1
|
Sánchez-Lanzas R, Jiménez-Pompa A, Ganuza M. The evolving hematopoietic niche during development. Front Mol Biosci 2024; 11:1488199. [PMID: 39417006 PMCID: PMC11480086 DOI: 10.3389/fmolb.2024.1488199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 09/20/2024] [Indexed: 10/19/2024] Open
Abstract
Mammalian hematopoietic stem cells (HSCs) emerge from the hemogenic endothelium in the major embryonic arteries. HSCs undergo a complex journey first migrating to the fetal liver (FL) and from there to the fetal bone marrow (FBM), where they mostly remain during adult life. In this process, a pool of adult HSCs is produced, which sustains lifelong hematopoiesis. Multiple cellular components support HSC maturation and expansion and modulate their response to environmental and developmental cues. While the adult HSC niche has been extensively studied over the last two decades, the niches present in the major embryonic arteries, FL, FBM and perinatal bone marrow (BM) are poorly described. Recent investigations highlight important differences among FL, FBM and adult BM niches and emphasize the important role that inflammation, microbiota and hormonal factors play regulating HSCs and their niches. We provide a review on our current understanding of these important cellular microenvironments across ontogeny. We mainly focused on mice, as the most widely used research model, and, when possible, include relevant insights from other vertebrates including birds, zebrafish, and human. Developing a comprehensive picture on these processes is critical to understand the earliest origins of childhood leukemia and to achieve multiple goals in regenerative medicine, such as mimicking HSC development in vitro to produce HSCs for broad transplantation purposes in leukemia, following chemotherapy, bone marrow failure, and in HSC-based gene therapy.
Collapse
Affiliation(s)
| | | | - Miguel Ganuza
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
2
|
Jokela TA, Dane MA, Smith RL, Devlin KL, Shalabi S, Lopez JC, Miyano M, Stampfer MR, Korkola JE, Gray JW, Heiser LM, LaBarge MA. Functional delineation of the luminal epithelial microenvironment in breast using cell-based screening in combinatorial microenvironments. Cell Signal 2024; 113:110958. [PMID: 37935340 PMCID: PMC10696611 DOI: 10.1016/j.cellsig.2023.110958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/24/2023] [Accepted: 10/30/2023] [Indexed: 11/09/2023]
Abstract
Microenvironment signals are potent determinants of cell fate and arbiters of tissue homeostasis, however understanding how different microenvironment factors coordinately regulate cellular phenotype has been experimentally challenging. Here we used a high-throughput microenvironment microarray comprised of 2640 unique pairwise signals to identify factors that support proliferation and maintenance of primary human mammary luminal epithelial cells. Multiple microenvironment factors that modulated luminal cell number were identified, including: HGF, NRG1, BMP2, CXCL1, TGFB1, FGF2, PDGFB, RANKL, WNT3A, SPP1, HA, VTN, and OMD. All of these factors were previously shown to modulate luminal cell numbers in painstaking mouse genetics experiments, or were shown to have a role in breast cancer, demonstrating the relevance and power of our high-dimensional approach to dissect key microenvironmental signals. RNA-sequencing of primary epithelial and stromal cell lineages identified the cell types that express these signals and the cognate receptors in vivo. Cell-based functional studies confirmed which effects from microenvironment factors were reproducible and robust to individual variation. Hepatocyte growth factor (HGF) was the factor most robust to individual variation and drove expansion of luminal cells via cKit+ progenitor cells, which expressed abundant MET receptor. Luminal cells from women who are genetically high risk for breast cancer had significantly more MET receptor and may explain the characteristic expansion of the luminal lineage in those women. In ensemble, our approach provides proof of principle that microenvironment signals that control specific cellular states can be dissected with high-dimensional cell-based approaches.
Collapse
Affiliation(s)
- Tiina A Jokela
- Department of Population Sciences, Center for Cancer and Aging, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Mark A Dane
- Department of Biomedical Engineering, Oregon Health Sciences University, Portland, OR, USA
| | - Rebecca L Smith
- Department of Biomedical Engineering, Oregon Health Sciences University, Portland, OR, USA
| | - Kaylyn L Devlin
- Department of Biomedical Engineering, Oregon Health Sciences University, Portland, OR, USA
| | - Sundus Shalabi
- Department of Population Sciences, Center for Cancer and Aging, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA; Faculty of Medicine, Arab American University of Palestine, Jenin, Palestine
| | - Jennifer C Lopez
- Department of Population Sciences, Center for Cancer and Aging, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Masaru Miyano
- Department of Population Sciences, Center for Cancer and Aging, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Martha R Stampfer
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - James E Korkola
- Department of Biomedical Engineering, Oregon Health Sciences University, Portland, OR, USA
| | - Joe W Gray
- Department of Biomedical Engineering, Oregon Health Sciences University, Portland, OR, USA
| | - Laura M Heiser
- Department of Biomedical Engineering, Oregon Health Sciences University, Portland, OR, USA.
| | - Mark A LaBarge
- Department of Population Sciences, Center for Cancer and Aging, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA; Center for Cancer Biomarkers Research (CCBIO), University of Bergen, Bergen, Norway; Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
| |
Collapse
|
3
|
Wei M, Tang W, Lv D, Liu M, Wang G, Liu Q, Qin L, Huang B, Zhang D. Long-chain noncoding RNA sequencing analysis reveals the molecular profiles of chemically induced mammary epithelial cells. Front Genet 2023; 14:1189487. [PMID: 37745843 PMCID: PMC10514351 DOI: 10.3389/fgene.2023.1189487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 08/21/2023] [Indexed: 09/26/2023] Open
Abstract
Long noncoding RNAs (lncRNAs) were important regulators affecting the cellular reprogramming process. Previous studies from our group have demonstrated that small molecule compounds can induce goat ear fibroblasts to reprogram into mammary epithelial cells with lactation function. In this study, we used lncRNA-Sequencing (lncRNA-seq) to analyze the lncRNA expression profile of cells before and after reprogramming (CK vs. 5i8 d). The results showed that a total of 3,970 candidate differential lncRNAs were detected, 1,170 annotated and 2,800 new lncRNAs. Compared to 0 d cells, 738 lncRNAs were significantly upregulated and 550 were significantly downregulated in 8 d cells. Heat maps of lncrnas and target genes with significant differences showed that the fate of cell lineages changed. Functional enrichment analysis revealed that these differently expressed (DE) lncRNAs target genes were mainly involved in signaling pathways related to reprogramming and mammary gland development, such as the Wnt signaling pathway, PI3K-Akt signaling pathway, arginine and proline metabolism, ECM-receptor interaction, and MAPK signaling pathway. The accuracy of sequencing was verified by real-time fluorescence quantification (RT-qPCR) of lncRNAs and key candidate genes, and it was also demonstrated that the phenotype and genes of the cells were changed. Therefore, this study offers a foundation for explaining the molecular mechanisms of lncRNAs in chemically induced mammary epithelial cells.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Ben Huang
- Guangxi Key Laboratory of Eye Health, Guangxi Academy of Medical Sciences, People’s Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Dandan Zhang
- Guangxi Key Laboratory of Eye Health, Guangxi Academy of Medical Sciences, People’s Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| |
Collapse
|
4
|
Acevedo DS, Fang WB, Rao V, Penmetcha V, Leyva H, Acosta G, Cote P, Brodine R, Swerdlow R, Tan L, Lorenzi PL, Cheng N. Regulation of growth, invasion and metabolism of breast ductal carcinoma through CCL2/CCR2 signaling interactions with MET receptor tyrosine kinases. Neoplasia 2022; 28:100791. [PMID: 35405500 PMCID: PMC9010752 DOI: 10.1016/j.neo.2022.100791] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 03/02/2022] [Accepted: 03/21/2022] [Indexed: 12/26/2022]
Abstract
CCR2 correlates with MET receptor expression in breast ductal carcinomas. CCL2/CCR2 signaling in breast cancer cells depend on interactions with MET. CCR2 and MET signals alter metabolism of ductal carcinoma in situ in animal models. CCR2 mediates metabolism and progression of MIND lesions through MET.
With over 60,000 cases diagnosed annually in the US, ductal carcinoma in situ (DCIS) is the most prevalent form of early-stage breast cancer. Because many DCIS cases never progress to invasive ductal carcinomas (IDC), overtreatment remains a significant problem. Up to 20% patients experience disease recurrence, indicating that standard treatments do not effectively treat DCIS for a subset of patients. By understanding the mechanisms of DCIS progression, we can develop new treatment strategies better tailored to patients. The chemokine CCL2 and its receptor CCR2 are known to regulate macrophage recruitment during inflammation and cancer progression. Recent studies indicate that increased CCL2/CCR2 signaling in breast epithelial cells enhance formation of IDC. Here, we characterized the molecular mechanisms important for CCL2/CCR2-mediated DCIS progression. Phospho-protein array profiling revealed that CCL2 stimulated phosphorylation of MET receptor tyrosine kinases in breast cancer cells. Co-immunoprecipitation and proximity ligation assays demonstrated that CCL2-induced MET activity depended on interactions with CCR2 and SRC. Extracellular flux analysis and biochemical assays revealed that CCL2/CCR2 signaling in breast cancer cells enhanced glycolytic enzyme expression and activity. CRISPR knockout and pharmacologic inhibition of MET revealed that CCL2/CCR2-induced breast cancer cell proliferation, survival, migration and glycolysis through MET-dependent mechanisms. In animals, MET inhibitors blocked CCR2-mediated DCIS progression and metabolism. CCR2 and MET were significantly co-expressed in patient DCIS and IDC tissues. In summary, MET receptor activity is an important mechanism for CCL2/CCR2-mediated progression and metabolism of early-stage breast cancer, with important clinical implications.
Collapse
|
5
|
Hoskins EC, Halloran KM, Stenhouse C, Moses RM, Dunlap KA, Satterfield MC, Seo H, Johnson GA, Wu G, Bazer FW. Pre-implantation exogenous progesterone and pregnancy in sheep: I. polyamines, nutrient transport, and progestamedins. J Anim Sci Biotechnol 2021; 12:39. [PMID: 33663606 PMCID: PMC7934464 DOI: 10.1186/s40104-021-00554-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 01/11/2021] [Indexed: 12/11/2022] Open
Abstract
Background Administration of exogenous progesterone (P4) to ewes during the pre-implantation period advances conceptus development and implantation. This study determined effects of exogenous P4 on transport of select nutrients and pathways that enhance conceptus development. Pregnant ewes (n = 38) were treated with either 25 mg P4 in 1 mL corn oil (P4, n = 18) or 1 mL corn oil alone (CO, n = 20) from day 1.5 through day 8 of pregnancy and hysterectomized on either day 9 or day 12 of pregnancy. Endometrial expression of genes encoding enzymes for synthesis of polyamines, transporters of glucose, arginine, and glycine, as well as progestamedins was determined by RT-qPCR. Results On day 12 of pregnancy, conceptuses from P4-treated ewes had elongated while those from CO-treated ewes were spherical. The mRNA expression of AZIN2, an arginine decarboxylase, was lower in endometria of P4-treated than CO-treated ewes on day 9 of pregnancy. Expression of FGF10, a progestamedin, was greater in endometria of CO and P4-treated ewes on day 12 of gestation in addition to P4-treated ewes necropsied on day 9 of gestation. Treatment with P4 down-regulated endometrial expression of amino acid transporter SLC1A4 on day 12 of pregnancy. Conclusions Results indicated that administration of exogenous P4 during the pre-implantation period advanced the expression of FGF10, which may accelerate proliferation of trophectoderm cells, but also was correlated with decreased expression of glycine and serine transporters and polyamine synthesis enzyme AZIN2. Further research with increased sample sizes may determine how differential expression affects endometrial functions and potentially embryonic loss. Supplementary Information The online version contains supplementary material available at 10.1186/s40104-021-00554-6.
Collapse
Affiliation(s)
- Emily C Hoskins
- Departments of Animal Science, Texas A&M University, College Station, TX, 77843-2471, USA
| | - Katherine M Halloran
- Departments of Animal Science, Texas A&M University, College Station, TX, 77843-2471, USA
| | - Claire Stenhouse
- Departments of Animal Science, Texas A&M University, College Station, TX, 77843-2471, USA
| | - Robyn M Moses
- Departments of Animal Science, Texas A&M University, College Station, TX, 77843-2471, USA
| | - Kathrin A Dunlap
- Departments of Animal Science, Texas A&M University, College Station, TX, 77843-2471, USA
| | - Michael C Satterfield
- Departments of Animal Science, Texas A&M University, College Station, TX, 77843-2471, USA
| | - Heewon Seo
- Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, 77843, USA
| | - Gregory A Johnson
- Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, 77843, USA
| | - Guoyao Wu
- Departments of Animal Science, Texas A&M University, College Station, TX, 77843-2471, USA
| | - Fuller W Bazer
- Departments of Animal Science, Texas A&M University, College Station, TX, 77843-2471, USA.
| |
Collapse
|
6
|
Lamballe F, Ahmad F, Vinik Y, Castellanet O, Daian F, Müller A, Köhler UA, Bailly A, Josselin E, Castellano R, Cayrou C, Charafe‐Jauffret E, Mills GB, Géli V, Borg J, Lev S, Maina F. Modeling Heterogeneity of Triple-Negative Breast Cancer Uncovers a Novel Combinatorial Treatment Overcoming Primary Drug Resistance. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2003049. [PMID: 33552868 PMCID: PMC7856896 DOI: 10.1002/advs.202003049] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 10/12/2020] [Indexed: 05/03/2023]
Abstract
Triple-negative breast cancer (TNBC) is a highly aggressive breast cancer subtype characterized by a remarkable molecular heterogeneity. Currently, there are no effective druggable targets and advanced preclinical models of the human disease. Here, a unique mouse model (MMTV-R26Met mice) of mammary tumors driven by a subtle increase in the expression of the wild-type MET receptor is generated. MMTV-R26Met mice develop spontaneous, exclusive TNBC tumors, recapitulating primary resistance to treatment of patients. Proteomic profiling of MMTV-R26Met tumors and machine learning approach show that the model faithfully recapitulates intertumoral heterogeneity of human TNBC. Further signaling network analysis highlights potential druggable targets, of which cotargeting of WEE1 and BCL-XL synergistically kills TNBC cells and efficiently induces tumor regression. Mechanistically, BCL-XL inhibition exacerbates the dependency of TNBC cells on WEE1 function, leading to Histone H3 and phosphoS33RPA32 upregulation, RRM2 downregulation, cell cycle perturbation, mitotic catastrophe, and apoptosis. This study introduces a unique, powerful mouse model for studying TNBC formation and evolution, its heterogeneity, and for identifying efficient therapeutic targets.
Collapse
Affiliation(s)
- Fabienne Lamballe
- Aix Marseille UnivCNRSDevelopmental Biology Institute of Marseille (IBDM)Turing Center for Living SystemsParc Scientifique de LuminyMarseille13009France
| | - Fahmida Ahmad
- Aix Marseille UnivCNRSDevelopmental Biology Institute of Marseille (IBDM)Turing Center for Living SystemsParc Scientifique de LuminyMarseille13009France
| | - Yaron Vinik
- Department of Molecular Cell BiologyWeizmann Institute of ScienceRehovot76100Israel
| | - Olivier Castellanet
- Aix Marseille UnivCNRSDevelopmental Biology Institute of Marseille (IBDM)Turing Center for Living SystemsParc Scientifique de LuminyMarseille13009France
| | - Fabrice Daian
- Aix Marseille UnivCNRSDevelopmental Biology Institute of Marseille (IBDM)Turing Center for Living SystemsParc Scientifique de LuminyMarseille13009France
| | | | - Ulrike A. Köhler
- Department of Molecular Cell BiologyWeizmann Institute of ScienceRehovot76100Israel
| | - Anne‐Laure Bailly
- Aix Marseille UnivCentre de Recherche en Cancérologie de Marseille (CRCM)Equipes labellisées Ligue ‘Cell polarity, cell signaling and cancer’ and ‘Telomere and Chromatin’InsermCNRSInstitut Paoli‐CalmettesMarseille13009France
| | - Emmanuelle Josselin
- Aix Marseille UnivInsermCNRSInstitut Paoli‐CalmettesCRCMTrGET PlatformMarseille13009France
| | - Rémy Castellano
- Aix Marseille UnivInsermCNRSInstitut Paoli‐CalmettesCRCMTrGET PlatformMarseille13009France
| | - Christelle Cayrou
- Aix Marseille UnivCentre de Recherche en Cancérologie de Marseille (CRCM)Equipes labellisées Ligue ‘Cell polarity, cell signaling and cancer’ and ‘Telomere and Chromatin’InsermCNRSInstitut Paoli‐CalmettesMarseille13009France
| | - Emmanuelle Charafe‐Jauffret
- Aix Marseille UnivInsermCNRSInstitut Paoli‐CalmettesCRCMExperimental Histo‐Pathology PlatformMarseille13009France
| | | | - Vincent Géli
- Aix Marseille UnivCentre de Recherche en Cancérologie de Marseille (CRCM)Equipes labellisées Ligue ‘Cell polarity, cell signaling and cancer’ and ‘Telomere and Chromatin’InsermCNRSInstitut Paoli‐CalmettesMarseille13009France
| | - Jean‐Paul Borg
- Aix Marseille UnivCentre de Recherche en Cancérologie de Marseille (CRCM)Equipes labellisées Ligue ‘Cell polarity, cell signaling and cancer’ and ‘Telomere and Chromatin’InsermCNRSInstitut Paoli‐CalmettesMarseille13009France
- Institut Universitaire de France (IUF)1 rue DescartesParis75231France
| | - Sima Lev
- Department of Molecular Cell BiologyWeizmann Institute of ScienceRehovot76100Israel
| | - Flavio Maina
- Aix Marseille UnivCNRSDevelopmental Biology Institute of Marseille (IBDM)Turing Center for Living SystemsParc Scientifique de LuminyMarseille13009France
| |
Collapse
|
7
|
Pubertal mammary gland development is a key determinant of adult mammographic density. Semin Cell Dev Biol 2020; 114:143-158. [PMID: 33309487 DOI: 10.1016/j.semcdb.2020.11.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 11/25/2020] [Accepted: 11/28/2020] [Indexed: 01/04/2023]
Abstract
Mammographic density refers to the radiological appearance of fibroglandular and adipose tissue on a mammogram of the breast. Women with relatively high mammographic density for their age and body mass index are at significantly higher risk for breast cancer. The association between mammographic density and breast cancer risk is well-established, however the molecular and cellular events that lead to the development of high mammographic density are yet to be elucidated. Puberty is a critical time for breast development, where endocrine and paracrine signalling drive development of the mammary gland epithelium, stroma, and adipose tissue. As the relative abundance of these cell types determines the radiological appearance of the adult breast, puberty should be considered as a key developmental stage in the establishment of mammographic density. Epidemiological studies have pointed to the significance of pubertal adipose tissue deposition, as well as timing of menarche and thelarche, on adult mammographic density and breast cancer risk. Activation of hypothalamic-pituitary axes during puberty combined with genetic and epigenetic molecular determinants, together with stromal fibroblasts, extracellular matrix, and immune signalling factors in the mammary gland, act in concert to drive breast development and the relative abundance of different cell types in the adult breast. Here, we discuss the key cellular and molecular mechanisms through which pubertal mammary gland development may affect adult mammographic density and cancer risk.
Collapse
|
8
|
Matriptase regulates c-Met mediated proliferation and invasion in inflammatory breast cancer. Oncotarget 2018; 7:58162-58173. [PMID: 27528224 PMCID: PMC5295421 DOI: 10.18632/oncotarget.11262] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 07/29/2016] [Indexed: 11/25/2022] Open
Abstract
The poor prognosis for patients with inflammatory breast cancer (IBC) compared to patients with other types of breast cancers emphasizes the need to better understand the molecular underpinnings of this disease with the goal of developing effective targeted therapeutics. Dysregulation of matriptase expression, an epithelial-specific member of the type II transmembrane serine protease family, has been demonstrated in many different cancer types. To date, no studies have assessed the expression and potential pro-oncogenic role of matriptase in IBC. We examined the functional relationship between matriptase and the HGF/c-MET signaling pathway in the IBC cell lines SUM149 and SUM190, and in IBC patient samples. Matriptase and c-Met proteins are localized on the surface membrane of IBC cells and their expression is strongly correlated in infiltrating cancer cells and in the cancer cells of lymphatic emboli in patient samples. Abrogation of matriptase expression by silencing with RNAi or inhibition of matriptase proteolytic activity with a synthetic inhibitor impairs the conversion of inactive pro-HGF to active HGF and subsequent c-Met-mediated signaling, leading to efficient impairment of proliferation and invasion of IBC cells. These data show the potential of matriptase inhibitors as a novel targeted therapy for IBC, and lay the groundwork for the development and testing of such drugs.
Collapse
|
9
|
Jeong D, Ham J, Park S, Lee S, Lee H, Kang HS, Kim SJ. MicroRNA-7-5p mediates the signaling of hepatocyte growth factor to suppress oncogenes in the MCF-10A mammary epithelial cell. Sci Rep 2017; 7:15425. [PMID: 29133945 PMCID: PMC5684415 DOI: 10.1038/s41598-017-15846-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 11/02/2017] [Indexed: 12/23/2022] Open
Abstract
MicroRNA-7 (miR-7) is a non-coding RNA of 23-nucleotides that has been shown to act as a tumor suppressor in various cancers including breast cancer. Although there have been copious studies on the action mechanisms of miR-7, little is known about how the miR is controlled in the mammary cell. In this study, we performed a genome-wide expression analysis in miR-7-transfected MCF-10A breast cell line to explore the upstream regulators of miR-7. Analysis of the dysregulated target gene pool predicted hepatocyte growth factor (HGF) as the most plausible upstream regulator of miR-7. MiR-7 was upregulated in MCF-10A cells by HGF, and subsequently downregulated upon treatment with siRNA against HGF. However, the expression of HGF did not significantly change through either an upregulation or downregulation of miR-7 expression, suggesting that HGF acts upstream of miR-7. In addition, the target genes of miR-7, such as EGFR, KLF4, FAK, PAK1 and SET8, which are all known oncogenes, were downregulated in HGF-treated MCF-10A; in contrast, knocking down HGF recovered their expression. These results indicate that miR-7 mediates the activity of HGF to suppress oncogenic proteins, which inhibits the development of normal cells, at least MCF-10A, into cancerous cells.
Collapse
Affiliation(s)
- Dawoon Jeong
- Department of Life Science, Dongguk University-Seoul, Goyang, Republic of Korea
| | - Juyeon Ham
- Department of Life Science, Dongguk University-Seoul, Goyang, Republic of Korea
| | - Sungbin Park
- Department of Life Science, Dongguk University-Seoul, Goyang, Republic of Korea
| | - Seungyeon Lee
- Department of Life Science, Dongguk University-Seoul, Goyang, Republic of Korea
| | - Hyunkyung Lee
- Department of Life Science, Dongguk University-Seoul, Goyang, Republic of Korea
| | - Han-Sung Kang
- Research Institute and Hospital, National Cancer Center, Goyang, Republic of Korea
| | - Sun Jung Kim
- Department of Life Science, Dongguk University-Seoul, Goyang, Republic of Korea.
| |
Collapse
|
10
|
Ito T, Yamaji D, Kamikawa A, Abd Eldaim MA, Okamatsu-Ogura Y, Terao A, Saito M, Kimura K. Progesterone dose-dependently modulates hepatocyte growth factor production in 3T3-L1 mouse preadipocytes. Endocr J 2017; 64:777-785. [PMID: 28659539 DOI: 10.1507/endocrj.ej17-0097] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
It is well documented that estrogen is predominant inducer of hepatocyte growth factor (HGF) in a variety of cell types. However, the effect of progesterone (P) remains to be elusive. Thus, in the present study, we examined the effect of P and combined effect of P and 17β-estradiol (E2) on HGF expression and production in 3T3-L1 fibroblastic preadipocytes and mature adipocytes, as a model of stromal cells. Northern blot analysis showed that hgf mRNA expressed in preadipocytes was notably higher than that of mature adipocytes, and increased by treatment of preadipocytes with E2 or 10 nM P, but not with 1,000 nM P. The E2-induced hgf mRNA expression was enhanced by 10 nM P, but suppressed by 1,000 nM P. Western blot analysis revealed that biological active forms of HGF protein was found in the preadipocyte culture medium, while the lesser amount of HGF precursor protein was detected in the mature adipocyte culture medium. The amounts of HGF were changed dependently on the hgf mRNA expression levels. These results indicate that HGF production is intricately regulated by E2 and P at the transcriptional levels in 3T3-L1 cells, and may explain the changes in the HGF production during the mammary gland development, especially decrease in HGF expression during pregnancy when P concentration is high.
Collapse
Affiliation(s)
- Tomoki Ito
- Department of Biomedical Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan
| | - Daisuke Yamaji
- Department of Biomedical Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan
| | - Akihiro Kamikawa
- Department of Biomedical Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan
| | - Mabrouk Attia Abd Eldaim
- Department of Biomedical Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan
| | - Yuko Okamatsu-Ogura
- Department of Biomedical Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan
| | - Akira Terao
- Department of Biomedical Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan
| | - Masayuki Saito
- Department of Biomedical Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan
| | - Kazuhiro Kimura
- Department of Biomedical Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan
| |
Collapse
|
11
|
Zhao Y, Feng Y, Zhang H, Kou X, Li L, Liu X, Zhang P, Cui L, Chu M, Shen W, Min L. Inhibition of peripubertal sheep mammary gland development by cysteamine through reducing progesterone and growth factor production. Theriogenology 2017; 89:280-288. [PMID: 28043364 DOI: 10.1016/j.theriogenology.2016.11.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 11/08/2016] [Accepted: 11/17/2016] [Indexed: 01/03/2023]
Abstract
Cysteamine has been used for treating cystinosis for many years, and furthermore it has also been used as a therapeutic agent for different diseases including Huntington's disease, Parkinson's disease (PD), nonalcoholic fatty liver disease, malaria, cancer, and others. Although cysteamine has many potential applications, its use may also be problematic. The effects of low doses of cysteamine on the reproductive system, especially the mammary glands are currently unknown. In the current investigation, low dose (10 mg/kg BW/day) of cysteamine did not affect sheep body weight gain or organ index of the liver, spleen, or heart; it did, however, increase the levels of blood lymphocytes, monocytes, and platelets. Most interestingly, it inhibited mammary gland development after 2 or 5 months of treatment by reducing the organ index and the number of mammary gland ducts. Plasma growth hormone and estradiol remained unchanged; however, plasma progesterone levels and the protein level of HSD3β1 in sheep ovaries were decreased by cysteamine. In addition to steroid hormones, growth factors produced in the mammary glands also play crucial roles in mammary gland development. Results showed that protein levels of HGF, GHR, and IGF1R were decreased after 5 months of cysteamine treatment. These findings together suggest that progesterone and local growth factors in mammary glands might be involved in cysteamine initiated inhibition of pubertal ovine mammary gland development. Furthermore, it may lead to a reduction in fertility. Therefore, cysteamine should be used with great caution until its actions have been further investigated and its limitations overcome.
Collapse
Affiliation(s)
- Yong Zhao
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, PR China; Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, Qingdao 266109, PR China
| | - Yanni Feng
- Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, Qingdao 266109, PR China; College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, PR China
| | - Hongfu Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, PR China
| | - Xin Kou
- Shouguang Hongde Farmer Co., Weifang 262700, PR China
| | - Lan Li
- Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, Qingdao 266109, PR China; College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, PR China
| | - Xinqi Liu
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, PR China
| | - Pengfei Zhang
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, PR China; Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, Qingdao 266109, PR China
| | - Liantao Cui
- Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, Qingdao 266109, PR China; College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, PR China
| | - Meiqiang Chu
- Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, Qingdao 266109, PR China; College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, PR China
| | - Wei Shen
- Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, Qingdao 266109, PR China; College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, PR China
| | - Lingjiang Min
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, PR China.
| |
Collapse
|
12
|
Abstract
The mouse mammary gland is widely used as a model for human breast cancer and has greatly added to our understanding of the molecular mechanisms involved in breast cancer development and progression. To fully appreciate the validity and limitations of the mouse model, it is essential to be aware of the similarities and also the differences that exist between the mouse mammary gland and the human breast. This introduction therefore describes the parallels and contrasts in mouse mammary gland and human breast morphogenesis from an early embryonic phase through to puberty, adulthood, pregnancy, parturition, and lactation, and finally the regressive stage of involution.
Collapse
Affiliation(s)
- Sara McNally
- UCD School of Biomolecular and Biomedical Science, UCD Conway Institute, University College Dublin, Belfield, Dublin, 4, Ireland.
| | - Torsten Stein
- Institute of Cancer Sciences, College of MVLS, University of Glasgow, Glasgow, UK
| |
Collapse
|
13
|
McBryan J, Howlin J. Pubertal Mammary Gland Development: Elucidation of In Vivo Morphogenesis Using Murine Models. Methods Mol Biol 2017; 1501:77-114. [PMID: 27796948 DOI: 10.1007/978-1-4939-6475-8_3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
During the past 25 years, the combination of increasingly sophisticated gene targeting technology with transplantation techniques has allowed researchers to address a wide array of questions about postnatal mammary gland development. These in turn have significantly contributed to our knowledge of other branched epithelial structures. This review chapter highlights a selection of the mouse models exhibiting a pubertal mammary gland phenotype with a focus on how they have contributed to our overall understanding of in vivo mammary morphogenesis. We discuss mouse models that have enabled us to assign functions to particular genes and proteins and, more importantly, have determined when and where these factors are required for completion of ductal outgrowth and branch patterning. The reason for the success of the mouse mammary gland model is undoubtedly the suitability of the postnatal mammary gland to experimental manipulation. The gland itself is very amenable to investigation and the combination of genetic modification with accessibility to the tissue has allowed an impressive number of studies to inform biology. Excision of the rudimentary epithelial structure postnatally allows genetically modified tissue to be readily transplanted into wild type stroma or vice versa, and has thus defined the contribution of each compartment to particular phenotypes. Similarly, whole gland transplantation has been used to definitively discern local effects from indirect systemic effects of various growth factors and hormones. While appreciative of the power of these tools and techniques, we are also cognizant of some of their limitations, and we discuss some shortcomings and future strategies that can overcome them.
Collapse
Affiliation(s)
- Jean McBryan
- Department of Molecular Medicine Royal College of Surgeons in Ireland Education and Research Centre, Beaumont Hospital, Dublin, 9, Ireland
| | - Jillian Howlin
- Division of Oncology-Pathology, Lund University Cancer Center/Medicon Village, Building 404:B2, Scheelevägen 2, 223 81, Lund, Sweden.
| |
Collapse
|
14
|
Lail-Trecker M, Gulati R, Peluso JJ. A Role for Hepatocyte Growth Factors/Scatter Factor in Regulating Normal and Neoplastic Cells of Reproductive Tissues. ACTA ACUST UNITED AC 2016. [DOI: 10.1177/107155769800500302] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
| | - Rita Gulati
- Department of Obstetrics and Gynecology, University of Connecticut Health Center, Farmington, Connecticut
| | - John J. Peluso
- Department of Obstetrics and Gynecology, University of Connecticut Health Center, Farmington, CT 06030
| |
Collapse
|
15
|
Di-Cicco A, Petit V, Chiche A, Bresson L, Romagnoli M, Orian-Rousseau V, Vivanco MDM, Medina D, Faraldo MM, Glukhova MA, Deugnier MA. Paracrine Met signaling triggers epithelial-mesenchymal transition in mammary luminal progenitors, affecting their fate. eLife 2015; 4. [PMID: 26165517 PMCID: PMC4498445 DOI: 10.7554/elife.06104] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 06/11/2015] [Indexed: 12/13/2022] Open
Abstract
HGF/Met signaling has recently been associated with basal-type breast cancers, which are thought to originate from progenitor cells residing in the luminal compartment of the mammary epithelium. We found that ICAM-1 efficiently marks mammary luminal progenitors comprising hormone receptor-positive and receptor-negative cells, presumably ductal and alveolar progenitors. Both cell populations strongly express Met, while HGF is produced by stromal and basal myoepithelial cells. We show that persistent HGF treatment stimulates the clonogenic activity of ICAM1-positive luminal progenitors, controlling their survival and proliferation, and leads to the expression of basal cell characteristics, including stem cell potential. This is accompanied by the induction of Snai1 and Snai2, two major transcription factors triggering epithelial–mesenchymal transition, the repression of the luminal-regulatory genes Elf5 and Hey1, and claudin down-regulation. Our data strongly indicate that paracrine Met signaling can control the function of luminal progenitors and modulate their fate during mammary development and tumorigenesis. DOI:http://dx.doi.org/10.7554/eLife.06104.001 Throughout the life of a female mammal, the mammary glands undergo different phases of development to prepare for, and adapt to, feeding offspring. Luminal cells line the inside of branch-like structures throughout the mammary gland and are responsible for producing milk. When the mammary gland grows, new luminal cells develop from a kind of cell called luminal progenitor cells. However, these progenitor cells are also thought to be the source of certain types of breast cancer. Recently, it has been suggested that luminal progenitor cells display a receptor protein called Met on their surface. When Met and ‘co-receptor’ proteins bind to a molecule called HGF, this triggers a cascade of signals that can cause certain cells to change their properties. This is known as the epithelial–mesenchymal transition. Although this transition is important for new tissues to develop, it can also result in cancerous tumors forming if it is not correctly controlled. Luminal cells do not produce HGF themselves, which suggests that Met signaling in these cells is triggered by the HGF released from neighboring cells. However, neither the mechanisms behind this signaling nor the effects of signaling on the luminal progenitor cells are well understood. Di-Cicco et al. set out to identify where Met, its co-receptors and HGF are located in the mouse mammary gland during different phases of development. This revealed that one of the co-receptors—called ICAM-1—can be used as a marker to identify certain types of luminal progenitor cell. Di-Cicco et al. found that these progenitor cells display Met on their surface, and other types of mammary cell—called stromal cells and myoepithelial cells—produce HGF. When exposed to HGF, luminal progenitor cells grown in culture in the laboratory proliferated and went through the epithelial–mesenchymal transition. These findings suggest that myoepithelial and stromal cells regulate luminal progenitor cells by producing HGF to activate Met signaling in these cells. Such interactions could be of great importance during mammary development and tumorigenesis. The next big challenge will be to determine the circumstances under which luminal progenitor cells stimulated by HGF can give rise to breast cancers. This work will allow us to better define the cell population that should be targeted by anti-cancer drugs. DOI:http://dx.doi.org/10.7554/eLife.06104.002
Collapse
Affiliation(s)
- Amandine Di-Cicco
- Institut Curie, Paris Sciences et Lettres Research University, Paris, France
| | - Valérie Petit
- Institut Curie, Paris Sciences et Lettres Research University, Paris, France
| | - Aurélie Chiche
- Institut Curie, Paris Sciences et Lettres Research University, Paris, France
| | - Laura Bresson
- Institut Curie, Paris Sciences et Lettres Research University, Paris, France
| | - Mathilde Romagnoli
- Institut Curie, Paris Sciences et Lettres Research University, Paris, France
| | | | | | | | - Marisa M Faraldo
- Institut Curie, Paris Sciences et Lettres Research University, Paris, France
| | - Marina A Glukhova
- Institut Curie, Paris Sciences et Lettres Research University, Paris, France
| | - Marie-Ange Deugnier
- Institut Curie, Paris Sciences et Lettres Research University, Paris, France
| |
Collapse
|
16
|
Zoratti GL, Tanabe LM, Varela FA, Murray AS, Bergum C, Colombo É, Lang JE, Molinolo AA, Leduc R, Marsault E, Boerner J, List K. Targeting matriptase in breast cancer abrogates tumour progression via impairment of stromal-epithelial growth factor signalling. Nat Commun 2015; 6:6776. [PMID: 25873032 PMCID: PMC4749267 DOI: 10.1038/ncomms7776] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Accepted: 02/24/2015] [Indexed: 02/07/2023] Open
Abstract
Matriptase is an epithelia-specific membrane-anchored serine protease that has received considerable attention in recent years due to its consistent dysregulation in human epithelial tumors, including breast cancer. Mice with reduced levels of matriptase display a significant delay in oncogene-induced mammary tumor formation and blunted tumor growth. The abated tumor growth is associated with a decrease in cancer cell proliferation. Here we demonstrate by genetic deletion and silencing that the proliferation impairment in matriptase deficient breast cancer cells is caused by their inability to initiate activation of the c-Met signaling pathway in response to fibroblast-secreted pro-HGF. Similarly, inhibition of matriptase catalytic activity using a selective small-molecule inhibitor abrogates the activation of c-Met, Gab1 and AKT, in response to pro-HGF, which functionally leads to attenuated proliferation in breast carcinoma cells. We conclude that matriptase is critically involved in breast cancer progression and represents a potential therapeutic target in breast cancer.
Collapse
Affiliation(s)
- Gina L Zoratti
- 1] Department of Pharmacology, Wayne State University School of Medicine and Barbara Ann Karmanos Cancer Institute, 540 E Canfield, Scott Hall Room 6332, Detroit, Michigan 48201, USA [2] Department of Oncology, Wayne State University School of Medicine and Barbara Ann Karmanos Cancer Institute, 540 E Canfield, Scott Hall Room 6332, Detroit, Michigan 48201, USA [3] Cancer Biology Graduate Program, Wayne State University School of Medicine and Barbara Ann Karmanos Cancer Institute, 110 E. Warren Avenue, Suite 2215, Detroit, Michigan 48201, USA
| | - Lauren M Tanabe
- Department of Pharmacology, Wayne State University School of Medicine and Barbara Ann Karmanos Cancer Institute, 540 E Canfield, Scott Hall Room 6332, Detroit, Michigan 48201, USA
| | - Fausto A Varela
- Department of Pharmacology, Wayne State University School of Medicine and Barbara Ann Karmanos Cancer Institute, 540 E Canfield, Scott Hall Room 6332, Detroit, Michigan 48201, USA
| | - Andrew S Murray
- 1] Department of Pharmacology, Wayne State University School of Medicine and Barbara Ann Karmanos Cancer Institute, 540 E Canfield, Scott Hall Room 6332, Detroit, Michigan 48201, USA [2] Department of Oncology, Wayne State University School of Medicine and Barbara Ann Karmanos Cancer Institute, 540 E Canfield, Scott Hall Room 6332, Detroit, Michigan 48201, USA [3] Cancer Biology Graduate Program, Wayne State University School of Medicine and Barbara Ann Karmanos Cancer Institute, 110 E. Warren Avenue, Suite 2215, Detroit, Michigan 48201, USA
| | - Christopher Bergum
- Department of Pharmacology, Wayne State University School of Medicine and Barbara Ann Karmanos Cancer Institute, 540 E Canfield, Scott Hall Room 6332, Detroit, Michigan 48201, USA
| | - Éloïc Colombo
- Department of Pharmacology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, 3001 12e Av Nord, Sherbrooke, Quebec J1H 5N4, Canada
| | - Julie E Lang
- Department of Surgery, Norris Comprehensive Cancer Center, University of Southern California, 1510 San Pablo Street, Suite 412, Los Angeles, California 90033, USA
| | - Alfredo A Molinolo
- Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, 30 Convent Drive, Room 211, Bethesda, Maryland 20892, USA
| | - Richard Leduc
- Department of Pharmacology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, 3001 12e Av Nord, Sherbrooke, Quebec J1H 5N4, Canada
| | - Eric Marsault
- Department of Pharmacology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, 3001 12e Av Nord, Sherbrooke, Quebec J1H 5N4, Canada
| | - Julie Boerner
- Department of Oncology, Wayne State University School of Medicine and Barbara Ann Karmanos Cancer Institute, 540 E Canfield, Scott Hall Room 6332, Detroit, Michigan 48201, USA
| | - Karin List
- 1] Department of Pharmacology, Wayne State University School of Medicine and Barbara Ann Karmanos Cancer Institute, 540 E Canfield, Scott Hall Room 6332, Detroit, Michigan 48201, USA [2] Department of Oncology, Wayne State University School of Medicine and Barbara Ann Karmanos Cancer Institute, 540 E Canfield, Scott Hall Room 6332, Detroit, Michigan 48201, USA [3] Cancer Biology Graduate Program, Wayne State University School of Medicine and Barbara Ann Karmanos Cancer Institute, 110 E. Warren Avenue, Suite 2215, Detroit, Michigan 48201, USA
| |
Collapse
|
17
|
Ho-Yen CM, Jones JL, Kermorgant S. The clinical and functional significance of c-Met in breast cancer: a review. Breast Cancer Res 2015; 17:52. [PMID: 25887320 PMCID: PMC4389345 DOI: 10.1186/s13058-015-0547-6] [Citation(s) in RCA: 124] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Accepted: 03/05/2015] [Indexed: 02/05/2023] Open
Abstract
c-Met is a receptor tyrosine kinase that upon binding of its ligand, hepatocyte growth factor (HGF), activates downstream pathways with diverse cellular functions that are important in organ development and cancer progression. Anomalous c-Met signalling has been described in a variety of cancer types, and the receptor is regarded as a novel therapeutic target. In breast cancer there is a need to develop new treatments, particularly for the aggressive subtypes such as triple-negative and basal-like cancer, which currently lack targeted therapy. Over the last two decades, much has been learnt about the functional role of c-Met signalling in different models of breast development and cancer. This work has been complemented by clinical studies, establishing the prognostic significance of c-Met in tissue samples of breast cancer. While the clinical trials of anti-c-Met therapy in advanced breast cancer progress, there is a need to review the existing evidence so that the potential of these treatments can be better appreciated. The aim of this article is to examine the role of HGF/c-Met signalling in in vitro and in vivo models of breast cancer, to describe the mechanisms of aberrant c-Met signalling in human tissues, and to give a brief overview of the anti-c-Met therapies currently being evaluated in breast cancer patients. We will show that the HGF/c-Met pathway is associated with breast cancer progression and suggest that there is a firm basis for continued development of anti-c-Met treatment, particularly for patients with basal-like and triple-negative breast cancer.
Collapse
Affiliation(s)
- Colan M Ho-Yen
- Department of Cellular Pathology, St George's Healthcare NHS Trust, Blackshaw Road, Tooting, London, SW17 0QT, UK.
| | - J Louise Jones
- Centre for Tumour Biology, Barts Cancer Institute, Charterhouse Square, London, EC1M 6BQ, UK.
| | - Stephanie Kermorgant
- Centre for Tumour Biology, Barts Cancer Institute, Charterhouse Square, London, EC1M 6BQ, UK.
| |
Collapse
|
18
|
Spatially restricted Hedgehog signalling regulates HGF-induced branching of the adult prostate. Nat Cell Biol 2014; 16:1135-45. [PMID: 25362352 PMCID: PMC4327780 DOI: 10.1038/ncb3057] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2014] [Accepted: 09/26/2014] [Indexed: 01/22/2023]
Abstract
Branching morphogenesis is thought to be governed by epithelial-stromal interactions, but the mechanisms underlying specification of branch location remain largely unknown. Prompted by the striking absence of Hedgehog (Hh) response at the sites of nascent buds in regenerating tubules of the adult prostate, we investigated the role of Hh signaling in adult prostate branching morphogenesis. We find that pathway activity is localized to stromal cells, and that its attenuation by genetic or pharmacologic manipulation leads to increased branching. Decreased pathway activity correlates with increased stromal production of Hepatocyte growth factor (Hgf), and we show that Hgf induces epithelial tubule branching. Regulation of Hgf expression by Hh signaling is indirect, mediated by Hh-induced expression of microRNAs miR-26a and miR-26b, which in turn down-regulate expression of Hgf. Prostate tubule branching thus may be initiated from regions of low Hh pathway activity, with implications for the prostatic hyperplasia commonly observed in late adulthood.
Collapse
|
19
|
Casbas-Hernandez P, D'Arcy M, Roman-Perez E, Brauer HA, McNaughton K, Miller SM, Chhetri RK, Oldenburg AL, Fleming JM, Amos KD, Makowski L, Troester MA. Role of HGF in epithelial-stromal cell interactions during progression from benign breast disease to ductal carcinoma in situ. Breast Cancer Res 2014; 15:R82. [PMID: 24025166 PMCID: PMC3978616 DOI: 10.1186/bcr3476] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Accepted: 07/16/2013] [Indexed: 12/17/2022] Open
Abstract
Introduction Basal-like and luminal breast cancers have distinct stromal–epithelial interactions, which play a role in progression to invasive cancer. However, little is known about how stromal–epithelial interactions evolve in benign and pre-invasive lesions. Methods To study epithelial–stromal interactions in basal-like breast cancer progression, we cocultured reduction mammoplasty fibroblasts with the isogenic MCF10 series of cell lines (representing benign/normal, atypical hyperplasia, and ductal carcinoma in situ). We used gene expression microarrays to identify pathways induced by coculture in premalignant cells (MCF10DCIS) compared with normal and benign cells (MCF10A and MCF10AT1). Relevant pathways were then evaluated in vivo for associations with basal-like subtype and were targeted in vitro to evaluate effects on morphogenesis. Results Our results show that premalignant MCF10DCIS cells express characteristic gene expression patterns of invasive basal-like microenvironments. Furthermore, while hepatocyte growth factor (HGF) secretion is upregulated (relative to normal, MCF10A levels) when fibroblasts are cocultured with either atypical (MCF10AT1) or premalignant (MCF10DCIS) cells, only MCF10DCIS cells upregulated the HGF receptor MET. In three-dimensional cultures, upregulation of HGF/MET in MCF10DCIS cells induced morphological changes suggestive of invasive potential, and these changes were reversed by antibody-based blocking of HGF signaling. These results are relevant to in vivo progression because high expression of a novel MCF10DCIS-derived HGF signature was correlated with the basal-like subtype, with approximately 86% of basal-like cancers highly expressing the HGF signature, and because high expression of HGF signature was associated with poor survival. Conclusions Coordinated and complementary changes in HGF/MET expression occur in epithelium and stroma during progression of pre-invasive basal-like lesions. These results suggest that targeting stroma-derived HGF signaling in early carcinogenesis may block progression of basal-like precursor lesions.
Collapse
|
20
|
Zhou D, Pan YX. Pathophysiological basis for compromised health beyond generations: role of maternal high-fat diet and low-grade chronic inflammation. J Nutr Biochem 2014; 26:1-8. [PMID: 25440222 DOI: 10.1016/j.jnutbio.2014.06.011] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2013] [Revised: 04/24/2014] [Accepted: 06/16/2014] [Indexed: 02/07/2023]
Abstract
Early exposure to a fat-enriched diet programs the developmental profile and thus is associated with disease susceptibility in subsequent generations. Chronic low-grade inflammation, resulting from maternal high-fat diet, is activated in the fetal environment and in many organs of offspring, including placenta, adipose, liver, vascular system and brain. The prevalence of an inflammatory response is highly associated with obesity incidence, cardiovascular diseases, nonalcoholic fatty liver disease and brain damage. Substantial studies using high-fat model have consistently demonstrated the incidence of such inflammatory reactions; however, the potential contribution of active inflammation toward the physiological outcomes and developmental diseases is neither discussed in depth nor systemically integrated. Therefore, we aim to summarize the current findings in regards to how a maternal high-fat diet influences the inflammatory status, and probable pathogenic effects on the offspring. More importantly, since limited research has been conducted to reveal the epigenetic regulation of these inflammatory markers by maternal high-fat diet, we sincerely hope that our review will not only outline the pathophysiological relevance of inflammation but also identify a future direction for mechanistic investigation and clinical application.
Collapse
Affiliation(s)
- Dan Zhou
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign
| | - Yuan-Xiang Pan
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign; Division of Nutritional Sciences, University of Illinois at Urbana-Champaign; Illinois Informatics Institute, University of Illinois at Urbana-Champaign.
| |
Collapse
|
21
|
Okolowsky N, Furth PA, Hamel PA. Oestrogen receptor-alpha regulates non-canonical Hedgehog-signalling in the mammary gland. Dev Biol 2014; 391:219-29. [PMID: 24769368 DOI: 10.1016/j.ydbio.2014.04.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Revised: 03/22/2014] [Accepted: 04/10/2014] [Indexed: 02/06/2023]
Abstract
Mesenchymal dysplasia (mes) mice harbour a truncation in the C-terminal region of the Hh-ligand receptor, Patched-1 (mPtch1). While the mes variant of mPtch1 binds to Hh-ligands with an affinity similar to that of wild type mPtch1 and appears to normally regulate canonical Hh-signalling via smoothened, the mes mutation causes, among other non-lethal defects, a block to mammary ductal elongation at puberty. We demonstrated previously Hh-signalling induces the activation of Erk1/2 and c-src independently of its control of smo activity. Furthermore, mammary epithelial cell-directed expression of an activated allele of c-src rescued the block to ductal elongation in mes mice, albeit with delayed kinetics. Given that this rescue was accompanied by an induction in estrogen receptor-alpha (ERα) expression and that complex regulatory interactions between ERα and c-src are required for normal mammary gland development, it was hypothesized that expression of ERα would also overcome the block to mammary ductal elongation at puberty in the mes mouse. We demonstrate here that conditional expression of ERα in luminal mammary epithelial cells on the mes background facilitates ductal morphogenesis with kinetics similar to that of the MMTV-c-src(Act) mice. We demonstrate further that Erk1/2 is activated in primary mammary epithelial cells by Shh-ligand and that this activation is blocked by the inhibitor of c-src, PP2, is partially blocked by the ERα inhibitor, ICI 182780 but is not blocked by the smo-inhibitor, SANT-1. These data reveal an apparent Hh-signalling cascade operating through c-src and ERα that is required for mammary gland morphogenesis at puberty.
Collapse
Affiliation(s)
- Nadia Okolowsky
- Department of Laboratory Medicine & Pathobiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada M5S 1A8
| | - Priscilla A Furth
- Lombardi Comprehensive Cancer Center, Departments of Oncology and Medicine, Georgetown University, Washington, DC, USA
| | - Paul A Hamel
- Department of Laboratory Medicine & Pathobiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada M5S 1A8.
| |
Collapse
|
22
|
Zhong A, Wang G, Yang J, Xu Q, Yuan Q, Yang Y, Xia Y, Guo K, Horch RE, Sun J. Stromal-epithelial cell interactions and alteration of branching morphogenesis in macromastic mammary glands. J Cell Mol Med 2014; 18:1257-66. [PMID: 24720804 PMCID: PMC4124011 DOI: 10.1111/jcmm.12275] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Accepted: 01/30/2014] [Indexed: 12/16/2022] Open
Abstract
True macromastia is a rare but disabling condition characterized by massive breast growth. The aetiology and pathogenic mechanisms for this disorder remain largely unexplored because of the lack of in vivo or in vitro models. Previous studies suggested that regulation of epithelial cell growth and development by oestrogen was dependent on paracrine growth factors from the stroma. In this study, a co-culture model containing epithelial and stromal cells was used to investigate the interactions of these cells in macromastia. Epithelial cell proliferation and branching morphogenesis were measured to assess the effect of macromastic stromal cells on epithelial cells. We analysed the cytokines secreted by stromal cells and identified molecules that were critical for effects on epithelial cells. Our results indicated a significant increase in cell proliferation and branching morphogenesis of macromastic and non-macromastic epithelial cells when co-cultured with macromastic stromal cells or in conditioned medium from macromastic stromal cells. Hepatocyte growth factor (HGF) is a key factor in epithelial–stromal interactions of macromastia-derived cell cultures. Blockade of HGF with neutralizing antibodies dramatically attenuated epithelial cell proliferation in conditioned medium from macromastic stromal cells. The epithelial–stromal cell co-culture model demonstrated reliability for studying interactions of mammary stromal and epithelial cells in macromastia. In this model, HGF secreted by macromastic stromal cells was found to play an important role in modifying the behaviour of co-cultured epithelial cells. This model allows further studies to investigate basic cellular and molecular mechanisms in tissue from patients with true breast hypertrophy.
Collapse
Affiliation(s)
- Aimei Zhong
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Makarem M, Kannan N, Nguyen LV, Knapp DJHF, Balani S, Prater MD, Stingl J, Raouf A, Nemirovsky O, Eirew P, Eaves CJ. Developmental changes in the in vitro activated regenerative activity of primitive mammary epithelial cells. PLoS Biol 2013; 11:e1001630. [PMID: 23966837 PMCID: PMC3742452 DOI: 10.1371/journal.pbio.1001630] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2012] [Accepted: 07/03/2013] [Indexed: 01/04/2023] Open
Abstract
Mouse fetal mammary cells display greater regenerative activity than do adult mammary cells when stimulated to proliferate in a new system that supports the production of transplantable mammary stem cells ex vivo. Many normal adult tissues contain rare stem cells with extensive self-maintaining regenerative potential. During development, the stem cells of the hematopoietic and neural systems undergo intrinsically specified changes in their self-renewal potential. In the mouse, mammary stem cells with transplantable regenerative activity are first detectable a few days before birth. They share some phenotypic properties with their adult counterparts but are enriched in a subpopulation that displays a distinct gene expression profile. Here we show that fetal mammary epithelial cells have a greater direct and inducible growth potential than their adult counterparts. The latter feature is revealed in a novel culture system that enables large numbers of in vitro clonogenic progenitors as well as mammary stem cells with serially transplantable activity to be produced within 7 days from single fetal or adult input cells. We further show that these responses are highly dependent on novel factors produced by fibroblasts. These findings provide new avenues for elucidating mechanisms that regulate normal mammary epithelial stem cell properties at the single-cell level, how these change during development, and how their perturbation may contribute to transformation. Many adult tissues are maintained by a rare subset of undifferentiated stem cells that can self-renew and give rise to specialized daughter cells that have a more limited regenerative ability. The recent identification of cells in the fetal and adult mammary gland that display the properties of stem cells provides a foundation for investigating their self-renewal and differentiation control. We now show that these stem cell properties can be elicited from single mouse mammary cells placed in 3D cultures if novel factors produced by fibroblasts are present. Moreover, a comparison of the clonal outputs of fetal and adult mammary cells in this in vitro system shows that the fetal mammary cells have superior regenerative activity relative to their adult counterparts. The ability to activate and quantify the regenerative capacity of single mouse mammary epithelial cells in vitro sets the stage for further investigations of the timing and mechanisms that alter their stem cell properties during development, the potential relevance of these events to other normal epithelial tissues, and how these processes might be involved in the genesis of breast cancer.
Collapse
Affiliation(s)
- Maisam Makarem
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, British Columbia, Canada
| | - Nagarajan Kannan
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, British Columbia, Canada
| | - Long V. Nguyen
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, British Columbia, Canada
| | - David J. H. F. Knapp
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, British Columbia, Canada
| | - Sneha Balani
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, British Columbia, Canada
| | - Michael D. Prater
- Cancer Research UK Cambridge Research Institute, Li Ka Shing Centre, Cambridge, United Kingdom
| | - John Stingl
- Cancer Research UK Cambridge Research Institute, Li Ka Shing Centre, Cambridge, United Kingdom
| | - Afshin Raouf
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, British Columbia, Canada
- Department of Immunology and The Regenerative Medicine Program, Manitoba Institute of Cell Biology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Oksana Nemirovsky
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, British Columbia, Canada
| | - Peter Eirew
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, British Columbia, Canada
| | - Connie J. Eaves
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, British Columbia, Canada
- Departments of Medical Genetics, Medicine, and Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- * E-mail:
| |
Collapse
|
24
|
MOON HEEGYUM, CHO SUNGHEE, YANG XIAOMING, ZHOU JIANHUA, LOH TIINGJEN, ZHENG XUEXIU, SHEN HAIHONG. Identification of novel splicing variants from RON proto-oncogene pre-mRNA. Oncol Rep 2012; 28:2217-20. [DOI: 10.3892/or.2012.2043] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2012] [Accepted: 07/16/2012] [Indexed: 11/05/2022] Open
|
25
|
Chang H, Balenci L, Okolowsky N, Muller WJ, Hamel PA. Mammary epithelial-restricted expression of activated c-src rescues the block to mammary gland morphogenesis due to the deletion of the C-terminus of Patched-1. Dev Biol 2012; 370:187-97. [PMID: 22968113 DOI: 10.1016/j.ydbio.2012.07.027] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Revised: 07/25/2012] [Accepted: 07/26/2012] [Indexed: 12/26/2022]
Abstract
Mesenchymal dysplasia (mes) mice expressing a C-terminally truncated version of the Hedgehog (Hh)-ligand receptor, Patched-1 (Ptch1), exhibit a limited spectrum of developmental defects including blocked ductal morphogenesis of the mammary gland during puberty. Given that the Hh-ligands can stimulate signalling cascades distinct from the canonical pathway involving Smo and the Gli-family proteins and that Ptch1 binds to factors harbouring SH3-domains, we determined whether the mes mammary gland defect could be rescued by activating non-canonical signalling pathways downstream of Ptch1. We demonstrate here that expression of constitutively active c-src (c-src(Act)) in mammary epithelial cells overcomes the block to mammary epithelial morphogenesis in mes mice. Specifically, MMTV-directed expression of c-src(Act) rescued blocked ductal morphogenesis in mes mice, albeit only after animals were more than 15 weeks of age. The overall morphology resembled wild type mice expressing c-src(Act) although 40% of mes/MMTV-c-src(Act) mice exhibited terminal end buds at 24 weeks of age. C-src(Act) restored the proliferative capacity of mes epithelial cells, self-renewal capacity of mammary progenitor cells and increased the expression of Esr1, Ptch1 and Gli1. These data reveal the cooperative interactions between signalling cascades involving c-src and Ptch1 and suggest that Hh-signalling may be permissive for c-src/Esr1-dependent mammary gland morphogenesis.
Collapse
Affiliation(s)
- Hong Chang
- Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Canada
| | | | | | | | | |
Collapse
|
26
|
Locatelli A, Lofgren KA, Daniel AR, Castro NE, Lange CA. Mechanisms of HGF/Met signaling to Brk and Sam68 in breast cancer progression. Discov Oncol 2012; 3:14-25. [PMID: 22124844 DOI: 10.1007/s12672-011-0097-z] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Signal transduction pathways downstream of receptor tyrosine kinases (RTKs) are often deregulated during oncogenesis, tumor progression, and metastasis. In particular, the peptide growth factor hormone, hepatocyte growth factor (HGF), and its specific receptor, Met tyrosine kinase, regulate cancer cell migration, thereby conferring an aggressive phenotype (Nakamura et al., J Clin Invest 106(12):1511-1519, 2000; Huh et al., Proc Natl Acad Sci U S A 101:4477-4482, 2004). Additionally, overexpression of Met is associated with enhanced invasiveness of breast cancer cells (Edakuni et al., Pathol Int 51(3):172-178, 2001; Jin et al., Cancer 79(4):749-760, 1997; Tuck et al., Am J Pathol 148(1):225-232, 1996). Here, we review the regulation of recently identified novel downstream mediators of HGF/Met signaling, Breast tumor kinase (Brk/PTK6), and Src-associated substrate during mitosis of 68 kDa (Sam68), and discuss their relevance to mechanisms of breast cancer progression.
Collapse
Affiliation(s)
- Alessia Locatelli
- Department of Medicine, Division of Hematology, Oncology and Transplantation, University of Minnesota, Minneapolis, 55455, USA
| | | | | | | | | |
Collapse
|
27
|
Xu K, Usary J, Kousis PC, Prat A, Wang DY, Adams JR, Wang W, Loch AJ, Deng T, Zhao W, Cardiff RD, Yoon K, Gaiano N, Ling V, Beyene J, Zacksenhaus E, Gridley T, Leong WL, Guidos CJ, Perou CM, Egan SE. Lunatic fringe deficiency cooperates with the Met/Caveolin gene amplicon to induce basal-like breast cancer. Cancer Cell 2012; 21:626-641. [PMID: 22624713 PMCID: PMC3603366 DOI: 10.1016/j.ccr.2012.03.041] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2011] [Revised: 10/31/2011] [Accepted: 03/08/2012] [Indexed: 12/17/2022]
Abstract
Basal-like breast cancers (BLBC) express a luminal progenitor gene signature. Notch receptor signaling promotes luminal cell fate specification in the mammary gland, while suppressing stem cell self-renewal. Here we show that deletion of Lfng, a sugar transferase that prevents Notch activation by Jagged ligands, enhances stem/progenitor cell proliferation. Mammary-specific deletion of Lfng induces basal-like and claudin-low tumors with accumulation of Notch intracellular domain fragments, increased expression of proliferation-associated Notch targets, amplification of the Met/Caveolin locus, and elevated Met and Igf-1R signaling. Human BL breast tumors, commonly associated with JAGGED expression, elevated MET signaling, and CAVEOLIN accumulation, express low levels of LFNG. Thus, reduced LFNG expression facilitates JAG/NOTCH luminal progenitor signaling and cooperates with MET/CAVEOLIN basal-type signaling to promote BLBC.
Collapse
MESH Headings
- Animals
- Breast Neoplasms/enzymology
- Breast Neoplasms/genetics
- Breast Neoplasms/pathology
- Calcium-Binding Proteins/metabolism
- Caveolins/genetics
- Caveolins/metabolism
- Cell Proliferation
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/metabolism
- Cell Transformation, Neoplastic/pathology
- Cells, Cultured
- Claudins/metabolism
- Databases, Genetic
- Female
- Gene Expression Profiling/methods
- Gene Expression Regulation, Developmental
- Gene Expression Regulation, Neoplastic
- Glycosyltransferases/deficiency
- Glycosyltransferases/genetics
- Glycosyltransferases/metabolism
- Humans
- Immunohistochemistry
- Intercellular Signaling Peptides and Proteins/metabolism
- Jagged-1 Protein
- Mammary Glands, Animal/enzymology
- Mammary Glands, Animal/growth & development
- Mammary Glands, Animal/pathology
- Mammary Glands, Animal/transplantation
- Mammary Neoplasms, Experimental/enzymology
- Mammary Neoplasms, Experimental/genetics
- Mammary Neoplasms, Experimental/pathology
- Membrane Proteins/metabolism
- Mice
- Mice, Knockout
- Middle Aged
- Neoplastic Stem Cells/enzymology
- Neoplastic Stem Cells/pathology
- Neoplastic Stem Cells/transplantation
- Oligonucleotide Array Sequence Analysis
- Proto-Oncogene Proteins c-met/genetics
- Proto-Oncogene Proteins c-met/metabolism
- Receptor, IGF Type 1/metabolism
- Receptors, Notch/metabolism
- Serrate-Jagged Proteins
- Signal Transduction
Collapse
Affiliation(s)
- Keli Xu
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, ON, M5G 1L7, Canada
| | - Jerry Usary
- Lineberger Comprehensive Cancer Center, Departments of Genetics and Pathology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Philaretos C Kousis
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, ON, M5G 1L7, Canada
| | - Aleix Prat
- Lineberger Comprehensive Cancer Center, Departments of Genetics and Pathology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Dong-Yu Wang
- The Campbell Family Cancer Research Institute and Surgical Oncology Princess Margaret Hospital, and the Department of General Surgery, University Health Network, Toronto, ON M5S 1A1, Canada
| | - Jessica R Adams
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, ON, M5G 1L7, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A1, Canada
| | - Wei Wang
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, ON, M5G 1L7, Canada
| | - Amanda J Loch
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, ON, M5G 1L7, Canada
| | - Tao Deng
- Division of Cell and Molecular Biology, Toronto General Research Institute, University Health Network, Toronto, ON M5S 1A1, Canada
| | - Wei Zhao
- Lineberger Comprehensive Cancer Center, Departments of Genetics and Pathology, University of North Carolina, Chapel Hill, NC 27599, USA
| | | | - Keejung Yoon
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Nicholas Gaiano
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Vicki Ling
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, ON, M5G 1L7, Canada; Child Health Evaluative Sciences, The Hospital for Sick Children, Toronto, ON, M5G 1L7, Canada
| | - Joseph Beyene
- Child Health Evaluative Sciences, The Hospital for Sick Children, Toronto, ON, M5G 1L7, Canada
| | - Eldad Zacksenhaus
- Division of Cell and Molecular Biology, Toronto General Research Institute, University Health Network, Toronto, ON M5S 1A1, Canada
| | - Tom Gridley
- Center for Molecular Medicine, Maine Medical Center Research Institute, 81 Research Drive, Scarborough, ME 04074, USA
| | - Wey L Leong
- The Campbell Family Cancer Research Institute and Surgical Oncology Princess Margaret Hospital, and the Department of General Surgery, University Health Network, Toronto, ON M5S 1A1, Canada
| | - Cynthia J Guidos
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, ON, M5G 1L7, Canada; Department of Immunology, University of Toronto, Toronto, ON M5S 1A1, Canada
| | - Charles M Perou
- Lineberger Comprehensive Cancer Center, Departments of Genetics and Pathology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Sean E Egan
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, ON, M5G 1L7, Canada; The Campbell Family Cancer Research Institute and Surgical Oncology Princess Margaret Hospital, and the Department of General Surgery, University Health Network, Toronto, ON M5S 1A1, Canada.
| |
Collapse
|
28
|
Met signaling regulates growth, repopulating potential and basal cell-fate commitment of mammary luminal progenitors: implications for basal-like breast cancer. Oncogene 2012; 32:1428-40. [PMID: 22562252 DOI: 10.1038/onc.2012.154] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Basal-like breast cancer is an aggressive subtype of mammary carcinoma. Despite expressing basal markers, typical of mammary stem cells, this tumor has been proposed to originate from luminal progenitors, which are downstream of stem cells along the mammary epithelial hierarchy. This suggests that committed luminal progenitors may reacquire basal, stem-like characteristics, but the mechanisms that regulate this transition remain unclear. Using mouse models, we found that luminal progenitors express high levels of the Met receptor for hepatocyte growth factor (HGF), as compared with the other mammary epithelial sub-populations. Constitutive activation of Met led luminal progenitors to attain stem cell properties, including enhanced clonogenic activity in vitro and de novo ability to reconstitute mammary glands in repopulation assays in vivo. Moreover, in response to Met signaling, luminal progenitors gave rise to hyperplastic ductal morphogenesis and preferentially underwent basal lineage commitment at the expense of luminal cell-fate specification. Opposite and symmetric results were produced by systemic pharmacological inhibition of Met. Hence, Met signaling targets luminal progenitors for expansion, impairs their differentiation toward the mature luminal phenotype and enables their commitment toward the basal lineage. These results emphasize a critical role for Met in promoting deregulated proliferation and basal plasticity of normal luminal progenitors in the mammary gland, a complex of events that may be required for sustaining the functional and phenotypic properties of basal-like breast tumors.
Collapse
|
29
|
Boudreau A, van't Veer LJ, Bissell MJ. An "elite hacker": breast tumors exploit the normal microenvironment program to instruct their progression and biological diversity. Cell Adh Migr 2012; 6:236-48. [PMID: 22863741 DOI: 10.4161/cam.20880] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The year 2011 marked the 40 year anniversary of Richard Nixon signing the National Cancer Act, thus declaring the beginning of the "War on Cancer" in the United States. Whereas we have made tremendous progress toward understanding the genetics of tumors in the past four decades, and in developing enabling technology to dissect the molecular underpinnings of cancer at unprecedented resolution, it is only recently that the important role of the stromal microenvironment has been studied in detail. Cancer is a tissue-specific disease, and it is becoming clear that much of what we know about breast cancer progression parallels the biology of the normal breast differentiation, of which there is still much to learn. In particular, the normal breast and breast tumors share molecular, cellular, systemic and microenvironmental influences necessary for their progression. It is therefore enticing to consider a tumor to be a "rogue hacker"--one who exploits the weaknesses of a normal program for personal benefit. Understanding normal mammary gland biology and its "security vulnerabilities" may thus leave us better equipped to target breast cancer. In this review, we will provide a brief overview of the heterotypic cellular and molecular interactions within the microenvironment of the developing mammary gland that are necessary for functional differentiation, provide evidence suggesting that similar biology--albeit imbalanced and exaggerated--is observed in breast cancer progression particularly during the transition from carcinoma in situ to invasive disease. Lastly we will present evidence suggesting that the multigene signatures currently used to model cancer heterogeneity and clinical outcome largely reflect signaling from a heterogeneous microenvironment-a recurring theme that could potentially be exploited therapeutically.
Collapse
Affiliation(s)
- Aaron Boudreau
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA, USA.
| | | | | |
Collapse
|
30
|
Zhao Y, Tan YS, Strynar MJ, Perez G, Haslam SZ, Yang C. Perfluorooctanoic acid effects on ovaries mediate its inhibition of peripubertal mammary gland development in Balb/c and C57Bl/6 mice. Reprod Toxicol 2012; 33:563-576. [PMID: 22414604 DOI: 10.1016/j.reprotox.2012.02.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2011] [Revised: 01/15/2012] [Accepted: 02/17/2012] [Indexed: 01/09/2023]
Abstract
Exposure to perfluorooctanoic acid (PFOA), a synthetic perfluorinated compound and an agonist of peroxisome proliferator-activated receptor α (PPARα), causes stunted mouse mammary gland development in various developmental stages. However, the underlying mechanisms remain poorly understood. We found that peripubertal PFOA exposure significantly inhibited mammary gland growth in both Balb/c and C57Bl/6 wild type mice, but not in C57Bl/6 PPARα knockout mice, and Balb/c mice were more sensitive to PFOA inhibition. PFOA caused (1) delayed or absence of vaginal opening and lack of estrous cycling during the experimental period; (2) decreases in ovarian steroid hormonal synthetic enzyme levels; and (3) reduced expression of estrogen- or progesterone-induced mammary growth factors. Supplementation with exogenous estrogen and/or progesterone reversed the PFOA inhibitory effect on mammary gland. These results indicate that PFOA effects on ovaries mediate its inhibition of mammary gland development in Balb/c and C57Bl/6 mice and that PPARα expression is a contributing factor.
Collapse
Affiliation(s)
- Yong Zhao
- Department of Physiology, Michigan State University, East Lansing, MI 48824, United States; Breast Cancer and the Environment Research Center, Michigan State University, East Lansing, MI 48824, United States.
| | - Ying S Tan
- Department of Physiology, Michigan State University, East Lansing, MI 48824, United States; Breast Cancer and the Environment Research Center, Michigan State University, East Lansing, MI 48824, United States.
| | - Mark J Strynar
- Human Exposure and Atmospheric Sciences Division, National Exposure Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, United States.
| | - Gloria Perez
- Department of Physiology, Michigan State University, East Lansing, MI 48824, United States.
| | - Sandra Z Haslam
- Department of Physiology, Michigan State University, East Lansing, MI 48824, United States; Breast Cancer and the Environment Research Center, Michigan State University, East Lansing, MI 48824, United States.
| | - Chengfeng Yang
- Department of Physiology, Michigan State University, East Lansing, MI 48824, United States; Breast Cancer and the Environment Research Center, Michigan State University, East Lansing, MI 48824, United States; Center for Integrative Toxicology, Michigan State University, East Lansing, MI 48824, United States.
| |
Collapse
|
31
|
Kim EJ, Eom SJ, Hong JE, Lee JY, Choi MS, Park JHY. Benzyl isothiocyanate inhibits basal and hepatocyte growth factor-stimulated migration of breast cancer cells. Mol Cell Biochem 2011; 359:431-40. [PMID: 21892609 DOI: 10.1007/s11010-011-1039-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Accepted: 08/13/2011] [Indexed: 01/03/2023]
Abstract
Benzyl isothiocyanate (BITC), which is found in cruciferous vegetables, has been shown to have anti-carcinogenic properties. Hepatocyte growth factor (HGF) has the ability to stimulate dissociation, migration, and invasion in various tumor cells, and abnormally increased expressions of HGF and its transmembrane tyrosine kinase receptor, c-Met, have previously been detected in human breast cancer, and are associated with high tumor grade and poor prognosis. In this study, in order to assess the mechanisms relevant to the BITC-induced regulation of breast cancer cell migration and invasion, MDA-MB-231 human breast cancer cells and 4T1 murine mammary carcinoma cells were cultured in the presence of 0-4 μmol/l BITC with or without 10 μg/l of HGF. BITC inhibited both the basal and HGF-induced migration of MDA-MB-231 and 4T1 cells in a dose-dependent manner. In MDA-MB-231 cells, BITC reduced both basal and HGF-induced secretion and activity of urokinase-type plasminogen activator (uPA). In addition, BITC increased the protein levels of plasminogen activator inhibitor-1. HGF stimulated c-Met and Akt phosphorylation, but did not affect the phosphorylation of extracellular signal-regulated kinase-1/2 or stress-activated protein/c-jun N-terminal kinase. BITC suppressed NF-κB activity and reduced the HGF-induced phosphorylation of c-Met and Akt in a dose-dependent manner. LY294002, a specific Akt inhibitor, reduced both basal and HGF-induced uPA secretion and migration of MDA-MB-231 cells. In this study, we demonstrated that BITC profoundly inhibits the migration and invasion of MDA-MB-231 cells, which is associated with reduced uPA activity, and also that these phenomena are accompanied by the suppression of Akt signaling.
Collapse
Affiliation(s)
- Eun Ji Kim
- Center for Efficacy Assessment and Development of Functional Foods and Drugs, Department of Biochemistry, College of Medicine, Hallym University, 39 Hallymdaehak-gil, Chuncheon, 200-702, Korea
| | | | | | | | | | | |
Collapse
|
32
|
Garner OB, Bush KT, Nigam KB, Yamaguchi Y, Xu D, Esko JD, Nigam SK. Stage-dependent regulation of mammary ductal branching by heparan sulfate and HGF-cMet signaling. Dev Biol 2011; 355:394-403. [PMID: 21586278 DOI: 10.1016/j.ydbio.2011.04.035] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2010] [Revised: 04/18/2011] [Accepted: 04/30/2011] [Indexed: 02/08/2023]
Abstract
Specific interactions of growth factors with heparan sulfate may function as "switches" to regulate stages of branching morphogenesis in developing mammalian organs, such as breast, lung, salivary gland and kidney, but the evidence derives mostly from studies of explanted tissues or cell culture (Shah et al., 2004). We recently provided in vivo evidence that inactivation of Ndst1, the predominant N-deacetylase/N-sulfotransferase gene essential for the formation of mature heparan sulfate, results in a highly specific defect in murine lobuloalveolar development (Crawford et al., 2010). Here, we demonstrate a highly penetrant dramatic defect in primary branching by mammary epithelial-specific inactivation of Ext1, a subunit of the copolymerase complex that catalyzes the formation of the heparan sulfate chain. In contrast to Ext1 deletion, inactivation of Hs2st (which encodes an enzyme required for 2-O-sulfation of uronic acids in heparan sulfate) did not inhibit ductal formation but displayed markedly decreased secondary and ductal side-branches as well as fewer bifurcated terminal end buds. Targeted conditional deletion of c-Met, the receptor for HGF, in mammary epithelial cells showed similar defects in secondary and ductal side-branching, but did not result in any apparent defect in bifurcation of terminal end buds. Although there is published evidence indicating a role for 2-O sulfation in HGF binding, primary epithelial cells isolated from Hs2st conditional deletions were able to activate Erk in the presence of HGF and there appeared to be only a slight reduction in HGF-mediated c-Met phosphorylation in these cells compared to control. Thus, both c-Met and Hs2st play important, but partly independent, roles in secondary and ductal side-branching. When considered together with previous studies of Ndst1-deficient glands, the data presented here raise the possibility of partially-independent regulation by heparan sulfate-dependent pathways of primary ductal branching, terminal end bud bifurcation, secondary branching, ductal side-branching and lobuloalveolar formation.
Collapse
Affiliation(s)
- Omai B Garner
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | | | | | | | | | | | | |
Collapse
|
33
|
Medvinsky A, Rybtsov S, Taoudi S. Embryonic origin of the adult hematopoietic system: advances and questions. Development 2011; 138:1017-31. [PMID: 21343360 DOI: 10.1242/dev.040998] [Citation(s) in RCA: 278] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Definitive hematopoietic stem cells (HSCs) lie at the foundation of the adult hematopoietic system and provide an organism throughout its life with all blood cell types. Several tissues demonstrate hematopoietic activity at early stages of embryonic development, but which tissue is the primary source of these important cells and what are the early embryonic ancestors of definitive HSCs? Here, we review recent advances in the field of HSC research that have shed light on such questions, while setting them into a historical context, and discuss key issues currently circulating in this field.
Collapse
Affiliation(s)
- Alexander Medvinsky
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, University of Edinburgh, Edinburgh EH9 3JQ, UK.
| | | | | |
Collapse
|
34
|
Abstract
The pubertal mammary gland is an ideal model for experimental morphogenesis. The primary glandular branching morphogenesis occurs at this time, integrating epithelial cell proliferation, differentiation, and apoptosis. Between birth and puberty, the mammary gland exists in a relatively quiescent state. At the onset of puberty, rapid expansion of a pre-existing rudimentary mammary epithelium generates an extensive ductal network by a process of branch initiation, elongation, and invasion of the mammary mesenchyme. It is this branching morphogenesis that characterizes pubertal mammary gland growth. Tissue-specific molecular networks interpret signals from local cytokines/growth factors in both the epithelial and stromal microenvironments. This is largely orchestrated by secreted ovarian and pituitary hormones. Here, we review the major molecular regulators of pubertal mammary gland development.
Collapse
Affiliation(s)
- Sara McNally
- UCD School of Bimolecular and Biomedical Science, Conway Institute, University College Dublin, Belfield, Ireland
| | | |
Collapse
|
35
|
Pavlovich AL, Boghaert E, Nelson CM. Mammary branch initiation and extension are inhibited by separate pathways downstream of TGFβ in culture. Exp Cell Res 2011; 317:1872-84. [PMID: 21459084 DOI: 10.1016/j.yexcr.2011.03.017] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2011] [Revised: 03/21/2011] [Accepted: 03/27/2011] [Indexed: 01/17/2023]
Abstract
During the branching morphogenesis process that builds epithelial trees, signaling from stimulatory and inhibitory growth factors is integrated to control branch initiation and extension into the surrounding stroma. Here, we examined the relative roles played by these stimulatory and inhibitory signals in the patterning of branch initiation and extension of model mammary epithelial tubules in culture. We found that although several growth factors could stimulate branching, they did not determine the sites at which new branches formed or the lengths to which branches extended. Instead, branch initiation and extension were defined by two separate signals downstream of the inhibitory morphogen, transforming growth factor (TGF)-β. Branch initiation was controlled by signaling through p38 mitogen-activated protein kinase, whereas branch extension was controlled by Smad-mediated induction of a second diffusible inhibitor, Wnt5a. These data suggest that mammary epithelial branching is patterned predominately by repulsive signaling, and that TGFβ activates multiple inhibitory pathways to refine the architecture of the tree.
Collapse
Affiliation(s)
- Amira L Pavlovich
- Department of Chemical & Biological Engineering, Princeton University, Princeton, NJ 08544, USA
| | | | | |
Collapse
|
36
|
Furuse C, Miguita L, Rosa ACG, Soares AB, Martinez EF, Altemani A, de Araújo VC. Study of growth factors and receptors in carcinoma ex pleomorphic adenoma. J Oral Pathol Med 2010; 39:540-7. [PMID: 20149060 DOI: 10.1111/j.1600-0714.2009.00858.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Carcinoma ex pleomorphic adenoma (CXPA) is a rare malignant salivary gland tumor derived from a pre-existing pleomorphic adenoma. It is a good model to study the evolution of carcinogenesis, starting with in situ areas to frankly invasive carcinoma. Growth factors are associated with several biological and neoplastic processes by transmembrane receptors. In order to investigate, by immunohistochemistry, the expression of some growth factors and its receptors [EGF receptor, fibroblast growth factor, fibroblast growth factor receptor 1, fibroblast growth factor receptor 2, hepatocyte growth factor, c-Met, transforming growth factor (TGF) beta1, TGFbetaR-II and insulin-like growth factor receptor 1] in the progression of CXPA, we have used ten cases of CXPA in several degrees of invasion- intracapsular, minimally and frankly invasive carcinoma- with only epithelial component. Slides were qualitatively and semi-quantitatively evaluated according to the percentage of stained tumor cells from 0 to 3 (0 = less than 10%; 1 = 10-25%; 2 = 25-50%; 3 = more than 50% of cells). Malignant epithelial cells starting with in situ areas showed stronger expression than luminal cells of pleomorphic adenoma for all antibodies. Most of the intracapsular, minimally and frankly invasive CXPA presented score 3. However, score 2 was more evident in the frankly invasive one. In small nests of invasive carcinoma, negative cells were observed probably indicating that the proliferative process is replaced by the invasive mechanism. Altogether this data infers that these factors may contribute to cell proliferation during initial phases of the tumor.
Collapse
Affiliation(s)
- Cristiane Furuse
- Department of Oral Pathology, São Leopoldo Mandic Institute and Research Center, Campinas, São Paulo, Brazil
| | | | | | | | | | | | | |
Collapse
|
37
|
Zhao Y, Tan YS, Haslam SZ, Yang C. Perfluorooctanoic acid effects on steroid hormone and growth factor levels mediate stimulation of peripubertal mammary gland development in C57BL/6 mice. Toxicol Sci 2010; 115:214-24. [PMID: 20118188 DOI: 10.1093/toxsci/kfq030] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Perfluorooctanoic acid (PFOA) is a synthetic, widely used perfluorinated carboxylic acid and a persistent environmental pollutant. It is an agonist of peroxisome proliferator-activated receptor alpha (PPARalpha). Studies have shown that PFOA causes hepatocellular hypertrophy, tumorigenesis, and developmental toxicity in rodents, and some of its toxicity depends on the expression of PPARalpha. Our recent study revealed a stimulatory effect of peripubertal PFOA treatment (5 mg/kg) on mammary gland development in C57Bl/6 mice. The present study was designed to examine the underlying mechanism(s). It was found that mammary gland stimulation by PFOA was similarly observed in PPARalpha knockout and wild-type C57Bl/6 mice. The presence of ovaries was required for PFOA treatment (5 mg/kg) to stimulate mammary gland development with significant increases in the levels of enzymes involved in steroid hormone synthesis in both PFOA-treated wild-type and PPARalpha knockout mouse ovaries. PFOA treatment significantly increased serum progesterone (P) levels in ovary-intact mice and also enhanced mouse mammary gland responses to exogenous estradiol (E), P, and E + P. In addition, PFOA treatment resulted in elevated mammary gland levels of epidermal growth factor receptor (EGFR), estrogen receptor alpha, amphiregulin (Areg, a ligand of EGFR), hepatocyte growth factor, cyclin D1, and proliferating cell nuclear antigen (PCNA) in both wild-type and PPARalpha knockout mouse mammary glands. These results indicate that PFOA stimulates mammary gland development in C57Bl/6 mice by promoting steroid hormone production in ovaries and increasing the levels of a number of growth factors in mammary glands, which is independent of the expression of PPARalpha.
Collapse
Affiliation(s)
- Yong Zhao
- Department of Physiology, Michigan State University, East Lansing, Michigan 48824, USA
| | | | | | | |
Collapse
|
38
|
Matriptase/epithin participates in mammary epithelial cell growth and morphogenesis through HGF activation. Mech Dev 2010; 127:82-95. [DOI: 10.1016/j.mod.2009.10.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2009] [Revised: 09/26/2009] [Accepted: 10/13/2009] [Indexed: 11/23/2022]
|
39
|
Taraseviciute A, Vincent BT, Schedin P, Jones PL. Quantitative analysis of three-dimensional human mammary epithelial tissue architecture reveals a role for tenascin-C in regulating c-met function. THE AMERICAN JOURNAL OF PATHOLOGY 2009; 176:827-38. [PMID: 20042668 DOI: 10.2353/ajpath.2010.090006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Remodeling of the stromal extracellular matrix and elevated expression of specific proto-oncogenes within the adjacent epithelium represent cardinal features of breast cancer, yet how these events become integrated is not fully understood. To address this question, we focused on tenascin-C (TN-C), a stromal extracellular matrix glycoprotein whose expression increases with disease severity. Initially, nonmalignant human mammary epithelial cells (MCF-10A) were cultured within a reconstituted basement membrane (BM) where they formed three-dimensional (3-D) polarized, growth-attenuated, multicellular acini, enveloped by a continuous endogenous BM. In the presence of TN-C, however, acini failed to generate a normal BM, and net epithelial cell proliferation increased. To quantify how TN-C alters 3-D tissue architecture and function, we developed a computational image analysis algorithm, which showed that although TN-C disrupted acinar surface structure, it had no effect on their volume. Thus, TN-C promoted epithelial cell proliferation leading to luminal filling, a process that we hypothesized involved c-met, a proto-oncogene amplified in breast tumors that promotes intraluminal filling. Indeed, TN-C increased epithelial c-met expression and promoted luminal filling, whereas blockade of c-met function reversed this phenotype, resulting in normal BM deposition, proper lumen formation, and decreased cell proliferation. Collectively, these studies, combining a novel quantitative image analysis tool with 3-D organotypic cultures, demonstrate that stromal changes associated with breast cancer can control proto-oncogene function.
Collapse
Affiliation(s)
- Agne Taraseviciute
- Department of Cell Biology, Stem Cells, and Development, University of Colorado Denver, Aurora, Colorado, USA
| | | | | | | |
Collapse
|
40
|
Hanna JA, Bordeaux J, Rimm DL, Agarwal S. The function, proteolytic processing, and histopathology of Met in cancer. Adv Cancer Res 2009; 103:1-23. [PMID: 19854350 DOI: 10.1016/s0065-230x(09)03001-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The hepatocyte growth factor (HGF) and its receptor, the Met receptor tyrosine kinase, form a signaling network promoting cell proliferation, invasion, and survival in normal and cancer cells. Improper regulation of this pathway is attributed to many cancer types through overexpression, activating mutations, or autocrine loop formation. Many studies describe the localization of Met as membranous/cytoplasmic, but some studies using antibodies targeted to the C-terminal domain of Met report nuclear localization. This chapter seeks to highlight the histopathology and expression of Met in cancer and its association with clinicopathological characteristics. We also discuss recent studies of the proteolytic processing of Met and effects of the processing on the subcellular localization of Met. Finally, we comment on Met as a therapeutic target for cancer treatment.
Collapse
Affiliation(s)
- Jason A Hanna
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | | | | | | |
Collapse
|
41
|
Faucon F, Rebours E, Bevilacqua C, Helbling JC, Aubert J, Makhzami S, Dhorne-Pollet S, Robin S, Martin P. Terminal differentiation of goat mammary tissue during pregnancy requires the expression of genes involved in immune functions. Physiol Genomics 2009; 40:61-82. [PMID: 19843654 DOI: 10.1152/physiolgenomics.00032.2009] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Terminal differentiation of mammary tissue into a functional epithelium that synthesizes and secretes milk occurs during pregnancy. The molecular mechanisms underlying this complex process are poorly understood, especially in ruminants. To obtain an overview of the ruminant mammary gland's final differentiation process, we conducted time-course gene expression analysis of five physiological stages: four during pregnancy (P46, P70, P90, and P110) and one after 40 days of lactation (L40). An appropriate loop experimental design was used to follow gene expression profiles. Using three nulliparous (pregnancy) or primiparous (lactation) goats per stage, we performed a comparison starting from nine dye-swaps and using a 22K bovine oligoarray. Statistical analysis revealed that the expression of 1,696 genes varied significantly at least once in the study. These genes fell into 19 clusters based on their expression profiles. Identification of biological functions with Ingenuity Pathway Analysis software revealed several similarities, in keeping with physiological stages described in mice. As in mice, expression of milk protein genes began at midpregnancy, and genes regulating lipid biosynthesis were induced at the onset of lactation. During the first half of pregnancy, the molecular signature of goat mammary tissue was characterized by the expression of genes associated with tissue remodeling and differentiation, while the second half was mainly characterized by the presence of messengers encoding genes involved in cell proliferation. A large number of immune-related genes were also induced, supporting recent speculation that mammary tissue has an original immune function, and the recruitment of migrating hematopoietic cells possibly involved in the branching morphogenesis of the mammary gland. These data hint that the induction of differentiation occurs early in pregnancy, very likely before P46. This period is therefore crucial for obtaining a healthy and productive mammary gland.
Collapse
Affiliation(s)
- F Faucon
- Institut National de la Recherche Agronomique (INRA), Unité Mixte de Recherche (UMR) 1313, Génétique animale et Biologie intégrative, équipe LGS, F-78352 Jouy-en-Josas, France
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Ieda M, Tsuchihashi T, Ivey KN, Ross RS, Hong TT, Shaw RM, Srivastava D. Cardiac fibroblasts regulate myocardial proliferation through beta1 integrin signaling. Dev Cell 2009; 16:233-44. [PMID: 19217425 DOI: 10.1016/j.devcel.2008.12.007] [Citation(s) in RCA: 432] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2008] [Revised: 11/18/2008] [Accepted: 12/18/2008] [Indexed: 12/25/2022]
Abstract
Growth and expansion of ventricular chambers is essential during heart development and is achieved by proliferation of cardiac progenitors. Adult cardiomyocytes, by contrast, achieve growth through hypertrophy rather than hyperplasia. Although epicardial-derived signals may contribute to the proliferative process in myocytes, the factors and cell types responsible for development of the ventricular myocardial thickness are unclear. Using a coculture system, we found that embryonic cardiac fibroblasts induced proliferation of cardiomyocytes, in contrast to adult cardiac fibroblasts that promoted myocyte hypertrophy. We identified fibronectin, collagen, and heparin-binding EGF-like growth factor as embryonic cardiac fibroblast-specific signals that collaboratively promoted cardiomyocyte proliferation in a paracrine fashion. Myocardial beta1-integrin was required for this proliferative response, and ventricular cardiomyocyte-specific deletion of beta1-integrin in mice resulted in reduced myocardial proliferation and impaired ventricular compaction. These findings reveal a previously unrecognized paracrine function of embryonic cardiac fibroblasts in regulating cardiomyocyte proliferation.
Collapse
Affiliation(s)
- Masaki Ieda
- Gladstone Institute of Cardiovascular Disease, University of California, San Francisco, 94158, USA
| | | | | | | | | | | | | |
Collapse
|
43
|
Haslam SZ, Drolet A, Smith K, Tan M, Aupperlee M. Progestin-regulated luminal cell and myoepithelial cell-specific responses in mammary organoid culture. Endocrinology 2008; 149:2098-107. [PMID: 18218689 PMCID: PMC2329279 DOI: 10.1210/en.2007-1398] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Normal mammary gland development requires the coordinated proliferation and morphogenesis of both mammary luminal epithelial cells (LECs) and myoepithelial cells (MECs). Cell proliferation in cultured mammary organoids containing both LECs and MECs is not increased by progestin (R5020) or 17beta-estradiol (E2) alone or R5020+E2 but is increased by E2-regulated, mammary stroma-derived Hepatocyte growth factor (HGF) and further increased by HGF+R5020. We investigated the effects of HGF and/or R5020 on morphology and LEC- and MEC-specific in vitro proliferation in organoids. HGF-induced tubulogenesis was initiated and carried out by LECs starting with cellular extensions, followed by the formation of chains and cords, and culminating in tubule formation. MECs did not appear to have an active role in this process. Whereas HGF by itself caused maximal proliferation of LECs, HGF+R5020 produced a synergistic and specific increase in MEC proliferation. Because only LECs expressed progesterone receptors (PRs), we investigated the role of receptor activator of nuclear factor-kappaB ligand (RANKL), a progestin-induced paracrine factor, in mediating increased MEC proliferation. Quantitative RT-PCR showed that RANKL mRNA was induced by R5020 or HGF+R5020 and RANKL protein colocalized with PRs in LECs. The increased proliferation of MECs in response to HGF+R5020 could be blocked by neutralizing antibody to RANKL and reproduced by treatment with HGF plus exogenous RANKL in place of R5020. Neither R5020, nor exogenously administered RANKL increased proliferation of LECs. These results led us to conclude that RANKL, induced by progestin in PR-positive cells, is secreted and interacts with HGF to specifically increase proliferation of PR-negative MECs.
Collapse
Affiliation(s)
- Sandra Z Haslam
- Department of Physiology, Michigan State University, East Lansing, Michigan 48824, USA.
| | | | | | | | | |
Collapse
|
44
|
Accornero P, Martignani E, Macchi E, Baratta M. Hepatocyte Growth Factor Exerts Multiple Biological Functions on Bovine Mammary Epithelial Cells. J Dairy Sci 2007; 90:4289-96. [PMID: 17699048 DOI: 10.3168/jds.2007-0179] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The met proto-oncogene product Met is a member of the family of tyrosine kinase growth factor receptors, and hepatocyte growth factor/scatter factor (HGF/SF) has been identified as its only ligand. Bovine Met and HGF/SF have been recently cloned and their expression has been characterized in the mammary gland, but no data regarding the biological effects of this ligand/receptor couple in bovine mammary cells are yet available. We examined the role of HGF/SF and its receptor in a bovine mammary epithelial cell line (BME-UV). Expression of Met at the mRNA level in BME-UV mammary epithelial cells evaluated by real-time PCR was similar to the expression in MDCK cells, a widely used model for Met biology. Met expression in BME-UV at the protein level was confirmed by western blot. The analysis of some signal transductional pathways downstream from the Met receptor revealed that HGF/SF addition to BME-UV cells induced activation of the extracellular signal-regulated kinase 1/2 proliferative pathway and the Akt antiapoptotic pathway. The BME-UV cells treated with HGF responded with increased proliferation, cell scatter, and motility. Met activation by HGF induced degradation of the extracellular matrix and migration through matrigel coated transwells. Moreover, BME-UV cells included in a 3-dimensional matrix of collagen and treated with HGF developed tubular structures, reminiscent of the mammary gland ducts. These data indicate that HGF and Met might be important regulators of mammary gland growth, morphogenesis, and development in the bovine.
Collapse
Affiliation(s)
- P Accornero
- Department of Veterinary Morphophysiology, University of Torino, Via Leonardo da Vinci 44, 10095, Grugliasco (TO), Italy.
| | | | | | | |
Collapse
|
45
|
Abstract
Salivary gland branching morphogenesis involves coordinated cell growth, proliferation, differentiation, migration, apoptosis, and interaction of epithelial, mesenchymal, endothelial, and neuronal cells. The ex vivo analysis of embryonic mouse submandibular glands, which branch so reproducibly and beautifully in culture, is a powerful tool to investigate the molecular mechanisms regulating epithelium-mesenchyme interactions during development. The more recent analysis of genetically modified mice provides insight into the genetic regulation of branching morphogenesis. The review begins, as did the field historically, focusing on the role of the extracellular matrix (ECM), and its components such as glycosaminoglycans, collagens, and laminins. Following sections describe the modification of the ECM by proteases and the role of cell-matrix and cell-cell receptors. The review then focuses on two major families of growth factors implicated in salivary gland development, the fibroblast growth factors (FGFs) and the epidermal growth factors (EGFs). The salivary gland phenotypes in mice with genetic modification of FGFs and their receptors highlight the central role of FGFs during salivary gland branching morphogenesis. A broader section mentions other molecules implicated from analysis of the phenotypes of genetically modified mice or organ culture experiments. The review concludes with speculation on some future areas of research.
Collapse
Affiliation(s)
- Vaishali N Patel
- Matrix and Morphogenesis Unit, Craniofacial Developmental Biology and Regeneration Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, 30 Convent Dr Bethesda, MD 20892, USA
| | | | | |
Collapse
|
46
|
Joshi PA, Chang H, Hamel PA. Loss of Alx4, a stromally-restricted homeodomain protein, impairs mammary epithelial morphogenesis. Dev Biol 2006; 297:284-94. [PMID: 16916507 DOI: 10.1016/j.ydbio.2006.05.032] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2005] [Revised: 05/22/2006] [Accepted: 05/24/2006] [Indexed: 11/23/2022]
Abstract
Postnatal development of the mammary gland is determined by reciprocal interactions between the ductal epithelia and adjacent stroma. Alx4 is a mesenchymally restricted homeodomain transcription factor expressed in a number of developing tissues, including skin appendages such as hair follicles, whiskers and teeth. We show here that Alx4 is expressed in a subset of ERalpha-expressing mammary stromal cells adjacent to terminal end buds and alveoli during puberty and pregnancy, respectively. Alx4 expression is induced in mammary stromal cells at the onset of puberty and can be induced in prepubescent mice by administration of 17beta-estradiol. In order to determine the role of Alx4 during mammary gland development, we characterized mammary gland development of mice homozygous for the null allele of Alx4, lst(D). Mammary glands from animals lacking Alx4 activity exhibit profound alterations in ductal morphogenesis. Overall development is delayed, ducts being grossly distorted in size and structure. Terminal end buds are also disoriented, displaying aberrant architecture during bifurcation. Despite the developmental delay, the ductal network typically reaches the limits of the fat pad. However, during puberty and in the adult virgin mice, the frequency and density of branch points is significantly reduced. We show further that the defective ductal morphogenesis is due to defects in stromal cells. Specifically, when injected into the cleared fat pad of wild-type recipients, mixed populations of wild-type epithelial cells and Alx4-deficient stromal cells give rise to retarded ductal morphogenesis. Wild-type stromal cells mixed with Alx4-deficient epithelial cells result in normal progression of ductal development. Defective branching morphogenesis in Alx4-deficient females is not due to a loss in expression of HGF, since the level of HGF message in mammary stromal cells is similar in mutant and wild-type littermates. MMP3 is similarly expressed while a 40% increase in MMP2 and a 50% decrease in MMP9 message levels in Alx4-deficient mice relative to their wild-type littermates is observed. Thus, the activity of the stromally restricted homeodomain factor, Alx4, is required for normal branching morphogenesis of the ductal epithelia during pubescent mammary gland development.
Collapse
Affiliation(s)
- Purna A Joshi
- Department of Laboratory Medicine and Pathobiology, Room 6318, Medical Sciences Building, 1 King's College Circle, University of Toronto, Toronto, Ontario, Canada M5S 1A8
| | | | | |
Collapse
|
47
|
Mukhina S, Liu D, Guo K, Raccurt M, Borges-Bendris S, Mertani HC, Lobie PE. Autocrine growth hormone prevents lactogenic differentiation of mouse mammary epithelial cells. Endocrinology 2006; 147:1819-29. [PMID: 16423870 DOI: 10.1210/en.2005-1082] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
We have examined the expression, postnatal ontogeny, and localization of mouse GH (mGH) and its relative expression during pregnancy, lactation, and weaning in the mouse. mGH mRNA and protein was expressed predominantly in the epithelial component of the mammary gland, and maximal expression was observed during the pubertal period. Autocrine mGH expression dramatically decreased during late pregnancy and lactation. Concordantly, autocrine mGH expression is repressed during forced differentiation of mouse HC11 mammary epithelial cells in culture. Forced expression of mGH in HC11 cells abrogated lactogenic differentiation as indicated by reduced expression of beta-casein and reduced expression and loss of lateral epithelial localization of E-cadherin. Forced expression of mGH in mouse mammary epithelial cells increased cell survival and proliferation and consequently increased the size of mammary acinar-like structures formed in three-dimensional Matrigel. Thus, autocrine mGH expression in the mouse mammary epithelial cell is maximal at puberty and prevents mammary epithelial cell differentiation. Autocrine GH will therefore participate in mammary morphogenic processes at puberty.
Collapse
|
48
|
Yamaji D, Kimura K, Watanabe A, Kon Y, Iwanaga T, Soliman MM, Ahmed MM, Saito M. Bovine hepatocyte growth factor and its receptor c-Met: cDNA cloning and expression analysis in the mammary gland. Domest Anim Endocrinol 2006; 30:239-46. [PMID: 16207523 DOI: 10.1016/j.domaniend.2005.08.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2005] [Revised: 08/22/2005] [Accepted: 08/25/2005] [Indexed: 11/20/2022]
Abstract
Hepatocyte growth factor/scatter factor (HGF/SF) is a pleiotropic cytokine that plays a crucial role in the embryonic and postnatal development of various organs including the mammary gland. We cloned bovine HGF and its c-Met receptor cDNAs, and examined their expression during mammary gland development in dairy cows. The 2.5-kbp HGF cDNA clone contained a 2190 bp open reading frame coding a 730 amino acid protein, while the 4.8-kbp c-Met cDNA clone contained a 4152 bp open reading frame coding a 1384 amino acid protein. The bovine HGF and c-Met sequences exhibited more than 87% identity with those of other mammals. RT-PCR analysis revealed ubiquitous expression of both HGF and c-Met mRNAs in various bovine tissues tested. HGF mRNA was detected only in the inactive stage of bovine mammary gland development and not in the developing, lactating, and involuting stages, while c-Met mRNA was detected in the inactive and involuting stages. Immunohistochemical analysis demonstrated that the c-Met protein was found on mammary epithelial cells in the inactive, developing, and involuting stages, and on myoepithelial cells in all stages. These results suggest pivotal roles of HGF and c-Met in the development of bovine mammary gland.
Collapse
Affiliation(s)
- Daisuke Yamaji
- Laboratory of Biochemistry, Department of Biomedical Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Nelson CM, Bissell MJ. Of extracellular matrix, scaffolds, and signaling: tissue architecture regulates development, homeostasis, and cancer. Annu Rev Cell Dev Biol 2006; 22:287-309. [PMID: 16824016 PMCID: PMC2933192 DOI: 10.1146/annurev.cellbio.22.010305.104315] [Citation(s) in RCA: 764] [Impact Index Per Article: 42.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The microenvironment influences gene expression so that the behavior of a cell is largely determined by its interactions with the extracellular matrix, neighboring cells, and soluble local and systemic cues. We describe the essential roles of context and organ structure in directing mammary gland development and differentiated function and in determining the response to oncogenic insults, including mutations. We expand on the concept of "dynamic reciprocity" to present an integrated view of development, cancer, and aging and posit that genes are like the keys on a piano: Although they are essential, it is the context that makes the music.
Collapse
Affiliation(s)
- Celeste M. Nelson
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720
| | - Mina J. Bissell
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720
| |
Collapse
|
50
|
Yin Y, Bai R, Russell RG, Beildeck ME, Xie Z, Kopelovich L, Glazer RI. Characterization of medroxyprogesterone and DMBA-induced multilineage mammary tumors by gene expression profiling. Mol Carcinog 2005; 44:42-50. [PMID: 15937957 DOI: 10.1002/mc.20119] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Mouse mammary tumors arising during medroxyprogesterone-DMBA-mediated mammary carcinogenesis comprised three distinct phenotypes: adenocarcinoma, squamous cell carcinoma, and myoepithelial carcinoma. The molecular signature for each of the three tumor subsets was characterized by gene microarray analysis, and three distinct sets of gene expression profiles were obtained that were corroborated in part by quantitative RT-PCR and immunohistochemistry. These results suggest that this carcinogenesis and gene expression model will be useful for rapidly assessing the histopathological differences arising in mammary carcinogenesis and the effects of tumor promoting or chemoprevention agents.
Collapse
MESH Headings
- 9,10-Dimethyl-1,2-benzanthracene/pharmacology
- Animals
- Female
- Gene Expression Profiling
- Gene Expression Regulation, Neoplastic/drug effects
- Gene Expression Regulation, Neoplastic/genetics
- Immunohistochemistry
- Mammary Neoplasms, Experimental/chemically induced
- Mammary Neoplasms, Experimental/classification
- Mammary Neoplasms, Experimental/genetics
- Mammary Neoplasms, Experimental/metabolism
- Medroxyprogesterone/pharmacology
- Mice
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
Collapse
Affiliation(s)
- Yuzhi Yin
- Department of Oncology, and Lombardi Comprehensive Cancer Center, Georgetown University, Washington, District of Columbia, USA
| | | | | | | | | | | | | |
Collapse
|