1
|
Zhu Z, Younas L, Zhou Q. Evolution and regulation of animal sex chromosomes. Nat Rev Genet 2025; 26:59-74. [PMID: 39026082 DOI: 10.1038/s41576-024-00757-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/13/2024] [Indexed: 07/20/2024]
Abstract
Animal sex chromosomes typically carry the upstream sex-determining gene that triggers testis or ovary development and, in some species, are regulated by global dosage compensation in response to functional decay of the Y chromosome. Despite the importance of these pathways, they exhibit striking differences across species, raising fundamental questions regarding the mechanisms underlying their evolutionary turnover. Recent studies of non-model organisms, including insects, reptiles and teleosts, have yielded a broad view of the diversity of sex chromosomes that challenges established theories. Moreover, continued studies in model organisms with recently developed technologies have characterized the dynamics of sex determination and dosage compensation in three-dimensional nuclear space and at single-cell resolution. Here, we synthesize recent insights into sex chromosomes from a variety of species to review their evolutionary dynamics with respect to the canonical model, as well as their diverse mechanisms of regulation.
Collapse
Affiliation(s)
- Zexian Zhu
- Evolutionary and Organismal Biology Research Center and Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Lubna Younas
- Department of Neuroscience and Developmental Biology, University of Vienna, Vienna, Austria
| | - Qi Zhou
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, China.
- State Key Laboratory of Transvascular Implantation Devices, The 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.
| |
Collapse
|
2
|
Liu K, Gu Y, Pan X, Chen S, Cheng J, Zhang L, Cao M. Behenic acid alleviates inflammation and insulin resistance in gestational diabetes mellitus by regulating TLR4/NF-κB signaling pathway. iScience 2024; 27:111019. [PMID: 39429784 PMCID: PMC11490720 DOI: 10.1016/j.isci.2024.111019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 07/13/2024] [Accepted: 09/20/2024] [Indexed: 10/22/2024] Open
Abstract
Gestational diabetes mellitus (GDM) is a distinct form of diabetes that poses a significant threat to the health of both pregnant women and fetuses. The objective of this study was to investigate the impact of behenic acid (BA) on glucose metabolism, inflammation, and insulin resistance in GDM mice, and to elucidate the underlying molecular mechanism. Here, we demonstrated that daily administration of 10 mg/mL BA during pregnancy effectively ameliorated abnormal glucose metabolism in GDM mice and their offspring and improved birth outcomes in the offspring. Moreover, BA promoted the proliferation of islet β cells, restored their normal function, and augmented glucose uptake by skeletal muscle cells. Mechanistically, BA mitigated inflammation and insulin resistance in GDM mice by inhibiting activation of the TLR4/NF-κB signaling pathway. Our study provides compelling evidence supporting the efficacy of BA in improving GDM, suggesting its potential use as a dietary supplement for preventing and treating GDM.
Collapse
Affiliation(s)
- Kerong Liu
- Department of Endocrinology, Affiliated Children’s Hospital of Jiangnan University (Wuxi Children’s Hospital), Wuxi 214023, Jiangsu, China
| | - Ying Gu
- Department of Obstetrics and Gynecology, Affiliated Women’s Hospital of Jiangnan University (Wuxi Maternity and Child Health Care Hospital), Wuxi 214002, Jiangsu, China
| | - Xingnan Pan
- Department of Pediatric, Affiliated Children’s Hospital of Jiangnan University (Wuxi Children’s Hospital), Wuxi 214023, Jiangsu, China
| | - Sha Chen
- Department of Obstetrics and Gynecology, Affiliated Women’s Hospital of Jiangnan University (Wuxi Maternity and Child Health Care Hospital), Wuxi 214002, Jiangsu, China
| | - Jie Cheng
- Center for Reproductive Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200135, China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai 200135, China
| | - Le Zhang
- Department of Neonatology, Affiliated Children’s Hospital of Jiangnan University (Wuxi Children’s Hospital), Wuxi 214023, Jiangsu, China
| | - Minkai Cao
- Department of Obstetrics and Gynecology, Affiliated Women’s Hospital of Jiangnan University (Wuxi Maternity and Child Health Care Hospital), Wuxi 214002, Jiangsu, China
| |
Collapse
|
3
|
Racca JD, Chen YS, Brabender AR, Battistin U, Weiss MA, Georgiadis MM. Role of nucleobase-specific interactions in the binding and bending of DNA by human male sex determination factor SRY. J Biol Chem 2024; 300:107683. [PMID: 39168182 PMCID: PMC11458547 DOI: 10.1016/j.jbc.2024.107683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/04/2024] [Accepted: 08/06/2024] [Indexed: 08/23/2024] Open
Abstract
Y-chromosome-encoded master transcription factor SRY functions in the embryogenesis of therian mammals to initiate male development. Through interactions of its conserved high-mobility group box within a widened DNA minor groove, SRY and related Sox factors induce sharp bends at specific DNA target sites. Here, we present the crystal structure of the SRY high-mobility group domain bound to a DNA site containing consensus element 5'-ATTGTT. The structure contains three complexes in the asymmetric unit; in each complex, SRY forms 10 hydrogen bonds with minor-groove base atoms in 5'-CATTGT/ACAATG-3', shifting the recognition sequence by one base pair (italics). These nucleobase interactions involve conserved residues Arg7, Asn10, and Tyr74 on one side of intercalated Ile13 (the cantilever) and Arg20, Asn32, and Ser36 on the other. Unlike the less-bent NMR structure, DNA bend angles (69-84°) of the distinct box-DNA complexes are similar to those observed in homologous Sox domain-DNA structures. Electrophoretic studies indicate that respective substitutions of Asn32, Ser36, or Tyr74 by Ala exhibit slightly attenuated specific DNA-binding affinity and bend angles (70-73°) relative to WT (79°). By contrast, respective substitutions of Arg7, Asn10, or Arg20 by Ala markedly impaired DNA-binding affinity in association with much smaller DNA bend angles (53-65°). In a rodent cell-based model of the embryonic gonadal ridge, full-length SRY variants bearing these respective Ala substitutions exhibited significantly decreased transcriptional activation of SRY's principal target gene (Sox9). Together, our findings suggest that nucleobase-specific hydrogen bonds by SRY are critical for specific DNA binding, bending, and transcriptional activation.
Collapse
Affiliation(s)
- Joseph D Racca
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Yen-Shan Chen
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Adam R Brabender
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Umberto Battistin
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Michael A Weiss
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA.
| | - Millie M Georgiadis
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA.
| |
Collapse
|
4
|
Denisova EI, Makarova EN. Influence of leptin administration to pregnant mice on fetal gene expression and adaptation to sweet and fatty food in adult offspring of different sexes. Vavilovskii Zhurnal Genet Selektsii 2024; 28:288-298. [PMID: 38952707 PMCID: PMC11214896 DOI: 10.18699/vjgb-24-33] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 02/11/2024] [Accepted: 03/03/2024] [Indexed: 07/03/2024] Open
Abstract
Elevated leptin in pregnant mice improves metabolism in offspring fed high-calorie diet and its influence may be sex-specific. Molecular mechanisms mediating leptin programming action are unknown. We aimed to investigate programming actions of maternal leptin on the signaling function of the placenta and fetal liver and on adaptation to high-calorie diet in male and female offspring. Female C57BL/6J mice received leptin injections in mid-pregnancy. Gene expression was assessed in placentas and in the fetal brain and liver at the end of pregnancy. Metabolic parameters and gene expression in the liver, brown fat and hypothalamus were assessed in adult male and female offspring that had consumed sweet and fatty diet (SFD: chow, lard, sweet biscuits) for 2 weeks. Females had lower blood levels of leptin, glucose, triglycerides and cholesterol than males. Consuming SFD, females had increased Ucp1 expression in brown fat, while males had accumulated fat, decreased blood triglycerides and liver Fasn expression. Leptin administration to mothers increased Igf1 and Dnmt3b expression in fetal liver, decreased post-weaning growth rate, and increased hypothalamic Crh expression in response to SFD in both sexes. Only in male offspring this administration decreased expression of Fasn and Gck in the mature liver, increased fat mass, blood levels of glucose, triglycerides and cholesterol and Dmnt3a expression in the fetal liver. The results suggest that the influence of maternal leptin on the expression of genes encoding growth factors and DNA methyltransferases in the fetal liver may mediate its programming effect on offspring metabolic phenotypes.
Collapse
Affiliation(s)
- E I Denisova
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - E N Makarova
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|
5
|
Ferrari MTM, Silva ESDN, Nishi MY, Batista RL, Mendonca BB, Domenice S. Testicular differentiation in 46,XX DSD: an overview of genetic causes. Front Endocrinol (Lausanne) 2024; 15:1385901. [PMID: 38721146 PMCID: PMC11076692 DOI: 10.3389/fendo.2024.1385901] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 03/18/2024] [Indexed: 01/18/2025] Open
Abstract
In mammals, the development of male or female gonads from fetal bipotential gonads depends on intricate genetic networks. Changes in dosage or temporal expression of sex-determining genes can lead to differences of gonadal development. Two rare conditions are associated with disruptions in ovarian determination, including 46,XX testicular differences in sex development (DSD), in which the 46,XX gonads differentiate into testes, and 46,XX ovotesticular DSD, characterized by the coexistence of ovarian and testicular tissue in the same individual. Several mechanisms have been identified that may contribute to the development of testicular tissue in XX gonads. This includes translocation of SRY to the X chromosome or an autosome. In the absence of SRY, other genes associated with testis development may be overexpressed or there may be a reduction in the activity of pro-ovarian/antitesticular factors. However, it is important to note that a significant number of patients with these DSD conditions have not yet recognized a genetic diagnosis. This finding suggests that there are additional genetic pathways or epigenetic mechanisms that have yet to be identified. The text will provide an overview of the current understanding of the genetic factors contributing to 46,XX DSD, specifically focusing on testicular and ovotesticular DSD conditions. It will summarize the existing knowledge regarding the genetic causes of these differences. Furthermore, it will explore the potential involvement of other factors, such as epigenetic mechanisms, in developing these conditions.
Collapse
Affiliation(s)
- Maria Tereza Martins Ferrari
- Disciplina de Endocrinologia e Metabologia, Laboratório de Hormônios e Genética Molecular/LIM42, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Elinaelma Suelane do Nascimento Silva
- Disciplina de Endocrinologia e Metabologia, Laboratório de Hormônios e Genética Molecular/LIM42, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Mirian Yumie Nishi
- Disciplina de Endocrinologia e Metabologia, Laboratório de Hormônios e Genética Molecular/LIM42, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Rafael Loch Batista
- Disciplina de Endocrinologia e Metabologia, Laboratório de Hormônios e Genética Molecular/LIM42, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Berenice Bilharinho Mendonca
- Disciplina de Endocrinologia e Metabologia, Laboratório de Hormônios e Genética Molecular/LIM42, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
- Laboratório de Sequenciamento em Larga Escala (SELA), Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Sorahia Domenice
- Disciplina de Endocrinologia e Metabologia, Laboratório de Hormônios e Genética Molecular/LIM42, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
6
|
Migale R, Neumann M, Mitter R, Rafiee MR, Wood S, Olsen J, Lovell-Badge R. FOXL2 interaction with different binding partners regulates the dynamics of ovarian development. SCIENCE ADVANCES 2024; 10:eadl0788. [PMID: 38517962 PMCID: PMC10959415 DOI: 10.1126/sciadv.adl0788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 02/16/2024] [Indexed: 03/24/2024]
Abstract
The transcription factor FOXL2 is required in ovarian somatic cells for female fertility. Differential timing of Foxl2 deletion, in embryonic versus adult mouse ovary, leads to distinctive outcomes, suggesting different roles across development. Here, we comprehensively investigated FOXL2's role through a multi-omics approach to characterize gene expression dynamics and chromatin accessibility changes, coupled with genome-wide identification of FOXL2 targets and on-chromatin interacting partners in somatic cells across ovarian development. We found that FOXL2 regulates more targets postnatally, through interaction with factors regulating primordial follicle formation and steroidogenesis. Deletion of one interactor, ubiquitin-specific protease 7 (Usp7), results in impairment of somatic cell differentiation, germ cell nest breakdown, and ovarian development, leading to sterility. Our datasets constitute a comprehensive resource for exploration of the molecular mechanisms of ovarian development and causes of female infertility.
Collapse
Affiliation(s)
- Roberta Migale
- Laboratory of Stem Cell Biology and Developmental Genetics, The Francis Crick Institute, London NW1 1AT, UK
| | - Michelle Neumann
- Laboratory of Stem Cell Biology and Developmental Genetics, The Francis Crick Institute, London NW1 1AT, UK
| | - Richard Mitter
- Bioinformatics core, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Mahmoud-Reza Rafiee
- RNA Networks Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Sophie Wood
- Genetic Modification Service, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Jessica Olsen
- Genetic Modification Service, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Robin Lovell-Badge
- Laboratory of Stem Cell Biology and Developmental Genetics, The Francis Crick Institute, London NW1 1AT, UK
| |
Collapse
|
7
|
Sosa E, Mumu SK, Alvarado CC, Wu QY, Roberson I, Espinoza A, Hsu FM, Saito K, Hunt TJ, Faith JE, Lowe MG, DiRusso JA, Clark AT. Reconstituted ovaries self-assemble without an ovarian surface epithelium. Stem Cell Reports 2023; 18:2190-2202. [PMID: 37890483 PMCID: PMC10679655 DOI: 10.1016/j.stemcr.2023.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/01/2023] [Accepted: 10/02/2023] [Indexed: 10/29/2023] Open
Abstract
Three-dimensional (3D) stem cell models of the ovary have the potential to benefit women's reproductive health research. One such model, the reconstituted ovary (rOvary) self-assembles with pluripotent stem cell-derived germ cells creating a 3D ovarian mimic competent to support the differentiation of functional oocytes inside follicles. In this study, we evaluated the cellular composition of the rOvary revealing the capacity to generate multiple follicles surrounded by NR2F2+ stroma cells. However, the rOvary does not develop a surface epithelium, the source of second-wave pre-granulosa cells, or steroidogenic theca. Therefore, the rOvary models represent the self-assembly of activated follicles in a pre-pubertal ovary poised but not yet competent for hormone production.
Collapse
Affiliation(s)
- Enrique Sosa
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA 90095, USA; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA; Center for Reproductive Science, Health and Education, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Sinthia Kabir Mumu
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA 90095, USA; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA; Center for Reproductive Science, Health and Education, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Christian C Alvarado
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA 90095, USA; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA; Center for Reproductive Science, Health and Education, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Qiu Ya Wu
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA 90095, USA; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA; Center for Reproductive Science, Health and Education, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Isaias Roberson
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA 90095, USA; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA; Center for Reproductive Science, Health and Education, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Alejandro Espinoza
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA; Institute for Quantitative and Computational Biosciences - The Collaboratory, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Fei-Man Hsu
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Kaori Saito
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Timothy J Hunt
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Jared E Faith
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Matthew G Lowe
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA 90095, USA; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Jonathan A DiRusso
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA 90095, USA; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA; Center for Reproductive Science, Health and Education, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Amander T Clark
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA 90095, USA; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA; Center for Reproductive Science, Health and Education, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
8
|
Gregoire EP, De Cian MC, Migale R, Perea-Gomez A, Schaub S, Bellido-Carreras N, Stévant I, Mayère C, Neirijnck Y, Loubat A, Rivaud P, Sopena ML, Lachambre S, Linssen MM, Hohenstein P, Lovell-Badge R, Nef S, Chalmel F, Schedl A, Chaboissier MC. The -KTS splice variant of WT1 is essential for ovarian determination in mice. Science 2023; 382:600-606. [PMID: 37917714 PMCID: PMC7615308 DOI: 10.1126/science.add8831] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 09/29/2023] [Indexed: 11/04/2023]
Abstract
Sex determination in mammals depends on the differentiation of the supporting lineage of the gonads into Sertoli or pregranulosa cells that govern testis and ovary development, respectively. Although the Y-linked testis-determining gene Sry has been identified, the ovarian-determining factor remains unknown. In this study, we identified -KTS, a major, alternatively spliced isoform of the Wilms tumor suppressor WT1, as a key determinant of female sex determination. Loss of -KTS variants blocked gonadal differentiation in mice, whereas increased expression, as found in Frasier syndrome, induced precocious differentiation of ovaries independently of their genetic sex. In XY embryos, this antagonized Sry expression, resulting in male-to-female sex reversal. Our results identify -KTS as an ovarian-determining factor and demonstrate that its time of activation is critical in gonadal sex differentiation.
Collapse
Affiliation(s)
- Elodie P Gregoire
- Université Côte d’Azur, Inserm, CNRS, Institut de Biologie Valrose (iBV), 06108 Nice, France
| | - Marie-Cécile De Cian
- Université Côte d’Azur, Inserm, CNRS, Institut de Biologie Valrose (iBV), 06108 Nice, France
| | - Roberta Migale
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Aitana Perea-Gomez
- Université Côte d’Azur, Inserm, CNRS, Institut de Biologie Valrose (iBV), 06108 Nice, France
| | - Sébastien Schaub
- Sorbonne Université, CNRS, Development Biology Laboratory (LBDV), 06234 Villefranche sur Mer, France
| | | | - Isabelle Stévant
- Department of Genetic Medicine and Development, University of Geneva, 1211 Geneva, Switzerland
- iGE3, Institute of Genetics and Genomics of Geneva, University of Geneva, 1211 Geneva Switzerland
| | - Chloé Mayère
- Department of Genetic Medicine and Development, University of Geneva, 1211 Geneva, Switzerland
- iGE3, Institute of Genetics and Genomics of Geneva, University of Geneva, 1211 Geneva Switzerland
| | - Yasmine Neirijnck
- Université Côte d’Azur, Inserm, CNRS, Institut de Biologie Valrose (iBV), 06108 Nice, France
| | - Agnès Loubat
- Université Côte d’Azur, Inserm, CNRS, Institut de Biologie Valrose (iBV), 06108 Nice, France
| | - Paul Rivaud
- Univ Rennes, Inserm, EHESP, IRSET (Institut de Recherche en Santé, Environnement et Travail)-UMR_S 1085, 35000 Rennes, France
| | | | - Simon Lachambre
- Infinity, Inserm, CNRS, University Toulouse III, 31024 Toulouse, France
| | - Margot M. Linssen
- Central Animal and Transgenic Facility and Dept. Human Genetics, Leiden University Medical Center, 2333ZA Leiden, the Netherlands
| | - Peter Hohenstein
- Central Animal and Transgenic Facility and Dept. Human Genetics, Leiden University Medical Center, 2333ZA Leiden, the Netherlands
| | | | - Serge Nef
- Department of Genetic Medicine and Development, University of Geneva, 1211 Geneva, Switzerland
- iGE3, Institute of Genetics and Genomics of Geneva, University of Geneva, 1211 Geneva Switzerland
| | - Frédéric Chalmel
- Univ Rennes, Inserm, EHESP, IRSET (Institut de Recherche en Santé, Environnement et Travail)-UMR_S 1085, 35000 Rennes, France
| | - Andreas Schedl
- Université Côte d’Azur, Inserm, CNRS, Institut de Biologie Valrose (iBV), 06108 Nice, France
| | | |
Collapse
|
9
|
Hüneke H, Langeheine M, Rode K, Jung K, Pilatz A, Fietz D, Kliesch S, Brehm R. Effects of a Sertoli cell-specific knockout of Connexin43 on maturation and proliferation of postnatal Sertoli cells. Differentiation 2023; 134:31-51. [PMID: 37839230 DOI: 10.1016/j.diff.2023.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 09/06/2023] [Accepted: 09/11/2023] [Indexed: 10/17/2023]
Abstract
Adult male Sertoli cell-specific Connexin43 knockout mice (SCCx43KO) exhibit higher Sertoli cell (SC) numbers per seminiferous tubule compared to their wild type (WT) littermates. Thus, deletion of this testicular gap junction protein seems to affect the proliferative potential and differentiation of "younger" SC. Although SC have so far mostly been characterised as postmitotic cells that cease to divide and become an adult, terminally differentiated cell population at around puberty, there is rising evidence that there exist exceptions from this for a very long time accepted paradigm. Aim of this study was to investigate postnatal SC development and to figure out underlying causes for observed higher SC numbers in adult KO mice. Therefore, the amount of SC mitotic figures was compared, resulting in slightly more and prolonged detection of SC mitotic figures in KO mice compared to WT. SC counting per tubular cross section revealed significantly different time curves, and comparing proliferation rates using Bromodesoxyuridine and Sox9 showed higher proliferation rates in 8-day old KO mice. SC proliferation was further investigated by Ki67 immunohistochemistry. SC in KO mice displayed a delayed initiation of cell-cycle-inhibitor p27Kip1 synthesis and prolonged synthesis of the phosphorylated tumour suppressor pRb and proliferation marker Ki67. Thus, the higher SC numbers in adult male SCCx43KO mice may arise due to two different reasons: Firstly, in prepubertal KO mice, the proliferation rate of SC was higher. Secondly, there were differences in their ability to cease proliferation as shown by the delayed initiation of p27Kip1 synthesis and the prolonged production of phosphorylated pRb and Ki67. Immunohistochemical results indicating a prolonged period of SC proliferation in SCCx43KO were confirmed by detection of proliferating SC in 17-days-old KO mice. In conclusion, deletion of the testicular gap junction protein Cx43 might prevent normal SC maturation and might even alter also the proliferation potential of adult SC.
Collapse
Affiliation(s)
- Hanna Hüneke
- Institute of Anatomy, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Marion Langeheine
- Institute of Anatomy, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Kristina Rode
- Institute of Anatomy, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Klaus Jung
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Adrian Pilatz
- Department of Urology, Pediatric Urology and Andrology, Justus Liebig University Giessen, Giessen, Germany
| | - Daniela Fietz
- Department of Veterinary Anatomy, Histology and Embryology, Justus Liebig University Giessen, Giessen, Germany
| | - Sabine Kliesch
- Centre of Andrology and Reproductive Medicine, University of Muenster, Muenster, Germany
| | - Ralph Brehm
- Institute of Anatomy, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany.
| |
Collapse
|
10
|
Sun P, Chen M, Sooranna SR, Shi D, Liu Q, Li H. The emerging roles of circRNAs in traits associated with livestock breeding. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 14:e1775. [PMID: 36631071 DOI: 10.1002/wrna.1775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 12/22/2022] [Accepted: 12/27/2022] [Indexed: 01/13/2023]
Abstract
Many indicators can be used to evaluate the productivity and quality of livestock, such as meat and milk production as well as fat deposition. Meat and milk production are measures of livestock performance, while fat deposition affects the taste and flavor of the meat. The circRNAs, are non-coding RNAs, that are involved in the regulation of all these three traits. We review the functions and mechanisms of circRNAs in muscle and fat development as well as lactation to provide a theoretical basis for circRNA research in animal husbandry. Various phenotypic changes presented in livestock may be produced by different circRNAs. Our current concern is how to use the roles played by circRNAs to our advantage to produce the best possible livestock. Hence, we describe the advantages and disadvantages of knockout techniques for circRNAs. In addition, we also put forward our thoughts regarding the mechanism and network of circRNAs to provide researchers with novel ideas of how molecular biology can help us advance our goals in animal farming. This article is categorized under: RNA in Disease and Development > RNA in Disease RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications RNA Interactions with Proteins and Other Molecules > Protein-RNA Recognition RNA Interactions with Proteins and Other Molecules > RNA-Protein Complexes.
Collapse
Affiliation(s)
- Ping Sun
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Mengjie Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Suren R Sooranna
- Institute of Reproductive and Developmental Biology, Imperial College London, London, UK
| | - Deshun Shi
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Qingyou Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, China
| | - Hui Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| |
Collapse
|
11
|
Kelly A, Chan J, Powell TL, Cox LA, Jansson T, Rosario FJ. Maternal obesity alters the placental transcriptome in a fetal sex-dependent manner. Front Cell Dev Biol 2023; 11:1178533. [PMID: 37397247 PMCID: PMC10309565 DOI: 10.3389/fcell.2023.1178533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 05/16/2023] [Indexed: 07/04/2023] Open
Abstract
Infants born to obese mothers have an increased risk of developing obesity and metabolic diseases in childhood and adulthood. Although the molecular mechanisms linking maternal obesity during pregnancy to the development of metabolic diseases in offspring are poorly understood, evidence suggests that changes in the placental function may play a role. Using a mouse model of diet-induced obesity with fetal overgrowth, we performed RNA-seq analysis at embryonic day 18.5 to identify genes differentially expressed in the placentas of obese and normal-weight dams (controls). In male placentas, 511 genes were upregulated and 791 genes were downregulated in response to maternal obesity. In female placentas, 722 genes were downregulated and 474 genes were upregulated in response to maternal obesity. The top canonical pathway downregulated in maternal obesity in male placentas was oxidative phosphorylation. In contrast, sirtuin signaling, NF-kB signaling, phosphatidylinositol, and fatty acid degradation were upregulated. In female placentas, the top canonical pathways downregulated in maternal obesity were triacylglycerol biosynthesis, glycerophospholipid metabolism, and endocytosis. In contrast, bone morphogenetic protein, TNF, and MAPK signaling were upregulated in the female placentas of the obese group. In agreement with RNA-seq data, the expression of proteins associated with oxidative phosphorylation was downregulated in male but not female placentas of obese mice. Similarly, sex-specific changes in the protein expression of mitochondrial complexes were found in placentas collected from obese women delivering large-for-gestational-age (LGA) babies. In conclusion, maternal obesity with fetal overgrowth differentially regulates the placental transcriptome in male and female placentas, including genes involved in oxidative phosphorylation.
Collapse
Affiliation(s)
- Amy Kelly
- Department of Surgery, University of Arizona College of Medicine, Tucson, AZ, United States
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Jeannie Chan
- Center for Precision Medicine, Department of Internal Medicine, Section of Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Theresa L. Powell
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- Section of Neonatology, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Laura A. Cox
- Center for Precision Medicine, Department of Internal Medicine, Section of Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Thomas Jansson
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Fredrick J. Rosario
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| |
Collapse
|
12
|
Bird AD, Frost ER, Bagheri-Fam S, Croft BM, Ryan JM, Zhao L, Koopman P, Harley VR. Somatic FGFR2 is Required for Germ Cell Maintenance in the Mouse Ovary. Endocrinology 2023; 164:7036407. [PMID: 36786658 DOI: 10.1210/endocr/bqad031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/01/2023] [Accepted: 02/14/2023] [Indexed: 02/15/2023]
Abstract
During sex determination in the mouse, fibroblast growth factor 9 signals through the fibroblast growth factor receptor 2c isoform (FGFR2c) to trigger Sertoli cell and testis development from 11.5 days post coitum (dpc). In the XX gonad, the FOXL2 and WNT4/RSPO1 pathways drive granulosa cell and ovarian development. The function of FGFR2 in the developing ovary, and whether FGFR2 is required in the testis after sex determination, is not clear. In fetal mouse gonads from 12.5 dpc, FGFR2 shows sexually dimorphic expression. In XX gonads, FGFR2c is coexpressed with FOXL2 in pregranulosa cells, whereas XY gonads show FGFR2b expression in germ cells. Deletion of Fgfr2c in XX mice led to a marked decrease/absence of germ cells by 13.5 dpc in the ovary. This indicates that FGFR2c in the somatic pregranulosa cells is required for the maintenance of germ cells. Surprisingly, on the Fgfr2c-/- background, the germ cell phenotype could be rescued by ablation of Foxl2, suggesting a novel mechanism whereby FGFR2 and FOXL2 act antagonistically during germ cell development. Consistent with low/absent FGFR2 expression in the Sertoli cells of 12.5 and 13.5 dpc XY gonads, XY AMH:Cre; Fgfr2flox/flox mice showed normal testis morphology and structures during fetal development and in adulthood. Thus, FGFR2 is not essential for maintaining Sertoli cell fate after sex determination. Combined, these data show that FGFR2 is not necessary for Sertoli cell function after sex determination but does play an important role in the ovary.
Collapse
Affiliation(s)
- Anthony D Bird
- Department of Anatomy and Neuroscience, The University of Melbourne, Melbourne, 3010, Australia
- Sex Development Laboratory, Hudson Institute of Medical Research, Monash Medical Centre, Melbourne, 3168, Australia
| | - Emily R Frost
- Sex Development Laboratory, Hudson Institute of Medical Research, Monash Medical Centre, Melbourne, 3168, Australia
- Department of Molecular and Translational Science, Monash University, Clayton, VIC, 3168, Australia
| | - Stefan Bagheri-Fam
- Sex Development Laboratory, Hudson Institute of Medical Research, Monash Medical Centre, Melbourne, 3168, Australia
- Department of Molecular and Translational Science, Monash University, Clayton, VIC, 3168, Australia
| | - Brittany M Croft
- Sex Development Laboratory, Hudson Institute of Medical Research, Monash Medical Centre, Melbourne, 3168, Australia
- Department of Molecular and Translational Science, Monash University, Clayton, VIC, 3168, Australia
| | - Janelle M Ryan
- Sex Development Laboratory, Hudson Institute of Medical Research, Monash Medical Centre, Melbourne, 3168, Australia
- Department of Molecular and Translational Science, Monash University, Clayton, VIC, 3168, Australia
| | - Liang Zhao
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, 4072, Australia
| | - Peter Koopman
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, 4072, Australia
| | - Vincent R Harley
- Sex Development Laboratory, Hudson Institute of Medical Research, Monash Medical Centre, Melbourne, 3168, Australia
- Department of Molecular and Translational Science, Monash University, Clayton, VIC, 3168, Australia
- Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC, 3168, Australia
| |
Collapse
|
13
|
Bunce C, Barske L, Zhang G, Capel B. Biased precursor ingression underlies the center-to-pole pattern of male sex determination in mouse. Development 2023; 150:297121. [PMID: 36912416 PMCID: PMC10112898 DOI: 10.1242/dev.201060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 02/15/2023] [Indexed: 03/14/2023]
Abstract
During mammalian development, gonadal sex determination results from the commitment of bipotential supporting cells to Sertoli or granulosa cell fates. Typically, this decision is coordinated across the gonad to ensure commitment to a single organ fate. When unified commitment fails in an XY mouse, an ovotestis forms in which supporting cells in the center of the gonad typically develop as Sertoli cells, while supporting cells in the poles develop as granulosa cells. This central bias for Sertoli cell fate was thought to result from the initial expression of the drivers of Sertoli cell fate, SRY and/or SOX9, in the central domain, followed by paracrine expansion to the poles. However, we show here that the earliest cells expressing SRY and SOX9 are widely distributed across the gonad. In addition, Sertoli cell fate does not spread among supporting cells through paracrine relay. Instead, we uncover a center-biased pattern of supporting cell precursor ingression that occurs in both sexes and results in increased supporting cell density in the central domain. Our findings prompt a new model of gonad patterning in which a density-dependent organizing principle dominates Sertoli cell fate stabilization.
Collapse
Affiliation(s)
- Corey Bunce
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
| | - Lindsey Barske
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
| | - Gloria Zhang
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
| | - Blanche Capel
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
14
|
Zhao L, Thomson E, Ng ET, Longmuss E, Svingen T, Bagheri-Fam S, Quinn A, Harley VR, Harrison LC, Pelosi E, Koopman P. Functional Analysis of Mmd2 and Related PAQR Genes During Sex Determination in Mice. Sex Dev 2023; 16:270-282. [PMID: 35306493 DOI: 10.1159/000522668] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 02/15/2022] [Indexed: 11/19/2022] Open
Abstract
INTRODUCTION Sex determination in eutherian mammals is controlled by the Y-linked gene Sry, which drives the formation of testes in male embryos. Despite extensive study, the genetic steps linking Sry action and male sex determination remain largely unknown. Here, we focused on Mmd2, a gene that encodes a member of the progestin and adipoQ receptor (PAQR) family. Mmd2 is expressed during the sex-determining period in XY but not XX gonads, suggesting a specific role in testis development. METHODS We used CRISPR to generate mouse strains deficient in Mmd2 and its 2 closely related PAQR family members, Mmd and Paqr8, which are also expressed during testis development. Following characterization of Mmd2 expression in the developing testis, we studied sex determination in embryos from single knockout as well as Mmd2;Mmd and Mmd2;Paqr8 double knockout lines using quantitative RT-PCR and immunofluorescence. RESULTS Analysis of knockout mice deficient in Sox9 and Nr5a1 revealed that Mmd2 operates downstream of these known sex-determining genes. However, fetal testis development progressed normally in Mmd2-null embryos. To determine if other genes might have compensated for the loss of Mmd2, we analyzed Paqr8 and Mmd-null embryos and confirmed that in both knockout lines, sex determination occurred normally. Finally, we generated Mmd2;Mmd and Mmd2;Paqr8 double-null embryos and again observed normal testis development. DISCUSSION These results may reflect functional redundancy among PAQR factors, or their dispensability in gonadal development. Our findings highlight the difficulties involved in identifying genes with a functional role in sex determination and gonadal development through expression screening and loss-of-function analyses of individual candidate genes and may help to explain the paucity of genes in which variations have been found to cause human disorders/differences of sex development.
Collapse
Affiliation(s)
- Liang Zhao
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Ella Thomson
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia.,Centre for Clinical Research, The University of Queensland, Royal Brisbane & Women's Hospital, Herston, Queensland, Australia
| | - Ee T Ng
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Enya Longmuss
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Terje Svingen
- National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Stefan Bagheri-Fam
- Centre for Endocrinology and Metabolism, Hudson Institute of Medical Research, Monash Medical Centre, Melbourne, Victoria, Australia
| | - Alexander Quinn
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Vincent R Harley
- Centre for Endocrinology and Metabolism, Hudson Institute of Medical Research, Monash Medical Centre, Melbourne, Victoria, Australia
| | - Leonard C Harrison
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | - Emanuele Pelosi
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia.,Centre for Clinical Research, The University of Queensland, Royal Brisbane & Women's Hospital, Herston, Queensland, Australia
| | - Peter Koopman
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
15
|
Song Y, Chen M, Zhang Y, Li J, Liu B, Li N, Chen M, Qiao M, Wang N, Cao Y, Lu S, Chen J, Sun W, Gao F, Wang H. Loss of circSRY reduces γH2AX level in germ cells and impairs mouse spermatogenesis. Life Sci Alliance 2023; 6:6/2/e202201617. [PMID: 36414375 PMCID: PMC9684031 DOI: 10.26508/lsa.202201617] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 10/30/2022] [Accepted: 11/07/2022] [Indexed: 11/23/2022] Open
Abstract
Sry on the Y chromosome is the master switch of sex determination in mammals. It has been well established that Sry encodes a transcription factor that is transiently expressed in somatic cells of the male gonad, leading to the formation of testes. In the testis of adult mice, Sry is expressed as a circular RNA (circRNA) transcript. However, the physiological function of Sry circRNA (circSRY) remains unknown since its discovery in 1993. Here we show that circSRY is mainly expressed in the spermatocytes, but not in mature sperm or somatic cells of the testis. Loss of circSRY led to germ cell apoptosis and the reduction of sperm count in the epididymis. The level of γH2AX was decreased, and failure of XY body formation was noted in circSRY KO germ cells. Further study demonstrated that circSRY directly bound to miR-138-5p in spermatocytes, and in vitro assay suggested that circSRY regulates H2AX mRNA through sponging miR-138-5p. Our study demonstrates that, besides determining sex, Sry also plays an important role in spermatogenesis as a circRNA.
Collapse
Affiliation(s)
- Yanze Song
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.,Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Min Chen
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Institute of Urology, Peking University Shenzhen Hospital, Shenzhen Peking University-Hong Kong University of Science and Technology Medical Center, Shenzhen, P.R. China
| | | | - Jiayi Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.,Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Bowen Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.,Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Na Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| | - Min Chen
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.,Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Miaomiao Qiao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.,Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Nan Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.,Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Yuanwei Cao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.,Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Shan Lu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.,Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Jian Chen
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.,Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Wen Sun
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China .,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.,Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Fei Gao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China .,University of Chinese Academy of Sciences, Beijing, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.,Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Haoyi Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China .,University of Chinese Academy of Sciences, Beijing, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.,Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| |
Collapse
|
16
|
Gruhn WH, Tang WW, Dietmann S, Alves-Lopes JP, Penfold CA, Wong FC, Ramakrishna NB, Surani MA. Epigenetic resetting in the human germ line entails histone modification remodeling. SCIENCE ADVANCES 2023; 9:eade1257. [PMID: 36652508 PMCID: PMC9848478 DOI: 10.1126/sciadv.ade1257] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 12/20/2022] [Indexed: 06/17/2023]
Abstract
Epigenetic resetting in the mammalian germ line entails acute DNA demethylation, which lays the foundation for gametogenesis, totipotency, and embryonic development. We characterize the epigenome of hypomethylated human primordial germ cells (hPGCs) to reveal mechanisms preventing the widespread derepression of genes and transposable elements (TEs). Along with the loss of DNA methylation, we show that hPGCs exhibit a profound reduction of repressive histone modifications resulting in diminished heterochromatic signatures at most genes and TEs and the acquisition of a neutral or paused epigenetic state without transcriptional activation. Efficient maintenance of a heterochromatic state is limited to a subset of genomic loci, such as evolutionarily young TEs and some developmental genes, which require H3K9me3 and H3K27me3, respectively, for efficient transcriptional repression. Accordingly, transcriptional repression in hPGCs presents an exemplary balanced system relying on local maintenance of heterochromatic features and a lack of inductive cues.
Collapse
Affiliation(s)
- Wolfram H. Gruhn
- Wellcome Trust/Cancer Research UK Gurdon Institute, Henry Wellcome Building of Cancer and Developmental Biology, Cambridge CB2 1QN, UK
- Physiology, Development and Neuroscience Department, University of Cambridge, Cambridge CB2 3EL, UK
| | - Walfred W.C. Tang
- Wellcome Trust/Cancer Research UK Gurdon Institute, Henry Wellcome Building of Cancer and Developmental Biology, Cambridge CB2 1QN, UK
- Physiology, Development and Neuroscience Department, University of Cambridge, Cambridge CB2 3EL, UK
| | - Sabine Dietmann
- Wellcome Trust/Cancer Research UK Gurdon Institute, Henry Wellcome Building of Cancer and Developmental Biology, Cambridge CB2 1QN, UK
- Physiology, Development and Neuroscience Department, University of Cambridge, Cambridge CB2 3EL, UK
- Wellcome–MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Puddicombe Way, Cambridge Biomedical Campus, Cambridge CB2 0AW, UK
- Institute for Informatics, Washington University School of Medicine, St. Louis, MO, USA
| | - João P. Alves-Lopes
- Wellcome Trust/Cancer Research UK Gurdon Institute, Henry Wellcome Building of Cancer and Developmental Biology, Cambridge CB2 1QN, UK
- Physiology, Development and Neuroscience Department, University of Cambridge, Cambridge CB2 3EL, UK
- NORDFERTIL Research Lab Stockholm, Childhood Cancer Research Unit, J9:30, Department of Women’s and Children’s Health, Karolinska Institutet and Karolinska University Hospital, Visionsgatan 4, 17164, Solna, Stockholm, Sweden
| | - Christopher A. Penfold
- Wellcome Trust/Cancer Research UK Gurdon Institute, Henry Wellcome Building of Cancer and Developmental Biology, Cambridge CB2 1QN, UK
- Physiology, Development and Neuroscience Department, University of Cambridge, Cambridge CB2 3EL, UK
- Centre for Trophoblast Research, University of Cambridge, Cambridge, UK
| | - Frederick C. K. Wong
- Wellcome Trust/Cancer Research UK Gurdon Institute, Henry Wellcome Building of Cancer and Developmental Biology, Cambridge CB2 1QN, UK
- Physiology, Development and Neuroscience Department, University of Cambridge, Cambridge CB2 3EL, UK
| | - Navin B. Ramakrishna
- Wellcome Trust/Cancer Research UK Gurdon Institute, Henry Wellcome Building of Cancer and Developmental Biology, Cambridge CB2 1QN, UK
- Genome Institute of Singapore, A*STAR, Biopolis, Singapore 138672, Singapore
| | - M. Azim Surani
- Wellcome Trust/Cancer Research UK Gurdon Institute, Henry Wellcome Building of Cancer and Developmental Biology, Cambridge CB2 1QN, UK
- Physiology, Development and Neuroscience Department, University of Cambridge, Cambridge CB2 3EL, UK
- Wellcome–MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Puddicombe Way, Cambridge Biomedical Campus, Cambridge CB2 0AW, UK
| |
Collapse
|
17
|
Gonen N, Eozenou C, Mitter R, Elzaiat M, Stévant I, Aviram R, Bernardo AS, Chervova A, Wankanit S, Frachon E, Commère PH, Brailly-Tabard S, Valon L, Barrio Cano L, Levayer R, Mazen I, Gobaa S, Smith JC, McElreavey K, Lovell-Badge R, Bashamboo A. In vitro cellular reprogramming to model gonad development and its disorders. SCIENCE ADVANCES 2023; 9:eabn9793. [PMID: 36598988 PMCID: PMC9812383 DOI: 10.1126/sciadv.abn9793] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 12/02/2022] [Indexed: 05/28/2023]
Abstract
During embryonic development, mutually antagonistic signaling cascades determine gonadal fate toward a testicular or ovarian identity. Errors in this process result in disorders of sex development (DSDs), characterized by discordance between chromosomal, gonadal, and anatomical sex. The absence of an appropriate, accessible in vitro system is a major obstacle in understanding mechanisms of sex-determination/DSDs. Here, we describe protocols for differentiation of mouse and human pluripotent cells toward gonadal progenitors. Transcriptomic analysis reveals that the in vitro-derived murine gonadal cells are equivalent to embryonic day 11.5 in vivo progenitors. Using similar conditions, Sertoli-like cells derived from 46,XY human induced pluripotent stem cells (hiPSCs) exhibit sustained expression of testis-specific genes, secrete anti-Müllerian hormone, migrate, and form tubular structures. Cells derived from 46,XY DSD female hiPSCs, carrying an NR5A1 variant, show aberrant gene expression and absence of tubule formation. CRISPR-Cas9-mediated variant correction rescued the phenotype. This is a robust tool to understand mechanisms of sex determination and model DSDs.
Collapse
Affiliation(s)
- Nitzan Gonen
- The Mina and Everard Goodman Faculty of Life Sciences and the Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan 5290002, Israel
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Caroline Eozenou
- Institut Pasteur, Université de Paris, CNRS UMR3738, Human Developmental Genetics, F-75015 Paris, France
| | - Richard Mitter
- Bioinformatics Core, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Maëva Elzaiat
- Institut Pasteur, Université de Paris, CNRS UMR3738, Human Developmental Genetics, F-75015 Paris, France
| | - Isabelle Stévant
- The Mina and Everard Goodman Faculty of Life Sciences and the Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Rona Aviram
- The Mina and Everard Goodman Faculty of Life Sciences and the Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Andreia Sofia Bernardo
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Almira Chervova
- Department of Stem Cell and Developmental Biology, Institut Pasteur, Paris 75724, France
| | - Somboon Wankanit
- Institut Pasteur, Université de Paris, CNRS UMR3738, Human Developmental Genetics, F-75015 Paris, France
| | - Emmanuel Frachon
- Biomaterials and Microfluidics Core Facility, Institut Pasteur, F-75015 Paris, France
| | - Pierre-Henri Commère
- Cytometry and Biomarkers, Centre de Ressources et Recherches Technologiques (C2RT), Institut Pasteur, F-75015 Paris, France
| | - Sylvie Brailly-Tabard
- Assistance Publique-Hôpitaux de Paris, Bicêtre Hospital, Molecular Genetics, Pharmacogenetics, and Hormonology, Le Kremlin-Bicêtre, France
| | - Léo Valon
- Institut Pasteur, Université de Paris, CNRS UMR3738, Cell Death and Epithelial Homeostasis, F-75015 Paris, France
| | - Laura Barrio Cano
- Cytometry and Biomarkers, Centre de Ressources et Recherches Technologiques (C2RT), Institut Pasteur, F-75015 Paris, France
| | - Romain Levayer
- Institut Pasteur, Université de Paris, CNRS UMR3738, Cell Death and Epithelial Homeostasis, F-75015 Paris, France
| | - Inas Mazen
- Genetics Department, National Research Center, Cairo, Egypt
| | - Samy Gobaa
- Biomaterials and Microfluidics Core Facility, Institut Pasteur, F-75015 Paris, France
| | - James C. Smith
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Kenneth McElreavey
- Institut Pasteur, Université de Paris, CNRS UMR3738, Human Developmental Genetics, F-75015 Paris, France
| | | | - Anu Bashamboo
- Institut Pasteur, Université de Paris, CNRS UMR3738, Human Developmental Genetics, F-75015 Paris, France
| |
Collapse
|
18
|
Suzuki T. Overview of single-cell RNA sequencing analysis and its application to spermatogenesis research. Reprod Med Biol 2023; 22:e12502. [PMID: 36726594 PMCID: PMC9884325 DOI: 10.1002/rmb2.12502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 12/18/2022] [Accepted: 01/10/2023] [Indexed: 01/30/2023] Open
Abstract
Background Single-cell transcriptomics allows parallel analysis of multiple cell types in tissues. Because testes comprise somatic cells and germ cells at various stages of spermatogenesis, single-cell RNA sequencing is a powerful tool for investigating the complex process of spermatogenesis. However, single-cell RNA sequencing analysis needs extensive knowledge of experimental technologies and bioinformatics, making it difficult for many, particularly experimental biologists and clinicians, to use it. Methods Aiming to make single-cell RNA sequencing analysis familiar, this review article presents an overview of experimental and computational methods for single-cell RNA sequencing analysis with a history of transcriptomics. In addition, combining the PubMed search and manual curation, this review also provides a summary of recent novel insights into human and mouse spermatogenesis obtained using single-cell RNA sequencing analyses. Main Findings Single-cell RNA sequencing identified mesenchymal cells and type II innate lymphoid cells as novel testicular cell types in the adult mouse testes, as well as detailed subtypes of germ cells. This review outlines recent discoveries into germ cell development and subtypes, somatic cell development, and cell-cell interactions. Conclusion The findings on spermatogenesis obtained using single-cell RNA sequencing may contribute to a deeper understanding of spermatogenesis and provide new directions for male fertility therapy.
Collapse
Affiliation(s)
- Takahiro Suzuki
- RIKEN Center for Integrated Medical Science (IMS)Yokohama CityKanagawaJapan
- Graduate School of Medical Life ScienceYokohama City UniversityYokohama CityKanagawaJapan
| |
Collapse
|
19
|
Yong HJ, Toledo MP, Nowakowski RS, Wang YJ. Sex Differences in the Molecular Programs of Pancreatic Cells Contribute to the Differential Risks of Type 2 Diabetes. Endocrinology 2022; 163:bqac156. [PMID: 36130190 PMCID: PMC10409906 DOI: 10.1210/endocr/bqac156] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Indexed: 11/19/2022]
Abstract
Epidemiology studies demonstrate that women are at a significantly lower risk of developing type 2 diabetes (T2D) compared to men. However, the molecular basis of this risk difference is not well understood. In this study, we examined the sex differences in the genetic programs of pancreatic endocrine cells. We combined pancreas perifusion data and single-cell genomic data from our laboratory and from publicly available data sets to investigate multiple axes of the sex differences in the human pancreas at the single-cell type and single-cell level. We systematically compared female and male islet secretion function, gene expression program, and regulatory principles of pancreatic endocrine cells. The perifusion data indicate that female endocrine cells have a higher secretion capacity than male endocrine cells. Single-cell RNA-sequencing analysis suggests that endocrine cells in male controls have molecular signatures that resemble T2D. In addition, we identified genomic elements associated with genome-wide association study T2D loci to have differential accessibility between female and male delta cells. These genomic elements may play a sex-specific causal role in the pathogenesis of T2D. We provide molecular mechanisms that explain the differential risk of T2D between women and men. Knowledge gained from our study will accelerate the development of diagnostics and therapeutics in sex-aware precision medicine for diabetes.
Collapse
Affiliation(s)
- Hyo Jeong Yong
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, Florida 32306, USA
| | - Maria Pilar Toledo
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, Florida 32306, USA
| | - Richard S Nowakowski
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, Florida 32306, USA
| | - Yue J Wang
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, Florida 32306, USA
| |
Collapse
|
20
|
Beckers KF, Schulz CJ, Flanagan JP, Adams DM, Gomes VC, Liu C, Childers GW, Sones JL. Sex-specific effects of maternal weight loss on offspring cardiometabolic outcomes in the obese preeclamptic-like mouse model, BPH/5. Physiol Rep 2022; 10:e15444. [PMID: 36065848 PMCID: PMC9446412 DOI: 10.14814/phy2.15444] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/10/2022] [Accepted: 08/12/2022] [Indexed: 05/28/2023] Open
Abstract
AbstractPreeclampsia (PE) is a hypertensive disorder that impacts 2-8% of pregnant women worldwide. It is characterized by new onset hypertension during the second half of gestation and is a leading cause of maternal and fetal morbidity/mortality. Maternal obesity increases the risk of PE and is a key predictor of childhood obesity and potentially offspring cardiometabolic complications in a sex-dependent manner. The influence of the maternal obesogenic environment, with superimposed PE, on offspring development into adulthood is unknown. Obese BPH/5 mice spontaneously exhibit late-gestational hypertension, fetal demise and growth restriction, and excessive gestational weight gain. BPH/5 females have improved pregnancy outcomes when maternal weight loss via pair-feeding is imposed beginning at conception. We hypothesized that phenotypic differences between female and male BPH/5 offspring can be influenced by pair feeding BPH/5 dams during pregnancy. BPH/5 pair-fed dams have improved litter sizes and increased fetal body weights. BPH/5 offspring born to ad libitum dams have similar sex ratios, body weights, and fecal microbiome as well as increased blood pressure that is reduced in the dam pair-fed offspring. Both BPH/5 male and female offspring born to pair-fed dams have a reduction in adiposity and an altered gut microbiome, while only female offspring born to pair-fed dams have decreased circulating leptin and white adipose tissue inflammatory cytokines. These sexually dimorphic results suggest that reduction in the maternal obesogenic environment in early pregnancy may play a greater role in female BPH/5 sex-dependent cardiometabolic outcomes than males. Reprograming females may mitigate the transgenerational progression of cardiometabolic disease.
Collapse
Affiliation(s)
- Kalie F. Beckers
- Veterinary Clinical Sciences, School of Veterinary MedicineLouisiana State UniversityBaton RougeLouisianaUSA
| | - Christopher J. Schulz
- Department of Biological SciencesSoutheastern Louisiana UniversityHammondLouisianaUSA
| | - Juliet P. Flanagan
- Veterinary Clinical Sciences, School of Veterinary MedicineLouisiana State UniversityBaton RougeLouisianaUSA
| | - Daniella M. Adams
- Veterinary Clinical Sciences, School of Veterinary MedicineLouisiana State UniversityBaton RougeLouisianaUSA
| | - Viviane C.L. Gomes
- Veterinary Clinical Sciences, School of Veterinary MedicineLouisiana State UniversityBaton RougeLouisianaUSA
| | - Chin‐Chi Liu
- Veterinary Clinical Sciences, School of Veterinary MedicineLouisiana State UniversityBaton RougeLouisianaUSA
| | - Gary W. Childers
- Department of Biological SciencesSoutheastern Louisiana UniversityHammondLouisianaUSA
| | - Jenny L. Sones
- Veterinary Clinical Sciences, School of Veterinary MedicineLouisiana State UniversityBaton RougeLouisianaUSA
- Pennington Biomedical Research CenterLouisiana State UniversityBaton RougeLouisianaUSA
| |
Collapse
|
21
|
Chen YS, Racca JD, Weiss MA. Tenuous Transcriptional Threshold of Human Sex Determination. I. SRY and Swyer Syndrome at the Edge of Ambiguity. Front Endocrinol (Lausanne) 2022; 13:945030. [PMID: 35957822 PMCID: PMC9360328 DOI: 10.3389/fendo.2022.945030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 06/22/2022] [Indexed: 11/28/2022] Open
Abstract
Male sex determination in mammals is initiated by SRY, a Y-encoded transcription factor. The protein contains a high-mobility-group (HMG) box mediating sequence-specific DNA bending. Mutations causing XY gonadal dysgenesis (Swyer syndrome) cluster in the box and ordinarily arise de novo. Rare inherited variants lead to male development in one genetic background (the father) but not another (his sterile XY daughter). De novo and inherited mutations occur at an invariant Tyr adjoining the motif's basic tail (box position 72; Y127 in SRY). In SRY-responsive cell lines CH34 and LNCaP, de novo mutations Y127H and Y127C reduced SRY activity (as assessed by transcriptional activation of principal target gene Sox9) by 5- and 8-fold, respectively. Whereas Y127H impaired testis-specific enhancer assembly, Y127C caused accelerated proteasomal proteolysis; activity was in part rescued by proteasome inhibition. Inherited variant Y127F was better tolerated: its expression was unperturbed, and activity was reduced by only twofold, a threshold similar to other inherited variants. Biochemical studies of wild-type (WT) and variant HMG boxes demonstrated similar specific DNA affinities (within a twofold range), with only subtle differences in sharp DNA bending as probed by permutation gel electrophoresis and fluorescence resonance-energy transfer (FRET); thermodynamic stabilities of the free boxes were essentially identical. Such modest perturbations are within the range of species variation. Whereas our cell-based findings rationalize the de novo genotype-phenotype relationships, a molecular understanding of inherited mutation Y127F remains elusive. Our companion study uncovers cryptic biophysical perturbations suggesting that the para-OH group of Y127 anchors a novel water-mediated DNA clamp.
Collapse
Affiliation(s)
- Yen-Shan Chen
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Joseph D Racca
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Michael A Weiss
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, United States
| |
Collapse
|
22
|
Xie Y, Wu C, Li Z, Wu Z, Hong L. Early Gonadal Development and Sex Determination in Mammal. Int J Mol Sci 2022; 23:ijms23147500. [PMID: 35886859 PMCID: PMC9323860 DOI: 10.3390/ijms23147500] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 06/29/2022] [Accepted: 07/05/2022] [Indexed: 02/04/2023] Open
Abstract
Sex determination is crucial for the transmission of genetic information through generations. In mammal, this process is primarily regulated by an antagonistic network of sex-related genes beginning in embryonic development and continuing throughout life. Nonetheless, abnormal expression of these sex-related genes will lead to reproductive organ and germline abnormalities, resulting in disorders of sex development (DSD) and infertility. On the other hand, it is possible to predetermine the sex of animal offspring by artificially regulating sex-related gene expression, a recent research hotspot. In this paper, we reviewed recent research that has improved our understanding of the mechanisms underlying the development of the gonad and primordial germ cells (PGCs), progenitors of the germline, to provide new directions for the treatment of DSD and infertility, both of which involve manipulating the sex ratio of livestock offspring.
Collapse
Affiliation(s)
- Yanshe Xie
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510630, China; (Y.X.); (C.W.); (Z.L.)
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510630, China
| | - Changhua Wu
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510630, China; (Y.X.); (C.W.); (Z.L.)
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510630, China
| | - Zicong Li
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510630, China; (Y.X.); (C.W.); (Z.L.)
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510630, China
| | - Zhenfang Wu
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510630, China; (Y.X.); (C.W.); (Z.L.)
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510630, China
- Correspondence: (Z.W.); (L.H.)
| | - Linjun Hong
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510630, China; (Y.X.); (C.W.); (Z.L.)
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510630, China
- Correspondence: (Z.W.); (L.H.)
| |
Collapse
|
23
|
Vaughan OR, Rosario FJ, Chan J, Cox LA, Ferchaud-Roucher V, Zemski-Berry KA, Reusch JEB, Keller AC, Powell TL, Jansson T. Maternal obesity causes fetal cardiac hypertrophy and alters adult offspring myocardial metabolism in mice. J Physiol 2022; 600:3169-3191. [PMID: 35545608 DOI: 10.1113/jp282462] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 04/04/2022] [Indexed: 01/09/2023] Open
Abstract
Obesity in pregnant women causes fetal cardiac dysfunction and increases offspring cardiovascular disease risk, but its effect on myocardial metabolism is unknown. We hypothesized that maternal obesity alters fetal cardiac expression of metabolism-related genes and shifts offspring myocardial substrate preference from glucose towards lipids. Female mice were fed control or obesogenic diets before and during pregnancy. Fetal hearts were studied in late gestation (embryonic day (E) 18.5; term ≈ E21), and offspring were studied at 3, 6, 9 or 24 months postnatally. Maternal obesity increased heart weight and peroxisome proliferator activated receptor gamma (Pparg) expression in female and male fetuses and caused left ventricular diastolic dysfunction in the adult offspring. Cardiac dysfunction worsened progressively with age in female, but not male, offspring of obese dams, in comparison to age-matched control animals. In 6-month-old offspring, exposure to maternal obesity increased cardiac palmitoyl carnitine-supported mitochondrial respiration in males and reduced myocardial 18 F-fluorodeoxyglucose uptake in females. Cardiac Pparg expression remained higher in adult offspring of obese dams than control dams and was correlated with contractile and metabolic function. Maternal obesity did not affect cardiac palmitoyl carnitine respiration in females or 18 F-fluorodeoxyglucose uptake in males and did not alter cardiac 3 H-oleic acid uptake, pyruvate respiration, lipid content or fatty acid/glucose transporter abundance in offspring of either sex. The results support our hypothesis and show that maternal obesity affects offspring cardiac metabolism in a sex-dependent manner. Persistent upregulation of Pparg expression in response to overnutrition in utero might underpin programmed cardiac impairments mechanistically and contribute to cardiovascular disease risk in children of women with obesity. KEY POINTS: Obesity in pregnant women causes cardiac dysfunction in the fetus and increases lifelong cardiovascular disease risk in the offspring. In this study, we showed that maternal obesity in mice induces hypertrophy of the fetal heart in association with altered expression of genes related to nutrient metabolism. Maternal obesity also alters cardiac metabolism of carbohydrates and lipids in the adult offspring. The results suggest that overnutrition in utero might contribute to increased cardiovascular disease risk in children of women with obesity.
Collapse
Affiliation(s)
- Owen R Vaughan
- Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Fredrick J Rosario
- Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Jeannie Chan
- Department of Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Laura A Cox
- Department of Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Veronique Ferchaud-Roucher
- Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Karin A Zemski-Berry
- Department of Medicine, Division of Endocrinology, Metabolism and Diabetes, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Jane E B Reusch
- Department of Medicine, Division of Endocrinology, Metabolism and Diabetes, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Rocky Mountain Regional VA Medical Center, Aurora, Colorado, USA
| | - Amy C Keller
- Department of Medicine, Division of Endocrinology, Metabolism and Diabetes, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Rocky Mountain Regional VA Medical Center, Aurora, Colorado, USA
| | - Theresa L Powell
- Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Thomas Jansson
- Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
24
|
Ademi H, Djari C, Mayère C, Neirijnck Y, Sararols P, Rands CM, Stévant I, Conne B, Nef S. Deciphering the origins and fates of steroidogenic lineages in the mouse testis. Cell Rep 2022; 39:110935. [PMID: 35705036 DOI: 10.1016/j.celrep.2022.110935] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 03/22/2022] [Accepted: 05/19/2022] [Indexed: 11/03/2022] Open
Abstract
Leydig cells (LCs) are the major androgen-producing cells in the testis. They arise from steroidogenic progenitors (SPs), whose origins, maintenance, and differentiation dynamics remain largely unknown. Single-cell transcriptomics reveal that the mouse steroidogenic lineage is specified as early as embryonic day 12.5 (E12.5) and has a dual mesonephric and coelomic origin. SPs specifically express the Wnt5a gene and evolve rapidly. At E12.5 and E13.5, they give rise first to an intermediate population of pre-LCs, and finally to fetal LCs. At E16.5, SPs possess the characteristics of the dormant progenitors at the origin of adult LCs and are also transcriptionally closely related to peritubular myoid cells (PMCs). In agreement with our in silico analysis, in vivo lineage tracing indicates that Wnt5a-expressing cells are bona fide progenitors of PMCs as well as fetal and adult LCs, contributing to most of the LCs present in the fetal and adult testis.
Collapse
Affiliation(s)
- Herta Ademi
- Department of Genetic Medicine and Development, University of Geneva, 1211 Geneva, Switzerland; iGE3, Institute of Genetics and Genomics of Geneva, University of Geneva, 1211 Geneva, Switzerland
| | - Cyril Djari
- Department of Genetic Medicine and Development, University of Geneva, 1211 Geneva, Switzerland; iGE3, Institute of Genetics and Genomics of Geneva, University of Geneva, 1211 Geneva, Switzerland
| | - Chloé Mayère
- Department of Genetic Medicine and Development, University of Geneva, 1211 Geneva, Switzerland; iGE3, Institute of Genetics and Genomics of Geneva, University of Geneva, 1211 Geneva, Switzerland
| | - Yasmine Neirijnck
- Department of Genetic Medicine and Development, University of Geneva, 1211 Geneva, Switzerland; iGE3, Institute of Genetics and Genomics of Geneva, University of Geneva, 1211 Geneva, Switzerland
| | - Pauline Sararols
- Department of Genetic Medicine and Development, University of Geneva, 1211 Geneva, Switzerland; iGE3, Institute of Genetics and Genomics of Geneva, University of Geneva, 1211 Geneva, Switzerland
| | - Chris M Rands
- Department of Genetic Medicine and Development, University of Geneva, 1211 Geneva, Switzerland; iGE3, Institute of Genetics and Genomics of Geneva, University of Geneva, 1211 Geneva, Switzerland; Swiss Institute of Bioinformatics, 1211 Geneva, Switzerland
| | - Isabelle Stévant
- Department of Genetic Medicine and Development, University of Geneva, 1211 Geneva, Switzerland; iGE3, Institute of Genetics and Genomics of Geneva, University of Geneva, 1211 Geneva, Switzerland
| | - Béatrice Conne
- Department of Genetic Medicine and Development, University of Geneva, 1211 Geneva, Switzerland
| | - Serge Nef
- Department of Genetic Medicine and Development, University of Geneva, 1211 Geneva, Switzerland; iGE3, Institute of Genetics and Genomics of Geneva, University of Geneva, 1211 Geneva, Switzerland.
| |
Collapse
|
25
|
Zhu J, Lei L, Chen C, Wang Y, Liu X, Geng L, Li R, Chen H, Hong X, Yu L, Wei C, Li W, Zhu X. Whole-Transcriptome Analysis Identifies Gender Dimorphic Expressions of Mrnas and Non-Coding Rnas in Chinese Soft-Shell Turtle ( Pelodiscus sinensis). BIOLOGY 2022; 11:biology11060834. [PMID: 35741355 PMCID: PMC9219891 DOI: 10.3390/biology11060834] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/21/2022] [Accepted: 05/26/2022] [Indexed: 04/14/2023]
Abstract
In aquaculture, the Chinese soft-shelled turtle (Pelodiscus sinensis) is an economically important species with remarkable gender dimorphism in its growth patterns. However, the underlying molecular mechanisms of this phenomenon have not been elucidated well. Here, we conducted a whole-transcriptome analysis of the female and male gonads of P. sinensis. Overall, 7833 DE mRNAs, 619 DE lncRNAs, 231 DE circRNAs, and 520 DE miRNAs were identified. Some "star genes" associated with sex differentiation containing dmrt1, sox9, and foxl2 were identified. Additionally, some potential genes linked to sex differentiation, such as bmp2, ran, and sox3, were also isolated in P. sinensis. Functional analysis showed that the DE miRNAs and DE ncRNAs were enriched in the pathways related to sex differentiation, including ovarian steroidogenesis, the hippo signaling pathway, and the calcium signaling pathway. Remarkably, a lncRNA/circRNA-miRNA-mRNA interaction network was constructed, containing the key genes associated with sex differentiation, including fgf9, foxl3, and dmrta2. Collectively, we constructed a gender dimorphism profile of the female and male gonads of P. sinensis, profoundly contributing to the exploration of the major genes and potential ncRNAs involved in the sex differentiation of P. sinensis. More importantly, we highlighted the potential functions of ncRNAs for gene regulation during sex differentiation in P. sinensis as well as in other turtles.
Collapse
Affiliation(s)
- Junxian Zhu
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation of Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China; (J.Z.); (L.L.); (C.C.); (Y.W.); (X.L.); (L.G.); (R.L.); (H.C.); (X.H.); (L.Y.); (C.W.)
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
| | - Luo Lei
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation of Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China; (J.Z.); (L.L.); (C.C.); (Y.W.); (X.L.); (L.G.); (R.L.); (H.C.); (X.H.); (L.Y.); (C.W.)
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| | - Chen Chen
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation of Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China; (J.Z.); (L.L.); (C.C.); (Y.W.); (X.L.); (L.G.); (R.L.); (H.C.); (X.H.); (L.Y.); (C.W.)
| | - Yakun Wang
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation of Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China; (J.Z.); (L.L.); (C.C.); (Y.W.); (X.L.); (L.G.); (R.L.); (H.C.); (X.H.); (L.Y.); (C.W.)
| | - Xiaoli Liu
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation of Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China; (J.Z.); (L.L.); (C.C.); (Y.W.); (X.L.); (L.G.); (R.L.); (H.C.); (X.H.); (L.Y.); (C.W.)
| | - Lulu Geng
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation of Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China; (J.Z.); (L.L.); (C.C.); (Y.W.); (X.L.); (L.G.); (R.L.); (H.C.); (X.H.); (L.Y.); (C.W.)
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| | - Ruiyang Li
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation of Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China; (J.Z.); (L.L.); (C.C.); (Y.W.); (X.L.); (L.G.); (R.L.); (H.C.); (X.H.); (L.Y.); (C.W.)
| | - Haigang Chen
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation of Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China; (J.Z.); (L.L.); (C.C.); (Y.W.); (X.L.); (L.G.); (R.L.); (H.C.); (X.H.); (L.Y.); (C.W.)
| | - Xiaoyou Hong
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation of Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China; (J.Z.); (L.L.); (C.C.); (Y.W.); (X.L.); (L.G.); (R.L.); (H.C.); (X.H.); (L.Y.); (C.W.)
| | - Lingyun Yu
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation of Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China; (J.Z.); (L.L.); (C.C.); (Y.W.); (X.L.); (L.G.); (R.L.); (H.C.); (X.H.); (L.Y.); (C.W.)
| | - Chengqing Wei
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation of Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China; (J.Z.); (L.L.); (C.C.); (Y.W.); (X.L.); (L.G.); (R.L.); (H.C.); (X.H.); (L.Y.); (C.W.)
| | - Wei Li
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation of Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China; (J.Z.); (L.L.); (C.C.); (Y.W.); (X.L.); (L.G.); (R.L.); (H.C.); (X.H.); (L.Y.); (C.W.)
- Correspondence: (W.L.); (X.Z.)
| | - Xinping Zhu
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation of Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China; (J.Z.); (L.L.); (C.C.); (Y.W.); (X.L.); (L.G.); (R.L.); (H.C.); (X.H.); (L.Y.); (C.W.)
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
- Correspondence: (W.L.); (X.Z.)
| |
Collapse
|
26
|
Xie M, Hu X, Li L, Xiong Z, Zhang H, Zhuang Y, Huang Z, Liu J, Lian J, Huang C, Xie Q, Kang X, Fan Y, Bai X, Chen Z. Loss of Raptor induces Sertoli cells into an undifferentiated state in mice. Biol Reprod 2022; 107:1125-1138. [PMID: 35594452 PMCID: PMC9562113 DOI: 10.1093/biolre/ioac104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 04/21/2022] [Accepted: 05/09/2022] [Indexed: 12/13/2022] Open
Abstract
In mammals, testis development is triggered by the expression of the sex-determining Y-chromosome gene SRY to commit the Sertoli cell (SC) fate at gonadal sex determination in the fetus. Several genes have been identified to be required to promote the testis pathway following SRY activation (i.e., SRY box 9 (SOX9)) in an embryo; however, it largely remains unknown about the genes and the mechanisms involved in stabilizing the testis pathway after birth and throughout adulthood. Herein, we report postnatal males with SC-specific deletion of Raptor demonstrated the absence of SC unique identity and adversely acquired granulosa cell-like characteristics, along with loss of tubular architecture and scattered distribution of SCs and germ cells. Subsequent genome-wide analysis by RNA sequencing revealed a profound decrease in the transcripts of testis genes (i.e., Sox9, Sox8, and anti-Mullerian hormone (Amh)) and, conversely, an increase in ovary genes (i.e., LIM/Homeobox gene 9 (Lhx9), Forkhead box L2 (Foxl2) and Follistatin (Fst)); these changes were further confirmed by immunofluorescence and quantitative reverse-transcription polymerase chain reaction. Importantly, co-immunofluorescence demonstrated that Raptor deficiency induced SCs dedifferentiation into a progenitor state; the Raptor-mutant gonads showed some ovarian somatic cell features, accompanied by enhanced female steroidogenesis and elevated estrogen levels, yet the zona pellucida 3 (ZP3)-positive terminally feminized oocytes were not observed. In vitro experiments with primary SCs suggested that Raptor is likely involved in the fibroblast growth factor 9 (FGF9)-induced formation of cell junctions among SCs. Our results established that Raptor is required to maintain SC identity, stabilize the male pathway, and promote testis development.
Collapse
Affiliation(s)
| | | | | | - Zhi Xiong
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, Guangdong, China
| | - Hanbin Zhang
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Yuge Zhuang
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Zicong Huang
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Jinsheng Liu
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Jingyao Lian
- Department of Obstetrics and Gynecology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Chuyu Huang
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Qiang Xie
- Center for Reproduction, Affiliated Dongguan Hospital, Southern Medical University (Dongguan People’s Hospital), Dongguan, Guangdong, China
| | - Xiangjin Kang
- Correspondence: Xiangjin Kang, Department of Obstetrics and Gynecology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China. E-mail: ; Yong Fan, Department of Obstetrics and Gynecology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China. E-mail: ; Xiaochun Bai, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China. E-mail: ; Zhenguo Chen, Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China. E-mail: (Lead Contact)
| | - Yong Fan
- Correspondence: Xiangjin Kang, Department of Obstetrics and Gynecology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China. E-mail: ; Yong Fan, Department of Obstetrics and Gynecology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China. E-mail: ; Xiaochun Bai, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China. E-mail: ; Zhenguo Chen, Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China. E-mail: (Lead Contact)
| | - Xiaochun Bai
- Correspondence: Xiangjin Kang, Department of Obstetrics and Gynecology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China. E-mail: ; Yong Fan, Department of Obstetrics and Gynecology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China. E-mail: ; Xiaochun Bai, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China. E-mail: ; Zhenguo Chen, Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China. E-mail: (Lead Contact)
| | - Zhenguo Chen
- Correspondence: Xiangjin Kang, Department of Obstetrics and Gynecology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China. E-mail: ; Yong Fan, Department of Obstetrics and Gynecology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China. E-mail: ; Xiaochun Bai, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China. E-mail: ; Zhenguo Chen, Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China. E-mail: (Lead Contact)
| |
Collapse
|
27
|
Retinoic Acid Receptor Alpha Is Essential in Postnatal Sertoli Cells but Not in Germ Cells. Cells 2022; 11:cells11050891. [PMID: 35269513 PMCID: PMC8909012 DOI: 10.3390/cells11050891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 02/28/2022] [Accepted: 03/02/2022] [Indexed: 12/04/2022] Open
Abstract
Retinoic acid signaling is indispensable for the completion of spermatogenesis. It is known that loss of retinoic acid nuclear receptor alpha (RARA) induces male sterility due to seminiferous epithelium degeneration. Initial genetic studies established that RARA acts in Sertoli cells, but a recent paper proposed that RARA is also instrumental in germ cells. In the present study, we have re-assessed the function of RARA in germ cells by genetically ablating the Rara gene in spermatogonia and their progenies using a cell-specific conditional mutagenesis approach. We show that loss of Rara in postnatal male germ cells does not alter the histology of the seminiferous epithelium. Furthermore, RARA-deficient germ cells differentiate normally and give rise to normal, living pups. This establishes that RARA plays no crucial role in germ cells. We also tested whether RARA is required in Sertoli cells during the fetal period or after birth. For this purpose, we deleted the Rara gene in Sertoli cells at postnatal day 15 (PN15), i.e., after the onset of the first spermatogenic wave. To do so, we used temporally controlled cell-specific mutagenesis. By comparing the testis phenotypes generated when Rara is lost either at PN15 or at embryonic day 13, we show that RARA exerts all of its functions in Sertoli cells not at the fetal stage but from puberty.
Collapse
|
28
|
Windley SP, Mayère C, McGovern AE, Harvey NL, Nef S, Schwarz Q, Kumar S, Wilhelm D. Loss of NEDD4 causes complete XY gonadal sex reversal in mice. Cell Death Dis 2022; 13:75. [PMID: 35075134 PMCID: PMC8786929 DOI: 10.1038/s41419-022-04519-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 12/16/2021] [Accepted: 01/06/2022] [Indexed: 11/24/2022]
Abstract
Gonadogenesis is the process wherein two morphologically distinct organs, the testis and the ovary, arise from a common precursor. In mammals, maleness is driven by the expression of Sry. SRY subsequently upregulates the related family member Sox9 which is responsible for initiating testis differentiation while repressing factors critical to ovarian development such as FOXL2 and β-catenin. Here, we report a hitherto uncharacterised role for the ubiquitin-protein ligase NEDD4 in this process. XY Nedd4-deficient mice exhibit complete male-to-female gonadal sex reversal shown by the ectopic upregulation of Foxl2 expression at the time of gonadal sex determination as well as insufficient upregulation of Sox9. This sex reversal extends to germ cells with ectopic expression of SYCP3 in XY Nedd4-/- germ cells and significantly higher Sycp3 transcripts in XY and XX Nedd4-deficient mice when compared to both XY and XX controls. Further, Nedd4-/- mice exhibit reduced gonadal precursor cell formation and gonadal size as a result of reduced proliferation within the developing gonad as well as reduced Nr5a1 expression. Together, these results establish an essential role for NEDD4 in XY gonadal sex determination and development and suggest a potential role for NEDD4 in orchestrating these cell fate decisions through the suppression of the female pathway to ensure proper testis differentiation.
Collapse
Affiliation(s)
- Simon P Windley
- Department of Anatomy & Physiology, The University of Melbourne, Parkville, 3010, Australia
| | - Chloé Mayère
- Department of Genetic Medicine and Development, University of Geneva, 1211, Geneva, Switzerland
| | - Alice E McGovern
- Department of Anatomy & Physiology, The University of Melbourne, Parkville, 3010, Australia
| | - Natasha L Harvey
- Centre for Cancer Biology, University of South Australia, Adelaide, 5001, Australia
| | - Serge Nef
- Department of Genetic Medicine and Development, University of Geneva, 1211, Geneva, Switzerland
| | - Quenten Schwarz
- Centre for Cancer Biology, University of South Australia, Adelaide, 5001, Australia
| | - Sharad Kumar
- Centre for Cancer Biology, University of South Australia, Adelaide, 5001, Australia
| | - Dagmar Wilhelm
- Department of Anatomy & Physiology, The University of Melbourne, Parkville, 3010, Australia.
| |
Collapse
|
29
|
Dynamic Expression of the Homeobox Factor PBX1 during Mouse Testis Development. ENDOCRINES 2022. [DOI: 10.3390/endocrines3010002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Members of the pre-B-cell leukemia transcription factor (PBX) family of homeoproteins are mainly known for their involvement in hematopoietic cell differentiation and in the development of leukemia. The four PBX proteins, PBX1, PBX2, PBX3 and PBX4, belong to the three amino acid loop extension (TALE) superfamily of homeoproteins which are important transcriptional cofactors in several developmental processes involving homeobox (HOX) factors. Mutations in the human PBX1 gene are responsible for cases of gonadal dysgenesis with absence of male sex differentiation while Pbx1 inactivation in the mouse causes a failure in Leydig cell differentiation and function. However, no data is available regarding the expression profile of this transcription factor in the testis. To fill this knowledge gap, we have characterized PBX1 expression during mouse testicular development. Real time PCRs and Western blots confirmed the presence Pbx1 mRNA and PBX1 protein in different Leydig and Sertoli cell lines. The cellular localization of the PBX1 protein was determined by immunohistochemistry and immunofluorescence on mouse testis sections at different embryonic and postnatal developmental stages. PBX1 was detected in interstitial cells and in peritubular myoid cells from embryonic life until puberty. Most interstitial cells expressing PBX1 do not express the Leydig cell marker CYP17A1, indicating that they are not differentiated and steroidogenically active Leydig cells. In adults, PBX1 was mainly detected in Sertoli cells. The presence of PBX1 in different somatic cell populations during testicular development further supports a direct role for this transcription factor in testis cell differentiation and in male reproductive function.
Collapse
|
30
|
Denisova EI, Savinkova MM, Makarova EN. Influence of leptin administration to pregnant female mice on obesity development, taste preferences, and gene expression in the liver and muscles of their male and female offspring. Vavilovskii Zhurnal Genet Selektsii 2021; 25:669-676. [PMID: 34782887 PMCID: PMC8558916 DOI: 10.18699/vj21.076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 05/24/2021] [Accepted: 06/17/2021] [Indexed: 11/19/2022] Open
Abstract
. The consumption of food rich in sugar and fat provokes obesity. Prenatal conditions have an impact on taste preferences and metabolism in the adult offspring, and this impact may manifest differently in different sexes. An increase in blood leptin level in pregnant females reduces the risk of obesity and insulin resistance in the offspring, although the mechanisms mediating this effect are unknown. Neither is it known whether maternal leptin affects taste preferences. In this study, we investigated the effect of leptin administration to pregnant mice on the development of diet-induced obesity, food choice, and gene expression in the liver and muscles of the offspring with regard to sex. Leptin was administered to female mice on days 11, 12, and 13 of pregnancy. In male and female offspring, growth rate and intake of standard chow after weaning, obesity development, gene expression in the liver and muscles, and food choice when kept on a high-calorie diet (standard chow, lard, sweet cookies) were recorded. Leptin administration to pregnant females reduced body weight in the female offspring fed on the standard diet. When the offspring were given a high-calorie diet, leptin administration inhibited obesity development and reduced the consumption of cookies only in males. It also increased the consumption of standard chow and the mRNA levels of genes for the insulin receptor and glucose transporter type 4 in the muscles of both male and female offspring. The results demonstrate that an increase in blood leptin levels in pregnant females has a sex-specif ic effect on the metabolism of the offspring increasing resistance to obesity only in male offspring. The mechanism underlying this effect includes a shift in food preference in favor of a balanced diet and maintenance of insulin sensitivity in muscle tissues.
Collapse
Affiliation(s)
- E I Denisova
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | | | - E N Makarova
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|
31
|
Ridnik M, Schoenfelder S, Gonen N. Cis-Regulatory Control of Mammalian Sex Determination. Sex Dev 2021; 15:317-334. [PMID: 34710870 PMCID: PMC8743899 DOI: 10.1159/000519244] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 08/10/2021] [Indexed: 11/19/2022] Open
Abstract
Sex determination is the process by which an initial bipotential gonad adopts either a testicular or ovarian cell fate. The inability to properly complete this process leads to a group of developmental disorders classified as disorders of sex development (DSD). To date, dozens of genes were shown to play roles in mammalian sex determination, and mutations in these genes can cause DSD in humans or gonadal sex reversal/dysfunction in mice. However, exome sequencing currently provides genetic diagnosis for only less than half of DSD patients. This points towards a major role for the non-coding genome during sex determination. In this review, we highlight recent advances in our understanding of non-coding, cis-acting gene regulatory elements and discuss how they may control transcriptional programmes that underpin sex determination in the context of the 3-dimensional folding of chromatin. As a paradigm, we focus on the Sox9 gene, a prominent pro-male factor and one of the most extensively studied genes in gonadal cell fate determination.
Collapse
Affiliation(s)
- Meshi Ridnik
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
- Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan, Israel
| | - Stefan Schoenfelder
- Epigenetics Programme, The Babraham Institute, Babraham Research Campus, Cambridge, United Kingdom
| | - Nitzan Gonen
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
- Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan, Israel
| |
Collapse
|
32
|
Okashita N, Tachibana M. Transcriptional Regulation of the Y-Linked Mammalian Testis-Determining Gene SRY. Sex Dev 2021; 15:351-359. [PMID: 34583357 DOI: 10.1159/000519217] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 07/12/2021] [Indexed: 11/19/2022] Open
Abstract
Mammalian male sex differentiation is triggered during embryogenesis by the activation of the Y-linked testis-determining gene SRY. Since insufficient or delayed expression of SRY results in XY gonadal sex reversal, accurate regulation of SRY is critical for male development in XY animals. In humans, dysregulation of SRY may cause disorders of sex development. Mouse Sry is the most intensively studied mammalian model of sex determination. Sry expression is controlled in a spatially and temporally stringent manner. Several transcription factors play a key role in sex determination as trans-acting factors for Sry expression. In addition, recent studies have shown that several epigenetic modifications of Sry are involved in sex determination as cis-acting factors for Sry expression. Herein, we review the current understanding of transcription factor- and epigenetic modifier-mediated regulation of SRY/Sry expression.
Collapse
Affiliation(s)
- Naoki Okashita
- Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| | - Makoto Tachibana
- Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| |
Collapse
|
33
|
Recchia K, Jorge AS, Pessôa LVDF, Botigelli RC, Zugaib VC, de Souza AF, Martins DDS, Ambrósio CE, Bressan FF, Pieri NCG. Actions and Roles of FSH in Germinative Cells. Int J Mol Sci 2021; 22:10110. [PMID: 34576272 PMCID: PMC8470522 DOI: 10.3390/ijms221810110] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/13/2021] [Accepted: 09/14/2021] [Indexed: 12/21/2022] Open
Abstract
Follicle stimulating hormone (FSH) is produced by the pituitary gland in a coordinated hypothalamic-pituitary-gonadal (HPG) axis event, plays important roles in reproduction and germ cell development during different phases of reproductive development (fetal, neonatal, puberty, and adult life), and is consequently essential for fertility. FSH is a heterodimeric glycoprotein hormone of two dissociable subunits, α and β. The FSH β-subunit (FSHβ) function starts upon coupling to its specific receptor: follicle-stimulating hormone receptor (FSHR). FSHRs are localized mainly on the surface of target cells on the testis and ovary (granulosa and Sertoli cells) and have recently been found in testicular stem cells and extra-gonadal tissue. Several reproduction disorders are associated with absent or low FSH secretion, with mutation of the FSH β-subunit or the FSH receptor, and/or its signaling pathways. However, the influence of FSH on germ cells is still poorly understood; some studies have suggested that this hormone also plays a determinant role in the self-renewal of germinative cells and acts to increase undifferentiated spermatogonia proliferation. In addition, in vitro, together with other factors, it assists the process of differentiation of primordial germ cells (PGCLCs) into gametes (oocyte-like and SSCLCs). In this review, we describe relevant research on the influence of FSH on spermatogenesis and folliculogenesis, mainly in the germ cell of humans and other species. The possible roles of FSH in germ cell generation in vitro are also presented.
Collapse
Affiliation(s)
- Kaiana Recchia
- Department of Surgery, Faculty of Veterinary Medicine and Animal Sciences, University of São Paulo, São Paulo 01001-010, Brazil; (K.R.); (F.F.B.)
| | - Amanda Soares Jorge
- Department of Veterinary Medicine, School of Animal Sciences and Food Engineering, University of Sao Paulo, Pirassununga 13635-900, Brazil; (A.S.J.); (L.V.d.F.P.); (R.C.B.); (V.C.Z.); (D.d.S.M.); (C.E.A.)
| | - Laís Vicari de Figueiredo Pessôa
- Department of Veterinary Medicine, School of Animal Sciences and Food Engineering, University of Sao Paulo, Pirassununga 13635-900, Brazil; (A.S.J.); (L.V.d.F.P.); (R.C.B.); (V.C.Z.); (D.d.S.M.); (C.E.A.)
| | - Ramon Cesar Botigelli
- Department of Veterinary Medicine, School of Animal Sciences and Food Engineering, University of Sao Paulo, Pirassununga 13635-900, Brazil; (A.S.J.); (L.V.d.F.P.); (R.C.B.); (V.C.Z.); (D.d.S.M.); (C.E.A.)
- Department of Pharmacology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu 18618-970, Brazil
| | - Vanessa Cristiane Zugaib
- Department of Veterinary Medicine, School of Animal Sciences and Food Engineering, University of Sao Paulo, Pirassununga 13635-900, Brazil; (A.S.J.); (L.V.d.F.P.); (R.C.B.); (V.C.Z.); (D.d.S.M.); (C.E.A.)
| | - Aline Fernanda de Souza
- Department Biomedical Science, Ontary Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada;
| | - Daniele dos Santos Martins
- Department of Veterinary Medicine, School of Animal Sciences and Food Engineering, University of Sao Paulo, Pirassununga 13635-900, Brazil; (A.S.J.); (L.V.d.F.P.); (R.C.B.); (V.C.Z.); (D.d.S.M.); (C.E.A.)
| | - Carlos Eduardo Ambrósio
- Department of Veterinary Medicine, School of Animal Sciences and Food Engineering, University of Sao Paulo, Pirassununga 13635-900, Brazil; (A.S.J.); (L.V.d.F.P.); (R.C.B.); (V.C.Z.); (D.d.S.M.); (C.E.A.)
| | - Fabiana Fernandes Bressan
- Department of Surgery, Faculty of Veterinary Medicine and Animal Sciences, University of São Paulo, São Paulo 01001-010, Brazil; (K.R.); (F.F.B.)
- Department of Veterinary Medicine, School of Animal Sciences and Food Engineering, University of Sao Paulo, Pirassununga 13635-900, Brazil; (A.S.J.); (L.V.d.F.P.); (R.C.B.); (V.C.Z.); (D.d.S.M.); (C.E.A.)
| | - Naira Caroline Godoy Pieri
- Department of Veterinary Medicine, School of Animal Sciences and Food Engineering, University of Sao Paulo, Pirassununga 13635-900, Brazil; (A.S.J.); (L.V.d.F.P.); (R.C.B.); (V.C.Z.); (D.d.S.M.); (C.E.A.)
| |
Collapse
|
34
|
Bunce C, McKey J, Capel B. Concerted morphogenesis of genital ridges and nephric ducts in the mouse captured through whole-embryo imaging. Development 2021; 148:dev199208. [PMID: 33795229 PMCID: PMC8242465 DOI: 10.1242/dev.199208] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 03/22/2021] [Indexed: 12/22/2022]
Abstract
During development of the mouse urogenital complex, the gonads undergo changes in three-dimensional structure, body position and spatial relationship with the mesonephric ducts, kidneys and adrenals. The complexity of genital ridge development obscures potential connections between morphogenesis and gonadal sex determination. To characterize the morphogenic processes implicated in regulating gonad shape and fate, we used whole-embryo tissue clearing and light sheet microscopy to assemble a time course of gonad development in native form and context. Analysis revealed that gonad morphology is determined through anterior-to-posterior patterns as well as increased rates of growth, rotation and separation in the central domain that may contribute to regionalization of the gonad. We report a close alignment of gonad and mesonephric duct movements as well as delayed duct development in a gonad dysgenesis mutant, which together support a mechanical dependency linking gonad and mesonephric duct morphogenesis.
Collapse
Affiliation(s)
| | | | - Blanche Capel
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
35
|
Estermann MA, Hirst CE, Major AT, Smith CA. The homeobox gene TGIF1 is required for chicken ovarian cortical development and generation of the juxtacortical medulla. Development 2021; 148:dev199646. [PMID: 34387307 PMCID: PMC8406534 DOI: 10.1242/dev.199646] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 07/13/2021] [Indexed: 12/12/2022]
Abstract
During early embryogenesis in amniotic vertebrates, the gonads differentiate into either ovaries or testes. The first cell lineage to differentiate gives rise to the supporting cells: Sertoli cells in males and pre-granulosa cells in females. These key cell types direct the differentiation of the other cell types in the gonad, including steroidogenic cells. The gonadal surface epithelium and the interstitial cell populations are less well studied, and little is known about their sexual differentiation programs. Here, we show the requirement of the homeobox transcription factor gene TGIF1 for ovarian development in the chicken embryo. TGIF1 is expressed in the two principal ovarian somatic cell populations: the cortex and the pre-granulosa cells of the medulla. TGIF1 expression is associated with an ovarian phenotype in estrogen-mediated sex reversal experiments. Targeted misexpression and gene knockdown indicate that TGIF1 is required, but not sufficient, for proper ovarian cortex formation. In addition, TGIF1 is identified as the first known regulator of juxtacortical medulla development. These findings provide new insights into chicken ovarian differentiation and development, specifically cortical and juxtacortical medulla formation.
Collapse
Affiliation(s)
| | | | | | - Craig Allen Smith
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton VIC 3800, Australia
| |
Collapse
|
36
|
Major AT, Estermann MA, Smith CA. Anatomy, Endocrine Regulation, and Embryonic Development of the Rete Testis. Endocrinology 2021; 162:6154516. [PMID: 33661305 DOI: 10.1210/endocr/bqab046] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Indexed: 12/23/2022]
Abstract
Reproduction in males requires the transfer of spermatozoa from testis tubules via the rete system to the efferent ductules, epididymis, and vas deferens. The rete therefore forms an essential bridging system between the testis and excurrent ducts. Yet the embryonic origin and molecular regulation of rete testis development is poorly understood. This review examines the anatomy, endocrine control, and development of the mammalian rete testis, focusing on recent findings on its molecular regulation, identifying gaps in our knowledge, and identifying areas for future research. The rete testis develops in close association with Sertoli cells of the seminiferous cords, although unique molecular markers are sparce. Most recently, modern molecular approaches such as global RNA-seq have revealed the transcriptional signature of rete cell precursors, pointing to at least a partial common origin with Sertoli cells. In the mouse, genes involved in Sertoli cell development or maintenance, such as Sox9, Wt1, Sf1, and Dmrt1, are also expressed in cells of the rete system. Rete progenitor cells also express unique markers, such as Pax8, E-cadherin, and keratin 8. These must directly or indirectly regulate the physical joining of testis tubules to the efferent duct system and confer other physiological functions of the rete. The application of technologies such as single-cell RNA-seq will clarify the origin and developmental trajectory of this essential component of the male reproductive tract.
Collapse
Affiliation(s)
- Andrew T Major
- Department of Anatomy and Developmental Biology, Monash Biomedical Discovery Institute, Monash University, Clayton, Victoria, 3800, Australia
| | - Martin A Estermann
- Department of Anatomy and Developmental Biology, Monash Biomedical Discovery Institute, Monash University, Clayton, Victoria, 3800, Australia
| | - Craig A Smith
- Department of Anatomy and Developmental Biology, Monash Biomedical Discovery Institute, Monash University, Clayton, Victoria, 3800, Australia
| |
Collapse
|
37
|
Protyusha GB, B. S. Sex Determination and Sex Differentiation. J Forensic Dent Sci 2021. [DOI: 10.18311/jfds/12/1/2020.12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Sex determination is arguably the most defining moment of our lives, the point where we inherit X or Y chromosome from our father. This initiates a cascade of events that sets in a train of morphological changes, genetic regulations and molecular mechanisms. Following this, our fate is further sealed during sex differentiation and gonadal development owing to the action of sex-specific gonadal hormones. Therefore, the profoundly divergent journeys of male and female lives are decided just by the toss of a genetic coin. The existence of a third gender is also an undeniable aspect of our society. The understanding of the functioning and genetic regulation of the complex process of sexual determination and differentiation is pivotal in comprehension of the basis of human life. Any deviation from the usual mechanisms in the critical stages of development leads to disorders of sexual differentiation leading to sexual ambiguity among individuals. This review discusses the mechanisms that contribute to female and male sex determination and gonadal development, in an attempt to understand the basics of human sex.
Collapse
|
38
|
Vining B, Ming Z, Bagheri-Fam S, Harley V. Diverse Regulation but Conserved Function: SOX9 in Vertebrate Sex Determination. Genes (Basel) 2021; 12:genes12040486. [PMID: 33810596 PMCID: PMC8066042 DOI: 10.3390/genes12040486] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 03/23/2021] [Accepted: 03/24/2021] [Indexed: 12/15/2022] Open
Abstract
Sex determination occurs early during embryogenesis among vertebrates. It involves the differentiation of the bipotential gonad to ovaries or testes by a fascinating diversity of molecular switches. In most mammals, the switch is SRY (sex determining region Y); in other vertebrates it could be one of a variety of genes including Dmrt1 or dmy. Downstream of the switch gene, SOX9 upregulation is a central event in testes development, controlled by gonad-specific enhancers across the 2 Mb SOX9 locus. SOX9 is a ‘hub’ gene of gonadal development, regulated positively in males and negatively in females. Despite this diversity, SOX9 protein sequence and function among vertebrates remains highly conserved. This article explores the cellular, morphological, and genetic mechanisms initiated by SOX9 for male gonad differentiation.
Collapse
Affiliation(s)
- Brittany Vining
- Sex Development Laboratory, Hudson Institute of Medical Research, Melbourne, VIC 3168, Australia; (B.V.); (Z.M.); (S.B.-F.)
- Department of Molecular and Translational Science, Monash University, Melbourne, VIC 3800, Australia
| | - Zhenhua Ming
- Sex Development Laboratory, Hudson Institute of Medical Research, Melbourne, VIC 3168, Australia; (B.V.); (Z.M.); (S.B.-F.)
- Department of Molecular and Translational Science, Monash University, Melbourne, VIC 3800, Australia
| | - Stefan Bagheri-Fam
- Sex Development Laboratory, Hudson Institute of Medical Research, Melbourne, VIC 3168, Australia; (B.V.); (Z.M.); (S.B.-F.)
| | - Vincent Harley
- Sex Development Laboratory, Hudson Institute of Medical Research, Melbourne, VIC 3168, Australia; (B.V.); (Z.M.); (S.B.-F.)
- Department of Molecular and Translational Science, Monash University, Melbourne, VIC 3800, Australia
- Correspondence: ; Tel.: +61-3-8572-2527
| |
Collapse
|
39
|
Mehta P, Singh P, Gupta NJ, Sankhwar SN, Chakravarty B, Thangaraj K, Rajender S. Mutations in the desert hedgehog (DHH) gene in the disorders of sexual differentiation and male infertility. J Assist Reprod Genet 2021; 38:1871-1878. [PMID: 33712994 DOI: 10.1007/s10815-021-02140-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 03/02/2021] [Indexed: 11/25/2022] Open
Abstract
PURPOSE To identify the contribution of mutations in the Desert Hedgehog (DHH) gene to the disorders of sexual differentiation (DSD) and male infertility. METHODS The study included a total 430 subjects, including 47 gonadal dysgenesis cases, 6 patients with undescended testis and infertility characterized by azoospermia, 125 infertile male patients characterized by oligoasthenozoospermia, 24 patients with oligoasthenoteratozoospermia, and 200 ethnically matched normozoospermic fertile men who had fathered a child in the last two years. Sequencing of the complete coding region of the DHH gene was undertaken to find its contribution to the DSD and male infertility. RESULTS We observed four novel mutations in the DHH gene in the cases with different reproductive anomalies. A synonymous substitution, c. 543C>T (p.His181His) was observed in 6.6% oligoasthenozoospermic infertile males and 1.5% normozoospermic fertile control samples (RR = 4.4077, 95%CI 1.19-16.29). Another synonymous substitution, c.990G>A (p.Ala330Ala) was observed in an infertile patient with unilateral undescended testis (case #12). Insertion of G at c.1156insG (p.Arg385fs) was observed in a case with bilateral undescended testis and azoospermia (case #23). In gonadal dysgenesis category, two mutations, insertion of G at c.1156insG (p.Arg385fs) and c.997A>G (p.Thr333Ala) substitution were observed in one case (case #34). These mutations were completely absent in control samples. CONCLUSION Mutations in the DHH gene impact reproduction with mild mutations affecting fertility, and severe or multiple mutations resulting in gonadal dysgenesis.
Collapse
Affiliation(s)
- Poonam Mehta
- Division of Endocrinology, Central Drug Research Institute, Lucknow, India
- Academy of Scientific and Industrial Research (AcSIR), Ghaziabad, India
| | | | | | | | | | - Kumarasamy Thangaraj
- Academy of Scientific and Industrial Research (AcSIR), Ghaziabad, India
- Centre for Cellular and Molecular Biology, Hyderabad, India
- Centre for DNA Fingerprinting and Diagnostics (CDFD), Hyderabad, India
| | - Singh Rajender
- Division of Endocrinology, Central Drug Research Institute, Lucknow, India.
- Academy of Scientific and Industrial Research (AcSIR), Ghaziabad, India.
| |
Collapse
|
40
|
Santana Gonzalez L, Rota IA, Artibani M, Morotti M, Hu Z, Wietek N, Alsaadi A, Albukhari A, Sauka-Spengler T, Ahmed AA. Mechanistic Drivers of Müllerian Duct Development and Differentiation Into the Oviduct. Front Cell Dev Biol 2021; 9:605301. [PMID: 33763415 PMCID: PMC7982813 DOI: 10.3389/fcell.2021.605301] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 01/28/2021] [Indexed: 12/15/2022] Open
Abstract
The conduits of life; the animal oviducts and human fallopian tubes are of paramount importance for reproduction in amniotes. They connect the ovary with the uterus and are essential for fertility. They provide the appropriate environment for gamete maintenance, fertilization and preimplantation embryonic development. However, serious pathologies, such as ectopic pregnancy, malignancy and severe infections, occur in the oviducts. They can have drastic effects on fertility, and some are life-threatening. Despite the crucial importance of the oviducts in life, relatively little is known about the molecular drivers underpinning the embryonic development of their precursor structures, the Müllerian ducts, and their successive differentiation and maturation. The Müllerian ducts are simple rudimentary tubes comprised of an epithelial lumen surrounded by a mesenchymal layer. They differentiate into most of the adult female reproductive tract (FRT). The earliest sign of Müllerian duct formation is the thickening of the anterior mesonephric coelomic epithelium to form a placode of two distinct progenitor cells. It is proposed that one subset of progenitor cells undergoes partial epithelial-mesenchymal transition (pEMT), differentiating into immature Müllerian luminal cells, and another subset undergoes complete EMT to become Müllerian mesenchymal cells. These cells invaginate and proliferate forming the Müllerian ducts. Subsequently, pEMT would be reversed to generate differentiated epithelial cells lining the fully formed Müllerian lumen. The anterior Müllerian epithelial cells further specialize into the oviduct epithelial subtypes. This review highlights the key established molecular and genetic determinants of the processes involved in Müllerian duct development and the differentiation of its upper segment into oviducts. Furthermore, an extensive genome-wide survey of mouse knockout lines displaying Müllerian or oviduct phenotypes was undertaken. In addition to widely established genetic determinants of Müllerian duct development, our search has identified surprising associations between loss-of-function of several genes and high-penetrance abnormalities in the Müllerian duct and/or oviducts. Remarkably, these associations have not been investigated in any detail. Finally, we discuss future directions for research on Müllerian duct development and oviducts.
Collapse
Affiliation(s)
- Laura Santana Gonzalez
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom.,Nuffield Department of Women's and Reproductive Health, University of Oxford, Oxford, United Kingdom
| | - Ioanna A Rota
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom.,Developmental Immunology Research Group, Department of Paediatrics, University of Oxford, Oxford, United Kingdom
| | - Mara Artibani
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom.,Nuffield Department of Women's and Reproductive Health, University of Oxford, Oxford, United Kingdom.,Gene Regulatory Networks in Development and Disease Laboratory, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Matteo Morotti
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom.,Nuffield Department of Women's and Reproductive Health, University of Oxford, Oxford, United Kingdom
| | - Zhiyuan Hu
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom.,Nuffield Department of Women's and Reproductive Health, University of Oxford, Oxford, United Kingdom
| | - Nina Wietek
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom.,Nuffield Department of Women's and Reproductive Health, University of Oxford, Oxford, United Kingdom
| | - Abdulkhaliq Alsaadi
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom.,Nuffield Department of Women's and Reproductive Health, University of Oxford, Oxford, United Kingdom
| | - Ashwag Albukhari
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Tatjana Sauka-Spengler
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom.,Gene Regulatory Networks in Development and Disease Laboratory, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Ahmed A Ahmed
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom.,Nuffield Department of Women's and Reproductive Health, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
41
|
Miyawaki S, Kuroki S, Maeda R, Okashita N, Koopman P, Tachibana M. The mouse Sry locus harbors a cryptic exon that is essential for male sex determination. Science 2020; 370:121-124. [PMID: 33004521 DOI: 10.1126/science.abb6430] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 08/06/2020] [Indexed: 11/02/2022]
Abstract
The mammalian sex-determining gene Sry induces male development. Since its discovery 30 years ago, Sry has been believed to be a single-exon gene. Here, we identified a cryptic second exon of mouse Sry and a corresponding two-exon type Sry (Sry-T) transcript. XY mice lacking Sry-T were sex-reversed, and ectopic expression of Sry-T in XX mice induced male development. Sry-T messenger RNA is expressed similarly to that of canonical single-exon type Sry (Sry-S), but SRY-T protein is expressed predominantly because of the absence of a degron in the C terminus of SRY-S. Sry exon2 appears to have evolved recently in mice through acquisition of a retrotransposon-derived coding sequence to replace the degron. Our findings suggest that in nature, SRY-T, not SRY-S, is the bona fide testis-determining factor.
Collapse
Affiliation(s)
- Shingo Miyawaki
- Laboratory of Epigenome Dynamics, Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka, 565-0871, Japan.,Division of Epigenome Dynamics, Institute of Advanced Medical Sciences, Tokushima University, 3-18-15 Kuramoto-Cho, Tokushima, 770-8503, Japan
| | - Shunsuke Kuroki
- Laboratory of Epigenome Dynamics, Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka, 565-0871, Japan.,Division of Epigenome Dynamics, Institute of Advanced Medical Sciences, Tokushima University, 3-18-15 Kuramoto-Cho, Tokushima, 770-8503, Japan
| | - Ryo Maeda
- Laboratory of Epigenome Dynamics, Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka, 565-0871, Japan.,Division of Epigenome Dynamics, Institute of Advanced Medical Sciences, Tokushima University, 3-18-15 Kuramoto-Cho, Tokushima, 770-8503, Japan
| | - Naoki Okashita
- Laboratory of Epigenome Dynamics, Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka, 565-0871, Japan.,Division of Epigenome Dynamics, Institute of Advanced Medical Sciences, Tokushima University, 3-18-15 Kuramoto-Cho, Tokushima, 770-8503, Japan
| | - Peter Koopman
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Makoto Tachibana
- Laboratory of Epigenome Dynamics, Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka, 565-0871, Japan. .,Division of Epigenome Dynamics, Institute of Advanced Medical Sciences, Tokushima University, 3-18-15 Kuramoto-Cho, Tokushima, 770-8503, Japan
| |
Collapse
|
42
|
Ortega EA, Salvador Q, Fernandez M, Ward MA. Alterations of sex determination pathways in the genital ridges of males with limited Y chromosome genes†. Biol Reprod 2020; 100:810-823. [PMID: 30285093 DOI: 10.1093/biolre/ioy218] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 09/09/2018] [Accepted: 10/02/2018] [Indexed: 12/14/2022] Open
Abstract
We previously demonstrated that in the mouse only two Y chromosome genes are required for a male to produce an offspring with the help of assisted reproduction technologies (ART): testis determinant Sry and spermatogonial proliferation factor Eif2s3y. Subsequently, we have shown that the function of these genes can be replaced by transgenic overexpression of their homologs, autosomally encoded Sox9 and X-chromosome encoded Eif2s3x. Males with Y chromosome contribution limited to two (XEif2s3yOSry), one (XEif2s3yOSox9 and XOSry,Eif2s3x), and no genes (XOSox9,Eif2s3x) produced haploid germ cells and sired offspring after ART. However, despite successful assisted reproductive outcome, they had smaller testes and displayed abnormal development of the seminiferous epithelium and testicular interstitium. Here we explored whether these testicular defects originated from altered pro-testis and pro-ovary factor signaling in genital ridges at the time of sex determination. Timed pregnancies were generated to obtain transgenic XEif2s3yOSry, XEif2s3yOSox9, XOSry,Eif2s3x, XOSox9,Eif2s3x, and wild-type XX and XY fetuses at 12.5 days post coitum. Dissected genital ridges were assessed for their morphology and anatomy, and expression of pro-testis and pro-ovary transcripts. All transgenic males displayed incomplete masculinization of gonadal shape, impaired development of testicular cords and gonadal vasculature, and decreased expression of factors promoting male pathway. Fetal gonad masculinization was more effective when sex determination was driven by the Sry transgene, in the presence of Y chromosome genes, and to a lesser extent a double dosage of X genes. The study adds to the understanding of the role of Y chromosome genes and their homologs during sex determination.
Collapse
Affiliation(s)
- Eglė A Ortega
- Institute for Biogenesis Research, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii, USA
| | - Quinci Salvador
- Institute for Biogenesis Research, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii, USA
| | - Mayumi Fernandez
- Institute for Biogenesis Research, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii, USA
| | - Monika A Ward
- Institute for Biogenesis Research, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii, USA
| |
Collapse
|
43
|
Abstract
Regulatory landscapes have been defined in vertebrates as large DNA segments containing diverse enhancer sequences that produce coherent gene transcription. These genomic platforms integrate multiple cellular signals and hence can trigger pleiotropic expression of developmental genes. Identifying and evaluating how these chromatin regions operate may be difficult as the underlying regulatory mechanisms can be as unique as the genes they control. In this brief article and accompanying poster, we discuss some of the ways in which regulatory landscapes operate, illustrating these mechanisms using genes important for vertebrate development as examples. We also highlight some of the techniques available to researchers for analysing regulatory landscapes.
Collapse
Affiliation(s)
- Christopher Chase Bolt
- Swiss Institute for Cancer Research (ISREC), School of Life Sciences, Federal Institute of Technology, Lausanne, 1015 Lausanne, Switzerland
| | - Denis Duboule
- Swiss Institute for Cancer Research (ISREC), School of Life Sciences, Federal Institute of Technology, Lausanne, 1015 Lausanne, Switzerland
- Department of Genetics and Evolution, University of Geneva, 1211 Geneva 4, Switzerland
- Collège de France, 75005 Paris, France
| |
Collapse
|
44
|
Okashita N, Kuroki S, Maeda R, Tachibana M. TET2 catalyzes active DNA demethylation of the Sry promoter and enhances its expression. Sci Rep 2019; 9:13462. [PMID: 31530896 PMCID: PMC6748950 DOI: 10.1038/s41598-019-50058-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 09/05/2019] [Indexed: 12/30/2022] Open
Abstract
SRY is the master regulator of male sex determination in eutherian mammals. In mice, Sry expression is transcriptionally and epigenetically controlled in a developmental stage-specific manner. The Sry promoter undergoes demethylation in embryonic gonadal somatic cells at the sex-determining period. However, its molecular mechanism and in vivo significance remain unclear. Here, we report that the Sry promoter is actively demethylated during gonadal development, and TET2 plays a fundamental role in Sry demethylation. Tet2-deficient mice showed absence of 5-hydroxymethylcytosine in the Sry promoter. Furthermore, Tet2 deficiency diminished Sry expression, indicating that TET2-mediated DNA demethylation regulates Sry expression positively. We previously showed that the deficiency of the H3K9 demethylase Jmjd1a compromises Sry expression and induces male-to-female sex reversal. Tet2 deficiency enhanced the sex reversal phenotype of Jmjd1a-deficient mice. Thus, TET2-mediated active DNA demethylation and JMJD1A-mediated H3K9 demethylation contribute synergistically to sex determination.
Collapse
Affiliation(s)
- Naoki Okashita
- Division of Epigenome Dynamics, Institute of Advanced Medical Sciences, Tokushima University, 3-18-15 Kuramoto-Cho, Tokushima, 770-8503, Japan.,Laboratory of Epigenome Dynamics, Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Shunsuke Kuroki
- Division of Epigenome Dynamics, Institute of Advanced Medical Sciences, Tokushima University, 3-18-15 Kuramoto-Cho, Tokushima, 770-8503, Japan.,Laboratory of Epigenome Dynamics, Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Ryo Maeda
- Division of Epigenome Dynamics, Institute of Advanced Medical Sciences, Tokushima University, 3-18-15 Kuramoto-Cho, Tokushima, 770-8503, Japan.,Laboratory of Epigenome Dynamics, Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Makoto Tachibana
- Division of Epigenome Dynamics, Institute of Advanced Medical Sciences, Tokushima University, 3-18-15 Kuramoto-Cho, Tokushima, 770-8503, Japan. .,Laboratory of Epigenome Dynamics, Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
45
|
Neirijnck Y, Papaioannou MD, Nef S. The Insulin/IGF System in Mammalian Sexual Development and Reproduction. Int J Mol Sci 2019; 20:ijms20184440. [PMID: 31505893 PMCID: PMC6770468 DOI: 10.3390/ijms20184440] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 08/30/2019] [Accepted: 09/06/2019] [Indexed: 12/26/2022] Open
Abstract
Persistent research over the past few decades has clearly established that the insulin-like family of growth factors, which is composed of insulin and insulin-like growth factors 1 (IGF1) and 2 (IGF2), plays essential roles in sexual development and reproduction of both males and females. Within the male and female reproductive organs, ligands of the family act in an autocrine/paracrine manner, in order to guide different aspects of gonadogenesis, sex determination, sex-specific development or reproductive performance. Although our knowledge has greatly improved over the last years, there are still several facets that remain to be deciphered. In this review, we first briefly outline the principles of sexual development and insulin/IGF signaling, and then present our current knowledge, both in rodents and humans, about the involvement of insulin/IGFs in sexual development and reproductive functions. We conclude by highlighting some interesting remarks and delineating certain unanswered questions that need to be addressed in future studies.
Collapse
Affiliation(s)
- Yasmine Neirijnck
- Department of Genetic Medicine and Development, University of Geneva, 1211 Geneva, Switzerland.
| | - Marilena D Papaioannou
- Department of Genetic Medicine and Development, University of Geneva, 1211 Geneva, Switzerland.
| | - Serge Nef
- Department of Genetic Medicine and Development, University of Geneva, 1211 Geneva, Switzerland.
| |
Collapse
|
46
|
Yamashita S, Kataoka K, Yamamoto H, Kato T, Hara S, Yamaguchi K, Renard-Guillet C, Katou Y, Shirahige K, Ochi H, Ogino H, Uchida T, Inui M, Takada S, Shigenobu S, Asahara H. Comparative analysis demonstrates cell type-specific conservation of SOX9 targets between mouse and chicken. Sci Rep 2019; 9:12560. [PMID: 31467356 PMCID: PMC6715657 DOI: 10.1038/s41598-019-48979-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 08/12/2019] [Indexed: 12/12/2022] Open
Abstract
SRY (sex-determining region Y)-box 9 (SOX9) is a transcription factor regulating both chondrogenesis and sex determination. Among vertebrates, SOX9's functions in chondrogenesis are well conserved, while they vary in sex determination. To investigate the conservation of SOX9's regulatory functions in chondrogenesis and gonad development among species, we performed chromatin immunoprecipitation sequencing (ChIP-seq) using developing limb buds and male gonads from embryos of two vertebrates, mouse and chicken. In both mouse and chicken, SOX9 bound to intronic and distal regions of genes more frequently in limb buds than in male gonads, while SOX9 bound to the proximal upstream regions of genes more frequently in male gonads than in limb buds. In both species, SOX palindromic repeats were identified more frequently in SOX9 binding regions in limb bud genes compared with those in male gonad genes. The conservation of SOX9 binding regions was significantly higher in limb bud genes. In addition, we combined RNA expression analysis (RNA sequencing) with the ChIP-seq results at the same stage in developing chondrocytes and Sertoli cells and determined SOX9 target genes in these cells of the two species and disclosed that SOX9 targets showed high similarity of targets in chondrocytes, but not in Sertoli cells.
Collapse
Affiliation(s)
- Satoshi Yamashita
- Department of Systems BioMedicine, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
- Department of Systems BioMedicine, National Institute for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo, 157-8535, Japan
| | - Kensuke Kataoka
- Department of Systems BioMedicine, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
- Research Fellow of Japan Society for the Promotion of Science, Tokyo, Japan
| | - Hiroto Yamamoto
- Department of Systems BioMedicine, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
- Department of Anesthesiology, Tokyo Medical and Dental University, Graduate School of Medical and Dental Sciences, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Tomoko Kato
- Department of Systems BioMedicine, National Institute for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo, 157-8535, Japan
| | - Satoshi Hara
- Department of Systems BioMedicine, National Institute for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo, 157-8535, Japan
| | - Katsushi Yamaguchi
- Functional Genomics Facility, National Institute for Basic Biology, 38, Nishigonaka Myodaiji, Okazaki, Aichi, 444-8585, Japan
| | - Claire Renard-Guillet
- Laboratory of Genome Structure and Function Center for Epigenetic Disease, Institute of Molecular and Cellular Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-0032, Japan
| | - Yuki Katou
- Laboratory of Genome Structure and Function Center for Epigenetic Disease, Institute of Molecular and Cellular Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-0032, Japan
| | - Katsuhiko Shirahige
- Laboratory of Genome Structure and Function Center for Epigenetic Disease, Institute of Molecular and Cellular Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-0032, Japan
| | - Haruki Ochi
- Institute for Promotion of Medical Science Research, Faculty of Medicine, Yamagata University, 2-2-2 Iida-nishi, Yamagata, 990-9585, Japan
| | - Hajime Ogino
- Amphibian Research Center, Hiroshima University, 1-3-1 Kagami-yama, Higashi-Hiroshima, Hiroshima, 739-8526, Japan
| | - Tokujiro Uchida
- Department of Anesthesiology, Tokyo Medical and Dental University, Graduate School of Medical and Dental Sciences, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Masafumi Inui
- Department of Systems BioMedicine, National Institute for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo, 157-8535, Japan
- Laboratory of Animal Regeneration Systemology, Department of Life Sciences, School of Agriculture, Meiji University, 1-1-1 Higashi-Mita Tama-ku, Kawasaki, Kanagawa, 214-8571, Japan
| | - Shuji Takada
- Department of Systems BioMedicine, National Institute for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo, 157-8535, Japan
| | - Shuji Shigenobu
- Functional Genomics Facility, National Institute for Basic Biology, 38, Nishigonaka Myodaiji, Okazaki, Aichi, 444-8585, Japan.
| | - Hiroshi Asahara
- Department of Systems BioMedicine, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan.
- Department of Molecular Medicine, The Scripps Research Institute, California, 92037, USA.
- AMED-CREST, Japan Agency for Medical Research and Development (AMED), Tokyo, Japan.
| |
Collapse
|
47
|
Dori M, Bicciato S. Integration of Bioinformatic Predictions and Experimental Data to Identify circRNA-miRNA Associations. Genes (Basel) 2019; 10:genes10090642. [PMID: 31450634 PMCID: PMC6769881 DOI: 10.3390/genes10090642] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 08/20/2019] [Accepted: 08/21/2019] [Indexed: 12/20/2022] Open
Abstract
Circular RNAs (circRNAs) have recently emerged as a novel class of transcripts, characterized by covalently linked 3'-5' ends that result in the so-called backsplice junction. During the last few years, thousands of circRNAs have been identified in different organisms. Yet, despite their role as disease biomarker started to emerge, depicting their function remains challenging. Different studies have shown that certain circRNAs act as miRNA sponges, but any attempt to generalize from the single case to the "circ-ome" has failed so far. In this review, we explore the potential to define miRNA "sponging" as a more general function of circRNAs and describe the different approaches to predict miRNA response elements (MREs) in known or novel circRNA sequences. Moreover, we discuss how experiments based on Ago2-IP and experimentally validated miRNA:target duplexes can be used to either prioritize or validate putative miRNA-circRNA associations.
Collapse
Affiliation(s)
- Martina Dori
- Center for Genome Research, Department of Life Sciences, University of Modena and Reggio Emilia, Via G. Campi, 287, 41100 Modena, Italy.
| | - Silvio Bicciato
- Center for Genome Research, Department of Life Sciences, University of Modena and Reggio Emilia, Via G. Campi, 287, 41100 Modena, Italy.
| |
Collapse
|
48
|
Mäkelä JA, Koskenniemi JJ, Virtanen HE, Toppari J. Testis Development. Endocr Rev 2019; 40:857-905. [PMID: 30590466 DOI: 10.1210/er.2018-00140] [Citation(s) in RCA: 188] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 07/17/2018] [Indexed: 12/28/2022]
Abstract
Production of sperm and androgens is the main function of the testis. This depends on normal development of both testicular somatic cells and germ cells. A genetic program initiated from the Y chromosome gene sex-determining region Y (SRY) directs somatic cell specification to Sertoli cells that orchestrate further development. They first guide fetal germ cell differentiation toward spermatogenic destiny and then take care of the full service to spermatogenic cells during spermatogenesis. The number of Sertoli cells sets the limits of sperm production. Leydig cells secrete androgens that determine masculine development. Testis development does not depend on germ cells; that is, testicular somatic cells also develop in the absence of germ cells, and the testis can produce testosterone normally to induce full masculinization in these men. In contrast, spermatogenic cell development is totally dependent on somatic cells. We herein review germ cell differentiation from primordial germ cells to spermatogonia and development of the supporting somatic cells. Testicular descent to scrota is necessary for normal spermatogenesis, and cryptorchidism is the most common male birth defect. This is a mild form of a disorder of sex differentiation. Multiple genetic reasons for more severe forms of disorders of sex differentiation have been revealed during the last decades, and these are described along with the description of molecular regulation of testis development.
Collapse
Affiliation(s)
- Juho-Antti Mäkelä
- Research Centre for Integrative Physiology and Pharmacology, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Jaakko J Koskenniemi
- Research Centre for Integrative Physiology and Pharmacology, Institute of Biomedicine, University of Turku, Turku, Finland.,Department of Pediatrics, Turku University Hospital, Turku, Finland
| | - Helena E Virtanen
- Research Centre for Integrative Physiology and Pharmacology, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Jorma Toppari
- Research Centre for Integrative Physiology and Pharmacology, Institute of Biomedicine, University of Turku, Turku, Finland.,Department of Pediatrics, Turku University Hospital, Turku, Finland
| |
Collapse
|
49
|
Ogata Y, Nishikata M, Kitada K, Mizushima S, Jogahara T, Kuroiwa A. Spiny rat SRY lacks a long Q-rich domain and is not stable in transgenic mice. Dev Dyn 2019; 248:784-794. [PMID: 31219647 DOI: 10.1002/dvdy.73] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 06/11/2019] [Accepted: 06/11/2019] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND Although Tokudaia muenninki has multiple extra copies of the Sry gene on the Y chromosome, loss of function of these sequences is indicated. To examine the Sry gene function for sex determining in T. muenninki, we screened a BAC library and identified a clone (SRY26) containing complete SRY coding and promoter sequences. RESULTS SRY26 showed high identity to mouse and rat SRY. In an in vitro reporter gene assay, SRY26 was unable to activate testis-specific enhancer of Sox9. Four lines of BAC transgenic mice carrying SRY26 were generated. Although the embryonic gonads of XX transgenic mice displayed sufficient expression levels of SRY26 mRNA, these mice exhibited normal female phenotypes in the external and internal genitalia, and up-regulation of Sox9 was not observed. Expression of the SRY26 protein was confirmed in primate-derived COS7 cells transfected with a SRY26 expression vector. However, the SRY26 protein was not expressed in the gonads of BAC transgenic mice. CONCLUSIONS Overall, these results support a previous study demonstrated a long Q-rich domain plays essential roles in protein stabilization in mice. Therefore, the original aim of this study, to examine the function of the Sry gene of this species, was not achieved by creating TG mice.
Collapse
Affiliation(s)
- Yuka Ogata
- Biosystems Science Course, Graduate School of Life Science, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Mana Nishikata
- Biosystems Science Course, Graduate School of Life Science, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Kazuhiro Kitada
- Biosystems Science Course, Graduate School of Life Science, Hokkaido University, Sapporo, Hokkaido, Japan.,Division of Reproductive and Developmental Biology, Department of Biological Sciences, Faculty of Science, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Shusei Mizushima
- Biosystems Science Course, Graduate School of Life Science, Hokkaido University, Sapporo, Hokkaido, Japan.,Division of Reproductive and Developmental Biology, Department of Biological Sciences, Faculty of Science, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Takamichi Jogahara
- Division of Bio-Resources, Frontier Science Research Center, Kiyotake Campus, University of Miyazaki, Miyazaki, Japan.,Department of Law and Economics, Okinawa University, Naha, Okinawa, Japan
| | - Asato Kuroiwa
- Biosystems Science Course, Graduate School of Life Science, Hokkaido University, Sapporo, Hokkaido, Japan.,Division of Reproductive and Developmental Biology, Department of Biological Sciences, Faculty of Science, Hokkaido University, Sapporo, Hokkaido, Japan
| |
Collapse
|
50
|
Garcia-Moreno SA, Lin YT, Futtner CR, Salamone IM, Capel B, Maatouk DM. CBX2 is required to stabilize the testis pathway by repressing Wnt signaling. PLoS Genet 2019; 15:e1007895. [PMID: 31116734 PMCID: PMC6548405 DOI: 10.1371/journal.pgen.1007895] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 06/04/2019] [Accepted: 04/12/2019] [Indexed: 12/25/2022] Open
Abstract
XX and XY fetal gonads are initially bipotential, poised between the ovary and testis fate. Multiple lines of evidence suggest that commitment to testis fate requires the repression of genes associated with ovary fate. It was previously shown that loss of CBX2, the subunit of the Polycomb Repressive Complex 1 (PRC1) that binds H3K27me3 and mediates silencing, leads to ovary development in XY mice and humans. While it had been proposed that CBX2 is an activator of the testis-determining gene Sry, we investigated the alternative possibility that CBX2 has a direct role as a repressor of the antagonistic ovary-promoting pathway. To investigate this possibility, we developed a quantitative genome-wide profile of the repressive histone mark H3K27me3 and its active counterpart H3K4me3 in isolated XY and XX gonadal supporting cells before and after sex determination. We show that testis and ovary sex-determining (SD) genes are bivalent before sex determination, providing insight into how the bipotential state of the gonad is established at the epigenetic level. After sex determination, many SD genes of the alternate pathway remain bivalent, possibly contributing to the ability of these cells to transdifferentiate even in adults. The finding that many genes in the Wnt signaling pathway were targeted for H3K27me3-mediated repression in Sertoli cells led us to test whether deletion of Wnt4 could rescue testis development in Cbx2 mutants. We show that Sry expression and testis development were rescued in XY Cbx2-/-;Wnt4-/- mice. Furthermore, we show that CBX2 directly binds the downstream Wnt signaler Lef1, an ovary-promoting gene that remains bivalent in Sertoli cells. Our results suggest that stabilization of the testis fate requires CBX2-mediated repression of bivalent ovary-determining genes, which would otherwise block testis development. During development, the bipotential fetal gonad can commit to the testis fate or to the ovary fate. Mutation of the epigenetic regulator CBX2 leads to ovary development in XY embryos, suggesting a critical role for chromatin remodeling during sex determination. However, the epigenetic mechanisms that regulate the testis vs. ovary cell-fate decision in the mammalian bipotential gonad are poorly understood. In this study, we developed a genome-wide profile of two histone modifications that play critical roles during development: H3K27me3 (repressive) and H3K4me3 (active). We find that sex-determining genes that are initially co-expressed in XX and XY bipotential gonads are bivalent (marked by both H3K4me3 and H3K27me3) prior to sex determination, poised to engage either the testis or ovary fate. Remarkably, after sex determination, repressed genes that promote the alternate fate remain bivalent. We show that stabilization of the testis fate requires CBX2-mediated repression of bivalent ovary-determining genes, which would otherwise block testis development. Our study provides insight into how the bipotential state of the gonad is established at the epigenetic level, and how the testis fate is stabilized by repression of the ovary fate during sex determination.
Collapse
Affiliation(s)
- S. Alexandra Garcia-Moreno
- Department of Obstetrics and Gynecology, Northwestern University, Chicago, Illinois, United States of America
| | - Yi-Tzu Lin
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Christopher R. Futtner
- Department of Obstetrics and Gynecology, Northwestern University, Chicago, Illinois, United States of America
| | - Isabella M. Salamone
- Department of Obstetrics and Gynecology, Northwestern University, Chicago, Illinois, United States of America
| | - Blanche Capel
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina, United States of America
- * E-mail:
| | - Danielle M. Maatouk
- Department of Obstetrics and Gynecology, Northwestern University, Chicago, Illinois, United States of America
| |
Collapse
|