1
|
Kimura KI, Kumano R, Yamamoto D. Activin is a neural inducer of a male-specific muscle in Drosophila. Sci Rep 2024; 14:3740. [PMID: 38355873 PMCID: PMC10866940 DOI: 10.1038/s41598-024-54295-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 02/11/2024] [Indexed: 02/16/2024] Open
Abstract
Drosophila melanogaster has a pair of male-specific muscles called the muscle of Lawrence (MOL) in abdominal segment 5 (A5) of adult flies. The MOL is produced only when its innervating motoneuron expresses FruitlessM (FruM) neural masculinizing proteins. We show that MOL induction is hampered by: (1) silencing electrical activities in the motoneuron, (2) blocking vesicular release from the motoneuron, and (3) knocking down Activin ß (Actß) in the motoneuron or knocking down Actß signaling pathway components in the myoblasts. Our timelapse live imaging of the developing neuromuscular system reveals that, upon contact with the presumptive MOL, the motoneuronal axon retracts concomitant with the progression of MOL degeneration resulting from neural silencing. We conclude that MOL formation depends on the bidirectional trophic interactions between pre- and postsynaptic cells, with motoneuron-derived Actß playing an inducing role in MOL formation.
Collapse
Affiliation(s)
- Ken-Ichi Kimura
- Laboratory of Biology, Sapporo Campus, Hokkaido University of Education, Sapporo, 002-8502, Japan.
| | - Rimi Kumano
- Laboratory of Biology, Sapporo Campus, Hokkaido University of Education, Sapporo, 002-8502, Japan
| | - Daisuke Yamamoto
- Advanced ICT Research Institute, National Institute of Information and Communications Technology, Kobe, 651-2492, Japan
| |
Collapse
|
2
|
Dong W, Flaven-Pouchon J, Gao YH, Song CY, El Wakil A, Zhang JZ, Moussian B. Chitinase 6 is required for procuticle thickening and organ shape in Drosophila wing. INSECT SCIENCE 2023; 30:268-278. [PMID: 36114809 DOI: 10.1111/1744-7917.13115] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 08/09/2022] [Accepted: 08/18/2022] [Indexed: 06/15/2023]
Abstract
The polysaccharide chitin is a major scaffolding molecule in the insect cuticle. In order to be functional, both chitin amounts and chitin organization have been shown to be important parameters. Despite great advances in the past decade, the molecular mechanisms of chitin synthesis and organization are not fully understood. Here, we have characterized the function of the Chitinase 6 (Cht6) in the formation of the wing, which is a simple flat cuticle organ, in the fruit fly Drosophila melanogaster. Reduction of Cht6 function by RNA interference during wing development does not affect chitin organization, but entails a thinner cuticle suggesting reduced chitin amounts. This phenotype is opposed to the one reported recently to be caused by reduction of Cht10 expression. Probably as a consequence, cuticle permeability to xenobiotics is enhanced in Cht6-less wings. We also observed massive deformation of these wings. In addition, the shape of the abdomen is markedly changed upon abdominal suppression of Cht6. Finally, we found that suppression of Cht6 transcript levels influences the expression of genes coding for enzymes of the chitin biosynthesis pathway. This finding indicates that wing epidermal cells respond to activity changes of Cht6 probably trying to adjust chitin amounts. Together, in a working model, we propose that Cht6-introduced modifications of chitin are needed for chitin synthesis to proceed correctly. Cuticle thickness, according to our hypothesis, is in turn required for correct organ or body part shape. The molecular mechanisms of this processes shall be characterized in the future.
Collapse
Affiliation(s)
- Wei Dong
- Institute of Applied Biology, Shanxi University, Taiyuan, China
| | | | - Ying-Hao Gao
- Institute of Applied Biology, Shanxi University, Taiyuan, China
- College of Life Science, Shanxi University, Taiyuan, China
| | - Chen-Yang Song
- Institute of Applied Biology, Shanxi University, Taiyuan, China
- College of Life Science, Shanxi University, Taiyuan, China
| | - Abeer El Wakil
- Faculty of Education, Department of Biological and Geological Sciences, Alexandria University, Alexandria, Egypt
| | - Jian-Zhen Zhang
- Institute of Applied Biology, Shanxi University, Taiyuan, China
| | - Bernard Moussian
- Institute of Applied Biology, Shanxi University, Taiyuan, China
- Interfaculty Institute of Cell Biology, University of Tübingen, Tübingen, Germany
- INRAE, CNRS, Université Côte d'Azur, Institut Sophia Agrobiotech, Sophia Antipolis, France
| |
Collapse
|
3
|
Chorro A, Verma B, Homfeldt M, Ibáñez B, Lawrence PA, Casal J. Planar cell polarity: intracellular asymmetry and supracellular gradients of Dachsous. Open Biol 2022; 12:220195. [PMID: 36476047 PMCID: PMC9554717 DOI: 10.1098/rsob.220195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The slope of a supracellular molecular gradient has long been thought to orient and coordinate planar cell polarity (PCP). Here we demonstrate and measure that gradient. Dachsous (Ds) is a conserved and elemental molecule of PCP; Ds forms intercellular bridges with another cadherin molecule, Fat (Ft), an interaction modulated by the Golgi protein Four-jointed (Fj). Using genetic mosaics and tagged Ds, we measure Ds in vivo in membranes of individual cells over a whole metamere of the Drosophila abdomen. We find as follows. (i) A supracellular gradient rises from head to tail in the anterior compartment (A) and then falls in the posterior compartment (P). (ii) There is more Ds in the front than the rear membranes of all cells in the A compartment, except that compartment's most anterior and most posterior cells. There is more Ds in the rear than in the front membranes of all cells of the P compartment. (iii) The loss of Fj removes intracellular asymmetry anteriorly in the segment and reduces it elsewhere. Additional experiments show that Fj makes PCP more robust. Using Dachs (D) as a molecular indicator of polarity, we confirm that opposing gradients of PCP meet slightly out of register with compartment boundaries.
Collapse
Affiliation(s)
- Adrià Chorro
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
| | - Bhavna Verma
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
| | - Maylin Homfeldt
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
| | - Beatríz Ibáñez
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
| | - Peter A. Lawrence
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
| | - José Casal
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
| |
Collapse
|
4
|
Umetsu D. Sample Preparation and Imaging of the Pupal Drosophila Abdominal Epidermis. Methods Mol Biol 2022; 2540:335-347. [PMID: 35980587 DOI: 10.1007/978-1-0716-2541-5_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The epithelium is one of the best studied tissues for morphogenesis, pattern formation, cell polarity, cell division, cell competition, tumorigenesis, and metastatic behaviors. However, it has been challenging to analyze real-time cell interactions or cell dynamics within the epithelia under physiological conditions. The Drosophila pupal abdominal epidermis is a model system that allows to combine long-term real-time imaging under physiological conditions with the use of powerful Drosophila genetics tools. The abdominal epidermis displays a wide range of stereotypical characteristics of the epithelia and cellular behaviors including cell division, cell death, cell rearrangement, apical constriction, and apicobasal/planar polarity, making this tissue a first choice for the study of epithelial morphogenesis and relevant phenomena. In this chapter, I describe the staging and mounting of pupae and the live imaging of the abdominal epidermis. Moreover, methods to combine live imaging with mosaic analysis or drug injection will be presented. The long-term live imaging of the pupal abdominal epidermis is straightforward and opens up the possibility to analyze cell dynamics during epithelial morphogenesis at an unprecedented resolution.
Collapse
Affiliation(s)
- Daiki Umetsu
- Graduate School of Life Sciences, Tohoku University, Sendai, Japan.
| |
Collapse
|
5
|
Arraf AA, Yelin R, Reshef I, Jadon J, Abboud M, Zaher M, Schneider J, Vladimirov FK, Schultheiss TM. Hedgehog Signaling Regulates Epithelial Morphogenesis to Position the Ventral Embryonic Midline. Dev Cell 2020; 53:589-602.e6. [PMID: 32437643 DOI: 10.1016/j.devcel.2020.04.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Revised: 02/23/2020] [Accepted: 04/22/2020] [Indexed: 01/20/2023]
Abstract
Despite much progress toward understanding how epithelial morphogenesis is shaped by intra-epithelial processes including contractility, polarity, and adhesion, much less is known regarding how such cellular processes are coordinated by extra-epithelial signaling. During embryogenesis, the coelomic epithelia on the two sides of the chick embryo undergo symmetrical lengthening and thinning, converging medially to generate and position the dorsal mesentery (DM) in the embryonic midline. We find that Hedgehog signaling, acting through downstream effectors Sec5 (ExoC2), an exocyst complex component, and RhoU (Wrch-1), a small GTPase, regulates coelomic epithelium morphogenesis to guide DM midline positioning. These effects are accompanied by changes in epithelial cell-cell alignment and N-cadherin and laminin distribution, suggesting Hedgehog regulation of cell organization within the coelomic epithelium. These results indicate a role for Hedgehog signaling in regulating epithelial morphology and provide an example of how transcellular signaling can modulate specific cellular processes to shape tissue morphogenesis.
Collapse
Affiliation(s)
- Alaa A Arraf
- Department of Genetics and Developmental Biology, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 31096, Israel
| | - Ronit Yelin
- Department of Genetics and Developmental Biology, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 31096, Israel
| | - Inbar Reshef
- Department of Genetics and Developmental Biology, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 31096, Israel
| | - Julian Jadon
- Department of Genetics and Developmental Biology, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 31096, Israel
| | - Manar Abboud
- Department of Genetics and Developmental Biology, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 31096, Israel
| | - Mira Zaher
- Department of Genetics and Developmental Biology, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 31096, Israel
| | - Jenny Schneider
- Department of Genetics and Developmental Biology, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 31096, Israel
| | - Fanny K Vladimirov
- Department of Genetics and Developmental Biology, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 31096, Israel
| | - Thomas M Schultheiss
- Department of Genetics and Developmental Biology, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 31096, Israel.
| |
Collapse
|
6
|
Bialistoky T, Manry D, Smith P, Ng C, Kim Y, Zamir S, Moyal V, Kalifa R, Schedl P, Gerlitz O, Deshpande G. Functional analysis of Niemann-Pick disease type C family protein, NPC1a, in Drosophila melanogaster. Development 2019; 146:dev.168427. [PMID: 31092503 DOI: 10.1242/dev.168427] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 04/01/2019] [Indexed: 01/20/2023]
Abstract
During embryonic gonad coalescence, primordial germ cells (PGCs) follow a carefully choreographed migratory route circumscribed by guidance signals towards somatic gonadal precursor cells (SGPs). In Drosophila melanogaster, SGP-derived Hedgehog (Hh), which serves as a guidance cue for the PGCs, is potentiated by mesodermally restricted HMGCoA-reductase (Hmgcr) and the ABC transporter Multi-drug-resistant-49 (Mdr49). Given the importance of cholesterol modification in the processing and long-distance transmission of the Hh ligand, we have analyzed the involvement of the Niemann-Pick disease type C-1a (NPC1a) protein, a cholesterol transporter, in germ cell migration and Hedgehog signaling. We show that mesoderm-specific inactivation of Npc1a results in germ cell migration defects. Similar to Mdr49, PGC migration defects in the Npc1a embryos are ameliorated by a cholesterol-rich diet. Consistently, reduction in Npc1a weakens the ability of ectopic HMG Coenzyme A reductase (Hmgcr) to induce germ cell migration defects. Moreover, compromising Npc1a levels influences Hh signaling adversely during wing development, a process that relies upon long-range Hh signaling. Last, doubly heterozygous embryos (Mdr49/Npc1a) display enhanced germ cell migration defects when compared with single mutants (Npc1a/+ or Mdr49/+), supporting cooperative interaction between the two.
Collapse
Affiliation(s)
- Tzofia Bialistoky
- Developmental Biology and Cancer Research, The Institute for Medical Research Israel-Canada (IMRIC), The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Diane Manry
- Department of Molecular Biology, Princeton University, Princeton, NJ 08540, USA
| | - Peyton Smith
- Department of Molecular Biology, Princeton University, Princeton, NJ 08540, USA
| | - Christopher Ng
- Department of Molecular Biology, Princeton University, Princeton, NJ 08540, USA
| | - Yunah Kim
- Department of Molecular Biology, Princeton University, Princeton, NJ 08540, USA
| | - Sol Zamir
- Developmental Biology and Cancer Research, The Institute for Medical Research Israel-Canada (IMRIC), The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Victoria Moyal
- Developmental Biology and Cancer Research, The Institute for Medical Research Israel-Canada (IMRIC), The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Rachel Kalifa
- Developmental Biology and Cancer Research, The Institute for Medical Research Israel-Canada (IMRIC), The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Paul Schedl
- Department of Molecular Biology, Princeton University, Princeton, NJ 08540, USA
| | - Offer Gerlitz
- Developmental Biology and Cancer Research, The Institute for Medical Research Israel-Canada (IMRIC), The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Girish Deshpande
- Department of Molecular Biology, Princeton University, Princeton, NJ 08540, USA
| |
Collapse
|
7
|
González-Méndez L, Seijo-Barandiarán I, Guerrero I. Cytoneme-mediated cell-cell contacts for Hedgehog reception. eLife 2017; 6:e24045. [PMID: 28825565 PMCID: PMC5565369 DOI: 10.7554/elife.24045] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 07/17/2017] [Indexed: 01/04/2023] Open
Abstract
Morphogens regulate tissue patterning through their distribution in concentration gradients. Emerging research establishes a role for specialized signalling filopodia, or cytonemes, in morphogen dispersion and signalling. Previously we demonstrated that Hedgehog (Hh) morphogen is transported via vesicles along cytonemes emanating from signal-producing cells to form a gradient in Drosophila epithelia. However, the mechanisms for signal reception and transfer are still undefined. Here, we demonstrate that cytonemes protruding from Hh-receiving cells contribute to Hh gradient formation. The canonical Hh receptor Patched is localized in these cellular protrusions and Hh reception takes place in membrane contact sites between Hh-sending and Hh-receiving cytonemes. These two sets of cytonemes have similar dynamics and both fall in two different dynamic behaviours. Furthermore, both the Hh co-receptor Interference hedgehog (Ihog) and the glypicans are critical for this cell-cell cytoneme mediated interaction. These findings suggest that the described contact sites might facilitate morphogen presentation and reception.
Collapse
Affiliation(s)
- Laura González-Méndez
- Centro de Biología Molecular 'Severo Ochoa', Universidad Autónoma de Madrid, Madrid, Spain
| | | | - Isabel Guerrero
- Centro de Biología Molecular 'Severo Ochoa', Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
8
|
Czerniak ND, Dierkes K, D'Angelo A, Colombelli J, Solon J. Patterned Contractile Forces Promote Epidermal Spreading and Regulate Segment Positioning during Drosophila Head Involution. Curr Biol 2016; 26:1895-901. [PMID: 27397891 DOI: 10.1016/j.cub.2016.05.027] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Revised: 04/27/2016] [Accepted: 05/09/2016] [Indexed: 10/21/2022]
Abstract
Epithelial spreading is a fundamental mode of tissue rearrangement occurring during animal development and wound closure. It has been associated either with the collective migration of cells [1, 2] or with actomyosin-generated forces acting at the leading edge (LE) and pulling the epithelial tissue [3, 4]. During the process of Drosophila head involution (HI), the epidermis spreads anteriorly to envelope the head tissues and fully cover the embryo [5]. This results in epidermal segments of equal width that will give rise to the different organs of the fly [6]. Here we perform a quantitative analysis of tissue spreading during HI. Combining high-resolution live microscopy with laser microsurgery and genetic perturbations, we show that epidermal movement is in part, but not solely, driven by a contractile actomyosin cable at the LE. Additional driving forces are generated within each segment by a gradient of actomyosin-based circumferential tension. Interfering with Hedgehog (Hh) signaling can modulate this gradient, thus suggesting the involvement of polarity genes in the regulation of HI. In particular, we show that disruption of these contractile forces alters segment widths and leads to a mispositioning of segments. Within the framework of a physical description, we confirm that given the geometry of the embryo, a patterned profile of active circumferential tensions can indeed generate propelling forces and control final segment position. Our study thus unravels a mechanism by which patterned tensile forces can regulate spreading and positioning of epithelial tissues.
Collapse
Affiliation(s)
- Natalia Dorota Czerniak
- Cell and Developmental Biology Programme, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Doctor Aiguader 88, Barcelona 08003, Spain; Universitat Pompeu Fabra (UPF), Barcelona 08003, Spain
| | - Kai Dierkes
- Cell and Developmental Biology Programme, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Doctor Aiguader 88, Barcelona 08003, Spain; Universitat Pompeu Fabra (UPF), Barcelona 08003, Spain
| | - Arturo D'Angelo
- Cell and Developmental Biology Programme, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Doctor Aiguader 88, Barcelona 08003, Spain; Universitat Pompeu Fabra (UPF), Barcelona 08003, Spain
| | - Julien Colombelli
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Carrer Baldiri Reixac 10, Barcelona 08028, Spain
| | - Jérôme Solon
- Cell and Developmental Biology Programme, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Doctor Aiguader 88, Barcelona 08003, Spain; Universitat Pompeu Fabra (UPF), Barcelona 08003, Spain.
| |
Collapse
|
9
|
Deshpande G, Manry D, Jourjine N, Mogila V, Mozes H, Bialistoky T, Gerlitz O, Schedl P. Role of the ABC transporter Mdr49 in Hedgehog signaling and germ cell migration. Development 2016; 143:2111-20. [PMID: 27122170 DOI: 10.1242/dev.133587] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 04/12/2016] [Indexed: 01/20/2023]
Abstract
Coalescence of the embryonic gonad in Drosophila melanogaster requires directed migration of primordial germ cells (PGCs) towards somatic gonadal precursor cells (SGPs). It was recently proposed that the ATP-binding cassette (ABC) transporter Mdr49 functions in the embryonic mesoderm to facilitate the transmission of the PGC attractant from the SGPs; however, the precise molecular identity of the Mdr49-dependent guidance signal remained elusive. Employing the loss- and gain-of-function strategies, we show that Mdr49 is a component of the Hedgehog (hh) pathway and it potentiates the signaling activity. This function is direct because in Mdr49 mutant embryos the Hh ligand is inappropriately sequestered in the hh-expressing cells. Our data also suggest that the role of Mdr49 is to provide cholesterol for the correct processing of the Hh precursor protein. Supporting this conclusion, PGC migration defects in Mdr49 embryos are substantially ameliorated by a cholesterol-rich diet.
Collapse
Affiliation(s)
- Girish Deshpande
- Department of Molecular Biology, Princeton University, Princeton, NJ 08540, USA
| | - Diane Manry
- Department of Molecular Biology, Princeton University, Princeton, NJ 08540, USA
| | - Nicholas Jourjine
- Department of Molecular Biology, Princeton University, Princeton, NJ 08540, USA
| | - Vladic Mogila
- Institute of Gene Biology, Russian Academy of Sciences, Moscow 119334, Russia
| | - Henny Mozes
- Department of Developmental Biology and Cancer Research, IMRIC, The Hebrew University, Jerusalem 91120, Israel
| | - Tzofia Bialistoky
- Department of Developmental Biology and Cancer Research, IMRIC, The Hebrew University, Jerusalem 91120, Israel
| | - Offer Gerlitz
- Department of Developmental Biology and Cancer Research, IMRIC, The Hebrew University, Jerusalem 91120, Israel
| | - Paul Schedl
- Department of Molecular Biology, Princeton University, Princeton, NJ 08540, USA Institute of Gene Biology, Russian Academy of Sciences, Moscow 119334, Russia
| |
Collapse
|
10
|
The elimination of an adult segment by the Hox gene Abdominal-B. Mech Dev 2015; 138 Pt 2:210-217. [DOI: 10.1016/j.mod.2015.08.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2015] [Revised: 07/31/2015] [Accepted: 08/01/2015] [Indexed: 11/19/2022]
|
11
|
Ambegaonkar AA, Irvine KD. Coordination of planar cell polarity pathways through Spiny-legs. eLife 2015; 4. [PMID: 26505959 PMCID: PMC4764577 DOI: 10.7554/elife.09946] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 10/23/2015] [Indexed: 12/11/2022] Open
Abstract
Morphogenesis and physiology of tissues and organs requires planar cell polarity (PCP) systems that orient and coordinate cells and their behaviors, but the relationship between PCP systems has been controversial. We have characterized how the Frizzled and Dachsous-Fat PCP systems are connected through the Spiny-legs isoform of the Prickle-Spiny-legs locus. Two different components of the Dachsous-Fat system, Dachsous and Dachs, can each independently interact with Spiny-legs and direct its localization in vivo. Through characterization of the contributions of Prickle, Spiny-legs, Dachsous, Fat, and Dachs to PCP in the Drosophila wing, eye, and abdomen, we define where Dachs-Spiny-legs and Dachsous-Spiny-legs interactions contribute to PCP, and provide a new understanding of the orientation of polarity and the basis of PCP phenotypes. Our results support the direct linkage of PCP systems through Sple in specific locales, while emphasizing that cells can be subject to and must ultimately resolve distinct, competing PCP signals. DOI:http://dx.doi.org/10.7554/eLife.09946.001 Animals have many asymmetric organs. Wings, for example, are aerodynamically shaped and have a clear front, back, top and bottom, and even additions to these organs, such as feathers on the wing, often need to be oriented in a specific manner. This kind of orientation arises when cells divide and grow asymmetrically in a flat plane. The asymmetry is established at the level of single cells when proteins are not equally spread throughout a cell, but rather asymmetrically distributed. Such cells are said to be ‘planar polarized’; and many experiments addressing this so-called planar cell polarity have been conducted in fruit flies, because they can be genetically altered easily. Previous studies have shown that two signaling pathways—called Frizzled and Dachsous-Fat—regulate how individual cells orient themselves within a flat sheet of cells that forms fruit fly’s wing. The two pathways are not independent, but it is unclear how they are linked. In particular, there has been conflicting evidence as to whether the Dachsous-Fat pathway controls the Frizzled pathway or whether the two act in parallel. Now, Ambegaonkar and Irvine have discovered new roles for a protein that is involved in both pathways, called 'Spiny-legs'. This protein was known to be important in the Frizzled pathway, but, when it was tracked with a fluorescent tag in developing wing cells it also accumulated in areas where two proteins that make up part of the Dachsous-Fat pathway were located. Biochemical experiments showed that both of these proteins (which are called Dachs or Dachsous) could physically interact with Spiny-legs. Ambegaonkar and Irvine therefore deleted the genes for Dachs or Dachsous in fruit flies and observed that Spiny-legs no longer organized itself in the proper way, implying that Dachs and Dachsous control where Spiny-legs goes within cells. When this analysis was extended to other fruit fly organs, such as the eyes, Ambegaonkar and Irvine found that Dachsous was more important than Dachs for the correct localization of Spiny-legs. Additionally, the Frizzled and Dachsous-Fat pathways seemed to compete for interactions with Spiny-legs. This connection between the two pathways helps to explain how cells behave when several different signals reach them. It also shows how different organs can reuse conserved components of the pathways to make different end products. Future studies should aim to work out the number of systems that polarize cells and how they are connected in different tissues. DOI:http://dx.doi.org/10.7554/eLife.09946.002
Collapse
Affiliation(s)
- Abhijit A Ambegaonkar
- Howard Hughes Medical Institute, Rutgers University, Piscataway, United States.,Waksman Institute of Microbiology, Rutgers University, Piscataway, United States.,Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, United States
| | - Kenneth D Irvine
- Howard Hughes Medical Institute, Rutgers University, Piscataway, United States.,Waksman Institute of Microbiology, Rutgers University, Piscataway, United States.,Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, United States
| |
Collapse
|
12
|
Verma P, Cohen SM. miR-965 controls cell proliferation and migration during tissue morphogenesis in the Drosophila abdomen. eLife 2015; 4. [PMID: 26226636 PMCID: PMC4538364 DOI: 10.7554/elife.07389] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 07/29/2015] [Indexed: 12/19/2022] Open
Abstract
Formation of the Drosophila adult abdomen involves a process of tissue replacement in which larval epidermal cells are replaced by adult cells. The progenitors of the adult epidermis are specified during embryogenesis and, unlike the imaginal discs that make up the thoracic and head segments, they remain quiescent during larval development. During pupal development, the abdominal histoblast cells proliferate and migrate to replace the larval epidermis. Here, we provide evidence that the microRNA, miR-965, acts via string and wingless to control histoblast proliferation and migration. Ecdysone signaling downregulates miR-965 at the onset of pupariation, linking activation of the histoblast nests to the hormonal control of metamorphosis. Replacement of the larval epidermis by adult epidermal progenitors involves regulation of both cell-intrinsic events and cell communication. By regulating both cell proliferation and cell migration, miR-965 contributes to the robustness of this morphogenetic system.
Collapse
Affiliation(s)
- Pushpa Verma
- Institute of Molecular and Cell Biology, Singapore, Singapore
| | - Stephen M Cohen
- Institute of Molecular and Cell Biology, Singapore, Singapore
| |
Collapse
|
13
|
Key patterning genes contribute to leg elongation in water striders. EvoDevo 2015; 6:14. [PMID: 25973169 PMCID: PMC4429320 DOI: 10.1186/s13227-015-0015-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 04/15/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND How adaptive phenotypes are shaped by the action of key developmental genes during ontogeny remains poorly understood. Water striders, a group of hemipteran insects, present a unique example of adaptation to life on the fluid water surface substrate. The group has undergone a set of leg modifications allowing them to efficiently move on the water surface and hence invade a variety of niches from ponds to open oceans. The elongated legs of water striders play a key role in generating efficient movement on the fluid by acting as propelling oars. RESULTS To determine the developmental mechanisms underlying leg elongation, we examined the function of the key developmental genes decapentaplegic (dpp), wingless (wg), epidermal growth factor receptor (egfr), and hedgehog (hh) during embryonic development in the water strider Limnoporus dissortis. By analyzing expression patterns and RNAi knockdown phenotypes, we uncover the role of these genes in leg growth and patterning during embryogenesis. Our results indicate that wg and egfr contribute to the elongation of all the three segments of all thoracic legs, whereas hh specifies distal leg segments. CONCLUSIONS Together, our results suggest that key patterning genes contribute to the dramatic elongation of thoracic appendages in water striders.
Collapse
|
14
|
Nijhout HF, Callier V. Developmental mechanisms of body size and wing-body scaling in insects. ANNUAL REVIEW OF ENTOMOLOGY 2015; 60:141-156. [PMID: 25341104 DOI: 10.1146/annurev-ento-010814-020841] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The developmental mechanisms that control body size and the relative sizes of body parts are today best understood in insects. Size is controlled by the mechanisms that cause growth to stop when a size characteristic of the species has been achieved. This requires the mechanisms to assess size and respond by stopping the process that controls growth. Growth is controlled by two hormones, insulin and ecdysone, that act synergistically by controlling cell growth and cell division. Ecdysone has two distinct functions: At low concentration it controls growth, and at high levels it causes molting and tissue differentiation. Growth is stopped by the pulse of ecdysone that initiates the metamorphic molt. Body size is sensed by either stretch receptors or oxygen restriction, depending on the species, which stimulate the high level of ecdysone secretion that induces a molt. Wing growth occurs mostly after the body has stopped growing. Wing size is adjusted to body size by variation in both the duration and level of ecdysone secretion.
Collapse
|
15
|
Seijo-Barandiarán I, Guerrero I, Bischoff M. In Vivo Imaging of Hedgehog Transport in Drosophila Epithelia. Methods Mol Biol 2015; 1322:9-18. [PMID: 26179035 DOI: 10.1007/978-1-4939-2772-2_2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The Hedgehog (Hh) signaling pathway is a regulator of patterning, cell migration and axon guidance during development as well as of homeostatic events in adult organs. It is highly conserved from Drosophila to humans. In many contexts during development, Hh appears to function as a morphogen; it spreads from producing cells to trigger concentration dependent responses in target cells, leading to their specification. During production, Hh undergoes two lipid modifications resulting in a highly hydrophobic molecule. The processes that create lipid-modified Hh for release from producing cells and that move it to target cells in a graded manner are complex. While most of the work done trying to explain Hh gradient formation is based on immunohistochemical studies in steady state, in vivo imaging in intact organisms is the finest technique to study gradient formation in real time. Both the wing imaginal disc epithelium and the adult abdominal epidermis of Drosophila are well suited for in vivo imaging. They allow us to observe the behavior of cells and fluorescently labeled proteins, without interfering with development. Here, we describe in vivo imaging methods for these two epithelia, which allowed us to study Hh transport along specialized cytoplasmic protrusions called cytonemes.
Collapse
Affiliation(s)
- Irene Seijo-Barandiarán
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Universidad Autónoma de Madrid, Nicolas Cabrera 1, Cantoblanco, Madrid, 28049, Spain
| | | | | |
Collapse
|
16
|
Exosomes as Hedgehog carriers in cytoneme-mediated transport and secretion. Nat Commun 2014; 5:5649. [DOI: 10.1038/ncomms6649] [Citation(s) in RCA: 139] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Accepted: 10/22/2014] [Indexed: 12/12/2022] Open
|
17
|
Raft S, Groves AK. Segregating neural and mechanosensory fates in the developing ear: patterning, signaling, and transcriptional control. Cell Tissue Res 2014; 359:315-32. [PMID: 24902666 DOI: 10.1007/s00441-014-1917-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2014] [Accepted: 05/08/2014] [Indexed: 12/21/2022]
Abstract
The vertebrate inner ear is composed of multiple sensory receptor epithelia, each of which is specialized for detection of sound, gravity, or angular acceleration. Each receptor epithelium contains mechanosensitive hair cells, which are connected to the brainstem by bipolar sensory neurons. Hair cells and their associated neurons are derived from the embryonic rudiment of the inner ear epithelium, but the precise spatial and temporal patterns of their generation, as well as the signals that coordinate these events, have only recently begun to be understood. Gene expression, lineage tracing, and mutant analyses suggest that both neurons and hair cells are generated from a common domain of neural and sensory competence in the embryonic inner ear rudiment. Members of the Shh, Wnt, and FGF families, together with retinoic acid signals, regulate transcription factor genes within the inner ear rudiment to establish the axial identity of the ear and regionalize neurogenic activity. Close-range signaling, such as that of the Notch pathway, specifies the fate of sensory regions and individual cell types. We also describe positive and negative interactions between basic helix-loop-helix and SoxB family transcription factors that specify either neuronal or sensory fates in a context-dependent manner. Finally, we review recent work on inner ear development in zebrafish, which demonstrates that the relative timing of neurogenesis and sensory epithelial formation is not phylogenetically constrained.
Collapse
Affiliation(s)
- Steven Raft
- Section on Sensory Cell Regeneration and Development, National Institute on Deafness and Other Communication Disorders National Institutes of Health, 35 Convent Drive, Bethesda, MD, 20892, USA,
| | | |
Collapse
|
18
|
Olofsson J, Axelrod JD. Methods for studying planar cell polarity. Methods 2014; 68:97-104. [PMID: 24680701 DOI: 10.1016/j.ymeth.2014.03.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2014] [Revised: 03/13/2014] [Accepted: 03/17/2014] [Indexed: 01/03/2023] Open
Abstract
Planar cell polarity (PCP) is the polarity of epithelial cells in the plane orthogonal to the apical-basal axis, and is controlled by a partially defined signaling system. PCP related signaling also plays roles in cell migration, tissue re-organization and stem cell differentiation during embryonic development, and later, in regeneration and repair. Aberrant signaling has been linked to a broad range of pathophysiologies including cancer, developmental defects, and neurological disorders. The deepest mechanistic insights have come from studies of PCP in Drosophila. In this chapter we review tools and methods to study PCP signaling in Drosophila epithelia, where it was found to involve asymmetric protein localization that is coordinated between adjacent cells. Such signaling has been most extensively studied in wing, eye, and abdomen, but also in other tissues such as leg and notum. In the adult fly, PCP is manifested in the coordinated direction of hairs and bristles, as well as the organization of ommatidia in the eye. The polarity of these structures is preceded by asymmetric localization of PCP signaling proteins at the apical junctions of epithelial cells. Based on genetic and molecular criteria, the proteins that govern PCP can be divided into distinct modules, including the core module, the Fat/Dachsous/Four-jointed (Fat/Ds/Fj) module (often referred to as the 'global' module) as well as tissue specific effector modules. Different tissues and tissue regions differ in their sensitivity to disturbances in the various modules of the PCP signaling system, leading to controversies about the interactions among the modules, and emphasizing the value of studying PCP in multiple contexts. Here, we review methods including those generally applicable, as well as some that are selectively useful for analyses of PCP in eye (including eye discs), wing (including wing discs), pupal and adult abdomen, and the cuticle of larvae and embryos.
Collapse
Affiliation(s)
- Jessica Olofsson
- Department of Pathology, Stanford University School of Medicine, 300 Pasteur Drive, L235, Stanford, CA 94305, USA
| | - Jeffrey D Axelrod
- Department of Pathology, Stanford University School of Medicine, 300 Pasteur Drive, L235, Stanford, CA 94305, USA.
| |
Collapse
|
19
|
Abstract
Planar cell polarity (PCP) in epithelia, orthogonal to the apical-basal axis, is essential for numerous developmental events and physiological functions. Drosophila model systems have been at the forefront of studies revealing insights into mechanisms regulating PCP and have revealed distinct signaling modules. One of these, involving the atypical cadherins Fat and Dachsous and the ectokinase Four-jointed, appears to link the direction of cell polarization to the tissue axes. We discuss models for the function of this signaling module as well as several unanswered questions that may guide future investigations.
Collapse
Affiliation(s)
- Maja Matis
- Department of Pathology, Stanford University School of Medicine, Stanford, California 94305, USA
| | | |
Collapse
|
20
|
Bischoff M, Gradilla AC, Seijo I, Andrés G, Rodríguez-Navas C, González-Méndez L, Guerrero I. Cytonemes are required for the establishment of a normal Hedgehog morphogen gradient in Drosophila epithelia. Nat Cell Biol 2013; 15:1269-81. [PMID: 24121526 PMCID: PMC3840581 DOI: 10.1038/ncb2856] [Citation(s) in RCA: 174] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2012] [Accepted: 08/29/2013] [Indexed: 12/13/2022]
Abstract
Hedgehog (Hh) signalling is important in development, stem cell biology and disease. In a variety of tissues, Hh acts as a morphogen to regulate growth and cell fate specification. Several hypotheses have been proposed to explain morphogen movement, one of which is transport along filopodia-like protrusions called cytonemes. Here, we analyse the mechanism underlying Hh movement in the wing disc and the abdominal epidermis of Drosophila melanogaster. We show that, in both epithelia, cells generate cytonemes in regions of Hh signalling. These protrusions are actin-based and span several cell diameters. Various Hh signalling components localize to cytonemes, as well as to punctate structures that move along cytonemes and are probably exovesicles. Using in vivo imaging, we show that cytonemes are dynamic structures and that Hh gradient establishment correlates with cytoneme formation in space and time. Indeed, mutant conditions that affect cytoneme formation reduce both cytoneme length and Hh gradient length. Our results suggest that cytoneme-mediated Hh transport is the mechanistic basis for Hh gradient formation.
Collapse
Affiliation(s)
- Marcus Bischoff
- Department of Zoology, University of Cambridge, Downing Street, Cambridge, CB2 3EJ, UK
| | - Ana-Citlali Gradilla
- Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Nicolas Cabrera 1, Universidad Autónoma de Madrid, Cantoblanco, E-28049 Madrid, Spain
| | - Irene Seijo
- Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Nicolas Cabrera 1, Universidad Autónoma de Madrid, Cantoblanco, E-28049 Madrid, Spain
| | - Germán Andrés
- Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Nicolas Cabrera 1, Universidad Autónoma de Madrid, Cantoblanco, E-28049 Madrid, Spain
| | - Carmen Rodríguez-Navas
- Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Nicolas Cabrera 1, Universidad Autónoma de Madrid, Cantoblanco, E-28049 Madrid, Spain
| | - Laura González-Méndez
- Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Nicolas Cabrera 1, Universidad Autónoma de Madrid, Cantoblanco, E-28049 Madrid, Spain
| | - Isabel Guerrero
- Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Nicolas Cabrera 1, Universidad Autónoma de Madrid, Cantoblanco, E-28049 Madrid, Spain
| |
Collapse
|
21
|
Lawrence PA, Casal J. The mechanisms of planar cell polarity, growth and the Hippo pathway: some known unknowns. Dev Biol 2013; 377:1-8. [PMID: 23592229 PMCID: PMC3677094 DOI: 10.1016/j.ydbio.2013.01.030] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Revised: 01/26/2013] [Accepted: 01/28/2013] [Indexed: 01/12/2023]
Abstract
Planar cell polarity (PCP) is a small but important area of research. In this review we discuss a limited number of topics within the PCP field, chosen because they are difficult, unsolved, controversial or just because we find them interesting. Because Drosophila is the best studied and technically most amenable system we have concentrated on it, but also consider some examples from work on vertebrates. Topics discussed include the number of genetic pathways involved in PCP, as well as the causal relationship between embryonic axes, gradients of morphogens and PCP itself. We consider the vexed question of the roles of the Wnt genes in PCP in both vertebrates and Drosophila. We discuss whether the proteins involved in PCP need to be localised asymmetrically in cells in order to function. We criticise the way the Hippo pathway is described in the literature and ask what its wildtype function is. We explore afresh how the Hippo pathway might be linked both to growth and to PCP through the gigantic cadherin molecule Fat. We offer some new ways of making sense of published results, particularly those relating to the Frizzled/Starry night and Dachsous/Fat systems of PCP.
Collapse
Affiliation(s)
- Peter A Lawrence
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3 EJ, United Kingdom.
| | | |
Collapse
|
22
|
Ortega-Hernández J, Brena C. Ancestral patterning of tergite formation in a centipede suggests derived mode of trunk segmentation in trilobites. PLoS One 2012; 7:e52623. [PMID: 23285116 PMCID: PMC3532300 DOI: 10.1371/journal.pone.0052623] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Accepted: 11/19/2012] [Indexed: 12/05/2022] Open
Abstract
Trilobites have a rich and abundant fossil record, but little is known about the intrinsic mechanisms that orchestrate their body organization. To date, there is disagreement regarding the correspondence, or lack thereof, of the segmental units that constitute the trilobite trunk and their associated exoskeletal elements. The phylogenetic position of trilobites within total-group Euarthropoda, however, allows inferences about the underlying organization in these extinct taxa to be made, as some of the fundamental genetic processes for constructing the trunk segments are remarkably conserved among living arthropods. One example is the expression of the segment polarity gene engrailed, which at embryonic and early postembryonic stages is expressed in extant panarthropods (i.e. tardigrades, onychophorans, euarthropods) as transverse stripes that define the posteriormost region of each trunk segment. Due to its conservative morphology and allegedly primitive trunk tagmosis, we have utilized the centipede Strigamia maritima to study the correspondence between the expression of engrailed during late embryonic to postembryonic stages, and the development of the dorsal exoskeletal plates (i.e. tergites). The results corroborate the close correlation between the formation of the tergite borders and the dorsal expression of engrailed, and suggest that this association represents a symplesiomorphy within Euarthropoda. This correspondence between the genetic and phenetic levels enables making accurate inferences about the dorsoventral expression domains of engrailed in the trunk of exceptionally preserved trilobites and their close relatives, and is suggestive of the widespread occurrence of a distinct type of genetic segmental mismatch in these extinct arthropods. The metameric organization of the digestive tract in trilobites provides further support to this new interpretation. The wider evolutionary implications of these findings suggest the presence of a derived morphogenetic patterning mechanism responsible for the reiterated occurrence of different types of trunk dorsoventral segmental mismatch in several phylogenetically distant, extinct and extant, arthropod groups.
Collapse
|
23
|
Yoder JH. Abdominal segment reduction: development and evolution of a deeply fixed trait. Fly (Austin) 2012; 6:240-5. [PMID: 23026836 DOI: 10.4161/fly.22109] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
When a new student first begins to push flies, an immediate skill that must be learned is sorting the sexes. In Drosophila melanogaster several sexually dimorphic characters can be used to readily distinguish males from females including abdominal pigmentation, male sex combs and genital morphology. Another, often-overlooked, sexual dimorphism is adult abdominal segment number. Externally, adult Drosophila males possess one fewer abdominal segment than females; the terminal pre-genital segment apparently either absent or fused with the next-most anterior segment. Beyond known roles for the homeotic protein Abdominal-B (Abd-B) and the sex-determining transcription factor Doublesex (Dsx) as key regulators of this trait, surprisingly little is known about either the morphogenetic processes or the downstream genetics responsible for patterning these events. We have explored both and found that rapid epithelial reorganization during pupation eliminates a nascent terminal male segment. We found this Abd-B-dependent process results from sex- and segment-specific regulation of diverse developmental targets including the wingless gene and surprisingly, dsx itself. ( 1) (,) ( 2) Here, I review our observations and discuss this trait as a model to explore both dynamics of epithelial morphogenesis as well as the evolution of developmental mechanisms.
Collapse
Affiliation(s)
- John H Yoder
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL, USA.
| |
Collapse
|
24
|
Cytoneme-mediated delivery of hedgehog regulates the expression of bone morphogenetic proteins to maintain germline stem cells in Drosophila. PLoS Biol 2012; 10:e1001298. [PMID: 22509132 PMCID: PMC3317903 DOI: 10.1371/journal.pbio.1001298] [Citation(s) in RCA: 137] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2011] [Accepted: 02/17/2012] [Indexed: 11/19/2022] Open
Abstract
Stem cells reside in specialised microenvironments, or niches, which often contain support cells that control stem cell maintenance and proliferation. Hedgehog (Hh) proteins mediate homeostasis in several adult niches, but a detailed understanding of Hh signalling in stem cell regulation is lacking. Studying the Drosophila female germline stem cell (GSC) niche, we show that Hh acts as a critical juxtacrine signal to maintain the normal GSC population of the ovary. Hh production in cap cells, a type of niche support cells, is regulated by the Engrailed transcription factor. Hh is then secreted to a second, adjacent population of niche cells, the escort cells, where it activates transcription of the GSC essential factors Decapentaplegic (Dpp) and Glass bottom boat (Gbb). In wild-type niches, Hh protein decorates short filopodia that originate in the support cap cells and that are functionally relevant, as they are required to transduce the Hh pathway in the escort cells and to maintain a normal population of GSCs. These filopodia, reminiscent of wing disc cytonemes, grow several fold in length if Hh signalling is impaired within the niche. Because these long cytonemes project directionally towards the signalling-deficient region, cap cells sense and react to the strength of Hh pathway transduction in the niche. Thus, the GSC niche responds to insufficient Hh signalling by increasing the range of Hh spreading. Although the signal(s) perceived by the cap cells and the receptor(s) involved are still unknown, our results emphasise the integration of signals necessary to maintain a functional niche and the plasticity of cellular niches to respond to challenging physiological conditions.
Collapse
|
25
|
Krzemien J, Fabre CCG, Casal J, Lawrence PA. The muscle pattern of the Drosophila abdomen depends on a subdivision of the anterior compartment of each segment. Development 2012; 139:75-83. [PMID: 22147953 DOI: 10.1242/dev.073692] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In the past, segments were defined by landmarks such as muscle attachments, notably by Snodgrass, the king of insect anatomists. Here, we show how an objective definition of a segment, based on developmental compartments, can help explain the dorsal abdomen of adult Drosophila. The anterior (A) compartment of each segment is subdivided into two domains of cells, each responding differently to Hedgehog. The anterior of these domains is non-neurogenic and clones lacking Notch develop normally; this domain can express stripe and form muscle attachments. The posterior domain is neurogenic and clones lacking Notch do not form cuticle; this domain is unable to express stripe or form muscle attachments. The posterior (P) compartment does not form muscle attachments. Our in vivo films indicate that early in the pupa the anterior domain of the A compartment expresses stripe in a narrowing zone that attracts the extending myotubes and resolves into the attachment sites for the dorsal abdominal muscles. We map the tendon cells precisely and show that all are confined to the anterior domain of A. It follows that the dorsal abdominal muscles are intersegmental, spanning from one anterior domain to the next. This view is tested and supported by clones that change cell identity or express stripe ectopically. It seems that growing myotubes originate in posterior A and extend forwards and backwards until they encounter and attach to anterior A cells. The dorsal adult muscles are polarised in the anteroposterior axis: we disprove the hypothesis that muscle orientation depends on genes that define planar cell polarity in the epidermis.
Collapse
Affiliation(s)
- Joanna Krzemien
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 2EJ, UK
| | | | | | | |
Collapse
|
26
|
Thomas C, Strutt D. The roles of the cadherins Fat and Dachsous in planar polarity specification in Drosophila. Dev Dyn 2011; 241:27-39. [PMID: 21919123 DOI: 10.1002/dvdy.22736] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/22/2011] [Indexed: 11/06/2022] Open
Abstract
Planar polarity is generated through the activity of two groups of proteins, the "core" system and the Fat (Ft)/Dachsous (Ds) system. Although both are conserved from insects to mammals, vertebrate studies into planar polarity have primarily focussed on core planar polarity proteins and have only recently branched into the study of the Ft/Ds system. In Drosophila, however, years of detailed analysis have started to elucidate some of the mechanisms by which Ft/Ds signalling might set up polarity across a tissue, and how this may impact upon core protein-mediated planar polarity. In this review, we discuss the major findings, models, and controversies that have emerged from Drosophila research into the Ft/Ds system, and indicate some areas for further investigation.
Collapse
Affiliation(s)
- Chloe Thomas
- MRC Centre for Developmental and Biomedical Genetics and Department of Biomedical Science, University of Sheffield, Sheffield, United Kingdom.
| | | |
Collapse
|
27
|
Sexually dimorphic regulation of the Wingless morphogen controls sex-specific segment number in Drosophila. Proc Natl Acad Sci U S A 2011; 108:11139-44. [PMID: 21690416 DOI: 10.1073/pnas.1108431108] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Sexual dimorphism is widespread throughout the metazoa and plays important roles in mate recognition and preference, sex-based niche partitioning, and sex-specific coadaptation. One notable example of sex-specific differences in insect body morphology is presented by the higher diptera, such as Drosophila, in which males develop fewer abdominal segments than females. Because diversity in segment number is a distinguishing feature of major arthropod clades, it is of fundamental interest to understand how different numbers of segments can be generated within the same species. Here we show that sex-specific and segment-specific regulation of the Wingless (Wg) morphogen underlies the development of sexually dimorphic adult segment number in Drosophila. Wg expression is repressed in the developing terminal male abdominal segment by the combination of the Hox protein Abdominal-B (Abd-B) and the sex-determination regulator Doublesex (Dsx). The subsequent loss of the terminal male abdominal segment during pupation occurs through a combination of developmental processes including segment compartmental transformation, apoptosis, and suppression of cell proliferation. Furthermore, we show that ectopic expression of Wg is sufficient to rescue this loss. We propose that dimorphic Wg regulation, in concert with monomorphic segment-specific programmed cell death, are the principal mechanisms of sculpting the sexually dimorphic abdomen of Drosophila.
Collapse
|
28
|
Repiso A, Saavedra P, Casal J, Lawrence PA. Planar cell polarity: the orientation of larval denticles in Drosophila appears to depend on gradients of Dachsous and Fat. Development 2010; 137:3411-5. [PMID: 20826534 DOI: 10.1242/dev.047126] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The larval ventral belts of Drosophila consist of six to seven rows of denticles that are oriented, some pointing forwards, some backwards. We present evidence that denticle orientation is determined almost entirely by Dachsous and Fat, one of two planar cell polarity systems. If we change the distribution of Dachsous we can alter the polarity of denticles. We suggest that the orientation of the individual denticle rows, in both the anterior compartment (which mostly point backwards) and the posterior compartment (which point forwards), is determined by the opposing slopes of a Dachsous/Fat gradient. We show, by altering the concentration gradients of Dachsous during development, that we can change the polarity of the denticles made by larval cells as they progress between the first and third larval instars without mitosis.
Collapse
Affiliation(s)
- Ada Repiso
- Department of Zoology, Downing Street, Cambridge, UK
| | | | | | | |
Collapse
|
29
|
Fabre CCG, Casal J, Lawrence PA. Mechanosensilla in the adult abdomen of Drosophila: engrailed and slit help to corral the peripheral sensory axons into segmental bundles. Development 2010; 137:2885-94. [PMID: 20667917 PMCID: PMC2938919 DOI: 10.1242/dev.044552] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/14/2010] [Indexed: 11/20/2022]
Abstract
The abdomen of adult Drosophila bears mechanosensory bristles with axons that connect directly to the CNS, each hemisegment contributing a separate nerve bundle. Here, we alter the amount of Engrailed protein and manipulate the Hedgehog signalling pathway in clones of cells to study their effects on nerve pathfinding within the peripheral nervous system. We find that high levels of Engrailed make the epidermal cells inhospitable to bristle neurons; sensory axons that are too near these cells are either deflected or fail to extend properly or at all. We then searched for the engrailed-dependent agent responsible for these repellent properties. We found slit to be expressed in the P compartment and, using genetic mosaics, present evidence that Slit is the responsible molecule. Blocking the activity of the three Robo genes (putative receptors for Slit) with RNAi supported this hypothesis. We conclude that, during normal development, gradients of Slit protein repel axons away from compartment boundaries - in consequence, the bristles from each segment send their nerves to the CNS in separated sets.
Collapse
MESH Headings
- Abdomen/physiology
- Adaptor Proteins, Signal Transducing/genetics
- Adaptor Proteins, Signal Transducing/physiology
- Animals
- Animals, Genetically Modified
- Axons/physiology
- Drosophila/genetics
- Drosophila/growth & development
- Drosophila/physiology
- Drosophila Proteins/genetics
- Drosophila Proteins/physiology
- Gene Expression Regulation, Developmental
- Genes, Insect
- Hedgehog Proteins/genetics
- Hedgehog Proteins/physiology
- Homeodomain Proteins/genetics
- Homeodomain Proteins/physiology
- Mechanoreceptors/physiology
- Models, Neurological
- Nerve Tissue Proteins/antagonists & inhibitors
- Nerve Tissue Proteins/genetics
- Nerve Tissue Proteins/physiology
- Neurogenesis/genetics
- Neurogenesis/physiology
- RNA Interference
- Receptors, Cell Surface/genetics
- Receptors, Cell Surface/physiology
- Receptors, G-Protein-Coupled/genetics
- Receptors, G-Protein-Coupled/physiology
- Receptors, Immunologic/antagonists & inhibitors
- Receptors, Immunologic/genetics
- Receptors, Immunologic/physiology
- Smoothened Receptor
- Transcription Factors/genetics
- Transcription Factors/physiology
- Roundabout Proteins
Collapse
|
30
|
Drosophila Rab23 is involved in the regulation of the number and planar polarization of the adult cuticular hairs. Genetics 2010; 184:1051-65. [PMID: 20124028 DOI: 10.1534/genetics.109.112060] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The planar coordination of cellular polarization is an important, yet not well-understood aspect of animal development. In a screen for genes regulating planar cell polarization in Drosophila, we identified Rab23, encoding a putative vesicular trafficking protein. Mutations in the Drosophila Rab23 ortholog result in abnormal trichome orientation and the formation of multiple hairs on the wing, leg, and abdomen. We show that Rab23 is required for hexagonal packing of the wing cells. We found that Rab23 is able to associate with the proximally accumulated Prickle protein, although Rab23 itself does not seem to display a polarized subcellular distribution in wing cells, and it appears to play a relatively subtle role in cortical polarization of the polarity proteins. The absence of Rab23 leads to increased actin accumulation in the subapical region of the pupal wing cells that fail to restrict prehair initiation to a single site. Rab23 acts as a dominant enhancer of the weak multiple hair phenotype exhibited by the core polarity mutations, whereas the Rab23 homozygous mutant phenotype is sensitive to the gene dose of the planar polarity effector genes. Together, our data suggest that Rab23 contributes to the mechanism that inhibits hair formation at positions outside of the distal vertex by activating the planar polarity effector system.
Collapse
|
31
|
Renault AD, Ricardo S, Kunwar PS, Santos A, Starz-Gaiano M, Stein J, Lehmann R. Hedgehog does not guide migrating Drosophila germ cells. Dev Biol 2009; 328:355-62. [PMID: 19389345 PMCID: PMC2693393 DOI: 10.1016/j.ydbio.2009.01.042] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2008] [Revised: 01/28/2009] [Accepted: 01/28/2009] [Indexed: 11/25/2022]
Abstract
In many species, the germ cells, precursors of sperm and egg, migrate during embryogenesis. The signals that regulate this migration are thus essential for fertility. In flies, lipid signals have been shown to affect germ cell guidance. In particular, the synthesis of geranylgeranyl pyrophosphate through the 3-hydroxy-3-methyl-glutaryl coenzyme A reductase (Hmgcr) pathway is critical for attracting germ cells to their target tissue. In a genetic analysis of signaling pathways known to affect cell migration of other migratory cells, we failed to find a role for the Hedgehog (Hh) pathway in germ cell migration. However, previous reports had implicated Hh as a germ cell attractant in flies and suggested that Hh signaling is enhanced through the action of the Hmgcr pathway. We therefore repeated several critical experiments and carried out further experiments to test specifically whether Hh is a germ cell attractant in flies. In contrast to previously reported findings and consistent with findings in zebrafish our data do not support the notion that Hh has a direct role in the guidance of migrating germ cells in flies.
Collapse
Affiliation(s)
- Andrew D. Renault
- HHMI and Kimmel Center for Biology and Medicine of the Skirball Institute, Department of Cell Biology, New York University School of Medicine, New York, NY, 10016
| | - Sara Ricardo
- HHMI and Kimmel Center for Biology and Medicine of the Skirball Institute, Department of Cell Biology, New York University School of Medicine, New York, NY, 10016
| | - Prabhat S. Kunwar
- HHMI and Kimmel Center for Biology and Medicine of the Skirball Institute, Department of Cell Biology, New York University School of Medicine, New York, NY, 10016
| | - Ana Santos
- HHMI and Kimmel Center for Biology and Medicine of the Skirball Institute, Department of Cell Biology, New York University School of Medicine, New York, NY, 10016
| | - Michelle Starz-Gaiano
- HHMI and Kimmel Center for Biology and Medicine of the Skirball Institute, Department of Cell Biology, New York University School of Medicine, New York, NY, 10016
| | - Jennifer Stein
- HHMI and Kimmel Center for Biology and Medicine of the Skirball Institute, Department of Cell Biology, New York University School of Medicine, New York, NY, 10016
| | - Ruth Lehmann
- HHMI and Kimmel Center for Biology and Medicine of the Skirball Institute, Department of Cell Biology, New York University School of Medicine, New York, NY, 10016
| |
Collapse
|
32
|
Matakatsu H, Blair SS. The DHHC palmitoyltransferase approximated regulates Fat signaling and Dachs localization and activity. Curr Biol 2008; 18:1390-5. [PMID: 18804377 DOI: 10.1016/j.cub.2008.07.067] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2008] [Revised: 07/18/2008] [Accepted: 07/21/2008] [Indexed: 01/15/2023]
Abstract
Signaling via the large protocadherin Fat (Ft), regulated in part by its binding partner Dachsous (Ds) and the Golgi-resident kinase Four-jointed (Fj), is required for a variety of developmental functions in Drosophila. Ft and, to a lesser extent, Ds suppress overgrowth of the imaginal discs from which appendages develop and regulate the Hippo pathway [1-5] (reviewed in [6]). Ft, Ds, and Fj are also required for normal planar cell polarity (PCP) in the wing, abdomen, and eye and for the normal patterning of appendages, including the spacing of crossveins in the wing and the segmentation of the leg tarsus (reviewed in [7-9]). Ft signaling was recently shown to be negatively regulated by the atypical myosin Dachs [10, 11]. We identify here an additional negative regulator of Ft signaling in growth control, PCP, and appendage patterning, the Approximated (App) protein. We show that App encodes a member of the DHHC family, responsible for the palmitoylation of selected cytoplasmic proteins, and provide evidence that App acts by controlling the normal subcellular localization and activity of Dachs.
Collapse
Affiliation(s)
- Hitoshi Matakatsu
- Department of Zoology, University of Wisconsin, 250 North Mills Street, Madison, Wisconsin 53706, USA
| | | |
Collapse
|
33
|
Minakuchi C, Zhou X, Riddiford LM. Krüppel homolog 1 (Kr-h1) mediates juvenile hormone action during metamorphosis of Drosophila melanogaster. Mech Dev 2007; 125:91-105. [PMID: 18036785 DOI: 10.1016/j.mod.2007.10.002] [Citation(s) in RCA: 185] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2007] [Revised: 10/02/2007] [Accepted: 10/03/2007] [Indexed: 12/21/2022]
Abstract
Juvenile hormone (JH) given at pupariation inhibits bristle formation and causes pupal cuticle formation in the abdomen of Drosophila melanogaster due to its prolongation of expression of the transcription factor Broad (BR). In a microarray analysis of JH-induced gene expression in abdominal integument, we found that Krüppel homolog 1 (Kr-h1) was up-regulated during most of adult development. Quantitative real-time PCR analyses showed that Kr-h1 up-regulation began at 10h after puparium formation (APF), and Kr-h1 up-regulation occurred in imaginal epidermal cells, persisting larval muscles, and larval oenocytes. Ectopic expression of Kr-h1 in abdominal epidermis using T155-Gal4 to drive UAS-Kr-h1 resulted in missing or short bristles in the dorsal midline. This phenotype was similar to that seen after a low dose of JH or after misexpression of br between 21 and 30 h APF. Ectopic expression of Kr-h1 prolonged the expression of BR protein in the pleura and the dorsal tergite. No Kr-h1 was seen after misexpression of br. Thus, Kr-h1 mediates some of the JH signaling in the adult abdominal epidermis and is upstream of br in this pathway. We also show for the first time that the JH-mediated maintenance of br expression in this epidermis is patterned and that JH delays the fusion of the imaginal cells and the disappearance of Dpp in the dorsal midline.
Collapse
Affiliation(s)
- Chieka Minakuchi
- Department of Biology, University of Washington, Seattle, WA 98195-1800, USA
| | | | | |
Collapse
|
34
|
Gibert JM, Peronnet F, Schlötterer C. Phenotypic plasticity in Drosophila pigmentation caused by temperature sensitivity of a chromatin regulator network. PLoS Genet 2007; 3:e30. [PMID: 17305433 PMCID: PMC1797818 DOI: 10.1371/journal.pgen.0030030] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2006] [Accepted: 01/02/2007] [Indexed: 11/18/2022] Open
Abstract
Phenotypic plasticity is the ability of a genotype to produce contrasting phenotypes in different environments. Although many examples have been described, the responsible mechanisms are poorly understood. In particular, it is not clear how phenotypic plasticity is related to buffering, the maintenance of a constant phenotype against genetic or environmental variation. We investigate here the genetic basis of a particularly well described plastic phenotype: the abdominal pigmentation in female Drosophila melanogaster. Cold temperature induces a dark pigmentation, in particular in posterior segments, while higher temperature has the opposite effect. We show that the homeotic gene Abdominal-B (Abd-B) has a major role in the plasticity of pigmentation in the abdomen. Abd-B plays opposite roles on melanin production through the regulation of several pigmentation enzymes. This makes the control of pigmentation very unstable in the posterior abdomen, and we show that the relative spatio-temporal expression of limiting pigmentation enzymes in this region of the body is thermosensitive. Temperature acts on melanin production by modulating a chromatin regulator network, interacting genetically with the transcription factor bric-à-brac (bab), a target of Abd-B and Hsp83, encoding the chaperone Hsp90. Genetic disruption of this chromatin regulator network increases the effect of temperature and the instability of the pigmentation pattern in the posterior abdomen. Colocalizations on polytene chromosomes suggest that BAB and these chromatin regulators cooperate in the regulation of many targets, including several pigmentation enzymes. We show that they are also involved in sex comb development in males and that genetic destabilization of this network is also strongly modulated by temperature for this phenotype. Thus, we propose that phenotypic plasticity of pigmentation is a side effect reflecting a global impact of temperature on epigenetic mechanisms. Furthermore, the thermosensitivity of this network may be related to the high evolvability of several secondary sexual characters in the genus Drosophila. The phenotype of an individual is not fully controlled by its genes. Environmental conditions (food, light, temperature, pathogens, etc.) can also contribute to phenotypic variation. This phenomenon is called phenotypic plasticity. We investigate here the genetic basis of the phenotypic plasticity of pigmentation in the fruit fly Drosophila melanogaster. Drosophila pigmentation is strongly modulated by temperature, in particular in the posterior abdominal segments of females. The development of these segments is controlled by the homeotic gene Abdominal-B (Abd-B). Abd-B sensitizes pigmentation patterning in this region of the body by repressing several crucial pigmentation enzymes. It makes the regulation of their spatio-temporal expression in the posterior abdomen particularly sensitive to temperature variation. We show that temperature modulates the mechanisms regulating the dynamic structure of the chromosomes. Chromosomal domains can be compacted and transcriptionally silent, or opened and transcriptionally active. Temperature interacts with a network of chromatin regulators and affects not only the regulation of pigmentation enzymes but several traits under the control of this network. Thus, we conclude that the phenotypic plasticity of female abdominal pigmentation in Drosophila is a visible consequence for a particularly sensitive phenotype, of a general effect of temperature on the regulation of chromosome architecture.
Collapse
Affiliation(s)
- Jean-Michel Gibert
- Institut für Tierzucht und Genetik, Veterinärmedizinische Universität Wien, Vienna, Austria.
| | | | | |
Collapse
|
35
|
Casal J, Lawrence PA, Struhl G. Two separate molecular systems, Dachsous/Fat and Starry night/Frizzled, act independently to confer planar cell polarity. Development 2006; 133:4561-72. [PMID: 17075008 PMCID: PMC2747022 DOI: 10.1242/dev.02641] [Citation(s) in RCA: 162] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Planar polarity is a fundamental property of epithelia in animals and plants. In Drosophila it depends on at least two sets of genes: one set, the Ds system, encodes the cadherins Dachsous (Ds) and Fat (Ft), as well as the Golgi protein Four-jointed. The other set, the Stan system, encodes Starry night (Stan or Flamingo) and Frizzled. The prevailing view is that the Ds system acts via the Stan system to orient cells. However, using the Drosophila abdomen, we find instead that the two systems operate independently: each confers and propagates polarity, and can do so in the absence of the other. We ask how the Ds system acts; we find that either Ds or Ft is required in cells that send information and we show that both Ds and Ft are required in the responding cells. We consider how polarity may be propagated by Ds-Ft heterodimers acting as bridges between cells.
Collapse
Affiliation(s)
- José Casal
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, UK
| | | | | |
Collapse
|
36
|
Joulia L, Bourbon HM, Cribbs DL. Homeotic proboscipedia function modulates hedgehog-mediated organizer activity to pattern adult Drosophila mouthparts. Dev Biol 2005; 278:496-510. [PMID: 15680366 DOI: 10.1016/j.ydbio.2004.11.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2004] [Revised: 10/25/2004] [Accepted: 11/03/2004] [Indexed: 11/24/2022]
Abstract
Drosophila proboscipedia (pb; HoxA2/B2 homolog) mutants develop distal legs in place of their adult labial mouthparts. Here we examine how pb homeotic function distinguishes the developmental programs of labium and leg. We find that the labial-to-leg transformation in pb mutants occurs progressively over a 2-day period in mid-development, as viewed with identity markers such as dachshund (dac). This transformation requires hedgehog activity, and involves a morphogenetic reorganization of the labial imaginal disc. Our results implicate pb function in modulating global axial organization. Pb protein acts in at least two ways. First, Pb cell autonomously regulates the expression of target genes such as dac. Second, Pb acts in opposition to the organizing action of hedgehog. This latter action is cell-autonomous, but has a nonautonomous effect on labial structure, via the negative regulation of wingless/dWnt and decapentaplegic/TGF-beta. This opposition of Pb to hedgehog target expression appears to occur at the level of the conserved transcription factor cubitus interruptus/Gli that mediates hedgehog signaling activity. These results extend selector function to primary steps of tissue patterning, and lead us to suggest the notion of a homeotic organizer.
Collapse
Affiliation(s)
- Laurent Joulia
- Centre de Biologie du Développement-CNRS, 118 route de Narbonne, 31062 Toulouse Cedex 04, France.
| | | | | |
Collapse
|
37
|
Lawrence PA, Casal J, Struhl G. Cell interactions and planar polarity in the abdominal epidermis ofDrosophila. Development 2004; 131:4651-64. [PMID: 15329345 DOI: 10.1242/dev.01351] [Citation(s) in RCA: 132] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The integument of the Drosophila adult abdomen bears oriented hairs and bristles that indicate the planar polarity of the epidermal cells. We study four polarity genes, frizzled (fz), prickle (pk), Van gogh/strabismus(Vang/stbm) and starry night/flamingo (stan/fmi),and note what happens when these genes are either removed or overexpressed in clones of cells. The edges of the clones are interfaces between cells that carry different amounts of gene products, interfaces that can cause reversals of planar polarity in the clone and wild-type cells outside them. To explain,we present a model that builds on our earlier picture of a gradient of X, the vector of which specifies planar polarity and depends on two cadherin proteins, Dachsous and Fat. We conjecture that the X gradient is read out,cell by cell, as a scalar value of Fz activity, and that Pk acts in this process, possibly to determine the sign of the Fz activity gradient.We discuss evidence that cells can compare their scalar readout of the level of X with that of their neighbours and can set their own readout towards an average of those. This averaging, when it occurs near the edges of clones,changes the scalar response of cells inside and outside the clones, leading to new vectors that change polarity. The results argue that Stan must be present in both cells being compared and acts as a conduit between them for the transfer of information. And also that Vang assists in the receipt of this information. The comparison between neighbours is crucial, because it gives the vector that orients hairs – these point towards the neighbour cell that has the lowest level of Fz activity.Recently, it has been shown that, for a limited period shortly before hair outgrowth in the wing, the four proteins we study, as well as others, become asymmetrically localised in the cell membrane, and this process is thought to be instrumental in the acquisition of cell polarity. However, some results do not fit with this view – we suggest that these localisations may be more a consequence than a cause of planar polarity.
Collapse
Affiliation(s)
- Peter A Lawrence
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, UK.
| | | | | |
Collapse
|
38
|
Casali A, Struhl G. Reading the Hedgehog morphogen gradient by measuring the ratio of bound to unbound Patched protein. Nature 2004; 431:76-80. [PMID: 15300262 DOI: 10.1038/nature02835] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2004] [Accepted: 07/09/2004] [Indexed: 02/06/2023]
Abstract
Morphogens are 'form-generating' substances that spread from localized sites of production and specify distinct cellular outcomes at different concentrations. A cell's perception of morphogen concentration is thought to be determined by the number of active receptors, with inactive receptors making little if any contribution. Patched (Ptc), the receptor for the morphogen Hedgehog (Hh), is active in the absence of ligand and blocks the expression of target genes by inhibiting Smoothened (Smo), an essential transducer of the Hh signal. Hh binding to Ptc abrogates the ability of Ptc to inhibit Smo, thereby unleashing Smo activity and inducing target gene expression. Here, we show that a cell's measure of ambient Hh concentration is not determined solely by the number of active (unliganded) Ptc molecules. Instead, we find that Hh-bound Ptc can titrate the inhibitory action of unbound Ptc. Furthermore, we demonstrate that this effect is sufficient to allow normal reading of the Hh gradient in the presence of a form of Ptc that cannot bind the ligand but retains its ability to inhibit Smo. These results support a model in which the ratio of bound to unbound Ptc molecules determines the cellular response to Hh.
Collapse
Affiliation(s)
- Andreu Casali
- Howard Hughes Medical Institute, Department of Genetics and Development, Columbia University, New York, New York 10032, USA
| | | |
Collapse
|
39
|
Abstract
The peripheral regions of the fly eye show a number of specializations. First, immediately interior to the circumscribing head capsule and completely encircling the rest of the eye lies a thick band of pigment cells (pigment rim; PR). Second, in the dorsal periphery of the eye directly interior to the PR lie the dorsal rim (DR) ommatidia that are specialized polarized light detectors. The equivalent position in the ventral eye is occupied by standard ommatidia. Third, ommatidia characteristically project mechanosensory hairs above their lenses, but in the most peripheral rows (including the DR) the ommatidia are bald. Wingless secreted from the head capsule appears to organize all these peripheral specializations. Higher Wg levels induce PR, intermediate levels induce DR, and lower levels induce baldness. The predisposition of dorsal cells to generate DR ommatidia appears to be endowed by the exclusive dorsal expression of Iroquois genes.
Collapse
Affiliation(s)
- Andrew Tomlinson
- Center for Neurobiology and Behavior, Department of Genetics and Development, College of Physicians and Surgeons, Columbia University, 701 West 168th Street, Room 1120, New York, NY 10032, USA.
| |
Collapse
|
40
|
Abstract
Cell signaling plays a key role in the development of all multicellular organisms. Numerous studies have established the importance of Hedgehog signaling in a wide variety of regulatory functions during the development of vertebrate and invertebrate organisms. Several reviews have discussed the signaling components in this pathway, their various interactions, and some of the general principles that govern Hedgehog signaling mechanisms. This review focuses on the developing systems themselves, providing a comprehensive survey of the role of Hedgehog signaling in each of these. We also discuss the increasing significance of Hedgehog signaling in the clinical setting.
Collapse
Affiliation(s)
- Andrew P McMahon
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts 02138, USA.
| | | | | |
Collapse
|
41
|
Hammond KL, Loynes HE, Folarin AA, Smith J, Whitfield TT. Hedgehog signalling is required for correct anteroposterior patterning of the zebrafish otic vesicle. Development 2003; 130:1403-17. [PMID: 12588855 DOI: 10.1242/dev.00360] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Currently, few factors have been identified that provide the inductive signals necessary to transform the simple otic placode into the complex asymmetric structure of the adult vertebrate inner ear. We provide evidence that Hedgehog signalling from ventral midline structures acts directly on the zebrafish otic vesicle to induce posterior otic identity. We demonstrate that two strong Hedgehog pathway mutants, chameleon (con(tf18b)) and slow muscle omitted (smu(b641)) exhibit a striking partial mirror image duplication of anterior otic structures, concomitant with a loss of posterior otic domains. These effects can be phenocopied by overexpression of patched1 mRNA to reduce Hedgehog signalling. Ectopic activation of the Hedgehog pathway, by injection of sonic hedgehog or dominant-negative protein kinase A RNA, has the reverse effect: ears lose anterior otic structures and show a mirror image duplication of posterior regions. By using double mutants and antisense morpholino analysis, we also show that both Sonic hedgehog and Tiggy-winkle hedgehog are involved in anteroposterior patterning of the zebrafish otic vesicle.
Collapse
Affiliation(s)
- Katherine L Hammond
- Centre for Developmental Genetics, University of Sheffield School of Medicine and Biomedical Science, Western Bank, Sheffield S10 2TN, UK
| | | | | | | | | |
Collapse
|
42
|
Wittkopp PJ, Williams BL, Selegue JE, Carroll SB. Drosophila pigmentation evolution: divergent genotypes underlying convergent phenotypes. Proc Natl Acad Sci U S A 2003; 100:1808-13. [PMID: 12574518 PMCID: PMC149915 DOI: 10.1073/pnas.0336368100] [Citation(s) in RCA: 149] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Similar phenotypic changes have evolved independently in many animal taxa. It is unknown whether independent changes involve the same or different developmental and genetic mechanisms. Myriad pigment patterns in the genus Drosophila offer numerous opportunities to address this question. Previous studies identified regulatory and structural genes involved in the development and diversification of pigmentation in selected species. Here, we examine Drosophila americana and Drosophila novamexicana, interfertile species that have evolved dramatic pigmentation differences during the few million years since their divergence. Interspecific genetic analysis was used to investigate the contribution of five specific candidate genes and other genomic regions to phenotypic divergence by testing for associations between molecular markers and pigmentation. At least four distinct genomic regions contributed to pigmentation differences, one of which included the ebony gene. Ebony protein was expressed at higher levels in the more yellow D. novamexicana than the heavily melanized D. americana. Because Ebony promotes yellow pigment formation and suppresses melanization, the expression difference and genetic association suggest that evolution at the ebony locus contributed to pigmentation divergence between D. americana and D. novamexicana. Surprisingly, no genetic association with the yellow locus was detected in this study, and Yellow expression was identical in the two species. Evolution at the yellow locus underlies pigmentation divergence among other Drosophila species; thus, similar pigment patterns have evolved through regulatory changes in different genes in different lineages. These findings bear upon understanding classic models of melanism and mimicry.
Collapse
Affiliation(s)
- Patricia J Wittkopp
- Howard Hughes Medical Institute and Laboratory of Molecular Biology, University of Wisconsin, 1525 Linden Drive, Madison, WI 53706, USA
| | | | | | | |
Collapse
|
43
|
Gorfinkiel N, Sánchez L, Guerrero I. Development of the Drosophila genital disc requires interactions between its segmental primordia. Development 2003; 130:295-305. [PMID: 12466197 DOI: 10.1242/dev.00214] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In both sexes, the Drosophila genital disc comprises three segmental primordia: the female genital primordium derived from segment A8, the male genital primordium derived from segment A9 and the anal primordium derived from segments A10-11. Each segmental primordium has an anterior (A) and a posterior (P) compartment, the P cells of the three segments being contiguous at the lateral edges of the disc. We show that Hedgehog (Hh) expressed in the P compartment differentially signals A cells at the AP compartment border and A cells at the segmental border. As in the wing imaginal disc, cell lineage restriction of the AP compartment border is defined by Hh signalling. There is also a lineage restriction barrier at the segmental borders, even though the P compartment cells of the three segments converge in the lateral areas of the disc. Lineage restriction between segments A9 and A10-11 depends on factors other than the Hh, En and Hox genes. The segmental borders, however, can be permeable to some morphogenetic signals. Furthermore, cell ablation experiments show that the presence of all primordia (either the anal or the genital primordium) during development are required for normal development of genital disc. Collectively, these findings suggest that interaction between segmental primordia is required for the normal development of the genital disc.
Collapse
Affiliation(s)
- Nicole Gorfinkiel
- Centro de Biologia Molecular Severo Ochoa, C.S.I.C., Universidad Autonoma de Madrid, Cantoblanco, E-28049 Madrid, Spain
| | | | | |
Collapse
|
44
|
Von Dassow G, Odell GM. Design and constraints of the Drosophila segment polarity module: robust spatial patterning emerges from intertwined cell state switches. THE JOURNAL OF EXPERIMENTAL ZOOLOGY 2002; 294:179-215. [PMID: 12362429 DOI: 10.1002/jez.10144] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The Drosophila segment polarity genes constitute the last tier in the segmentation cascade; their job is to maintain the boundaries between parasegments and provide positional "read-outs" within each parasegment for the entire developmental history of the animal. These genes constitute a relatively well-defined network with a relatively well-understood patterning task. In a previous publication (von Dassow et al. 2000. Nature 406:188-192) we showed that a computer model predicts the segment polarity network to be a robust boundary-making device. Here we elaborate those findings. First, we explore the constraints among parameters that govern the network model. Second, we test architectural variants of the core network, and show that the network tolerates a wide variety of adjustments in design. Third, we evaluate several topologically identical models that incorporate more or less molecular detail, finding that more-complex models perform noticeably better than simplified ones. Fourth, we discuss two instances in which the failure of the network model to behave in a life-like fashion highlights mechanistic details that need further experimental investigation. We conclude with an explanation of how the segment polarity network can be understood as an interwoven conspiracy of simple dynamical elements, several bistable switches and a homeostat. The robustness with which the network as a whole maintains a spatial regime of stable cell state emerges from generic dynamical properties of these simple elements.
Collapse
Affiliation(s)
- George Von Dassow
- Department of Zoology, University of Washington, Seattle, Washington 98105, USA.
| | | |
Collapse
|
45
|
Galis F, van Dooren TJM, Metz JAJ. Conservation of the segmented germband stage: robustness or pleiotropy? Trends Genet 2002; 18:504-9. [PMID: 12350339 DOI: 10.1016/s0168-9525(02)02739-7] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Gene expression patterns of the segment polarity genes in the extended and segmented germband stage are remarkably conserved among insects. To explain the conservation of these stages, two hypotheses have been proposed. One hypothesis states that the conservation reflects a high interactivity between modules, so that mutations would have several pleiotropic effects in other parts of the body, resulting in stabilizing selection against mutational variation. The other hypothesis states that the conservation is caused by robustness of the segment polarity network against mutational changes. When evaluating the empirical evidence for these hypotheses, we found strong support for pleiotropy and little evidence supporting robustness of the segment polarity network. This points to a key role for stabilizing selection in the conservation of these stages. Finally, we discuss the implications for robustness of organizers and long-term conservation in general.
Collapse
Affiliation(s)
- Frietson Galis
- Institute of Evolutionary and Ecological Sciences, Leiden University, PO Box 9516, 2300RA Leiden University, The Netherlands.
| | | | | |
Collapse
|
46
|
Abstract
BACKGROUND Changes in developmental gene expression are central to phenotypic evolution, but the genetic mechanisms underlying these changes are not well understood. Interspecific differences in gene expression can arise from evolutionary changes in cis-regulatory DNA and/or in the expression of trans-acting regulatory proteins, but few case studies have distinguished between these mechanisms. Here, we compare the regulation of the yellow gene, which is required for melanization, among distantly related Drosophila species with different pigment patterns and determine the phenotypic effects of divergent Yellow expression. RESULTS Yellow expression has diverged among D. melanogaster, D. subobscura, and D. virilis and, in all cases, correlates with the distribution of black melanin. Species-specific Yellow expression patterns were retained in D. melanogaster transformants carrying the D. subobscura and D. virilis yellow genes, indicating that sequence evolution within the yellow gene underlies the divergence of Yellow expression. Evolutionary changes in the activity of orthologous cis-regulatory elements are responsible for differences in abdominal Yellow expression; however, cis-regulatory element evolution is not the sole cause of divergent Yellow expression patterns. Transformation of the D. melanogaster yellow gene into D. virilis altered its expression pattern, indicating that trans-acting factors that regulate the D. melanogaster yellow gene have also diverged between these two species. Finally, we found that the phenotypic effects of evolutionary changes in Yellow expression depend on epistatic interactions with other genes. CONCLUSIONS Evolutionary changes in Yellow expression correlate with divergent melanin patterns and are a result of evolution in both cis- and trans-regulation. These changes were likely necessary for the divergence of pigmentation, but evolutionary changes in other genes were also required.
Collapse
Affiliation(s)
- Patricia J Wittkopp
- Howard Hughes Medical Institute, Laboratory of Molecular Biology, University of Wisconsin, Madison, WI 53706, USA
| | | | | |
Collapse
|
47
|
Inaki M, Kojima T, Ueda R, Saigo K. Requirements of high levels of Hedgehog signaling activity for medial-region cell fate determination in Drosophila legs: identification of pxb, a putative Hedgehog signaling attenuator gene repressed along the anterior-posterior compartment boundary. Mech Dev 2002; 116:3-18. [PMID: 12128201 DOI: 10.1016/s0925-4773(02)00119-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We show that high levels of Hedgehog signaling activity are essential for medial-region patterning in Drosophila legs. In mid-to-late third instar leg discs, high levels of Hedgehog signals repress the transcription of pxb, a newly identified gene encoding a transmembrane protein expressed specifically in the anterior compartment. Misexpression experiments indicate that Pxb may serve as a Hedgehog signaling attenuator capable of acting prior to Hedgehog-Patched interactions, suggesting that Hedgehog signaling in leg discs includes a pxb-repression-mediated positive feedback loop. RNA interference and clonal analysis show that neither Wingless nor Decapentaplegic signaling is required for pxb repression but high levels of Wingless signaling activity are essential for patterning in the leg ventral medial region.
Collapse
Affiliation(s)
- Mikiko Inaki
- Department of Biophysics and Biochemistry, Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Japan
| | | | | | | |
Collapse
|
48
|
Abstract
BACKGROUND Planar polarity refers to the asymmetry of a cell within the plane of the epithelium; for example, cells may form hairs that point in a posterior direction, or cilia may beat in one way. This property implies that cells have information about their orientation; we wish to understand the nature of this information. Relevant also is the body plan of insects, which, in the ectoderm and somatic mesoderm, consists of a chain of alternating anterior and posterior compartments - basic units of development with independent cell lineage and subject to independent genetic control. RESULTS Using the abdomen of adult Drosophila, we have taken genes required for normal polarity and either removed the gene or constitutively expressed it in small clones of cells and observed the effects on polarity. Hitherto, all such studies of polarity genes have not found any difference of behavior between the different compartments. We report here that the three genes, four-jointed, dachsous, and fat, cause opposite effects in anterior and posterior compartments. For example, in anterior compartments, clones ectopically expressing four-jointed reverse the polarity of cells in front of the clone, while, in posterior compartments, they reverse behind the clone. These three genes have been reported by others to be functionally linked. CONCLUSIONS This discovery impacts on models of how cells read polarity. At the heart of one class of models is the hypothesis that cell polarity is determined by the vector of a morphogen gradient. Here, we present evidence that cell polarity in the abdomen depends on at least two protein gradients (Fj and Ds), each of which is reflected at compartment borders. Consequently, these gradients have opposing slopes in the two compartments. Because all polarized structures made by abdominal cells point posteriorly, we surmise that cells in each compartment are programmed to interpret these protein gradients with opposite signs, pointing up the gradient in one compartment and down the gradient in the other.
Collapse
Affiliation(s)
- José Casal
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, United Kingdom
| | | | | |
Collapse
|
49
|
Lawrence PA, Casal J, Struhl G. Towards a model of the organisation of planar polarity and pattern in theDrosophilaabdomen. Development 2002; 129:2749-60. [PMID: 12015301 DOI: 10.1242/dev.129.11.2749] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The abdomen of adult Drosophila consists of a chain of alternating anterior (A) and posterior (P) compartments which are themselves subdivided into stripes of different types of cuticle. Most of the cuticle is decorated with hairs and bristles that point posteriorly, indicating the planar polarity of the cells. Here we research the link between pattern and polarity.Previously we showed that the pattern of the A compartment depends on the local concentration (the scalar) of a Hedgehog morphogen produced by cells in the P compartment. Here we present evidence that the P compartment is patterned by another morphogen, Wingless, which is induced by Hedgehog in A compartment cells and then spreads back into the P compartment. We also find that both Hedgehog and Wingless appear to specify pattern by activating the optomotor blind gene, which encodes a transcription factor.We re-examine our working model that planar polarity is determined by the cells reading the gradient in concentration (the vector) of a morphogen ‘X’ which is produced on receipt of Hedgehog. We present evidence that Hedgehog induces X production by driving optomotor blind expression. We tried but failed to identify X and present data that X is not likely to operate through the conventional Notch, Decapentaplegic, EGF or FGF transduction pathways, or to encode a Wnt. However, we argue that Wingless may act to enhance the production or organise the distribution of X. A simple model that accommodates our results is that X forms a monotonic gradient extending from the back of the A compartment to the front of the P compartment in the next segment, a unit constituting a parasegment.
Collapse
Affiliation(s)
- Peter A Lawrence
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, UK.
| | | | | |
Collapse
|
50
|
Micchelli CA, The I, Selva E, Mogila V, Perrimon N. rasp, a putative transmembrane acyltransferase, is required for Hedgehog signaling. Development 2002; 129:843-51. [PMID: 11861468 DOI: 10.1242/dev.129.4.843] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Members of the Hedgehog (Hh) family encode secreted molecules that act as potent organizers during vertebrate and invertebrate development. Post-translational modification regulates both the range and efficacy of Hh protein. One such modification is the acylation of the N-terminal cysteine of Hh. In a screen for zygotic lethal mutations associated with maternal effects, we have identified rasp, a novel Drosophila segment polarity gene. Analysis of the rasp mutant phenotype, in both the embryo and wing imaginal disc demonstrates that rasp does not disrupt Wnt/Wingless signaling but is specifically required for Hh signaling. The requirement of rasp is restricted only to those cells that produce Hh; hh transcription, protein levels and distribution are not affected by the loss of rasp. Molecular analysis reveals that rasp encodes a multipass transmembrane protein that has homology to a family of membrane bound O-acyl transferases. Our results suggest that Rasp-dependent acylation is necessary to generate a fully active Hh protein.
Collapse
Affiliation(s)
- Craig A Micchelli
- Department of Genetics, Harvard Medical School, 200 Longwood Avenue, Boston, MA 02115, USA.
| | | | | | | | | |
Collapse
|