1
|
Abstract
TGF-β family ligands function in inducing and patterning many tissues of the early vertebrate embryonic body plan. Nodal signaling is essential for the specification of mesendodermal tissues and the concurrent cellular movements of gastrulation. Bone morphogenetic protein (BMP) signaling patterns tissues along the dorsal-ventral axis and simultaneously directs the cell movements of convergence and extension. After gastrulation, a second wave of Nodal signaling breaks the symmetry between the left and right sides of the embryo. During these processes, elaborate regulatory feedback between TGF-β ligands and their antagonists direct the proper specification and patterning of embryonic tissues. In this review, we summarize the current knowledge of the function and regulation of TGF-β family signaling in these processes. Although we cover principles that are involved in the development of all vertebrate embryos, we focus specifically on three popular model organisms: the mouse Mus musculus, the African clawed frog of the genus Xenopus, and the zebrafish Danio rerio, highlighting the similarities and differences between these species.
Collapse
Affiliation(s)
- Joseph Zinski
- University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104-6058
| | - Benjamin Tajer
- University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104-6058
| | - Mary C Mullins
- University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104-6058
| |
Collapse
|
2
|
Fullerton PT, Monsivais D, Kommagani R, Matzuk MM. Follistatin is critical for mouse uterine receptivity and decidualization. Proc Natl Acad Sci U S A 2017; 114:E4772-E4781. [PMID: 28559342 PMCID: PMC5474784 DOI: 10.1073/pnas.1620903114] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Embryo implantation remains a significant challenge for assisted reproductive technology, with implantation failure occurring in ∼50% of in vitro fertilization attempts. Understanding the molecular mechanisms underlying uterine receptivity will enable the development of new interventions and biomarkers. TGFβ family signaling in the uterus is critical for establishing and maintaining pregnancy. Follistatin (FST) regulates TGFβ family signaling by selectively binding TGFβ family ligands and sequestering them. In humans, FST is up-regulated in the decidua during early pregnancy, and women with recurrent miscarriage have lower endometrial expression of FST during the luteal phase. Because global knockout of Fst is perinatal lethal in mice, we generated a conditional knockout (cKO) of Fst in the uterus using progesterone receptor-cre to study the roles of uterine Fst during pregnancy. Uterine Fst-cKO mice demonstrate severe fertility defects and deliver only 2% of the number of pups delivered by control females. In Fst-cKO mice, the uterine luminal epithelium does not respond properly to estrogen and progesterone signals and remains unreceptive to embryo attachment by continuing to proliferate and failing to differentiate. The uterine stroma of Fst-cKO mice also responds poorly to artificial decidualization, with lower levels of proliferation and differentiation. In the absence of uterine FST, activin B expression and signaling are up-regulated, and bone morphogenetic protein (BMP) signals are impaired. Our findings support a model in which repression of activin signaling by FST enables uterine receptivity by preserving critical BMP signaling.
Collapse
Affiliation(s)
- Paul T Fullerton
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030
- Center for Reproductive Medicine, Baylor College of Medicine, Houston, TX 77030
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX 77030
| | - Diana Monsivais
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030
- Center for Reproductive Medicine, Baylor College of Medicine, Houston, TX 77030
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX 77030
| | - Ramakrishna Kommagani
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030
| | - Martin M Matzuk
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030;
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030
- Center for Reproductive Medicine, Baylor College of Medicine, Houston, TX 77030
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX 77030
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030
- Department of Pharmacology, Baylor College of Medicine, Houston, TX 77030
| |
Collapse
|
3
|
Suzuki A, Yoshida H, van Heeringen SJ, Takebayashi-Suzuki K, Veenstra GJC, Taira M. Genomic organization and modulation of gene expression of the TGF-β and FGF pathways in the allotetraploid frog Xenopus laevis. Dev Biol 2017; 426:336-359. [DOI: 10.1016/j.ydbio.2016.09.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 06/10/2016] [Accepted: 09/19/2016] [Indexed: 12/13/2022]
|
4
|
Young JL, Kretchmer K, Ondeck MG, Zambon AC, Engler AJ. Mechanosensitive kinases regulate stiffness-induced cardiomyocyte maturation. Sci Rep 2014; 4:6425. [PMID: 25236849 PMCID: PMC4168277 DOI: 10.1038/srep06425] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Accepted: 08/28/2014] [Indexed: 01/26/2023] Open
Abstract
Cells secrete and assemble extracellular matrix throughout development, giving rise to time-dependent, tissue-specific stiffness. Mimicking myocardial matrix stiffening, i.e. ~10-fold increase over 1 week, with a hydrogel system enhances myofibrillar organization of embryonic cardiomyocytes compared to static hydrogels, and thus we sought to identify specific mechanosensitive proteins involved. Expression and/or phosphorylation state of 309 unique protein kinases were examined in embryonic cardiomyocytes plated on either dynamically stiffening or static mature myocardial stiffness hydrogels. Gene ontology analysis of these kinases identified cardiogenic pathways that exhibited time-dependent up-regulation on dynamic versus static matrices, including PI3K/AKT and p38 MAPK, while GSK3β, a known antagonist of cardiomyocyte maturation, was down-regulated. Additionally, inhibiting GSK3β on static matrices improved spontaneous contraction and myofibril organization, while inhibiting agonist AKT on dynamic matrices reduced myofibril organization and spontaneous contraction, confirming its role in mechanically-driven maturation. Together, these data indicate that mechanically-driven maturation is at least partially achieved via active mechanosensing at focal adhesions, affecting expression and phosphorylation of a variety of protein kinases important to cardiomyogenesis.
Collapse
Affiliation(s)
- Jennifer L. Young
- Department of Bioengineering, University of California, San Diego, CA 92093
| | - Kyle Kretchmer
- Department of Bioengineering, University of California, San Diego, CA 92093
| | - Matthew G. Ondeck
- Department of Material Science Program, University of California, San Diego, CA 92093
| | | | - Adam J. Engler
- Department of Bioengineering, University of California, San Diego, CA 92093
- Department of Material Science Program, University of California, San Diego, CA 92093
- Sanford Consortium for Regenerative Medicine, La Jolla, CA 92037
| |
Collapse
|
5
|
Huang S, Xu W, Su B, Luo L. Distinct mechanisms determine organ left-right asymmetry patterning in an uncoupled way. Bioessays 2014; 36:293-304. [PMID: 24464475 DOI: 10.1002/bies.201300128] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Disruption of Nodal in the lateral plate mesoderm (LPM) usually leads to left-right (LR) patterning defects in multiple organs. However, whether the LR patterning of organs is always regulated in a coupled way has largely not yet been elucidated. In addition, whether other crucial regulators exist in the LPM that coordinate with Nodal in regulating organ LR patterning is also undetermined. In this paper, after briefly summarizing the common process of LR patterning, the most puzzling question regarding the initiation of asymmetry is considered and the divergent mechanisms underlying the uncoupled LR patterning in different organs are discussed. On the basis of cases in which different organ LR patterning is determined in an uncoupled way via an independent mechanism or at a different time, we propose that there are other critical factors in the LPM that coordinate with Nodal to regulate heart LR asymmetry patterning during early LR patterning.
Collapse
Affiliation(s)
- Sizhou Huang
- Development and Regeneration Key Laboratory of Sichuan Province, Department of Anatomy and Histology and Embryology, Chengdu Medical College, Chengdu, China; Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Laboratory of Molecular Developmental Biology, School of Life Sciences, Southwest University, Beibei, Chongqing, China
| | | | | | | |
Collapse
|
6
|
Vandenberg LN, Levin M. A unified model for left-right asymmetry? Comparison and synthesis of molecular models of embryonic laterality. Dev Biol 2013; 379:1-15. [PMID: 23583583 PMCID: PMC3698617 DOI: 10.1016/j.ydbio.2013.03.021] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Revised: 03/15/2013] [Accepted: 03/22/2013] [Indexed: 12/31/2022]
Abstract
Understanding how and when the left-right (LR) axis is first established is a fundamental question in developmental biology. A popular model is that the LR axis is established relatively late in embryogenesis, due to the movement of motile cilia and the resultant directed fluid flow during late gastrulation/early neurulation. Yet, a large body of evidence suggests that biophysical, molecular, and bioelectrical asymmetries exist much earlier in development, some as early as the first cell cleavage after fertilization. Alternative models of LR asymmetry have been proposed that accommodate these data, postulating that asymmetry is established due to a chiral cytoskeleton and/or the asymmetric segregation of chromatids. There are some similarities, and many differences, in how these various models postulate the origin and timing of symmetry breaking and amplification, and these events' linkage to the well-conserved subsequent asymmetric transcriptional cascades. This review examines experimental data that lend strong support to an early origin of LR asymmetry, yet are also consistent with later roles for cilia in the amplification of LR pathways. In this way, we propose that the various models of asymmetry can be unified: early events are needed to initiate LR asymmetry, and later events could be utilized by some species to maintain LR-biases. We also present an alternative hypothesis, which proposes that individual embryos stochastically choose one of several possible pathways with which to establish their LR axis. These two hypotheses are both tractable in appropriate model species; testing them to resolve open questions in the field of LR patterning will reveal interesting new biology of wide relevance to developmental, cell, and evolutionary biology.
Collapse
Affiliation(s)
- Laura N. Vandenberg
- Center for Regenerative and Developmental Biology, and Biology Department, Tufts University, Medford, MA 02155
| | - Michael Levin
- Center for Regenerative and Developmental Biology, and Biology Department, Tufts University, Medford, MA 02155
| |
Collapse
|
7
|
Komatsu Y, Mishina Y. Establishment of left-right asymmetry in vertebrate development: the node in mouse embryos. Cell Mol Life Sci 2013; 70:4659-66. [PMID: 23771646 DOI: 10.1007/s00018-013-1399-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Revised: 05/30/2013] [Accepted: 05/31/2013] [Indexed: 01/20/2023]
Abstract
Establishment of vertebrate left-right asymmetry is a critical process for normal embryonic development. After the discovery of genes expressed asymmetrically along the left-right axis in chick embryos in the mid 1990s, the molecular mechanisms responsible for left-right patterning in vertebrate embryos have been studied extensively. In this review article, we discuss the mechanisms by which the initial symmetry along the left-right axis is broken in the mouse embryo. We focus on the role of primary cilia and molecular mechanisms of ciliogenesis at the node when symmetry is broken and left-right asymmetry is established. The node is considered a signaling center for early mouse embryonic development, and the results we review here have led to a better understanding of how the node functions and establishes left-right asymmetry.
Collapse
Affiliation(s)
- Yoshihiro Komatsu
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, 1011 N. University Ave., Ann Arbor, MI, 48109, USA
| | | |
Collapse
|
8
|
Lenhart KF, Lin SY, Titus TA, Postlethwait JH, Burdine RD. Two additional midline barriers function with midline lefty1 expression to maintain asymmetric Nodal signaling during left-right axis specification in zebrafish. Development 2011; 138:4405-10. [PMID: 21937597 DOI: 10.1242/dev.071092] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Left-right (L/R) patterning is crucial for the proper development of all vertebrates and requires asymmetric expression of nodal in the lateral plate mesoderm (LPM). The mechanisms governing asymmetric initiation of nodal have been studied extensively, but because Nodal is a potent activator of its own transcription, it is also crucial to understand the regulation required to maintain this asymmetry once it is established. The 'midline barrier', consisting of lefty1 expression, is a conserved mechanism for restricting Nodal activity to the left. However, the anterior and posterior extremes of the LPM are competent to respond to Nodal signals yet are not adjacent to this barrier, suggesting that lefty1 is not the only mechanism preventing ectopic Nodal activation. Here, we demonstrate the existence of two additional midline barriers. The first is a 'posterior barrier' mediated by Bmp signaling that prevents nodal propagation through the posterior LPM. In contrast to previous reports, we find that Bmp represses Nodal signaling independently of lefty1 expression and through the activity of a ligand other than Bmp4. The 'anterior barrier' is mediated by lefty2 expression in the left cardiac field and prevents Nodal activation from traveling across the anterior limit of the notochord and propagating down the right LPM. Both barriers appear to be conserved across model systems and are thus likely to be present in all vertebrates.
Collapse
Affiliation(s)
- Kari F Lenhart
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | | | | | | | | |
Collapse
|
9
|
Komatsu Y, Kaartinen V, Mishina Y. Cell cycle arrest in node cells governs ciliogenesis at the node to break left-right symmetry. Development 2011; 138:3915-20. [PMID: 21831921 DOI: 10.1242/dev.068833] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Cilia at the node generate a leftward fluid flow that breaks left-right symmetry. However, the molecular mechanisms that regulate ciliogenesis at the node are largely unknown. Here, we show that the epiblast-specific deletion of the gene encoding the BMP type 1 receptor (Acvr1) compromised development of nodal cilia, which results in defects in leftward fluid flow and, thus, abnormalities in left-right patterning. Acvr1 deficiency in mouse embryonic fibroblasts (MEFs) resulted in severe defects in their quiescence-induced primary cilia. Although the induction of quiescence in wild-type MEFs leads to an increase in the level of the cyclin-dependent kinase inhibitor p27(Kip1) and to rapid p27(Kip1) phosphorylation on Ser(10), MEFs deficient in Acvr1 show a reduction in both p27(Kip1) protein levels and in p27(Kip1) Ser(10) phosphorylation. The observed defects in cilium development were rescued by the introduction of p27(Kip1) into Acvr1-deficient MEFs, implying that BMP signaling positively controls p27(Kip1) stability in the G0 phase via p27(Kip1) Ser(10) phosphorylation, which is a prerequisite for induction of primary cilia. Importantly, in control embryos, p27(Kip1) protein is clearly present and strongly phosphorylated on Ser(10) in cells on the quiescent ventral surface of the node. By contrast, the corresponding cells in the node of Acvr1 mutant embryos were proliferative and showed a dramatic attenuation in both p27(Kip1) protein levels and phosphorylation on Ser(10). Our data suggest that cell quiescence controlled by BMP signaling via ACVR1 is required for transient formation of nodal cilia, and provide insight into the fundamental question of how the node represents the mechanistic `node' that regulates the development of left-right symmetry in vertebrates.
Collapse
Affiliation(s)
- Yoshihiro Komatsu
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, 1011 North University Avenue, Ann Arbor, MI 48109-1078, USA
| | | | | |
Collapse
|
10
|
Vandenberg LN, Pennarola BW, Levin M. Low frequency vibrations disrupt left-right patterning in the Xenopus embryo. PLoS One 2011; 6:e23306. [PMID: 21826245 PMCID: PMC3149648 DOI: 10.1371/journal.pone.0023306] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2011] [Accepted: 07/15/2011] [Indexed: 11/19/2022] Open
Abstract
The development of consistent left-right (LR) asymmetry across phyla is a fascinating question in biology. While many pharmacological and molecular approaches have been used to explore molecular mechanisms, it has proven difficult to exert precise temporal control over functional perturbations. Here, we took advantage of acoustical vibration to disrupt LR patterning in Xenopus embryos during tightly-circumscribed periods of development. Exposure to several low frequencies induced specific randomization of three internal organs (heterotaxia). Investigating one frequency (7 Hz), we found two discrete periods of sensitivity to vibration; during the first period, vibration affected the same LR pathway as nocodazole, while during the second period, vibration affected the integrity of the epithelial barrier; both are required for normal LR patterning. Our results indicate that low frequency vibrations disrupt two steps in the early LR pathway: the orientation of the LR axis with the other two axes, and the amplification/restriction of downstream LR signals to asymmetric organs.
Collapse
Affiliation(s)
- Laura N. Vandenberg
- Center for Regenerative and Developmental Biology, Tufts University, Medford, Massachusetts, United States of America
- Biology Department, Tufts University, Medford, Massachusetts, United States of America
| | - Brian W. Pennarola
- Biology Department, Tufts University, Medford, Massachusetts, United States of America
| | - Michael Levin
- Center for Regenerative and Developmental Biology, Tufts University, Medford, Massachusetts, United States of America
- Biology Department, Tufts University, Medford, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
11
|
Huang S, Ma J, Liu X, Zhang Y, Luo L. Retinoic acid signaling sequentially controls visceral and heart laterality in zebrafish. J Biol Chem 2011; 286:28533-43. [PMID: 21669875 DOI: 10.1074/jbc.m111.244327] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
During zebrafish development, the left-right (LR) asymmetric signals are first established around the Kupffer vesicle (KV), a ciliated organ generating directional fluid flow. Then, LR asymmetry is conveyed and stabilized in the lateral plate mesoderm. Although numerous molecules and signaling pathways are involved in controlling LR asymmetry, mechanistic difference and concordance between different organs during LR patterning are poorly understood. Here we show that RA signaling regulates laterality decisions at two stages in zebrafish. Before the 2-somite stage (2So), inhibition of RA signaling leads to randomized visceral laterality through bilateral expression of nodal/spaw in the lateral plate mesoderm, which is mediated by increases in cilia length and defective directional fluid flow in KV. Fgf8 is required for the regulation of cilia length by RA signaling. Blockage of RA signaling before 2So also leads to mild defects of heart laterality, which become much more severe through perturbation of cardiac bmp4 asymmetry when RA signaling is blocked after 2So. At this stage, visceral laterality and the left-sided Nodal remain unaffected. These findings suggest that RA signaling controls visceral laterality through the left-sided Nodal signal before 2So, and regulates heart laterality through cardiac bmp4 mainly after 2So, first identifying sequential control and concordance of visceral and heart laterality.
Collapse
Affiliation(s)
- Sizhou Huang
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, School of Life Sciences, Southwest University, Beibei, 400715 Chongqing, China
| | | | | | | | | |
Collapse
|
12
|
Abu-Daya A, Sater AK, Wells DE, Mohun TJ, Zimmerman LB. Absence of heartbeat in the Xenopus tropicalis mutation muzak is caused by a nonsense mutation in cardiac myosin myh6. Dev Biol 2009; 336:20-9. [PMID: 19769958 PMCID: PMC2786259 DOI: 10.1016/j.ydbio.2009.09.019] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2009] [Revised: 08/17/2009] [Accepted: 09/14/2009] [Indexed: 11/25/2022]
Abstract
Mechanisms coupling heart function and cardiac morphogenesis can be
accessed in lower vertebrate embryos that can survive to swimming tadpole stages
on diffused oxygen. Forward genetic screens in Xenopus
tropicalis have identified more than 80 mutations affecting diverse
developmental processes, including cardiac morphogenesis and function. In the
first positional cloning of a mutation in X. tropicalis, we
show that non-contractile hearts in muzak (muz) embryos are
caused by a premature stop codon in the cardiac myosin heavy chain gene
myh6. The mutation deletes the coiled-coil domain
responsible for polymerization into thick filaments, severely disrupting the
cardiomyocyte cytoskeleton. Despite the lack of contractile activity and absence
of a major structural protein, early stages of cardiac morphogenesis including
looping and chamber formation are grossly normal. Muz hearts
subsequently develop dilated chambers with compressed endocardium and fail to
form identifiable cardiac valves and trabeculae.
Collapse
Affiliation(s)
- Anita Abu-Daya
- MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London, NW7 1AA, UK
| | | | | | | | | |
Collapse
|
13
|
Furtado MB, Solloway MJ, Jones VJ, Costa MW, Biben C, Wolstein O, Preis JI, Sparrow DB, Saga Y, Dunwoodie SL, Robertson EJ, Tam PPL, Harvey RP. BMP/SMAD1 signaling sets a threshold for the left/right pathway in lateral plate mesoderm and limits availability of SMAD4. Genes Dev 2009; 22:3037-49. [PMID: 18981480 DOI: 10.1101/gad.1682108] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Bistability in developmental pathways refers to the generation of binary outputs from graded or noisy inputs. Signaling thresholds are critical for bistability. Specification of the left/right (LR) axis in vertebrate embryos involves bistable expression of transforming growth factor beta (TGFbeta) member NODAL in the left lateral plate mesoderm (LPM) controlled by feed-forward and feedback loops. Here we provide evidence that bone morphogenetic protein (BMP)/SMAD1 signaling sets a repressive threshold in the LPM essential for the integrity of LR signaling. Conditional deletion of Smad1 in the LPM led to precocious and bilateral pathway activation. NODAL expression from both the left and right sides of the node contributed to bilateral activation, indicating sensitivity of mutant LPM to noisy input from the LR system. In vitro, BMP signaling inhibited NODAL pathway activation and formation of its downstream SMAD2/4-FOXH1 transcriptional complex. Activity was restored by overexpression of SMAD4 and in embryos, elevated SMAD4 in the right LPM robustly activated LR gene expression, an effect reversed by superactivated BMP signaling. We conclude that BMP/SMAD1 signaling sets a bilateral, repressive threshold for NODAL-dependent Nodal activation in LPM, limiting availability of SMAD4. This repressive threshold is essential for bistable output of the LR system.
Collapse
Affiliation(s)
- Milena B Furtado
- Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
McCulley DJ, Kang JO, Martin JF, Black BL. BMP4 is required in the anterior heart field and its derivatives for endocardial cushion remodeling, outflow tract septation, and semilunar valve development. Dev Dyn 2009; 237:3200-9. [PMID: 18924235 DOI: 10.1002/dvdy.21743] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The endocardial cushions play a critical role in septation of the four-chambered mammalian heart and in the formation of the valve leaflets that control blood flow through the heart. Within the outflow tract (OFT), both cardiac neural crest and endocardial-derived mesenchymal cells contribute to the endocardial cushions. Bone morphogenetic protein 4 (BMP4) is required for endocardial cushion development and for normal septation of the OFT. In the present study, we show that anterior heart field (AHF)-derived myocardium is an essential source of BMP4 required for normal endocardial cushion expansion and remodeling. Loss of BMP4 from the AHF in mice results in an insufficient number of cells in the developing OFT endocardial cushions, defective cushion remodeling, ventricular septal defects, persistent truncus arteriosus, and abnormal semilunar valve formation.
Collapse
Affiliation(s)
- David J McCulley
- Cardiovascular Research Institute, University of California, San Francisco, California 94158-2517, USA
| | | | | | | |
Collapse
|
15
|
de Campos-Baptista MIM, Holtzman NG, Yelon D, Schier AF. Nodal signaling promotes the speed and directional movement of cardiomyocytes in zebrafish. Dev Dyn 2009; 237:3624-33. [PMID: 18985714 DOI: 10.1002/dvdy.21777] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Members of the Nodal family regulate left-right asymmetry during vertebrate organogenesis, but it is unclear how Nodal signaling controls asymmetric morphogenesis at the cellular level. We used high-resolution time-lapse imaging in zebrafish to compare the movements of cardiomyocytes in the presence or absence of Nodal signaling. Loss of Nodal signaling in late-zygotic mutants for the Nodal co-receptor one-eyed pinhead (LZoep) abolished the leftward movement of cardiomyocytes. Global heart rotation was blocked but cardiomyocyte neighbor relationships were maintained as in wild type. Cardiomyocytes in LZoep mutants moved more slowly and less directionally than their wild-type counterparts. The phenotypes observed in the absence of Nodal signaling strongly resemble abnormalities found in BMP signaling mutants. These results indicate that a Nodal-BMP signaling cascade drives left-right heart morphogenesis by regulating the speed and direction of cardiomyocyte movement.
Collapse
Affiliation(s)
- Maria Ines Medeiros de Campos-Baptista
- Department of Molecular and Cellular Biology, Center for Brain Science, Broad Institute, Harvard Stem Cell Institute, Harvard University, Cambridge, Massachusetts 02138, USA
| | | | | | | |
Collapse
|
16
|
Transcriptome analysis of the zebrafish mind bomb mutant. Mol Genet Genomics 2008; 281:77-85. [PMID: 19005681 DOI: 10.1007/s00438-008-0395-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2008] [Accepted: 10/16/2008] [Indexed: 12/31/2022]
Abstract
Mind bomb (Mib) facilitates Notch signaling pathway by promoting the endocytosis of Notch ligand. The zebrafish mib ( ta52b ) mutant has a defect in its ubiquitin ligase activity which is necessary to inhibit the neurogenesis, resulting in a neuronal hyperplasia. Several genes regulated in the mib ( ta52b ) mutant have been well established, however, there were relatively few reports about the transcriptome profile. To identify the genes differentially expressed in the mib ( ta52b ) mutant, genome-wide analysis was performed using serial analysis of gene expression. Three hundred and thirty-five transcripts were identified whose expressions were significantly altered in the mib ( ta52b ) mutant as compared with the wild-type. Interestingly, it was suggested that the mib ( ta52b ) mutation may affect not only neurogenesis but also mesoderm development. These results provide new insights into Notch signaling pathway.
Collapse
|
17
|
Chocron S, Verhoeven MC, Rentzsch F, Hammerschmidt M, Bakkers J. Zebrafish Bmp4 regulates left-right asymmetry at two distinct developmental time points. Dev Biol 2007; 305:577-88. [PMID: 17395172 DOI: 10.1016/j.ydbio.2007.03.001] [Citation(s) in RCA: 126] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2006] [Revised: 02/21/2007] [Accepted: 03/01/2007] [Indexed: 11/19/2022]
Abstract
Left-right (LR) asymmetry is regulated by early asymmetric signals within the embryo. Even though the role of the bone morphogenetic protein (BMP) pathway in this process has been reported extensively in various model organisms, opposing models for the mechanism by which BMP signaling operates still prevail. Here we show that in zebrafish embryos there are two distinct phases during LR patterning in which BMP signaling is required. Using transgenic lines that ectopically express either noggin3 or bmp2b, we show a requirement for BMP signaling during early segmentation to repress southpaw expression in the right lateral plate mesoderm and regulate both visceral and heart laterality. A second phase was identified during late segmentation, when BMP signaling is required in the left lateral plate mesoderm to regulate left-sided gene expression and heart laterality. Using morpholino knock down experiments, we identified Bmp4 as the ligand responsible for both phases of BMP signaling. In addition, we detected bmp4 expression in Kupffer's vesicle and show that restricted knock down of bmp4 in this structure results in LR patterning defects. The identification of these two distinct and opposing activities of BMP signaling provides new insight into how BMP signaling can regulate LR patterning.
Collapse
Affiliation(s)
- Sonja Chocron
- Cardiac Development and Genetics Group, Hubrecht Laboratory, Uppsalalaan 8, Utrecht, The Netherlands
| | | | | | | | | |
Collapse
|
18
|
Toyoizumi R, Takeuchi S, Mogi K. Subtilisin-like proprotein convertase activity is necessary for left–right axis determination in Xenopus neurula embryos. Dev Genes Evol 2006; 216:607-22. [PMID: 16820955 DOI: 10.1007/s00427-006-0081-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2006] [Accepted: 04/21/2006] [Indexed: 11/24/2022]
Abstract
Signaling by members of TGF-beta superfamily requires the activity of a family of site-specific endopeptidases, known as Subtilisin-like proprotein convertases (SPCs), which cleave these ligands into mature, active forms. To explore the role of SPCs in lateral plate mesoderm (LPM) differentiation in Xenopus, two SPC inhibitors, decanoyl-Arg-Val-Lys-Arg-chloromethylketone (Dec-RVKR-CMK) and hexa-arginine, were injected into the left and right LPM of Xenopus neurulae. Left-side injection caused heart-specific left-right reversal, and this phenotype was rescued by co-injection of mature Nodal protein. In contrast, right-side injection caused left-right reversal of both the heart and gut. Tailbud embryos were less sensitive to SPC inhibitors than neurula embryos. Injection of inhibitors into either side of neurula embryos completely abolished expression of the left-LPM-specific genes, Xnr-1, antivin, and pitx2. SPC1 enzyme (Furin) was injected into the left or right LPM of mid-neurula embryos to determine the effect of enhancing SPC activity. Left-side injection of SPC1 did not cause a significant left-right reversal of the internal organs. However, right-side injection of SPC1 strongly induced the expression of Xnr-1 and pitx2 in the right LPM, and caused 100% left-right reversal of both the heart and gut. These results suggest that moderate level of SPC activity in the right LPM of the neurulae is necessary for proper left-right specification. Taken together, SPC enzymatic activity must be present in both LPMs for expression of the left-handed genes and left-right axis determination of the heart and gut in Xenopus embryos.
Collapse
Affiliation(s)
- Ryuji Toyoizumi
- Department of Biological Sciences, Faculty of Science, Kanagawa University, Tsuchiya 2946, Hiratsuka, Kanagawa, 259-1293, Japan
| | | | | |
Collapse
|
19
|
Abstract
Vertebrate mesoderm induction is one of the classical problems in developmental biology. Various developmental biology approaches, particularly in Xenopus and zebrafish, have identified many of the key factors that are involved in this process and have provided major insights into how these factors interact as part of a signalling and transcription-factor network. These data are beginning to be refined by high-throughput approaches such as microarray assays. Future challenges include understanding how the prospective mesodermal cells integrate the various signals they receive and how they resolve this information to regulate their morphogenetic behaviours and cell-fate decisions.
Collapse
Affiliation(s)
- David Kimelman
- Department of Biochemistry, Box 357350, University of Washington, Seattle, Washington 98195-7350, USA.
| |
Collapse
|
20
|
Ramsdell AF, Bernanke JM, Johnson J, Trusk TC. Left-right lineage analysis of AV cushion tissue in normal and laterality defective Xenopus hearts. ACTA ACUST UNITED AC 2006; 287:1176-82. [PMID: 16294330 DOI: 10.1002/ar.a.20269] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The majority of complex congenital heart defects occur in individuals who are afflicted by laterality disease. We hypothesize that the prevalence of valvuloseptal defects in this population is due to defective left-right patterning of the embryonic atrioventricular (AV) canal cushions, which are the progenitor tissue for valve and septal structures in the mature heart. Using embryos of the frog Xenopus laevis, this hypothesis was tested by performing left-right lineage analysis of myocytes and cushion mesenchyme cells of the superior and inferior cushion regions of the AV canal. Lineage analyses were conducted in both wild-type and laterality mutant embryos experimentally induced by misexpression of ALK4, a type I TGF-beta receptor previously shown to modulate left-right axis determination in Xenopus. We find that abnormalities in overall amount and left-right cell lineage composition are present in a majority of ALK4-induced laterality mutant embryos and that much variation in the nature of these abnormalities exists in embryos that exhibit the same overall body situs. We propose that these two parameters of cushion tissue formation-amount and left-right lineage origin-are important for normal processes of valvuloseptal morphogenesis and that defective allocation of cells in the AV canal might be causatively linked to the high incidence of valvuloseptal defects associated with laterality disease.
Collapse
Affiliation(s)
- Ann F Ramsdell
- Department of Cell and Developmental Biology and Anatomy, School of Medicine, University of South Carolina, Columbia, South Carolina, USA.
| | | | | | | |
Collapse
|
21
|
Ramsdell AF. Left–right asymmetry and congenital cardiac defects: Getting to the heart of the matter in vertebrate left–right axis determination. Dev Biol 2005; 288:1-20. [PMID: 16289136 DOI: 10.1016/j.ydbio.2005.07.038] [Citation(s) in RCA: 154] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2005] [Revised: 07/21/2005] [Accepted: 07/26/2005] [Indexed: 01/20/2023]
Abstract
Cellular and molecular left-right differences that are present in the mesodermal heart fields suggest that the heart is lateralized from its inception. Left-right asymmetry persists as the heart fields coalesce to form the primary heart tube, and overt, morphological asymmetry first becomes evident when the heart tube undergoes looping morphogenesis. Thereafter, chamber formation, differentiation of the inflow and outflow tracts, and position of the heart relative to the midline are additional features of heart development that exhibit left-right differences. Observations made in human clinical studies and in animal models of laterality disease suggest that all of these features of cardiac development are influenced by the embryonic left-right body axis. When errors in left-right axis determination happen, they almost always are associated with complex congenital heart malformations. The purpose of this review is to highlight what is presently known about cardiac development and upstream processes of left-right axis determination, and to consider how perturbation of the left-right body plan might ultimately result in particular types of congenital heart defects.
Collapse
Affiliation(s)
- Ann F Ramsdell
- Department of Cell and Developmental Biology and Anatomy, School of Medicine and Program in Women's Studies, College of Arts and Sciences, University of South Carolina, Columbia, SC 29208, USA.
| |
Collapse
|
22
|
Levin M. Left-right asymmetry in embryonic development: a comprehensive review. Mech Dev 2005; 122:3-25. [PMID: 15582774 DOI: 10.1016/j.mod.2004.08.006] [Citation(s) in RCA: 334] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2004] [Revised: 08/22/2004] [Accepted: 08/23/2004] [Indexed: 12/17/2022]
Abstract
Embryonic morphogenesis occurs along three orthogonal axes. While the patterning of the anterior-posterior and dorsal-ventral axes has been increasingly well characterized, the left-right (LR) axis has only recently begun to be understood at the molecular level. The mechanisms which ensure invariant LR asymmetry of the heart, viscera, and brain represent a thread connecting biomolecular chirality to human cognition, along the way involving fundamental aspects of cell biology, biophysics, and evolutionary biology. An understanding of LR asymmetry is important not only for basic science, but also for the biomedicine of a wide range of birth defects and human genetic syndromes. This review summarizes the current knowledge regarding LR patterning in a number of vertebrate and invertebrate species, discusses several poorly understood but important phenomena, and highlights some important open questions about the evolutionary origin and conservation of mechanisms underlying embryonic asymmetry.
Collapse
Affiliation(s)
- Michael Levin
- Cytokine Biology Department, The Forsyth Institute, Boston, MA 02115, USA.
| |
Collapse
|
23
|
Abstract
Bone morphogenetic proteins (BMPs) play pleiotropic roles during embryonic development as well as throughout life. Recent genetic approaches especially using the mouse gene knockout system revealed that BMP signaling is greatly involved in early embryonic patterning, which is a dynamic event to establish three-dimensional polarities. The purpose of this review is to describe the diverse function of BMPs through different receptor signaling systems during embryonic patterning including gastrulation and establishment of the left-right asymmetry.
Collapse
Affiliation(s)
- Satoshi Kishigami
- Molecular Developmental Biology Section, Laboratory of Reproductive and Developmental Toxicology, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA.
| | | |
Collapse
|
24
|
Kishigami S, Yoshikawa SI, Castranio T, Okazaki K, Furuta Y, Mishina Y. BMP signaling through ACVRI is required for left–right patterning in the early mouse embryo. Dev Biol 2004; 276:185-93. [PMID: 15531373 DOI: 10.1016/j.ydbio.2004.08.042] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2003] [Revised: 07/07/2004] [Accepted: 08/20/2004] [Indexed: 12/01/2022]
Abstract
Vertebrate organisms are characterized by dorsal-ventral and left-right asymmetry. The process that establishes left-right asymmetry during vertebrate development involves bone morphogenetic protein (BMP)-dependent signaling, but the molecular details of this signaling pathway remain poorly defined. This study tests the role of the BMP type I receptor ACVRI in establishing left-right asymmetry in chimeric mouse embryos. Mouse embryonic stem (ES) cells with a homozygous deletion at Acvr1 were used to generate chimeric embryos. Chimeric embryos were rescued from the gastrulation defect of Acvr1 null embryos but exhibited abnormal heart looping and embryonic turning. High mutant contribution chimeras expressed left-side markers such as nodal bilaterally in the lateral plate mesoderm (LPM), indicating that loss of ACVRI signaling leads to left isomerism. Expression of lefty1 was absent in the midline of chimeric embryos, but shh, a midline marker, was expressed normally, suggesting that, despite formation of midline, its barrier function was abolished. High-contribution chimeras also lacked asymmetric expression of nodal in the node. These data suggest that ACVRI signaling negatively regulates left-side determinants such as nodal and positively regulates lefty1. These functions maintain the midline, restrict expression of left-side markers, and are required for left-right pattern formation during embryogenesis in the mouse.
Collapse
Affiliation(s)
- Satoshi Kishigami
- Molecular Developmental Biology Group, Laboratory of Reproductive and Developmental Toxicology, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | | | | | | | | | | |
Collapse
|
25
|
Cooke J. Developmental mechanism and evolutionary origin of vertebrate left/right asymmetries. Biol Rev Camb Philos Soc 2004; 79:377-407. [PMID: 15191229 DOI: 10.1017/s1464793103006298] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The systematically 'handed', or directionally asymmetrical way in which the major viscera are packed within the vertebrate body is known as situs. Other less obvious vertebrate lateralisations concern cognitive neural function, and include the human phenomena of hand-use preference and language-associated cognitive partitioning. An overview, rather than an exhaustive scholarly review, is given of recent advances in molecular understanding of the mechanism that ensures normal development of 'correct' situs. While the asymmetry itself and its left/right direction are clearly vertebrate-conserved characters, data available from various embryo types are compared in order to assess the likelihood that the developmental mechanism is evolutionarily conserved in its entirety. A conserved post-gastrular 'phylotypic' stage, with left- and right-specific cascades of key, orthologous gene expressions, clearly exists. It now seems probable that earlier steps, in which symmetry-breaking information is reliably transduced to trigger these cascades on the correct sides, are also conserved at depth although it remains unclear exactly how these steps operate. Earlier data indicated that the initiation of symmetry-breaking had been transformed, among the different vertebrate classes, as drastically as has the anatomy of pre-gastrular development itself, but it now seems more likely that this apparent diversity is deceptive. Ideas concerning the functional advantages to the vertebrate lifestyle of a systematically asymmetrical visceral packing arrangement, while untestable, are accepted because they form a plausible adaptationist 'just-so' story. Nevertheless, two contrasting beliefs are possible about the evolutionary origins of situs. Major recent advances in analysis of its developmental mechanism are largely due not to zoologists, comparative anatomists or evolutionary systematists, but to molecular geneticists, and these workers have generally assumed that the asymmetry is an evolutionary novelty imposed on a true bilateral symmetry, at or close to the origin of the vertebrate clade. A major purpose of this review is to advocate an alternative view, on the grounds of comparative anatomy and molecular systematics together with the comparative study of expressions of orthologous genes in different forms. This view is that situs represents a co-optation of a pre-existing, evolutionarily ancient non-bilaterality of the adult form in a vertebrate ancestor. Viewed this way, vertebrate or chordate origins are best understood as the novel imposition of an adaptively bilateral locomotory-skeletal-neural system, around a retained non-symmetrical 'visceral' animal. One component of neuro-anatomical asymmetry, the habenular/parapineal one that originates in the diencephalon, has recently been found (in teleosts) to be initiated from the same 'phylotypic' gene cascade that controls situs development. But the function of this particular diencephalic asymmetry is currently unclear. Other left-right partitionings of brain function, including the much more recently evolved, cerebral cortically located one associated with human language and hand-use, may be controlled entirely separately from situs even though their directionality has a particular relation to it in a majority of individuals. Finally, possible relationships are discussed between the vertebrate directional asymmetries and those that occur sporadically among protostome bilaterian forms. These may have very different evolutionary and molecular bases, such that there may have been constraints, in protostome evolution, upon any exploitation of left and right for complex organismic, and particularly cognitive neural function.
Collapse
Affiliation(s)
- Jonathan Cooke
- Department of Zoology and Museum of Comparative Zoology, University of Cambridge, Downing Street, Cambridge, UK.
| |
Collapse
|
26
|
Abstract
Members of the transforming growth factor beta (TGF-beta) family of multifunctional peptides are involved in almost every aspect of development. Model systems, ranging from genetically tractable invertebrates to genetically engineered mice, have been used to determine the mechanisms of TGF-beta signaling in normal development and in pathological situations. Furthermore, mutations in genes for the ligands, receptors, extracellular modulators, and intracellular signaling molecules have been associated with several human disorders. The most common are those associated with the development and maintenance of the skeletal system and axial patterning. This review focuses on the mechanisms of TGF-beta signaling with special emphasis on the molecules involved in human disorders of patterning and skeletal development.
Collapse
Affiliation(s)
- Rosa Serra
- Department of Cell Biology, University of Alabama, Birmingham 35294-0005, USA.
| | | |
Collapse
|
27
|
Chen Y, Mironova E, Whitaker LL, Edwards L, Yost HJ, Ramsdell AF. ALK4 functions as a receptor for multiple TGF beta-related ligands to regulate left-right axis determination and mesoderm induction in Xenopus. Dev Biol 2004; 268:280-94. [PMID: 15063168 DOI: 10.1016/j.ydbio.2003.12.035] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2003] [Revised: 12/16/2003] [Accepted: 12/16/2003] [Indexed: 10/26/2022]
Abstract
In Xenopus, several TGF betas, including nodal-related 1 (Xnr1), derriere, and chimeric forms of Vg1, elicit cardiac and visceral organ left-right (LR) defects when ectopically targeted to right mesendoderm cell lineages, suggesting that LR axis determination may require activity of one or more TGF betas. However, it is not known which, if any, of these ligands is required for LR axis determination, nor is it known which type I TGF beta receptor(s) are involved in mediating left-side TGF beta signaling. We report here that similar to effects of ectopic TGF betas, right-side expression of constitutively active activin-like kinase (ALK) 4 results in LR organ reversals as well as altered Pitx2 expression in the lateral plate mesoderm. Moreover, left-side expression of a kinase-deficient, dominant-negative ALK4 (DN-ALK4) or an ALK4 antisense morpholino also results in abnormal embryonic body situs, demonstrating a left-side requirement for ALK4 signaling. To determine which TGF beta(s) utilize the ALK4 pathway to mediate LR development, biochemical and functional assays were performed using an Activin-Vg1 chimera (AVg), Xnr1, and derriere. Whereas ALK4 can co-immunoprecipitate all of these TGF betas, including endogenous Vg1 protein from embryo homogenates, functional assays demonstrate that not all of these ligands require an intact ALK4 signaling pathway to modulate LR asymmetry. When AVg and DN-ALK4 are co-expressed, LR defects otherwise induced by AVg alone are attenuated by DN-ALK4; however, when functional assays are performed with Xnr1 or derriere, LR defects otherwise elicited by these ligands alone still occur in the presence of DN-ALK4. Intriguingly, when any of these TGF betas is expressed at a higher concentration to elicit primary axis defects, DN-ALK4 blocks gastrulation and dorsoanterior/ventroposterior defects that otherwise occur following ligand-only expression. Together, these results suggest not only that ALK4 interacts with multiple TGF betas to generate embryonic pattern, but also that ALK4 ligands differentially utilize the ALK4 pathway to regulate distinct aspects of axial pattern, with Vg1 as a modulator of ALK4 function in LR axis determination and Vg1, Xnr1, and derriere as modulators of ALK4 function in mesoderm induction during primary axis formation.
Collapse
Affiliation(s)
- Yumei Chen
- Department of Cell Biology and Anatomy, Medical University of South Carolina, Charleston, SC 29425, USA
| | | | | | | | | | | |
Collapse
|
28
|
Bisgrove BW, Morelli SH, Yost HJ. Genetics of human laterality disorders: insights from vertebrate model systems. Annu Rev Genomics Hum Genet 2003; 4:1-32. [PMID: 12730129 DOI: 10.1146/annurev.genom.4.070802.110428] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Many internal organs in the vertebrate body are asymmetrically oriented along the left-right (L-R) body axis. Organ asymmetry and some components of the molecular signaling pathways that direct L-R development are highly conserved among vertebrate species. Although individuals with full reversal of organ L-R asymmetry (situs inversus totalis) are healthy, significant morbidity and mortality is associated with perturbations in laterality that result in discordant orientation of organ systems and complex congenital heart defects. In humans and other vertebrates, genetic alterations of L-R signaling pathways can result in a wide spectrum of laterality defects. In this review we categorize laterality defects in humans, mice, and zebrafish into specific classes based on altered patterns of asymmetric gene expression, organ situs defects, and midline phenotypes. We suggest that this classification system provides a conceptual framework to help consolidate the disparate laterality phenotypes reported in humans and vertebrate model organisms, thereby refining our understanding of the genetics of L-R development. This approach helps suggest candidate genes and genetic pathways that might be perturbed in human laterality disorders and improves diagnostic criteria.
Collapse
Affiliation(s)
- Brent W Bisgrove
- Huntsman Cancer Institute, Center for Children, Department of Oncological Sciences, University of Utah, Salt Lake City, Utah 84112, USA.
| | | | | |
Collapse
|
29
|
Abstract
The heart develops from two bilateral heart fields that are formed during early gastrulation. In recent years, signaling pathways that specify cardiac mesoderm have been extensively analyzed. In addition, a battery of transcription factors that regulate different aspects of cardiac morphogenesis and cytodifferentiation have been identified and characterized in model organisms. At the anterior pole, a secondary heart field is formed, which in its molecular make-up, appears to be similar to the primary heart field. The cardiac outflow tract and the right ventricle to a large extent are derivatives of this anterior heart field. Cardiac mesoderm receives positional information by which it is patterned along the three body axes. The molecular control of left-right axis development has received particular attention, and the underlying regulatory network begins to emerge. Cardiac chamber development involves the activation of a transcription program that is different from the one present in the primary heart field and regulates cardiac morphogenesis in a region-specific manner. This review also attempts to identify areas in which additional research is needed to fully understand early cardiac development.
Collapse
Affiliation(s)
- Thomas Brand
- Department of Cell and Molecular Biology, Technical University of Braunschweig, 38106 Braunschweig, Germany.
| |
Collapse
|
30
|
Kuehl KS, Loffredo CA. Population-based study of l-transposition of the great arteries: possible associations with environmental factors. BIRTH DEFECTS RESEARCH. PART A, CLINICAL AND MOLECULAR TERATOLOGY 2003; 67:162-7. [PMID: 12797457 DOI: 10.1002/bdra.10015] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND L-transposition of the great arteries (l-tga) is an uncommon congenital cardiovascular malformation that occurs from abnormal looping of the primitive cardiac tube. Little is known about risk factors for the development of l-tga. METHODS This study is a case-control study of 36 cases of l-tga compared to 3,495 population-based live born infant controls in the Baltimore Washington Infant Study (1981-1989 births). Extensive personal and occupational exposure data from parental interviews were available for all subjects. A geographic information system was used to identify potential environmental exposures, for example, hazardous waste sites prioritized for cleanup (National Priority List sites). Adjusted odds ratios (OR) and 95% confidence intervals (CI) were calculated using exact parameter estimates from logistic regression. RESULTS Most infants with l-tga had multiple cardiovascular anomalies, with single ventricle in 47%. Over 75% of all cases of l-tga occur in two regions of contiguous cases. Within these regions, the case control OR of l-tga are 13.4 (95% CI, 4.7-37.8) Both areas are characterized by release of toxic chemicals into air and by hazardous waste sites. Parental exposures to hair dye, smoking and laboratory chemicals are also associated with case status. CONCLUSIONS L-tga, a congenital cardiovascular malformation due to very early abnormalities in embryogenesis, is associated strongly with residency in two small regions of Maryland and District of Columbia (DC), and with other parental personal or occupational exposures. Additional research is needed to identify the components of spatial and other associations that constitute etiologic risk factors.
Collapse
Affiliation(s)
- Karen S Kuehl
- Department of Cardiology, Children's National Medical Center, George Washington University School of Medicine, Washington, DC 20010, USA.
| | | |
Collapse
|
31
|
Abstract
Heart muscle cell specification (cardiac myogenesis) and creating the four-chambered heart (cardiac morphogenesis) are subject to regulation, in certain model organisms, by bone morphogenetic proteins and their receptors. Extrapolation to mammals from organisms that develop outside the mother (flies, fish, frogs, and avians) has been confounded by very early lethality-at gastrulation-of many null alleles needed to prove cause-effect relations in this pathway. Here, we describe the use of lineage- or compartment-restricted null alleles as well as hypomorphic alleles, which circumvent these limitations and pinpoint novel essential functions for the bone morphogenetic protein cascade in mammalian cardiac development.
Collapse
Affiliation(s)
- Michael D Schneider
- Department of Medicine, Center for Cardiovascular Development, Baylor College of Medicine, One Baylor Plaza, Room 506D, Houston, TX 77030, USA.
| | | | | |
Collapse
|
32
|
Cheng SK, Olale F, Bennett JT, Brivanlou AH, Schier AF. EGF-CFC proteins are essential coreceptors for the TGF-beta signals Vg1 and GDF1. Genes Dev 2003; 17:31-6. [PMID: 12514096 PMCID: PMC195969 DOI: 10.1101/gad.1041203] [Citation(s) in RCA: 140] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The TGF-beta signals Nodal, Activin, GDF1, and Vg1 have been implicated in mesoderm induction and left-right patterning. Nodal and Activin both activate Activin receptors, but only Nodal requires EGF-CFC coreceptors for signaling. We report that Vg1 and GDF1 signaling in zebrafish also depends on EGF-CFC proteins, but not on Nodal signals. Correspondingly, we find that in Xenopus Vg1 and GDF1 bind to and signal through Activin receptors only in the presence of EGF-CFC proteins. These results establish that multiple TGF-beta signals converge on Activin receptor/EGF-CFC complexes and suggest a more widespread requirement for coreceptors in TGF-beta signaling than anticipated previously.
Collapse
Affiliation(s)
- Simon K Cheng
- Developmental Genetics Program, Skirball Institute of Biomolecular Medicine, Department of Cell Biology, New York University School of Medicine, New York, New York 10016, USA
| | | | | | | | | |
Collapse
|
33
|
Kuehl KS, Loffredo C. Risk factors for heart disease associated with abnormal sidedness. TERATOLOGY 2002; 66:242-8. [PMID: 12397632 DOI: 10.1002/tera.10099] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND The purpose of this study is to obtain information on potential familial and environmental risk factors for liveborn cases of heart disease associated with abnormal visceral and vascular sidedness, heterotaxy heart disease, so that hypotheses about this congenital cardiovascular malformation (CCVM) and its risk factors can be generated. We describe the characteristics of infants with heterotaxy heart malformations and case-control comparisons of interview data obtained on parental socio-demographic characteristics, occupational and household environmental exposures. METHODS Cases and controls are drawn from the Baltimore Washington Infant Study (BWIS) a population based case control study of CCVM diagnosed in the region from 1981-89. RESULTS Maternal diabetes (OR = 5.5, 95% CI = 1.6-19.1) and family history of malformations (OR = 5.1, 95% CI = 2.0-12.9) are strongly associated with cardiac disorders of sidedness. Cocaine use by mothers during the first trimester is associated with heterotaxy heart disease with odds of 3.7 (95% CI = 1.3-10.7). Cases of isolated dextrocardia shared risk factors with other heterotaxy malformations. The odds of a twin proband having heterotaxy heart disease is 4.8 (95% CI = 1.9-11.8) compared to singleton births. Twin probands are predominantly monozygotic twins in contrast to twin probands in other congenital cardiovascular malformations. CONCLUSIONS Our findings are consistent with a role for multiple genetic factors in the development of left-right axis formation and with variable cardiac phenotypes according to gene expression and possible gene-environment interactions. Association with monozygotic twinning and with parental cocaine use may point to additional mechanistic clues for future research.
Collapse
Affiliation(s)
- Karen S Kuehl
- Pediatric Cardiology, George Washington University School of Medicine, Children's National Medical Center, Washington, DC 20010, USA.
| | | |
Collapse
|
34
|
Abstract
The internal organs of all vertebrates are asymmetrically organised across the left-right axis. The development of this asymmetry is controlled by a molecular pathway that includes the signalling molecule Nodal and the transcription factor Pitx2, proteins encoded by genes that are predominantly expressed on the left side of all vertebrate embryos studied to date. Vertebrates share Phylum Chordata with two other groups of animals, amphioxus and the urochordates (including ascidians). Both these taxa develop left-right asymmetries, and recent studies have begun to address the degree of conservation of nodal and Pitx2 in this process. Pitx2 is a member of the Pitx homeobox gene family, and in both amphioxus and ascidians Pitx gene expression is predominantly left sided. These studies suggest that left-right asymmetry in all chordates is regulated by a conserved developmental pathway, and that this pathway evolved before the separation of the lineages leading to living chordates.
Collapse
Affiliation(s)
- Clive J Boorman
- School of Animal and Microbial Sciences, The University of Reading, Whiteknights, UK
| | | |
Collapse
|
35
|
Fischer A, Viebahn C, Blum M. FGF8 acts as a right determinant during establishment of the left-right axis in the rabbit. Curr Biol 2002; 12:1807-16. [PMID: 12419180 DOI: 10.1016/s0960-9822(02)01222-8] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND FGF8 has been implicated in the transfer of left-right (L-R) asymmetry from the embryonic midline (node) to the lateral plate mesoderm (LPM). Surprisingly, opposite roles have been described in chick and mouse. In mouse, FGF8 is required for the left-asymmetric expression of nodal, lefty2, and Pitx2. In chick, FGF8 represses nodal and Pitx2 on the right side. This discrepancy could reflect evolutionary differences between birds and mammals. Alternatively, the right-asymmetric expression of fgf8, which is not found in mouse, at the chick node may be a prerequisite of right-sided function. Finally, chick (blastodisc) and mouse (egg cylinder) differ with respect to the topology of the early gastrula/neurula embryo. RESULTS The rabbit blastodisc was investigated as an additional mammalian L-R model system. While nodal, lefty, and Pitx2 showed asymmetric expression in the left LPM, fgf8 and all other midline marker genes were symmetrically expressed at the node like in mouse. Left-sided application of FGF8 repressed the endogenous transcription of nodal as well as ectopic expression induced by the parallel administration of BMP4. Right-sided inhibition of FGF8 signaling induced bilateral marker gene expression, demonstrating that, in rabbit, FGF8 acts as a right determinant like in chick. CONCLUSIONS These findings suggest that the anatomy of the early embryo (blastodisc versus egg cylinder) rather than taxonomical differences or asymmetry in expression constitutes an important determinant of FGF8 function in L-R axis formation. The rabbit may provide a useful model for early human embryogenesis, as human embryos develop via a blastodisc as well.
Collapse
Affiliation(s)
- Anja Fischer
- Forschungszentrum Karlsruhe, Institute of Toxicology and Genetics, PO Box 3640, 76021 Karlsruhe, Germany
| | | | | |
Collapse
|
36
|
Gaussin V, Van de Putte T, Mishina Y, Hanks MC, Zwijsen A, Huylebroeck D, Behringer RR, Schneider MD. Endocardial cushion and myocardial defects after cardiac myocyte-specific conditional deletion of the bone morphogenetic protein receptor ALK3. Proc Natl Acad Sci U S A 2002; 99:2878-83. [PMID: 11854453 PMCID: PMC122441 DOI: 10.1073/pnas.042390499] [Citation(s) in RCA: 218] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Receptors for bone morphogenetic proteins (BMPs), members of the transforming growth factor-beta (TGFbeta) superfamily, are persistently expressed during cardiac development, yet mice lacking type II or type IA BMP receptors die at gastrulation and cannot be used to assess potential later roles in creation of the heart. Here, we used a Cre/lox system for cardiac myocyte-specific deletion of the type IA BMP receptor, ALK3. ALK3 was specifically required at mid-gestation for normal development of the trabeculae, compact myocardium, interventricular septum, and endocardial cushion. Cardiac muscle lacking ALK3 was specifically deficient in expressing TGFbeta2, an established paracrine mediator of cushion morphogenesis. Hence, ALK3 is essential, beyond just the egg cylinder stage, for myocyte-dependent functions and signals in cardiac organogenesis.
Collapse
Affiliation(s)
- Vinciane Gaussin
- Center for Cardiovascular Development, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Kitaguchi T, Mizugishi K, Hatayama M, Aruga J, Mikoshiba K. Xenopus Brachyury regulates mesodermal expression of Zic3, a gene controlling left-right asymmetry. Dev Growth Differ 2002; 44:55-61. [PMID: 11869292 DOI: 10.1046/j.1440-169x.2002.00624.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The Brachyury gene has a critical role in the formation of posterior mesoderm and notochord in vertebrate development. A recent study showed that Brachyury is also responsible for the formation of the left-right (L-R) axis in mouse and zebrafish. However, the role of Brachyury in L-R axis specification is still elusive. Here, it is demonstrated that Brachyury is involved in L-R specification of the Xenopus laevis embryo and regulates expression of Zic3, which controls the L-R specification process. Overexpression of Xenopus Brachyury (Xbra) and dominant-negative type Xbra (Xbra-EnR) altered the orientation of heart and gut looping, concomitant with disturbed laterality of nodal-related 1 (Xnr1) and Pitx2 expression, both of which are normally expressed in the left lateral plate mesoderm. Furthermore, activation of inducible type Xbra (Xbra-GR) induces Zic3 expression within 20 min. These results suggest that a role of Brachyury in L-R specification may be the direct regulation of Zic3 expression.
Collapse
Affiliation(s)
- Tetsuya Kitaguchi
- Laboratory for Developmental Neurobiology, Riken Brain Science Institute, Wako-shi, Saitama 351-0198, Japan
| | | | | | | | | |
Collapse
|
38
|
Abstract
A distinctive and essential feature of the vertebrate body is a pronounced left-right asymmetry of internal organs and the central nervous system. Remarkably, the direction of left-right asymmetry is consistent among all normal individuals in a species and, for many organs, is also conserved across species, despite the normal health of individuals with mirror-image anatomy. The mechanisms that determine stereotypic left-right asymmetry have fascinated biologists for over a century. Only recently, however, has our understanding of the left-right patterning been pushed forward by links to specific genes and proteins. Here we examine the molecular biology of the three principal steps in left-right determination: breaking bilateral symmetry, propagation and reinforcement of pattern, and the translation of pattern into asymmetric organ morphogenesis.
Collapse
Affiliation(s)
- M Mercola
- Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, Massachusetts 02115, USA.
| | | |
Collapse
|
39
|
Kramer KL, Yost HJ. Ectodermal syndecan-2 mediates left-right axis formation in migrating mesoderm as a cell-nonautonomous Vg1 cofactor. Dev Cell 2002; 2:115-24. [PMID: 11782319 DOI: 10.1016/s1534-5807(01)00107-1] [Citation(s) in RCA: 107] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Heparan sulfate proteoglycans expressed on the Xenopus animal cap ectoderm have been implicated in transmitting left-right information to heart and gut primordia. We report here that syndecan-2 functions in the ectoderm to mediate cardiac and visceral situs, upstream of known asymmetrically expressed genes but independently of its ability to mediate fibronectin fibrillogenesis. Left-right development is dependent on a distinct subset of glycosaminoglycan attachment sites on syndecan-2. A novel in vivo approach with enterokinase demonstrates that syndecan-2 functions in left-right patterning during early gastrulation. We describe a cell-nonautonomous role for ectodermal syndecan-2 in transmitting left-right information to migrating mesoderm. The results further suggest that this function may be related to the transduction of Vg1-related signals.
Collapse
Affiliation(s)
- Kenneth L Kramer
- Huntsman Cancer Institute, Center for Children, Department of Oncological Sciences and Department of Pediatrics, University of Utah, 2000 Circle of Hope, Salt Lake City, UT 84112, USA
| | | |
Collapse
|
40
|
Reissmann E, Jörnvall H, Blokzijl A, Andersson O, Chang C, Minchiotti G, Persico MG, Ibáñez CF, Brivanlou AH. The orphan receptor ALK7 and the Activin receptor ALK4 mediate signaling by Nodal proteins during vertebrate development. Genes Dev 2001; 15:2010-22. [PMID: 11485994 PMCID: PMC312747 DOI: 10.1101/gad.201801] [Citation(s) in RCA: 244] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2001] [Accepted: 06/06/2001] [Indexed: 11/24/2022]
Abstract
Nodal proteins have crucial roles in mesendoderm formation and left-right patterning during vertebrate development. The molecular mechanisms of signal transduction by Nodal and related ligands, however, are not fully understood. In this paper, we present biochemical and functional evidence that the orphan type I serine/threonine kinase receptor ALK7 acts as a receptor for mouse Nodal and Xenopus Nodal-related 1 (Xnr1). Receptor reconstitution experiments indicate that ALK7 collaborates with ActRIIB to confer responsiveness to Xnr1 and Nodal. Both receptors can independently bind Xnr1. In addition, Cripto, an extracellular protein genetically implicated in Nodal signaling, can independently interact with both Xnr1 and ALK7, and its expression greatly enhances the ability of ALK7 and ActRIIB to respond to Nodal ligands. The Activin receptor ALK4 is also able to mediate Nodal signaling but only in the presence of Cripto, with which it can also interact directly. A constitutively activated form of ALK7 mimics the mesendoderm-inducing activity of Xnr1 in Xenopus embryos, whereas a dominant-negative ALK7 specifically blocks the activities of Nodal and Xnr1 but has little effect on other related ligands. In contrast, a dominant-negative ALK4 blocks all mesoderm-inducing ligands tested, including Nodal, Xnr1, Xnr2, Xnr4, and Activin. In agreement with a role in Nodal signaling, ALK7 mRNA is localized to the ectodermal and organizer regions of Xenopus gastrula embryos and is expressed during early stages of mouse embryonic development. Therefore, our results indicate that both ALK4 and ALK7 can mediate signal transduction by Nodal proteins, although ALK7 appears to be a receptor more specifically dedicated to Nodal signaling.
Collapse
Affiliation(s)
- E Reissmann
- Division of Molecular Neurobiology, Department of Neuroscience, Karolinska Institute, S-17177 Stockholm, Sweden
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Breckenridge RA, Mohun TJ, Amaya E. A role for BMP signalling in heart looping morphogenesis in Xenopus. Dev Biol 2001; 232:191-203. [PMID: 11254357 DOI: 10.1006/dbio.2001.0164] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The heart develops from a linear tubular precursor, which loops to the right and undergoes terminal differentiation to form the multichambered heart. Heart looping is the earliest manifestation of left-right asymmetry and determines the eventual heart situs. The signalling processes that impart laterality to the unlooped heart tube and thus allow the developing organ to interpret the left-right axis of the embryo are poorly understood. Recent experiments in zebrafish led to the suggestion that bone morphogenetic protein 4 (BMP4) may impart laterality to the developing heart tube. Here we show that in Xenopus, as in zebrafish, BMP4 is expressed predominantly on the left of the linear heart tube. Furthermore we demonstrate that ectopic expression of Xenopus nodal-related protein 1 (Xnr1) RNA affects BMP4 expression in the heart, linking asymmetric BMP4 expression to the left-right axis. We show that transgenic embryos overexpressing BMP4 bilaterally in the heart tube tend towards a randomisation of heart situs in an otherwise intact left-right axis. Additionally, inhibition of BMP signalling by expressing noggin or a truncated, dominant negative BMP receptor prevents heart looping but allows the initial events of chamber specification and anteroposterior morphogenesis to occur. Thus in Xenopus asymmetric BMP4 expression links heart development to the left-right axis, by being both controlled by Xnr1 expression and necessary for heart looping morphogenesis.
Collapse
Affiliation(s)
- R A Breckenridge
- Wellcome/CRC Institute, Department of Zoology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QR, United Kingdom
| | | | | |
Collapse
|
42
|
Monsoro-Burq A, Le Douarin NM. BMP4 plays a key role in left-right patterning in chick embryos by maintaining Sonic Hedgehog asymmetry. Mol Cell 2001; 7:789-99. [PMID: 11336702 DOI: 10.1016/s1097-2765(01)00223-4] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
In chick embryos, the first signs of left-right asymmetry are detected in Hensen's node, essentially by left-sided Sonic Hedgehog (Shh) expression. After a gap of several hours, SHH induces polarized gene activities in the left paraxial mesoderm. We show that during this time period, BMP4 signaling is necessary and sufficient to maintain Shh asymmetry within the node. SHH and BMP4 proteins negatively regulate each other's transcription, resulting in a strict complementarity between these two gene patterns on each side of the node. Noggin, present in the midline at this stage, limits BMP4 spreading. Moreover, BMP4 is downstream to Activin signals and controls Fgf8. Thus, early BMP4 signaling coordinates left and right pathways in Hensen's node.
Collapse
Affiliation(s)
- A Monsoro-Burq
- Institut d'Embryologie Cellulaire et Moléculaire, FRE 2160, 49 bis avenue de la Belle Gabrielle, 94736 Nogent-sur-Marne Cedex, France
| | | |
Collapse
|
43
|
Whitman M, Mercola M. TGF-beta superfamily signaling and left-right asymmetry. SCIENCE'S STKE : SIGNAL TRANSDUCTION KNOWLEDGE ENVIRONMENT 2001; 2001:re1. [PMID: 11752633 DOI: 10.1126/stke.2001.64.re1] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Despite an outwardly bilaterally symmetrical appearance, most internal organs of vertebrates display considerable left-right (LR) asymmetry in their anatomy and physiology. The orientation of LR asymmetry with respect to the dorsoventral and anteroposterior body axes is invariant such that fewer than 1 in 10,000 individuals exhibit organ reversals. The stereotypic orientation of LR asymmetry is ensured by distinct left- and right-side signal transduction pathways that are initiated by divergent members of the transforming growth factor-beta (TGF-beta) superfamily of secreted proteins. During early embryogenesis, the TGF-beta-like protein Nodal (or a Nodal-related ortholog) is expressed by the left lateral plate mesoderm and provides essential LR cues to the developing organs. In chick embryos at least, bone morphogenetic protein (BMP) signaling is active on the right side of the embryo and must be inhibited on the left in order for Nodal to be expressed. Thus, at a key point in the determination of LR asymmetry, left-sided signaling is mediated by the transcription factors Smad2 and Smad3 (regulated by Nodal), whereas signaling on the right depends on Smad1 and Smad5 (which are regulated by BMP). This review summarizes the considerable progress that has been made in recent years in understanding the complex network of feedback and feedforward circuitry that regulates both the left- and right-sided pathways. Also discussed is the problem of how signal transduction mediated by the Smad proteins can pattern LR asymmetry without interfering with coincident dorsoventral patterning, which relies on the same Smad proteins.
Collapse
Affiliation(s)
- M Whitman
- Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA.
| | | |
Collapse
|
44
|
|
45
|
Abstract
The vertebrate body plan has bilateral symmetry and left-right asymmetries that are highly conserved. The molecular pathways for left-right development are beginning to be elucidated. Several distinct mechanisms to initiate the vertebrate left-right axis have been proposed. These mechanisms appear to converge on highly conserved expression patterns of genes in the transforming growth factor-beta (TGFbeta) family of cell-cell signaling factors, nodal and lefty-2, and subsequently the expression of the transcription regulator Pitx2, in left lateral plate mesoderm. It is possible that downstream signaling pathways diverge in distinct classes of vertebrates.
Collapse
Affiliation(s)
- H J Yost
- Huntsman Cancer Institute, Center for Children, University of Utah, Salt Lake City 84112, USA
| |
Collapse
|
46
|
Kitaguchi T, Nagai T, Nakata K, Aruga J, Mikoshiba K. Zic3 is involved in the left-right specification of the Xenopus embryo. Development 2000; 127:4787-95. [PMID: 11044394 DOI: 10.1242/dev.127.22.4787] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Establishment of left-right (L-R) asymmetry is fundamental to vertebrate development. Several genes involved in L-R asymmetry have been described. In the Xenopus embryo, Vg1/activin signals are implicated upstream of asymmetric nodal related 1 (Xnr1) and Pitx2 expression in L-R patterning. We report here that Zic3 carries the left-sided signal from the initial activin-like signal to determinative factors such as Pitx2. Overexpression of Zic3 on the right side of the embryo altered the orientation of heart and gut looping, concomitant with disturbed laterality of expression of Xnr1 and Pitx2, both of which are normally expressed in the left lateral plate mesoderm. The results indicate that Zic3 participates in the left-sided signaling upstream of Xnr1 and Pitx2. At early gastrula, Zic3 was expressed not only in presumptive neuroectoderm but also in mesoderm. Correspondingly, overexpression of Zic3 was effective in the L-R specification at the early gastrula stage, as revealed by a hormone-inducible Zic3 construct. The Zic3 expression in the mesoderm is induced by activin (beta) or Vg1, which are also involved in the left-sided signal in L-R specification. These findings suggest that an activin-like signal is a potent upstream activator of Zic3 that establishes the L-R axis. Furthermore, overexpression of the zinc-finger domain of Zic3 on the right side is sufficient to disturb the L-R axis, while overexpression of the N-terminal domain on the left side affects the laterality. These results suggest that Zic3 has at least two functionally important domains that play different roles and provide a molecular basis for human heterotaxy, which is an L-R pattern anomaly caused by a mutation in human ZIC3.
Collapse
Affiliation(s)
- T Kitaguchi
- Laboratory for Developmental Neurobiology, RIKEN Brain Science Institute, Wako-shi, Saitama 351-0198, Japan. jp
| | | | | | | | | |
Collapse
|
47
|
Abstract
In these studies, we have taken advantage of a transient transgenic strategy in Xenopus embryos to demonstrate that BMP signaling is required in vivo for heart formation in vertebrates. Ectopic expression of dominant negative Type I (tALK3) or Type II (tBMPRII) BMP receptors in developing Xenopus embryos results in reduction or absence of heart formation. Additionally, blocking BMP signaling in this manner downregulates expression of XNkx2-5, a homeobox gene required for cardiac specification, prior to differentiation. Notably, however, initial expression of XNkx2-5 is not affected. Mutant phenotypes can be rescued by co-injection of mutant with wild-type receptors or co-injection of mutant receptors with XSmad1, a downstream mediator of BMP signaling. Whole-mount in situ analyses indicate that ALK3 and XSmad1 are coexpressed in cardiogenic regions. Together, our results demonstrate that BMP signaling is required for maintenance of XNkx2-5 expression and heart formation and suggest that ALK3, BMPRII, and XSmad1 may mediate this signaling.
Collapse
Affiliation(s)
- Y Shi
- Department of Medicine, University of California at San Diego, 92093-0613, USA
| | | | | | | |
Collapse
|
48
|
Branford WW, Essner JJ, Yost HJ. Regulation of gut and heart left-right asymmetry by context-dependent interactions between xenopus lefty and BMP4 signaling. Dev Biol 2000; 223:291-306. [PMID: 10882517 DOI: 10.1006/dbio.2000.9739] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The Lefty subfamily of TGFbeta signaling molecules has been implicated in early development in mouse, zebrafish, and chick. Here, we show that Xenopus lefty (Xlefty) is expressed both bilaterally in symmetric midline domains and unilaterally in left lateral plate mesoderm and anterior dorsal endoderm. To examine the roles of Xlefty in left-right development, we created a system for scoring gut asymmetry and examined the effects of unilateral Xlefty misexpression on gut development, heart development, and Xnr-1 and XPitx2 expression. In contrast to the unilateral effects of Vg1, Activin, Nodal, or BMPs, targeted expression of Xlefty in either the left or the right side of Xenopus embryos randomized the direction of heart looping, gut coiling, and left-right positioning of the gut and downregulated the asymmetric expression of Xnr-1 and XPitx2. It is currently thought that Lefty proteins act as feedback inhibitors of Nodal signaling. However, this would not explain the effects of right-sided Xlefty misexpression. Here, we show that Xlefty interacts with the signaling pathways of other members of the TGFbeta family during left-right development. Results from coexpression of Xlefty and Vg1 indicate that Xlefty can nullify the effects of Vg1 ectopic expression and that Xlefty is downstream of left-sided Vg1 signaling. Results from coexpression of Xlefty and XBMP4 indicate that XLefty and XBMP4 interact both synergistically and antagonistically in a context-dependent manner. We propose a model in which interactions of Xlefty with multiple members of the TGFbeta family enhance the differences between the right-sided BMP/ALK2/Smad pathway and the left-sided Vg1/anti-BMP/Nodal pathway, leading to left-right morphogenesis of the gut and heart.
Collapse
Affiliation(s)
- W W Branford
- Huntsman Cancer Institute, Center for Children, Department of Oncological Sciences and Department of Pediatrics, University of Utah, Salt Lake City, Utah, 84112-5550, USA
| | | | | |
Collapse
|
49
|
|
50
|
Capdevila J, Vogan KJ, Tabin CJ, Izpisúa Belmonte JC. Mechanisms of left-right determination in vertebrates. Cell 2000; 101:9-21. [PMID: 10778851 DOI: 10.1016/s0092-8674(00)80619-4] [Citation(s) in RCA: 267] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- J Capdevila
- The Salk Institute for Biological Studies, Gene Expression Laboratory, La Jolla, California 92037, USA
| | | | | | | |
Collapse
|