1
|
Jiang H, Xie L, Gu Z, Mei H, Wang H, Zhang J, Wang M, Xu Y, Zhou C, Han L. MtPIN4 plays critical roles in amino acid biosynthesis and metabolism of seed in Medicago truncatula. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 119:689-704. [PMID: 38701004 DOI: 10.1111/tpj.16787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 03/20/2024] [Accepted: 04/08/2024] [Indexed: 05/05/2024]
Abstract
The regulation of seed development is critical for determining crop yield. Auxins are vital phytohormones that play roles in various aspects of plant growth and development. However, its role in amino acid biosynthesis and metabolism in seeds is not fully understood. In this study, we identified a mutant with small seeds through forward genetic screening in Medicago truncatula. The mutated gene encodes MtPIN4, an ortholog of PIN1. Using molecular approaches and integrative omics analyses, we discovered that auxin and amino acid content significantly decreased in mtpin4 seeds, highlighting the role of MtPIN4-mediated auxin distribution in amino acid biosynthesis and metabolism. Furthermore, genetic analysis revealed that the three orthologs of PIN1 have specific and overlapping functions in various developmental processes in M. truncatula. Our findings emphasize the significance of MtPIN4 in seed development and offer insights into the molecular mechanisms governing the regulation of seed size in crops. This knowledge could be applied to enhance crop quality by targeted manipulation of seed protein regulatory pathways.
Collapse
Affiliation(s)
- Hongjiao Jiang
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, 266237, P.R. China
| | - Lijun Xie
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, 266237, P.R. China
| | - Zhiqun Gu
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, 266237, P.R. China
| | - Hongyao Mei
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, 266237, P.R. China
| | - Haohao Wang
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, 266237, P.R. China
| | - Jing Zhang
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, 266237, P.R. China
| | - Minmin Wang
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, 266237, P.R. China
| | - Yiteng Xu
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, 266237, P.R. China
| | - Chuanen Zhou
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, 266237, P.R. China
| | - Lu Han
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, 266237, P.R. China
| |
Collapse
|
2
|
Zhu Q, Lu YC, Xiong JL, Yang YH, Yang JL, Yang SC, Zhang GH, Sha BC, He SM. Development of a stable genetic transformation system in Erigeron breviscapus: a case study with EbYUC2 in relation to leaf number and flowering time. PLANTA 2024; 259:98. [PMID: 38522041 DOI: 10.1007/s00425-024-04351-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 01/26/2024] [Indexed: 03/25/2024]
Abstract
MAIN CONCLUSION A stable genetic transformation system for Erigeron breviscapus was developed. We cloned the EbYUC2 gene and genetically transformed it into Arabidopsis thaliana and E. breviscapus. The leaf number, YUC2 gene expression, and the endogenous auxin content in transgenic plants were significantly increased. Erigeron breviscapus is a prescription drug for the clinical treatment of cardiovascular and cerebrovascular diseases. The rosette leaves have the highest content of the major active compound scutellarin and are an important component in the yield of E. breviscapus. However, little is known about the genes related to the leaf number and flowering time of E. breviscapus. In our previous study, we identified three candidate genes related to the leaf number and flowering of E. breviscapus by combining resequencing data and genome-wide association study (GWAS). However, their specific functions remain to be characterized. In this study, we cloned and transformed the previously identified full-length EbYUC2 gene into Arabidopsis thaliana, developed the first stable genetic transformation system for E. breviscapus, and obtained the transgenic plants overexpressing EbYUC2. Compared with wild-type plants, the transgenic plants showed a significant increase in the number of leaves, which was correlated with the increased expression of EbYUC2. Consistently, the endogenous auxin content, particularly indole-3-acetic acid, in transgenic plants was also significantly increased. These results suggest that EbYUC2 may control the leaf number by regulating auxin biosynthesis, thereby laying a foundation for revealing the molecular mechanism governing the leaf number and flowering time of E. breviscapus.
Collapse
Affiliation(s)
- Qin Zhu
- National-Local Joint Engineering Research Center On Gemplasm Innovation & Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming, 650201, China
- The Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, 650201, China
| | - Ying-Chun Lu
- National-Local Joint Engineering Research Center On Gemplasm Innovation & Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming, 650201, China
- The Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, 650201, China
| | - Jing-Lei Xiong
- National-Local Joint Engineering Research Center On Gemplasm Innovation & Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming, 650201, China
- The Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, 650201, China
| | - Yun-Hui Yang
- National-Local Joint Engineering Research Center On Gemplasm Innovation & Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming, 650201, China
- The Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, 650201, China
| | - Jian-Li Yang
- Key Laboratory of Vegetable Biology of Yunnan Province, College of Landscape and Horticulture, Yunnan Agricultural University, Kunming, 650201, China
| | - Sheng-Chao Yang
- National-Local Joint Engineering Research Center On Gemplasm Innovation & Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming, 650201, China
- The Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, 650201, China
| | - Guang-Hui Zhang
- National-Local Joint Engineering Research Center On Gemplasm Innovation & Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming, 650201, China
- The Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, 650201, China
| | - Ben-Cai Sha
- National-Local Joint Engineering Research Center On Gemplasm Innovation & Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming, 650201, China.
- The Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, 650201, China.
| | - Si-Mei He
- National-Local Joint Engineering Research Center On Gemplasm Innovation & Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming, 650201, China.
- The Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, 650201, China.
| |
Collapse
|
3
|
Smet W, Blilou I. A blast from the past: Understanding stem cell specification in plant roots using laser ablation. QUANTITATIVE PLANT BIOLOGY 2023; 4:e14. [PMID: 38034417 PMCID: PMC10685261 DOI: 10.1017/qpb.2023.13] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 09/15/2023] [Accepted: 10/10/2023] [Indexed: 12/02/2023]
Abstract
In the Arabidopsis root, growth is sustained by the meristem. Signalling from organiser cells, also termed the quiescent centre (QC), is essential for the maintenance and replenishment of the stem cells. Here, we highlight three publications from the founder of the concept of the stem cell niche in Arabidopsis and a pioneer in unravelling regulatory modules governing stem cell specification and maintenance, as well as tissue patterning in the root meristem: Ben Scheres. His research has tremendously impacted the plant field. We have selected three publications from the Scheres legacy, which can be considered a breakthrough in the field of plant developmental biology. van den Berg et al. (1995) and van den Berg et al. (1997) uncovered that positional information-directed patterning. Sabatini et al. (1999), discovered that auxin maxima determine tissue patterning and polarity. We describe how simple but elegant experimental designs have provided the foundation of our current understanding of the functioning of the root meristem.
Collapse
Affiliation(s)
- Wouter Smet
- Biological and Environmental Science and Engineering (BESE) Division, Plant Cell and Developmental Biology, King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
| | - Ikram Blilou
- Biological and Environmental Science and Engineering (BESE) Division, Plant Cell and Developmental Biology, King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
| |
Collapse
|
4
|
Zheng WY, Zhu ZY, Sami A, Sun MY, Li Y, Hu J, Qian XZ, Ma JX, Wang MQ, Yu Y, Zhang FG, Zhou KJ, Zhu ZH. Mapping and candidate gene analysis of clustered bud on the main inflorescence in Brassica napus L. BMC PLANT BIOLOGY 2023; 23:348. [PMID: 37403046 PMCID: PMC10318724 DOI: 10.1186/s12870-023-04355-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 06/20/2023] [Indexed: 07/06/2023]
Abstract
Breeding rapeseed varieties with more main inflorescence siliques is an idea for developing rapeseed varieties that are suitable for light and simplified cultivation. The Brassica napus exhibited cluster bud of the main inflorescence (Bnclib) gene. At the fruiting stage, the main inflorescence had more siliques, higher density, and more main inflorescences. Moreover, the top of the main inflorescence bifurcated. Genetic analysis showed that the separation ratio between Bnclib and the wild type in the F2 generation was 3:1, which indicated that the trait was a single-gene-dominant inheritance. Among the 24 candidate genes, only one gene, BnaA03g53930D, showed differential expression between the groups (False discovery rate, FDR ≤ 0.05, |log2FC|≤ 1). qPCR verification of the BnaA03g53930D gene between Huyou 17 and its Bnclib near-isogenic line showed that BnaA03g53930D was significantly differentially expressed in the stem tissue of Huyou 17 and its Bnclib near-isogenic line (Bnclib NIL). The determination of gibberellin (GA), brassinolide (BR), cytokinin (CTK), jasmonic acid (JA), growth hormone (IAA), and strigolactone (SL) content in the shoot apex of Huyou 17 by Bnclib NIL and wild type showed that all six hormones significantly differed between the Bnclib NIL and Huyou 17. It is necessary to conduct further research on the interactions between JA and the other five hormones and the main inflorescence bud clustering in B. napus.
Collapse
Affiliation(s)
- Wen Yin Zheng
- College of Agronomy, Anhui Agricultural University, Hefei, China
| | - Zhe Yi Zhu
- College of Agronomy, Anhui Agricultural University, Hefei, China
| | - Abdul Sami
- National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Meng Yuan Sun
- College of Agronomy, Anhui Agricultural University, Hefei, China
| | - Yong Li
- College of Agronomy, Anhui Agricultural University, Hefei, China
| | - Jian Hu
- College of Agronomy, Anhui Agricultural University, Hefei, China
| | - Xing Zhi Qian
- College of Agronomy, Anhui Agricultural University, Hefei, China
| | - Jin Xu Ma
- College of Agronomy, Anhui Agricultural University, Hefei, China
| | - Mei Qi Wang
- College of Agronomy, Anhui Agricultural University, Hefei, China
| | - Yan Yu
- College of Agronomy, Anhui Agricultural University, Hefei, China
| | - Fu Gui Zhang
- College of Agronomy, Anhui Agricultural University, Hefei, China
| | - Ke Jin Zhou
- College of Agronomy, Anhui Agricultural University, Hefei, China
| | - Zong He Zhu
- College of Agronomy, Anhui Agricultural University, Hefei, China.
| |
Collapse
|
5
|
Screening on the Presence of Plant Growth Regulators in High Biomass Forming Seaweeds from the Ionian Sea (Mediterranean Sea). SUSTAINABILITY 2022. [DOI: 10.3390/su14073914] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The use of seaweed as plant biostimulants is a solution for sustainable agriculture. The present study aims to quantify and compare the presence of plant growth regulators (PGRs) in four genetically labeled macroalgae growing in the Ionian Sea. Species were selected because they produce abundant biomass, disturbing ecological equilibrium and anthropic activities. We measured the content of gibberellic acid (GA3), kinetin (KN), indoleacetic acid (IAA), abscisic acid (ABA) and indole butyric acid (IBA). The method applied was modified from the literature to obtain simultaneously different PGRs from seaweed biomass in a shorter period of time. Among results, it is notable that Hypnea corona Huisman et Petrocelli (Rhodophyta) showed higher GA3 concentration, while in Spyridia filamentosa (Wulfen) Harvey (Rhodophyta), higher KN, IBA, IAA and ABA contents were recorded. The latter species displayed an interesting profile of PGRs, with an IAA value comparable with that reported in Ascophyllum nodosum (Linnaeus) Le Jolis (Ochrophyta), which is currently used as a source of plant biostimulants in agriculture. Macroalgae thrive abundantly in nutrient-rich environments, such as anthropized coastal areas affecting human economic activities. Consequently, environmental agencies are forced to dredge algal thalli and discard them as waste. Any use of unwanted biomass as an economic product is highly desirable in the perspective of ecosustainable development.
Collapse
|
6
|
Bogaert KA, Blomme J, Beeckman T, De Clerck O. Auxin's origin: do PILS hold the key? TRENDS IN PLANT SCIENCE 2022; 27:227-236. [PMID: 34716098 DOI: 10.1016/j.tplants.2021.09.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 08/23/2021] [Accepted: 09/28/2021] [Indexed: 05/12/2023]
Abstract
Auxin is a key regulator of many developmental processes in land plants and plays a strikingly similar role in the phylogenetically distant brown seaweeds. Emerging evidence shows that the PIN and PIN-like (PILS) auxin transporter families have preceded the evolution of the canonical auxin response pathway. A wide conservation of PILS-mediated auxin transport, together with reports of auxin function in unicellular algae, would suggest that auxin function preceded the advent of multicellularity. We find that PIN and PILS transporters form two eukaryotic subfamilies within a larger bacterial family. We argue that future functional characterisation of algal PIN and PILS transporters can shed light on a common origin of an auxin function followed by independent co-option in a multicellular context.
Collapse
Affiliation(s)
- Kenny Arthur Bogaert
- Department of Biology, Ghent University, Krijgslaan 281 S8, B-9000 Ghent, Belgium.
| | - Jonas Blomme
- Department of Biology, Ghent University, Krijgslaan 281 S8, B-9000 Ghent, Belgium; Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium; Center for Plant Systems Biology, VIB-UGent, Technologiepark 72, B-9052 Ghent, Belgium
| | - Tom Beeckman
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium; Center for Plant Systems Biology, VIB-UGent, Technologiepark 72, B-9052 Ghent, Belgium
| | - Olivier De Clerck
- Department of Biology, Ghent University, Krijgslaan 281 S8, B-9000 Ghent, Belgium
| |
Collapse
|
7
|
Lanassa Bassukas AE, Xiao Y, Schwechheimer C. Phosphorylation control of PIN auxin transporters. CURRENT OPINION IN PLANT BIOLOGY 2022; 65:102146. [PMID: 34974229 DOI: 10.1016/j.pbi.2021.102146] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 10/22/2021] [Accepted: 10/23/2021] [Indexed: 06/14/2023]
Abstract
The directional transport of the phytohormone auxin is required for proper plant development and tropic growth. Auxin cell-to-cell transport gains directionality through the polar distribution of 'canonical' long PIN-FORMED (PIN) auxin efflux carriers. In recent years, AGC kinases, MAP kinases, Ca2+/CALMODULIN-DEPENDENT PROTEIN KINASE-RELATED KINASEs and receptor kinases have been implicated in the control of PIN activity, polarity and trafficking. In this review, we summarize the current knowledge in understanding the posttranslational regulation of PINs by these different protein kinase families. The proposed regulation of PINs by AGC kinases after salt stress and by the stress-activated MAP kinases suggest that abiotic and biotic stress factors may modulate auxin transport and thereby plant growth.
Collapse
Affiliation(s)
- Alkistis E Lanassa Bassukas
- Plant Systems Biology, School of Life Sciences, Technical University of Munich, Emil-Ramann-Strasse 8, 85354, Freising, Germany
| | - Yao Xiao
- Plant Systems Biology, School of Life Sciences, Technical University of Munich, Emil-Ramann-Strasse 8, 85354, Freising, Germany
| | - Claus Schwechheimer
- Plant Systems Biology, School of Life Sciences, Technical University of Munich, Emil-Ramann-Strasse 8, 85354, Freising, Germany.
| |
Collapse
|
8
|
Dziurka K, Dziurka M, Muszyńska E, Czyczyło-Mysza I, Warchoł M, Juzoń K, Laskoś K, Skrzypek E. Anatomical and hormonal factors determining the development of haploid and zygotic embryos of oat (Avena sativa L.). Sci Rep 2022; 12:548. [PMID: 35017602 PMCID: PMC8752813 DOI: 10.1038/s41598-021-04522-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 12/23/2021] [Indexed: 11/24/2022] Open
Abstract
A critical step in the production of doubled haploids is a conversion of the haploid embryos into plants. Our study aimed to recognize the reasons for the low germination rate of Avena sativa haploid embryos obtained by distant crossing with maize. Oat cultivars of 'Krezus' and 'Akt' were investigated regarding embryo anatomy, the endogenous phytohormone profiles, and antioxidant capacity. The zygotic embryos of oat were used as a reference. It was found that twenty-one days old haploid embryos were smaller and had a less advanced structure than zygotic ones. Morphology and anatomy modifications of haploid embryos were accompanied by extremely low levels of endogenous auxins. Higher levels of cytokinins, as well as tenfold higher cytokinin to auxin ratio in haploid than in zygotic embryos, may suggest an earlier stage of development of these former. Individual gibberellins reached higher values in 'Akt' haploid embryos than in the respective zygotic ones, while the differences in both types of 'Krezus' embryos were not noticed. Additionally to the hormonal regulation of haploid embryogenesis, the poor germination of oat haploid embryos can be a result of the overproduction of reactive oxygen species, and therefore higher levels of low molecular weight antioxidants and stress hormones.
Collapse
Affiliation(s)
- Kinga Dziurka
- Department of Biotechnology, The Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, Niezapominajek 21, 30-239, Kraków, Poland.
| | - Michał Dziurka
- Department of Developmental Biology, The Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, Niezapominajek 21, 30-239, Kraków, Poland
| | - Ewa Muszyńska
- Department of Botany, Institute of Biology, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, Building 37, 02-776, Warsaw, Poland
| | - Ilona Czyczyło-Mysza
- Department of Biotechnology, The Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, Niezapominajek 21, 30-239, Kraków, Poland
| | - Marzena Warchoł
- Department of Biotechnology, The Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, Niezapominajek 21, 30-239, Kraków, Poland
| | - Katarzyna Juzoń
- Department of Biotechnology, The Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, Niezapominajek 21, 30-239, Kraków, Poland
| | - Kamila Laskoś
- Department of Biotechnology, The Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, Niezapominajek 21, 30-239, Kraków, Poland
| | - Edyta Skrzypek
- Department of Biotechnology, The Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, Niezapominajek 21, 30-239, Kraków, Poland
| |
Collapse
|
9
|
Embryogenesis of European Radish ( Raphanus sativus L. subsp. sativus Convar. Radicula) in Culture of Isolated Microspores In Vitro. PLANTS 2021; 10:plants10102117. [PMID: 34685926 PMCID: PMC8539539 DOI: 10.3390/plants10102117] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/30/2021] [Accepted: 10/01/2021] [Indexed: 11/17/2022]
Abstract
The European radish is one of the most unresponsive crops in the Brassicaceae family to embryogenesis in in vitro microspore culture. The aim of this work was to study the process of embryogenesis of European radish and its biological features. In this study, the embryogenesis of European radish is described in detail with illustrative data for the first time. For the first time for the entire family Brassicaceae, the following were found: microspores with intact exines with ordered-like divisions; microspores completely free of exines; and a new scheme of suspensors attachment to the apical parts of embryoids. The morphology of double and triple twin embryoids was described, and new patterns of their attachment to each other were discovered. Uneven maturation of European radish embryoids at all stages of embryogenesis was noted. The period of embryoid maturation to the globular stage of development corresponded, in terms of time, to the culture of B. napus, and into the cotyledonary stage of development, maturation was faster and amounted to 17-23 days. The rate of embryoid development with and without suspensors was the same.
Collapse
|
10
|
Mineykina A, Bondareva L, Soldatenko A, Domblides E. Androgenesis of Red Cabbage in Isolated Microspore Culture In Vitro. PLANTS 2021; 10:plants10091950. [PMID: 34579482 PMCID: PMC8467632 DOI: 10.3390/plants10091950] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/14/2021] [Accepted: 09/15/2021] [Indexed: 11/16/2022]
Abstract
Red cabbage belongs to the economically important group of vegetable crops of the Brassicaceae family. A unique feature of this vegetable crop that distinguishes it from other members of the family is its unique biochemical composition characterized by high anthocyanin content, which gives it antioxidant properties. The production mainly uses F1 hybrids, which require constant parental lines, requiring 6–7 generations of inbreeding. Culture of isolated microspores in vitro is currently one of the promising methods for the accelerated production of pure lines with 100% homozygosity. The aim of this study is to investigate the factors and select optimal parameters for successful induction of red cabbage embryogenesis in isolated microspore culture in vitro and subsequent regeneration of DH plants. As a result of research, for the first time, it was possible to carry out the full cycle of obtaining DH plants of red cabbage from the induction of embryogenesis to their inclusion in the breeding process. The size of buds containing predominantly microspores at the late vacuolated stage and pollen at the early bi-cellular stage has to be selected individually for each genotype, because the embryoid yield will be determined by the interaction of these two factors. In the six samples studied, the maximum embryoid yield was obtained from buds 4.1–4.4 mm and 4.5–5.0 mm long, depending on the genotype. Cultivation of microspores was carried out on liquid NLN culture medium with 13% sucrose. The maximum number of embryoids (173.5 ± 7.5 pcs./Petri dish) was obtained on culture medium with pH 5.8 and heat shock at 32 °C for 48 h. Successful embryoid development and plant regeneration by direct germination from shoot apical meristem were achieved on MS culture medium with 2% sucrose and 0.7% agar, supplemented with 6-benzylaminopurine at a concentration of 1 mg/L. Analysis of the obtained regenerated plants, which successfully passed the stage of adaptation to ex vitro conditions by flow cytometry, showed that most of them were doubled haploids (up to 90.9%). A low number of seeds produced by self-fertilization in DH plants was observed.
Collapse
Affiliation(s)
- Anna Mineykina
- Correspondence: (A.M.); (E.D.); Tel.: +7-495-599-2442 (A.M.)
| | | | | | - Elena Domblides
- Correspondence: (A.M.); (E.D.); Tel.: +7-495-599-2442 (A.M.)
| |
Collapse
|
11
|
Lavania D, Linh NM, Scarpella E. Of Cells, Strands, and Networks: Auxin and the Patterned Formation of the Vascular System. Cold Spring Harb Perspect Biol 2021; 13:cshperspect.a039958. [PMID: 33431582 DOI: 10.1101/cshperspect.a039958] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Throughout plant development, vascular cells continually form from within a population of seemingly equivalent cells. Vascular cells connect end to end to form continuous strands, and vascular strands connect at both or either end to form networks of exquisite complexity and mesmerizing beauty. Here we argue that experimental evidence gained over the past few decades implicates the plant hormone auxin-its production, transport, perception, and response-in all the steps that lead to the patterned formation of the plant vascular system, from the formation of vascular cells to their connection into vascular networks. We emphasize the organizing principles of the cell- and tissue-patterning process, rather than its molecular subtleties. In the picture that emerges, cells compete for an auxin-dependent, cell-polarizing signal; positive feedback between cell polarization and cell-to-cell movement of the polarizing signal leads to gradual selection of cell files; and selected cell files differentiate into vascular strands that drain the polarizing signal from the neighboring cells. Although the logic of the patterning process has become increasingly clear, the molecular details remain blurry; the future challenge will be to bring them into razor-sharp focus.
Collapse
Affiliation(s)
- Dhruv Lavania
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| | - Nguyen Manh Linh
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| | - Enrico Scarpella
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| |
Collapse
|
12
|
Pérez-Pastrana J, Testillano PS, Barany I, Canto-Flick A, Álvarez-López D, Pijeira-Fernández G, Avilés-Viñas SA, Peña-Yam L, Muñoz-Ramírez L, Nahuat-Dzib S, Islas-Flores I, Santana-Buzzy N. Endogenous auxin accumulation/localization during zygotic and somatic embryogenesis of Capsicum chinense Jacq. JOURNAL OF PLANT PHYSIOLOGY 2021; 258-259:153333. [PMID: 33581559 DOI: 10.1016/j.jplph.2020.153333] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 11/20/2020] [Accepted: 11/21/2020] [Indexed: 06/12/2023]
Abstract
Zygotic and somatic embryogenesis in plants is a fascinating event that is finely regulated through the expression of a specific group of genes and dynamic levels of plant hormones whose concerted action determines the fate that specific cells follow towards zygotic or somatic embryo development. This work studied different stages of Capsicum chinense Jacq. zygotic and somatic embryogenesis. HPLC quantification determined that the levels of indole-3-acetic acid (IAA) increase as the zygotic or somatic embryogenesis progresses, being higher at maturity, thus supporting a positive correlation between embryo cell differentiation and IAA increase. A monoclonal anti-IAA-antibody was used to detect IAA levels. Findings revealed a dynamic pattern of auxin distribution along the different embryogenic embryonic stages. In the early stages of zygotic embryos, the IAA gradient was observed in the basal cells of the suspensor and the hypostases, suggesting that they are the initial source of the IAA hormone. As embryogenesis proceeds, the dynamic of the IAA gradient is displaced to the embryo and endosperm cells. In the case of induced somatic embryogenesis, the IAA gradient was detected in the dividing cells of the endodermis, from where pre-embryogenic cells emerge. However, the analysis of somatic embryos revealed that IAA was homogeneously distributed. This study shows evidence supporting a correlation between IAA levels during zygotic or somatic embryogenesis in Capsicum chinense species.
Collapse
Affiliation(s)
- Jacobo Pérez-Pastrana
- Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán, A.C., Calle 43 No. 130 x 32 y 34, Colonia Chuburná de Hidalgo, C.P. 97205, Mérida, Yucatán, Mexico
| | - Pilar S Testillano
- Pollen biotechnology of crop plants group, Centro de Investigaciones Biológicas-CSIC, Ramiro Maeztu 9, 28040, Madrid, Spain
| | - Ivett Barany
- Pollen biotechnology of crop plants group, Centro de Investigaciones Biológicas-CSIC, Ramiro Maeztu 9, 28040, Madrid, Spain
| | - Adriana Canto-Flick
- Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán, A.C., Calle 43 No. 130 x 32 y 34, Colonia Chuburná de Hidalgo, C.P. 97205, Mérida, Yucatán, Mexico
| | - Dulce Álvarez-López
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, A.C. Calle 43 No. 130 x 32 y 34, colonia Chuburná de Hidalgo, C.P. 97200, Mérida, Yucatán, Mexico
| | - Gema Pijeira-Fernández
- Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán, A.C., Calle 43 No. 130 x 32 y 34, Colonia Chuburná de Hidalgo, C.P. 97205, Mérida, Yucatán, Mexico
| | - Susana A Avilés-Viñas
- Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán, A.C., Calle 43 No. 130 x 32 y 34, Colonia Chuburná de Hidalgo, C.P. 97205, Mérida, Yucatán, Mexico
| | - Laura Peña-Yam
- Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán, A.C., Calle 43 No. 130 x 32 y 34, Colonia Chuburná de Hidalgo, C.P. 97205, Mérida, Yucatán, Mexico
| | - Liliana Muñoz-Ramírez
- Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán, A.C., Calle 43 No. 130 x 32 y 34, Colonia Chuburná de Hidalgo, C.P. 97205, Mérida, Yucatán, Mexico
| | - Sara Nahuat-Dzib
- Laboratorio de Biotecnología, Departamento Ingeniería Química-Bioquímica, TecNM/ Instituto Tecnológico de Mérida, Mexico
| | - Ignacio Islas-Flores
- Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán, A.C., Calle 43 No. 130 x 32 y 34, Colonia Chuburná de Hidalgo, C.P. 97205, Mérida, Yucatán, Mexico.
| | - Nancy Santana-Buzzy
- Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán, A.C., Calle 43 No. 130 x 32 y 34, Colonia Chuburná de Hidalgo, C.P. 97205, Mérida, Yucatán, Mexico.
| |
Collapse
|
13
|
Scarpella E. The logic of plant vascular patterning. Polarity, continuity and plasticity in the formation of the veins and of their networks. Curr Opin Genet Dev 2017; 45:34-43. [DOI: 10.1016/j.gde.2017.02.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 02/10/2017] [Accepted: 02/13/2017] [Indexed: 10/20/2022]
|
14
|
Ribosomal protein L18aB is required for both male gametophyte function and embryo development in Arabidopsis. Sci Rep 2016; 6:31195. [PMID: 27502163 PMCID: PMC4977502 DOI: 10.1038/srep31195] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 07/14/2016] [Indexed: 01/01/2023] Open
Abstract
Ribosomal proteins are involved in numerous essential cell activities in plants. However, the regulatory role in specific plant developmental processes has not yet been fully elucidated. Here we identified the new ribosomal protein L18aB, which is specifically involved in sexual reproduction and plays a critical role in male gametophyte development and embryo pattern formation. In rpl18aB mutant plants, the mature pollen grains can germinate normally, but their competitiveness for growing in the style is significantly reduced. More interestingly, RPL18aB is required in early embryogenesis. rpl18aB embryos displayed irregular cell division orientations in the early pro-embryo and arrested at the globular stage with possible, secondary pattern formation defects. Further investigations revealed that the polar transportation of auxin is disturbed in the rpl18aB mutant embryos, which may explain the observed failure in embryo pattern formation. The cell type-specific complementation of RPL18aB in rpl18aB was not able to recover the phenotype, indicating that RPL18aB may play an essential role in early cell fate determination. This work unravels a novel role in embryo development for a ribosomal protein, and provides insight into regulatory mechanism of early embryogenesis.
Collapse
|
15
|
Abstract
Auxin is arguably the most important signaling molecule in plants, and the last few decades have seen remarkable breakthroughs in understanding its production, transport, and perception. Recent investigations have focused on transcriptional responses to auxin, providing novel insight into the functions of the domains of key transcription regulators in responses to the hormonal cue and prominently implicating chromatin regulation in these responses. In addition, studies are beginning to identify direct targets of the auxin-responsive transcription factors that underlie auxin modulation of development. Mechanisms to tune the response to different auxin levels are emerging, as are first insights into how this single hormone can trigger diverse responses. Key unanswered questions center on the mechanism for auxin-directed transcriptional repression and the identity of additional determinants of auxin response specificity. Much of what has been learned in model plants holds true in other species, including the earliest land plants.
Collapse
Affiliation(s)
- Dolf Weijers
- Laboratory of Biochemistry, Wageningen University, 6703 HA Wageningen, The Netherlands;
| | - Doris Wagner
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104;
| |
Collapse
|
16
|
Xu TT, Ren SC, Song XF, Liu CM. CLE19 expressed in the embryo regulates both cotyledon establishment and endosperm development in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:5217-27. [PMID: 26071532 PMCID: PMC4526921 DOI: 10.1093/jxb/erv293] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Embryo and endosperm development are two well co-ordinated developmental processes in seed formation; however, signals involved in embryo and endosperm interactions remain poorly understood. It has been shown before that CLAVATA3/ESR-RELATED 19 (CLE19) peptide is able to trigger root meristem consumption in a CLV2-dependent manner. In this study, the role of CLE19 in Arabidopsis seed development was explored using antagonistic peptide technology. CLE19 is expressed in the epidermal layers of the cotyledon primordia, hypocotyl, and root cap in the embryo. Transgenic plants carrying an antagonistic CLE19 G6T construct expressed under the control of CLE19 regulatory elements exhibited a dominant seed abortion phenotype, with defective cotyledon establishment in embryos and delayed nuclear proliferation and cellularization in endosperms. Ectopic expression of CLE19 G6T in Arabidopsis under the control of an endosperm-specific ALE1 promoter led to a similar defect in cotyledon establishment in embryos but without an evident effect on endosperm development. We therefore propose that CLE19 may act as a mobile peptide co-ordinating embryo and endosperm development.
Collapse
Affiliation(s)
- Ting-Ting Xu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Nanxincun 20, Fragrant Hill, Beijing 100093, China University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shi-Chao Ren
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Nanxincun 20, Fragrant Hill, Beijing 100093, China University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiu-Fen Song
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Nanxincun 20, Fragrant Hill, Beijing 100093, China
| | - Chun-Ming Liu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Nanxincun 20, Fragrant Hill, Beijing 100093, China
| |
Collapse
|
17
|
Rodríguez-Sanz H, Solís MT, López MF, Gómez-Cadenas A, Risueño MC, Testillano PS. Auxin Biosynthesis, Accumulation, Action and Transport are Involved in Stress-Induced Microspore Embryogenesis Initiation and Progression in Brassica napus. PLANT & CELL PHYSIOLOGY 2015; 56:1401-17. [PMID: 25907568 DOI: 10.1093/pcp/pcv058] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 04/07/2015] [Indexed: 05/17/2023]
Abstract
Isolated microspores are reprogrammed in vitro by stress, becoming totipotent cells and producing embryos and plants via a process known as microspore embryogenesis. Despite the abundance of data on auxin involvement in plant development and embryogenesis, no data are available regarding the dynamics of auxin concentration, cellular localization and the expression of biosynthesis genes during microspore embryogenesis. This work involved the analysis of auxin concentration and cellular accumulation; expression of TAA1 and NIT2 encoding enzymes of two auxin biosynthetic pathways; expression of the PIN1-like efflux carrier; and the effects of inhibition of auxin transport and action by N-1-naphthylphthalamic acid (NPA) and α-(p-chlorophenoxy) isobutyric acid (PCIB) during Brassica napus microspore embryogenesis. The results indicated de novo auxin synthesis after stress-induced microspore reprogramming and embryogenesis initiation, accompanying the first cell divisions. The progressive increase of auxin concentration during progression of embryogenesis correlated with the expression patterns of TAA1 and NIT2 genes of auxin biosynthetic pathways. Auxin was evenly distributed in early embryos, whereas in heart/torpedo embryos auxin was accumulated in apical and basal embryo regions. Auxin efflux carrier PIN1-like gene expression was induced in early multicellular embryos and increased at the globular/torpedo embryo stages. Inhibition of polar auxin transport (PAT) and action, by NPA and PCIB, impaired embryo development, indicating that PAT and auxin action are required for microspore embryo progression. NPA also modified auxin embryo accumulation patterns. These findings indicate that endogenous auxin biosynthesis, action and polar transport are required in stress-induced microspore reprogramming, embryogenesis initiation and progression.
Collapse
Affiliation(s)
- Héctor Rodríguez-Sanz
- Pollen Biotechnology of Crop Plants group, Centro de Investigaciones Biológicas (CIB) CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - María-Teresa Solís
- Pollen Biotechnology of Crop Plants group, Centro de Investigaciones Biológicas (CIB) CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - María-Fernanda López
- Departamento de Ciencias Agrarias y del Medio Natural, Universidad Jaume I, Campus Riu Sec, 12071, Castellón, Spain
| | - Aurelio Gómez-Cadenas
- Departamento de Ciencias Agrarias y del Medio Natural, Universidad Jaume I, Campus Riu Sec, 12071, Castellón, Spain
| | - María C Risueño
- Pollen Biotechnology of Crop Plants group, Centro de Investigaciones Biológicas (CIB) CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Pilar S Testillano
- Pollen Biotechnology of Crop Plants group, Centro de Investigaciones Biológicas (CIB) CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain
| |
Collapse
|
18
|
|
19
|
Żur I, Dubas E, Krzewska M, Waligórski P, Dziurka M, Janowiak F. Hormonal requirements for effective induction of microspore embryogenesis in triticale (× Triticosecale Wittm.) anther cultures. PLANT CELL REPORTS 2015; 34:47-62. [PMID: 25261160 PMCID: PMC4282712 DOI: 10.1007/s00299-014-1686-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 08/11/2014] [Accepted: 09/15/2014] [Indexed: 05/18/2023]
Abstract
KEY MESSAGE Effective microspore embryogenesis in triticale is determined by a specific hormonal homeostasis: low value of IAA/cytokinins, IAA/ABA and cytokinins/ABA ratios as well as proper endogenous/exogenous auxin balance, which favours androgenic structure formation and green plant regeneration ability. The concentration of plant growth regulators (PGRs): auxins (Auxs), cytokinins (CKs) and abscisic acid (ABA) was measured in anthers of eight DH lines of triticale (× Triticosecale Wittm.), and associated with microspore embryogenesis (ME) responsiveness. The analysis was conducted on anthers excised from control tillers at the phase optimal for ME induction and then after ME-initiating tillers treatment (21 days at 4 °C). In control, IAA predominated among Auxs (11-39 nmol g(-1) DW), with IBA constituting only 1 % of total Auxs content. The prevailing isoforms of CKs were cis isomers of zeatin (121-424 pmol g(-1) DW) and zeatin ryboside (cZR, 146-432 pmol g(-1) DW). Surprisingly, a relatively high level (10-64 pmol g(-1) DW) of kinetin (KIN) was detected. Cold treatment significantly changed the levels of all analysed PGRs. The anthers of 'responsive' DH lines contained higher concentrations of IBA, cis and trans zeatin, cZR and ABA, and lower amount of IAA and KIN in comparison with 'recalcitrant' genotypes. However, the effects of exogenous ABA, p-chlorophenoxyisobutyric acid (PCIB) and 2,3,5-triiodobenzoic acid treatments suggest that none of the studied PGRs acts alone in the acquisition of embryogenic competency, which seems to be an effect of concerted PGRs crosstalk. The initiation of ME required a certain threshold level of ABA. A crucial prerequisite for high ME effectiveness was a specific PGRs homeostasis: lower Auxs level in comparison with CKs and ABA, and lower CKs/ABA ratio. A proper balance between endogenous Auxs in anthers and exogenous Auxs supplied by culture media was also essential.
Collapse
Affiliation(s)
- Iwona Żur
- The Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, Niezapominajek 21, 30-239 Kraków, Poland
| | - Ewa Dubas
- The Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, Niezapominajek 21, 30-239 Kraków, Poland
| | - Monika Krzewska
- The Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, Niezapominajek 21, 30-239 Kraków, Poland
| | - Piotr Waligórski
- The Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, Niezapominajek 21, 30-239 Kraków, Poland
| | - Michał Dziurka
- The Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, Niezapominajek 21, 30-239 Kraków, Poland
| | - Franciszek Janowiak
- The Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, Niezapominajek 21, 30-239 Kraków, Poland
| |
Collapse
|
20
|
Stanko V, Giuliani C, Retzer K, Djamei A, Wahl V, Wurzinger B, Wilson C, Heberle-Bors E, Teige M, Kragler F. Timing is everything: highly specific and transient expression of a MAP kinase determines auxin-induced leaf venation patterns in Arabidopsis. MOLECULAR PLANT 2014; 7:1637-1652. [PMID: 25064848 PMCID: PMC4228985 DOI: 10.1093/mp/ssu080] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Accepted: 07/04/2014] [Indexed: 05/18/2023]
Abstract
Mitogen-activated protein kinase (MAPK) cascades are universal signal transduction modules present in all eukaryotes. In plants, MAPK cascades were shown to regulate cell division, developmental processes, stress responses, and hormone pathways. The subgroup A of Arabidopsis MAPKs consists of AtMPK3, AtMPK6, and AtMPK10. AtMPK3 and AtMPK6 are activated by their upstream MAP kinase kinases (MKKs) AtMKK4 and AtMKK5 in response to biotic and abiotic stress. In addition, they were identified as key regulators of stomatal development and patterning. AtMPK10 has long been considered as a pseudo-gene, derived from a gene duplication of AtMPK6. Here we show that AtMPK10 is expressed highly but very transiently in seedlings and at sites of local auxin maxima leaves. MPK10 encodes a functional kinase and interacts with the upstream MAP kinase kinase (MAPKK) AtMKK2. mpk10 mutants are delayed in flowering in long-day conditions and in continuous light. Moreover, cotyledons of mpk10 and mkk2 mutants have reduced vein complexity, which can be reversed by inhibiting polar auxin transport (PAT). Auxin does not affect AtMPK10 expression while treatment with the PAT inhibitor HFCA extends the expression in leaves and reverses the mpk10 mutant phenotype. These results suggest that the AtMKK2-AtMPK10 MAPK module regulates venation complexity by altering PAT efficiency.
Collapse
Affiliation(s)
- Vera Stanko
- Department of Plant Molecular Biology, Max. F. Perutz Laboratories, University of Vienna, Dr. Bohrgasse 9/4, Vienna, A-1030, Austria; Present address: Felix-Klein-Gymnasium, Böttingerstraße 17, D-37073 Göttingen, Germany
| | - Concetta Giuliani
- Department of Plant Molecular Biology, Max. F. Perutz Laboratories, University of Vienna, Dr. Bohrgasse 9/4, Vienna, A-1030, Austria; Present address: Austrian Centre of Industrial Biotechnology, Muthgasse 11, A-1190 Vienna, Austria
| | - Katarzyna Retzer
- Department of Plant Molecular Biology, Max. F. Perutz Laboratories, University of Vienna, Dr. Bohrgasse 9/4, Vienna, A-1030, Austria; Present address: Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Muthgasse 18, A-1190 Vienna, Austria
| | - Armin Djamei
- Department of Plant Molecular Biology, Max. F. Perutz Laboratories, University of Vienna, Dr. Bohrgasse 9/4, Vienna, A-1030, Austria; Present address: Gregor Mendel Institute of Molecular Plant Biology, Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| | - Vanessa Wahl
- Max Planck Institute of Molecular Plant Physiology, Wissenschaftspark Golm, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| | - Bernhard Wurzinger
- Department of Biochemistry, Max. F. Perutz Laboratories, University of Vienna, Dr. Bohrgasse 9/5, Vienna, A-1030, Austria; Present address: Department of Ecogenomics and Systems Biology, University of Vienna, Althanstr. 14, A-1090 Vienna, Austria
| | - Cathal Wilson
- Department of Plant Molecular Biology, Max. F. Perutz Laboratories, University of Vienna, Dr. Bohrgasse 9/4, Vienna, A-1030, Austria; Present address: Telethon Institute of Genetics and Medicine, Via Pietro Castellino, 111, 80131-Naples, Italy
| | - Erwin Heberle-Bors
- Department of Plant Molecular Biology, Max. F. Perutz Laboratories, University of Vienna, Dr. Bohrgasse 9/4, Vienna, A-1030, Austria
| | - Markus Teige
- Department of Biochemistry, Max. F. Perutz Laboratories, University of Vienna, Dr. Bohrgasse 9/5, Vienna, A-1030, Austria; Department of Ecogenomics and Systems Biology, University of Vienna, Althanstr. 14, A-1090 Vienna, Austria.
| | - Friedrich Kragler
- Max Planck Institute of Molecular Plant Physiology, Wissenschaftspark Golm, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany; Department of Biochemistry, Max. F. Perutz Laboratories, University of Vienna, Dr. Bohrgasse 9/5, Vienna, A-1030, Austria.
| |
Collapse
|
21
|
Soriano M, Li H, Jacquard C, Angenent GC, Krochko J, Offringa R, Boutilier K. Plasticity in Cell Division Patterns and Auxin Transport Dependency during in Vitro Embryogenesis in Brassica napus. THE PLANT CELL 2014; 26:2568-2581. [PMID: 24951481 PMCID: PMC4114952 DOI: 10.1105/tpc.114.126300] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Revised: 05/29/2014] [Accepted: 06/09/2014] [Indexed: 05/19/2023]
Abstract
In Arabidopsis thaliana, zygotic embryo divisions are highly regular, but it is not clear how embryo patterning is established in species or culture systems with irregular cell divisions. We investigated this using the Brassica napus microspore embryogenesis system, where the male gametophyte is reprogrammed in vitro to form haploid embryos in the absence of exogenous growth regulators. Microspore embryos are formed via two pathways: a zygotic-like pathway, characterized by initial suspensor formation followed by embryo proper formation from the distal cell of the suspensor, and a pathway characterized by initially unorganized embryos lacking a suspensor. Using embryo fate and auxin markers, we show that the zygotic-like pathway requires polar auxin transport for embryo proper specification from the suspensor, while the suspensorless pathway is polar auxin transport independent and marked by an initial auxin maximum, suggesting early embryo proper establishment in the absence of a basal suspensor. Polarity establishment in this suspensorless pathway was triggered and guided by rupture of the pollen exine. Irregular division patterns did not affect cell fate establishment in either pathway. These results confirm the importance of the suspensor and suspensor-driven auxin transport in patterning, but also uncover a mechanism where cell patterning is less regular and independent of auxin transport.
Collapse
Affiliation(s)
- Mercedes Soriano
- Plant Research International, 6700 AP Wageningen, The Netherlands
| | - Hui Li
- Plant Research International, 6700 AP Wageningen, The Netherlands
| | - Cédric Jacquard
- Université de Reims Champagne-Ardenne, Unité de Recherche Vignes et Vins de Champagne-EA 4707, Laboratoire de Stress, Défenses et Reproduction des Plantes, Moulin de la Housse, 51687 REIMS Cedex 2, France
| | - Gerco C Angenent
- Plant Research International, 6700 AP Wageningen, The Netherlands Laboratory for Molecular Biology, Wageningen University, 6708 PB, Wageningen, The Netherlands
| | - Joan Krochko
- Plant Biotechnology Institute, National Research Council of Canada, Saskatoon S7N 0W9, Canada
| | - Remko Offringa
- Molecular and Developmental Genetics, Institute Biology Leiden, Leiden University, 2333 BE Leiden, The Netherlands
| | - Kim Boutilier
- Plant Research International, 6700 AP Wageningen, The Netherlands
| |
Collapse
|
22
|
Wang L, Zhao Y, Reiter RJ, He C, Liu G, Lei Q, Zuo B, Zheng XD, Li Q, Kong J. Changes in melatonin levels in transgenic 'Micro-Tom' tomato overexpressing ovine AANAT and ovine HIOMT genes. J Pineal Res 2014; 56:134-42. [PMID: 24138427 DOI: 10.1111/jpi.12105] [Citation(s) in RCA: 129] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Accepted: 10/16/2013] [Indexed: 02/05/2023]
Abstract
In animals, the melatonin biosynthesis pathway has been well defined after the isolation and identification of the four key genes that are involved in the conversion of tryptophan to melatonin. In plants, there are special alternative catalyzing steps, and plant genes share very low homology with the animal genes. It was of interest to examine the phenotype of transgenic Micro-Tom tomato plants overexpressing the homologous sheep oAANAT and oHIOMT genes responsible for the last two steps of melatonin synthesis. The oAANAT transgenic plants have higher melatonin levels and lower indoleacetic acid (IAA) contents than control due to the competition for tryptophan, the same precursor for both melatonin and IAA. Therefore, the oAANAT lines lose the 'apical dominance' inferring that melatonin likely lacks auxin activity. The significantly higher melatonin content in oHIOMT lines than oAANAT lines provides new proof for the important role of ASMT in plant melatonin synthesis. In addition, the enhanced drought tolerance of oHIOMT lines will also be an important contribution for plant engineering.
Collapse
Affiliation(s)
- Lin Wang
- Institute for Horticultural Plants, China Agricultural University, Beijing, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Wang Y, Zeng X, Peal L, Tang Y, Wu Y, Mahalingam R. Transcriptome analysis of nodes and buds from high and low tillering switchgrass inbred lines. PLoS One 2014; 8:e83772. [PMID: 24386276 PMCID: PMC3875486 DOI: 10.1371/journal.pone.0083772] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Accepted: 11/08/2013] [Indexed: 11/19/2022] Open
Abstract
In the last two decades switchgrass has received increasing attention as a promising bioenergy feedstock. Biomass is the principal trait for improvement in switchgrass breeding programs and tillering is an important component of biomass yield. Switchgrass inbred lines derived from a single parent showing vast variation in tiller number trait was used in this study. Axillary buds, which can develop into tillers, and node tissues, which give rise to axillary buds, were collected from high and low tillering inbred lines growing in field conditions. RNA from buds and nodes from the contrasting inbred lines were used for transcriptome profiling with switchgrass Affymetrix genechips. Nearly 7% of the probesets on the genechip exhibited significant differential expression in these lines. Real-time PCR analysis of 30 genes confirmed the differential expression patterns observed with genechips. Cluster analysis aided in identifying probesets unique to high or low tillering lines as well as those specific to buds or nodes of high tillering lines. Rice orthologs of the switchgrass genes were used for gene ontology (GO) analysis with AgriGO. Enrichment of genes associated with amino acid biosynthesis, lipid transport and vesicular transport were observed in low tillering lines. Enrichment of GOs for translation, RNA binding and gene expression in high tillering lines were indicative of active metabolism associated with rapid growth and development. Identification of different classes of transcription factor genes suggests that regulation of many genes determines the complex process of axillary bud initiation and development. Genes identified in this study will complement the current ongoing efforts in quantitative trait loci mapping of tillering in switchgrass.
Collapse
Affiliation(s)
- Yixing Wang
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, Oklahoma, United States of America
| | - Xin Zeng
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, Oklahoma, United States of America
| | - Lila Peal
- Biology Department, Langston University, Langston, Oklahoma, United States of America
| | - Yuhong Tang
- Plant Biology Division, Samuel Roberts Noble Foundation, Ardmore, Oklahoma, United States of America
| | - Yanqi Wu
- Department of Plant and Soil Sciences, Oklahoma State University, Stillwater, Oklahoma, United States of America
| | - Ramamurthy Mahalingam
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, Oklahoma, United States of America
- * E-mail:
| |
Collapse
|
24
|
Sawchuk MG, Scarpella E. Polarity, continuity, and alignment in plant vascular strands. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2013; 55:824-834. [PMID: 23773763 DOI: 10.1111/jipb.12086] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Accepted: 06/04/2013] [Indexed: 06/02/2023]
Abstract
Plant vascular cells are joined end to end along uninterrupted lines to connect shoot organs with roots; vascular strands are thus polar, continuous, and internally aligned. What controls the formation of vascular strands with these properties? The "auxin canalization hypothesis"-based on positive feedback between auxin flow through a cell and the cell's capacity for auxin transport-predicts the selection of continuous files of cells that transport auxin polarly, thus accounting for the polarity and continuity of vascular strands. By contrast, polar, continuous auxin transport-though required-is insufficient to promote internal alignment of vascular strands, implicating additional factors. The auxin canalization hypothesis was derived from the response of mature tissue to auxin application but is consistent with molecular and cellular events in embryo axis formation and shoot organ development. Objections to the hypothesis have been raised based on vascular organizations in callus tissue and shoot organs but seem unsupported by available evidence. Other objections call instead for further research; yet the inductive and orienting influence of auxin on continuous vascular differentiation remains unique.
Collapse
Affiliation(s)
- Megan G Sawchuk
- Department of Biological Sciences, University of Alberta, Edmonton Alberta, Canada, T6G 2E9
| | | |
Collapse
|
25
|
Gliwicka M, Nowak K, Balazadeh S, Mueller-Roeber B, Gaj MD. Extensive modulation of the transcription factor transcriptome during somatic embryogenesis in Arabidopsis thaliana. PLoS One 2013; 8:e69261. [PMID: 23874927 PMCID: PMC3714258 DOI: 10.1371/journal.pone.0069261] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Accepted: 06/10/2013] [Indexed: 11/19/2022] Open
Abstract
Molecular mechanisms controlling plant totipotency are largely unknown and studies on somatic embryogenesis (SE), the process through which already differentiated cells reverse their developmental program and become embryogenic, provide a unique means for deciphering molecular mechanisms controlling developmental plasticity of somatic cells. Among various factors essential for embryogenic transition of somatic cells transcription factors (TFs), crucial regulators of genetic programs, are believed to play a central role. Herein, we used quantitative real-time polymerase chain reaction (qRT-PCR) to identify TF genes affected during SE induced by in vitro culture in Arabidopsis thaliana. Expression profiles of 1,880 TFs were evaluated in the highly embryogenic Col-0 accession and the non-embryogenic tanmei/emb2757 mutant. Our study revealed 729 TFs whose expression changes during the 10-days incubation period of SE; 141 TFs displayed distinct differences in expression patterns in embryogenic versus non-embryogenic cultures. The embryo-induction stage of SE occurring during the first 5 days of culture was associated with a robust and dramatic change of the TF transcriptome characterized by the drastic up-regulation of the expression of a great majority (over 80%) of the TFs active during embryogenic culture. In contrast to SE induction, the advanced stage of embryo formation showed attenuation and stabilization of transcript levels of many TFs. In total, 519 of the SE-modulated TFs were functionally annotated and transcripts related with plant development, phytohormones and stress responses were found to be most abundant. The involvement of selected TFs in SE was verified using T-DNA insertion lines and a significantly reduced embryogenic response was found for the majority of them. This study provides comprehensive data focused on the expression of TF genes during SE and suggests directions for further research on functional genomics of SE.
Collapse
Affiliation(s)
- Marta Gliwicka
- Department of Genetics, University of Silesia, Katowice, Poland
| | - Katarzyna Nowak
- Department of Genetics, University of Silesia, Katowice, Poland
| | - Salma Balazadeh
- Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
- Max-Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Bernd Mueller-Roeber
- Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
- Max-Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | | |
Collapse
|
26
|
Sawchuk MG, Edgar A, Scarpella E. Patterning of leaf vein networks by convergent auxin transport pathways. PLoS Genet 2013; 9:e1003294. [PMID: 23437008 PMCID: PMC3578778 DOI: 10.1371/journal.pgen.1003294] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Accepted: 12/17/2012] [Indexed: 11/19/2022] Open
Abstract
The formation of leaf vein patterns has fascinated biologists for centuries. Transport of the plant signal auxin has long been implicated in vein patterning, but molecular details have remained unclear. Varied evidence suggests a central role for the plasma-membrane (PM)-localized PIN-FORMED1 (PIN1) intercellular auxin transporter of Arabidopsis thaliana in auxin-transport-dependent vein patterning. However, in contrast to the severe vein-pattern defects induced by auxin transport inhibitors, pin1 mutant leaves have only mild vein-pattern defects. These defects have been interpreted as evidence of redundancy between PIN1 and the other four PM-localized PIN proteins in vein patterning, redundancy that underlies many developmental processes. By contrast, we show here that vein patterning in the Arabidopsis leaf is controlled by two distinct and convergent auxin-transport pathways: intercellular auxin transport mediated by PM-localized PIN1 and intracellular auxin transport mediated by the evolutionarily older, endoplasmic-reticulum-localized PIN6, PIN8, and PIN5. PIN6 and PIN8 are expressed, as PIN1 and PIN5, at sites of vein formation. pin6 synthetically enhances pin1 vein-pattern defects, and pin8 quantitatively enhances pin1pin6 vein-pattern defects. Function of PIN6 is necessary, redundantly with that of PIN8, and sufficient to control auxin response levels, PIN1 expression, and vein network formation; and the vein pattern defects induced by ectopic PIN6 expression are mimicked by ectopic PIN8 expression. Finally, vein patterning functions of PIN6 and PIN8 are antagonized by PIN5 function. Our data define a new level of control of vein patterning, one with repercussions on other patterning processes in the plant, and suggest a mechanism to select cell files specialized for vascular function that predates evolution of PM-localized PIN proteins.
Collapse
Affiliation(s)
- Megan G. Sawchuk
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Alexander Edgar
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Enrico Scarpella
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
27
|
Prasad K, Dhonukshe P. Polar Auxin Transport: Cell Polarity to Patterning. POLAR AUXIN TRANSPORT 2013. [DOI: 10.1007/978-3-642-35299-7_2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
28
|
Larsson E, Sundström JF, Sitbon F, von Arnold S. Expression of PaNAC01, a Picea abies CUP-SHAPED COTYLEDON orthologue, is regulated by polar auxin transport and associated with differentiation of the shoot apical meristem and formation of separated cotyledons. ANNALS OF BOTANY 2012; 110:923-34. [PMID: 22778149 PMCID: PMC3423809 DOI: 10.1093/aob/mcs151] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Accepted: 05/15/2012] [Indexed: 05/19/2023]
Abstract
BACKGROUND AND AIMS During embryo development in most gymnosperms, the establishment of the shoot apical meristem (SAM) occurs concomitantly with the formation of a crown of cotyledons surrounding the SAM. It has previously been shown that the differentiation of cotyledons in somatic embryos of Picea abies is dependent on polar auxin transport (PAT). In the angiosperm model plant, Arabidopsis thaliana, the establishment of cotyledonary boundaries and the embryonal SAM is dependent on PAT and the expression of the CUP-SHAPED COTYLEDON (CUC) genes, which belong to the large NAC gene family. The aim of this study was to characterize CUC-like genes in a gymnosperm, and to elucidate their expression during SAM and cotyledon differentiation, and in response to PAT. METHODS Sixteen Picea glauca NAC sequences were identified in GenBank and deployed to different clades within the NAC gene family using maximum parsimony analysis and Bayesian inference. Motifs conserved between angiosperms and gymnosperms were analysed using the motif discovery tool MEME. Expression profiles during embryo development were produced using quantitative real-time PCR. Protein conservation was analysed by introducing a P. abies CUC orthologue into the A. thaliana cuc1cuc2 double mutant. KEY RESULTS Two full-length CUC-like cDNAs denoted PaNAC01 and PaNAC02 were cloned from P. abies. PaNAC01, but not PaNAC02, harbours previously characterized functional motifs in CUC1 and CUC2. The expression profile of PaNAC01 showed that the gene is PAT regulated and associated with SAM differentiation and cotyledon formation. Furthermore, PaNAC01 could functionally substitute for CUC2 in the A. thaliana cuc1cuc2 double mutant. CONCLUSIONS The results show that CUC-like genes with distinct signature motifs existed before the separation of angiosperms and gymnosperms approx. 300 million years ago, and suggest a conserved function between PaNAC01 and CUC1/CUC2.
Collapse
Affiliation(s)
- Emma Larsson
- Department of Plant Biology and Forest Genetics, Linnean Centre of Plant Biology in Uppsala, Uppsala BioCenter, Swedish University of Agricultural Sciences, Uppsala, Sweden.
| | | | | | | |
Collapse
|
29
|
Trevisan S, Nonis A, Begheldo M, Manoli A, Palme K, Caporale G, Ruperti B, Quaggiotti S. Expression and tissue-specific localization of nitrate-responsive miRNAs in roots of maize seedlings. PLANT, CELL & ENVIRONMENT 2012; 35:1137-55. [PMID: 22211437 DOI: 10.1111/j.1365-3040.2011.02478.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Nitrogen availability seriously affects crop productivity and environment. The knowledge of post-transcriptional regulation of plant response to nutrients is important to improve nitrogen use efficiency of crop. This research was aimed at understanding the role of miRNAs in the molecular control of plant response to nitrate. The expression profiles of six mature miRNAs were deeply studied by quantitative real time polymerase chain reaction and in situ hybridization (ISH). To this aim, a novel optimized protocol was set up for the use of digoxygenin-labelled Zip Nucleic Acid-modified oligonucleotides as probes for ISH. Significant differences in miRNAs' transcripts accumulation were evidenced between nitrate-supplied and nitrate-depleted roots. Real-time PCR analyses and in situ detection of miRNA confirmed the array data and allowed us to evidence distinct miRNAs spatio-temporal expression patterns in maize roots. Our results suggest that a prolonged nitrate depletion may induce post-transcriptionally the expression of target genes by repressing the transcription of specific miRNAs. In particular, the repression of the transcription of miR528a/b, miR528a*/b*, miR169i/j/k, miR169i*/j*/k*, miR166j/k/n and miR408/b upon nitrate shortage could represent a crucial step integrating nitrate signals into developmental changes in maize roots.
Collapse
Affiliation(s)
- Sara Trevisan
- Agricultural Biotechnology Department, University of Padua, 35020 Legnaro (PD), Italy
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Lee DK, Van Norman JM, Murphy C, Adhikari E, Reed JW, Sieburth LE. In the absence of BYPASS1-related gene function, the bps signal disrupts embryogenesis by an auxin-independent mechanism. Development 2012; 139:805-15. [PMID: 22274700 DOI: 10.1242/dev.077313] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Development is often coordinated by biologically active mobile compounds that move between cells or organs. Arabidopsis mutants with defects in the BYPASS1 (BPS1) gene overproduce an active mobile compound that moves from the root to the shoot and inhibits growth. Here, we describe two related Arabidopsis genes, BPS2 and BPS3. Analyses of single, double and triple mutants revealed that all three genes regulate production of the same mobile compound, the bps signal, with BPS1 having the largest role. The triple mutant had a severe embryo defect, including the failure to properly establish provascular tissue, the shoot meristem and the root meristem. Aberrant expression of PINFORMED1, DR5, PLETHORA1, PLETHORA2 and WUSCHEL-LIKE HOMEOBOX5 were found in heart-stage bps triple-mutant embryos. However, auxin-induced gene expression, and localization of the PIN1 auxin efflux transporter, were intact in bps1 mutants, suggesting that the primary target of the bps signal is independent of auxin response. Thus, the bps signal identifies a novel signaling pathway that regulates patterning and growth in parallel with auxin signaling, in multiple tissues and at multiple developmental stages.
Collapse
Affiliation(s)
- Dong-Keun Lee
- Department of Biology, University of Utah, Salt Lake City, UT 94112, USA
| | | | | | | | | | | |
Collapse
|
31
|
Tsai AYL, Gazzarrini S. AKIN10 and FUSCA3 interact to control lateral organ development and phase transitions in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2012; 69:809-21. [PMID: 22026387 DOI: 10.1111/j.1365-313x.2011.04832.x] [Citation(s) in RCA: 111] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The Snf1 (sucrose non-fermenting-1)/AMPK (AMP-activated protein kinase)/SnRK1 (Snf1-related protein kinase 1) kinases act as sensors of energy status in eukaryotes. Despite the important role of these kinases in regulation of cellular responses to metabolic stress, only a few SnRK1 substrates have been identified. Using yeast two-hybrid screens, we isolated AKIN10 as an interactor of the B3-domain transcription factor FUSCA3 (FUS3), an essential regulator of seed maturation in Arabidopsis. Pull-down and bi-molecular fluorescence complementation (BiFC) assays confirm the interaction in vitro and in planta, respectively. In-gel kinase assays show that AKIN10 phosphorylates FUS3 and that the N-terminal domain of FUS3 is required for AKIN10 phosphorylation. Mutations of three serines (fus3(S55A/S56A/S57A) ) within a partial SnRK1 consensus sequence in the N-terminal region of FUS3 reduce greatly FUS3 phosphorylation by AKIN10, which indicates that these serines are the predominant AKIN10 target sites. In a cell-free system, AKIN10 positively regulates FUS3 stability, as overexpression of AKIN10 delayed the degradation of the recombinant FUS3. Plants over-expressing AKIN10 show delayed seed germination, vegetative growth and flowering time, indicating that AKIN10 antagonizes the embryonic-to-vegetative and vegetative-to-reproductive phase transitions. Furthermore, overexpression of AKIN10 alters cotyledon, silique and floral organ development, suggesting that AKIN10 regulates lateral organ development. Genetic interaction studies show that the fus3-3 mutation partially rescues the phase transition and organ development defects caused by AKIN10 overexpression. Taken together, these findings indicate that FUS3 and AKIN10 interact physically and share overlapping pathways to regulate developmental phase transitions and organogenesis in Arabidopsis.
Collapse
Affiliation(s)
- Allen Yi-Lun Tsai
- Department of Biological Sciences and Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | | |
Collapse
|
32
|
Xu H, Gao Y, Wang J. Transcriptomic analysis of rice (Oryza sativa) developing embryos using the RNA-Seq technique. PLoS One 2012; 7:e30646. [PMID: 22347394 PMCID: PMC3275597 DOI: 10.1371/journal.pone.0030646] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2011] [Accepted: 12/20/2011] [Indexed: 12/19/2022] Open
Abstract
Rice (Oryza sativa) is an excellent model monocot with a known genome sequence for studying embryogenesis. Here we report the transcriptome profiling analysis of rice developing embryos using RNA-Seq as an attempt to gain insight into the molecular and cellular events associated with rice embryogenesis. RNA-Seq analysis generated 17,755,890 sequence reads aligned with 27,190 genes, which provided abundant data for the analysis of rice embryogenesis. A total of 23,971, 23,732, and 23,592 genes were identified from embryos at three developmental stages (3–5, 7, and 14 DAP), while an analysis between stages allowed the identification of a subset of stage-specific genes. The number of genes expressed stage-specifically was 1,131, 1,443, and 1,223, respectively. In addition, we investigated transcriptomic changes during rice embryogenesis based on our RNA-Seq data. A total of 1,011 differentially expressed genes (DEGs) (log2Ratio ≥1, FDR ≤0.001) were identified; thus, the transcriptome of the developing rice embryos changed considerably. A total of 672 genes with significant changes in expression were detected between 3–5 and 7 DAP; 504 DEGs were identified between 7 and 14 DAP. A large number of genes related to metabolism, transcriptional regulation, nucleic acid replication/processing, and signal transduction were expressed predominantly in the early and middle stages of embryogenesis. Protein biosynthesis-related genes accumulated predominantly in embryos at the middle stage. Genes for starch/sucrose metabolism and protein modification were highly expressed in the middle and late stages of embryogenesis. In addition, we found that many transcription factor families may play important roles at different developmental stages, not only in embryo initiation but also in other developmental processes. These results will expand our understanding of the complex molecular and cellular events in rice embryogenesis and provide a foundation for future studies on embryo development in rice and other cereal crops.
Collapse
Affiliation(s)
- Hong Xu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Yi Gao
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Jianbo Wang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
- * E-mail:
| |
Collapse
|
33
|
Abstract
The Arabidopsis root has been the subject of intense research over the past decades. This research has led to significantly improved understanding of the molecular mechanisms underlying root development. Key insights into the specification of individual cell types, cell patterning, growth and differentiation, branching of the primary root, and responses of the root to the environment have been achieved. Transcription factors and plant hormones play key regulatory roles. Recently, mechanisms involving protein movement and the oscillation of gene expression have also been uncovered. Root gene regulatory networks controlling root development have been reconstructed from genome-wide profiling experiments, revealing novel molecular connections and models. Future refinement of these models will lead to a more complete description of the complex molecular interactions that give rise to a simple growing root.
Collapse
|
34
|
Willige BC, Isono E, Richter R, Zourelidou M, Schwechheimer C. Gibberellin regulates PIN-FORMED abundance and is required for auxin transport-dependent growth and development in Arabidopsis thaliana. THE PLANT CELL 2011; 23:2184-95. [PMID: 21642547 PMCID: PMC3160035 DOI: 10.1105/tpc.111.086355] [Citation(s) in RCA: 131] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2011] [Revised: 05/13/2011] [Accepted: 05/18/2011] [Indexed: 05/18/2023]
Abstract
Plants integrate different regulatory signals to control their growth and development. Although a number of physiological observations suggest that there is crosstalk between the phytohormone gibberellin (GA) and auxin, as well as with auxin transport, the molecular basis for this hormonal crosstalk remains largely unexplained. Here, we show that auxin transport is reduced in the inflorescences of Arabidopsis thaliana mutants deficient in GA biosynthesis and signaling. We further show that this reduced auxin transport correlates with a reduction in the abundance of PIN-FORMED (PIN) auxin efflux facilitators in GA-deficient plants and that PIN protein levels recover to wild-type levels following GA treatment. We also demonstrate that the regulation of PIN protein levels cannot be explained by a transcriptional regulation of the PIN genes but that GA deficiency promotes, at least in the case of PIN2, the targeting of PIN proteins for vacuolar degradation. In genetic studies, we reveal that the reduced auxin transport of GA mutants correlates with an impairment in two PIN-dependent growth processes, namely, cotyledon differentiation and root gravitropic responses. Our study thus presents evidence for a role of GA in these growth responses and for a GA-dependent modulation of PIN turnover that may be causative for these differential growth responses.
Collapse
|
35
|
Abstract
Zygotic embryo culture has proven itself an invaluable method in plant science for both pure and applied research. The composition of medium used to sustain embryos is a key to successful culture. Optimal composition of the medium changes during embryonic development; generally, the younger the embryo, the more complex is its nutritional requirements. Feeder cell and "double medium" culture methods have been developed to improve the survival of zygotes and proembryos in vitro. In this chapter, we discuss the nutritional requirements of cultured embryos and the importance of the osmotic environment for nurturing young embryos. Specific methodological adaptations used in the culture of Capsella are outlined to demonstrate how standard protocols can be manipulated to suit one's needs.
Collapse
|
36
|
von Behrens I, Komatsu M, Zhang Y, Berendzen KW, Niu X, Sakai H, Taramino G, Hochholdinger F. Rootless with undetectable meristem 1 encodes a monocot-specific AUX/IAA protein that controls embryonic seminal and post-embryonic lateral root initiation in maize. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2011; 66:341-53. [PMID: 21219511 DOI: 10.1111/j.1365-313x.2011.04495.x] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The maize (Zea mays L.) rum1-R (rootless with undetectable meristems 1-Reference) mutant does not initiate embryonic seminal roots and post-embryonic lateral roots at the primary root. Map-based cloning revealed that Rum1 encodes a 269 amino acid (aa) monocot-specific Aux/IAA protein. The rum1-R protein lacks 26 amino acids including the GWPPV degron sequence in domain II and part of the bipartite NLS (nuclear localization sequence). Significantly reduced lateral root density (approximately 35%) in heterozygous plants suggests that the rum1-R is a semi-dominant mutant. Overexpression of rum1-R under the control of the maize MSY (Methionine SYnthase) promoter supports this notion by displaying a reduced number of lateral roots (31-37%). Functional characterization suggests that Rum1 is auxin-inducible and encodes a protein that localizes to the nucleus. Moreover, RUM1 is unstable with a half life time of approximately 22 min while the mutant rum1-R protein is very stable. In vitro and in vivo experiments demonstrated an interaction of RUM1 with ZmARF25 and ZmARF34 (Z. mays AUXIN RESPONSE FACTOR 25 and 34). In summary, the presented data suggest that Rum1 encodes a canonical Aux/IAA protein that is required for the initiation of embryonic seminal and post-embryonic lateral root initiation in primary roots of maize.
Collapse
Affiliation(s)
- Inga von Behrens
- Department of General Genetics, ZMBP, Center for Plant Molecular Biology, University of Tuebingen, 72076 Tuebingen, Germany
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Canola zygotic embryo culture. Methods Mol Biol 2011. [PMID: 21207259 DOI: 10.1007/978-1-61737-988-8_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
To further understand the events occurring during embryogenesis, it is imperative to have an experimental system. While somatic embryo is the system of choice due to the prolific number and success of protocols available, it is necessary to compare in vitro results with those in vivo. This process is often difficult due to the inaccessibility of the developing embryo and the complications of manipulating the embryo in vivo. The development of protocols that allow for manipulation and comparison of both somatic and zygotic embryos is key to elucidating the differences between the two types of embryos and determining if results observed using one system can be applied to the other. This chapter details a simple protocol for the culture of zygotic embryos of canola that allows for the processing of large numbers of embryos with little physical damage. Furthermore, this protocol allows for the experimental manipulation of zygotic embryos in vitro and comparisons to be made with a well-established microspore-derived embryo system.
Collapse
|
38
|
Wolters H, Anders N, Geldner N, Gavidia R, Jürgens G. Coordination of apical and basal embryo development revealed by tissue-specific GNOM functions. Development 2011; 138:117-26. [DOI: 10.1242/dev.059147] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Flowering-plant embryogenesis generates the basic body organization, including the apical and basal stem cell niches, i.e. shoot and root meristems, the major tissue layers and the cotyledon(s). gnom mutant embryos fail to initiate the root meristem at the early-globular stage and the cotyledon primordia at the late globular/transition stage. Tissue-specific GNOM expression in the gnom mutant embryo revealed that both apical and basal embryo organization depend on GNOM provascular expression and a functioning apical-basal auxin flux: GNOM provascular expression in gnom mutant background resulted in non-cell-autonomous reconstitution of apical and basal tissues which could be linked to changes in auxin responses in those tissues, stressing the importance of apical-basal auxin flow for overall embryo organization. Although reconstitution of apical-basal auxin flux in gnom results in the formation of single cotyledons (monocots), only additional GNOM epidermal expression is able to induce wild-type apical patterning. We conclude that provascular expression of GNOM is vital for both apical and basal tissue organization, and that epidermal GNOM expression is required for radial-to-bilateral symmetry transition of the embryo. We propose GNOM-dependent auxin sinks as a means to generate auxin gradients across tissues.
Collapse
Affiliation(s)
- Hanno Wolters
- ZMBP, Entwicklungsgenetik, Universität Tübingen, Auf der Morgenstelle 3, 72076 Tübingen, Germany
| | - Nadine Anders
- ZMBP, Entwicklungsgenetik, Universität Tübingen, Auf der Morgenstelle 3, 72076 Tübingen, Germany
| | - Niko Geldner
- ZMBP, Entwicklungsgenetik, Universität Tübingen, Auf der Morgenstelle 3, 72076 Tübingen, Germany
| | - Richard Gavidia
- ZMBP, Entwicklungsgenetik, Universität Tübingen, Auf der Morgenstelle 3, 72076 Tübingen, Germany
| | - Gerd Jürgens
- ZMBP, Entwicklungsgenetik, Universität Tübingen, Auf der Morgenstelle 3, 72076 Tübingen, Germany
| |
Collapse
|
39
|
Tebbji F, Nantel A, Matton DP. Transcription profiling of fertilization and early seed development events in a solanaceous species using a 7.7 K cDNA microarray from Solanum chacoense ovules. BMC PLANT BIOLOGY 2010; 10:174. [PMID: 20704744 PMCID: PMC3095305 DOI: 10.1186/1471-2229-10-174] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2009] [Accepted: 08/12/2010] [Indexed: 05/09/2023]
Abstract
BACKGROUND To provide a broad analysis of gene expression changes in developing embryos from a solanaceous species, we produced amplicon-derived microarrays with 7741 ESTs isolated from Solanum chacoense ovules bearing embryos from all developmental stages. Our aims were to: 1) identify genes expressed in a tissue-specific and temporal-specific manner; 2) define clusters of genes showing similar patterns of spatial and temporal expression; and 3) identify stage-specific or transition-specific candidate genes for further functional genomic analyses. RESULTS We analyzed gene expression during S. chacoense embryogenesis in a series of experiments with probes derived from ovules isolated before and after fertilization (from 0 to 22 days after pollination), and from leaves, anthers, and styles. From the 6374 unigenes present in our array, 1024 genes were differentially expressed (>or= +/- 2 fold change, p value <or= 0.01) in fertilized ovules compared to unfertilized ovules and only limited expression overlap was observed between these genes and the genes expressed in the other tissues tested, with the vast majority of the fertilization-regulated genes specifically or predominantly expressed in ovules (955 genes). During embryogenesis three major expression profiles corresponding to early, middle and late stages of embryo development were identified. From the early and middle stages, a large number of genes corresponding to cell cycle, DNA processing, signal transduction, and transcriptional regulation were found. Defense and stress response-related genes were found in all stages of embryo development. Protein biosynthesis genes, genes coding for ribosomal proteins and other components of the translation machinery were highly expressed in embryos during the early stage. Genes for protein degradation were overrepresented later in the middle and late stages of embryo development. As expected, storage protein transcripts accumulated predominantly in the late stage of embryo development. CONCLUSION Our analysis provides the first study in a solanaceous species of the transcriptional program that takes place during the early phases of plant reproductive development, including all embryogenesis steps during a comprehensive time-course. Our comparative expression profiling strategy between fertilized and unfertilized ovules identified a subset of genes specifically or predominantly expressed in ovules while a closer analysis between each consecutive time point allowed the identification of a subset of stage-specific and transition-specific genes.
Collapse
Affiliation(s)
- Faiza Tebbji
- Institut de recherche en biologie végétale, Département de sciences biologiques, Université de Montréal, 4101 rue Sherbrooke est, Montréal, Québec, H1X 2B2, Canada
- Biotechnology Research Institute, National Research Council, 6100 Royalmount Avenue, Montreal, QC, H4P 2R2, Canada
| | - André Nantel
- Institut de recherche en biologie végétale, Département de sciences biologiques, Université de Montréal, 4101 rue Sherbrooke est, Montréal, Québec, H1X 2B2, Canada
- Biotechnology Research Institute, National Research Council, 6100 Royalmount Avenue, Montreal, QC, H4P 2R2, Canada
| | - Daniel P Matton
- Institut de recherche en biologie végétale, Département de sciences biologiques, Université de Montréal, 4101 rue Sherbrooke est, Montréal, Québec, H1X 2B2, Canada
| |
Collapse
|
40
|
Chen D, Ren Y, Deng Y, Zhao J. Auxin polar transport is essential for the development of zygote and embryo in Nicotiana tabacum L. and correlated with ABP1 and PM H+-ATPase activities. JOURNAL OF EXPERIMENTAL BOTANY 2010; 61:1853-67. [PMID: 20348352 PMCID: PMC2852673 DOI: 10.1093/jxb/erq056] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2009] [Revised: 02/06/2010] [Accepted: 02/18/2010] [Indexed: 05/22/2023]
Abstract
Auxin is an important plant growth regulator, and plays a key role in apical-basal axis formation and embryo differentiation, but the mechanism remains unclear. The level of indole-3-acetic acid (IAA) during zygote and embryo development of Nicotiana tabacum L. is investigated here using the techniques of GC-SIM-MS analysis, immunolocalization, and the GUS activity assay of DR5::GUS transgenic plants. The distribution of ABP1 and PM H(+)-ATPase was also detected by immunolocalization, and this is the first time that integral information has been obtained about their distribution in the zygote and in embryo development. The results showed an increase in IAA content in ovules and the polar distribution of IAA, ABP1, and PM H(+)-ATPase in the zygote and embryo, specifically in the top and basal parts of the embryo proper (EP) during proembryo development. For information about the regulation mechanism of auxin, an auxin transport inhibitor TIBA (2,3,5-triiodobenzoic acid) and exogenous IAA were, respectively, added to the medium for the culture of ovules at the zygote and early proembryo stages. Treatment with a suitable IAA concentration promoted zygote division and embryo differentiation, while TIBA treatment obviously suppressed these processes and caused the formation of abnormal embryos. The distribution patterns of IAA, ABP1, and PM H(+)-ATPase were also disturbed in the abnormal embryos. These results indicate that the polar distribution and transport of IAA begins at the zygote stage, and affects zygote division and embryo differentiation in tobacco. Moreover, ABP1 and PM H(+)-ATPase may play roles in zygote and embryo development and may also be involved in IAA signalling transduction.
Collapse
Affiliation(s)
| | | | | | - Jie Zhao
- Key Laboratory of the Ministry of Education for Plant Developmental Biology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| |
Collapse
|
41
|
Palovaara J, Hallberg H, Stasolla C, Luit B, Hakman I. Expression of a gymnosperm PIN homologous gene correlates with auxin immunolocalization pattern at cotyledon formation and in demarcation of the procambium during Picea abies somatic embryo development and in seedling tissues. TREE PHYSIOLOGY 2010; 29:483-96. [PMID: 20129931 DOI: 10.1093/treephys/tpn048] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
In seed plants, the body organization is established during embryogenesis and is uniform across gymnosperms and angiosperms, despite differences during early embryogeny. Evidence from angiosperms implicates the plant hormone auxin and its polar transport, mainly established by the PIN family of auxin efflux transporters, in the patterning of embryos. Here, PaPIN1 from Norway spruce (Picea abies [L.] Karst.), a gene widely expressed in conifer tissues and organs, was characterized and its expression and localization patterns were determined with reverse transcription polymerase chain reaction and in situ hybridization during somatic embryo development and in seedlings. PaPIN1 shares the predicted structure of other PIN proteins, but its central hydrophilic loop is longer than most PINs. In phylogenetic analyses, PaPIN1 clusters with Arabidopsis thaliana (L.) Heynh. PIN3, PIN4 and PIN7, but its expression pattern also suggests similarity to PIN1. The PaPIN1 expression signal was high in the protoderm of pre-cotyledonary embryos, but not if embryos were pre-treated with the auxin transport inhibitor N-1-naphthylphthalamic acid (NPA). This, together with a high auxin immunolocalization signal in this cell layer, suggests a role of PaPIN1 during cotyledon formation. At later stages, high PaPIN1 expression was observed in differentiating procambium, running from the tip of incipient cotyledons down through the embryo axis and to the root apical meristem (RAM), although the mode of RAM specification in conifer embryos differs from that of most angiosperms. Also, the PaPIN1 in situ signal was high in seedling root tips including root cap columella cells. The results thus suggest that PaPIN1 provides an ancient function associated with auxin transport and embryo pattern formation prior to the separation of angiosperms and gymnosperms, in spite of some morphological differences.
Collapse
Affiliation(s)
- Joakim Palovaara
- School of Natural Sciences, Linnaeus University, SE-391 82, Kalmar, Sweden
| | | | | | | | | |
Collapse
|
42
|
Palovaara J, Hallberg H, Stasolla C, Luit B, Hakman I. Expression of a gymnosperm PIN homologous gene correlates with auxin immunolocalization pattern at cotyledon formation and in demarcation of the procambium during Picea abies somatic embryo development and in seedling tissues. TREE PHYSIOLOGY 2010; 30:479-89. [PMID: 20129931 DOI: 10.1093/treephys/tpp126] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
In seed plants, the body organization is established during embryogenesis and is uniform across gymnosperms and angiosperms, despite differences during early embryogeny. Evidence from angiosperms implicates the plant hormone auxin and its polar transport, mainly established by the PIN family of auxin efflux transporters, in the patterning of embryos. Here, PaPIN1 from Norway spruce (Picea abies [L.] Karst.), a gene widely expressed in conifer tissues and organs, was characterized and its expression and localization patterns were determined with reverse transcription polymerase chain reaction and in situ hybridization during somatic embryo development and in seedlings. PaPIN1 shares the predicted structure of other PIN proteins, but its central hydrophilic loop is longer than most PINs. In phylogenetic analyses, PaPIN1 clusters with Arabidopsis thaliana (L.) Heynh. PIN3, PIN4 and PIN7, but its expression pattern also suggests similarity to PIN1. The PaPIN1 expression signal was high in the protoderm of pre-cotyledonary embryos, but not if embryos were pre-treated with the auxin transport inhibitor N-1-naphthylphthalamic acid (NPA). This, together with a high auxin immunolocalization signal in this cell layer, suggests a role of PaPIN1 during cotyledon formation. At later stages, high PaPIN1 expression was observed in differentiating procambium, running from the tip of incipient cotyledons down through the embryo axis and to the root apical meristem (RAM), although the mode of RAM specification in conifer embryos differs from that of most angiosperms. Also, the PaPIN1 in situ signal was high in seedling root tips including root cap columella cells. The results thus suggest that PaPIN1 provides an ancient function associated with auxin transport and embryo pattern formation prior to the separation of angiosperms and gymnosperms, in spite of some morphological differences.
Collapse
Affiliation(s)
- Joakim Palovaara
- School of Natural Sciences, Linnaeus University, SE-391 82, Kalmar, Sweden
| | | | | | | | | |
Collapse
|
43
|
Ilegems M, Douet V, Meylan-Bettex M, Uyttewaal M, Brand L, Bowman JL, Stieger PA. Interplay of auxin, KANADI and Class III HD-ZIP transcription factors in vascular tissue formation. Development 2010; 137:975-84. [DOI: 10.1242/dev.047662] [Citation(s) in RCA: 166] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Class III HD-ZIP and KANADI gene family members have complementary expression patterns in the vasculature and their gain-of-function and loss-of-function mutants have complementary vascular phenotypes. This suggests that members of the two gene families are involved in the establishment of the spatial arrangement of phloem, cambium and xylem. In this study, we have investigated the role of these two gene families in vascular tissue differentiation, in particular their interactions with the plant hormone auxin. We have analyzed the vasculature of plants that have altered expression levels of Class III HD-ZIP and KANADI transcription factors in provascular cells. Removal of either KANADI or Class III HD-ZIP expression in procambium cells led to a wider distribution of auxin in internal tissues, to an excess of procambium cell recruitment and to increased cambium activity. Ectopic expression of KANADI1 in provascular cells inhibited procambium cell recruitment due to negative effects of KANADI1 on expression and polar localization of the auxin efflux-associated protein PIN-FORMED1. Ectopic expression of Class III HD-ZIP genes promoted xylem differentiation. We propose that Class III HD-ZIP and KANADI transcription factors control cambium activity: KANADI proteins by acting on auxin transport, and Class III HD-ZIP proteins by promoting axial cell elongation and xylem differentiation.
Collapse
Affiliation(s)
- Michael Ilegems
- Institute of Biology, University of Neuchâtel, Rue Emile Argand 11, 2009 Neuchâtel, Switzerland
| | - Véronique Douet
- Institute of Biology, University of Neuchâtel, Rue Emile Argand 11, 2009 Neuchâtel, Switzerland
| | - Marlyse Meylan-Bettex
- Institute of Biology, University of Neuchâtel, Rue Emile Argand 11, 2009 Neuchâtel, Switzerland
| | - Magalie Uyttewaal
- Laboratoire de Reproduction et Développement des Plantes, ENS, 46 allée d'Italie, 69364 Lyon Cedex O7, France
| | - Lukas Brand
- School of Biological Sciences, Monash University, Melbourne, Victoria 3800, Australia
| | - John L. Bowman
- School of Biological Sciences, Monash University, Melbourne, Victoria 3800, Australia
| | - Pia A. Stieger
- Institute of Biology, University of Neuchâtel, Rue Emile Argand 11, 2009 Neuchâtel, Switzerland
| |
Collapse
|
44
|
Płachno BJ, Swiatek P. Unusual embryo structure in viviparous Utricularia nelumbifolia, with remarks on embryo evolution in genus Utricularia. PROTOPLASMA 2010; 239:69-80. [PMID: 19921393 DOI: 10.1007/s00709-009-0084-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2009] [Accepted: 10/22/2009] [Indexed: 05/21/2023]
Abstract
In most species of the Genlisea-Utricularia sister lineage, the organs arising directly after germination comprise a single leaf-like structure, followed by a bladder-trap/stolon, with the lack of an embryonic primary root considered a synapomorphic character. Previous anatomical work suggests that the most common recent ancestor of Utricularia possessed an embryo comprising storage tissue and a meristematic apical region minus lateral organs. Studies of embryogenesis across the Utricularia lineage suggest that multiple primary organs have only evolved in the viviparous Utricularia nelumbifolia, Utricularia reniformis, and Utricularia humboldtii within the derived Iperua/Orchidioides clade. All three of these species are specialized for growth as "aquatic epiphytes" in the tanks of bromeliads, with recent phylogenetic evidence suggesting the possibility that multiple primary organs may have evolved twice independently within this clade. The primary organs of viviparous Utricularia also possess epidermal surface glands, and our study suggests that these may function as root hairs for uptake of solutes from the external environment--a possible adaptation for the "aquatic-epiphytic" habitat.
Collapse
Affiliation(s)
- Bartosz J Płachno
- Department of Plant Cytology and Embryology, Jagiellonian University, Krakow, Poland.
| | | |
Collapse
|
45
|
De Smet I, Lau S, Mayer U, Jürgens G. Embryogenesis - the humble beginnings of plant life. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2010; 61:959-70. [PMID: 20409270 DOI: 10.1111/j.1365-313x.2010.04143.x] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Each plant starts life from the zygote formed by the fusion of an egg and a sperm cell. The zygote gives rise to a multicellular embryo that displays a basic plant body organization and is surrounded by nutritive endosperm and maternal tissue. How the body organization is generated had already been studied before the genome sequence of Arabidopsis thaliana was completed 10 years ago, but several regulatory mechanisms of embryo development have since been discovered or analysed in more detail. Although this progress did not strictly depend on the availability of the genome sequence itself, several advances were considerably facilitated. In this review, we mainly address early embryo development, highlighting general mechanisms and crucial regulators, including phytohormones, that are involved in patterning the embryo and were mainly analysed in the post-genome decade. We also highlight some unsolved problems, provide a brief outlook on the future of Arabidopsis embryo research, and discuss how the knowledge gained from Arabidopsis could be translated to crop species.
Collapse
Affiliation(s)
- Ive De Smet
- Center for Plant Molecular Biology, University of Tübingen, Auf der Morgenstelle 3, Tübingen, Germany
| | | | | | | |
Collapse
|
46
|
Abstract
The basic body plan of the adult plant is established during embryogenesis, resulting in the juvenile form of the seedling. Arabidopsis embryogenesis is distinguished by a highly regular pattern of cell divisions. Some of these divisions are asymmetric, generating daughter cells with different fates. However, their subsequent differentiation might still depend on cell-cell communication to be fully accomplished or maintained. In some cases, cell fate specification solely depends on cell-cell communication that in general plays an important role in the generation of positional information within the embryo. Although auxin-dependent signalling has received much attention, other ways of cell-cell communication have also been demonstrated or suggested. This review focuses on aspects of pattern formation and cell-cell communication during Arabidopsis embryogenesis up to the mid-globular stage of development.
Collapse
|
47
|
|
48
|
|
49
|
Richter S, Anders N, Wolters H, Beckmann H, Thomann A, Heinrich R, Schrader J, Singh MK, Geldner N, Mayer U, Jürgens G. Role of the GNOM gene in Arabidopsis apical-basal patterning--From mutant phenotype to cellular mechanism of protein action. Eur J Cell Biol 2009; 89:138-44. [PMID: 20036441 DOI: 10.1016/j.ejcb.2009.11.020] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
How the apical-basal axis of polarity is established in embryogenesis is still a mystery in plant development. This axis appeared specifically compromised by mutations in the Arabidopsis GNOM gene. Surprisingly, GNOM encodes an ARF guanine-nucleotide exchange factor (ARF-GEF) that regulates the formation of vesicles in membrane trafficking. In-depth functional analysis of GNOM and its closest relative, GNOM-LIKE 1 (GNL1), has provided a mechanistic explanation for the development-specific role of a seemingly mundane trafficking regulator. The current model proposes that GNOM is specifically involved in the endosomal recycling of the auxin-efflux carrier PIN1 to the basal plasma membrane in provascular cells, which in turn is required for the accumulation of the plant hormone auxin at the future root pole through polar auxin transport. Thus, the analysis of GNOM highlights the importance of cell-biological processes for a mechanistic understanding of development.
Collapse
Affiliation(s)
- Sandra Richter
- Center for Plant Molecular Biology - Developmental Genetics, University of Tübingen, Auf der Morgenstelle 3, D-72076 Tübingen, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Jurkuta RJ, Kaplinsky NJ, Spindel JE, Barton MK. Partitioning the apical domain of the Arabidopsis embryo requires the BOBBER1 NudC domain protein. THE PLANT CELL 2009; 21:1957-71. [PMID: 19648297 PMCID: PMC2729608 DOI: 10.1105/tpc.108.065284] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2009] [Revised: 06/24/2009] [Accepted: 07/09/2009] [Indexed: 05/20/2023]
Abstract
The apical domain of the embryo is partitioned into distinct regions that will give rise to the cotyledons and the shoot apical meristem. In this article, we describe a novel screen to identify Arabidopsis thaliana embryo arrest mutants that are defective in this partitioning, and we describe the phenotype of one such mutant, bobber1. bobber1 mutants arrest at the globular stage of development, they express the meristem-specific SHOOTMERISTEMLESS gene throughout the top half of the embryo, and they fail to express the AINTEGUMENTA transcript normally found in cotyledons. Thus, BOBBER1 is required to limit the extent of the meristem domain and/or to promote the development of the cotyledon domains. Based on expression of early markers for apical development, bobber1 mutants differentiate protodermis and undergo normal early apical development. Consistent with a role for auxin in cotyledon development, BOBBER1 mutants fail to express localized maxima of the DR5:green fluorescent protein reporter. BOBBER1 encodes a protein with homology to the Aspergillus nidulans protein NUDC that has similarity to protein chaperones, indicating a possible role for BOBBER1 in synthesis or transport of proteins involved in patterning the Arabidopsis embryo.
Collapse
Affiliation(s)
- Rebecca Joy Jurkuta
- Department of Genetics, University of Wisconsin, Madison, Wisconsin 53706, USA
| | | | | | | |
Collapse
|