1
|
Tahsin S, Sane NS, Cernyar B, Jiang L, Zohar Y, Lee BR, Miranti CK. AR loss in prostate cancer stroma mediated by NF-κB and p38-MAPK signaling disrupts stromal morphogen production. Oncogene 2024; 43:2092-2103. [PMID: 38769192 DOI: 10.1038/s41388-024-03064-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 05/08/2024] [Accepted: 05/10/2024] [Indexed: 05/22/2024]
Abstract
Androgen Receptor (AR) activity in prostate stroma is required to maintain prostate homeostasis. This is mediated through androgen-dependent induction and secretion of morphogenic factors that drive epithelial cell differentiation. However, stromal AR expression is lost in aggressive prostate cancer. The mechanisms leading to stromal AR loss and morphogen production are unknown. We identified TGFβ1 and TNFα as tumor-secreted factors capable of suppressing AR mRNA and protein expression in prostate stromal fibroblasts. Pharmacological and RNAi approaches identified NF-κB as the major signaling pathway involved in suppressing AR expression by TNFα. In addition, p38α- and p38δ-MAPK were identified as suppressors of AR expression independent of TNFα. Two regions of the AR promoter were responsible for AR suppression through TNFα. FGF10 and Wnt16 were identified as androgen-induced morphogens, whose expression was lost upon TNFα treatment and enhanced upon p38-MAPK inhibition. Wnt16, through non-canonical Jnk signaling, was required for prostate basal epithelial cell survival. These findings indicate that stromal AR loss is mediated by secreted factors within the TME. We identified TNFα/TGFβ as two possible factors, with TNFα mediating its effects through NF-κB or p38-MAPK to suppress AR mRNA transcription. This leads to loss of androgen-regulated stromal morphogens necessary to maintain normal epithelial homeostasis.
Collapse
Affiliation(s)
- Shekha Tahsin
- Cancer Biology Graduate Interdisciplinary Program, University of Arizona, Tucson, AZ, USA
| | - Neha S Sane
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ, USA
| | - Brent Cernyar
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ, USA
| | - Linan Jiang
- Department of Aerospace and Mechanical Engineering, University of Arizona, Tucson, AZ, USA
| | - Yitshak Zohar
- Department of Aerospace and Mechanical Engineering, University of Arizona, Tucson, AZ, USA
- University of Arizona Cancer Center, University of Arizona, Tucson, AZ, USA
| | - Benjamin R Lee
- University of Arizona Cancer Center, University of Arizona, Tucson, AZ, USA
- Department of Urology, University of Arizona, Tucson, AZ, USA
| | - Cindy K Miranti
- Cancer Biology Graduate Interdisciplinary Program, University of Arizona, Tucson, AZ, USA.
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ, USA.
- University of Arizona Cancer Center, University of Arizona, Tucson, AZ, USA.
| |
Collapse
|
2
|
Berger T, Guerrero V, Boeldt R, Legacki E, Roberts M, Conley AJ. Development of Porcine Accessory Sex Glands. Animals (Basel) 2024; 14:462. [PMID: 38338105 PMCID: PMC10854558 DOI: 10.3390/ani14030462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 01/25/2024] [Accepted: 01/25/2024] [Indexed: 02/12/2024] Open
Abstract
Accessory sex glands are recognized as targets of human disease and may have roles in reproductive success in livestock. The current experiments evaluated the influences of endogenous steroids on the development of porcine accessory sex glands, primarily in the neonatal period. When the aromatase inhibitor, letrozole, was used to inhibit the production of endogenous estrogens in the postnatal interval, growth of the seminal vesicles, prostate, and bulbourethral glands was stimulated. The weights of seminal vesicles, prostate, and bulbourethral glands approximately doubled at 6.5 weeks of age when the reduction in endogenous estrogens began at 1 week of age (p < 0.01). However, by 20 and 40 weeks of age, the weights of accessory sex glands were similar between the letrozole-treated boars and the vehicle-treated littermates indicating the growth stimulation was a transient effect when the treatment interval was short. The presence of both classical nuclear estrogen receptors and the G protein-coupled estrogen receptor in neonatal accessory sex glands indicated multiple signaling pathways might mediate the growth inhibition by endogenous estrogens. The absence of a detectable response when the classical estrogen receptors were blocked with fulvestrant (or when the androgen receptor was blocked with flutamide) suggests that endogenous estrogens act through the G protein-coupled estrogen receptor to inhibit the development of accessory sex glands during this neonatal to early juvenile interval.
Collapse
Affiliation(s)
- Trish Berger
- Department of Animal Science, University of California, Davis, CA 95616, USA; (V.G.); (E.L.); (M.R.)
| | - Valerie Guerrero
- Department of Animal Science, University of California, Davis, CA 95616, USA; (V.G.); (E.L.); (M.R.)
| | - Rosalina Boeldt
- Department of Animal Science, University of California, Davis, CA 95616, USA; (V.G.); (E.L.); (M.R.)
| | - Erin Legacki
- Department of Animal Science, University of California, Davis, CA 95616, USA; (V.G.); (E.L.); (M.R.)
| | - Megan Roberts
- Department of Animal Science, University of California, Davis, CA 95616, USA; (V.G.); (E.L.); (M.R.)
| | - Alan J. Conley
- Department of Population Health and Reproduction, University of California, Davis, CA 95616, USA;
| |
Collapse
|
3
|
Dordoe C, Huang W, Bwalya C, Wang X, Shen B, Wang H, Wang J, Ye S, Wang P, Xiaoyan B, Li X, Lin L. The role of microglial activation on ischemic stroke: Modulation by fibroblast growth factors. Cytokine Growth Factor Rev 2023; 74:122-133. [PMID: 37573252 DOI: 10.1016/j.cytogfr.2023.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 07/29/2023] [Indexed: 08/14/2023]
Abstract
Stroke is one of the devastating clinical conditions that causes death and permanent disability. Its occurrence causes the reduction of oxygen and glucose supply, resulting in events such as inflammatory response, oxidative stress, and apoptosis in the brain. Microglia are brain-resident immune cells in the central nervous system (CNS) that exert diverse roles and respond to pathological process after an ischemic insult. The discovery of fibroblast growth factors (FGFs) in mammals, resulted to the findings that they can treat experimental models of stroke in animals effectively. FGFs function as homeostatic factors that control cells and hormones involved in metabolism, and they also regulate the secretion of proinflammatory (M1) and anti-inflammatory (M2) cytokines after stroke. In this review, we outline current evidence of microglia activation in experimental models of stroke focusing on its ability to exacerbate damage or repair tissue. Also, our review sheds light on the pharmacological actions of FGFs on multiple targets to regulate microglial modulation and highlighted their theoretical molecular mechanisms to provide possible therapeutic targets, as well as their limitations for the treatment of stroke. DATA AVAILABILITY: Not applicable.
Collapse
Affiliation(s)
- Confidence Dordoe
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Wenting Huang
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Canol Bwalya
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Xue Wang
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Bixin Shen
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Hao Wang
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Jing Wang
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Shasha Ye
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Peng Wang
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Bao Xiaoyan
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Xiaokun Li
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; Research Units of Clinical Translation of Cell Growth Factors and Diseases Research, Chinese Academy of Medical Science, Wenzhou, Zhejiang 325035, China.
| | - Li Lin
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; Research Units of Clinical Translation of Cell Growth Factors and Diseases Research, Chinese Academy of Medical Science, Wenzhou, Zhejiang 325035, China.
| |
Collapse
|
4
|
Hahn AW, Siddiqui BA, Leo J, Dondossola E, Basham KJ, Miranti CK, Frigo DE. Cancer Cell-Extrinsic Roles for the Androgen Receptor in Prostate Cancer. Endocrinology 2023; 164:bqad078. [PMID: 37192413 PMCID: PMC10413433 DOI: 10.1210/endocr/bqad078] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/25/2023] [Accepted: 05/12/2023] [Indexed: 05/18/2023]
Abstract
Given the central role of the androgen receptor (AR) in prostate cancer cell biology, AR-targeted therapies have been the backbone of prostate cancer treatment for over 50 years. New data indicate that AR is expressed in additional cell types within the tumor microenvironment. Moreover, targeting AR for the treatment of prostate cancer has established side effects such as bone complications and an increased risk of developing cardiometabolic disease, indicating broader roles for AR. With the advent of novel technologies, such as single-cell approaches and advances in preclinical modeling, AR has been identified to have clinically significant functions in other cell types. In this mini-review, we describe new cancer cell-extrinsic roles for AR within the tumor microenvironment as well as systemic effects that collectively impact prostate cancer progression and patient outcomes.
Collapse
Affiliation(s)
- Andrew W Hahn
- Department of Genitourinary Medical Oncology and the David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Bilal A Siddiqui
- Department of Genitourinary Medical Oncology and the David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Javier Leo
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
- The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| | - Eleonora Dondossola
- Department of Genitourinary Medical Oncology and the David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Kaitlin J Basham
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Cindy K Miranti
- Department of Cellular and Molecular Medicine, University of Arizona Cancer Center, University of Arizona, Tucson, AZ 85721, USA
| | - Daniel E Frigo
- Department of Genitourinary Medical Oncology and the David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
- Center for Nuclear Receptors and Cell Signaling, University of Houston, Houston, TX 77204, USA
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA
| |
Collapse
|
5
|
Uno W, Ofuji K, Wymeersch FJ, Takasato M. In vitro induction of prostate buds from murine urogenital epithelium in the absence of mesenchymal cells. Dev Biol 2023; 498:49-60. [PMID: 36963625 DOI: 10.1016/j.ydbio.2023.03.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 03/08/2023] [Accepted: 03/21/2023] [Indexed: 03/26/2023]
Abstract
The prostate is a male reproductive gland which secretes prostatic fluid that enhances male fertility. During development and instigated by fetal testosterone, prostate cells arise caudal to the bladder at the urogenital sinus (UGS), when the urogenital mesenchyme (UGM) secretes signals to the urogenital epithelium (UGE). These initial mesenchymal signals induce prostate-specific gene expression in the UGE, after which epithelial progenitor cells form prostatic buds. Although many important factors for prostate development have been described using UGS organ cultures, those necessary and sufficient for prostate budding have not been clearly identified. This has been in part due to the difficulty to dissect the intricate signaling and feedback between epithelial and mesenchymal UGS cells. In this study, we separated the UGM from the UGE and tested candidate growth factors to show that when FGF10 is present, testosterone is not required for initiating prostate budding from the UGE. Moreover, in the presence of low levels of FGF10, canonical WNT signaling enhances the expression of several prostate progenitor markers in the UGE before budding of the prostate occurs. At the later budding stage, higher levels of FGF10 are required to increase budding and retinoic acid is indispensable for the upregulation of prostate-specific genes. Lastly, we show that under optimized conditions, female UGE can be instructed towards a prostatic fate, and in vitro generated prostate buds from male UGE can differentiate into a mature prostate epithelium after in vivo transplantation. Taken together, our results clarify the signals that can induce fetal prostate buds in the urogenital epithelium in the absence of the surrounding, instructive mesenchyme.
Collapse
Affiliation(s)
- Wataru Uno
- Laboratory for Human Organogenesis, RIKEN Center for Biosystems Dynamics Research, Kobe, 650-0047, Japan; Laboratory of Molecular Cell Biology and Development, Department of Animal Development and Physiology, Graduate School of Biostudies, Kyoto University, Kyoto, 606-8501, Japan
| | - Kazuhiro Ofuji
- Laboratory for Human Organogenesis, RIKEN Center for Biosystems Dynamics Research, Kobe, 650-0047, Japan
| | - Filip J Wymeersch
- Laboratory for Human Organogenesis, RIKEN Center for Biosystems Dynamics Research, Kobe, 650-0047, Japan
| | - Minoru Takasato
- Laboratory for Human Organogenesis, RIKEN Center for Biosystems Dynamics Research, Kobe, 650-0047, Japan; Laboratory of Molecular Cell Biology and Development, Department of Animal Development and Physiology, Graduate School of Biostudies, Kyoto University, Kyoto, 606-8501, Japan.
| |
Collapse
|
6
|
Altés G, Vaquero M, Cuesta S, Anerillas C, Macià A, Espinet C, Ribera J, Bellusci S, Klein OD, Yeramian A, Dolcet X, Egea J, Encinas M. A dominant negative mutation uncovers cooperative control of caudal Wolffian duct development by Sprouty genes. Cell Mol Life Sci 2022; 79:514. [PMID: 36098804 PMCID: PMC9470706 DOI: 10.1007/s00018-022-04546-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 08/30/2022] [Accepted: 09/01/2022] [Indexed: 12/01/2022]
Abstract
The Wolffian ducts (WD) are paired epithelial tubules central to the development of the mammalian genitourinary tract. Outgrowths from the WD known as the ureteric buds (UB) generate the collecting ducts of the kidney. Later during development, the caudal portion of the WD will form the vas deferens, epididymis and seminal vesicle in males, and will degenerate in females. While the genetic pathways controlling the development of the UB are firmly established, less is known about those governing development of WD portions caudal to the UB. Sprouty proteins are inhibitors of receptor tyrosine kinase (RTK) signaling in vivo. We have recently shown that homozygous mutation of a conserved tyrosine (Tyr53) of Spry1 results in UB defects indistinguishable from that of Spry1 null mice. Here, we show that heterozygosity for the Spry1 Y53A allele causes caudal WD developmental defects consisting of ectopically branched seminal vesicles in males and persistent WD in females, without affecting kidney development. Detailed analysis reveals that this phenotype also occurs in Spry1+/– mice but with a much lower penetrance, indicating that removal of tyrosine 53 generates a dominant negative mutation in vivo. Supporting this notion, concomitant deletion of one allele of Spry1 and Spry2 also recapitulates the genital phenotype of Spry1Y53A/+ mice with high penetrance. Mechanistically, we show that unlike the effects of Spry1 in kidney development, these caudal WD defects are independent of Ret signaling, but can be completely rescued by lowering the genetic dosage of Fgf10. In conclusion, mutation of tyrosine 53 of Spry1 generates a dominant negative allele that uncovers fine-tuning of caudal WD development by Sprouty genes.
Collapse
Affiliation(s)
- Gisela Altés
- Department of Experimental Medicine, Universitat de Lleida/Institut de Recerca Biomèdica de Lleida, Edifici Biomedicina I, Lab 2.8, Rovira Roure, 80, 25198, Lleida, Spain
| | - Marta Vaquero
- Department of Experimental Medicine, Universitat de Lleida/Institut de Recerca Biomèdica de Lleida, Edifici Biomedicina I, Lab 2.8, Rovira Roure, 80, 25198, Lleida, Spain
| | - Sara Cuesta
- Department of Experimental Medicine, Universitat de Lleida/Institut de Recerca Biomèdica de Lleida, Edifici Biomedicina I, Lab 2.8, Rovira Roure, 80, 25198, Lleida, Spain.,Fundación de Investigación Biomédica de Cádiz, Hospital Universitario Puerta del Mar, Novena Planta, Investigación, Av Ana de Viya, 21, 11009, Cádiz, Spain
| | - Carlos Anerillas
- Department of Experimental Medicine, Universitat de Lleida/Institut de Recerca Biomèdica de Lleida, Edifici Biomedicina I, Lab 2.8, Rovira Roure, 80, 25198, Lleida, Spain
| | - Anna Macià
- Department of Experimental Medicine, Universitat de Lleida/Institut de Recerca Biomèdica de Lleida, Edifici Biomedicina I, Lab 2.8, Rovira Roure, 80, 25198, Lleida, Spain
| | - Carme Espinet
- Department of Basic Medical Sciences, Universitat de Lleida/Institut de Recerca Biomèdica de Lleida, Rovira Roure, 80, 25198, Lleida, Spain
| | - Joan Ribera
- Department of Experimental Medicine, Universitat de Lleida/Institut de Recerca Biomèdica de Lleida, Edifici Biomedicina I, Lab 2.8, Rovira Roure, 80, 25198, Lleida, Spain
| | | | - Ophir D Klein
- Department of Orofacial Sciences, University of California, San Francisco, USA.,Department of Pediatrics and Institute for Human Genetics, University of California, San Francisco, USA
| | - Andree Yeramian
- Department of Experimental Medicine, Universitat de Lleida/Institut de Recerca Biomèdica de Lleida, Edifici Biomedicina I, Lab 2.8, Rovira Roure, 80, 25198, Lleida, Spain
| | - Xavi Dolcet
- Department of Basic Medical Sciences, Universitat de Lleida/Institut de Recerca Biomèdica de Lleida, Rovira Roure, 80, 25198, Lleida, Spain
| | - Joaquim Egea
- Department of Basic Medical Sciences, Universitat de Lleida/Institut de Recerca Biomèdica de Lleida, Rovira Roure, 80, 25198, Lleida, Spain
| | - Mario Encinas
- Department of Experimental Medicine, Universitat de Lleida/Institut de Recerca Biomèdica de Lleida, Edifici Biomedicina I, Lab 2.8, Rovira Roure, 80, 25198, Lleida, Spain.
| |
Collapse
|
7
|
Amato CM, Yao HHC, Zhao F. One Tool for Many Jobs: Divergent and Conserved Actions of Androgen Signaling in Male Internal Reproductive Tract and External Genitalia. Front Endocrinol (Lausanne) 2022; 13:910964. [PMID: 35846302 PMCID: PMC9280649 DOI: 10.3389/fendo.2022.910964] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 05/25/2022] [Indexed: 11/13/2022] Open
Abstract
In the 1940s, Alfred Jost demonstrated the necessity of testicular secretions, particularly androgens, for male internal and external genitalia differentiation. Since then, our knowledge of androgen impacts on differentiation of the male internal (Wolffian duct) and external genitalia (penis) has been drastically expanded upon. Between these two morphologically and functionally distinct organs, divergent signals facilitate the establishment of tissue-specific identities. Conversely, conserved actions of androgen signaling are present in both tissues and are largely responsible for the growth and expansion of the organs. In this review we synthesize the existing knowledge of the cell type-specific, organ specific, and conserved signaling mechanisms of androgens. Mechanistic studies on androgen signaling in the Wolffian duct and male external genitalia have largely been conducted in mouse model organisms. Therefore, the majority of the review is focused on mouse model studies.
Collapse
Affiliation(s)
- Ciro M. Amato
- Reproductive Developmental Biology Group, National Institute of Environmental Health Sciences, Research Triangle Park, NC, United States
| | - Humphrey H-C. Yao
- Reproductive Developmental Biology Group, National Institute of Environmental Health Sciences, Research Triangle Park, NC, United States
| | - Fei Zhao
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
8
|
Morphometric Analysis of Rat Prostate Development: Roles of MEK/ERK and Rho Signaling Pathways in Prostatic Morphogenesis. Biomolecules 2021; 11:biom11121829. [PMID: 34944473 PMCID: PMC8698940 DOI: 10.3390/biom11121829] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/23/2021] [Accepted: 12/02/2021] [Indexed: 12/24/2022] Open
Abstract
The molecular mechanisms underlying prostate development can provide clues for prostate cancer research. It has been demonstrated that MEK/ERK signaling downstream of androgen-targeted FGF10 signaling directly induces prostatic branching during development, while Rho/Rho-kinase can regulate prostate cell proliferation. MEK/ERK and Rho/Rho kinase regulate myosin light chain kinase (MLCK), and MLCK regulates myosin light chain phosphorylation (MLC-P), which is critical for cell fate, including cell proliferation, differentiation, and apoptosis. However, the roles and crosstalk of the MEK/ERK and Rho/Rho kinase signaling pathways in prostatic morphogenesis have not been examined. In the present study, we used numerical and image analysis to characterize lobe-specific rat prostatic branching during postnatal organ culture and investigated the roles of FGF10-MEK/ERK and Rho/Rho kinase signaling pathways in prostatic morphogenesis. Prostates exhibited distinctive lobe-specific growth and branching patterns in the ventral (VP) and lateral (LP) lobes, while exogenous FGF10 treatment shifted LP branching towards a VP branching pattern. Treatment with inhibitors of MEK1/2, Rho, Rho kinase, or MLCK significantly inhibited VP growth and blocked branching morphogenesis, further supporting critical roles for MEK/ERK and Rho/Rho kinase signaling pathways in prostatic growth and branching during development. We propose that MLCK-regulated MLC-P may be a central downstream target of both signaling pathways in regulating prostate morphogenesis.
Collapse
|
9
|
Buskin A, Singh P, Lorenz O, Robson C, Strand DW, Heer R. A Review of Prostate Organogenesis and a Role for iPSC-Derived Prostate Organoids to Study Prostate Development and Disease. Int J Mol Sci 2021; 22:ijms222313097. [PMID: 34884905 PMCID: PMC8658468 DOI: 10.3390/ijms222313097] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/23/2021] [Accepted: 11/29/2021] [Indexed: 01/09/2023] Open
Abstract
The prostate is vulnerable to two major age-associated diseases, cancer and benign enlargement, which account for significant morbidity and mortality for men across the globe. Prostate cancer is the most common cancer reported in men, with over 1.2 million new cases diagnosed and 350,000 deaths recorded annually worldwide. Benign prostatic hyperplasia (BPH), characterised by the continuous enlargement of the adult prostate, symptomatically afflicts around 50% of men worldwide. A better understanding of the biological processes underpinning these diseases is needed to generate new treatment approaches. Developmental studies of the prostate have shed some light on the processes essential for prostate organogenesis, with many of these up- or downregulated genes expressions also observed in prostate cancer and/or BPH progression. These insights into human disease have been inferred through comparative biological studies relying primarily on rodent models. However, directly observing mechanisms of human prostate development has been more challenging due to limitations in accessing human foetal material. Induced pluripotent stem cells (iPSCs) could provide a suitable alternative as they can mimic embryonic cells, and iPSC-derived prostate organoids present a significant opportunity to study early human prostate developmental processes. In this review, we discuss the current understanding of prostate development and its relevance to prostate-associated diseases. Additionally, we detail the potential of iPSC-derived prostate organoids for studying human prostate development and disease.
Collapse
Affiliation(s)
- Adriana Buskin
- Newcastle University Centre for Cancer, Translational and Clinical Research Institute, Paul O’Gorman Building, Newcastle University, Newcastle upon Tyne NE2 4HH, UK; (P.S.); (C.R.)
- Correspondence: (A.B.); (R.H.)
| | - Parmveer Singh
- Newcastle University Centre for Cancer, Translational and Clinical Research Institute, Paul O’Gorman Building, Newcastle University, Newcastle upon Tyne NE2 4HH, UK; (P.S.); (C.R.)
| | - Oliver Lorenz
- Newcastle University School of Computing, Digital Institute, Urban Sciences Building, Newcastle University, Newcastle upon Tyne NE4 5TG, UK;
| | - Craig Robson
- Newcastle University Centre for Cancer, Translational and Clinical Research Institute, Paul O’Gorman Building, Newcastle University, Newcastle upon Tyne NE2 4HH, UK; (P.S.); (C.R.)
| | - Douglas W. Strand
- Department of Urology, UT Southwestern Medical Center, Dallas, TX 75390, USA;
| | - Rakesh Heer
- Newcastle University Centre for Cancer, Translational and Clinical Research Institute, Paul O’Gorman Building, Newcastle University, Newcastle upon Tyne NE2 4HH, UK; (P.S.); (C.R.)
- Department of Urology, Freeman Hospital, The Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne NE7 7DN, UK
- Correspondence: (A.B.); (R.H.)
| |
Collapse
|
10
|
Testosterone exposure in prenatal life disrupts epithelial nuclear morphology, smooth muscle layer pattern, and FGF10 and Shh expression in prostate. Life Sci 2021; 271:119198. [PMID: 33577857 DOI: 10.1016/j.lfs.2021.119198] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/30/2021] [Accepted: 02/04/2021] [Indexed: 01/03/2023]
Abstract
The aim of this study was to evaluate whether high levels of exogenous testosterone (T) interfere in prostate morphogenesis. Pregnant females were exposed to subcutaneous injections of T cypionate (500 μg/animal) at gestational days 20 and 22. Male and female pups were euthanized at postnatal days 1 and 15. 15-day-old males had only fibroblast growth factor 10 (FGF10) immunostaining and nuclear form factor altered by the treatment, whereas treated females (T1 and T15) had almost all analyzed parameters changed. T1 females showed an increased anogenital distance (AGD), whereas T15 females had both AGD and ovary weight increased. T1 females had a higher number of epithelial buds emerging from the urethral and vaginal epithelium. We observed ectopic prostatic tissue surrounding the vagina in both T1 and T15 females. Moreover, the ectopic acini of T15 females showed delayed luminal formation, and there was a thickening of the periacinar smooth muscle layer (SML). Finally, FGF10 immunostaining intensity decreased in both T15 male and female prostates. Indeed, Sonic hedgehog (Shh) was upregulated in T15 female prostates, whereas no difference was observed between the male groups. These data showed that exogenous T changed the nuclear morphology of prostate epithelial cells in both males and females. Surprisingly, smooth muscle hyperplasia was also observed in the ectopic female prostate. Moreover, T downregulated FGF10 in both male and female prostates. Interestingly, the results suggest that FGF10 downregulation is mediated by the upregulation of Shh in females. In conclusion, exogenous T disrupts prostate development, particularly, affecting, the female.
Collapse
|
11
|
Chouaib B, Collart-Dutilleul PY, Blanc-Sylvestre N, Younes R, Gergely C, Raoul C, Scamps F, Cuisinier F, Romieu O. Identification of secreted factors in dental pulp cell-conditioned medium optimized for neuronal growth. Neurochem Int 2021; 144:104961. [PMID: 33465470 DOI: 10.1016/j.neuint.2021.104961] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 01/04/2021] [Accepted: 01/11/2021] [Indexed: 02/05/2023]
Abstract
With their potent regenerative and protective capacities, stem cell-derived conditioned media emerged as an effective alternative to cell therapy, and have a prospect to be manufactured as pharmaceutical products for tissue regeneration applications. Our study investigates the neuroregenerative potential of human dental pulp cells (DPCs) conditioned medium (CM) and defines an optimization strategy of DPC-CM for enhanced neuronal outgrowth. Primary sensory neurons from mouse dorsal root ganglia were cultured with or without DPC-CM, and the lengths of βIII-tubulin positive neurites were measured. The impacts of several manufacturing features as the duration of cell conditioning, CM storage, and preconditioning of DPCs with some factors on CM functional activity were assessed on neurite length. We observed that DPC-CM significantly enhanced neurites outgrowth of sensory neurons in a concentration-dependent manner. The frozen storage of DPC-CM had no impact on experimental outcomes and 48 h of DPC conditioning is optimal for an effective activity of CM. To further understand the regenerative feature of DPC-CM, we studied DPC secretome by human growth factor antibody array analysis and revealed the presence of several factors involved in either neurogenesis, neuroprotection, angiogenesis, and osteogenesis. The conditioning of DPCs with the B-27 supplement enhanced significantly the neuroregenerative effect of their secretome by changing its composition in growth factors. Here, we show that DPC-CM significantly stimulate neurite outgrowth in primary sensory neurons. Moreover, we identified secreted protein candidates that can potentially promote this promising regenerative feature of DPC-CM.
Collapse
Affiliation(s)
| | | | | | - Richard Younes
- LBN, Univ Montpellier, Montpellier, France; The Neuroscience Institute of Montpellier, Inserm UMR1051, Univ Montpellier, Saint Eloi Hospital, Montpellier, France
| | | | - Cédric Raoul
- The Neuroscience Institute of Montpellier, Inserm UMR1051, Univ Montpellier, Saint Eloi Hospital, Montpellier, France
| | - Frédérique Scamps
- The Neuroscience Institute of Montpellier, Inserm UMR1051, Univ Montpellier, Saint Eloi Hospital, Montpellier, France
| | | | | |
Collapse
|
12
|
Yu S, Wang G, Liao J, Tang M, Chen J. Identification of differentially expressed genes associated with egg production in black-boned chicken. Br Poult Sci 2020; 61:3-7. [PMID: 32134329 DOI: 10.1080/00071668.2020.1736268] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
1. Muchuan black-bone chicken is well known in China for its meat quality and medicinal properties; however, its egg-laying performance is not ideal. To better understand the molecular mechanisms of black-boned chicken egg-laying, high-throughput RNA sequencing was performed to compare differences in the pituitary transcriptome between three high-rate (group H) and three low-rate (group L) egg production chickens. 2. In total, 171 differentially expressed genes (DEGs) were identified between the two groups, of which 113 were upregulated and 58 were downregulated in group L. Some of these genes are known to be related to hormone secretion or the regulation of reproductive processes; these include prolactin-releasing hormone (PRLH), distal-less homeobox 6 (DLX6), interferon regulatory factor 4 (IRF4), and cilia and flagella associated protein 69 (CFAP69). Notably, expression pattern analysis indicated that both PRLH and DLX6 may influence egg-laying performance. 3. The dataset provided a foundation for discovering important genes and pathways involved in the chicken egg-laying process, and may help to improve understanding of the molecular mechanisms of chicken reproduction.
Collapse
Affiliation(s)
- S Yu
- Engineering Research Center of Sichuan Province Higher School of Local Chicken Breeds Industrialization in Southern Sichuan, College of Life Science, Leshan Normal University , Leshan, China
| | - G Wang
- Engineering Research Center of Sichuan Province Higher School of Local Chicken Breeds Industrialization in Southern Sichuan, College of Life Science, Leshan Normal University , Leshan, China
| | - J Liao
- Engineering Research Center of Sichuan Province Higher School of Local Chicken Breeds Industrialization in Southern Sichuan, College of Life Science, Leshan Normal University , Leshan, China
| | - M Tang
- Engineering Research Center of Sichuan Province Higher School of Local Chicken Breeds Industrialization in Southern Sichuan, College of Life Science, Leshan Normal University , Leshan, China
| | - J Chen
- Engineering Research Center of Sichuan Province Higher School of Local Chicken Breeds Industrialization in Southern Sichuan, College of Life Science, Leshan Normal University , Leshan, China
| |
Collapse
|
13
|
Giacomini A, Grillo E, Rezzola S, Ribatti D, Rusnati M, Ronca R, Presta M. The FGF/FGFR system in the physiopathology of the prostate gland. Physiol Rev 2020; 101:569-610. [PMID: 32730114 DOI: 10.1152/physrev.00005.2020] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Fibroblast growth factors (FGFs) are a family of proteins possessing paracrine, autocrine, or endocrine functions in a variety of biological processes, including embryonic development, angiogenesis, tissue homeostasis, wound repair, and cancer. Canonical FGFs bind and activate tyrosine kinase FGF receptors (FGFRs), triggering intracellular signaling cascades that mediate their biological activity. Experimental evidence indicates that FGFs play a complex role in the physiopathology of the prostate gland that ranges from essential functions during embryonic development to modulation of neoplastic transformation. The use of ligand- and receptor-deleted mouse models has highlighted the requirement for FGF signaling in the normal development of the prostate gland. In adult prostate, the maintenance of a functional FGF/FGFR signaling axis is critical for organ homeostasis and function, as its disruption leads to prostate hyperplasia and may contribute to cancer progression and metastatic dissemination. Dissection of the molecular landscape modulated by the FGF family will facilitate ongoing translational efforts directed toward prostate cancer therapy.
Collapse
Affiliation(s)
- Arianna Giacomini
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy; Department of Basic Medical Sciences, Neurosciences, and Sensory Organs, University of Bari Medical School, Bari, Italy; and Italian Consortium for Biotechnology, Unit of Brescia, Brescia, Italy
| | - Elisabetta Grillo
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy; Department of Basic Medical Sciences, Neurosciences, and Sensory Organs, University of Bari Medical School, Bari, Italy; and Italian Consortium for Biotechnology, Unit of Brescia, Brescia, Italy
| | - Sara Rezzola
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy; Department of Basic Medical Sciences, Neurosciences, and Sensory Organs, University of Bari Medical School, Bari, Italy; and Italian Consortium for Biotechnology, Unit of Brescia, Brescia, Italy
| | - Domenico Ribatti
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy; Department of Basic Medical Sciences, Neurosciences, and Sensory Organs, University of Bari Medical School, Bari, Italy; and Italian Consortium for Biotechnology, Unit of Brescia, Brescia, Italy
| | - Marco Rusnati
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy; Department of Basic Medical Sciences, Neurosciences, and Sensory Organs, University of Bari Medical School, Bari, Italy; and Italian Consortium for Biotechnology, Unit of Brescia, Brescia, Italy
| | - Roberto Ronca
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy; Department of Basic Medical Sciences, Neurosciences, and Sensory Organs, University of Bari Medical School, Bari, Italy; and Italian Consortium for Biotechnology, Unit of Brescia, Brescia, Italy
| | - Marco Presta
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy; Department of Basic Medical Sciences, Neurosciences, and Sensory Organs, University of Bari Medical School, Bari, Italy; and Italian Consortium for Biotechnology, Unit of Brescia, Brescia, Italy
| |
Collapse
|
14
|
Cunha GR, Sinclair A, Ricke WA, Robboy SJ, Cao M, Baskin LS. Reproductive tract biology: Of mice and men. Differentiation 2019; 110:49-63. [PMID: 31622789 PMCID: PMC7339118 DOI: 10.1016/j.diff.2019.07.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 07/24/2019] [Accepted: 07/26/2019] [Indexed: 12/11/2022]
Abstract
The study of male and female reproductive tract development requires expertise in two separate disciplines, developmental biology and endocrinology. For ease of experimentation and economy, the mouse has been used extensively as a model for human development and pathogenesis, and for the most part similarities in developmental processes and hormone action provide ample justification for the relevance of mouse models for human reproductive tract development. Indeed, there are many examples describing the phenotype of human genetic disorders that have a reasonably comparable phenotype in mice, attesting to the congruence between mouse and human development. However, anatomic, developmental and endocrinologic differences exist between mice and humans that (1) must be appreciated and (2) considered with caution when extrapolating information between all animal models and humans. It is critical that the investigator be aware of both the similarities and differences in organogenesis and hormone action within male and female reproductive tracts so as to focus on those features of mouse models with clear relevance to human development/pathology. This review, written by a team with extensive expertise in the anatomy, developmental biology and endocrinology of both mouse and human urogenital tracts, focusses upon the significant human/mouse differences, and when appropriate voices a cautionary note regarding extrapolation of mouse models for understanding development of human male and female reproductive tracts.
Collapse
Affiliation(s)
- Gerald R Cunha
- Department of Urology, University of California, 400 Parnassus Avenue, San Francisco, CA, 94143, USA; George M. O'Brien Center of Research Excellence, Department of Urology, University of Wisconsin, Madison, WI, 93705, USA; Department of Pathology, Duke University, Davison Building, Box 3712, Durham, NC, 27710, USA.
| | - Adriane Sinclair
- Department of Urology, University of California, 400 Parnassus Avenue, San Francisco, CA, 94143, USA
| | - Will A Ricke
- George M. O'Brien Center of Research Excellence, Department of Urology, University of Wisconsin, Madison, WI, 93705, USA
| | - Stanley J Robboy
- Department of Pathology, Duke University, Davison Building, Box 3712, Durham, NC, 27710, USA
| | - Mei Cao
- Department of Urology, University of California, 400 Parnassus Avenue, San Francisco, CA, 94143, USA
| | - Laurence S Baskin
- Department of Urology, University of California, 400 Parnassus Avenue, San Francisco, CA, 94143, USA
| |
Collapse
|
15
|
Zhao F, Yao HHC. A tale of two tracts: history, current advances, and future directions of research on sexual differentiation of reproductive tracts†. Biol Reprod 2019; 101:602-616. [PMID: 31058957 PMCID: PMC6791057 DOI: 10.1093/biolre/ioz079] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 04/12/2019] [Accepted: 05/02/2019] [Indexed: 12/12/2022] Open
Abstract
Alfred Jost's work in the 1940s laid the foundation of the current paradigm of sexual differentiation of reproductive tracts, which contends that testicular hormones drive the male patterning of reproductive tract system whereas the female phenotype arises by default. Once established, the sex-specific reproductive tracts undergo morphogenesis, giving rise to anatomically and functionally distinct tubular organs along the rostral-caudal axis. Impairment of sexual differentiation of reproductive tracts by genetic alteration and environmental exposure are the main causes of disorders of sex development, and infertility at adulthood. This review covers past and present work on sexual differentiation and morphogenesis of reproductive tracts, associated human disorders, and emerging technologies that have made impacts or could radically expand our knowledge in this field.
Collapse
Affiliation(s)
- Fei Zhao
- Reproductive Developmental Biology Group, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| | - Humphrey Hung-Chang Yao
- Reproductive Developmental Biology Group, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| |
Collapse
|
16
|
Han Y, Li X, Zhang Y, Han Y, Chang F, Ding J. Mesenchymal Stem Cells for Regenerative Medicine. Cells 2019; 8:E886. [PMID: 31412678 PMCID: PMC6721852 DOI: 10.3390/cells8080886] [Citation(s) in RCA: 634] [Impact Index Per Article: 126.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 08/05/2019] [Accepted: 08/06/2019] [Indexed: 02/06/2023] Open
Abstract
In recent decades, the biomedical applications of mesenchymal stem cells (MSCs) have attracted increasing attention. MSCs are easily extracted from the bone marrow, fat, and synovium, and differentiate into various cell lineages according to the requirements of specific biomedical applications. As MSCs do not express significant histocompatibility complexes and immune stimulating molecules, they are not detected by immune surveillance and do not lead to graft rejection after transplantation. These properties make them competent biomedical candidates, especially in tissue engineering. We present a brief overview of MSC extraction methods and subsequent potential for differentiation, and a comprehensive overview of their preclinical and clinical applications in regenerative medicine, and discuss future challenges.
Collapse
Affiliation(s)
- Yu Han
- Department of Orthopedics, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun 130041, China
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, China
| | - Xuezhou Li
- Department of Orthopedics, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun 130041, China
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, China
| | - Yanbo Zhang
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, 126 Xiantai Street, Changchun 130033, China.
| | - Yuping Han
- Department of Urology, China-Japan Union Hospital of Jilin University, 126 Xiantai Street, Changchun 130033, China.
| | - Fei Chang
- Department of Orthopedics, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun 130041, China.
| | - Jianxun Ding
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, China
| |
Collapse
|
17
|
Nash C, Boufaied N, Badescu D, Wang YC, Paliouras M, Trifiro M, Ragoussis I, Thomson AA. Genome-wide analysis of androgen receptor binding and transcriptomic analysis in mesenchymal subsets during prostate development. Dis Model Mech 2019; 12:12/7/dmm039297. [PMID: 31350272 PMCID: PMC6679388 DOI: 10.1242/dmm.039297] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 06/21/2019] [Indexed: 12/19/2022] Open
Abstract
Prostate development is controlled by androgens, the androgen receptor (AR) and mesenchymal–epithelial signalling. We used chromatin immunoprecipitation sequencing (ChIP-seq) to define AR genomic binding in the male and female mesenchyme. Tissue- and single-cell-based transcriptional profiling was used to define mesenchymal AR target genes. We observed significant AR genomic binding in females and a strong enrichment at proximal promoters in both sexes. In males, there was greater AR binding to introns and intergenic regions as well as to classical AR binding motifs. In females, there was increased proximal promoter binding and involvement of cofactors. Comparison of AR-bound genes with transcriptomic data enabled the identification of novel sexually dimorphic AR target genes. We validated the dimorphic expression of AR target genes using published datasets and confirmed regulation by androgens using ex vivo organ cultures. AR targets showed variable expression in patients with androgen insensitivity syndrome. We examined AR function at single-cell resolution using single-cell RNA sequencing (scRNA-seq) in male and female mesenchyme. Surprisingly, both AR and target genes were distributed throughout cell subsets, with few positive cells within each subset. AR binding was weakly correlated with target gene expression. Summary: A study of how androgens lead to sexually dimorphic development of the prostate using transcription factor genome binding and transcriptome analysis in mesenchymal subsets.
Collapse
Affiliation(s)
- Claire Nash
- Department of Surgery, Division of Urology, McGill University and the Cancer Research Program of the Research Institute of McGill University Health Centre, Montreal, Quebec, Canada H4A 3J1
| | - Nadia Boufaied
- Department of Surgery, Division of Urology, McGill University and the Cancer Research Program of the Research Institute of McGill University Health Centre, Montreal, Quebec, Canada H4A 3J1
| | - Dunarel Badescu
- McGill University and Genome Quebec Innovation Center, Montreal, Quebec, Canada H3A 0G1
| | - Yu Chang Wang
- McGill University and Genome Quebec Innovation Center, Montreal, Quebec, Canada H3A 0G1
| | - Miltiadis Paliouras
- Division of Endocrinology, Department of Medicine, Sir Mortimer B. Davis-Jewish General Hospital, 5750 Côte-des-Neiges Rd, Montreal, QC, Canada H3S 1Y9
| | - Mark Trifiro
- Division of Endocrinology, Department of Medicine, Sir Mortimer B. Davis-Jewish General Hospital, 5750 Côte-des-Neiges Rd, Montreal, QC, Canada H3S 1Y9
| | - Ioannis Ragoussis
- McGill University and Genome Quebec Innovation Center, Montreal, Quebec, Canada H3A 0G1
| | - Axel A Thomson
- Department of Surgery, Division of Urology, McGill University and the Cancer Research Program of the Research Institute of McGill University Health Centre, Montreal, Quebec, Canada H4A 3J1
| |
Collapse
|
18
|
Cunha GR, Vezina CM, Isaacson D, Ricke WA, Timms BG, Cao M, Franco O, Baskin LS. Development of the human prostate. Differentiation 2018; 103:24-45. [PMID: 30224091 PMCID: PMC6234090 DOI: 10.1016/j.diff.2018.08.005] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 08/21/2018] [Accepted: 08/24/2018] [Indexed: 12/14/2022]
Abstract
This paper provides a detailed compilation of human prostatic development that includes human fetal prostatic gross anatomy, histology, and ontogeny of selected epithelial and mesenchymal differentiation markers and signaling molecules throughout the stages of human prostatic development: (a) pre-bud urogenital sinus (UGS), (b) emergence of solid prostatic epithelial buds from urogenital sinus epithelium (UGE), (c) bud elongation and branching, (d) canalization of the solid epithelial cords, (e) differentiation of luminal and basal epithelial cells, and (f) secretory cytodifferentiation. Additionally, we describe the use of xenografts to assess the actions of androgens and estrogens on human fetal prostatic development. In this regard, we report a new model of de novo DHT-induction of prostatic development from xenografts of human fetal female urethras, which emphasizes the utility of the xenograft approach for investigation of initiation of human prostatic development. These studies raise the possibility of molecular mechanistic studies on human prostatic development through the use of tissue recombinants composed of mutant mouse UGM combined with human fetal prostatic epithelium. Our compilation of human prostatic developmental processes is likely to advance our understanding of the pathogenesis of benign prostatic hyperplasia and prostate cancer as the neoformation of ductal-acinar architecture during normal development is shared during the pathogenesis of benign prostatic hyperplasia and prostate cancer.
Collapse
Affiliation(s)
- Gerald R Cunha
- Department of Urology, University of California, 400 Parnassus Avenue, San Francisco, CA 94143, United States.
| | - Chad M Vezina
- School of Veterinary Medicine, University of Wisconsin, Madison, WI 53706, United States
| | - Dylan Isaacson
- Department of Urology, University of California, 400 Parnassus Avenue, San Francisco, CA 94143, United States
| | - William A Ricke
- Department of Urology, University of Wisconsin, Madison, WI 53705, United States
| | - Barry G Timms
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD 57069, United States
| | - Mei Cao
- Department of Urology, University of California, 400 Parnassus Avenue, San Francisco, CA 94143, United States
| | - Omar Franco
- Department of Surgery, North Shore University Health System, 1001 University Place, Evanston, IL 60201, United States
| | - Laurence S Baskin
- Department of Urology, University of California, 400 Parnassus Avenue, San Francisco, CA 94143, United States
| |
Collapse
|
19
|
Montano M, Bushman W. Morphoregulatory pathways in prostate ductal development. Dev Dyn 2018; 246:89-99. [PMID: 27884054 DOI: 10.1002/dvdy.24478] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 11/10/2016] [Accepted: 11/15/2016] [Indexed: 01/22/2023] Open
Abstract
The mouse prostate is a male sex-accessory gland comprised of a branched ductal network arranged into three separate bilateral lobes: the anterior, dorsolateral, and ventral lobes. Prostate ductal development is the primary morphogenetic event in prostate development and requires a complex regulation of spatiotemporal factors. This review provides an overview of prostate development and the major genetic regulators and signaling pathways involved. To identify new areas for further study, we briefly highlight the likely important, but relatively understudied, role of the extracellular matrix (ECM). Finally, we point out the potential importance of the ECM in influencing the behavior and prognosis of prostate cancer. Developmental Dynamics 246:89-99, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Monica Montano
- University of Wisconsin Madison, Department of Urology, Madison, Wisconsin.,University of Wisconsin Madison, Cellular and Molecular Pathology, Madison, Wisconsin.,University of Wisconsin Madison, Carbone Cancer Center, Clinical Sciences Center, Madison, Wisconsin
| | - Wade Bushman
- University of Wisconsin Madison, Department of Urology, Madison, Wisconsin.,University of Wisconsin Madison, Carbone Cancer Center, Clinical Sciences Center, Madison, Wisconsin
| |
Collapse
|
20
|
Boufaied N, Nash C, Rochette A, Smith A, Orr B, Grace OC, Wang YC, Badescu D, Ragoussis J, Thomson AA. Identification of genes expressed in a mesenchymal subset regulating prostate organogenesis using tissue and single cell transcriptomics. Sci Rep 2017; 7:16385. [PMID: 29180763 PMCID: PMC5703996 DOI: 10.1038/s41598-017-16685-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 11/16/2017] [Indexed: 01/25/2023] Open
Abstract
Prostate organogenesis involves epithelial growth controlled by inductive signalling from specialised mesenchymal subsets. To identify pathways active in mesenchyme we used tissue and single cell transcriptomics to define mesenchymal subsets and subset-specific transcript expression. We documented transcript expression using Tag-seq and RNA-seq in female rat Ventral Mesenchymal Pad (VMP) as well as adjacent urethra comprised of smooth muscle and peri-urethral mesenchyme. Transcripts enriched in female VMP were identified with Tag-seq of microdissected tissue, RNA-seq of cell populations, and single cells. We identified 400 transcripts as enriched in the VMP using bio-informatic comparisons of Tag-seq and RNA-seq data, and 44 were confirmed by single cell RNA-seq. Cell subset analysis showed that VMP and adjacent mesenchyme were composed of distinct cell types and that each tissue contained two subgroups. Markers for these subgroups were highly subset specific. Thirteen transcripts were validated by qPCR to confirm cell specific expression in microdissected tissues, as well as expression in neonatal prostate. Immunohistochemical staining demonstrated that Ebf3 and Meis2 showed a restricted expression pattern in female VMP and prostate mesenchyme. We conclude that prostate inductive mesenchyme shows limited cellular heterogeneity and that transcriptomic analysis identified new mesenchymal subset transcripts associated with prostate organogenesis.
Collapse
Affiliation(s)
- Nadia Boufaied
- Department of Surgery, Division of Urology, Cancer Research Program, McGill University Health Centre, 1001 Decarie Boulevard, Montreal, Quebec, H4A 3J1, Canada
| | - Claire Nash
- Department of Surgery, Division of Urology, Cancer Research Program, McGill University Health Centre, 1001 Decarie Boulevard, Montreal, Quebec, H4A 3J1, Canada
| | - Annie Rochette
- Department of Surgery, Division of Urology, Cancer Research Program, McGill University Health Centre, 1001 Decarie Boulevard, Montreal, Quebec, H4A 3J1, Canada
| | - Anthony Smith
- Department of Surgery, Division of Urology, Cancer Research Program, McGill University Health Centre, 1001 Decarie Boulevard, Montreal, Quebec, H4A 3J1, Canada
| | - Brigid Orr
- MRC Human Reproductive Sciences Unit, The Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK
| | - O Cathal Grace
- MRC Human Reproductive Sciences Unit, The Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK
| | - Yu Chang Wang
- McGill University and Genome Quebec Innovation Centre, 740 Dr. Penfield Avenue, Montreal, H3A 0G1, Canada
| | - Dunarel Badescu
- McGill University and Genome Quebec Innovation Centre, 740 Dr. Penfield Avenue, Montreal, H3A 0G1, Canada
| | - Jiannis Ragoussis
- McGill University and Genome Quebec Innovation Centre, 740 Dr. Penfield Avenue, Montreal, H3A 0G1, Canada
| | - Axel A Thomson
- Department of Surgery, Division of Urology, Cancer Research Program, McGill University Health Centre, 1001 Decarie Boulevard, Montreal, Quebec, H4A 3J1, Canada.
| |
Collapse
|
21
|
Hadziselimovic F. On the descent of the epididymo-testicular unit, cryptorchidism, and prevention of infertility. Basic Clin Androl 2017; 27:21. [PMID: 29163975 PMCID: PMC5686796 DOI: 10.1186/s12610-017-0065-8] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 10/27/2017] [Indexed: 12/22/2022] Open
Abstract
This comprehensive review provides in-depth coverage of progress made in understanding the molecular mechanisms underlying cryptorchidism, a frequent pathology first described in about 1786 by John Hunter. The first part focuses on the physiology, embryology, and histology of epididymo-testicular descent. In the last 20 years epididymo-testicular descent has become the victim of schematic drawings with an unjustified rejection of valid histological data. This part also includes discussion on the roles of gonadotropin-releasing hormone, fibroblast growth factors, Müllerian inhibiting substance, androgens, inhibin B, and insulin-like 3 in epididymo-testicular descent. The second part addresses the etiology and histology of cryptorchidism as well as the importance of mini-puberty for normal fertility development. A critical view is presented on current clinical guidelines that recommend early orchidopexy alone as the best possible treatment. Finally, by combining classical physiological information and the output of cutting-edge genomics data into a complete picture the importance of hormonal treatment in preventing cryptorchidism-induced infertility is underscored.
Collapse
Affiliation(s)
- Faruk Hadziselimovic
- Cryptorchidism Research Institute, Kindermedizinisches Zentrum Liestal, Liestal, Switzerland
- Pediatrics at the University of Basel and Director of Cryptorchidism Research Institfigute, Kindermedizinisches Zentrum, Bahnhofplatz 11, 4410 Liestal, Switzerland
| |
Collapse
|
22
|
Toivanen R, Shen MM. Prostate organogenesis: tissue induction, hormonal regulation and cell type specification. Development 2017; 144:1382-1398. [PMID: 28400434 DOI: 10.1242/dev.148270] [Citation(s) in RCA: 117] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Prostate organogenesis is a complex process that is primarily mediated by the presence of androgens and subsequent mesenchyme-epithelial interactions. The investigation of prostate development is partly driven by its potential relevance to prostate cancer, in particular the apparent re-awakening of key developmental programs that occur during tumorigenesis. However, our current knowledge of the mechanisms that drive prostate organogenesis is far from complete. Here, we provide a comprehensive overview of prostate development, focusing on recent findings regarding sexual dimorphism, bud induction, branching morphogenesis and cellular differentiation.
Collapse
Affiliation(s)
- Roxanne Toivanen
- Departments of Medicine, Genetics and Development, Urology, and Systems Biology, Herbert Irving Comprehensive Cancer Center, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA
| | - Michael M Shen
- Departments of Medicine, Genetics and Development, Urology, and Systems Biology, Herbert Irving Comprehensive Cancer Center, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA
| |
Collapse
|
23
|
Zhao F, Franco HL, Rodriguez KF, Brown PR, Tsai MJ, Tsai SY, Yao HHC. Elimination of the male reproductive tract in the female embryo is promoted by COUP-TFII in mice. Science 2017; 357:717-720. [PMID: 28818950 PMCID: PMC5713893 DOI: 10.1126/science.aai9136] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 05/18/2017] [Accepted: 06/21/2017] [Indexed: 12/16/2022]
Abstract
The sexual differentiation paradigm contends that the female pattern of the reproductive system is established by default because the male reproductive tracts (Wolffian ducts) in the female degenerate owing to a lack of androgen. Here, we discovered that female mouse embryos lacking Coup-tfII (chicken ovalbumin upstream promoter transcription factor II) in the Wolffian duct mesenchyme became intersex-possessing both female and male reproductive tracts. Retention of Wolffian ducts was not caused by ectopic androgen production or action. Instead, enhanced phosphorylated extracellular signal-regulated kinase signaling in Wolffian duct epithelium was responsible for the retention of male structures in an androgen-independent manner. We thus suggest that elimination of Wolffian ducts in female embryos is actively promoted by COUP-TFII, which suppresses a mesenchyme-epithelium cross-talk responsible for Wolffian duct maintenance.
Collapse
Affiliation(s)
- Fei Zhao
- Reproductive Developmental Biology Group, National Institute of Environmental Health Sciences, Durham, NC 27709, USA
| | - Heather L Franco
- Reproductive Developmental Biology Group, National Institute of Environmental Health Sciences, Durham, NC 27709, USA
| | - Karina F Rodriguez
- Reproductive Developmental Biology Group, National Institute of Environmental Health Sciences, Durham, NC 27709, USA
| | - Paula R Brown
- Reproductive Developmental Biology Group, National Institute of Environmental Health Sciences, Durham, NC 27709, USA
| | - Ming-Jer Tsai
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Sophia Y Tsai
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Humphrey H-C Yao
- Reproductive Developmental Biology Group, National Institute of Environmental Health Sciences, Durham, NC 27709, USA.
| |
Collapse
|
24
|
Park HJ, Bolton EC. RET-mediated glial cell line-derived neurotrophic factor signaling inhibits mouse prostate development. Development 2017; 144:2282-2293. [PMID: 28506996 DOI: 10.1242/dev.145086] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 05/10/2017] [Indexed: 01/15/2023]
Abstract
In humans and rodents, the prostate gland develops from the embryonic urogenital sinus (UGS). The androgen receptor (AR) is thought to control the expression of morphogenetic genes in inductive UGS mesenchyme, which promotes proliferation and cytodifferentiation of the prostatic epithelium. However, the nature of the AR-regulated morphogenetic genes and the mechanisms whereby AR controls prostate development are not understood. Glial cell line-derived neurotrophic factor (GDNF) binds GDNF family receptor α1 (GFRα1) and signals through activation of RET tyrosine kinase. Gene disruption studies in mice have revealed essential roles for GDNF signaling in development; however, its role in prostate development is unexplored. Here, we establish novel roles of GDNF signaling in mouse prostate development. Using an organ culture system for prostate development and Ret mutant mice, we demonstrate that RET-mediated GDNF signaling in UGS increases proliferation of mesenchyme cells and suppresses androgen-induced proliferation and differentiation of prostate epithelial cells, inhibiting prostate development. We also identify Ar as a GDNF-repressed gene and Gdnf and Gfrα1 as androgen-repressed genes in UGS, thus establishing reciprocal regulatory crosstalk between AR and GDNF signaling in prostate development.
Collapse
Affiliation(s)
- Hyun-Jung Park
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Eric C Bolton
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
25
|
Al-Kurdi B. Hierarchical transcriptional profile of urothelial cells development and differentiation. Differentiation 2017; 95:10-20. [PMID: 28135607 DOI: 10.1016/j.diff.2016.10.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Revised: 10/09/2016] [Accepted: 10/14/2016] [Indexed: 11/27/2022]
Abstract
The urothelial lining of the lower urinary tract is the most efficient permeability barrier in animals, exhibiting a highly differentiated phenotype and a remarkable regenerative capacity upon wounding. During development and possibly during repair, cells undergo a sequence of hierarchical transcriptional events that mark the transition of these cells from the least differentiated urothelial phenotype characteristic of the basal cell layer, to the most differentiated cellular phenotype characteristic of the superficial cell layer. Unraveling normal urothelial differentiation program is essential to uncover the underlying causes of many congenital abnormalities and for the development of an appropriate differentiation niche for stem cells, for future use in urinary tract tissue engineering and organ reconstruction. Kruppel like factor-5 appears to be at the top of the hierarchy activating several downstream transcription factors, the most prominent of which is peroxisome proliferator activator receptor-γ. Eventually those lead to the activation of transcription factors that directly regulate the expression of uroplakin proteins along with other proteins that mediate the permeability function of the urothelium. In this review, we discuss the most recent findings in the area of urothelial cellular differentiation and transcriptional regulation, aiming for a comprehensive overview that aids in a refined understanding of this process.
Collapse
Affiliation(s)
- Ban Al-Kurdi
- Cell Therapy Center, The University of Jordan, Amman, Jordan.
| |
Collapse
|
26
|
Fujimoto N, Kanno J. Increase in prostate stem cell antigen expression in prostatic hyperplasia induced by testosterone and 17β-estradiol in C57BL mice. J Steroid Biochem Mol Biol 2016; 158:56-62. [PMID: 26815912 DOI: 10.1016/j.jsbmb.2016.01.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 01/20/2016] [Accepted: 01/22/2016] [Indexed: 11/17/2022]
Abstract
Estradiol (E2) is known to act synergistically with testosterone (T) for the development of prostatic hyperplasia in rats and dogs, but murine prostate is less responsive to hormonal stimulation. However, a recent study revealed that the combined administration of E2 and T induced prostatic hyperplasia with bladder outlet obstruction in C57BL mice. To understand the mechanisms underlying the hormonal induction of prostatic hyperplasia, the expression of growth factors and their receptors, androgen receptor, estrogen receptor (ER), and prostatic secretory proteins was investigated. Ten-week-old male C57BL mice were treated with T (30mg) or T+E2 (0.5mg) for 10 weeks, and prostatic lobes were dissected and subjected to quantitative RT-PCR and immunoblotting analysis. T administration appeared to induce glandular prostatic growth, while with T+E2 administration this growth was greater and accompanied by extreme bladder enlargement. The expression of prostate stem cell antigen (PSCA) mRNA and protein was increased in prostate tissue in the T group. The combined administration of E2 with T prominently enhanced PSCA expression, along with increased insulin growth factor 1 mRNA levels and decreased estrogen receptor β mRNA expression. The synergistic effect of E2 on the expression of PSCA suggests that this protein may play an important role in the hormone-induced development of prostatic hyperplasia.
Collapse
Affiliation(s)
| | - Jun Kanno
- National Institute of Health Science, Tokyo, Japan
| |
Collapse
|
27
|
Neuron-derived FGF10 ameliorates cerebral ischemia injury via inhibiting NF-κB-dependent neuroinflammation and activating PI3K/Akt survival signaling pathway in mice. Sci Rep 2016; 6:19869. [PMID: 26813160 PMCID: PMC4728497 DOI: 10.1038/srep19869] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 12/18/2015] [Indexed: 12/19/2022] Open
Abstract
FGF10 is a member of fibroblast growth factors (FGFs). We previously showed that FGF10 protects neuron against oxygen-glucose deprivation injury in vitro; however, the effect of FGF10 in ischemic stroke in vivo is unknown. In the present study, we showed that FGF10 was mainly expressed in neurons but not astrocytes, and detected FGF10 in mouse cerebrospinal fluid. The FGF10 levels in neurons culture medium and cell lysate were much higher than those in astrocytes. FGF10 expression in brain tissue and FGF10 level in CSF were increased in mouse middle cerebral artery occlusion (MCAO) model. Administration of FGF10 into lateral cerebroventricle not only decreased MCAO-induced brain infarct volume and neurological deficit, but also reduced the number of TUNEL-positive cells and activities of Caspases. Moreover, FGF10 treatment depressed the triggered inflammatory factors (TNF-α and IL-6) and NF-κB signaling pathway, and increased phosphorylation of PI3K/Akt signaling pathway. Blockade of PI3K/Akt signaling pathway by wortmannin and Akt1/2-kinase inhibitor, partly compromised the neuroprotection of FGF10. However, blockade of PI3K/Akt signaling pathway did not impair the anti-inflammation action of FGF10. Collectively, our results demonstrate that neuron-derived FGF10 ameliorates cerebral ischemia injury via inhibiting NF-κB-dependent neuroinflammation and activating PI3K/Akt survival signaling pathway in mice.
Collapse
|
28
|
Nishan U, Damas-Souza DM, Barbosa GO, Muhammad N, Rahim A, Carvalho HF. New transcription factors involved with postnatal ventral prostate gland development in male Wistar rats during the first week. Life Sci 2015; 143:168-73. [PMID: 26549646 DOI: 10.1016/j.lfs.2015.10.036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 10/15/2015] [Accepted: 10/31/2015] [Indexed: 11/28/2022]
Abstract
AIMS The high incidence in men of prostatic diseases, including benign and malignant tumors, makes the understanding of prostate development and biology very important. Understanding the organogenesis of the prostate gland has been a substantial challenge as "prostatic code" is not well defined at the present time. The novelty of this work lies in unveiling new transcription factors (TFs) during neonatal ventral prostate (VP) gland development in male Wistar rats. MAIN METHODS The techniques of qRT-PCR and immunohistochemistry have been employed to perform this work while the VP gland was obtained from neonatal rats at day zero (the day of birth) day 3 and 6. KEY FINDINGS 16 TFs were studied and we found an increased expression of Eya2, Lhrh and Znf142, invariable levels of Znf703 and Dbp, and decreased expression of 11 others at postnatal development day 3 and 6 as compared to day zero. ZNF703 was found by immunohistochemistry in epithelial cells at days 0, 3 and 6. qRT-PCR for Eya2 and Dmrt2 showed the highest and lowest fold change for them respectively, and immunohistochemistry showed that the former is being expressed at the three selected time points while the latter appears to be diminishing with very few cells expressing it until day 6. SIGNIFICANCE Results from this work is reporting the role of these TFs for the first time and will significantly contribute to the current understanding of the development and branching morphogenesis of the neonatal VP gland during the first week of postnatal development.
Collapse
Affiliation(s)
- Umar Nishan
- Department of Structural and Functional Biology, State University of Campinas, Campinas, São Paulo, Brazil; Interdisciplinary Research Centre in Biomedical Materials (IRCBM), COMSATS Institute of Information Technology, Lahore, Pakistan.
| | - Danilo M Damas-Souza
- Department of Structural and Functional Biology, State University of Campinas, Campinas, São Paulo, Brazil
| | - Guilherme Oliveira Barbosa
- Department of Structural and Functional Biology, State University of Campinas, Campinas, São Paulo, Brazil
| | - Nawshad Muhammad
- Interdisciplinary Research Centre in Biomedical Materials (IRCBM), COMSATS Institute of Information Technology, Lahore, Pakistan
| | - Abdur Rahim
- Interdisciplinary Research Centre in Biomedical Materials (IRCBM), COMSATS Institute of Information Technology, Lahore, Pakistan
| | - Hernandes F Carvalho
- Department of Structural and Functional Biology, State University of Campinas, Campinas, São Paulo, Brazil
| |
Collapse
|
29
|
Cunha G, Overland M, Li Y, Cao M, Shen J, Sinclair A, Baskin L. Methods for studying human organogenesis. Differentiation 2015; 91:10-4. [PMID: 26585195 DOI: 10.1016/j.diff.2015.10.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 10/09/2015] [Indexed: 10/22/2022]
Abstract
This review details methods for utilizing D & C suction abortus specimens as a source of human fetal organs to study the morphogenetic and molecular mechanisms of human fetal organ development. By this means it is possible to design experiments elucidating the molecular mechanisms of human fetal organ development and to compare and contrast human developmental mechanisms with that of laboratory animals. Finally human fetal organs can be grown in vivo as grafts to athymic mice, thus allowing ethical analysis of potential adverse effects of environmental toxicants.
Collapse
Affiliation(s)
- Gerald Cunha
- Department of Urology, University of California San Francisco, 400 Parnassus Avenue, Box A610, San Francisco, CA 94143, USA.
| | - Maya Overland
- Department of Urology, University of California San Francisco, 400 Parnassus Avenue, Box A610, San Francisco, CA 94143, USA
| | - Yi Li
- Department of Urology, University of California San Francisco, 400 Parnassus Avenue, Box A610, San Francisco, CA 94143, USA
| | - Mei Cao
- Department of Urology, University of California San Francisco, 400 Parnassus Avenue, Box A610, San Francisco, CA 94143, USA
| | - Joel Shen
- Department of Urology, University of California San Francisco, 400 Parnassus Avenue, Box A610, San Francisco, CA 94143, USA
| | - Adriane Sinclair
- Department of Urology, University of California San Francisco, 400 Parnassus Avenue, Box A610, San Francisco, CA 94143, USA
| | - Laurence Baskin
- Department of Urology, University of California San Francisco, 400 Parnassus Avenue, Box A610, San Francisco, CA 94143, USA
| |
Collapse
|
30
|
Calderon-Gierszal EL, Prins GS. Directed Differentiation of Human Embryonic Stem Cells into Prostate Organoids In Vitro and its Perturbation by Low-Dose Bisphenol A Exposure. PLoS One 2015. [PMID: 26222054 PMCID: PMC4519179 DOI: 10.1371/journal.pone.0133238] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Studies using rodent and adult human prostate stem-progenitor cell models suggest that developmental exposure to the endocrine disruptor Bisphenol-A (BPA) can predispose to prostate carcinogenesis with aging. Unknown at present is whether the embryonic human prostate is equally susceptible to BPA during its natural developmental window. To address this unmet need, we herein report the construction of a pioneer in vitro human prostate developmental model to study the effects of BPA. The directed differentiation of human embryonic stem cells (hESC) into prostatic organoids in a spatial system was accomplished with precise temporal control of growth factors and steroids. Activin-induced definitive endoderm was driven to prostate specification by combined exposure to WNT10B and FGF10. Matrigel culture for 20–30 days in medium containing R-Spondin-1, Noggin, EGF, retinoic acid and testosterone was sufficient for mature prostate organoid development. Immunofluorescence and gene expression analysis confirmed that organoids exhibited cytodifferentiation and functional properties of the human prostate. Exposure to 1 nM or 10 nM BPA throughout differentiation culture disturbed early morphogenesis in a dose-dependent manner with 1 nM BPA increasing and 10 nM BPA reducing the number of branched structures formed. While differentiation of branched structures to mature organoids seemed largely unaffected by BPA exposure, the stem-like cell population increased, appearing as focal stem cell nests that have not properly entered lineage commitment rather than the rare isolated stem cells found in normally differentiated structures. These findings provide the first direct evidence that low-dose BPA exposure targets hESC and perturbs morphogenesis as the embryonic cells differentiate towards human prostate organoids, suggesting that the developing human prostate may be susceptible to disruption by in utero BPA exposures.
Collapse
Affiliation(s)
- Esther L. Calderon-Gierszal
- Departments of Urology and Physiology & Biophysics, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Gail S. Prins
- Departments of Urology and Physiology & Biophysics, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, United States of America
- * E-mail:
| |
Collapse
|
31
|
|
32
|
Park HJ, Bolton EC. Glial cell line-derived neurotrophic factor induces cell proliferation in the mouse urogenital sinus. Mol Endocrinol 2014; 29:289-306. [PMID: 25549043 DOI: 10.1210/me.2014-1312] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Glial cell line-derived neurotrophic factor (GDNF) is a TGFβ family member, and GDNF signals through a glycosyl-phosphatidylinositol-linked cell surface receptor (GFRα1) and RET receptor tyrosine kinase. GDNF signaling plays crucial roles in urogenital processes, ranging from cell fate decisions in germline progenitors to ureteric bud outgrowth and renal branching morphogenesis. Gene ablation studies in mice have revealed essential roles for GDNF signaling in urogenital development, although its role in prostate development is unclear. We investigated the functional role of GDNF signaling in the urogenital sinus (UGS) and the developing prostate of mice. GDNF, GFRα1, and RET show time-specific and cell-specific expression during prostate development in vivo. In the UGS, GDNF and GFRα1 are expressed in the urethral mesenchyme (UrM) and epithelium (UrE), whereas RET is restricted to the UrM. In each lobe of the developing prostate, GDNF and GFRα1 expression declines in the epithelium and becomes restricted to the stroma. Using a well-established organ culture system, we determined that exogenous GDNF increases proliferation of UrM and UrE cells, altering UGS morphology. With regard to mechanism, GDNF signaling in the UrM increased RET expression and phosphorylation of ERK1/2. Furthermore, inhibition of RET kinase activity or ERK kinases suppressed GDNF-induced proliferation of UrM cells but not UrE cells. We therefore propose that GDNF signaling in the UGS increases proliferation of UrM and UrE cells by different mechanisms, which are distinguished by the role of RET receptor tyrosine kinase and ERK kinase signaling, thus implicating GDNF signaling in prostate development and growth.
Collapse
Affiliation(s)
- Hyun-Jung Park
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| | | |
Collapse
|
33
|
Fibroblast growth factor 10 protects neuron against oxygen-glucose deprivation injury through inducing heme oxygenase-1. Biochem Biophys Res Commun 2014; 456:225-31. [PMID: 25446127 DOI: 10.1016/j.bbrc.2014.11.063] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Accepted: 11/14/2014] [Indexed: 01/04/2023]
Abstract
Fibroblast growth factors (FGFs) are a family of structurally related heparin-binding proteins with diverse biological functions. FGFs participate in mitogenesis, angiogenesis, cell proliferation, development, differentiation and cell migration. Here, we investigated the potential effect of FGF10, a member of FGFs, on neuron survival in oxygen-glucose deprivation (OGD) model. In primary cultured mouse cortical neurons upon OGD, FGF10 treatment (100 and 1000 ng/ml) attenuated the decrease of cell viability and rescued the LDH release. Tuj-1 immunocytochemistry assay showed that FGF10 promoted neuronal survival. Apoptosis assay with Annexin V+PI by flow cytometry demonstrated that FGF10 treatment reduced apoptotic cell proportion. Moreover, immunoblotting showed that FGF10 alleviated the cleaved caspase-3 upregulation caused by OGD. FGF10 treatment also depressed the OGD-induced increase of caspase-3, -8 and -9 activities. At last, we found FGF10 triggered heme oxygenase-1 (HO-1) protein expression rather than hypoxia-inducible factor-1 (HIF-1), AMP-activated protein kinase (AMPK) signaling and extracellular signal-regulated kinases 1/2 (ERK1/2) signaling. Knockdown of HO-1 by siRNA partly abolished the neuroprotection of FGF10 in OGD model. In summary, our observations provide the first evidence for the neuroprotective function of FGF10 against ischemic neuronal injury and suggest that FGF10 may be a promising agent for treatment of ischemic stroke.
Collapse
|
34
|
Murata T, Ishitsuka Y, Karouji K, Kaneda H, Toki H, Nakai Y, Makino S, Fukumura R, Kotaki H, Wakana S, Noda T, Gondo Y. β-CateninC429S mice exhibit sterility consequent to spatiotemporally sustained Wnt signalling in the internal genitalia. Sci Rep 2014; 4:6959. [PMID: 25376241 PMCID: PMC4223658 DOI: 10.1038/srep06959] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Accepted: 10/21/2014] [Indexed: 12/31/2022] Open
Abstract
Wnt/β-catenin signalling regulates numerous developmental and homeostatic processes. Ctnnb1 (also known as β-catenin) is the only protein that transmits signals from various Wnt ligands to downstream genes. In this study, we report that our newly established mouse strain, which harbours a Cys429 to Ser missense mutation in the β-catenin gene, exhibited specific organ defects in contrast to mice with broadly functioning Wnt/β-catenin signalling. Both homozygous mutant males and females produced normal gametes but were infertile because of abnormal seminal vesicle and vaginal morphogenesis. An ins-TOPGAL transgenic reporter spatiotemporally sustained Wnt/β-catenin signalling during the corresponding organogenesis. Therefore, β-catenin(C429S) should provide new insights into β-catenin as a universal component of Wnt/β-catenin signal transduction.
Collapse
Affiliation(s)
- Takuya Murata
- Mutagenesis and Genomics Team, RIKEN BioResource Center, Tsukuba, Ibaraki, Japan
| | - Yuichi Ishitsuka
- Mutagenesis and Genomics Team, RIKEN BioResource Center, Tsukuba, Ibaraki, Japan
| | - Kumiko Karouji
- Population and Quantitative Genomics Team, RIKEN Genomic Sciences Center, Yokohama, Kanagawa, Japan
| | - Hideki Kaneda
- Japan Mouse Clinic, RIKEN BioResource Center, Tsukuba, Ibaraki, Japan
| | - Hideaki Toki
- Team for Advanced Development and Evaluation of Human Disease Models, RIKEN BioResource Center, Tsukuba, Ibaraki, Japan
| | - Yuji Nakai
- Mutagenesis and Genomics Team, RIKEN BioResource Center, Tsukuba, Ibaraki, Japan
| | - Shigeru Makino
- Mutagenesis and Genomics Team, RIKEN BioResource Center, Tsukuba, Ibaraki, Japan
| | - Ryutaro Fukumura
- Mutagenesis and Genomics Team, RIKEN BioResource Center, Tsukuba, Ibaraki, Japan
| | - Hayato Kotaki
- Mutagenesis and Genomics Team, RIKEN BioResource Center, Tsukuba, Ibaraki, Japan
| | - Shigeharu Wakana
- Japan Mouse Clinic, RIKEN BioResource Center, Tsukuba, Ibaraki, Japan
| | - Tetsuo Noda
- Team for Advanced Development and Evaluation of Human Disease Models, RIKEN BioResource Center, Tsukuba, Ibaraki, Japan
| | - Yoichi Gondo
- Mutagenesis and Genomics Team, RIKEN BioResource Center, Tsukuba, Ibaraki, Japan
| |
Collapse
|
35
|
Bryant SL, Francis JC, Lokody IB, Wang H, Risbridger GP, Loveland KL, Swain A. Sex specific retinoic acid signaling is required for the initiation of urogenital sinus bud development. Dev Biol 2014; 395:209-17. [PMID: 25261715 PMCID: PMC4211671 DOI: 10.1016/j.ydbio.2014.09.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Revised: 09/15/2014] [Accepted: 09/17/2014] [Indexed: 11/27/2022]
Abstract
The mammalian urogenital sinus (UGS) develops in a sex specific manner, giving rise to the prostate in the male and the sinus vagina in the embryonic female. Androgens, produced by the embryonic testis, have been shown to be crucial to this process. In this study we show that retinoic acid signaling is required for the initial stages of bud development from the male UGS. Enzymes involved in retinoic acid synthesis are expressed in the UGS mesenchyme in a sex specific manner and addition of ligand to female tissue is able to induce prostate-like bud formation in the absence of androgens, albeit at reduced potency. Functional studies in mouse organ cultures that faithfully reproduce the initiation of prostate development indicate that one of the roles of retinoic acid signaling in the male is to inhibit the expression of Inhba, which encodes the βA subunit of Activin, in the UGS mesenchyme. Through in vivo genetic analysis and culture studies we show that inhibition of Activin signaling in the female UGS leads to a similar phenotype to that of retinoic acid treatment, namely bud formation in the absence of androgens. Our data also reveals that both androgens and retinoic acid have extra independent roles to that of repressing Activin signaling in the development of the prostate during fetal stages. This study identifies a novel role for retinoic acid as a mesenchymal factor that acts together with androgens to determine the position and initiation of bud development in the male UGS epithelia. We show that sex specific retinoic acid is required for male UGS bud initiation. An increase in retinoic acid can lead to prostate-like formation in females. We find that activin repression is a downstream target of RA signalling. RA is a novel mesenchymal signal regulating bud initiation along the UGS.
Collapse
Affiliation(s)
- Sarah L Bryant
- Division of Cancer Biology, Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, United Kingdom
| | - Jeffrey C Francis
- Division of Cancer Biology, Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, United Kingdom
| | - Isabel B Lokody
- Division of Cancer Biology, Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, United Kingdom
| | - Hong Wang
- Department of Anatomy and Developmental Biology, Clayton, VIC, Australia
| | - Gail P Risbridger
- Department of Anatomy and Developmental Biology, Clayton, VIC, Australia
| | - Kate L Loveland
- Department of Anatomy and Developmental Biology, Clayton, VIC, Australia; Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia
| | - Amanda Swain
- Division of Cancer Biology, Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, United Kingdom.
| |
Collapse
|
36
|
Shtivelman E, Beer TM, Evans CP. Molecular pathways and targets in prostate cancer. Oncotarget 2014; 5:7217-59. [PMID: 25277175 PMCID: PMC4202120 DOI: 10.18632/oncotarget.2406] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 08/28/2014] [Indexed: 12/12/2022] Open
Abstract
Prostate cancer co-opts a unique set of cellular pathways in its initiation and progression. The heterogeneity of prostate cancers is evident at earlier stages, and has led to rigorous efforts to stratify the localized prostate cancers, so that progression to advanced stages could be predicted based upon salient features of the early disease. The deregulated androgen receptor signaling is undeniably most important in the progression of the majority of prostate tumors. It is perhaps because of the primacy of the androgen receptor governed transcriptional program in prostate epithelium cells that once this program is corrupted, the consequences of the ensuing changes in activity are pleotropic and could contribute to malignancy in multiple ways. Following localized surgical and radiation therapies, 20-40% of patients will relapse and progress, and will be treated with androgen deprivation therapies. The successful development of the new agents that inhibit androgen signaling has changed the progression free survival in hormone resistant disease, but this has not changed the almost ubiquitous development of truly resistant phenotypes in advanced prostate cancer. This review summarizes the current understanding of the molecular pathways involved in localized and metastatic prostate cancer, with an emphasis on the clinical implications of the new knowledge.
Collapse
Affiliation(s)
| | - Tomasz M. Beer
- Oregon Health & Science University, Knight Cancer Institute, Portland, OR
| | - Christopher P. Evans
- Department of Urology and Comprehensive Cancer Center, University of California Davis, Davis, CA
| |
Collapse
|
37
|
Murashima A, Kishigami S, Thomson A, Yamada G. Androgens and mammalian male reproductive tract development. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1849:163-70. [PMID: 24875095 DOI: 10.1016/j.bbagrm.2014.05.020] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 04/28/2014] [Accepted: 05/19/2014] [Indexed: 12/31/2022]
Abstract
One of the main functions of androgen is in the sexually dimorphic development of the male reproductive tissues. During embryogenesis, androgen determines the morphogenesis of male specific organs, such as the epididymis, seminal vesicle, prostate and penis. Despite the critical function of androgens in masculinization, the downstream molecular mechanisms of androgen signaling are poorly understood. Tissue recombination experiments and tissue specific androgen receptor (AR) knockout mouse studies have revealed epithelial or mesenchymal specific androgen-AR signaling functions. These findings also indicate that epithelial-mesenchymal interactions are a key feature of AR specific activity, and paracrine growth factor action may mediate some of the effects of androgens. This review focuses on mouse models showing the interactions of androgen and growth factor pathways that promote the sexual differentiation of reproductive organs. Recent studies investigating context dependent AR target genes are also discussed. This article is part of a Special Issue entitled: Nuclear receptors in animal development.
Collapse
Affiliation(s)
- Aki Murashima
- Department of Developmental Genetics, Institute of Advanced Medicine, Wakayama Medical University, Kimiidera 811-1, Wakayama 641-8509, Wakayama, Japan
| | - Satoshi Kishigami
- Faculty of Biology-Oriented Science and Technology, Kinki University, Kinokawa 649-6493, Wakayama, Japan
| | - Axel Thomson
- Department of Urology, McGill University Health Centre, 1650 Cedar Av, Montreal, Québec, H3A 1A4, Canada
| | - Gen Yamada
- Department of Developmental Genetics, Institute of Advanced Medicine, Wakayama Medical University, Kimiidera 811-1, Wakayama 641-8509, Wakayama, Japan.
| |
Collapse
|
38
|
Mikropoulos C, Goh C, Leongamornlert D, Kote-Jarai Z, Eeles R. Translating genetic risk factors for prostate cancer to the clinic: 2013 and beyond. Future Oncol 2014; 10:1679-94. [PMID: 25145435 DOI: 10.2217/fon.14.72] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Prostate cancer (PrCa) is the most commonly diagnosed cancer in the male UK population, with over 40,000 new cases per year. PrCa has a complex, polygenic predisposition, due to rare variants such as BRCA and common variants such as single nucleotide polymorphisms (SNPs). With the introduction of genome-wide association studies, 78 susceptibility loci (SNPs) associated with PrCa risk have been identified. Genetic profiling could risk-stratify a population, leading to the discovery of a higher proportion of clinically significant disease and a reduction in the morbidity related to age-based prostate-specific antigen screening. Based on the combined risk of the 78 SNPs identified so far, the top 1% of the risk distribution has a 4.7-times higher risk of developing PrCa compared with the average of the general population.
Collapse
|
39
|
Pinho CF, Ribeiro MA, Rinaldi JC, Felisbino SL, Pinheiro PF, Domeniconi RF, Fochi RA, Boer PA, Scarano WR. Gestational protein restriction delays prostate morphogenesis in male rats. Reprod Fertil Dev 2014; 26:967-73. [DOI: 10.1071/rd13132] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Accepted: 06/19/2013] [Indexed: 01/01/2023] Open
Abstract
Maternal malnutrition due to a low-protein diet is associated with functional disorders in adulthood, which may be related to embryonic development failures. The effects of gestational protein restriction on prostate morphogenesis in male offspring were investigated. Pregnant rat dams were divided into normoprotein (NP; fed a normal diet containing 17% protein) and hypoprotein (LP; fed a diet containing 6% protein) groups. On the day of birth (PND1), anogenital distance and bodyweight were measured in male pups. Seven males per experimental group (one male per litter) were killed, and the pelvic urethra was evaluated. LP offspring showed a significant reduction in bodyweight and anogenital distance on PND1. On three-dimensional reconstruction of the prostate, the number of prostatic buds was lower in LP than in NP males. Mesenchymal cells surrounding the buds were androgen-receptor positive, and the quantity and intensity of nucleus immunoreactivity was decreased in LP. The proliferation index was lower in LP than in NP prostatic buds. Immunoreactivity for α-actin in mesenchymal cells and that for epidermal growth factor receptor in epithelial cells was higher in NP than in LP. Our findings demonstrate that maternal protein restriction delays prostatic morphogenesis, probably because of considerable disruption in the epithelium–mesenchyme interaction.
Collapse
|
40
|
Ching ST, Cunha GR, Baskin LS, Basson MA, Klein OD. Coordinated activity of Spry1 and Spry2 is required for normal development of the external genitalia. Dev Biol 2013; 386:1-11. [PMID: 24361260 DOI: 10.1016/j.ydbio.2013.12.014] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Revised: 12/05/2013] [Accepted: 12/10/2013] [Indexed: 11/16/2022]
Abstract
Development of the mammalian external genitalia is controlled by a network of signaling molecules and transcription factors. Because FGF signaling plays a central role in this complicated morphogenetic process, we investigated the role of Sprouty genes, which are important intracellular modulators of FGF signaling, during embryonic development of the external genitalia in mice. We found that Sprouty genes are expressed by the urethral epithelium during embryogenesis, and that they have a critical function during urethral canalization and fusion. Development of the genital tubercle (GT), the anlage of the prepuce and glans penis in males and glans clitoris in females, was severely affected in male embryos carrying null alleles of both Spry1 and Spry2. In Spry1(-/-);Spry2(-/-) embryos, the internal tubular urethra was absent, and urothelial morphology and organization was abnormal. These effects were due, in part, to elevated levels of epithelial cell proliferation in Spry1(-/-);Spry2(-/-) embryos. Despite changes in overall organization, terminal differentiation of the urothelium was not significantly affected. Characterization of the molecular pathways that regulate normal GT development confirmed that deletion of Sprouty genes leads to elevated FGF signaling, whereas levels of signaling in other cascades were largely preserved. Together, these results show that levels of FGF signaling must be tightly regulated during embryonic development of the external genitalia in mice, and that this regulation is mediated in part through the activity of Sprouty gene products.
Collapse
Affiliation(s)
- Saunders T Ching
- Department of Orofacial Sciences, University of California, San Francisco, United States; Department of Urology, University of California, San Francisco, United States
| | - Gerald R Cunha
- Department of Urology, University of California, San Francisco, United States
| | - Laurence S Baskin
- Department of Urology, University of California, San Francisco, United States
| | - M Albert Basson
- Department of Craniofacial Development and Stem Cell Biology, King's College, London, UK
| | - Ophir D Klein
- Department of Orofacial Sciences, University of California, San Francisco, United States; Program in Craniofacial and Mesenchymal Biology, University of California, San Francisco, United States; Institute for Human Genetics, University of California, San Francisco, United States; Department of Pediatrics, University of California, San Francisco, United States.
| |
Collapse
|
41
|
Sun F, Chen HG, Li W, Yang X, Wang X, Jiang R, Guo Z, Chen H, Huang J, Borowsky AD, Qiu Y. Androgen receptor splice variant AR3 promotes prostate cancer via modulating expression of autocrine/paracrine factors. J Biol Chem 2013; 289:1529-39. [PMID: 24297183 DOI: 10.1074/jbc.m113.492140] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Deregulation of androgen receptor (AR) splice variants has been implicated to play a role in prostate cancer development and progression. To understand their functions in prostate, we established a transgenic mouse model (AR3Tg) with targeted expression of the constitutively active and androgen-independent AR splice variant AR3 (a.k.a. AR-V7) in prostate epithelium. We found that overexpression of AR3 modulates expression of a number of tumor-promoting autocrine/paracrine growth factors (including Tgfβ2 and Igf1) and expands prostatic progenitor cell population, leading to development of prostatic intraepithelial neoplasia. In addition, we showed that some epithelial-mesenchymal transition-associated genes are up-regulated in AR3Tg prostates, suggesting that AR3 may antagonize AR activity and halt the differentiation process driven by AR and androgen. This notion is supported by our observations that the number of Ck5(+)/Ck8(+) intermediate cells is increased in AR3Tg prostates after castration, and expression of AR3 transgene in these intermediate cells compromises prostate epithelium regeneration upon androgen replacement. Our results demonstrate that AR3 is a driver of prostate cancer, at least in part, through modulating multiple tumor-promoting autocrine/paracrine factors.
Collapse
Affiliation(s)
- Feng Sun
- From the Departments of Pharmacology and The Greenebaum Cancer Center, and
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Chung SS, Koh CJ. Bladder cancer cell in co-culture induces human stem cell differentiation to urothelial cells through paracrine FGF10 signaling. In Vitro Cell Dev Biol Anim 2013; 49:746-51. [PMID: 23949743 DOI: 10.1007/s11626-013-9662-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Accepted: 07/05/2013] [Indexed: 02/08/2023]
Abstract
Fibroblast growth factor 10 (FGF10) is required for embryonic epidermal morphogenesis including brain development, lung morphogenesis, and initiation of limb bud formation. In this study, we investigated the role of FGF10 as a lead induction factor for stem cell differentiation toward urothelial cell. To this end, human multipotent stem cell in vitro system was employed. Human amniotic fluid stem cells were co-cultured with immortalized bladder cancer lines to induce directed differentiation into urothelial cells. Urothelial markers, uroplakin II, III, and cytokeratin 8, were monitored by RT-PCR, immunocytochemistry, and Western blot analysis. Co-cultured stem cells began to express uroplakin II, III, and cytokeratin 8. Targeted FGF10 gene knockdown from bladder cancer cells abolished the directed differentiation. In addition, when FGF10 downstream signaling was blocked with the Mek inhibitor, the co-culture system lost the capacity to induce urothelial differentiation. Exogenous addition of recombinant FGF10 protein promoted stem cell differentiation into urothelium cell lineage. Together, this report suggests that paracrine FGF10 signaling stimulates the differentiation of human stem cell into urothelial cells. Current study provides insight into the potential role of FGF10 as a lead growth factor for bladder regeneration and its therapeutic application for bladder transplantation.
Collapse
Affiliation(s)
- Seyung S Chung
- Developmental Biology Program, Saban Institute for Research, Children's Hospital in L.A. Keck School of Medicine, University of Southern California, Los Angeles, 90027, CA, USA,
| | | |
Collapse
|
43
|
Kruithof-de Julio M, Shibata M, Desai N, Reynon M, Halili MV, Hu YP, Price SM, Abate-Shen C, Shen MM. Canonical Wnt signaling regulates Nkx3.1 expression and luminal epithelial differentiation during prostate organogenesis. Dev Dyn 2013; 242:1160-71. [PMID: 23813564 DOI: 10.1002/dvdy.24008] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2013] [Revised: 06/03/2013] [Accepted: 06/20/2013] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND The formation of the prostate gland requires reciprocal interactions between the epithelial and mesenchymal components of the embryonic urogenital sinus. However, the identity of the signaling factors that mediate these interactions is largely unknown. RESULTS Our studies show that expression of the prostate-specific transcription factor Nkx3.1 is regulated by the canonical Wnt signaling pathway. Using mice carrying a targeted lacZ knock-in allele of Nkx3.1, we find that Nkx3.1 is expressed in all epithelial cells of ductal buds during prostate organogenesis. Addition of Wnt inhibitors to urogenital sinus explant culture greatly reduces prostate budding and inhibits Nkx3.1 expression as well as differentiation of luminal epithelial cells. Analyses of a TCF/Lef:H2B-GFP transgene reporter show that canonical Wnt signaling activity is found in urogenital mesenchyme but not urogenital sinus epithelium before prostate formation, and is later observed in the mesenchyme and epithelium of prostate ductal tips. Furthermore, TCF/Lef:H2B-GFP reporter activity is reduced in epithelial cells of Nkx3.1 null neonatal prostates, suggesting that Nkx3.1 functions to maintain canonical Wnt signaling activity in developing prostate bud tips. CONCLUSIONS We propose that activated canonical Wnt signals and Nkx3.1 function in a positive feedback loop to regulate prostate bud growth and luminal epithelial differentiation.
Collapse
Affiliation(s)
- Marianna Kruithof-de Julio
- Departments of Medicine and Genetics and Development, Columbia University Medical Center, New York, New York; Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, New York
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Expression and functions of fibroblast growth factor 10 in the mouse mammary gland. Int J Mol Sci 2013; 14:4094-105. [PMID: 23434672 PMCID: PMC3588087 DOI: 10.3390/ijms14024094] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Revised: 01/15/2013] [Accepted: 02/05/2013] [Indexed: 01/14/2023] Open
Abstract
Fibroblast growth factor 10 (FGF10) is important as a mesenchymal mediator of epithelial growth and morphogenesis. In this study, the expression and localization of the FGF10 protein were detected by laser scanning confocal microscopy during mouse postnatal mammary gland development. Mammary explants were cultured to investigate the functions of FGF10. The results revealed that FGF10 localizes mainly in the mesenchyme near the ductal epithelial cells and the alveolar epithelial cells of the mammary gland. Peak FGF10 expression levels were observed at lactation day 10. FGF10 induced FGFR2-IIIb expression in the mammary epithelium, except in virgin or pregnant mice. FGF10 promoted the proliferation of mammary gland epithelial cells and reduced apoptosis. FGF10 is important during the mouse mammary gland growth, development, and reconstruction, and its effects are mediated by FGFR2-IIIb.
Collapse
|
45
|
Buresh-Stiemke RA, Malinowski RL, Keil KP, Vezina CM, Oosterhof A, Van Kuppevelt TH, Marker PC. Distinct expression patterns of Sulf1 and Hs6st1 spatially regulate heparan sulfate sulfation during prostate development. Dev Dyn 2012; 241:2005-13. [PMID: 23074159 DOI: 10.1002/dvdy.23886] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/07/2012] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Prostate morphogenesis initiates in the urogenital sinus (UGS) with epithelial bud development. Sulfatase-1 (SULF1) inhibits bud development by reducing extracellular heparan sulfate (HS) 6-O sulfation and impairing FGF10 signaling by means of the ERK1/2 mitogen activated kinases. RESULTS We characterized the expression patterns of HS 6-O sulfation modifying enzymes in the developing prostate by in situ hybridization and showed that Sulf1 and Hs6st1 had overlapping but distinct expression domains. Notably, Hs6st1 was present while Sulf1 was excluded from the tips of elongating epithelial buds. This predicted relatively high HS 6-O sulfation at the tips of elongating epithelial buds that was confirmed by immunohistochemistry. The pattern of Sulf1 expression in the peri-mesenchymal epithelium matched predicted locations of bone morphogenetic protein (BMP) signaling. Exogenous BMP4 and BMP7 induced Sulf1 expression in the UGS, decreased epithelial HS 6-O sulfation, and reduced ERK1/2 activation in response to FGF10. CONCLUSIONS These data suggest that BMPs limit FGF10 action in the developing prostate at least in part by inducing Sulf1.
Collapse
Affiliation(s)
- Rita A Buresh-Stiemke
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin 53705, USA
| | | | | | | | | | | | | |
Collapse
|
46
|
|
47
|
Xu B, Hariharan A, Rakshit S, Dressler GR, Wellik DM. The role of Pax2 in mouse prostate development. Prostate 2012; 72:217-24. [PMID: 21594883 PMCID: PMC3178747 DOI: 10.1002/pros.21424] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2011] [Accepted: 04/28/2011] [Indexed: 11/11/2022]
Abstract
BACKGROUND Loss-of-function of Pax2 results in severe defects of the male reproductive system, and Pax2 expression is detected in mouse prostate lobes and human prostatic cancers. However, the role for Pax2 in prostate development remains poorly understood. METHODS The expression of Pax2 was examined by in situ hybridization at various developmental stages. Urogenital sinuses were dissected out at E18.5 from mouse Pax2 mutants and controls, cultured in vitro or grafted under the renal capsule of CD1 nude mice. The expression of prostate developmental regulatory factors was analyzed by semi-quantitative real-time PCR or immuohistochemistry. RESULTS Pax2 is expressed in the epithelial cells of prostate buds. Loss-of-function of Pax2 does not affect the initiation of prostatic buds, but in vitro culture assays show that the prostates of Pax2 mutants are hypomorphic and branching is severely disrupted compared to controls. RT-PCR data from Pax2 mutant prostates demonstrate increased expression levels of dorsolateral prostate marker MSMB and ventral prostate marker SBP and dramatically reduced expression levels of anterior prostate marker TGM4. CONCLUSIONS Pax2 is essential for mouse prostate development and regulates prostatic ductal growth, branching, and lobe-specific identity. These findings are important for understanding the molecular regulatory mechanisms in prostate development.
Collapse
Affiliation(s)
- Ben Xu
- Department of Internal Medicine, Division of Molecular Medicine and Genetics
| | - Arun Hariharan
- Department of Internal Medicine, Division of Molecular Medicine and Genetics
| | - Sabita Rakshit
- Department of Internal Medicine, Division of Molecular Medicine and Genetics
| | - Gregory R. Dressler
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109-2200, USA
| | - Deneen M. Wellik
- Department of Internal Medicine, Division of Molecular Medicine and Genetics
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109-2200, USA
- Corresponding Author: Deneen M. Wellik, , University of Michigan Medical Center, 109 Zina Pitcher, 2053 BSRB, Ann Arbor, MI 48109-2200, Phone: 734-936-8902, FAX: 734-763-2162
| |
Collapse
|
48
|
Kitagaki J, Ueda Y, Chi X, Sharma N, Elder CM, Truffer E, Costantini F, Lewandoski M, Perantoni AO. FGF8 is essential for formation of the ductal system in the male reproductive tract. Development 2012; 138:5369-78. [PMID: 22110055 DOI: 10.1242/dev.051888] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
During development of the urogenital tract, fibroblast growth factor 8 (Fgf8) is expressed in mesonephric tubules, but its role in this tissue remains undefined. An evaluation of previously generated T-Cre-mediated Fgf8-deficient mice (T-Cre; Fgf8(flox/Δ2,3) mice), which lack Fgf8 expression in the mesoderm, revealed that the cranial region of the Wolffian duct degenerated prematurely and the cranial mesonephric tubules were missing. As a result, the epididymis, vas deferens and efferent ductules were largely absent in mutant mice. Rarb2-Cre was used to eliminate FGF8 from the mesonephric tubules but to allow expression in the adjacent somites. These mutants retained the cranial end of the Wolffian duct and formed the epididymis and vas deferens, but failed to elaborate the efferent ductules, indicating that Fgf8 expression by the mesonephric tubules is required specifically for the formation of the ductules. Ret knockout mice do not form the ureteric bud, a caudal outgrowth of the Wolffian duct and progenitor for the collecting duct network in the kidney, but they do develop the cranial end normally. This indicates that Fgf8, but not Ret, expression is essential to the outgrowth of the cranial mesonephric tubules from the Wolffian duct and to the development of major portions of the sex accessory tissues in the male reproductive tract. Mechanistically, FGF8 functions upstream of Lhx1 expression in forming the nephron, and analysis of Fgf8 mutants similarly shows deficient Lhx1 expression in the mesonephric tubules. These results demonstrate a multifocal requirement for FGF8 in establishing the male reproductive tract ducts and implicate Lhx1 signaling in tubule elongation.
Collapse
Affiliation(s)
- Jirouta Kitagaki
- Cancer and Developmental Biology Laboratory, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Mehta V, Vezina CM. Potential protective mechanisms of aryl hydrocarbon receptor (AHR) signaling in benign prostatic hyperplasia. Differentiation 2012; 82:211-9. [PMID: 21684673 DOI: 10.1016/j.diff.2011.05.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2011] [Revised: 05/20/2011] [Accepted: 05/27/2011] [Indexed: 11/17/2022]
Abstract
The aryl hydrocarbon receptor (AHR) is an evolutionarily conserved ligand activated transcription factor best known for its role in mediating toxic responses to dioxin-like environmental contaminants. However, AHR signaling has also emerged as an active participant in processes of normal development and disease progression. Here, we review the role of AHR signaling in prostate development and disease processes, with a particular emphasis on benign prostatic hyperplasia (BPH). Inappropriate AHR activation has recently been associated with a decreased risk of symptomatic BPH in humans and has been shown to impair prostate development and disrupt endocrine signaling in rodents. We highlight known physiological responses to AHR activation in prostate and other tissues and discuss potential mechanisms by which it may act in adult human prostate to protect against symptomatic BPH.
Collapse
Affiliation(s)
- Vatsal Mehta
- Department of Comparative Biosciences, University of Wisconsin, 1656 Linden Drive, Madison, WI 53706, USA
| | | |
Collapse
|
50
|
Gallick GE, Corn PG, Zurita AJ, Lin SH. Small-molecule protein tyrosine kinase inhibitors for the treatment of metastatic prostate cancer. Future Med Chem 2012; 4:107-19. [PMID: 22168167 PMCID: PMC3285098 DOI: 10.4155/fmc.11.161] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The microenvironment is critical to the growth of prostate cancer (PCa) in the bone. Thus, for clinical efficacy, therapies must target tumor-microenvironment interactions. Several protein tyrosine kinases have been implicated in the development and growth of PCa bone metastasis. In this review, specific protein tyrosine kinases that regulate these complex interactions, including PDGFR, the EGFR family, c-Src, VEGFR, IGF-1R, FGFR and c-Met will be discussed, with an emphasis on why these kinases are promising therapeutic targets for metastatic PCa treatment. For each of these kinases, small-molecule inhibitors have reached clinical trials. Current results of these trials and future prospects for the use of tyrosine kinase inhibitors for the treatment of PCa bone metastases are also discussed.
Collapse
Affiliation(s)
- Gary E Gallick
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Paul G Corn
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Amado J Zurita
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Sue-Hwa Lin
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
- Department of Molecular Pathology, Unit 89, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| |
Collapse
|