1
|
Montané-Romero ME, Martínez-Silva AV, Poot-Hernández AC, Escalante-Alcalde D. Plpp3, a novel regulator of pluripotency exit and endodermal differentiation of mouse embryonic stem cells. Biol Open 2023; 12:285908. [PMID: 36504260 PMCID: PMC9867895 DOI: 10.1242/bio.059665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 12/02/2022] [Indexed: 12/14/2022] Open
Abstract
In recent decades, study of the actions of bioactive lipids such as lysophosphatidic acid (LPA) and sphingosine-1-phosphate (S1P) has increased since they are involved in regulating many processes, including self-renewal of embryonic stem cells, embryo development and cancer. Phospholipid phosphatase type 3 (PLPP3) has been shown to be a key player in regulating the balance of these lipids and, in consequence, their signaling. Different lines of evidence suggest that PLPP3 could play a role in endoderm development. To approach this hypothesis, we used mouse embryonic stem cells (ESC) as a model to study Plpp3 function in self-renewal and the transition towards differentiation. We found that lack of PLPP3 mainly affects endoderm formation during differentiation of suspension-formed embryoid bodies. PLPP3-deficient ESC strongly decrease the amount of FOXA2-expressing cells and fail to properly downregulate the expression of pluripotency factors when subjected to an endoderm-directed differentiation protocol. Impaired endoderm differentiation correlated with a transient reduction in nuclear localization of YAP1. These phenotypes were rescued by transiently restoring the expression of catalytically active hPLPP3. In conclusion, PLPP3 plays a role in downregulating pluripotency-associated factors and in endodermal differentiation. PLPP3 regulates proper lipid/YAP1 signaling required for endodermal differentiation.
Collapse
Affiliation(s)
- Martha E. Montané-Romero
- Instituto de Fisiología Celular, División de Neurociencias, Universidad Nacional Autónoma de México, Ciudad de México C.P. 04510, México
| | - Ana V. Martínez-Silva
- Instituto de Fisiología Celular, División de Neurociencias, Universidad Nacional Autónoma de México, Ciudad de México C.P. 04510, México
| | - Augusto C. Poot-Hernández
- Unidad de Bioinformática y Manejo de la Información, Universidad Nacional Autónoma de México, Ciudad de México C.P. 04510, México
| | - Diana Escalante-Alcalde
- Instituto de Fisiología Celular, División de Neurociencias, Universidad Nacional Autónoma de México, Ciudad de México C.P. 04510, México,Author for correspondence ()
| |
Collapse
|
2
|
Bello SM, Perry MN, Smith CL. Know Your Model: When parental origin matters. Lab Anim (NY) 2020; 49:161-162. [DOI: 10.1038/s41684-020-0550-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
3
|
Establishment of mouse androgenetic embryonic stem cells by double sperm injection and differentiation into beating embryoid body. ZYGOTE 2019; 27:405-412. [PMID: 31544724 DOI: 10.1017/s0967199419000510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Androgenetic embryonic stem (AgES) cells offer a possible tool for patient-specific pluripotent stem cells that will benefit genomic imprinting studies and clinic applications. However, the difficulty in producing androgenetic embryos and the unbalanced expression of imprinted genes make the therapeutic applicability of AgES cells uncertain. In this study, we produced androgenetic embryos by injecting two sperm into an enucleated metaphase II (MII) oocyte. By this method, 88.48% of oocytes survived after injection, and 20.24% of these developed to the blastocyst stage. We successfully generated AgES cell lines from the androgenetic embryos and assayed the expression of imprinted genes in the cell lines. We found that the morphological characteristics of AgES cells were similar to that of fertilized embryonic stem cells (fES), such as expression of key pluripotent markers, and generation of cell derivatives representing all three germ layers following in vivo and in vitro differentiation. Furthermore, activation of paternal imprinted genes was detected, H19, ASC12 and Tss3 in AgES cell activation levels were lower while other examined genes showed no significant difference to that of fES cells. Interestingly, among examined maternal imprinted genes, only Mest and Igf2 were significantly increased, while levels of other detected genes were no different to that of fES cells. These results demonstrated that activation of some paternal imprinted genes, as well as recovery of maternal imprinted genes, was present in AgES cells. We differentiated AgES cells into a beating embryoid body in vitro, and discovered that the AgES cells did not show significant higher efficiency in myocardial differentiation potential.
Collapse
|
4
|
Dirks RAM, van Mierlo G, Kerstens HHD, Bernardo AS, Kobolák J, Bock I, Maruotti J, Pedersen RA, Dinnyés A, Huynen MA, Jouneau A, Marks H. Allele-specific RNA-seq expression profiling of imprinted genes in mouse isogenic pluripotent states. Epigenetics Chromatin 2019; 12:14. [PMID: 30767785 PMCID: PMC6376749 DOI: 10.1186/s13072-019-0259-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 02/05/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Genomic imprinting, resulting in parent-of-origin specific gene expression, plays a critical role in mammalian development. Here, we apply allele-specific RNA-seq on isogenic B6D2F1 mice to assay imprinted genes in tissues from early embryonic tissues between E3.5 and E7.25 and in pluripotent cell lines to evaluate maintenance of imprinted gene expression. For the cell lines, we include embryonic stem cells (ESCs) and epiblast stem cells (EpiSCs) derived from fertilized embryos and from embryos obtained after nuclear transfer (NT) or parthenogenetic activation (PGA). RESULTS As homozygous genomic regions of PGA-derived cells are not compatible with allele-specific RNA-seq, we developed an RNA-seq-based genotyping strategy allowing identification of informative heterozygous regions. Global analysis shows that proper imprinted gene expression as observed in embryonic tissues is largely lost in the ESC lines included in this study, which mainly consisted of female ESCs. Differentiation of ESC lines to embryoid bodies or NPCs does not restore monoallelic expression of imprinted genes, neither did reprogramming of the serum-cultured ESCs to the pluripotent ground state by the use of 2 kinase inhibitors. Fertilized EpiSC and EpiSC-NT lines largely maintain imprinted gene expression, as did EpiSC-PGA lines that show known paternally expressed genes being silent and known maternally expressed genes consistently showing doubled expression. Notably, two EpiSC-NT lines show aberrant silencing of Rian and Meg3, two critically imprinted genes in mouse iPSCs. With respect to female EpiSC, most of the lines displayed completely skewed X inactivation suggesting a (near) clonal origin. CONCLUSIONS Altogether, our analysis provides a comprehensive overview of imprinted gene expression in pluripotency and provides a benchmark to allow identification of cell lines that faithfully maintain imprinted gene expression and therefore retain full developmental potential.
Collapse
Affiliation(s)
- René A M Dirks
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University, 6500 HB, Nijmegen, The Netherlands
| | - Guido van Mierlo
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University, 6500 HB, Nijmegen, The Netherlands.,Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Oncode Institute, Radboud University Nijmegen, 6525 GA, Nijmegen, The Netherlands
| | - Hindrik H D Kerstens
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University, 6500 HB, Nijmegen, The Netherlands
| | - Andreia S Bernardo
- The Anne McLaren Laboratory for Regenerative Medicine, Wellcome Trust- Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, CB2 0SZ, UK.,Mill Hill Laboratory, The Ridgeway, The Francis Crick Institute, London, NW7 1AA, UK
| | | | | | - Julien Maruotti
- UMR BDR, INRA, ENVA, Université Paris Saclay, 78350, Jouy en Josas, France.,Phenocell SAS, Evry, France
| | - Roger A Pedersen
- The Anne McLaren Laboratory for Regenerative Medicine, Wellcome Trust- Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, CB2 0SZ, UK
| | - András Dinnyés
- BioTalentum Ltd., Gödöllő, Hungary.,Molecular Animal Biotechnology Laboratory, Szent István University, Gödöllő, Hungary
| | - Martijn A Huynen
- Centre for Molecular and Biomolecular Informatics (CMBI), Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Centre, 6525 GA, Nijmegen, The Netherlands
| | - Alice Jouneau
- UMR BDR, INRA, ENVA, Université Paris Saclay, 78350, Jouy en Josas, France
| | - Hendrik Marks
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University, 6500 HB, Nijmegen, The Netherlands.
| |
Collapse
|
5
|
Choi NY, Bang JS, Lee HJ, Park YS, Lee M, Jeong D, Ko K, Han DW, Chung HM, Kim GJ, Shim SH, Hwang HS, Ko K. Novel imprinted single CpG sites found by global DNA methylation analysis in human parthenogenetic induced pluripotent stem cells. Epigenetics 2018; 13:343-351. [PMID: 29613829 DOI: 10.1080/15592294.2018.1460033] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Genomic imprinting is the process of epigenetic modification whereby genes are expressed in a parent-of-origin dependent manner; it plays an important role in normal growth and development. Parthenogenetic embryos contain only the maternal genome. Parthenogenetic embryonic stem cells could be useful for studying imprinted genes. In humans, mature cystic ovarian teratomas originate from parthenogenetic activation of oocytes; they are composed of highly differentiated mature tissues containing all three germ layers. To establish human parthenogenetic induced pluripotent stem cell lines (PgHiPSCs), we generated parthenogenetic fibroblasts from ovarian teratoma tissues. We compared global DNA methylation status of PgHiPSCs with that of biparental human induced pluripotent stem cells by using Illumina Infinium HumanMethylation450 BeadChip array. This analysis identified novel single imprinted CpG sites. We further tested DNA methylation patterns of two of these sites using bisulfite sequencing and described novel candidate imprinted CpG sites. These results confirm that PgHiPSCs are a powerful tool for identifying imprinted genes and investigating their roles in human development and diseases.
Collapse
Affiliation(s)
- Na Young Choi
- a Department of Stem Cell Biology, School of Medicine , Konkuk University , Seoul 05029 , Korea.,b Center for Stem Cell Research , Institute of Advanced Biomedical Science, Konkuk University , Seoul 05029 , Korea
| | - Jin Seok Bang
- a Department of Stem Cell Biology, School of Medicine , Konkuk University , Seoul 05029 , Korea.,b Center for Stem Cell Research , Institute of Advanced Biomedical Science, Konkuk University , Seoul 05029 , Korea
| | - Hye Jeong Lee
- a Department of Stem Cell Biology, School of Medicine , Konkuk University , Seoul 05029 , Korea.,b Center for Stem Cell Research , Institute of Advanced Biomedical Science, Konkuk University , Seoul 05029 , Korea
| | - Yo Seph Park
- a Department of Stem Cell Biology, School of Medicine , Konkuk University , Seoul 05029 , Korea.,b Center for Stem Cell Research , Institute of Advanced Biomedical Science, Konkuk University , Seoul 05029 , Korea
| | - Minseong Lee
- a Department of Stem Cell Biology, School of Medicine , Konkuk University , Seoul 05029 , Korea.,b Center for Stem Cell Research , Institute of Advanced Biomedical Science, Konkuk University , Seoul 05029 , Korea
| | - Dahee Jeong
- a Department of Stem Cell Biology, School of Medicine , Konkuk University , Seoul 05029 , Korea.,b Center for Stem Cell Research , Institute of Advanced Biomedical Science, Konkuk University , Seoul 05029 , Korea
| | - Kisung Ko
- c Department of Medicine, College of Medicine , Chung-Ang University , Seoul 06974 , Korea
| | - Dong Wook Han
- a Department of Stem Cell Biology, School of Medicine , Konkuk University , Seoul 05029 , Korea.,d KU Open-Innovation Center , Institute of Biomedical Science and Technology, Konkuk University , Seoul 05029 , Korea
| | - Hyung-Min Chung
- a Department of Stem Cell Biology, School of Medicine , Konkuk University , Seoul 05029 , Korea
| | - Gwang Jun Kim
- e Department of Pediatrics, College of Medicine , Chung-Ang University , Seoul 06973 , Korea
| | - Seung-Hyuk Shim
- f Department of Obstetrics and Gynecology , School of Medicine, Konkuk University , Seoul 05030 , Korea
| | - Han Sung Hwang
- f Department of Obstetrics and Gynecology , School of Medicine, Konkuk University , Seoul 05030 , Korea
| | - Kinarm Ko
- a Department of Stem Cell Biology, School of Medicine , Konkuk University , Seoul 05029 , Korea.,b Center for Stem Cell Research , Institute of Advanced Biomedical Science, Konkuk University , Seoul 05029 , Korea.,d KU Open-Innovation Center , Institute of Biomedical Science and Technology, Konkuk University , Seoul 05029 , Korea.,g Research Institute of Medical Science , Konkuk University , Seoul 05029 , Korea
| |
Collapse
|
6
|
Varrault A, Eckardt S, Girard B, Le Digarcher A, Sassetti I, Meusnier C, Ripoll C, Badalyan A, Bertaso F, McLaughlin KJ, Journot L, Bouschet T. Mouse Parthenogenetic Embryonic Stem Cells with Biparental-Like Expression of Imprinted Genes Generate Cortical-Like Neurons That Integrate into the Injured Adult Cerebral Cortex. Stem Cells 2017; 36:192-205. [PMID: 29044892 DOI: 10.1002/stem.2721] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 09/19/2017] [Accepted: 10/07/2017] [Indexed: 01/10/2023]
Abstract
One strategy for stem cell-based therapy of the cerebral cortex involves the generation and transplantation of functional, histocompatible cortical-like neurons from embryonic stem cells (ESCs). Diploid parthenogenetic Pg-ESCs have recently emerged as a promising source of histocompatible ESC derivatives for organ regeneration but their utility for cerebral cortex therapy is unknown. A major concern with Pg-ESCs is genomic imprinting. In contrast with biparental Bp-ESCs derived from fertilized oocytes, Pg-ESCs harbor two maternal genomes but no sperm-derived genome. Pg-ESCs are therefore expected to have aberrant expression levels of maternally expressed (MEGs) and paternally expressed (PEGs) imprinted genes. Given the roles of imprinted genes in brain development, tissue homeostasis and cancer, their deregulation in Pg-ESCs might be incompatible with therapy. Here, we report that, unexpectedly, only one gene out of 7 MEGs and 12 PEGs was differentially expressed between Pg-ESCs and Bp-ESCs while 13 were differentially expressed between androgenetic Ag-ESCs and Bp-ESCs, indicating that Pg-ESCs but not Ag-ESCs, have a Bp-like imprinting compatible with therapy. In vitro, Pg-ESCs generated cortical-like progenitors and electrophysiologically active glutamatergic neurons that maintained the Bp-like expression levels for most imprinted genes. In vivo, Pg-ESCs participated to the cortical lineage in fetal chimeras. Finally, transplanted Pg-ESC derivatives integrated into the injured adult cortex and sent axonal projections in the host brain. In conclusion, mouse Pg-ESCs generate functional cortical-like neurons with Bp-like imprinting and their derivatives properly integrate into both the embryonic cortex and the injured adult cortex. Collectively, our data support the utility of Pg-ESCs for cortical therapy. Stem Cells 2018;36:192-205.
Collapse
Affiliation(s)
- Annie Varrault
- Institut de Génomique Fonctionnelle, IGF, CNRS, INSERM, Univ. Montpellier, Montpellier, France
| | - Sigrid Eckardt
- Research Institute at Nationwide Children's Hospital, Center for Molecular and Human Genetics, Columbus, Ohio, USA
| | - Benoît Girard
- Institut de Génomique Fonctionnelle, IGF, CNRS, INSERM, Univ. Montpellier, Montpellier, France
| | - Anne Le Digarcher
- Institut de Génomique Fonctionnelle, IGF, CNRS, INSERM, Univ. Montpellier, Montpellier, France
| | - Isabelle Sassetti
- Institute for Neuroscience of Montpellier, Hôpital Saint Eloi, Montpellier cedex 5, France
| | - Céline Meusnier
- Institut de Génomique Fonctionnelle, IGF, CNRS, INSERM, Univ. Montpellier, Montpellier, France
| | - Chantal Ripoll
- Institute for Neuroscience of Montpellier, Hôpital Saint Eloi, Montpellier cedex 5, France
| | - Armen Badalyan
- Institut de Génomique Fonctionnelle, IGF, CNRS, INSERM, Univ. Montpellier, Montpellier, France
| | - Federica Bertaso
- Institut de Génomique Fonctionnelle, IGF, CNRS, INSERM, Univ. Montpellier, Montpellier, France
| | - K John McLaughlin
- Research Institute at Nationwide Children's Hospital, Center for Molecular and Human Genetics, Columbus, Ohio, USA
| | - Laurent Journot
- Institut de Génomique Fonctionnelle, IGF, CNRS, INSERM, Univ. Montpellier, Montpellier, France
| | - Tristan Bouschet
- Institut de Génomique Fonctionnelle, IGF, CNRS, INSERM, Univ. Montpellier, Montpellier, France
| |
Collapse
|
7
|
Meredith GD, D'Ippolito A, Dudas M, Zeidner LC, Hostetter L, Faulds K, Arnold TH, Popkie AP, Doble BW, Marnellos G, Adams C, Wang Y, Phiel CJ. Glycogen synthase kinase-3 (Gsk-3) plays a fundamental role in maintaining DNA methylation at imprinted loci in mouse embryonic stem cells. Mol Biol Cell 2015; 26:2139-50. [PMID: 25833708 PMCID: PMC4472022 DOI: 10.1091/mbc.e15-01-0013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 03/25/2015] [Indexed: 12/15/2022] Open
Abstract
A genome-wide analysis is given of DNA methylation in mouse embryonic stem cells in which both Gsk-3α and Gsk-3β have been genetically deleted. DNA methylation patterns are compared to those of wild-type cells. More than 75% of known imprinted loci have reduced DNA methylation in the Gsk-3–knockout cells. Glycogen synthase kinase-3 (Gsk-3) is a key regulator of multiple signal transduction pathways. Recently we described a novel role for Gsk-3 in the regulation of DNA methylation at imprinted loci in mouse embryonic stem cells (ESCs), suggesting that epigenetic changes regulated by Gsk-3 are likely an unrecognized facet of Gsk-3 signaling. Here we extend our initial observation to the entire mouse genome by enriching for methylated DNA with the MethylMiner kit and performing next-generation sequencing (MBD-Seq) in wild-type and Gsk-3α−/−;Gsk-3β−/− ESCs. Consistent with our previous data, we found that 77% of known imprinted loci have reduced DNA methylation in Gsk-3-deficient ESCs. More specifically, we unambiguously identified changes in DNA methylation within regions that have been confirmed to function as imprinting control regions. In many cases, the reduced DNA methylation at imprinted loci in Gsk-3α−/−;Gsk-3β−/− ESCs was accompanied by changes in gene expression as well. Furthermore, many of the Gsk-3–dependent, differentially methylated regions (DMRs) are identical to the DMRs recently identified in uniparental ESCs. Our data demonstrate the importance of Gsk-3 activity in the maintenance of DNA methylation at a majority of the imprinted loci in ESCs and emphasize the importance of Gsk-3–mediated signal transduction in the epigenome.
Collapse
Affiliation(s)
| | - Anthony D'Ippolito
- Thermo Fisher Scientific, Carlsbad, CA 92008 Center for Human and Molecular Genetics, Nationwide Children's Hospital, Columbus, OH 43205
| | | | - Leigh C Zeidner
- Center for Human and Molecular Genetics, Nationwide Children's Hospital, Columbus, OH 43205
| | - Logan Hostetter
- Department of Integrative Biology, University of Colorado Denver, Denver, CO 80204
| | - Kelsie Faulds
- Department of Integrative Biology, University of Colorado Denver, Denver, CO 80204
| | - Thomas H Arnold
- Department of Integrative Biology, University of Colorado Denver, Denver, CO 80204
| | - Anthony P Popkie
- Graduate Program in Molecular, Cellular and Developmental Biology, Ohio State University, Columbus, OH 43210
| | - Bradley W Doble
- McMaster Stem Cell and Cancer Research Institute, McMaster University, Hamilton, ON L8N 3Z5, Canada
| | | | | | - Yulei Wang
- Thermo Fisher Scientific, Foster City, CA 94404
| | - Christopher J Phiel
- Center for Human and Molecular Genetics, Nationwide Children's Hospital, Columbus, OH 43205 Department of Integrative Biology, University of Colorado Denver, Denver, CO 80204
| |
Collapse
|
8
|
Aldahmash A, Atteya M, Elsafadi M, Al-Nbaheen M, Al-Mubarak HA, Vishnubalaji R, Al-Roalle A, Al-Harbi S, Manikandan M, Matthaei KI, Mahmood A. Teratoma formation in immunocompetent mice after syngeneic and allogeneic implantation of germline capable mouse embryonic stem cells. Asian Pac J Cancer Prev 2015; 14:5705-11. [PMID: 24289566 DOI: 10.7314/apjcp.2013.14.10.5705] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Embryonic stem cells (ESCs) have the potential to form teratomas when implanted into immunodeficient mice, but data in immunocompetent mice are limited. We therefore investigated teratoma formation after implantation of three different mouse ESC (mESC) lines into immunocompetent mice. MATERIALS AND METHODS BALB/c mice were injected with three highly germline competent mESCs (129Sv, BALB/c and C57BL/6) subcutaneously or under the kidney capsule. After 4 weeks, mice were euthanized and examined histologically for teratoma development. The incidence, size and composition of teratomas were compared using Pearson Chi-square, t-test for dependent variables, one-way analysis of variance and the nonparametric Kruskal- Wallis analysis of variance and median test. RESULTS Teratomas developed from all three cell lines. The incidence of formation was significantly higher under the kidney capsule compared to subcutaneous site and occurred in both allogeneic and syngeneic mice. Overall, the size of teratoma was largest with the 129Sv cell line and under the kidney capsule. Diverse embryonic stem cell-derived tissues, belonging to the three embryonic germ layers, were encountered, reflecting the pluripotency of embryonic stem cells. Most commonly represented tissues were nervous tissue, keratinizing stratified squamous epithelium (ectoderm), smooth muscle, striated muscle, cartilage, bone (mesoderm), and glandular tissue in the form of gut- and respiratory-like epithelia (endoderm). CONCLUSIONS ESCs can form teratomas in immunocompetent mice and, therefore, removal of undifferentiated ESC is a pre-requisite for a safe use of ESC in cell-based therapies. In addition the genetic relationship of the origin of the cell lines to the ability to transplant plays a major role.
Collapse
Affiliation(s)
- Abdullah Aldahmash
- Stem Cell Unit, Department of Anatomy, College of Medicine, King Saud University and King Khalid University Hospital, Riyadh, Kingdom of Saudi Arabia E-mail : ,
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Radhakrishnan VK, Hernandez LC, Anderson K, Tan Q, De León M, De León DD. Expression of Intratumoral IGF-II Is Regulated by the Gene Imprinting Status in Triple Negative Breast Cancer from Vietnamese Patients. Int J Endocrinol 2015; 2015:401851. [PMID: 26448747 PMCID: PMC4581569 DOI: 10.1155/2015/401851] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 08/23/2015] [Indexed: 12/23/2022] Open
Abstract
African American women suffer higher incidence and mortality of triple negative breast cancer (TNBC) than Caucasian women. TNBC is very aggressive, causing the worst clinical outcome. We previously demonstrated that tumors from these patients express high IGF-II and exhibit high activation of the IGF signaling pathways. IGF-II gene expression is imprinted (monoallelic), promotes tumor progression, and metastasis and regulates Survivin, a TNBC prognostic marker. Since BC mortality has increased among young Vietnamese women, we analyzed 48 (paired) TNBC samples from Vietnamese patients to assess IGF-II expression. We analyzed all samples by qrtPCR for identification of IGF-II heterozygosity and to determine allelic expression of the IGF-II gene. We also analyzed the tissues for proIGF-II and Survivin by RT-PCR and Western blotting. A total of 28 samples displayed IGF-II heterozygosity of which 78% were biallelic. Tumors with biallelic IGF-II gene expression exhibited the highest levels of proIGF-II and Survivin. Although 100% of these tissues corresponding normal samples were biallelic, they expressed significantly lower levels of or no proIGF-II and Survivin. Thus, IGF-II biallelic gene expression is differentially regulated in normal versus tumor tissues. We propose that intratumoral proIGF-II is dependent on the IGF-II gene imprinting status and it will promote a more aggressive TNBC.
Collapse
Affiliation(s)
- Vinodh Kumar Radhakrishnan
- Center for Health Disparities and Molecular Medicine, School of Medicine, Loma Linda University, Loma Linda, CA 92350, USA
| | - Lorraine Christine Hernandez
- Center for Health Disparities and Molecular Medicine, School of Medicine, Loma Linda University, Loma Linda, CA 92350, USA
| | - Kendra Anderson
- Center for Health Disparities and Molecular Medicine, School of Medicine, Loma Linda University, Loma Linda, CA 92350, USA
| | - Qianwei Tan
- Center for Health Disparities and Molecular Medicine, School of Medicine, Loma Linda University, Loma Linda, CA 92350, USA
| | - Marino De León
- Center for Health Disparities and Molecular Medicine, School of Medicine, Loma Linda University, Loma Linda, CA 92350, USA
| | - Daisy D. De León
- Center for Health Disparities and Molecular Medicine, School of Medicine, Loma Linda University, Loma Linda, CA 92350, USA
- *Daisy D. De León:
| |
Collapse
|
10
|
Qi Q, Ding C, Hong P, Yang G, Xie Y, Wang J, Huang S, He K, Zhou C. X chromosome inactivation in human parthenogenetic embryonic stem cells following prolonged passaging. Int J Mol Med 2014; 35:569-78. [PMID: 25524499 PMCID: PMC4314418 DOI: 10.3892/ijmm.2014.2044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Accepted: 12/01/2014] [Indexed: 11/28/2022] Open
Abstract
The present study aimed to investigate the X chrochromosome inactivation (XCI) status in long-term cultured human parthenogenetic embryonic stem cells. One human embryonic stem (hES) cell line and 2 human parthenogenetic embryonic stem (hPES) cell lines were subjected to long-term culture in vitro (>50 passages). Karyotyping, array-based comparative genomic hybridization (aCGH), X-inactive specific transcript (XIST) RNA, immunofluorescence staining and real-time PCR were used to assess the chromosome karyotypes of these cells and the XCI status. X chromosome microdeletion was observed in the hPES-2 cells following culture for 50 passages. As early as 20 passages, XIST RNA expression was detected in the hPES-2 cells and was followed by low X-linked gene expression. The XIST RNA expression level was higher in the differentiated hPES-2 cells. The hPES-2′ cells that were subclones of hPES-2 retained the XCI status, and had low XIST and X-linked gene expression. XIST RNA expression remained at a low level in the differentiated hPES-2′ cells. The human biparental embryonic stem (hBES)-1 and hPES-1 cells did not exhibit XCI, and the differentiated hPES-1 cells had high expression levels of XIST RNA. In conclusion, the chromosome karyotypes of some hPES cell lines revealed instabilities. Similar to the hES cells, the hPES cells exhibited 3 XCI statuses. The unstable XCI status of the hPES-2 line may have been related to chromosome instability. These unstable chromosomes renedered these cells susceptible to environmental conditions and freezing processes, which may be the result of environmental adaptations.
Collapse
Affiliation(s)
- Quan Qi
- Reproductive Medical Center, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Chenhui Ding
- Reproductive Medical Center, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Pingping Hong
- Reproductive Medical Center, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Gang Yang
- Reproductive Medical Center, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Yanxin Xie
- Reproductive Medical Center, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Jing Wang
- Reproductive Medical Center, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Sunxing Huang
- Reproductive Medical Center, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Ke He
- Reproductive Medical Center, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Canquan Zhou
- Reproductive Medical Center, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510080, P.R. China
| |
Collapse
|
11
|
Chen YH, Yu J. Epigenetic disruptions of histone signatures for the trophectoderm and inner cell mass in mouse parthenogenetic embryos. Stem Cells Dev 2014; 24:550-64. [PMID: 25315067 DOI: 10.1089/scd.2014.0310] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Epigenetic asymmetry has been shown to be associated with the first lineage allocation event in preimplantation development, that is, the formation of the trophectoderm (TE) and inner cell mass (ICM) lineages in the blastocyst. Since parthenogenesis causes aberrant segregation between the TE and ICM lineages, we examined several development-associated histone modifications in parthenotes, including those involved in (i) transcriptional activation [acetylated histone H3 lysine 9 (H3K9Ac) and lysine 14 (H3K14Ac), trimethylated histone H3 lysine 4 (H3K4Me3), and dimethylated histone H3 arginine 26 (H3R26Me2)] and (ii) transcriptional repression [trimethylated histone H3 lysine 9 (H3K9Me3) and lysine 27 (H3K27Me3), and mono-ubiquitinated histone H2A lysine 119 (H2AK119u1)]. Here, we report that in parthenotes, H3R26Me2 expression decreased from the morula stage, while expression patterns and levels of H3K9Ac, H3K27Me3, and H2AK119u1 were unchanged until the blastocyst stage; whereas H3K14Ac, H3K4Me3, and H3K9Me3 showed normal patterns and levels of expressions. Relative to the decrease of H3K9Ac in the ICM and increase in the TE of parthenotes, we detected reduced expression of TAT-interactive protein 60 acetyltransferase and histone deacetylase 1 deacetylase in the ICM and TE of parthenotes, respectively. Relative to the decrease of H3R26Me2, we also observed decreased expression of coactivator-associated arginine methyltransferase 1 methyltransferase and increased expression of the Wnt effector transcription factor 7L2 and miR-181c microRNA in parthenotes. Furthermore, relative to the decrease in H3K27Me3 and H2AK119u1, we found increased phosphorylation of Akt1 and enhancer of zeste homolog 2 in parthenogenetic TE. Therefore, our findings that histone signatures are impaired in parthenotes provide a mechanistic explanation for aberrant lineage segregation and TE defects.
Collapse
Affiliation(s)
- Yi-Hui Chen
- 1 Graduate Institute of Aerospace and Undersea Medicine, National Defense Medical Center , Taipei, Taiwan
| | | |
Collapse
|
12
|
Li J, He J, Lin G, Lu G. Inducing human parthenogenetic embryonic stem cells into islet‑like clusters. Mol Med Rep 2014; 10:2882-90. [PMID: 25241773 PMCID: PMC4227434 DOI: 10.3892/mmr.2014.2588] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Accepted: 07/09/2014] [Indexed: 11/05/2022] Open
Abstract
In order to determine whether human parthenogenetic embryonic stem (hpES) cells have the potential to differentiate into functional cells, a modified four-step protocol was used to induce the hpES cells into islet-like clusters (ILCs) in vitro. Growth factors activin A, retinoic acid, nicotinamide, Exendin-4 and betacellulin were added sequentially to the hpES cells at each step. The terminally differentiated cells were shown to gather into ILCs. Immunohistochemistry and semi quantitative polymerase chain reaction analyses demonstrated that the ILCs expressed islet specific hormones and functional markers. Furthermore, an insulin release test indicated that the clusters had the same physiological function as islets. The ILCs derived from hpES cells shared similar characteristics with islets. These results indicate that hpES cell-derived ILCs may be used as reliable material for the treatment of type I diabetes mellitus.
Collapse
Affiliation(s)
- Jin Li
- Institute of Reproductive and Stem Cell Engineering, Central South University, Changsha, Hunan 410078, P.R. China
| | - Jingjing He
- Institute of Reproductive and Stem Cell Engineering, Central South University, Changsha, Hunan 410078, P.R. China
| | - Ge Lin
- Institute of Reproductive and Stem Cell Engineering, Central South University, Changsha, Hunan 410078, P.R. China
| | - Guangxiu Lu
- Institute of Reproductive and Stem Cell Engineering, Central South University, Changsha, Hunan 410078, P.R. China
| |
Collapse
|
13
|
Eckardt S, Dinger TC, Kurosaka S, Leu NA, Müller AM, McLaughlin KJ. In vivo and in vitro differentiation of uniparental embryonic stem cells into hematopoietic and neural cell types. Organogenesis 2012; 4:33-41. [PMID: 19279713 DOI: 10.4161/org.6123] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2007] [Accepted: 04/16/2008] [Indexed: 12/12/2022] Open
Abstract
The biological role of genomic imprinting in adult tissue is central to the consideration of transplanting uniparental embryonic stem (ES) cell-derived tissues. We have recently shown that both maternal (parthenogenetic/gynogenetic) and paternal (androgenetic) uniparental ES cells can differentiate, both in vivo in chimeras and in vitro, into adult-repopulating hematopoietic stem and progenitor cells. This suggests that, at least in some tissues, the presence of two maternal or two paternal genomes does not interfere with stem cell function and tissue homeostasis in the adult. Here, we consider implications of the contribution of uniparental cells to hematopoiesis and to development of other organ systems, notably neural tissue for which consequences of genomic imprinting are associated with a known bias in development and behavioral disorders. Our findings so far indicate that there is little or no limit to the differentiation potential of uniparental ES cells outside the normal developmental paradigm. As a potentially donor MHC-matching source of tissue, uniparental transplants may provide not only a clinical resource but also a unique tool to investigate aspects of genomic imprinting in adults.
Collapse
Affiliation(s)
- Sigrid Eckardt
- Center for Animal Transgenesis and Germ Cell Research; New Bolton Center; University of Pennsylvania; Kennett Square, Pennsylvania USA
| | | | | | | | | | | |
Collapse
|
14
|
Zimmermann A, Preynat-Seauve O, Tiercy JM, Krause KH, Villard J. Haplotype-based banking of human pluripotent stem cells for transplantation: potential and limitations. Stem Cells Dev 2012; 21:2364-73. [PMID: 22559254 DOI: 10.1089/scd.2012.0088] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
High expectations surround the area of stem cells therapeutics. However, the cells' source-adult or embryonic-and the cells' origin-patient-derived autologous or healthy donor genetically unrelated-remain subjects of debate. Autologous origins have the advantage of a theoretical absence of immune rejection by the recipient. However, this approach has several limitations with regard to the disease of the recipient and to potential problems with the generation, expansion, and manipulation of autologous induced pluripotent stem cells (iPS cells) preparation. An alternative to using autologous cells is the establishment of a bank of well-characterized adult cells that would be used to generate iPS cells and their derivatives. In the context of transplantation, such cells would come from genetically unrelated donors and the immune system of the recipient would reject the graft without immunosuppressive therapy. To minimize the risk of rejection, human leukocyte antigen (HLA) compatibility is certainly the best option, and the establishment of an HLA-organized bank would mean having a limited number of stem cells that would be sufficient for a large number of recipients. The concept of haplobanking with HLA homozygous cell lines would also limit the number of HLA mismatches, but such an approach will not necessarily be less immunogenic in terms of selection criteria, because of the limited number of HLA-compatible loci and the level of HLA typing resolution.
Collapse
Affiliation(s)
- Anna Zimmermann
- Laboratory of Experimental Cell Therapy, Department of Genetic and Laboratory Medicine, Geneva University Hospital and Medical School, Geneva, Switzerland
| | | | | | | | | |
Collapse
|
15
|
Payne NL, Sun G, Herszfeld D, Tat-Goh PA, Verma PJ, Parkington HC, Coleman HA, Tonta MA, Siatskas C, Bernard CCA. Comparative study on the therapeutic potential of neurally differentiated stem cells in a mouse model of multiple sclerosis. PLoS One 2012; 7:e35093. [PMID: 22514711 PMCID: PMC3325988 DOI: 10.1371/journal.pone.0035093] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2011] [Accepted: 03/12/2012] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Transplantation of neural stem cells (NSCs) is a promising novel approach to the treatment of neuroinflammatory diseases such as multiple sclerosis (MS). NSCs can be derived from primary central nervous system (CNS) tissue or obtained by neural differentiation of embryonic stem (ES) cells, the latter having the advantage of readily providing an unlimited number of cells for therapeutic purposes. Using a mouse model of MS, we evaluated the therapeutic potential of NSCs derived from ES cells by two different neural differentiation protocols that utilized adherent culture conditions and compared their effect to primary NSCs derived from the subventricular zone (SVZ). METHODOLOGY/PRINCIPAL FINDINGS The proliferation and secretion of pro-inflammatory cytokines by antigen-stimulated splenocytes was reduced in the presence of SVZ-NSCs, while ES cell-derived NSCs exerted differential immunosuppressive effects. Surprisingly, intravenously injected NSCs displayed no significant therapeutic impact on clinical and pathological disease outcomes in mice with experimental autoimmune encephalomyelitis (EAE) induced by recombinant myelin oligodendrocyte glycoprotein, independent of the cell source. Studies tracking the biodistribution of transplanted ES cell-derived NSCs revealed that these cells were unable to traffic to the CNS or peripheral lymphoid tissues, consistent with the lack of cell surface homing molecules. Attenuation of peripheral immune responses could only be achieved through multiple high doses of NSCs administered intraperitoneally, which led to some neuroprotective effects within the CNS. CONCLUSION/SIGNIFICANCE Systemic transplantation of these NSCs does not have a major influence on the clinical course of rMOG-induced EAE. Improving the efficiency at which NSCs home to inflammatory sites may enhance their therapeutic potential in this model of CNS autoimmunity.
Collapse
Affiliation(s)
- Natalie L. Payne
- Monash Immunology and Stem Cell Laboratories, Monash University, Clayton, Victoria, Australia
| | - Guizhi Sun
- Monash Immunology and Stem Cell Laboratories, Monash University, Clayton, Victoria, Australia
| | - Daniella Herszfeld
- Monash Immunology and Stem Cell Laboratories, Monash University, Clayton, Victoria, Australia
| | - Pollyanna A. Tat-Goh
- Centre for Reproduction and Development, Monash Institute of Medical Research, Monash University, Clayton, Victoria, Australia
| | - Paul J. Verma
- Centre for Reproduction and Development, Monash Institute of Medical Research, Monash University, Clayton, Victoria, Australia
| | | | - Harold A. Coleman
- Department of Physiology, Monash University, Clayton, Victoria, Australia
| | - Mary A. Tonta
- Department of Physiology, Monash University, Clayton, Victoria, Australia
| | - Christopher Siatskas
- Monash Immunology and Stem Cell Laboratories, Monash University, Clayton, Victoria, Australia
| | - Claude C. A. Bernard
- Monash Immunology and Stem Cell Laboratories, Monash University, Clayton, Victoria, Australia
- * E-mail:
| |
Collapse
|
16
|
Pereira LA, Wong MS, Lim SM, Sides A, Stanley EG, Elefanty AG. Brachyury and related Tbx proteins interact with the Mixl1 homeodomain protein and negatively regulate Mixl1 transcriptional activity. PLoS One 2011; 6:e28394. [PMID: 22164283 PMCID: PMC3229578 DOI: 10.1371/journal.pone.0028394] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2011] [Accepted: 11/07/2011] [Indexed: 02/07/2023] Open
Abstract
Mixl1 is a homeodomain transcription factor required for mesoderm and endoderm patterning during mammalian embryogenesis. Despite its crucial function in development, co-factors that modulate the activity of Mixl1 remain poorly defined. Here we report that Mixl1 interacts physically and functionally with the T-box protein Brachyury and related members of the T-box family of transcription factors. Transcriptional and protein analyses demonstrated overlapping expression of Mixl1 and Brachyury during embryonic stem cell differentiation. In vitro protein interaction studies showed that the Mixl1 with Brachyury associated via their DNA-binding domains and gel shift assays revealed that the Brachyury T-box domain bound to Mixl1-DNA complexes. Furthermore, luciferase reporter experiments indicated that association of Mixl1 with Brachyury and related T-box factors inhibited the transactivating potential of Mixl1 on the Gsc and Pdgfrα promoters. Our results indicate that the activity of Mixl1 can be modulated by protein-protein interactions and that T-box factors can function as negative regulators of Mixl1 activity.
Collapse
Affiliation(s)
- Lloyd A. Pereira
- Differentiation and Transcription Laboratory, Peter MacCallum Cancer Centre and the Pathology Department, The University of Melbourne, Melbourne, Victoria, Australia
| | - Michael S. Wong
- Monash Immunology and Stem Cell Laboratories, Monash University, Clayton, Victoria, Australia
| | - Sue Mei Lim
- Monash Immunology and Stem Cell Laboratories, Monash University, Clayton, Victoria, Australia
| | - Alexandra Sides
- Monash Immunology and Stem Cell Laboratories, Monash University, Clayton, Victoria, Australia
| | - Edouard G. Stanley
- Monash Immunology and Stem Cell Laboratories, Monash University, Clayton, Victoria, Australia
- * E-mail: (AGE); (EGS)
| | - Andrew G. Elefanty
- Monash Immunology and Stem Cell Laboratories, Monash University, Clayton, Victoria, Australia
- * E-mail: (AGE); (EGS)
| |
Collapse
|
17
|
Yuen B, Boncompagni S, Feng W, Yang T, Lopez JR, Matthaei KI, Goth SR, Protasi F, Franzini-Armstrong C, Allen PD, Pessah IN. Mice expressing T4826I-RYR1 are viable but exhibit sex- and genotype-dependent susceptibility to malignant hyperthermia and muscle damage. FASEB J 2011; 26:1311-22. [PMID: 22131268 DOI: 10.1096/fj.11-197582] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Mutation T4825I in the type 1 ryanodine receptor (RYR1(T4825I/+)) confers human malignant hyperthermia susceptibility (MHS). We report a knock-in mouse line that expresses the isogenetic mutation T4826I. Heterozygous RYR1(T4826I/+) (Het) or homozygous RYR1(T4826I/T4826I) (Hom) mice are fully viable under typical rearing conditions but exhibit genotype- and sex-dependent susceptibility to environmental conditions that trigger MH. Hom mice maintain higher core temperatures than WT in the home cage, have chronically elevated myoplasmic[Ca(2+)](rest), and present muscle damage in soleus with a strong sex bias. Mice subjected to heat stress in an enclosed 37°C chamber fail to trigger MH regardless of genotype, whereas heat stress at 41°C invariably triggers fulminant MH in Hom, but not Het, mice within 20 min. WT and Het female mice fail to maintain euthermic body temperature when placed atop a bed whose surface is 37°C during halothane anesthesia (1.75%) and have no hyperthermic response, whereas 100% Hom mice of either sex and 17% of the Het males develop fulminant MH. WT mice placed on a 41°C bed maintain body temperature while being administered halothane, and 40% of the Het females and 100% of the Het males develop fulminant MH within 40 min. Myopathic alterations in soleus were apparent by 12 mo, including abnormally distributed and enlarged mitochondria, deeply infolded sarcolemma, and frequent Z-line streaming regions, which were more severe in males. These data demonstrate that an MHS mutation within the S4-S5 cytoplasmic linker of RYR1 confers genotype- and sex-dependent susceptibility to pharmacological and environmental stressors that trigger fulminant MH and promote myopathy.
Collapse
Affiliation(s)
- Benjamin Yuen
- Department of Veterinary Molecular Biosciences, University of California, Davis, California, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Taylor CJ, Bolton EM, Bradley JA. Immunological considerations for embryonic and induced pluripotent stem cell banking. Philos Trans R Soc Lond B Biol Sci 2011; 366:2312-22. [PMID: 21727137 DOI: 10.1098/rstb.2011.0030] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Recent advances in stem cell technology have generated enthusiasm for their potential to study and treat a diverse range of human disease. Pluripotent human stem cells for therapeutic use may, in principle, be obtained from two sources: embryonic stem cells (hESCs), which are capable of extensive self-renewal and expansion and have the potential to differentiate into any somatic tissue, and induced pluripotent stem cells (iPSCs), which are derived from differentiated tissue such as adult skin fibroblasts and appear to have the same properties and potential, but their generation is not dependent upon a source of embryos. The likelihood that clinical transplantation of hESC- or iPSC-derived tissues from an unrelated (allogeneic) donor that express foreign human leucocyte antigens (HLA) may undergo immunological rejection requires the formulation of strategies to attenuate the host immune response to transplanted tissue. In clinical practice, individualized iPSC tissue derived from the intended recipient offers the possibility of personalized stem cell therapy in which graft rejection would not occur, but the logistics of achieving this on a large scale are problematic owing to relatively inefficient reprogramming techniques and high costs. The creation of stem cell banks comprising HLA-typed hESCs and iPSCs is a strategy that is proposed to overcome the immunological barrier by providing HLA-matched (histocompatible) tissue for the target population. Estimates have shown that a stem cell bank containing around 10 highly selected cell lines with conserved homozygous HLA haplotypes would provide matched tissue for the majority of the UK population. These simulations have practical, financial, political and ethical implications for the establishment and design of stem cell banks incorporating cell lines with HLA types that are compatible with different ethnic populations throughout the world.
Collapse
Affiliation(s)
- Craig J Taylor
- Histocompatibility and Immunogenetics, Tissue Typing Laboratory, Cambridge University Teaching Hospitals NHS Foundation Trust, Addenbrooke's Hospital, Hills Road, Cambridge CB2 0QQ, UK. craig.taylor@addenbrookes
| | | | | |
Collapse
|
19
|
Krusche CA, Holthöfer B, Hofe V, van de Sandt AM, Eshkind L, Bockamp E, Merx MW, Kant S, Windoffer R, Leube RE. Desmoglein 2 mutant mice develop cardiac fibrosis and dilation. Basic Res Cardiol 2011; 106:617-33. [PMID: 21455723 PMCID: PMC3105238 DOI: 10.1007/s00395-011-0175-y] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2010] [Revised: 03/09/2011] [Accepted: 03/21/2011] [Indexed: 12/13/2022]
Abstract
Desmosomes are cell–cell adhesion sites and part of the intercalated discs, which couple adjacent cardiomyocytes. The connection is formed by the extracellular domains of desmosomal cadherins that are also linked to the cytoskeleton on the cytoplasmic side. To examine the contribution of the desmosomal cadherin desmoglein 2 to cardiomyocyte adhesion and cardiac function, mutant mice were prepared lacking a part of the extracellular adhesive domain of desmoglein 2. Most live born mutant mice presented normal overall cardiac morphology at 2 weeks. Some animals, however, displayed extensive fibrotic lesions. Later on, mutants developed ventricular dilation leading to cardiac insufficiency and eventually premature death. Upon histological examination, cardiomyocyte death by calcifying necrosis and replacement by fibrous tissue were observed. Fibrotic lesions were highly proliferative in 2-week-old mutants, whereas the fibrotic lesions of older mutants showed little proliferation indicating the completion of local muscle replacement by scar tissue. Disease progression correlated with increased mRNA expression of c-myc, ANF, BNF, CTGF and GDF15, which are markers for cardiac stress, remodeling and heart failure. Taken together, the desmoglein 2-mutant mice display features of dilative cardiomyopathy and arrhythmogenic right ventricular cardiomyopathy, an inherited human heart disease with pronounced fibrosis and ventricular arrhythmias that has been linked to mutations in desmosomal proteins including desmoglein 2.
Collapse
Affiliation(s)
- Claudia A. Krusche
- Institute of Molecular and Cellular Anatomy, RWTH Aachen University, Wendlingweg 2, 52074 Aachen, Germany
| | - Bastian Holthöfer
- Institute of Molecular and Cellular Anatomy, RWTH Aachen University, Wendlingweg 2, 52074 Aachen, Germany
| | - Valérie Hofe
- Institute of Molecular and Cellular Anatomy, RWTH Aachen University, Wendlingweg 2, 52074 Aachen, Germany
| | - Annette M. van de Sandt
- Division of Cardiology, Angiology and Pneumology, Department of Medicine, University Hospital Düsseldorf, Moorenstr. 5, 40225 Düsseldorf, Germany
| | - Leonid Eshkind
- Institute for Toxicology, Medical Centre of the Johannes Gutenberg-University Mainz, Obere Zahlbacher Str. 67, 55131 Mainz, Germany
| | - Ernesto Bockamp
- Institute for Toxicology, Medical Centre of the Johannes Gutenberg-University Mainz, Obere Zahlbacher Str. 67, 55131 Mainz, Germany
| | - Marc W. Merx
- Division of Cardiology, Angiology and Pneumology, Department of Medicine, University Hospital Düsseldorf, Moorenstr. 5, 40225 Düsseldorf, Germany
| | - Sebastian Kant
- Institute of Molecular and Cellular Anatomy, RWTH Aachen University, Wendlingweg 2, 52074 Aachen, Germany
| | - Reinhard Windoffer
- Institute of Molecular and Cellular Anatomy, RWTH Aachen University, Wendlingweg 2, 52074 Aachen, Germany
| | - Rudolf E. Leube
- Institute of Molecular and Cellular Anatomy, RWTH Aachen University, Wendlingweg 2, 52074 Aachen, Germany
| |
Collapse
|
20
|
Gene Targeting Vector Design for Embryonic Stem Cell Modifications. SPRINGER PROTOCOLS HANDBOOKS 2011. [DOI: 10.1007/978-3-662-45763-4_4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
21
|
|
22
|
Yang J, Cai J, Zhang Y, Wang X, Li W, Xu J, Li F, Guo X, Deng K, Zhong M, Chen Y, Lai L, Pei D, Esteban MA. Induced pluripotent stem cells can be used to model the genomic imprinting disorder Prader-Willi syndrome. J Biol Chem 2010; 285:40303-11. [PMID: 20956530 DOI: 10.1074/jbc.m110.183392] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The recent discovery of induced pluripotent stem cell (iPSC) technology provides an invaluable tool for creating in vitro representations of human genetic conditions. This is particularly relevant for those diseases that lack adequate animal models or where the species comparison is difficult, e.g. imprinting diseases such as the neurogenetic disorder Prader-Willi syndrome (PWS). However, recent reports have unveiled transcriptional and functional differences between iPSCs and embryonic stem cells that in cases are attributable to imprinting errors. This has suggested that human iPSCs may not be useful to model genetic imprinting diseases. Here, we describe the generation of iPSCs from a patient with PWS bearing a partial translocation of the paternally expressed chromosome 15q11-q13 region to chromosome 4. The resulting iPSCs match all standard criteria of bona fide reprogramming and could be readily differentiated into tissues derived from the three germ layers, including neurons. Moreover, these iPSCs retain a high level of DNA methylation in the imprinting center of the maternal allele and show concomitant reduced expression of the disease-associated small nucleolar RNA HBII-85/SNORD116. These results indicate that iPSCs may be a useful tool to study PWS and perhaps other genetic imprinting diseases as well.
Collapse
Affiliation(s)
- Jiayin Yang
- Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Liu N, Enkemann SA, Liang P, Hersmus R, Zanazzi C, Huang J, Wu C, Chen Z, Looijenga LHJ, Keefe DL, Liu L. Genome-wide gene expression profiling reveals aberrant MAPK and Wnt signaling pathways associated with early parthenogenesis. J Mol Cell Biol 2010; 2:333-44. [PMID: 20926514 DOI: 10.1093/jmcb/mjq029] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Mammalian parthenogenesis could not survive but aborted during mid-gestation, presumably because of lack of paternal gene expression. To understand the molecular mechanisms underlying the failure of parthenogenesis at early stages of development, we performed global gene expression profiling and functional analysis of parthenogenetic blastocysts in comparison with those of blastocysts from normally fertilized embryos. Parthenogenetic blastocysts exhibited changes in the expression of 749 genes, of which 214 had lower expression and 535 showed higher expressions than fertilized embryos using a minimal 1.8-fold change as a cutoff. Genes important for placenta development were decreased in their expression in parthenote blastocysts. Some maternally expressed genes were up-regulated and paternal-related genes were down-regulated. Moreover, aberrantly increased Wnt signaling and reduced mitogen-activated protein kinase (MAPK) signaling were associated with early parthenogenesis. The protein level of extracellular signal-regulated kinase 2 (ERK2) was low in parthenogenetic blastocysts compared with that of fertilized blastocysts 120 h after fertilization. 6-Bromoindirubin-3'-oxime, a specific glycogen synthase kinase-3 (GSK-3) inhibitor, significantly decreased embryo hatching. The expression of several imprinted genes was altered in parthenote blastocysts. Gene expression also linked reduced expression of Xist to activation of X chromosome. Our findings suggest that failed X inactivation, aberrant imprinting, decreased ERK/MAPK signaling and possibly elevated Wnt signaling, and reduced expression of genes for placental development collectively may contribute to abnormal placenta formation and failed fetal development in parthenogenetic embryos.
Collapse
Affiliation(s)
- Na Liu
- College of Life Sciences, Nankai University, Tianjin 300071, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Abstract
Mammalian androgenones have two paternally or sperm-derived genomes. In mice (Mus musculus) they die at peri-implantation due to the misexpression of imprinted genes-the genes that are expressed monoallelically according to the parent of origin. The misexpressions involved are poorly defined. To gain further insight, we examined the causes of midgestation death of embryos with paternal duplication (PatDp) of distal chromosome 7 (dist7), a region replete with imprinted genes. PatDp(dist7) embryos have a similar phenotype to mice with a knockout of a maternally expressed imprinted gene, Ascl2 [achaete-scute complex homolog-like 2 (Drosophila)], and their death at midgestation could result from two inactive paternal copies of this gene. However, other dist7 misexpressions could duplicate this phenotype, and the potential epistatic load is undefined. We show that an Ascl2 transgene is able to promote the development of PatDp(dist7) embryos to term, providing strong evidence that Ascl2 is the only imprinted gene in the genome for which PatDp results in early embryonic death. While some of the defects in perinatal transgenic PatDp(dist7) fetuses were consistent with known misexpressions of dist7 imprinted genes, the overall phenotype indicates a role for additional undefined misexpressions of imprinted genes. This study provides implications for the human imprinting-related fetal overgrowth disorder, Beckwith-Wiedemann syndrome.
Collapse
|
25
|
Differentiation diversity of mouse parthenogenetic embryonic stem cells in chimeric mice. Theriogenology 2010; 74:135-45. [DOI: 10.1016/j.theriogenology.2010.01.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2009] [Revised: 01/16/2010] [Accepted: 01/30/2010] [Indexed: 11/17/2022]
|
26
|
Gandolfi F, Brevini TAL. RFD Award Lecture 2009. In vitro maturation of farm animal oocytes: a useful tool for investigating the mechanisms leading to full-term development. Reprod Fertil Dev 2010; 22:495-507. [PMID: 20188022 DOI: 10.1071/rd09151] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2009] [Accepted: 09/11/2009] [Indexed: 01/24/2023] Open
Abstract
Due to logistical and economic reasons, assisted reproduction of domestic animals has been based mostly on the use of oocytes isolated from ovaries collected at the slaughterhouse. In order to propagate valuable or rare genetic material, perform somatic cell nuclear transfer or generate genetically modified animals, it is essential to obtain fully competent oocytes that will allow full-term development of the in vitro-produced embryos. Such a need makes clear the crucial role played by oocyte quality. In fact, it is easy to compromise the oocyte's developmental potential but it is impossible to restore once it has been lost. Almost three decades after the first cow, sheep, goat, horse and pig in vitro-generated offspring were born, a large body of information has accumulated on the mechanisms regulating oocyte competence and on how the latter may be preserved during all the required manipulations. The amount of knowledge is far from complete and many laboratories are actively working to further expand it. In this review we will highlight the aspects of the ongoing research in which we have been actively involved.
Collapse
Affiliation(s)
- Fulvio Gandolfi
- Laboratory of Biomedical Embryology, Department of Animal Sciences, Università degli Studi di Milano, via Celoria, 10-20133, Milano, Italy.
| | | |
Collapse
|
27
|
Jackson SA, Schiesser J, Stanley EG, Elefanty AG. Differentiating embryonic stem cells pass through 'temporal windows' that mark responsiveness to exogenous and paracrine mesendoderm inducing signals. PLoS One 2010; 5:e10706. [PMID: 20502661 PMCID: PMC2873409 DOI: 10.1371/journal.pone.0010706] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2010] [Accepted: 04/26/2010] [Indexed: 01/19/2023] Open
Abstract
Background Mesendoderm induction during embryonic stem cell (ESC) differentiation in vitro is stimulated by the Transforming Growth Factor and Wingless (Wnt) families of growth factors. Principal Findings We identified the periods during which Bone Morphogenetic Protein (BMP) 4, Wnt3a or Activin A were able to induce expression of the mesendoderm marker, Mixl1, in differentiating mouse ESCs. BMP4 and Wnt3a were required between differentiation day (d) 1.5 and 3 to most effectively induce Mixl1, whilst Activin A induced Mixl1 expression in ESC when added between d2 and d4, indicating a subtle difference in the requirement for Activin receptor signalling in this process. Stimulation of ESCs with these factors at earlier or later times resulted in little Mixl1 induction, suggesting that the differentiating ESCs passed through ‘temporal windows’ in which they sequentially gained and lost competence to respond to each growth factor. Inhibition of either Activin or Wnt signalling blocked Mixl1 induction by any of the three mesendoderm-inducing factors. Mixing experiments in which chimeric EBs were formed between growth factor-treated and untreated ESCs revealed that BMP, Activin and Wnt signalling all contributed to the propagation of paracrine mesendoderm inducing signals between adjacent cells. Finally, we demonstrated that the differentiating cells passed through ‘exit gates’ after which point they were no longer dependent on signalling from inducing molecules for Mixl1 expression. Conclusions These studies suggest that differentiating ESCs are directed by an interconnected network of growth factors similar to those present in early embryos and that the timing of growth factor activity is critical for mesendoderm induction.
Collapse
Affiliation(s)
- Steven A. Jackson
- Monash Immunology and Stem Cell Laboratories, Monash University, Clayton, Victoria, Australia
| | - Jacqueline Schiesser
- Monash Immunology and Stem Cell Laboratories, Monash University, Clayton, Victoria, Australia
| | - Edouard G. Stanley
- Monash Immunology and Stem Cell Laboratories, Monash University, Clayton, Victoria, Australia
| | - Andrew G. Elefanty
- Monash Immunology and Stem Cell Laboratories, Monash University, Clayton, Victoria, Australia
- * E-mail:
| |
Collapse
|
28
|
Han L, Szabó PE, Mann JR. Postnatal survival of mice with maternal duplication of distal chromosome 7 induced by a Igf2/H19 imprinting control region lacking insulator function. PLoS Genet 2010; 6:e1000803. [PMID: 20062522 PMCID: PMC2794364 DOI: 10.1371/journal.pgen.1000803] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2009] [Accepted: 12/08/2009] [Indexed: 11/19/2022] Open
Abstract
The misexpressed imprinted genes causing developmental failure of mouse parthenogenones are poorly defined. To obtain further insight, we investigated misexpressions that could cause the pronounced growth deficiency and death of fetuses with maternal duplication of distal chromosome (Chr) 7 (MatDup.dist7). Their small size could involve inactivity of Igf2, encoding a growth factor, with some contribution by over-expression of Cdkn1c, encoding a negative growth regulator. Mice lacking Igf2 expression are usually viable, and MatDup.dist7 death has been attributed to the misexpression of Cdkn1c or other imprinted genes. To examine the role of misexpressions determined by two maternal copies of the Igf2/H19 imprinting control region (ICR)—a chromatin insulator, we introduced a mutant ICR (ICRΔ) into MatDup.dist7 fetuses. This activated Igf2, with correction of H19 expression and other imprinted transcripts expected. Substantial growth enhancement and full postnatal viability was obtained, demonstrating that the aberrant MatDup.dist7 phenotype is highly dependent on the presence of two unmethylated maternal Igf2/H19 ICRs. Activation of Igf2 is likely the predominant correction that rescued growth and viability. Further experiments involved the introduction of a null allele of Cdkn1c to alleviate its over-expression. Results were not consistent with the possibility that this misexpression alone, or in combination with Igf2 inactivity, mediates MatDup.dist7 death. Rather, a network of misexpressions derived from dist7 is probably involved. Our results are consistent with the idea that reduced expression of IGF2 plays a role in the aetiology of the human imprinting-related growth-deficit disorder, Silver-Russell syndrome. Parthenogenetic mouse embryos with two maternal genomes die early in development due to the misexpression of imprinted genes. To gain further insight into which misexpressions might be involved, we examined some of the misexpressions that could determine the small size and fetal death of a “partial parthenogenone”—embryos with maternal duplication of distal Chr 7 (MatDup.dist7). We investigated the involvement of two maternal copies of the Igf2/H19 imprinting control region (ICR), which is associated with lack of activity of the Igf2 gene, encoding a growth factor, and over-activity of H19. By introducing a mutant ICR, we activated Igf2 and expected to correct other misexpressions, such as that of H19. The result was substantial increase in growth and full postnatal viability of MatDup.dist7 fetuses, demonstrating the dependency of their abnormal phenotype on two maternal copies of the ICR. Activation of Igf2 was probably the main effector of this rescue. These results are consistent with the idea that reduced expression of IGF2 is causal in the human growth deficit disorder, Silver-Russell syndrome.
Collapse
Affiliation(s)
- Li Han
- Division of Biology, Beckman Research Institute, City of Hope National Medical Center, Duarte, California, United States of America
| | - Piroska E. Szabó
- Division of Biology, Beckman Research Institute, City of Hope National Medical Center, Duarte, California, United States of America
| | - Jeffrey R. Mann
- Division of Biology, Beckman Research Institute, City of Hope National Medical Center, Duarte, California, United States of America
- Department of Zoology, The University of Melbourne, Melbourne, Victoria, Australia
- Laboratory and Community Genetics Theme, Murdoch Childrens Research Institute, The Royal Children's Hospital, Parkville, Victoria, Australia
- * E-mail:
| |
Collapse
|
29
|
Lim SM, Pereira L, Wong MS, Hirst CE, Van Vranken BE, Pick M, Trounson A, Elefanty AG, Stanley EG. Enforced expression of Mixl1 during mouse ES cell differentiation suppresses hematopoietic mesoderm and promotes endoderm formation. Stem Cells 2009; 27:363-74. [PMID: 19038793 DOI: 10.1634/stemcells.2008-1008] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The Mixl1 gene encodes a homeodomain transcription factor that is required for normal mesoderm and endoderm development in the mouse. We have examined the consequences of enforced Mixl1 expression during mouse embryonic stem cell (ESC) differentiation. We show that three independently derived ESC lines constitutively expressing Mixl1 (Mixl1(C) ESCs) differentiate into embryoid bodies (EBs) containing a higher proportion of E-cadherin (E-Cad)(+) cells. Our analysis also shows that this differentiation occurs at the expense of hematopoietic mesoderm differentiation, with Mixl1(C) ESCs expressing only low levels of Flk1 and failing to develop hemoglobinized cells. Immunohistochemistry and immunofluorescence studies revealed that Mixl1(C) EBs have extensive areas containing cells with an epithelial morphology that express E-Cad, FoxA2, and Sox17, consistent with enhanced endoderm formation. Luciferase reporter transfection experiments indicate that Mixl1 can transactivate the Gsc, Sox17, and E-Cad promoters, supporting the hypothesis that Mixl1 has a direct role in definitive endoderm formation. Taken together, these studies suggest that high levels of Mixl1 preferentially allocate cells to the endoderm during ESC differentiation.
Collapse
Affiliation(s)
- Sue Mei Lim
- Monash Immunology and Stem Cell Laboratories, Monash University, Clayton, Victoria, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Chen Z, Liu Z, Huang J, Amano T, Li C, Cao S, Wu C, Liu B, Zhou L, Carter MG, Keefe DL, Yang X, Liu L. Birth of Parthenote Mice Directly from Parthenogenetic Embryonic Stem Cells. Stem Cells 2009; 27:2136-45. [DOI: 10.1002/stem.158] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
31
|
Ogawa H, Shindo N, Kumagai T, Usami Y, Shikanai M, Jonwn K, Fukuda A, Kawahara M, Sotomaru Y, Tanaka S, Arima T, Kono T. Developmental ability of trophoblast stem cells in uniparental mouse embryos. Placenta 2009; 30:448-56. [PMID: 19345411 DOI: 10.1016/j.placenta.2009.02.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2008] [Revised: 02/19/2009] [Accepted: 02/19/2009] [Indexed: 10/20/2022]
Abstract
Neither parthenogenetic (PG) nor androgenetic (AG) mouse embryos survive after day 9.5 of pregnancy, owing to the inadequate growth of extraembryonic tissues, including the placenta. At day 9.5 of pregnancy, the placental structures are poorly developed in PG embryos, while trophoblast giant cells are abundant at the implantation site in AG embryos. These findings suggest that both parental genomes are required for placental development. To gain further insight into the trophoblast lineage in PG and AG embryos, we attempted to derive trophoblast stem (TS)-like cell lines from uniparental embryos. Furthermore, we sought to assess their ability to differentiate into cells of the trophoblast lineage by using gene expression analysis. Three cell lines that expressed marker genes for undifferentiated TS cells (Cdx2 and Errbeta) were derived from AG embryos. Under differentiation conditions, these cells expressed the trophoblast giant cell-specific genes, but did not express the spongiotrophoblast-specific genes. In contrast, none of the four cell lines from PG embryos expressed marker genes for undifferentiated TS cells, but they expressed Oct3/4, a marker gene for embryonic stem cells. Immunohistochemical analysis indicated that PG blastocysts expressed Oct3/4 and Cdx2 specifically in inner cell mass and the trophectoderm respectively. These results suggest that PG embryos do not possess TS cells, because of the lack of the developmental ability of trophoblast cells.
Collapse
Affiliation(s)
- H Ogawa
- Department of Bioscience, Tokyo University of Agriculture, Tokyo, Japan.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Li C, Chen Z, Liu Z, Huang J, Zhang W, Zhou L, Keefe DL, Liu L. Correlation of expression and methylation of imprinted genes with pluripotency of parthenogenetic embryonic stem cells. Hum Mol Genet 2009; 18:2177-87. [PMID: 19324901 DOI: 10.1093/hmg/ddp150] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Mammalian parthenogenetic embryos (pE) are not viable due to placental deficiency, presumably resulting from lack of paternally expressed imprinted genes. Pluripotent parthenogenetic embryonic stem (pES) cells derived from pE could advance regenerative medicine by avoiding immuno-rejection and ethical roadblocks. We attempted to explore the epigenetic status of imprinted genes in the generation of pES cells from parthenogenetic blastocysts, and its relationship to pluripotency of pES cells. Pluripotency was evaluated for developmental and differentiation potential in vivo, based on contributions of pES cells to chimeras and development to day 9.5 of pES fetuses complemented by tetraploid embryos (TEC). Consistently, pE and fetuses failed to express paternally expressed imprinted genes, but pES cells expressed those genes in a pattern resembling that of fertilized embryos (fE) and fertilized embryonic stem (fES) cells derived from fE. Like fE and fES cells, but unlike pE or fetuses, pES cells and pES cell-fetuses complemented by TEC exhibited balanced methylation of Snrpn, Peg1 and U2af1-rs1. Coincidently, global methylation increased in pE but decreased in pES cells, further suggesting dramatic epigenetic reprogramming occurred during isolation and culture of pES cells. Moreover, we identified decreased methylation of Igf2r, Snrpn, and especially U2af1-rs1, in association with increased contributions of pES cells to chimeras. Our data show that in vitro culture changes epigenetic status of imprinted genes during isolation of pES cells from their progenitor embryos and that increased expression of U2af1-rs1 and Snrpn and decreased expression of Igf2r correlate with pluripotency of pES cells.
Collapse
Affiliation(s)
- Chao Li
- School of Life Science, Sun Yat-Sen University, Guangzhou 510275, China
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Rao M, Condic ML. Alternative sources of pluripotent stem cells: scientific solutions to an ethical dilemma. Stem Cells Dev 2008; 17:1-10. [PMID: 18271697 DOI: 10.1089/scd.2008.0013] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Stem cell researchers in the United States have faced a quagmire of uncertainty due to multiple factors: the ethical divide over the use of embryos for research, the lack of clarity in federal guidelines governing this research, the restrictive patent situation surrounding the generation of new human embryonic stem (HES) cell lines; and the limits on types of research eligible for federal funding. In this commentary, we describe how recent advances in derivation of hES cell-like lines may allow at least some of these uncertainties to be resolved. More importantly, we suggest that the derivation of hES cell-like lines by morally acceptable methods would not only avoid the corrosive effects of a protracted ethical debate over stem cell research, but would also allow U.S. researchers to access federal funds and compete on a more level international playing field.
Collapse
|
34
|
Jiang H, Sun B, Wang W, Zhang Z, Gao F, Shi G, Cui B, Kong X, He Z, Ding X, Kuang Y, Fei J, Sun YJ, Feng Y, Jin Y. Activation of paternally expressed imprinted genes in newly derived germline-competent mouse parthenogenetic embryonic stem cell lines. Cell Res 2008; 17:792-803. [PMID: 17768400 DOI: 10.1038/cr.2007.70] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Parthenogenetic embryonic stem (pES) cells provide a valuable in vitro model system for studying the molecular mechanisms that underlie genomic imprinting. However, the pluripotency of pES cells and the expression profiles of paternally expressed imprinted genes have not been fully explored. In this study, three mouse pES cell lines were established and the differentiation potential of these cells in extended culture was evaluated. The undifferentiated cells had a normal karyotype and homozygous genome, and expressed ES-cell-specific molecular markers. The cells remained undifferentiated after more than 50 passages and exhibited pluripotent differentiation capacity. All three lines of the established ES cells produced teratomas; two lines of ES cells produced chimeras and germline transmission. Furthermore, activation of the paternally expressed imprinted genes Snrpn, U2af1-rs1, Peg3, Impact, Zfp127, Dlk1 and Mest in these cells was detected. Some paternally expressed imprinted genes were found to be expressed in the blastocyst stage of parthenogenetically activated embryos in vitro and their expression level increased with extended pES cell culture. Furthermore, our data show that the activation of these paternally expressed imprinted genes in pES cells was associated with a change in the methylation of the related differentially methylated regions. These findings provide direct evidence for the pluripotency of pES cells and demonstrate the association between the DNA methylation pattern and the activation of paternally expressed imprinted genes in pES cells. Thus, the established ES cell lines provide a valuable model for studying epigenetic regulation in mammalian development.
Collapse
Affiliation(s)
- Hua Jiang
- The Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences/Shanghai JiaoTong University School of Medicine, Shanghai, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
CTCF is the master organizer of domain-wide allele-specific chromatin at the H19/Igf2 imprinted region. Mol Cell Biol 2007; 28:1124-35. [PMID: 18039862 DOI: 10.1128/mcb.01361-07] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A paternally methylated imprinting control region (ICR) directs allele-specific expression of the imprinted H19 and Igf2 genes. CTCF protein binding in the ICR is required in the maternal chromosome for insulating Igf2 from the shared enhancers, initiation of the H19 promoter transcription, maintaining DNA hypomethylation, and chromosome loop formation. Using novel quantitative allele-specific chromatin immunoprecipitation-single-nucleotide primer extension assays, we measured the chromatin composition along the H19/Igf2 imprinted domain in cells with engineered mutations at the four ICR-CTCF binding sites. Abolishing CTCF binding in the ICR reduced normally maternal allele-specific H3K9 acetylation and H3K4 methylation at the H19 ICR and promoter/gene body and maternal allele-specific H3K27 trimethylation at the Igf2 P2 promoter and Igf2 differentially methylated regions (DMRs). Paternal H3K27 trimethylation and macroH2A1 became biallelic in the mutant cells at the H19 promoter while paternal H3K9 acetylation and H3K4 methylation became biallelic at the Igf2 DMRs. We provide evidence that CTCF is the single major organizer of allele-specific chromatin composition in this domain. This finding has important implications: (i) for mechanisms of insulation since CTCF regulates chromatin at a distance, involving repression by H3K27 trimethylation at the Igf2 locus independently of repression by DNA hypermethylation; and (ii) for mechanisms of genomic imprinting since point mutations of CTCF binding sites cause domain-wide "paternalization" of the maternal allele's chromatin composition.
Collapse
|
36
|
Eckardt S, Leu NA, Bradley HL, Kato H, Bunting KD, McLaughlin KJ. Hematopoietic reconstitution with androgenetic and gynogenetic stem cells. Genes Dev 2007; 21:409-19. [PMID: 17322401 PMCID: PMC1804330 DOI: 10.1101/gad.1524207] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2006] [Accepted: 01/09/2007] [Indexed: 11/25/2022]
Abstract
Parthenogenetic embryonic stem (ES) cells with two oocyte-derived genomes (uniparental) have been proposed as a source of autologous tissue for transplantation. The therapeutic applicability of any uniparental cell type is uncertain due to the consequences of genomic imprinting that in mammalian uniparental tissues causes unbalanced expression of imprinted genes. We transplanted uniparental fetal liver cells into lethally irradiated adult mice to test their capacity to replace adult hematopoietic tissue. Both maternal (gynogenetic) and paternal (androgenetic) derived cells conveyed long-term, multilineage reconstitution of hematopoiesis in recipients, with no associated pathologies. We also establish that uniparental ES cells can differentiate into transplantable hematopoietic progenitors in vitro that contribute to long-term hematopoiesis in recipients. Hematopoietic tissue in recipients maintained fidelity of parent-of-origin methylation marks at the Igf2/H19 locus; however, variability occurred in the maintenance of parental-specific methylation marks at other loci. In summary, despite genomic imprinting and its consequences on development that are particularly evident in the androgenetic phenotype, uniparental cells of both parental origins can form adult-transplantable stem cells and can repopulate an adult organ.
Collapse
Affiliation(s)
- Sigrid Eckardt
- Center for Animal Transgenesis and Germ Cell Research, New Bolton Center, University of Pennsylvania, Kennett Square, Pennsylvania 19348, USA
| | - N. Adrian Leu
- Center for Animal Transgenesis and Germ Cell Research, New Bolton Center, University of Pennsylvania, Kennett Square, Pennsylvania 19348, USA
| | - Heath L. Bradley
- Department of Pediatrics, School of Medicine, Johns Hopkins University, Baltimore, Maryland 21287, USA
| | - Hiromi Kato
- Institute of Advanced Technology, Kinki University, Kainan, Wakayama 642-0017, Japan
| | - Kevin D. Bunting
- Division of Hematology/Oncology, Case Western Reserve University, Cleveland, Ohio 44106, USA
- Center for Stem Cell and Regenerative Medicine, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | - K. John McLaughlin
- Center for Animal Transgenesis and Germ Cell Research, New Bolton Center, University of Pennsylvania, Kennett Square, Pennsylvania 19348, USA
| |
Collapse
|
37
|
Wakayama S, Hikichi T, Suetsugu R, Sakaide Y, Bui HT, Mizutani E, Wakayama T. Efficient establishment of mouse embryonic stem cell lines from single blastomeres and polar bodies. Stem Cells 2006; 25:986-93. [PMID: 17185608 DOI: 10.1634/stemcells.2006-0615] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Recently, ES cell lines were established from single blastomeres taken from eight-cell embryos in mice and humans with success rates of 4% and 2%, respectively, which suggests that the method could be used in regenerative medicine to reduce ethical concerns over harm to embryos. However, those studies used other ES cells as supporting cells. Here, we report a simple and highly efficient method of establishing mouse ES cell lines from single blastomeres, in which single blastomeres are simply plated onto a feeder layer of mouse embryonic fibroblasts with modified ES cell medium. A total of 112 ES cell lines were established from two-cell (establishment rate, 50%-69%), early four-cell (28%-40%), late four-cell (22%), and eight-cell (14%-16%) stage embryos. We also successfully established 18 parthenogenetic ES cell lines from first (36%-40%) and second polar bodies (33%), the nuclei of which were reconstructed to embryos by nuclear transfer. Most cell lines examined maintained normal karyotypes and expressed markers of pluripotency, including germline transmission in chimeric mice. Our results suggest that the single cells of all early-stage embryos or polar bodies have the potential to be converted into ES cells without any special treatment.
Collapse
Affiliation(s)
- Sayaka Wakayama
- Laboratory for Genomic Reprogramming, Center for Developmental Biology, RIKEN Kobe, Kobe, Japan
| | | | | | | | | | | | | |
Collapse
|
38
|
Guo J, Jauch A, Heidi HG, Schoell B, Erz D, Schrank M, Janssen JWG. Multicolor karyotype analyses of mouse embryonic stem cells. In Vitro Cell Dev Biol Anim 2006; 41:278-83. [PMID: 16409114 DOI: 10.1290/990771.1] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The manipulation of embryonic stem (ES) cells to introduce directional genetic changes into the genome of mice has become an important tool in biomedical research. Monitoring of cell morphology before and after DNA manipulation and special culture conditions are a prerequisite to preserve the pluripotent properties of ES cells and thus their ability to generate chimera and effective germline transmission (GLT). It has been reported that prolonged cell culturing may affect the diploid chromosomal composition of cells and therefore the percentage of chimerism and GLT. Herein, we report multicolor-fluorescence in situ hybridization (M-FISH) analysis of four different ES cell lines/clones. Although the morphology of all four ES cell lines/clones appeared normal and all four expressed the early markers Oct-3/4 and Nanog, two cell lines presented consistent numerical and structural chromosome aberrations. We demonstrate that M-FISH is a sensitive and accurate method for a comprehensive karyotype analysis of ES cells and may minimize time, costs, and disappointments due to inadequate ES cell sources.
Collapse
Affiliation(s)
- Jianli Guo
- Institute of Human Genetics, University of Heidelberg, D-69120 Heidelberg, Germany
| | | | | | | | | | | | | |
Collapse
|
39
|
Bockamp E, Antunes C, Maringer M, Heck R, Presser K, Beilke S, Ohngemach S, Alt R, Cross M, Sprengel R, Hartwig U, Kaina B, Schmitt S, Eshkind L. Tetracycline-controlled transgenic targeting from the SCL locus directs conditional expression to erythrocytes, megakaryocytes, granulocytes, and c-kit-expressing lineage-negative hematopoietic cells. Blood 2006; 108:1533-41. [PMID: 16675709 DOI: 10.1182/blood-2005-12-012104] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The stem cell leukemia gene SCL, also known as TAL-1, encodes a basic helix-loop-helix transcription factor expressed in erythroid, myeloid, megakaryocytic, and hematopoietic stem cells. To be able to make use of the unique tissue-restricted and spatio-temporal expression pattern of the SCL gene, we have generated a knock-in mouse line containing the tTA-2S tetracycline transactivator under the control of SCL regulatory elements. Analysis of this mouse using different tetracycline-dependent reporter strains demonstrated that switchable transgene expression was restricted to erythrocytes, megakaryocytes, granulocytes, and, importantly, to the c-kit-expressing and lineage-negative cell fraction of the bone marrow. In addition, conditional transgene activation also was detected in a very minor population of endothelial cells and in the kidney. However, no activation of the reporter transgene was found in the brain of adult mice. These findings suggested that the expression of tetracycline-responsive reporter genes recapitulated the known endogenous expression pattern of SCL. Our data therefore demonstrate that exogenously inducible and reversible expression of selected transgenes in myeloid, megakaryocytic, erythroid, and c-kit-expressing lineage-negative bone marrow cells can be directed through SCL regulatory elements. The SCL knock-in mouse presented here represents a powerful tool for studying normal and malignant hematopoiesis in vivo.
Collapse
Affiliation(s)
- Ernesto Bockamp
- Institute of Toxicology/Mouse Genetics, Johannes Gutenberg-Universität Mainz, Obere Zahlbacher Str 67, 55131 Mainz, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Szabó PE, Han L, Hyo-Jung J, Mann JR. Mutagenesis in mice of nuclear hormone receptor binding sites in the Igf2/H19 imprinting control region. Cytogenet Genome Res 2006; 113:238-46. [PMID: 16575186 DOI: 10.1159/000090838] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2005] [Accepted: 08/19/2005] [Indexed: 11/19/2022] Open
Abstract
The H19/Igf2 imprinting control region (ICR) is a DNA methylation-dependent chromatin insulator in somatic cells. The hypomethylated maternally inherited ICR binds the insulator protein CTCF at four sites, and blocks activity of the proximal Igf2 promoter by insulating it from the shared distal enhancers. The hypermethylated paternally inherited ICR lacks CTCF binding and insulator activity, but induces methylation-silencing of the paternal H19 promoter. The paternal-specific methylation of the ICR is established in the male germ cells, while the ICR emerges from the female germ line in an unmethylated form. Despite several attempts to find cis-regulatory elements, it is still unknown what determines these male and female germ cell-specific epigenetic modifications. We recently proposed that five in vivo footprints spanning fifteen half nuclear hormone receptor (NHR) binding sites within the ICR might be involved, and here we report on the effects of mutagenizing all of these half sites in mice. No effect was obtained--in the female and male germ lines the mutant ICR remained hypomethylated and hypermethylated, respectively. The ICR imprinting mechanism remains undefined.
Collapse
Affiliation(s)
- P E Szabó
- Division of Biology, Beckman Research Institute of the City of Hope, Duarte, CA 91010-3011, USA.
| | | | | | | |
Collapse
|
41
|
Marques C, Fernandes S, Carvalho F, Silva J, Sousa M, Barros A. Estudo do imprinting genómico em espermatozóides de pacientes com oligozoospermia. Rev Int Androl 2005. [DOI: 10.1016/s1698-031x(05)73255-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
42
|
Forrai A, Boyle K, Hart AH, Hartley L, Rakar S, Willson TA, Simpson KM, Roberts AW, Alexander WS, Voss AK, Robb L. Absence of suppressor of cytokine signalling 3 reduces self-renewal and promotes differentiation in murine embryonic stem cells. Stem Cells 2005; 24:604-14. [PMID: 16123385 DOI: 10.1634/stemcells.2005-0323] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Leukemia inhibitory factor (LIF) is required to maintain pluripotency and permit self-renewal of murine embryonic stem (ES) cells. LIF binds to a receptor complex of LIFR-beta and gp130 and signals via the Janus kinase-signal transducer and activator of transcription (JAK-STAT) pathway, with signalling attenuated by suppressor of cytokine signalling (SOCS) proteins. Recent in vivo studies have highlighted the role of SOCS-3 in the negative regulation of signalling via gp130. To determine the role of SOCS-3 in ES cell biology, SOCS-3-null ES cell lines were generated. When cultured in LIF levels that sustain self-renewal of wild-type cells, SOCS-3-null ES cell lines exhibited less self-renewal and greater differentiation into primitive endoderm. The absence of SOCS-3 enhanced JAK-STAT and extracellular signal-related kinase 1/2 (ERK-1/2)-mitogen-activated protein kinase (MAPK) signal transduction via gp130, with higher levels of phosphorylated STAT-1, STAT-3, SH-2 domain-containing cytoplasmic protein tyrosine phosphatase 2 (SHP-2), and ERK-1/2 in steady state and in response to LIF stimulation. Attenuation of ERK signalling by the addition of MAPK/ERK kinase (MEK) inhibitors to SOCS-3-null ES cell cultures rescued the differentiation phenotype, but did not restore proliferation to wild-type levels. In summary, SOCS-3 plays a crucial role in the regulation of the LIF signalling pathway in murine ES cells. Its absence perturbs the balance between activation of the JAK-STAT and SHP-2-ERK-1/2-MAPK pathways, resulting in less self-renewal and a greater potential for differentiation into the primitive endoderm lineage.
Collapse
Affiliation(s)
- Ariel Forrai
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3050, Australia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Hart AH, Hartley L, Ibrahim M, Robb L. Identification, cloning and expression analysis of the pluripotency promoting Nanog genes in mouse and human. Dev Dyn 2004; 230:187-98. [PMID: 15108323 DOI: 10.1002/dvdy.20034] [Citation(s) in RCA: 229] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The murine Nanog gene, a member of the homeobox family of DNA binding transcription factors, has been shown recently to maintain pluripotency of embryonic stem cells. We have used a sequence homology and expression screen to identify and clone the mouse and human Nanog genes and characterized their phylogenetic context and expression patterns. We report here the gene structure and expression patterns of the mouse Nanog gene, the human Nanog and Nanog2 genes, and six processed human Nanog pseudogenes. Mouse Nanog expression is high in undifferentiated embryonic stem cells and is down-regulated during embryonic stem cell differentiation, concomitant with loss of pluripotency. Murine embryonic Nanog expression is detected in the inner cell mass of the blastocyst. After implantation, Nanog is detectable at embryonic day (E) 6 in proximal epiblast in the region of the presumptive primitive streak. Expression extends distally as the streak elongates during gastrulation and remains restricted to epiblast. Nanog RNA is down-regulated in cells ingressing through the streak to form mesoderm and definitive endoderm. Nanog expression also marks the pluripotent germ cells of the nascent gonad at E11.5-E12.5 and is highly expressed in germ cell tumour and teratoma-derived cell lines. Reverse transcriptase-polymerase chain reaction analysis detected mouse Nanog expression at low levels in several adult tissues. The human Nanog genes are expressed in embryonic stem cells and down-regulated in all adult tissues and differentiated cell lines examined. High levels of human Nanog expression were detected by Northern analysis in the undifferentiated N-Tera embryonal carcinoma cell line. The conservation in gene sequence, structure, and expression of mouse and human Nanog and Nanog2 genes may reflect a common role in the maintenance of pluripotency in both species.
Collapse
Affiliation(s)
- Adam H Hart
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.
| | | | | | | |
Collapse
|
44
|
Szabó PE, Tang SHE, Silva FJ, Tsark WMK, Mann JR. Role of CTCF binding sites in the Igf2/H19 imprinting control region. Mol Cell Biol 2004; 24:4791-800. [PMID: 15143173 PMCID: PMC416431 DOI: 10.1128/mcb.24.11.4791-4800.2004] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A approximately 2.4-kb imprinting control region (ICR) regulates somatic monoallelic expression of the Igf2 and H19 genes. This is achieved through DNA methylation-dependent chromatin insulator and promoter silencing activities on the maternal and paternal chromosomes, respectively. In somatic cells, the hypomethylated maternally inherited ICR binds the insulator protein CTCF at four sites and blocks activity of the proximal Igf2 promoter by insulating it from its distal enhancers. CTCF binding is thought to play a direct role in inhibiting methylation of the ICR in female germ cells and in somatic cells and, therefore, in establishing and maintaining imprinting of the Igf2/H19 region. Here, we report on the effects of eliminating ICR CTCF binding by severely mutating all four sites in mice. We found that in the female and male germ lines, the mutant ICR remained hypomethylated and hypermethylated, respectively, showing that the CTCF binding sites are dispensable for imprinting establishment. Postfertilization, the maternal mutant ICR acquired methylation, which could be explained by loss of methylation inhibition, which is normally provided by CTCF binding. Adjacent regions in cis-the H19 promoter and gene-also acquired methylation, accompanied by downregulation of H19. This could be the result of a silencing effect of the methylated maternal ICR.
Collapse
Affiliation(s)
- Piroska E Szabó
- Division of Biology, Beckman Research Institute of the City of Hope, 1450 East Duarte Rd., Duarte, CA 91010-3011, USA.
| | | | | | | | | |
Collapse
|
45
|
Vrana KE, Hipp JD, Goss AM, McCool BA, Riddle DR, Walker SJ, Wettstein PJ, Studer LP, Tabar V, Cunniff K, Chapman K, Vilner L, West MD, Grant KA, Cibelli JB. Nonhuman primate parthenogenetic stem cells. Proc Natl Acad Sci U S A 2003; 100 Suppl 1:11911-6. [PMID: 14504386 PMCID: PMC304106 DOI: 10.1073/pnas.2034195100] [Citation(s) in RCA: 152] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Parthenogenesis is the biological phenomenon by which embryonic development is initiated without male contribution. Whereas parthenogenesis is a common mode of reproduction in lower organisms, the mammalian parthenote fails to produce a successful pregnancy. We herein describe in vitro parthenogenetic development of monkey (Macaca fascicularis) eggs to the blastocyst stage, and their use to create a pluripotent line of stem cells. These monkey stem cells (Cyno-1 cells) are positive for telomerase activity and are immunoreactive for alkaline phosphatase, octamer-binding transcription factor 4 (Oct-4), stage-specific embryonic antigen 4 (SSEA-4), tumor rejection antigen 1-60 (TRA 1-60), and tumor rejection antigen 1-81 (TRA 1-81) (traditional markers of human embryonic stem cells). They have a normal chromosome karyotype (40 + 2) and can be maintained in vitro in an undifferentiated state for extended periods of time. Cyno-1 cells can be differentiated in vitro into dopaminergic and serotonergic neurons, contractile cardiomyocyte-like cells, smooth muscle, ciliated epithelia, and adipocytes. When Cyno-1 cells were injected into severe combined immunodeficient mice, teratomas with derivatives from all three embryonic germ layers were obtained. When grown on fibronectin/laminin-coated plates and in neural progenitor medium, Cyno-1 cells assume a neural precursor phenotype (immunoreactive for nestin). However, these cells remain proliferative and express no functional ion channels. When transferred to differentiation conditions, the nestin-positive precursors assume neuronal and epithelial morphologies. Over time, these cells acquire electrophysiological characteristics of functional neurons (appearance of tetrodotoxin-sensitive, voltage-dependent sodium channels). These results suggest that stem cells derived from the parthenogenetically activated nonhuman primate egg provide a potential source for autologous cell therapy in the female and bypass the need for creating a competent embryo.
Collapse
Affiliation(s)
- Kent E Vrana
- Center for Neurobehavioral Study of Alcohol, Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Baqir S, Smith LC. Growth RestrictedIn VitroCulture Conditions Alter the Imprinted Gene Expression Patterns of Mouse Embryonic Stem Cells. CLONING AND STEM CELLS 2003; 5:199-212. [PMID: 14588138 DOI: 10.1089/153623003769645866] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Embryonic stem (ES) cell-derived clones and chimeras are often associated with growth abnormalities during fetal development, leading to the production of over/under-weight offspring that show elevated neonatal mortality and morbidity. Due to the role played by imprinted genes in controlling fetal growth, much of the blame is pointed at improper epigenetic reprogramming of cells used in the procedures. We have analyzed the expression pattern of two growth regulatory imprinted genes, namely insulin like growth factor II (Igf2) and H19, in mouse ES cells cultured under growth restricted conditions and after in vitro aging. Culture of cells with serum-depleted media (starvation) and at high cell density (confluence) increased the expression of both imprinted genes and led to aberrant methylation profiles of differentially methylated regions in key regulatory sites of Igf2 and H19. These findings confirm that growth constrained cultures of ES cells are associated with alterations to methylation of the regulatory domains and the expression patterns of imprinted genes, suggesting a possible role of epigenetic factors in the loss of developmental potential.
Collapse
Affiliation(s)
- Senan Baqir
- CRRA, Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, Canada
| | | |
Collapse
|
47
|
Xin Z, Tachibana M, Guggiari M, Heard E, Shinkai Y, Wagstaff J. Role of histone methyltransferase G9a in CpG methylation of the Prader-Willi syndrome imprinting center. J Biol Chem 2003; 278:14996-5000. [PMID: 12586828 DOI: 10.1074/jbc.m211753200] [Citation(s) in RCA: 121] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Imprinted genes in mammals are often located in clusters whose imprinting is subject to long range regulation by cis-acting sequences known as imprinting centers (ICs). The mechanisms by which these ICs exert their effects is unknown. The Prader-Willi syndrome IC (PWS-IC) on human chromosome 15 and mouse chromosome 7 regulates imprinted gene expression bidirectionally within an approximately 2-megabase region and shows CpG methylation and histone H3 Lys-9 methylation in somatic cells specific for the maternal chromosome. Here we show that histone H3 Lys-9 methylation of the PWS-IC is reduced in mouse embryonic stem (ES) cells lacking the G9a histone H3 Lys-9/Lys-27 methyltransferase and that maintenance of CpG methylation of the PWS-IC in mouse ES cells requires the function of G9a. We show by RNA fluorescence in situ hybridization (FISH) that expression of Snrpn, an imprinted gene regulated by the PWS-IC, is biallelic in G9a -/- ES cells, indicating loss of imprinting. By contrast, Dnmt1 -/- ES cells lack CpG methylation of the PWS-IC but have normal levels of H3 Lys-9 methylation of the PWS-IC and show normal monoallelic Snrpn expression. Our results demonstrate a role for histone methylation in the maintenance of parent-specific CpG methylation of imprinting regulatory regions and suggest a possible role of histone methylation in establishment of these CpG methylation patterns.
Collapse
Affiliation(s)
- Zhenghan Xin
- Departments of Biochemistry and Molecular Genetics and Pediatrics, University of Virginia, Charlottesville, Virginia 22908-0733, USA
| | | | | | | | | | | |
Collapse
|
48
|
Frew IJ, Dickins RA, Cuddihy AR, Del Rosario M, Reinhard C, O'Connell MJ, Bowtell DDL. Normal p53 function in primary cells deficient for Siah genes. Mol Cell Biol 2002; 22:8155-64. [PMID: 12417719 PMCID: PMC134066 DOI: 10.1128/mcb.22.23.8155-8164.2002] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Overexpression studies have suggested that Siah1 proteins may act as effectors of p53-mediated cellular responses and as regulators of mitotic progression. We have tested these hypotheses using Siah gene knockout mice. Siah1a and Siah1b were not induced by activation of endogenous p53 in tissues, primary murine embryonic fibroblasts (MEFs) or thymocytes. Furthermore, primary MEFs lacking Siah1a, Siah1b, Siah2, or both Siah2 and Siah1a displayed normal cell cycle progression, proliferation, p53-mediated senescence, and G(1) phase cell cycle arrest. Primary thymocytes deficient for Siah1a, Siah2, or both Siah2 and Siah1a, E1A-transformed MEFs lacking Siah1a, Siah1b, or Siah2, and Siah1b-null ES cells all underwent normal p53-mediated apoptosis. Finally, inhibition of Siah1b expression in Siah2 Siah1a double-mutant cells failed to inhibit cell division, p53-mediated induction of p21 expression, or cell cycle arrest. Our loss-of-function experiments do not support a general role for Siah genes in p53-mediated responses or mitosis.
Collapse
Affiliation(s)
- Ian J Frew
- Trescowthick Research Laboratories, Peter MacCallum Cancer Institute, East Melbourne, Victoria 3002, Australia
| | | | | | | | | | | | | |
Collapse
|
49
|
Onyango P, Jiang S, Uejima H, Shamblott MJ, Gearhart JD, Cui H, Feinberg AP. Monoallelic expression and methylation of imprinted genes in human and mouse embryonic germ cell lineages. Proc Natl Acad Sci U S A 2002; 99:10599-604. [PMID: 12114541 PMCID: PMC124986 DOI: 10.1073/pnas.152327599] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2002] [Accepted: 05/31/2002] [Indexed: 11/18/2022] Open
Abstract
Imprinting is an epigenetic modification leading to monoallelic expression of some genes, and disrupted imprinting is believed to be a barrier to human stem cell transplantation, based on studies that suggest that epigenetic marks are unstable in mouse embryonic germ (EG) and embryonic stem (ES) cells. However, stem cell imprinting has not previously been examined directly in humans. We found that three imprinted genes, TSSC5, H19, and SNRPN, show monoallelic expression in in vitro differentiated human EG-derived cells, and a fourth gene, IGF2, shows partially relaxed imprinting at a ratio from 4:1 to 5:1, comparable to that found in normal somatic cells. In addition, we found normal methylation of an imprinting control region (ICR) that regulates H19 and IGF2 imprinting, suggesting that imprinting may not be a significant epigenetic barrier to human EG cell transplantation. Finally, we were able to construct an in vitro mouse model of genomic imprinting, by generating EG cells from 8.5-day embryos of an interspecific cross, in which undifferentiated cells show biallelic expression and acquire preferential parental allele expression after differentiation. This model should allow experimental manipulation of epigenetic modifications of cultured EG cells that may not be possible in human stem cell studies.
Collapse
Affiliation(s)
- Patrick Onyango
- Institute of Genetic Medicine and Department of Medicine, Johns Hopkins University School of Medicine, 1064 Ross, 720 Rutland Avenue, Baltimore, MD 21205, USA
| | | | | | | | | | | | | |
Collapse
|
50
|
Banakh I, Sali A, Dubljevic V, Grobben B, Slegers H, Goding JW. Structural basis of allotypes of ecto-nucleotide pyrophosphatase/phosphodiesterase (plasma cell membrane glycoprotein PC-1) in the mouse and rat, and analysis of allele-specific xenogeneic antibodies. EUROPEAN JOURNAL OF IMMUNOGENETICS : OFFICIAL JOURNAL OF THE BRITISH SOCIETY FOR HISTOCOMPATIBILITY AND IMMUNOGENETICS 2002; 29:307-13. [PMID: 12121276 DOI: 10.1046/j.1365-2370.2002.00330.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Ecto-nucleotide pyrophosphatase/phosphodiesterases (E-NPPs) have been implicated in bone calcification, type II diabetes, control of purinergic signalling and tumour invasion. The gene for the plasma cell membrane glycoprotein PC-1 in the mouse (Enpp1) has been known since 1970 to exist in two allelic forms, but their structural basis was heretofore unknown. We show that the Enpp1a and Enpp1b alleles differ by only two amino acids, at positions 650 and 679 in the C-terminal nuclease-like domain. Histidine 650 but not arginine 679 forms an essential part of the Enpp1a epitope recognized by monoclonal antibody IR-518. Sequences of LEW and LOU rats and the rat glioma cell line C6 differ from that of the mouse by about 60 amino acids. The LOU and C6 cell line sequences differ by only three amino acids, but differ from the LEW sequence by 10 amino acids. All three rat strains possess the mouse Enpp1b allele at positions 650 and 679. Despite numerous other differences from the mouse, rats immunized with Enpp1a mouse cells have generated monoclonal antibodies specific for the Enpp1a allele, suggesting that amino acids 650 and 679 may be particularly immunogenic. The cytoplasmic tails of the mouse and rat are highly conserved, but are significantly different from human cytoplasmic tails.
Collapse
Affiliation(s)
- I Banakh
- Deparment of Pathology and Immunology, Manash Medical School, Manash University, Prahran, Victoria, Australia
| | | | | | | | | | | |
Collapse
|