Fgf4 conditional mutants had normal limbs. Furthermore, expression patterns of Shh, Bmp2, Fgf8 and Fgf10 were normal in the limb buds of the conditional mutants. These findings indicate that the previously proposed FGF4-SHH feedback loop is not essential for coordination of murine limb outgrowth and patterning. We suggest that some of the roles currently attributed to FGF4 during early vertebrate limb development may be performed by other AER factors in vivo.
Collapse
Affiliation(s)
- A M Moon
- Howard Hughes Medical Institute, Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | | | | |
Collapse
|
9
|
Abstract
Experiments have been carried out to investigate the role of the apical ectodermal ridge (AER) and FGF-4 on the control of cell migration during limb bud morphogenesis. By coupling DiI cell labeling with ectopic implantation of FGF-4 microcarrier beads we have found that FGF-4 acts as a potent and specific chemoattractive agent for mesenchymal cells of the limb bud. The response to FGF-4 is dose dependent in both the number of cells stimulated to migrate and the distance migrated. The cell migration response to FGF-4 appears to be independent of the known inductive activity of FGF-4 on Shh gene expression. We investigated the role of the AER in controlling cell migration by characterizing the migration pattern of DiI-labeled subapical cells during normal limb outgrowth and following partial AER removal. Subapical cells within 75 micrometer of the AER migrate to make contact with the AER and are found intermingled with nonlabeled cells. Thus, the progress zone is dynamic with cells constantly altering their neighbor relationships during limb outgrowth. AER removal studies show that cell migration is AER dependent and that subapical cells redirect their path of migration toward a functional AER. These studies indicate that the AER has a chemoattractive function and regulates patterns of cell migration during limb outgrowth. Our results suggest that the chemoattractive activity of the AER is mediated in part by the production of FGF-4.
Collapse
Affiliation(s)
- S Li
- Department of Cell and Molecular Biology, Tulane University, New Orleans, Louisiana, 70118, USA
| | | |
Collapse
|
10
|
Abstract
The anteroposterior axis of the vertebrate limb bud is determined by signals from the zone of polarizing activity (ZPA). Sonic hedgehog (Shh) is expressed in the posterior mesoderm, which corresponds closely to ZPA activity. Moreover, Bmp-2 and HoxD genes are expressed in the broader posterior mesoderm, and it is thought that the ZPA signaling pathway consists of these gene products. Limb outgrowth and patterning, including expression of these genes, depend on the apical ectodermal ridge (AER). Fibroblast growth factors (FGF) have been identified as candidates for signal molecules from the AER. To further understand the ZPA signaling pathway and the participation of FGF, expressions of these genes were examined by reverse transcription-polymerase chain reaction in chick limb bud cells cultured with FGF-4. The present results indicate that FGF-4 cannot maintain Shh expression but can maintain Hoxd-13 expression in cultured posterior cells; moreover, Bmp-2 is expressed independently of FGF-4. These results suggest that Bmp-2 and Hoxd-13 expressions do not require a continuous expression of Shh. Further, it was demonstrated that posterior cells cultured with FGF-4 recovered Shh expression when grafted to the limb bud, indicating that FGF-4 maintains not Shh expression itself but competence of Shh expression.
Collapse
Affiliation(s)
- J Kimura
- Biological Institute, Graduate School of Science, Tohoku University, Aoba, Sendai, Japan
| | | |
Collapse
|
11
|
Hara K, Ide H. Msx1 expressing mesoderm is important for the apical ectodermal ridge (AER)-signal transfer in chick limb development. Dev Growth Differ 1997; 39:705-14. [PMID: 9493830 DOI: 10.1046/j.1440-169x.1997.t01-5-00006.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The apical ectodermal ridge (AER) is a specialized thickening of the distal limb ectoderm, and its signals are known to support limb morphogenesis. The expression of a homeobox gene, Msx1, in the distal limb mesoderm depends on signals from the AER. In the present paper it is reported that Msx1 expression in the distal mesoderm is necessary for the transfer of AER signals in chick limb buds. Interruption of AER-mesoderm interaction by insertion of a thick filter led to the inhibition of pattern specification in the mesoderm just under the filter. In such cases, the expression of Msx1 disappeared in the mesoderm under the filter, suggesting that AER is able to signal over short ranges. In advanced limb buds, Msx1 is also expressed in the proximal mesoderm under the anterior ectoderm. However, it was found that a grafted antero-proximal mesoderm shows no inhibitory effects on pattern specification of the host mesoderm, as is the case with the distal mesoderm. On the other hand, grafted mesoderms without potent Msx1 re-expression, even underneath AER, disturbed normal limb development. In such cases, the expression of Msx1 disappeared in the mesoderm under the grafts, whereas Fgf-8 expression was maintained in the AER above the graft. These results indicate that the expression of Msx1 in the mesoderm is important for the transfer of AER signals.
Collapse
Affiliation(s)
- K Hara
- Biological Institute, Graduate School of Science, Tohoku University, Aoba, Sendai, Japan
| | | |
Collapse
|
12
|
Makarenkova H, Becker DL, Tickle C, Warner AE. Fibroblast growth factor 4 directs gap junction expression in the mesenchyme of the vertebrate limb Bud. J Cell Biol 1997; 138:1125-37. [PMID: 9281589 PMCID: PMC2136758 DOI: 10.1083/jcb.138.5.1125] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/1996] [Revised: 06/27/1997] [Indexed: 02/05/2023] Open
Abstract
Pattern in the developing limb depends on signaling by polarizing region mesenchyme cells, which are located at the posterior margin of the bud tip. Here we address the underlying cellular mechanisms. We show in the intact bud that connexin 43 (Cx43) and Cx32 gap junctions are at higher density between distal posterior mesenchyme cells at the tip of the bud than between either distal anterior or proximal mesenchyme cells. These gradients disappear when the apical ectodermal ridge (AER) is removed. Fibroblast growth factor 4 (FGF4) produced by posterior AER cells controls signaling by polarizing cells. We find that FGF4 doubles gap junction density and substantially improves functional coupling between cultured posterior mesenchyme cells. FGF4 has no effect on cultured anterior mesenchyme, suggesting that any effects of FGF4 on responding anterior mesenchyme cells are not mediated by a change in gap junction density or functional communication through gap junctions. In condensing mesenchyme cells, connexin expression is not affected by FGF4. We show that posterior mesenchyme cells maintained in FGF4 under conditions that increase functional coupling maintain polarizing activity at in vivo levels. Without FGF4, polarizing activity is reduced and the signaling mechanism changes. We conclude that FGF4 regulation of cell-cell communication and polarizing signaling are intimately connected.
Collapse
Affiliation(s)
- H Makarenkova
- Department of Anatomy and Developmental Biology, University College London, London WC1E 6BT, United Kingdom
| | | | | | | |
Collapse
|
13
|
Dealy CN, Seghatoleslami MR, Ferrari D, Kosher RA. FGF-stimulated outgrowth and proliferation of limb mesoderm is dependent on syndecan-3. Dev Biol 1997; 184:343-50. [PMID: 9133440 DOI: 10.1006/dbio.1997.8525] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The outgrowth of the mesoderm of the developing limb bud in response to the apical ectodermal ridge (AER) is mediated at least in part by members of the FGF family. Recent studies have indicated that FGFs need to interact with heparan sulfate proteoglycans in order to bind to and activate their specific cell surface receptors. Syndecan-3 is an integral membrane heparan sulfate proteoglycan that is highly expressed by the distal mesodermal cells of the chick limb bud that are undergoing proliferation and outgrowth in response to the AER. Here we report that maintenance of high-level syndecan-3 expression by the subridge mesoderm of the chick limb bud is directly or indirectly dependent on the AER, since its expression is severely impaired in the distal mesoderm of the limb buds of limbless and wingless mutant embryos which lack functional AERs capable of directing the outgrowth of limb mesoderm. We have also found that exogenous FGF-2 maintains a domain of high-level syndecan-3 expression in the outgrowing mesodermal cells of explants of the posterior mesoderm of normal limb buds cultured in the absence of the AER and in the outgrowing subapical mesoderm of explants of limbless mutant limb buds which lack a functional AER. These results suggest that the domain of high-level syndecan-3 expression in the subridge mesoderm of normal limb buds is maintained by FGFs produced by the AER. Finally, we report that polyclonal antibodies against a syndecan-3 fusion protein inhibit the ability of FGF-2 to promote the proliferation and outgrowth of the posterior subridge mesoderm of limb buds cultured in the absence of the AER. These results suggest that syndecan-3 plays an essential role in limb outgrowth by mediating the interaction of FGFs produced by the AER with the underlying mesoderm of the limb bud.
Collapse
Affiliation(s)
- C N Dealy
- Department of Anatomy, University of Connecticut Health Center, Farmington 06030, USA
| | | | | | | |
Collapse
|
14
|
Abstract
It is well known that the apical ectodermal ridge (AER) and the zone of polarizing activity (ZPA) play a major role in growth and patterning of the limb. But a mechanism underlying species-specific growth of the limb has not yet been fully elucidated. To investigate the role of AER and ZPA in limb size control, we constructed quail-chick limb chimeras. When we grafted a whole forelimb bud from one species to another, the size of the developed grafted limb was comparable to the limb of the donor species. Moreover, we demonstrated that neither the interspecific substitution of the posterior half region of the limb bud containing the ZPA nor the exchange of the ectodermal component of the limb involving the AER could alter the species-specific size of the limb. These results indicate that the factors affecting the size of the limb are already involved in the mesodermal component of the limb bud at stage 20 of chick embryo. Thus, the mesoderm dictates limb specificity including size.
Collapse
Affiliation(s)
- H Ohki-Hamazaki
- Division of Basic Human Sciences, School of Human Sciences, Waseda University, Saitama, Japan
| | | | | | | | | |
Collapse
|
15
|
Kostakopoulou K, Vogel A, Brickell P, Tickle C. 'Regeneration' of wing bud stumps of chick embryos and reactivation of Msx-1 and Shh expression in response to FGF-4 and ridge signals. Mech Dev 1996; 55:119-31. [PMID: 8861093 DOI: 10.1016/0925-4773(95)00492-0] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
We examined systematically the ability of chick limb bud stumps to regenerate distal structures when fibroblast growth factor (FGF)-4 is applied. When amputations were made within 600 mu m of the tip and FGF-4 applied either posteriorly or both apically and posteriorly, outgrowth of stump tissues occurred and a virtually complete skeleton developed. 'Regeneration' of distal structures was correlated with reactivation of Msx-1 and Shh expression. At proximal amputation levels where FGF-4 did not lead to 'regeneration', neither Msx-1 nor Shh expression was induced. We also grafted cells from progressively more proximal levels of mouse limb buds to chick wing bud tips beneath the apical ridge and the pattern of reactivation of Msx-1 expression along the proximal distal axis of the limb buds was similar to that found in chick limb buds.
Collapse
Affiliation(s)
- K Kostakopoulou
- Department of Anatomy and Developmental Biology, University College, London, UK
| | | | | | | |
Collapse
|
16
|
Dealy CN, Kosher RA. IGF-I, insulin and FGFs induce outgrowth of the limb buds of amelic mutant chick embryos. Development 1996; 122:1323-30. [PMID: 8620859 DOI: 10.1242/dev.122.4.1323] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
IGF-I, insulin, FGF-2 and FGF-4 have been implicated in the reciprocal interactions between the apical ectodermal ridge (AER) and underlying mesoderm required for outgrowth and patterning of the developing limb. To study further the roles of these growth factors in limb outgrowth, we have examined their effects on the in vitro morphogenesis of limb buds of the amelic mutant chick embryos wingless (wl) and limbless (ll). Limb buds of wl and ll mutant embryos form at the proper time in development, but fail to undergo further outgrowth and subsequently degenerate. Wl and ll limb buds lack thickened AERs capable of promoting limb outgrowth, and their thin apical ectoderms fail to express the homeobox-containing gene Msx-2, which is highly expressed by normal AERs and has been implicated in regulating AER activity. Here we report that exogenous IGF-I and insulin, and, to a lesser extent, FGF-2 and FGF-4 induce the proliferation and directed outgrowth of explanted wl and ll mutant limb buds, which in vitro, like in vivo, normally fail to undergo outgrowth and degenerate. IGF-I and insulin, but not FGFs, also cause the thin apical ectoderms of wl and ll limb buds to thicken and form structures that grossly resemble normal AERs and, moreover, induce high level expression of Msx-2 in these thickened AER-like structures. Neither IGF-I, insulin nor FGFs induce expression of the homeobox-containing gene Msx-1 in the subapical mesoderm of wl or ll limb buds, although FGFs, but not IGF-I or insulin, maintain Msx-1 expression in normal (non-mutant) limb bud explants lacking an AER. The implications of these results to the relationships among the wl and ll genes, IGF-I/insulin, FGFs, Msx-2 and Msx-1 in the regulation of limb outgrowth is discussed.
Collapse
Affiliation(s)
- C N Dealy
- Department of Anatomy, University of Connecticut Health Center, Farmington, 06030, USA
| | | |
Collapse
|
17
|
PDGF and FGF receptors in health and disease. ACTA ACUST UNITED AC 1996. [DOI: 10.1016/s1874-5687(96)80009-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
18
|
Abstract
Implantation of beads soaked in fibroblast growth factor into the flank of a chick embryo causes extra limbs to be formed, suggesting that FGF is important in initiating limb buds.
Collapse
Affiliation(s)
- E M Tanaka
- Ludwig Institute for Cancer Research, London, UK
| | | |
Collapse
|
19
|
Francis-West PH, Robertson KE, Ede DA, Rodriguez C, Izpisúa-Belmonte JC, Houston B, Burt DW, Gribbin C, Brickell PM, Tickle C. Expression of genes encoding bone morphogenetic proteins and sonic hedgehog in talpid (ta3) limb buds: their relationships in the signalling cascade involved in limb patterning. Dev Dyn 1995; 203:187-97. [PMID: 7655081 DOI: 10.1002/aja.1002030207] [Citation(s) in RCA: 100] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The chicken mutant talpid3 (ta3) has polydactylous limbs with up to 7-8 morphologically similar digits. This lack of antero-posterior polarity in digit pattern is correlated with symmetrical expression of genes of the HoxD complex. We determined the distribution of polarizing activity in limb buds of the chick mutant ta3 by assessing the ability of mesenchyme from various positions along the antero-posterior axis to induce digit duplications when grafted anteriorly into a normal limb. Cells with highest polarizing activity were found at the posterior margin of the wing as in the polarizing region of normal limb buds. However, in contrast to normal limb buds, ta3 anterior mesenchyme also had low polarizing activity. Application of retinoic acid or a polarizing region graft to the anterior of ta3 limb buds changed digit morphology but did not induce digit duplications or digits with any characteristic a-p pattern. To determine which genes are associated with polarizing activity and which are associated with patterning of the digits, we examined expression of the genes Sonic hedgehog (shh), Bmp-2, and Bmp-7, whose expression is normally confined to the posterior margin of the early wing bud and is associated with the polarizing region. In addition, we determined the distribution of Fgf-4 transcripts which in normal limb buds are restricted to the posterior part of the apical ectodermal ridge. In ta3 limb buds, shh expression is restricted to the posterior limb mesenchyme, which has high polarizing activity, but is not expressed in regions which have low polarizing activity. In contrast, Bmp-2 and Bmp-7 are expressed uniformly along the a-p axis. Fgf-4 transcripts are present throughout the apical ectodermal ridge in ta3 limb buds. In the ta3 mutant, there is both an abnormal distribution of signalling activity and response to polarizing signals. In addition, the dissociation between the expression of shh and Bmps suggests distinct roles for the encoded molecules in signalling and response in a-p patterning of limb buds.
Collapse
Affiliation(s)
- P H Francis-West
- Department of Anatomy and Developmental Biology, University College of London, United Kingdom
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Savage MP, Fallon JF. FGF-2 mRNA and its antisense message are expressed in a developmentally specific manner in the chick limb bud and mesonephros. Dev Dyn 1995; 202:343-53. [PMID: 7626791 DOI: 10.1002/aja.1002020404] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
FGF-2 protein is present in the ectoderm and mesoderm of the developing chick limb bud. Its importance has been shown by the ability of ectopically applied FGF-2 to replace the apical ectodermal ridge, allowing complete outgrowth and subsequent pattern formation of the limb bud. The first goal of this study was to determine whether FGF-2 mRNA was present in the same ectodermal and mesodermal regions of the chick embryo as FGF-2 protein. FGF-2 also has an antisense message that is convergently transcribed from the opposite DNA strand (Kimelman and Kirschner [1989] Cell 59:687-696; Volk et al. [1989] EMBO J. 8:2983-2988). The second goal was to demonstrate the expression and distribution of the antisense message. Using RNAse protection assays we detected a full length protected fragment that corresponds to chick embryo FGF-2 mRNA, and a partially protected fragment that corresponds to the antisense message. We used in situ hybridization to show that FGF-2 mRNA was present in the ectoderm and subjacent mesoderm of the chick wing bud. FGF-2 mRNA was also present in body ectoderm and undifferentiated mesoderm throughout the embryo, and in muscle cells, dorsal neural tube, and mesonephros. In situ hybridization also revealed evidence for the presence of the natural antisense message in the embryo in most, but not all, of the same regions as the FGF-2 mRNA. FGF-2 mRNA and its antisense message colocalized in undifferentiated limb mesoderm; however, antisense message was not detected in differentiated muscle or cartilage. It is important to note that FGF-2 mRNA was always present in the mesonephros but that the antisense message was never observed in the mesonephros, thereby providing an internal control for non-specific signal. Although little is known about its function, Kimelman and Kirschner ([1989] Cell 59: 687-696) proposed that the antisense message may increase turnover of FGF-2 mRNA. When we compared the in situ hybridization data of both mRNAs with levels of FGF-2 protein (Savage et al. [1994] Dev. Dyn. 198:159-170), interesting tissue specific patterns emerged that support this hypothesis.
Collapse
Affiliation(s)
- M P Savage
- Anatomy Department, University of Wisconsin Medical School, Madison 53706, USA
| | | |
Collapse
|
21
|
Yang Y, Niswander L. Interaction between the signaling molecules WNT7a and SHH during vertebrate limb development: dorsal signals regulate anteroposterior patterning. Cell 1995; 80:939-47. [PMID: 7697724 DOI: 10.1016/0092-8674(95)90297-x] [Citation(s) in RCA: 257] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Growth and patterning of the vertebrate limb are controlled by the ridge, posterior mesenchyme, and non-ridge ectoderm. Fibroblast growth factor 4 (FGF4) and Sonic hedgehog (SHH) can mediate signaling from the ridge and posterior mesenchyme, respectively. Here we show that dorsal ectoderm is required together with FGF4 to maintain Shh expression. Removal of dorsal ectoderm results in loss of posterior skeletal elements, which can be rescued by exogenous SHH. Wnt7a, which is expressed in dorsal ectoderm, provides the signal required for Shh expression and formation of posterior structures. These results provide evidence that all three axes (dorsoventral, proximodistal, and anteroposterior) are intimately linked by the respective signals WNT7a, FGF4, and SHH during limb out-growth and patterning.
Collapse
Affiliation(s)
- Y Yang
- Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York 10021
| | | |
Collapse
|
22
|
Parr BA, McMahon AP. Dorsalizing signal Wnt-7a required for normal polarity of D-V and A-P axes of mouse limb. Nature 1995; 374:350-3. [PMID: 7885472 DOI: 10.1038/374350a0] [Citation(s) in RCA: 583] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Formation of the vertebrate limb requires specification of cell position along three axes. Proximal-distal identity is regulated by the apical ectodermal ridge (AER) at the distal tip of the growing limb. Anterior-posterior identity is controlled by signals from the zone of polarizing activity (ZPA) within the posterior limb mesenchyme. Dorsal-ventral identity is regulated by ectodermally derived signals. Recent studies have begun to identify signalling molecules that may mediate these patterning activities. Members of the fibroblast growth factor (FGF) family are expressed in the AER and can mimic its proximal-distal signalling activity. Similarly, the gene Sonic hedgehog (Shh) is expressed in the ZPA, and Shh-expressing cells, like ZPA cells, can cause digit duplications when transplanted to the anterior limb margin. In contrast, no signal has yet been identified for the dorsal-ventral axis, although Wnt-7a is expressed in the dorsal ectoderm, suggesting that it may play such a role. To test this possibility, we have generated mice lacking Wnt-7a activity. The limb mesoderm of these mice shows dorsal-to-ventral transformations of cell fate, indicating that Wnt-7a is a dorsalizing signal. Many mutant mice also lack posterior digits, demonstrating that Wnt-7a is also required for anterior-posterior patterning. We propose that normal limb development requires interactions between the signalling systems for these two axes.
Collapse
Affiliation(s)
- B A Parr
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts 02138
| | | |
Collapse
|
23
|
Wilkie AO, Slaney SF, Oldridge M, Poole MD, Ashworth GJ, Hockley AD, Hayward RD, David DJ, Pulleyn LJ, Rutland P. Apert syndrome results from localized mutations of FGFR2 and is allelic with Crouzon syndrome. Nat Genet 1995; 9:165-72. [PMID: 7719344 DOI: 10.1038/ng0295-165] [Citation(s) in RCA: 606] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Apert syndrome is a distinctive human malformation comprising craniosynostosis and severe syndactyly of the hands and feet. We have identified specific missense substitutions involving adjacent amino acids (Ser252Trp and Pro253Arg) in the linker between the second and third extracellular immunoglobulin (Ig) domains of fibroblast growth factor receptor 2 (FGFR2) in all 40 unrelated cases of Apert syndrome studied. Crouzon syndrome, characterized by craniosynostosis but normal limbs, was previously shown to result from allelic mutations of the third Ig domain of FGFR2. The contrasting effects of these mutations provide a genetic resource for dissecting the complex effects of signal transduction through FGFRs in cranial and limb morphogenesis.
Collapse
Affiliation(s)
- A O Wilkie
- Institute of Molecular Medicine, John Radcliffe Hospital, Headington, Oxford, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Dealy CN, Kosher RA. Studies on insulin-like growth factor-I and insulin in chick limb morphogenesis. Dev Dyn 1995; 202:67-79. [PMID: 7703522 DOI: 10.1002/aja.1002020107] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The apical ectodermal ridge (AER) promotes the proliferation and directed outgrowth of the subridge mesodermal cells of the developing limb bud, while suppressing their differentiation. Insulin-like growth factor-I (IGF-I) and its receptor are expressed by the subridge mesodermal cells of the chick limb bud growing out in response to the AER, and specific insulin receptors are present in the limb bud during its outgrowth. To study the possible roles of IGF-I and insulin in limb outgrowth, we have examined their effects on the morphogenesis of posterior and anterior portions of the distal tip of stage 25 embryonic chick wing buds subjected to organ culture in serum-free medium in the presence or absence of the AER and limb ectoderm. The distal mesoderm of control posterior explants lacking an AER or all limb ectoderm ceases expressing IGF-I mRNA, exhibits little or no proliferation, fails to undergo outgrowth, and rapidly differentiates. Exogenous IGF-I and insulin promote the outgrowth and proliferation and suppress the differentiation of distal mesodermal cells in posterior explants lacking an AER or limb ectoderm, thus mimicking at least to some extent the outgrowth promoting and anti-differentiative effects normally elicited on the subridge mesoderm by the AER. Furthermore, IGF-I and insulin-treated posterior explants exhibit high IGF-I mRNA expression, indicating that IGF-I and insulin maintain the expression of endogenous IGF-I by the subridge mesoderm. We have also found IGF-I and insulin can affect the morphology and activity of the AER. When the posterior portion of the wing bud tip is cultured with the AER intact in control medium, on day 4-5 the AER flattens, ceases expressing high amounts of the AER-characteristic homeobox-containing gene Msx2, and concomitantly an elongated cartilaginous element differentiates in the subridge mesoderm. In contrast, in the presence of exogenous IGF-I or insulin the AER of such explants does not flatten, continues expressing high amounts of Msx2, and the subridge mesoderm remains undifferentiated and proliferative. Thus, exogenous IGF-I and insulin maintain the thickness of the AER and sustain its expression of Msx2, while sustaining the anti-differentiative effect normally elicited on the subridge mesoderm by a thickened functional AER. Notably, we have also found that exogenous IGF-I and insulin induce the formation of a thickened ridge-like structure that expresses high amounts of Msx2 from the normally thin distal anterior ectoderm of the limb bud, while promoting dramatic outgrowth and proliferation of the anterior mesoderm, which normally undergoes little outgrowth or proliferation.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- C N Dealy
- Department of Anatomy, University of Connecticut Health Center, Farmington 06030
| | | |
Collapse
|
25
|
Laufer E, Nelson CE, Johnson RL, Morgan BA, Tabin C. Sonic hedgehog and Fgf-4 act through a signaling cascade and feedback loop to integrate growth and patterning of the developing limb bud. Cell 1994; 79:993-1003. [PMID: 8001146 DOI: 10.1016/0092-8674(94)90030-2] [Citation(s) in RCA: 671] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Proper limb growth and patterning requires signals from the zone of polarizing activity in the posterior mesoderm and from the overlying apical ectodermal ridge (AER). Sonic hedgehog and Fgf-4, respectively, have recently been identified as candidates for these signals. We have dissected the roles of these secreted proteins in early limb development by ectopically regulating their activities in a number of surgical contexts. Our results indicate that Sonic hedgehog initiates expression of secondary signaling molecules, including Bmp-2 in the mesoderm and Fgf-4 in the ectoderm. The mesoderm requires ectodermally derived competence factors, which include Fgf-4, to activate target gene expression in response to Sonic hedgehog. The expression of Sonic hedgehog and Fgf-4 is coordinately regulated by a positive feedback loop operating between the posterior mesoderm and the overlying AER. Taken together, these data provide a basis for understanding the integration of growth and patterning in the developing limb.
Collapse
Affiliation(s)
- E Laufer
- Department of Genetics Harvard Medical School, Boston, Massachusetts 02115
| | | | | | | | | |
Collapse
|
26
|
Niswander L, Jeffrey S, Martin GR, Tickle C. A positive feedback loop coordinates growth and patterning in the vertebrate limb. Nature 1994; 371:609-12. [PMID: 7935794 DOI: 10.1038/371609a0] [Citation(s) in RCA: 587] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Limb development depends on signals from the apical ectodermal ridge and underlying mesenchyme. Fibroblast growth factor (FGF) can replace the ridge and, because Fgf4 RNA is localized to the mouse posterior ridge, we proposed that FGF4 is the endogenous ridge signal. Ridge signals control limb outgrowth and maintain the zone of polarizing activity (ZPA) at the limb posterior margin, which is important in limb pattering: a ZPA graft to limb anterior mesenchyme causes cell respecification and mirror-image duplications. Sonic hedgehog (SHH) has polarizing activity, and Shh RNA co-localizes with ZPA activity, suggesting SHH is the endogenous polarizing signal. We have investigated the molecular regulation of Fgf4 and Shh expression. We report here that Fgf4 expression in the ridge can be regulated by Shh-expressing cells. Moreover, Shh expression in mesenchyme can be activated by FGF4 in combination with retinoic acid. Once induced, Shh expression can be maintained by FGF4 alone, thus establishing a positive feedback loop between ZPA and ridge.
Collapse
Affiliation(s)
- L Niswander
- Department of Anatomy, School of Medicine, University of California at San Francisco 94143-0452
| | | | | | | |
Collapse
|
27
|
Abstract
The development of the vertebrate limb requires the coordinated action of multiple signals to achieve the proper arrangement of adult tissues. Recently, several molecules have been identified which play central roles in patterning of the limb bud. Sonic hedgehog, a homolog of the Drosophila segment polarity gene hedgehog, is likely to regulate anterior/posterior pattern formation. FGF-2 and FGF-4, members of the fibroblast growth factor family, have been shown to provide important signals for limb bud outgrowth and to indirectly regulate proximal/distal patterning. Some candidate effectors of the activity of Sonic hedgehog and of FGFs are known, including members of the clustered Hox genes.
Collapse
Affiliation(s)
- R L Johnson
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02155
| | | | | |
Collapse
|
28
|
Fallon JF, López A, Ros MA, Savage MP, Olwin BB, Simandl BK. FGF-2: apical ectodermal ridge growth signal for chick limb development. Science 1994; 264:104-7. [PMID: 7908145 DOI: 10.1126/science.7908145] [Citation(s) in RCA: 384] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The apical ectodermal ridge permits growth and elongation of amniote limb buds; removal causes rapid changes in mesodermal gene expression, patterned cell death, and truncation of the limb. Ectopic fibroblast growth factor (FGF)-2 supplied to the chick apical bud mesoderm after ridge removal will sustain normal gene expression and cell viability, and allow relatively normal limb development. A bioassay for FGFs demonstrated that FGF-2 was the only detectable FGF in chick limb bud extracts. By distribution and bioactivity, FGF-2 is the prime candidate for the chick limb bud apical ridge growth signal.
Collapse
Affiliation(s)
- J F Fallon
- Anatomy Department, University of Wisconsin, Madison 53706
| | | | | | | | | | | |
Collapse
|
29
|
Basler K, Struhl G. Compartment boundaries and the control of Drosophila limb pattern by hedgehog protein. Nature 1994; 368:208-14. [PMID: 8145818 DOI: 10.1038/368208a0] [Citation(s) in RCA: 737] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Drosophila limbs are subdivided into anterior and posterior compartments which derive from adjacent cell populations founded early in development. Evidence is now provided that posterior cells organize growth and cell patterning in both compartments by secreting hedgehog protein and that hedgehog protein acts indirectly by inducing neighbouring anterior cells to secrete decapentaplegic or wingless protein.
Collapse
Affiliation(s)
- K Basler
- Zoologisches Institut, Universität Zürich, Switzerland
| | | |
Collapse
|
30
|
Roelink H, Augsburger A, Heemskerk J, Korzh V, Norlin S, Ruiz i Altaba A, Tanabe Y, Placzek M, Edlund T, Jessell TM. Floor plate and motor neuron induction by vhh-1, a vertebrate homolog of hedgehog expressed by the notochord. Cell 1994; 76:761-75. [PMID: 8124714 DOI: 10.1016/0092-8674(94)90514-2] [Citation(s) in RCA: 643] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The differentiation of distinct cell types in the ventral neural tube depends on local inductive signals from the notochord. We have isolated a vertebrate homolog of the Drosophila segment polarity gene hedgehog (hh) from zebrafish and rat, termed vhh-1. vhh-1 is expressed in the node, notochord, floor plate, and posterior limb bud mesenchyme. Each of these cell groups has floor plate inducing activity, suggesting that the vhh-1 gene may encode a floor plate-inducing molecule. Widespread expression of rat vhh-1 in frog embryos leads to ectopic floor plate differentiation in the neural tube. In vitro tests for the signaling functions of vhh-1 demonstrate that COS cells expressing the rat vhh-1 gene induce floor plate and motor neuron differentiation in neural plate explants. vhh-1 may, therefore, contribute to the floor plate and motor neuron inducing activities of the notochord.
Collapse
Affiliation(s)
- H Roelink
- Howard Hughes Medical Institute, Department of Biochemistry and Molecular Biophysics, Columbia University, New York, New York 10032
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Niswander L, Tickle C, Vogel A, Booth I, Martin GR. FGF-4 replaces the apical ectodermal ridge and directs outgrowth and patterning of the limb. Cell 1993; 75:579-87. [PMID: 8221896 DOI: 10.1016/0092-8674(93)90391-3] [Citation(s) in RCA: 548] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The apical ectodermal ridge plays a key role in limb development. We show that recombinant FGF-4 can substitute for the ridge to provide all the signals necessary for virtually complete outgrowth and patterning of the chick limb. FGF-4 stimulates proliferation of cells in the distal mesenchyme and maintains a signal from the posterior to the distal mesenchyme that appears to be required for elaboration of skeletal elements in the normal proximodistal sequence. Moreover, retinoic acid, which is capable of providing polarizing activity, can supply this signal. This suggests that polarizing activity plays a role in patterning along the proximodistal axis, in addition to its well-established role in anteroposterior patterning. Taken together, the data suggest a simple mechanism whereby FGF-4 links growth and pattern formation during limb development.
Collapse
Affiliation(s)
- L Niswander
- Department of Anatomy, School of Medicine, University of California, San Francisco 94143
| | | | | | | | | |
Collapse
|
32
|
Savage MP, Hart CE, Riley BB, Sasse J, Olwin BB, Fallon JF. Distribution of FGF-2 suggests it has a role in chick limb bud growth. Dev Dyn 1993; 198:159-70. [PMID: 8136521 DOI: 10.1002/aja.1001980302] [Citation(s) in RCA: 121] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
We developed and characterized antibodies specific for FGF-2 and used them to locate FGF-2 during chick embryo development. A series of micrographs demonstrated the progression of FGF-2 staining during development of the different tissues and organs. FGF-2 was present in the ectoderm covering the entire embryo, muscle cells, nervous system, neural crest cells, and mesonephros. FGF-2 was also present in the limb from initiation of budding through differentiation. The limb ectoderm and subjacent mesoderm showed the strongest immunostaining, with lower levels in the center of the bud. However, the distribution of FGF-2 positive cells in the mesoderm was not homogeneous. This heterogeneity was not due to cell cycle specific distribution of FGF-2 protein, as flow cytometric analysis showed that FGF-2-positive cells were distributed throughout the cell cycle. However, the amount of anti-FGF-2 fluorescence varied most during G1, consistent with the possibility that FGF-2 is low after M phase and increases during G1. A bioassay was used to demonstrate FGF-2 levels in the wing ectoderm were approximately 2.7-fold greater than in the mesoderm. We propose that the location of FGF-2 in the embryo is consistent with a role in epithelial-mesenchymal interactions; in the limb bud it may prevent differentiation and permit limb outgrowth and subsequent expression of patterning events.
Collapse
Affiliation(s)
- M P Savage
- Department of Anatomy, University of Wisconsin, Madison 53706
| | | | | | | | | | | |
Collapse
|
33
|
Vogel A, Tickle C. FGF-4 maintains polarizing activity of posterior limb bud cells in vivo and in vitro. Development 1993; 119:199-206. [PMID: 8275856 DOI: 10.1242/dev.119.1.199] [Citation(s) in RCA: 111] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The polarizing region is a major signalling tissue involved in patterning the tissues of the vertebrate limb. The polarizing region is located at the posterior margin of the limb bud and can be recognized by its ability to induce additional digits when grafted to the anterior margin of a chick limb bud. The signal from the polarizing region operates at the tip of the bud in the progress zone, a zone of undifferentiated mesenchymal cells, maintained by interactions with the apical ectodermal ridge. A number of observations have pointed to a link between the apical ectodermal ridge and signalling by the polarizing region. To test this possibility, we removed the posterior apical ectodermal ridge of chick wing buds and assayed posterior mesenchyme for polarizing activity. When the apical ectodermal ridge is removed, there is a marked decrease in polarizing activity of posterior cells. The posterior apical ectodermal ridge is known to express FGF-4 and we show that the decrease in polarizing activity of posterior cells of wing buds that normally follows ridge removal can be prevented by implanting a FGF-4-soaked bead. Furthermore, we show that both ectoderm and FGF-4 maintain polarizing activity of limb bud cells in culture.
Collapse
Affiliation(s)
- A Vogel
- Department of Anatomy and Developmental Biology, University College and Middlesex School of Medicine, London, UK
| | | |
Collapse
|
34
|
Affiliation(s)
- E D Laufer
- Department of Genetics, Harvard Medical School, 200 Longwood Avenue, Boston, Massachusetts 02115, USA
| |
Collapse
|