1
|
Wang Y, Zheng Y, Shi Y, Jiang D, Kuang Q, Ke X, Li M, Wang Y, Yue X, Lu Q, Hou X. YELLOW, SERRATED LEAF is essential for cotyledon vein patterning in Arabidopsis. PLANT PHYSIOLOGY 2024; 196:2504-2516. [PMID: 39226151 PMCID: PMC11637768 DOI: 10.1093/plphys/kiae465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 07/11/2024] [Accepted: 07/22/2024] [Indexed: 09/05/2024]
Abstract
Venation develops complex patterns within the leaves of angiosperms, and the mechanism of leaf vein patterning remains poorly understood. Here, we report a spontaneous mutant that exhibits yellow serrated leaves and defective cotyledon vein patterning. We mapped and cloned the relevant gene YELLOW, SERRATED LEAF (YSL), a previously unreported gene in plants. YSL interacts with VH1-interacting kinase (VIK), a protein that functions in cotyledon venation development. VIK is a vascular-specific adaptor protein kinase that interacts with another vascular developmental protein, VASCULAR HIGHWAY1 (VH1)/BRASSINOSTEROID INSENSITIVE 1-LIKE 2 (BRL2), which is a receptor-like kinase of the BRASSINOSTEROID INSENSITIVE 1 (BRI1) family. Mutation of YSL affects the auxin response and the expression of auxin-related genes in Arabidopsis (Arabidopsis thaliana). Our results reveal that YSL affects cotyledon vein patterning by interacting with VIK in Arabidopsis.
Collapse
Affiliation(s)
- Yetao Wang
- State Key Laboratory of Hybrid Rice, Hubei Hongshan Laboratory, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Yutong Zheng
- State Key Laboratory of Hybrid Rice, Hubei Hongshan Laboratory, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Yafei Shi
- State Key Laboratory of Hybrid Rice, Hubei Hongshan Laboratory, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Deyuan Jiang
- State Key Laboratory of Hybrid Rice, Hubei Hongshan Laboratory, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Qi Kuang
- State Key Laboratory of Hybrid Rice, Hubei Hongshan Laboratory, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Xiangsheng Ke
- State Key Laboratory of Hybrid Rice, Hubei Hongshan Laboratory, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Ming Li
- State Key Laboratory of Hybrid Rice, Hubei Hongshan Laboratory, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Yukun Wang
- State Key Laboratory of Hybrid Rice, Hubei Hongshan Laboratory, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Xiaohong Yue
- State Key Laboratory of Hybrid Rice, Hubei Hongshan Laboratory, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Qin Lu
- State Key Laboratory of Hybrid Rice, Hubei Hongshan Laboratory, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Xin Hou
- State Key Laboratory of Hybrid Rice, Hubei Hongshan Laboratory, College of Life Sciences, Wuhan University, Wuhan 430072, China
| |
Collapse
|
2
|
Scarpella E. Leaf Vein Patterning. ANNUAL REVIEW OF PLANT BIOLOGY 2024; 75:377-398. [PMID: 38382907 DOI: 10.1146/annurev-arplant-062923-030348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Leaves form veins whose patterns vary from a single vein running the length of the leaf to networks of staggering complexity where huge numbers of veins connect to other veins at both ends. For the longest time, vein formation was thought to be controlled only by the polar, cell-to-cell transport of the plant hormone auxin; recent evidence suggests that is not so. Instead, it turns out that vein patterning features are best accounted for by a combination of polar auxin transport, facilitated auxin diffusion through plasmodesma intercellular channels, and auxin signal transduction-though the latter's precise contribution remains unclear. Equally unclear remain the sites of auxin production during leaf development, on which that vein patterning mechanism ought to depend. Finally, whether that vein patterning mechanism can account for the variety of vein arrangements found in nature remains unknown. Addressing those questions will be the exciting challenge of future research.
Collapse
Affiliation(s)
- Enrico Scarpella
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada;
| |
Collapse
|
3
|
Adamowski M, Matijević I, Friml J. Developmental patterning function of GNOM ARF-GEF mediated from the cell periphery. eLife 2024; 13:e68993. [PMID: 38381485 PMCID: PMC10881123 DOI: 10.7554/elife.68993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 02/05/2024] [Indexed: 02/22/2024] Open
Abstract
The GNOM (GN) Guanine nucleotide Exchange Factor for ARF small GTPases (ARF-GEF) is among the best studied trafficking regulators in plants, playing crucial and unique developmental roles in patterning and polarity. The current models place GN at the Golgi apparatus (GA), where it mediates secretion/recycling, and at the plasma membrane (PM) presumably contributing to clathrin-mediated endocytosis (CME). The mechanistic basis of the developmental function of GN, distinct from the other ARF-GEFs including its closest homologue GNOM-LIKE1 (GNL1), remains elusive. Insights from this study largely extend the current notions of GN function. We show that GN, but not GNL1, localizes to the cell periphery at long-lived structures distinct from clathrin-coated pits, while CME and secretion proceed normally in gn knockouts. The functional GN mutant variant GNfewerroots, absent from the GA, suggests that the cell periphery is the major site of GN action responsible for its developmental function. Following inhibition by Brefeldin A, GN, but not GNL1, relocates to the PM likely on exocytic vesicles, suggesting selective molecular associations en route to the cell periphery. A study of GN-GNL1 chimeric ARF-GEFs indicates that all GN domains contribute to the specific GN function in a partially redundant manner. Together, this study offers significant steps toward the elucidation of the mechanism underlying unique cellular and development functions of GNOM.
Collapse
Affiliation(s)
- Maciek Adamowski
- Institute of Science and Technology AustriaKlosterneuburgAustria
- Plant Breeding and Acclimatization Institute – National Research InstituteBłoniePoland
| | - Ivana Matijević
- Institute of Science and Technology AustriaKlosterneuburgAustria
| | - Jiří Friml
- Institute of Science and Technology AustriaKlosterneuburgAustria
| |
Collapse
|
4
|
Linh NM, Scarpella E. Leaf vein patterning is regulated by the aperture of plasmodesmata intercellular channels. PLoS Biol 2022; 20:e3001781. [PMID: 36166438 PMCID: PMC9514613 DOI: 10.1371/journal.pbio.3001781] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 08/03/2022] [Indexed: 02/03/2023] Open
Abstract
To form tissue networks, animal cells migrate and interact through proteins protruding from their plasma membranes. Plant cells can do neither, yet plants form vein networks. How plants do so is unclear, but veins are thought to form by the coordinated action of the polar transport and signal transduction of the plant hormone auxin. However, plants inhibited in both pathways still form veins. Patterning of vascular cells into veins is instead prevented in mutants lacking the function of the GNOM (GN) regulator of auxin transport and signaling, suggesting the existence of at least one more GN-dependent vein-patterning pathway. Here we show that in Arabidopsis such a pathway depends on the movement of auxin or an auxin-dependent signal through plasmodesmata (PDs) intercellular channels. PD permeability is high where veins are forming, lowers between veins and nonvascular tissues, but remains high between vein cells. Impaired ability to regulate PD aperture leads to defects in auxin transport and signaling, ultimately leading to vein patterning defects that are enhanced by inhibition of auxin transport or signaling. GN controls PD aperture regulation, and simultaneous inhibition of auxin signaling, auxin transport, and regulated PD aperture phenocopies null gn mutants. Therefore, veins are patterned by the coordinated action of three GN-dependent pathways: auxin signaling, polar auxin transport, and movement of auxin or an auxin-dependent signal through PDs. Such a mechanism of tissue network formation is unprecedented in multicellular organisms. How do plants form vein networks, in the absence of cellular migration or direct cell-cell interaction? This study shows that a GNOM-dependent combination of polar auxin transport, auxin signal transduction, and movement of an auxin signal through plasmodesmata patterns leaf vascular cells into veins.
Collapse
Affiliation(s)
- Nguyen Manh Linh
- Department of Biological Sciences, University of Alberta, Edmonton, Canada
| | - Enrico Scarpella
- Department of Biological Sciences, University of Alberta, Edmonton, Canada
- * E-mail:
| |
Collapse
|
5
|
Perico C, Tan S, Langdale JA. Developmental regulation of leaf venation patterns: monocot versus eudicots and the role of auxin. THE NEW PHYTOLOGIST 2022; 234:783-803. [PMID: 35020214 PMCID: PMC9994446 DOI: 10.1111/nph.17955] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 12/14/2021] [Indexed: 06/14/2023]
Abstract
Organisation and patterning of the vascular network in land plants varies in different taxonomic, developmental and environmental contexts. In leaves, the degree of vascular strand connectivity influences both light and CO2 harvesting capabilities as well as hydraulic capacity. As such, developmental mechanisms that regulate leaf venation patterning have a direct impact on physiological performance. Development of the leaf venation network requires the specification of procambial cells within the ground meristem of the primordium and subsequent proliferation and differentiation of the procambial lineage to form vascular strands. An understanding of how diverse venation patterns are manifest therefore requires mechanistic insight into how procambium is dynamically specified in a growing leaf. A role for auxin in this process was identified many years ago, but questions remain. In this review we first provide an overview of the diverse venation patterns that exist in land plants, providing an evolutionary perspective. We then focus on the developmental regulation of leaf venation patterns in angiosperms, comparing patterning in eudicots and monocots, and the role of auxin in each case. Although common themes emerge, we conclude that the developmental mechanisms elucidated in eudicots are unlikely to fully explain how parallel venation patterns in monocot leaves are elaborated.
Collapse
Affiliation(s)
- Chiara Perico
- Department of Plant SciencesUniversity of OxfordSouth Parks RdOxfordOX1 3RBUK
| | - Sovanna Tan
- Department of Plant SciencesUniversity of OxfordSouth Parks RdOxfordOX1 3RBUK
| | - Jane A. Langdale
- Department of Plant SciencesUniversity of OxfordSouth Parks RdOxfordOX1 3RBUK
| |
Collapse
|
6
|
Yanagisawa M, Poitout A, Otegui MS. Arabidopsis vascular complexity and connectivity controls PIN-FORMED1 dynamics and lateral vein patterning during embryogenesis. Development 2021; 148:dev197210. [PMID: 34137447 DOI: 10.1242/dev.197210] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 06/14/2021] [Indexed: 11/20/2022]
Abstract
Arabidopsis VASCULATURE COMPLEXITY AND CONNECTIVITY (VCC) is a plant-specific transmembrane protein that controls the development of veins in cotyledons. Here, we show that the expression and localization of the auxin efflux carrier PIN-FORMED1 (PIN1) is altered in vcc developing cotyledons and that overexpression of PIN1-GFP partially rescues vascular defects of vcc in a dosage-dependent manner. Genetic analyses suggest that VCC and PINOID (PID), a kinase that regulates PIN1 polarity, are both required for PIN1-mediated control of vasculature development. VCC expression is upregulated by auxin, likely as part of a positive feedback loop for the progression of vascular development. VCC and PIN1 localized to the plasma membrane in pre-procambial cells but were actively redirected to vacuoles in procambial cells for degradation. In the vcc mutant, PIN1 failed to properly polarize in pre-procambial cells during the formation of basal strands, and instead, it was prematurely degraded in vacuoles. VCC plays a role in the localization and stability of PIN1, which is crucial for the transition of pre-procambial cells into procambial cells that are involved in the formation of basal lateral strands in embryonic cotyledons.
Collapse
Affiliation(s)
- Makoto Yanagisawa
- Department of Botany, University of Wisconsin-Madison, Madison, WI 53706, USA
- Center for Quantitative Cell Imaging, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Arthur Poitout
- Department of Botany, University of Wisconsin-Madison, Madison, WI 53706, USA
- BPMP, University of Montpellier, CNRS, INRAE, Institut Agro, Montpellier 34060, France
| | - Marisa S Otegui
- Department of Botany, University of Wisconsin-Madison, Madison, WI 53706, USA
- Center for Quantitative Cell Imaging, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
7
|
Lavania D, Linh NM, Scarpella E. Of Cells, Strands, and Networks: Auxin and the Patterned Formation of the Vascular System. Cold Spring Harb Perspect Biol 2021; 13:cshperspect.a039958. [PMID: 33431582 DOI: 10.1101/cshperspect.a039958] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Throughout plant development, vascular cells continually form from within a population of seemingly equivalent cells. Vascular cells connect end to end to form continuous strands, and vascular strands connect at both or either end to form networks of exquisite complexity and mesmerizing beauty. Here we argue that experimental evidence gained over the past few decades implicates the plant hormone auxin-its production, transport, perception, and response-in all the steps that lead to the patterned formation of the plant vascular system, from the formation of vascular cells to their connection into vascular networks. We emphasize the organizing principles of the cell- and tissue-patterning process, rather than its molecular subtleties. In the picture that emerges, cells compete for an auxin-dependent, cell-polarizing signal; positive feedback between cell polarization and cell-to-cell movement of the polarizing signal leads to gradual selection of cell files; and selected cell files differentiate into vascular strands that drain the polarizing signal from the neighboring cells. Although the logic of the patterning process has become increasingly clear, the molecular details remain blurry; the future challenge will be to bring them into razor-sharp focus.
Collapse
Affiliation(s)
- Dhruv Lavania
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| | - Nguyen Manh Linh
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| | - Enrico Scarpella
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| |
Collapse
|
8
|
Asano T, Nguyen THN, Yasuda M, Sidiq Y, Nishimura K, Nakashita H, Nishiuchi T. Arabidopsis MAPKKK δ-1 is required for full immunity against bacterial and fungal infection. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:2085-2097. [PMID: 31844896 PMCID: PMC7094076 DOI: 10.1093/jxb/erz556] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 12/13/2019] [Indexed: 05/25/2023]
Abstract
The genome of Arabidopsis encodes more than 60 mitogen-activated protein kinase kinase (MAPKK) kinases (MAPKKKs); however, the functions of most MAPKKKs and their downstream MAPKKs are largely unknown. Here, MAPKKK δ-1 (MKD1), a novel Raf-like MAPKKK, was isolated from Arabidopsis as a subunit of a complex including the transcription factor AtNFXL1, which is involved in the trichothecene phytotoxin response and in disease resistance against the bacterial pathogen Pseudomonas syringae pv. tomato DC3000 (PstDC3000). A MKD1-dependent cascade positively regulates disease resistance against PstDC3000 and the trichothecene mycotoxin-producing fungal pathogen Fusarium sporotrichioides. MKD1 expression was induced by trichothecenes derived from Fusarium species. MKD1 directly interacted with MKK1 and MKK5 in vivo, and phosphorylated MKK1 and MKK5 in vitro. Correspondingly, mkk1 mutants and MKK5RNAi transgenic plants showed enhanced susceptibility to F. sporotrichioides. MKD1 was required for full activation of two MAPKs (MPK3 and MPK6) by the T-2 toxin and flg22. Finally, quantitative phosphoproteomics suggested that an MKD1-dependent cascade controlled phosphorylation of a disease resistance protein, SUMO, and a mycotoxin-detoxifying enzyme. Our findings suggest that the MKD1-MKK1/MKK5-MPK3/MPK6-dependent signaling cascade is involved in the full immune responses against both bacterial and fungal infection.
Collapse
Affiliation(s)
- Tomoya Asano
- Institute for Gene Research, Advanced Science Research Center, Kanazawa University, Takaramachi, Kanazawa, Ishikawa, Japan
| | - Thi Hang-Ni Nguyen
- Division of Life Science, Graduate School of Natural Science and Technology, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Michiko Yasuda
- Plant Acquired Immunity Research Unit, RIKEN, 2-1 Hirosawa, Wako, Saitama, Japan
| | - Yasir Sidiq
- Division of Life Science, Graduate School of Natural Science and Technology, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Kohji Nishimura
- Institute of Agricultural and Life Sciences, Academic Assembly, Shimane University, Matsue, Shimane, Japan
| | - Hideo Nakashita
- Plant Acquired Immunity Research Unit, RIKEN, 2-1 Hirosawa, Wako, Saitama, Japan
| | - Takumi Nishiuchi
- Institute for Gene Research, Advanced Science Research Center, Kanazawa University, Takaramachi, Kanazawa, Ishikawa, Japan
- Division of Life Science, Graduate School of Natural Science and Technology, Kanazawa University, Kanazawa, Ishikawa, Japan
| |
Collapse
|
9
|
Endo S, Iwai Y, Fukuda H. Cargo-dependent and cell wall-associated xylem transport in Arabidopsis. THE NEW PHYTOLOGIST 2019; 222:159-170. [PMID: 30317651 DOI: 10.1111/nph.15540] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 10/06/2018] [Indexed: 05/06/2023]
Abstract
Sap molecules are transported by xylem flow throughout the whole plant body. Factors regulating the xylem transport of different molecules remain to be identified. We used fluorophores to visualize xylem transport from roots to leaves in Arabidopsis thaliana. Several previously established Arabidopsis lines with modified xylem cell walls were used to determine the contribution of xylem cell walls to xylem transport. Fluorophores underwent xylem flow-dependent transport from roots to leaves within 20 min. A comparison of rhodamine, fluorescein and three fluorescently labeled CLV3/ESR-related (CLE) peptides revealed cargo-dependent xylem transport patterns in terms of leaf position and vein order. Only minor changes in amino acid sequence were sufficient to alter the xylem transport patterns of the labeled CLE peptides. We found that the xylem transport pattern of fluorescein was affected in Arabidopsis lines with modified AtXYN1, LAC4 or CCoAOMT1 expression. In these lines, application of a defense inducer, pipecolic acid, to roots resulted in altered defense response patterns in leaves, whereas all the lines showed wild-type-like responses when pipecolic acid was sprayed onto leaves. The combined results reveal a finely controlled cargo-dependent xylem transport and suggest that the xylem cell wall structure is crucial for this transport system.
Collapse
Affiliation(s)
- Satoshi Endo
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Yumi Iwai
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, 113-0033, Japan
- Leaf Tobacco Research Center, Japan Tobacco Inc., Tochigi, 323-0808, Japan
| | - Hiroo Fukuda
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, 113-0033, Japan
| |
Collapse
|
10
|
Cardoso AA, Randall JM, Jordan GJ, McAdam SAM. Extended differentiation of veins and stomata is essential for the expansion of large leaves in Rheum rhabarbarum. AMERICAN JOURNAL OF BOTANY 2018; 105:1967-1974. [PMID: 30475383 DOI: 10.1002/ajb2.1196] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 08/31/2018] [Indexed: 06/09/2023]
Abstract
PREMISE OF THE STUDY The densities of veins and stomata govern leaf water supply and gas exchange. They are coordinated to avoid overproduction of either veins or stomata. In many species, where leaf area is greater at low light, this coordination is primarily achieved through differential cell expansion, resulting in lower stomatal and vein density in larger leaves. This mechanism would, however, create highly inefficient leaves in species in which leaf area is greater at high light. Here we investigate the role of cell expansion and differentiation as regulators of vein and stomatal density in Rheum rhabarbarum, which produces large leaves under high light. METHODS Rheum rhabarbarum plants were grown under full sunlight and 7% of full sunlight. Leaf area, stomatal density, and vein density were measured from leaves harvested at different intervals. KEY RESULTS Leaves of R. rhabarbarum expanded at high light were six times larger than leaves expanded at low light, yet vein and stomatal densities were similar. In high light-expanded leaves, minor veins were continuously initiated as the leaves expanded, while an extended period of stomatal initiation, compared to leaves expanded at low light, occurred early in leaf development. CONCLUSIONS We demonstrate that R. rhabarbarum adjusts the initiation of stomata and minor veins at high light, allowing for the production of larger leaves uncoupled from lower vein and stomatal densities. We also present evidence for an independent control of vein and stomatal initiation, suggesting that this adjustment must involve some unknown developmental mechanism.
Collapse
Affiliation(s)
- Amanda A Cardoso
- Purdue Center for Plant Biology, Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, 47907, USA
| | - Joshua M Randall
- Purdue Center for Plant Biology, Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, 47907, USA
| | - Gregory J Jordan
- School of Natural Sciences, University of Tasmania, Hobart, TAS, 7001, Australia
| | - Scott A M McAdam
- Purdue Center for Plant Biology, Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, 47907, USA
| |
Collapse
|
11
|
Biedroń M, Banasiak A. Auxin-mediated regulation of vascular patterning in Arabidopsis thaliana leaves. PLANT CELL REPORTS 2018; 37:1215-1229. [PMID: 29992374 PMCID: PMC6096608 DOI: 10.1007/s00299-018-2319-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 07/04/2018] [Indexed: 05/02/2023]
Abstract
The vascular system develops in response to auxin flow as continuous strands of conducting tissues arranged in regular spatial patterns. However, a mechanism governing their regular and repetitive formation remains to be fully elucidated. A model system for studying the vascular pattern formation is the process of leaf vascularization in Arabidopsis. In this paper, we present current knowledge of important factors and their interactions in this process. Additionally, we propose the sequence of events leading to the emergence of continuous vascular strands and point to significant problems that need to be resolved in the future to gain a better understanding of the regulation of the vascular pattern development.
Collapse
Affiliation(s)
- Magdalena Biedroń
- Department of Plant Developmental Biology, Institute of Experimental Biology, University of Wrocław, ul. Kanonia 6/8, 50-328, Wrocław, Poland
| | - Alicja Banasiak
- Department of Plant Developmental Biology, Institute of Experimental Biology, University of Wrocław, ul. Kanonia 6/8, 50-328, Wrocław, Poland.
| |
Collapse
|
12
|
Pascual MB, Molina-Rueda JJ, Cánovas FM, Gallardo F. Overexpression of a cytosolic NADP+-isocitrate dehydrogenase causes alterations in the vascular development of hybrid poplars. TREE PHYSIOLOGY 2018; 38:992-1005. [PMID: 29920606 DOI: 10.1093/treephys/tpy044] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 04/13/2018] [Indexed: 06/08/2023]
Abstract
Cytosolic NADP+-isocitrate dehydrogenase (ICDH) is one of the major enzymes involved in the production of 2-oxoglutarate for amino acid biosynthesis in plants. In most plants studied, ICDH is encoded by either one gene or a small gene family, and the protein sequence has been highly conserved during evolution, suggesting it plays different and essential roles in metabolism and differentiation. To elucidate the role of ICDH in hybrid poplar (Populus tremula x P. alba), transgenic plants overexpressing the Pinus pinaster gene were generated. Overexpression of ICDH resulted in hybrid poplar (Populus tremula × P. alba) trees with higher expression levels of the endogenous ICDH gene and higher enzyme content than control untransformed plants. Transgenic poplars also showed an increased expression of glutamine synthetase (GS1.3), glutamate decarboxylase (GAD) and other genes associated with vascular differentiation. Furthermore, these plants exhibited increased growth in height, longer internodes and enhanced vascular development in young leaves and the apical region of stem. Modifications in amino acid and organic acid content were observed in young leaves of the transgenic lines, suggesting an increased biosynthesis of amino acids for building new structures and also for transport to other sink organs, as expanding leaves or young stems. Taken together, these results support an important role of ICDH in plant growth and vascular development.
Collapse
Affiliation(s)
- María Belén Pascual
- Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de Málaga, Campus Universitario de Teatinos, Málaga, Spain
| | - Juan Jesús Molina-Rueda
- Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de Málaga, Campus Universitario de Teatinos, Málaga, Spain
| | - Francisco M Cánovas
- Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de Málaga, Campus Universitario de Teatinos, Málaga, Spain
| | - Fernando Gallardo
- Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de Málaga, Campus Universitario de Teatinos, Málaga, Spain
| |
Collapse
|
13
|
Naramoto S, Kyozuka J. ARF GTPase machinery at the plasma membrane regulates auxin transport-mediated plant growth. PLANT BIOTECHNOLOGY (TOKYO, JAPAN) 2018; 35:155-159. [PMID: 31819717 PMCID: PMC6879391 DOI: 10.5511/plantbiotechnology.18.0312a] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 03/12/2018] [Indexed: 05/23/2023]
Abstract
VAN3 is a plant ACAP-type ADP-ribosylation factor-GTPase activating protein (ARF-GAP) that regulates auxin transport-mediated plant morphogenesis such as continuous venation and lateral root development in Arabidopsis. Previous studies suggested that VAN3 localizes at the plasma membrane (PM) and intracellular structures. However, the role of PM localization in mediating the van3 mutant phenotype is not clear. Here we performed subcellular localization analysis of VAN3 and its regulators CVP2 and VAB to determine their endogenous functions. We found that GFP-tagged CVP2 and VAB preferentially localize at the PM in stably transformed plants. We determined that transgenic plants with lower expression levels of GFP- or mRFP-tagged VAN3 displayed PM localization, which was sufficient to rescue the van3 mutant. Functional VAN3-mRFP and VAB-GFP colocalized at PMs. The van3 mutant phenotype was suppressed by mutation of VAN7/GNOM, which encodes an ARF-GEF that localizes at the PM and Golgi apparatus. These combined results suggest that ARF-GTPase machinery at the PM regulates auxin transport-mediated plant growth and development.
Collapse
Affiliation(s)
- Satoshi Naramoto
- Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi 980-8577, Japan
| | - Junko Kyozuka
- Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi 980-8577, Japan
| |
Collapse
|
14
|
Moreno JE, Romani F, Chan RL. Arabidopsis thaliana homeodomain-leucine zipper type I transcription factors contribute to control leaf venation patterning. PLANT SIGNALING & BEHAVIOR 2018; 13:e1448334. [PMID: 29509063 PMCID: PMC5927698 DOI: 10.1080/15592324.2018.1448334] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Venation patterning is a taxonomic attribute for classification of plants and it also plays a role in the interaction of plants with the environment. Despite its importance, the molecular physiology controlling this aspect of plant development is still poorly understood. Auxin plays a central role modulating the final vein network and patterning. This addendum discusses recent findings on the role of homeodomain-leucine zipper (HD-Zip) transcription factors on the regulation of leaf venation patterning. Moreno-Piovano et al. reported that ectopic expression of a sunflower HD-Zip I gene, HaHB4, increased the asymmetry of leaf venation. Even more, this work showed that auxin transport in the leaf through LAX carriers controls venation patterning. Here, we provide evidence indicating that some Arabidopsis thaliana HD-Zip I genes play a role in the determination of the final leaf venation patterning. We propose that these genes contribute to regulate vein patterning, likely controlling auxin homeostasis.
Collapse
Affiliation(s)
- Javier E. Moreno
- Instituto de Agrobiotecnología del Litoral, Universidad Nacional del Litoral – CONICET, Facultad de Bioquímica y Ciencias Biológicas, Colectora Ruta Nacional 168 km 0, Santa Fe, Argentina
| | - Facundo Romani
- Instituto de Agrobiotecnología del Litoral, Universidad Nacional del Litoral – CONICET, Facultad de Bioquímica y Ciencias Biológicas, Colectora Ruta Nacional 168 km 0, Santa Fe, Argentina
| | - Raquel L. Chan
- Instituto de Agrobiotecnología del Litoral, Universidad Nacional del Litoral – CONICET, Facultad de Bioquímica y Ciencias Biológicas, Colectora Ruta Nacional 168 km 0, Santa Fe, Argentina
- CONTACT Raquel L. Chan Instituto de Agrobiotecnologıa del Litoral, Universidad Nacional del Litoral – CONICET, Facultad de Bioquımica y Ciencias Biologicas, Colectora Ruta Nacional 168 km 0, Santa Fe, Argentina
| |
Collapse
|
15
|
Linh NM, Verna C, Scarpella E. Coordination of cell polarity and the patterning of leaf vein networks. CURRENT OPINION IN PLANT BIOLOGY 2018; 41:116-124. [PMID: 29278780 DOI: 10.1016/j.pbi.2017.09.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2017] [Revised: 09/12/2017] [Accepted: 09/15/2017] [Indexed: 06/07/2023]
Abstract
During development, the behavior of cells in tissues is coordinated along specific orientations or directions by coordinating the polar localization of components in those cells. The coordination of such cell polarity is perhaps nowhere more spectacular than in developing leaves, where the polarity of hundreds of cells is coordinated in the leaf epidermis and inner tissue to pattern vein networks. Available evidence suggests that the spectacular coordination of cell polarity that patterns vein networks is controlled by auxin transport and levels, and by genes that have been implicated in the polar localization of auxin transporters.
Collapse
Affiliation(s)
- Nguyen Manh Linh
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | - Carla Verna
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | - Enrico Scarpella
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
16
|
Moreno-Piovano GS, Moreno JE, Cabello JV, Arce AL, Otegui ME, Chan RL. A role for LAX2 in regulating xylem development and lateral-vein symmetry in the leaf. ANNALS OF BOTANY 2017; 120:577-590. [PMID: 28981582 PMCID: PMC5737667 DOI: 10.1093/aob/mcx091] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 06/09/2017] [Indexed: 05/18/2023]
Abstract
Background and Aims The symmetry of venation patterning in leaves is highly conserved within a plant species. Auxins are involved in this process and also in xylem vasculature development. Studying transgenic Arabidopsis plants ectopically expressing the sunflower transcription factor HaHB4, it was observed that there was a significant lateral-vein asymmetry in leaves and in xylem formation compared to wild type plants. To unravel the molecular mechanisms behind this phenotype, genes differentially expressed in these plants and related to auxin influx were investigated. Methods Candidate genes responsible for the observed phenotypes were selected using a co-expression analysis. Single and multiple mutants in auxin influx carriers were characterized by morphological, physiological and molecular techniques. The analysis was further complemented by restoring the wild type (WT) phenotype by mutant complementation studies and using transgenic soybean plants ectopically expressing HaHB4 . Key Results LAX2 , down-regulated in HaHB4 transgenic plants, was bioinformatically chosen as a candidate gene. The quadruple mutant aux1 lax1 lax2 lax3 and the single mutants, except lax1, presented an enhanced asymmetry in venation patterning. Additionally, the xylem vasculature of the lax2 mutant and the HaHB4 -expressing plants differed from the WT vasculature, including increased xylem length and number of xylem cell rows. Complementation of the lax2 mutant with the LAX2 gene restored both lateral-vein symmetry and xylem/stem area ratio in the stem, showing that auxin homeostasis is required to achieve normal vascular development. Interestingly, soybean plants ectopically expressing HaHB4 also showed an increased asymmetry in the venation patterning, accompanied by the repression of several GmLAX genes. Conclusions Auxin influx carriers have a significant role in leaf venation pattering in leaves and, in particular, LAX2 is required for normal xylem development, probablt controlling auxin homeostasis.
Collapse
Affiliation(s)
- Guillermo S Moreno-Piovano
- Instituto de Agrobiotecnología del Litoral, Universidad Nacional del Litoral - CONICET, Facultad de Bioquímica y Ciencias Biológicas, Colectora Ruta Nacional 168 km 0, Santa Fe, Argentina
| | - Javier E Moreno
- Instituto de Agrobiotecnología del Litoral, Universidad Nacional del Litoral - CONICET, Facultad de Bioquímica y Ciencias Biológicas, Colectora Ruta Nacional 168 km 0, Santa Fe, Argentina
| | - Julieta V Cabello
- Instituto de Agrobiotecnología del Litoral, Universidad Nacional del Litoral - CONICET, Facultad de Bioquímica y Ciencias Biológicas, Colectora Ruta Nacional 168 km 0, Santa Fe, Argentina
| | - Agustín L Arce
- Instituto de Agrobiotecnología del Litoral, Universidad Nacional del Litoral - CONICET, Facultad de Bioquímica y Ciencias Biológicas, Colectora Ruta Nacional 168 km 0, Santa Fe, Argentina
| | - María E Otegui
- Facultad de Agronomía, Universidad de Buenos Aires, CONICET, Argentina
| | - Raquel L Chan
- Instituto de Agrobiotecnología del Litoral, Universidad Nacional del Litoral - CONICET, Facultad de Bioquímica y Ciencias Biológicas, Colectora Ruta Nacional 168 km 0, Santa Fe, Argentina
| |
Collapse
|
17
|
Scarpella E. The logic of plant vascular patterning. Polarity, continuity and plasticity in the formation of the veins and of their networks. Curr Opin Genet Dev 2017; 45:34-43. [DOI: 10.1016/j.gde.2017.02.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 02/10/2017] [Accepted: 02/13/2017] [Indexed: 10/20/2022]
|
18
|
Hossain MS, Shrestha A, Zhong S, Miri M, Austin RS, Sato S, Ross L, Huebert T, Tromas A, Torres-Jerez I, Tang Y, Udvardi M, Murray JD, Szczyglowski K. Lotus japonicus NF-YA1 Plays an Essential Role During Nodule Differentiation and Targets Members of the SHI/STY Gene Family. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2016; 29:950-964. [PMID: 27929718 DOI: 10.1094/mpmi-10-16-0206-r] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Legume plants engage in intimate relationships with rhizobial bacteria to form nitrogen-fixing nodules, root-derived organs that accommodate the microsymbiont. Members of the Nuclear Factor Y (NF-Y) gene family, which have undergone significant expansion and functional diversification during plant evolution, are essential for this symbiotic liaison. Acting in a partially redundant manner, NF-Y proteins were shown, previously, to regulate bacterial infection, including selection of a superior rhizobial strain, and to mediate nodule structure formation. However, the exact mechanism by which these transcriptional factors exert their symbiotic functions has remained elusive. By carrying out detailed functional analyses of Lotus japonicus mutants, we demonstrate that LjNF-YA1 becomes indispensable downstream from the initial cortical cell divisions but prior to nodule differentiation, including cell enlargement and vascular bundle formation. Three affiliates of the SHORT INTERNODES/STYLISH transcription factor gene family, called STY1, STY2, and STY3, are demonstrated to be among likely direct targets of LjNF-YA1, and our results point to their involvement in nodule formation.
Collapse
Affiliation(s)
- Md Shakhawat Hossain
- 1 Agriculture and Agri-Food Canada, London Research and Development Centre, London, Ontario, N5V 4T3 Canada
| | - Arina Shrestha
- 1 Agriculture and Agri-Food Canada, London Research and Development Centre, London, Ontario, N5V 4T3 Canada
- 2 Department of Biology, University of Western Ontario, London, Ontario, N6A 5B7 Canada
| | - Sihui Zhong
- 1 Agriculture and Agri-Food Canada, London Research and Development Centre, London, Ontario, N5V 4T3 Canada
| | - Mandana Miri
- 1 Agriculture and Agri-Food Canada, London Research and Development Centre, London, Ontario, N5V 4T3 Canada
- 2 Department of Biology, University of Western Ontario, London, Ontario, N6A 5B7 Canada
| | - Ryan S Austin
- 1 Agriculture and Agri-Food Canada, London Research and Development Centre, London, Ontario, N5V 4T3 Canada
- 2 Department of Biology, University of Western Ontario, London, Ontario, N6A 5B7 Canada
| | - Shusei Sato
- 3 Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Sendai, 980-8577, Japan; and
| | - Loretta Ross
- 1 Agriculture and Agri-Food Canada, London Research and Development Centre, London, Ontario, N5V 4T3 Canada
| | - Terry Huebert
- 1 Agriculture and Agri-Food Canada, London Research and Development Centre, London, Ontario, N5V 4T3 Canada
| | - Alexandre Tromas
- 1 Agriculture and Agri-Food Canada, London Research and Development Centre, London, Ontario, N5V 4T3 Canada
| | - Ivone Torres-Jerez
- 4 Plant Biology Division, The Samuel Roberts Noble Foundation, Ardmore, Oklahoma, U.S.A
| | - Yuhong Tang
- 4 Plant Biology Division, The Samuel Roberts Noble Foundation, Ardmore, Oklahoma, U.S.A
| | - Michael Udvardi
- 4 Plant Biology Division, The Samuel Roberts Noble Foundation, Ardmore, Oklahoma, U.S.A
| | - Jeremy D Murray
- 4 Plant Biology Division, The Samuel Roberts Noble Foundation, Ardmore, Oklahoma, U.S.A
| | - Krzysztof Szczyglowski
- 1 Agriculture and Agri-Food Canada, London Research and Development Centre, London, Ontario, N5V 4T3 Canada
- 2 Department of Biology, University of Western Ontario, London, Ontario, N6A 5B7 Canada
| |
Collapse
|
19
|
Uemura T. Physiological Roles of Plant Post-Golgi Transport Pathways in Membrane Trafficking. PLANT & CELL PHYSIOLOGY 2016; 57:2013-2019. [PMID: 27649735 DOI: 10.1093/pcp/pcw149] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 08/12/2016] [Indexed: 05/02/2023]
Abstract
Membrane trafficking is the fundamental system through which proteins are sorted to their correct destinations in eukaryotic cells. Key regulators of this system include RAB GTPases and soluble N-ethylmaleimide sensitive factor attachment protein receptors (SNAREs). Interestingly, the numbers of RAB GTPases and SNAREs involved in post-Golgi transport pathways in plant cells are larger than those in animal and yeast cells, suggesting that plants have evolved unique and complex post-Golgi transport pathways. The trans-Golgi network (TGN) is an important organelle that acts as a sorting station in the post-Golgi transport pathways of plant cells. The TGN also functions as the early endosome, which is the first compartment to receive endocytosed proteins. Several endocytosed proteins on the plasma membrane (PM) are initially targeted to the TGN/EE, then recycled back to the PM or transported to the vacuole for degradation. The recycling and degradation of the PM localized proteins is essential for the development and environmental responses in plant. The present review describes the post-Golgi transport pathways that show unique physiological functions in plants.
Collapse
Affiliation(s)
- Tomohiro Uemura
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
20
|
Verna C, Sawchuk MG, Linh NM, Scarpella E. Control of vein network topology by auxin transport. BMC Biol 2015; 13:94. [PMID: 26560462 PMCID: PMC4641347 DOI: 10.1186/s12915-015-0208-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 10/28/2015] [Indexed: 02/08/2023] Open
Abstract
Background Tissue networks such as the vascular networks of plant and animal organs transport signals and nutrients in most multicellular organisms. The transport function of tissue networks depends on topological features such as the number of networks’ components and the components’ connectedness; yet what controls tissue network topology is largely unknown, partly because of the difficulties in quantifying the effects of genes on tissue network topology. We address this problem for the vein networks of plant leaves by introducing biologically motivated descriptors of vein network topology; we combine these descriptors with cellular imaging and molecular genetic analysis; and we apply this combination of approaches to leaves of Arabidopsis thaliana that lack function of, overexpress or misexpress combinations of four PIN-FORMED (PIN) genes—PIN1, PIN5, PIN6, and PIN8—which encode transporters of the plant signal auxin and are known to control vein network geometry. Results We find that PIN1 inhibits vein formation and connection, and that PIN6 acts redundantly to PIN1 in these processes; however, the functions of PIN6 in vein formation are nonhomologous to those of PIN1, while the functions of PIN6 in vein connection are homologous to those of PIN1. We further find that PIN8 provides functions redundant and homologous to those of PIN6 in PIN1-dependent inhibition of vein formation, but that PIN8 has no functions in PIN1/PIN6-dependent inhibition of vein connection. Finally, we find that PIN5 promotes vein formation; that all the vein-formation-promoting functions of PIN5 are redundantly inhibited by PIN6 and PIN8; and that these functions of PIN5, PIN6, and PIN8 are independent of PIN1. Conclusions Our results suggest that PIN-mediated auxin transport controls the formation of veins and their connection into networks. Electronic supplementary material The online version of this article (doi:10.1186/s12915-015-0208-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Carla Verna
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada.
| | - Megan G Sawchuk
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada.
| | - Nguyen Manh Linh
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada.
| | - Enrico Scarpella
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
21
|
Růžička K, Ursache R, Hejátko J, Helariutta Y. Xylem development - from the cradle to the grave. THE NEW PHYTOLOGIST 2015; 207:519-35. [PMID: 25809158 DOI: 10.1111/nph.13383] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 02/21/2015] [Indexed: 05/06/2023]
Abstract
The development and growth of plants, as well as their successful adaptation to a variety of environments, is highly dependent on the conduction of water, nutrients and other important molecules throughout the plant body. Xylem is a specialized vascular tissue that serves as a conduit of water and minerals and provides mechanical support for upright growth. Wood, also known as secondary xylem, constitutes the major part of mature woody stems and roots. In the past two decades, a number of key factors including hormones, signal transducers and (post)transcriptional regulators have been shown to control xylem formation. We outline the main mechanisms shown to be essential for xylem development in various plant species, with an emphasis on Arabidopsis thaliana, as well as several tree species where xylem has a long history of investigation. We also summarize the processes which have been shown to be instrumental during xylem maturation. This includes mechanisms of cell wall formation and cell death which collectively complete xylem cell fate.
Collapse
Affiliation(s)
- Kamil Růžička
- Department of Functional Genomics and Proteomics, Central European Institute of Technology, Masaryk University, Kamenice 25, Brno, CZ-62500, Czech Republic
| | - Robertas Ursache
- Sainsbury Laboratory, University of Cambridge, Bateman Street, Cambridge, CB2 1LR, UK
| | - Jan Hejátko
- Department of Functional Genomics and Proteomics, Central European Institute of Technology, Masaryk University, Kamenice 25, Brno, CZ-62500, Czech Republic
| | - Ykä Helariutta
- Sainsbury Laboratory, University of Cambridge, Bateman Street, Cambridge, CB2 1LR, UK
- Institute of Biotechnology, University of Helsinki, PO Box 65, Helsinki, FIN-00014, Finland
| |
Collapse
|
22
|
An early secretory pathway mediated by GNOM-LIKE 1 and GNOM is essential for basal polarity establishment in Arabidopsis thaliana. Proc Natl Acad Sci U S A 2015; 112:E806-15. [PMID: 25646449 DOI: 10.1073/pnas.1424856112] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Spatial regulation of the plant hormone indole-3-acetic acid (IAA, or auxin) is essential for plant development. Auxin gradient establishment is mediated by polarly localized auxin transporters, including PIN-FORMED (PIN) proteins. Their localization and abundance at the plasma membrane are tightly regulated by endomembrane machinery, especially the endocytic and recycling pathways mediated by the ADP ribosylation factor guanine nucleotide exchange factor (ARF-GEF) GNOM. We assessed the role of the early secretory pathway in establishing PIN1 polarity in Arabidopsis thaliana by pharmacological and genetic approaches. We identified the compound endosidin 8 (ES8), which selectively interferes with PIN1 basal polarity without altering the polarity of apical proteins. ES8 alters the auxin distribution pattern in the root and induces a strong developmental phenotype, including reduced root length. The ARF-GEF-defective mutants gnom-like 1 (gnl1-1) and gnom (van7) are significantly resistant to ES8. The compound does not affect recycling or vacuolar trafficking of PIN1 but leads to its intracellular accumulation, resulting in loss of PIN1 basal polarity at the plasma membrane. Our data confirm a role for GNOM in endoplasmic reticulum (ER)-Golgi trafficking and reveal that a GNL1/GNOM-mediated early secretory pathway selectively regulates PIN1 basal polarity establishment in a manner essential for normal plant development.
Collapse
|
23
|
Sundari BKR, Dasgupta MG. Isolation of developing secondary xylem specific cellulose synthase genes and their expression profiles during hormone signalling in Eucalyptus tereticornis. J Genet 2014; 93:403-14. [PMID: 25189235 DOI: 10.1007/s12041-014-0391-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Cellulose synthases (CesA) represent a group of β-1, 4 glycosyl transferases involved in cellulose biosynthesis. Recent reports in higher plants have revealed that two groups of CesA gene families exist, which are associated with either primary or secondary cell wall deposition. The present study aimed at identifying developing secondary xylem specific cellulose synthase genes from Eucalyptus tereticornis, a species predominantly used in paper and pulp industries in the tropics. The differential expression analysis of the three EtCesA genes using qRT-PCR revealed 49 to 87 fold relative expression in developing secondary xylem tissues. Three full length gene sequences of EtCesA1, EtCesA2 and EtCesA3 were isolated with the size of 2940, 3114 and 3123 bp, respectively. Phytohormone regulation of all three EtCesA genes were studied by exogenous application of gibberellic acid, naphthalene acetic acid, indole acetic acid and 2, 4-epibrassinolide in internode tissues derived from three-month-old rooted cuttings. All three EtCesA transcripts were upregulated by indole acetic acid and gibberellic acid. This study demonstrates that the increased cellulose deposition in the secondary wood induced by hormones can be attributed to the upregulation of xylem specific CesAs.
Collapse
Affiliation(s)
- Balachandran Karpaga Raja Sundari
- Division of Plant Biotechnology, Institute of Forest Genetics and Tree Breeding, P.B. No. 1061, Forest Campus, R.S. Puram Coimbatore 641 002, India.
| | | |
Collapse
|
24
|
Naramoto S, Otegui MS, Kutsuna N, de Rycke R, Dainobu T, Karampelias M, Fujimoto M, Feraru E, Miki D, Fukuda H, Nakano A, Friml J. Insights into the localization and function of the membrane trafficking regulator GNOM ARF-GEF at the Golgi apparatus in Arabidopsis. THE PLANT CELL 2014; 26:3062-76. [PMID: 25012191 PMCID: PMC4145132 DOI: 10.1105/tpc.114.125880] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 05/28/2014] [Accepted: 06/04/2014] [Indexed: 05/19/2023]
Abstract
GNOM is one of the most characterized membrane trafficking regulators in plants, with crucial roles in development. GNOM encodes an ARF-guanine nucleotide exchange factor (ARF-GEF) that activates small GTPases of the ARF (ADP ribosylation factor) class to mediate vesicle budding at endomembranes. The crucial role of GNOM in recycling of PIN auxin transporters and other proteins to the plasma membrane was identified in studies using the ARF-GEF inhibitor brefeldin A (BFA). GNOM, the most prominent regulator of recycling in plants, has been proposed to act and localize at so far elusive recycling endosomes. Here, we report the GNOM localization in context of its cellular function in Arabidopsis thaliana. State-of-the-art imaging, pharmacological interference, and ultrastructure analysis show that GNOM predominantly localizes to Golgi apparatus. Super-resolution confocal live imaging microscopy identified GNOM and its closest homolog GNOM-like 1 at distinct subdomains on Golgi cisternae. Short-term BFA treatment stabilizes GNOM at the Golgi apparatus, whereas prolonged exposures results in GNOM translocation to trans-Golgi network (TGN)/early endosomes (EEs). Malformed TGN/EE in gnom mutants suggests a role for GNOM in maintaining TGN/EE function. Our results redefine the subcellular action of GNOM and reevaluate the identity and function of recycling endosomes in plants.
Collapse
Affiliation(s)
- Satoshi Naramoto
- Department of Plant Systems Biology, VIB, and Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Gent, Belgium Molecular Membrane Biology laboratory, RIKEN Advanced Science Institute, Wako, Saitama 351-0198, Japan Department of Life Science, International Christian University, Mitaka-shi, Tokyo 181-8585, Japan
| | - Marisa S Otegui
- Department of Botany and Genetics, University of Wisconsin, Madison, Wisconsin 53706
| | - Natsumaro Kutsuna
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, University of Tokyo, Kashiwa, Chiba 277-8562, Japan
| | - Riet de Rycke
- Department of Plant Systems Biology, VIB, and Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Gent, Belgium
| | - Tomoko Dainobu
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Michael Karampelias
- Department of Plant Systems Biology, VIB, and Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Gent, Belgium
| | - Masaru Fujimoto
- Laboratory of Plant Molecular Genetics, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Elena Feraru
- Department of Plant Systems Biology, VIB, and Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Gent, Belgium
| | - Daisuke Miki
- Department of Plant Systems Biology, VIB, and Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Gent, Belgium
| | - Hiroo Fukuda
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Akihiko Nakano
- Molecular Membrane Biology laboratory, RIKEN Advanced Science Institute, Wako, Saitama 351-0198, Japan Department of Biological Sciences, Graduate School of Science, University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan Live Cell Molecular Imaging Research Team, Extreme Photonics Research Group, RIKEN Center for Advanced Photonics, Wako, Saitama 351-0198, Japan
| | - Jiří Friml
- Department of Plant Systems Biology, VIB, and Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Gent, Belgium Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria
| |
Collapse
|
25
|
Morita MT, Shimada T. The Plant Endomembrane System—A Complex Network Supporting Plant Development and Physiology. ACTA ACUST UNITED AC 2014; 55:667-71. [DOI: 10.1093/pcp/pcu049] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
26
|
Naramoto S, Nodzyłski T, Dainobu T, Takatsuka H, Okada T, Friml J, Fukuda H. VAN4 encodes a putative TRS120 that is required for normal cell growth and vein development in Arabidopsis. PLANT & CELL PHYSIOLOGY 2014; 55:750-63. [PMID: 24443495 DOI: 10.1093/pcp/pcu012] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Leaf venation develops complex patterns in angiosperms, but the mechanism underlying this process is largely unknown. To elucidate the molecular mechanisms governing vein pattern formation, we previously isolated vascular network defective (van) mutants that displayed venation discontinuities. Here, we report the phenotypic analysis of van4 mutants, and we identify and characterize the VAN4 gene. Detailed phenotypic analysis shows that van4 mutants are defective in procambium cell differentiation and subsequent vascular cell differentiation. Reduced shoot and root cell growth is observed in van4 mutants, suggesting that VAN4 function is important for cell growth and the establishment of venation continuity. Consistent with these phenotypes, the VAN4 gene is strongly expressed in vascular and meristematic cells. VAN4 encodes a putative TRS120, which is a known guanine nucleotide exchange factor (GEF) for Rab GTPase involved in regulating vesicle transport, and a known tethering factor that determines the specificity of membrane fusion. VAN4 protein localizes at the trans-Golgi network/early endosome (TGN/EE). Aberrant recycling of the auxin efflux carrier PIN proteins is observed in van4 mutants. These results suggest that VAN4-mediated exocytosis at the TGN plays important roles in plant vascular development and cell growth in shoot and root. Our identification of VAN4 as a putative TRS120 shows that Rab GTPases are crucial (in addition to ARF GTPases) for continuous vascular development, and provides further evidence for the importance of vesicle transport in leaf vascular formation.
Collapse
Affiliation(s)
- Satoshi Naramoto
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033 Japan
| | | | | | | | | | | | | |
Collapse
|
27
|
Furuta KM, Hellmann E, Helariutta Y. Molecular control of cell specification and cell differentiation during procambial development. ANNUAL REVIEW OF PLANT BIOLOGY 2014; 65:607-38. [PMID: 24579995 DOI: 10.1146/annurev-arplant-050213-040306] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Land plants develop vascular tissues that enable the long-distance transport of water and nutrients in xylem and phloem, provide mechanical support for their vertical growth, and produce cells in radial growth. Vascular tissues are produced in many parts of the plant and during different developmental stages. Early vascular development is focused in procambial meristems, and in some species it continues during the secondary phase of plant development in cambial meristems. In this review, we highlight recent progress in understanding procambial development. This involves the analysis of stem cell-like properties of procambial tissues, specification of xylem and phloem, and differentiation of the conductive tissues. Several major plant hormones, small-RNA species, and transcriptional networks play a role in vascular development. We describe current approaches to integrating these networks as well as their potential role in explaining the diversity and evolution of plant vascular systems.
Collapse
Affiliation(s)
- Kaori Miyashima Furuta
- Institute of Biotechnology and Department of Biology and Environmental Sciences, University of Helsinki, Helsinki FIN-00014, Finland; , ,
| | | | | |
Collapse
|
28
|
Sawchuk MG, Scarpella E. Polarity, continuity, and alignment in plant vascular strands. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2013; 55:824-834. [PMID: 23773763 DOI: 10.1111/jipb.12086] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Accepted: 06/04/2013] [Indexed: 06/02/2023]
Abstract
Plant vascular cells are joined end to end along uninterrupted lines to connect shoot organs with roots; vascular strands are thus polar, continuous, and internally aligned. What controls the formation of vascular strands with these properties? The "auxin canalization hypothesis"-based on positive feedback between auxin flow through a cell and the cell's capacity for auxin transport-predicts the selection of continuous files of cells that transport auxin polarly, thus accounting for the polarity and continuity of vascular strands. By contrast, polar, continuous auxin transport-though required-is insufficient to promote internal alignment of vascular strands, implicating additional factors. The auxin canalization hypothesis was derived from the response of mature tissue to auxin application but is consistent with molecular and cellular events in embryo axis formation and shoot organ development. Objections to the hypothesis have been raised based on vascular organizations in callus tissue and shoot organs but seem unsupported by available evidence. Other objections call instead for further research; yet the inductive and orienting influence of auxin on continuous vascular differentiation remains unique.
Collapse
Affiliation(s)
- Megan G Sawchuk
- Department of Biological Sciences, University of Alberta, Edmonton Alberta, Canada, T6G 2E9
| | | |
Collapse
|
29
|
Koizumi K, Gallagher KL. Identification of SHRUBBY, a SHORT-ROOT and SCARECROW interacting protein that controls root growth and radial patterning. Development 2013; 140:1292-300. [PMID: 23444357 DOI: 10.1242/dev.090761] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The timing and extent of cell division is particularly important for the growth and development of multicellular organisms. Roots of the model organism Arabidopsis thaliana have been widely studied as a paradigm for organ development in plants. In the Arabidopsis root, the plant-specific GRAS family transcription factors SHORT-ROOT (SHR) and SCARECROW (SCR) are key regulators of root growth and of the asymmetric cell divisions that separate the ground tissue into two separate layers: the endodermis and cortex. To elucidate the role of SHR in root development, we identified 17 SHR-interacting proteins. Among those isolated was At5g24740, which we named SHRUBBY (SHBY). SHBY is a vacuolar sorting protein with similarity to the gene responsible for Cohen syndrome in humans. Hypomorphic alleles of shby caused poor root growth, decreased meristematic activity and defects in radial patterning that are characterized by an increase in the number of cell divisions in the ground tissue that lead to extra cells in the cortex and endodermis, as well as additional cell layers. Analysis of genetic and molecular markers indicates that SHBY acts in a pathway that partially overlaps with SHR, SCR, PLETHORA1 and PLETHORA2 (PLT1 and PLT2). The shby-1 root phenotype was partially phenocopied by treatment of wild-type roots with the proteosome inhibitor MG132 or the gibberellic acid (GA) synthesis inhibitor paclobutrazol (PAC). Our results indicate that SHBY controls root growth downstream of GA in part through the regulation of SHR and SCR.
Collapse
Affiliation(s)
- Koji Koizumi
- 121 Carolyn Lynch Laboratories, Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | |
Collapse
|
30
|
Okumura KI, Goh T, Toyokura K, Kasahara H, Takebayashi Y, Mimura T, Kamiya Y, Fukaki H. GNOM/FEWER ROOTS is required for the establishment of an auxin response maximum for arabidopsis lateral root initiation. PLANT & CELL PHYSIOLOGY 2013; 54:406-17. [PMID: 23390202 PMCID: PMC3589829 DOI: 10.1093/pcp/pct018] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Lateral root (LR) formation in vascular plants is regulated by auxin. The mechanisms of LR formation are not fully understood. Here, we have identified a novel recessive mutation in Arabidopsis thaliana, named fewer roots (fwr), that drastically reduces the number of LRs. Expression analyses of DR5::GUS, an auxin response reporter, and pLBD16::GUS, an LR initiation marker, suggested that FWR is necessary for the establishment of an auxin response maximum in LR initiation sites. We further identified that the fwr phenotypes are caused by a missense mutation in the GNOM gene, encoding an Arf-GEF (ADP ribosylation factor-GDP/GTP exchange factor), which regulates the recycling of PINs, the auxin efflux carriers. The fwr roots showed enhanced sensitivity to brefeldin A in a root growth inhibition assay, indicating that the fwr mutation reduces the Arf-GEF activity of GNOM. However, the other developmental processes except for LR formation appeared to be unaffected in the fwr mutant, indicating that fwr is a weaker allele of gnom compared with the other gnom alleles with pleiotropic phenotypes. The localization of PIN1-green fluorescent protein (GFP) appeared to be unaffected in the fwr roots but the levels of endogenous IAA were actually higher in the fwr roots than in the wild type. These results indicate that LR initiation is one of the most sensitive processes among GNOM-dependent developmental processes, strongly suggesting that GNOM is required for the establishment of the auxin response maximum for LR initiation, probably through the regulation of local and global auxin distribution in the root.
Collapse
Affiliation(s)
- Ken-ichi Okumura
- Department of Biology, Graduate School of Science, Kobe University, 1-1 Rokkodai, Kobe, 657-8501 Japan
- These authors contributed equally to this work
| | - Tatsuaki Goh
- Department of Biology, Graduate School of Science, Kobe University, 1-1 Rokkodai, Kobe, 657-8501 Japan
- These authors contributed equally to this work
| | - Koichi Toyokura
- Department of Biology, Graduate School of Science, Kobe University, 1-1 Rokkodai, Kobe, 657-8501 Japan
| | | | | | - Tetsuro Mimura
- Department of Biology, Graduate School of Science, Kobe University, 1-1 Rokkodai, Kobe, 657-8501 Japan
| | - Yuji Kamiya
- Plant Science Center, RIKEN, Yokohama, Kanagawa, 230-0045 Japan
| | - Hidehiro Fukaki
- Department of Biology, Graduate School of Science, Kobe University, 1-1 Rokkodai, Kobe, 657-8501 Japan
- *Corresponding author: E-mail, ; Fax: +81-78-803-5721
| |
Collapse
|
31
|
Baylis T, Cierlik I, Sundberg E, Mattsson J. SHORT INTERNODES/STYLISH genes, regulators of auxin biosynthesis, are involved in leaf vein development in Arabidopsis thaliana. THE NEW PHYTOLOGIST 2013; 197:737-750. [PMID: 23293954 DOI: 10.1111/nph.12084] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Accepted: 10/30/2012] [Indexed: 05/05/2023]
Abstract
Leaves depend on highly developed venation systems to collect fixed carbon for transport and to distribute water. We hypothesized that local regulation of auxin biosynthesis plays a role in vein development. To this effect, we assessed the role of the SHORT INTERNODES/STYLISH (SHI/STY) gene family, zinc-finger transcription factors linked to regulation of auxin biosynthesis, in Arabidopsis thaliana leaf vein development. Gene functions were assessed by a combination of high-resolution spatio-temporal expression analysis of promoter-marker lines and phenotypic analysis of plants homozygous for single and multiple mutant combinations. The SHI/STY genes showed expression patterns with variations on a common theme of activity in incipient and developing cotyledon and leaf primordia, narrowing to apices and hydathode regions. Mutant analysis of single to quintuple mutant combinations revealed dose-dependent defects in vein patterning affecting multiple vein traits, most notably in cotyledons. Here we demonstrate that local regulation of auxin biosynthesis is an important aspect of leaf vein development. Our findings also support a model in which auxin synthesized at the periphery of primordia affects vein development.
Collapse
Affiliation(s)
- Tammy Baylis
- Department of Biological Sciences, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada
| | - Izabela Cierlik
- Department of Plant Biology and Forest Genetics, Uppsala BioCenter, Linnean Centre of Plant Biology in Uppsala, Swedish University of Agricultural Sciences, PO Box 7080, SE-750 07, Uppsala, Sweden
| | - Eva Sundberg
- Department of Plant Biology and Forest Genetics, Uppsala BioCenter, Linnean Centre of Plant Biology in Uppsala, Swedish University of Agricultural Sciences, PO Box 7080, SE-750 07, Uppsala, Sweden
| | - Jim Mattsson
- Department of Biological Sciences, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada
| |
Collapse
|
32
|
Han JJ, Lin W, Oda Y, Cui KM, Fukuda H, He XQ. The proteasome is responsible for caspase-3-like activity during xylem development. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2012; 72:129-41. [PMID: 22680239 DOI: 10.1111/j.1365-313x.2012.05070.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Xylem development is a process of xylem cell terminal differentiation that includes initial cell division, cell expansion, secondary cell wall formation and programmed cell death (PCD). PCD in plants and apoptosis in animals share many common characteristics. Caspase-3, which displays Asp-Glu-Val-Asp (DEVD) specificity, is a crucial executioner during animal cells apoptosis. Although a gene orthologous to caspase-3 is absent in plants, caspase-3-like activity is involved in many cases of PCD and developmental processes. However, there is no direct evidence that caspase-3-like activity exists in xylem cell death. In this study, we showed that caspase-3-like activity is present and is associated with secondary xylem development in Populus tomentosa. The protease responsible for the caspase-3-like activity was purified from poplar secondary xylem using hydrophobic interaction chromatography (HIC), Q anion exchange chromatography and gel filtration chromatography. After identification by liquid chromatography-tandem mass spectrometry (LC-MS/MS), it was revealed that the 20S proteasome (20SP) was responsible for the caspase-3-like activity in secondary xylem development. In poplar 20SP, there are seven α subunits encoded by 12 genes and seven β subunits encoded by 12 genes. Pharmacological assays showed that Ac-DEVD-CHO, a caspase-3 inhibitor, suppressed xylem differentiation in the veins of Arabidopsis cotyledons. Furthermore, clasto-lactacystin β-lactone, a proteasome inhibitor, inhibited PCD of tracheary element in a VND6-induced Arabidopsis xylogenic culture. In conclusion, the 20S proteasome is responsible for caspase-3-like activity and is involved in xylem development.
Collapse
Affiliation(s)
- Jia-Jia Han
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, China
| | | | | | | | | | | |
Collapse
|
33
|
The SHORT-ROOT protein acts as a mobile, dose-dependent signal in patterning the ground tissue. Proc Natl Acad Sci U S A 2012; 109:13010-5. [PMID: 22826238 DOI: 10.1073/pnas.1205579109] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
A key question in developmental biology is how cellular patterns are created and maintained. During the formation of the Arabidopsis root, the endodermis, middle cortex (MC), and cortex are produced by periclinal cell divisions that occur at different positions and at different times in root development. The endodermis and cortex arise continuously from the periclinal divisions of cells that surround the quiescent center (QC) at the tip of the root. The MC arises between days 7 and 14 from periclinal divisions of the endodermis. The divisions that produce the middle cortex begin in the basal region of the root meristem away from the QC and then spread apically and circumferentially around the root. Although the transcription factor SHORT-ROOT (SHR) is required for both of these divisions, the mechanism that determines where and when SHR acts to promote cell division along the longitudinal axis of the root is unknown; SHR is present along the entire length of the root tip, but only promotes periclinal divisions at specific sites. Here we show that the abundance of the SHR protein changes dynamically as the root develops, and that the pattern of cell division within the endodermis is sensitive to the dose of this protein: high levels of SHR prevent the formation of the MC, whereas intermediate levels of SHR promote MC formation. These results provide a mechanism for the longitudinal patterning of the endodermis, and represent the first example in plants of a mobile transcription factor whose function (activator or repressor) depends upon concentration.
Collapse
|
34
|
Truernit E, Bauby H, Belcram K, Barthélémy J, Palauqui JC. OCTOPUS, a polarly localised membrane-associated protein, regulates phloem differentiation entry in Arabidopsis thaliana. Development 2012; 139:1306-15. [DOI: 10.1242/dev.072629] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Vascular development is embedded into the developmental context of plant organ differentiation and can be divided into the consecutive phases of vascular patterning and differentiation of specific vascular cell types (phloem and xylem). To date, only very few genetic determinants of phloem development are known. Here, we identify OCTOPUS (OPS) as a potentiator of phloem differentiation. OPS is a polarly localised membrane-associated protein that is initially expressed in provascular cells, and upon vascular cell type specification becomes restricted to the phloem cell lineage. OPS mutants display a reduction of cotyledon vascular pattern complexity and discontinuous phloem differentiation, whereas OPS overexpressers show accelerated progress of cotyledon vascular patterning and phloem differentiation. We propose that OPS participates in vascular differentiation by interpreting longitudinal signals that lead to the transformation of vascular initials into differentiating protophloem cells.
Collapse
Affiliation(s)
- Elisabeth Truernit
- INRA, UMR1318, Institut Jean-Pierre Bourgin, RD10, 78000 Versailles, France
| | - Hélène Bauby
- INRA, UMR1318, Institut Jean-Pierre Bourgin, RD10, 78000 Versailles, France
| | - Katia Belcram
- INRA, UMR1318, Institut Jean-Pierre Bourgin, RD10, 78000 Versailles, France
| | - Julien Barthélémy
- INRA, UMR1318, Institut Jean-Pierre Bourgin, RD10, 78000 Versailles, France
| | | |
Collapse
|
35
|
Zhou J, Sebastian J, Lee JY. Signaling and gene regulatory programs in plant vascular stem cells. Genesis 2011; 49:885-904. [PMID: 21898765 DOI: 10.1002/dvg.20795] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2011] [Accepted: 08/22/2011] [Indexed: 12/12/2022]
Abstract
A key question about the development of multicellular organisms is how they precisely control the complex pattern formation during their growth. For plants to grow for many years, a tight balance between pluripotent dividing cells and cells undergoing differentiation should be maintained within stem cell populations. In this process, cell-cell communication plays a central role by creating positional information for proper cell type patterning. Cell-type specific gene regulatory networks govern differentiation of cells into particular cell types. In this review, we will provide a comprehensive overview of emerging key signaling and regulatory programs in the stem cell population that direct morphogenesis of plant vascular tissues.
Collapse
Affiliation(s)
- Jing Zhou
- Boyce Thompson Institute for Plant Research, Ithaca, New York, USA
| | | | | |
Collapse
|
36
|
Peer WA, Blakeslee JJ, Yang H, Murphy AS. Seven things we think we know about auxin transport. MOLECULAR PLANT 2011; 4:487-504. [PMID: 21505044 DOI: 10.1093/mp/ssr034] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Polar transport of the phytohormone auxin and the establishment of localized auxin maxima regulate embryonic development, stem cell maintenance, root and shoot architecture, and tropic growth responses. The past decade has been marked by dramatic progress in efforts to elucidate the complex mechanisms by which auxin transport regulates plant growth. As the understanding of auxin transport regulation has been increasingly elaborated, it has become clear that this process is involved in almost all plant growth and environmental responses in some way. However, we still lack information about some basic aspects of this fundamental regulatory mechanism. In this review, we present what we know (or what we think we know) and what we do not know about seven auxin-regulated processes. We discuss the role of auxin transport in gravitropism in primary and lateral roots, phototropism, shoot branching, leaf expansion, and venation. We also discuss the auxin reflux/fountain model at the root tip, flavonoid modulation of auxin transport processes, and outstanding aspects of post-translational regulation of auxin transporters. This discussion is not meant to be exhaustive, but highlights areas in which generally held assumptions require more substantive validation.
Collapse
Affiliation(s)
- Wendy Ann Peer
- Department of Horticulture, 625 Agriculture Mall Drive, Purdue University, West Lafayette, IN 47907, USA.
| | | | | | | |
Collapse
|
37
|
de Freitas ST, Shackel KA, Mitcham EJ. Abscisic acid triggers whole-plant and fruit-specific mechanisms to increase fruit calcium uptake and prevent blossom end rot development in tomato fruit. JOURNAL OF EXPERIMENTAL BOTANY 2011; 62:2645-56. [PMID: 21282326 DOI: 10.1093/jxb/erq430] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Calcium (Ca) uptake into fruit and leaves is dependent on xylemic water movement, and hence presumably driven by transpiration and growth. High leaf transpiration is thought to restrict Ca movement to low-transpiring tomato fruit, which may increase fruit susceptibility to the Ca-deficiency disorder, blossom end rot (BER). The objective of this study was to analyse the effect of reduced leaf transpiration in abscisic acid (ABA)-treated plants on fruit and leaf Ca uptake and BER development. Tomato cultivars Ace 55 (Vf) and AB2 were grown in a greenhouse environment under Ca-deficit conditions and plants were treated weekly after pollination with water (control) or 500 mg l(-1) ABA. BER incidence was completely prevented in the ABA-treated plants and reached values of 30-45% in the water-treated controls. ABA-treated plants had higher stem water potential, lower leaf stomatal conductance, and lower whole-plant water loss than water-treated plants. ABA treatment increased total tissue and apoplastic water-soluble Ca concentrations in the fruit, and decreased Ca concentrations in leaves. In ABA-treated plants, fruit had a higher number of Safranin-O-stained xylem vessels at early stages of growth and development. ABA treatment reduced the phloem/xylem ratio of fruit sap uptake. The results indicate that ABA prevents BER development by increasing fruit Ca uptake, possibly by a combination of whole-plant and fruit-specific mechanisms.
Collapse
|
38
|
Gardiner J, Donner TJ, Scarpella E. Simultaneous activation of SHR and ATHB8 expression defines switch to preprocambial cell state in Arabidopsis leaf development. Dev Dyn 2010; 240:261-70. [DOI: 10.1002/dvdy.22516] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
|
39
|
ADP-ribosylation factor machinery mediates endocytosis in plant cells. Proc Natl Acad Sci U S A 2010; 107:21890-5. [PMID: 21118984 DOI: 10.1073/pnas.1016260107] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Endocytosis is crucial for various cellular functions and development of multicellular organisms. In mammals and yeast, ADP-ribosylation factor (ARF) GTPases, key components of vesicle formation, and their regulators ARF-guanine nucleotide exchange factors (GEFs) and ARF-GTPase-activating protein (GAPs) mediate endocytosis. A similar role has not been established in plants, mainly because of the lack of the canonical ARF and ARF-GEF components that are involved in endocytosis in other eukaryotes. In this study, we revealed a regulatory mechanism of endocytosis in plants based on ARF GTPase activity. We identified that ARF-GEF GNOM and ARF-GAP vascular network defective 3 (VAN3), both of which are involved in polar auxin transport-dependent morphogenesis, localize at the plasma membranes as well as in intracellular structures. Variable angle epifluorescence microscopy revealed that GNOM and VAN3 localize to partially overlapping discrete foci at the plasma membranes that are regularly associated with the endocytic vesicle coat clathrin. Genetic studies revealed that GNOM and VAN3 activities are required for endocytosis and internalization of plasma membrane proteins, including PIN-FORMED auxin transporters. These findings identified ARF GTPase-based regulatory mechanisms for endocytosis in plants. GNOM and VAN3 previously were proposed to function solely at the recycling endosomes and trans-Golgi networks, respectively. Therefore our findings uncovered an additional cellular function of these prominent developmental regulators.
Collapse
|
40
|
Blonder B, Violle C, Bentley LP, Enquist BJ. Venation networks and the origin of the leaf economics spectrum. Ecol Lett 2010; 14:91-100. [DOI: 10.1111/j.1461-0248.2010.01554.x] [Citation(s) in RCA: 159] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
41
|
Santos F, Teale W, Fleck C, Volpers M, Ruperti B, Palme K. Modelling polar auxin transport in developmental patterning. PLANT BIOLOGY (STUTTGART, GERMANY) 2010; 12 Suppl 1:3-14. [PMID: 20712616 DOI: 10.1111/j.1438-8677.2010.00388.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Auxin interacts with its own polar transport to influence cell polarity and tissue patterning. Research over the past decade has started to deliver new insights into the molecular mechanisms that drive and regulate polar auxin transport. The most prominent auxin efflux protein, PIN1, has subsequently become a crucial component of auxin transport models because it is now known to direct auxin flow and maintain local auxin gradients. Recent molecular and genetic experiments have allowed the formulation of conceptual models that are able to interpret the role of (i) auxin, (ii) its transport, and (iii) the dynamics of PIN1 in generating temporal and spatial patterns. Here we review the current mathematical models of patterning in two specific developmental contexts: lateral shoot and vein formation, focusing on how these models can help to untangle the details of auxin transport-mediated patterning.
Collapse
Affiliation(s)
- F Santos
- Institute of Biology II/Botany, Faculty of Biology, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany.
| | | | | | | | | | | |
Collapse
|
42
|
Hou H, Erickson J, Meservy J, Schultz EA. FORKED1 encodes a PH domain protein that is required for PIN1 localization in developing leaf veins. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2010; 63:960-973. [PMID: 20626652 DOI: 10.1111/j.1365-313x.2010.04291.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
The formation of Arabidopsis leaf veins is believed to require canalization of auxin into discrete and continuous cell files to generate a highly reproducible branched and reticulate pattern. During canalization, incipient veins become preferred routes for auxin transport through expression and asymmetric localization of the PINFORMED1 (PIN1) auxin efflux protein: PIN1 expression narrows from a group of cells to a single cell file, and localization of PIN1 protein becomes polarized to the cell membrane facing a previously formed vein. The shift in PIN1 localization is believed to require active vesicle cycling and be auxin-dependent, generating an autoregulatory loop. Previously, we have shown that fkd1 mutant leaves have an open vein pattern that lacks distal vein meeting. Here, we identify FKD1 as encoding a pleckstrin homology domain- and DUF828-containing protein. A fusion of the FKD1 promoter and the GUS reporter gene was expressed in vascular tissue throughout the plant, and its expression in incipient veins in leaves narrows in a manner similar to that of PIN1. FKD1 expression in roots and leaves can be altered by changes to auxin response and auxin transport. In the absence of FKD1, PIN1::GFP narrowing to incipient veins is delayed, and localization to the apical cell face is infrequent. The lack of apical PIN1 localization correlates with the failure of newly forming veins to connect distally with previously formed veins. Our data suggest that FKD1 influences PIN1 localization in an auxin-dependent manner, and we propose that it represents a key component of the auxin canalization pathway.
Collapse
Affiliation(s)
- Hongwei Hou
- Department of Cell and System Biology, University of Toronto, 25 Willcocks Street, Toronto, M5S 3B2, ON, Canada
| | | | | | | |
Collapse
|
43
|
Pullen M, Clark N, Zarinkamar F, Topping J, Lindsey K. Analysis of vascular development in the hydra sterol biosynthetic mutants of Arabidopsis. PLoS One 2010; 5:e12227. [PMID: 20808926 PMCID: PMC2923191 DOI: 10.1371/journal.pone.0012227] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2010] [Accepted: 07/27/2010] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND The control of vascular tissue development in plants is influenced by diverse hormonal signals, but their interactions during this process are not well understood. Wild-type sterol profiles are essential for growth, tissue patterning and signalling processes in plant development, and are required for regulated vascular patterning. METHODOLOGY/PRINCIPAL FINDINGS Here we investigate the roles of sterols in vascular tissue development, through an analysis of the Arabidopsis mutants hydra1 and fackel/hydra2, which are defective in the enzymes sterol isomerase and sterol C-14 reductase respectively. We show that defective vascular patterning in the shoot is associated with ectopic cell divisions. Expression of the auxin-regulated AtHB8 homeobox gene is disrupted in mutant embryos and seedlings, associated with variably incomplete vascular strand formation and duplication of the longitudinal axis. Misexpression of the auxin reporter proIAA2ratioGUS and mislocalization of PIN proteins occurs in the mutants. Introduction of the ethylene-insensitive ein2 mutation partially rescues defective cell division, localization of PIN proteins, and vascular strand development. CONCLUSIONS The results support a model in which sterols are required for correct auxin and ethylene crosstalk to regulate PIN localization, auxin distribution and AtHB8 expression, necessary for correct vascular development.
Collapse
Affiliation(s)
- Margaret Pullen
- The Integrative Cell Biology Laboratory, School of Biological and Biomedical Sciences, Durham University, Durham, United Kingdom
| | - Nick Clark
- The Integrative Cell Biology Laboratory, School of Biological and Biomedical Sciences, Durham University, Durham, United Kingdom
| | - Fatemeh Zarinkamar
- The Integrative Cell Biology Laboratory, School of Biological and Biomedical Sciences, Durham University, Durham, United Kingdom
| | - Jennifer Topping
- The Integrative Cell Biology Laboratory, School of Biological and Biomedical Sciences, Durham University, Durham, United Kingdom
| | - Keith Lindsey
- The Integrative Cell Biology Laboratory, School of Biological and Biomedical Sciences, Durham University, Durham, United Kingdom
| |
Collapse
|
44
|
Sakaguchi J, Itoh JI, Ito Y, Nakamura A, Fukuda H, Sawa S. COE1, an LRR-RLK responsible for commissural vein pattern formation in rice. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2010; 63:405-16. [PMID: 20487383 DOI: 10.1111/j.1365-313x.2010.04250.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Leaf veins have a complex network pattern. Formation of this vein pattern has been widely studied as a model of tissue pattern formation in plants. To understand the molecular mechanism governing the vascular patterning process, we isolated the rice mutant, commissural vein excessive1 (coe1). The coe1 mutants had short commissural vein (CV) intervals and produced clustered CVs. Application of 1-N-naphthylphthalamic acid and brefeldin A decreased CV intervals, and application of 1-naphthaleneacetic acid increased CV intervals in wild-type rice; however, coe1 mutants were insensitive to these chemicals. COE1 encodes a leucine-rich repeat receptor-like kinase, whose amino acid sequence is similar to that of brassinosteroid-insensitive 1-associated receptor kinase 1 (BAK1), and which is localized at the plasma membrane. Because of the sequence similarity of COE1 to BAK1, we also examined the involvement of brassinosteroids in CV formation. Brassinolide, an active brassinosteroid, decreased the CV intervals of wild-type rice, and brassinazole, an inhibitor of brassinosteroid biosynthesis, increased the CV intervals of wild-type rice, but coe1 mutants showed insensitivity to these chemicals. These results suggest that auxin and brassinosteroids regulate CV intervals in opposite directions, and COE1 may regulate CV intervals downstream of auxin and brassinosteroid signals.
Collapse
Affiliation(s)
- Jun Sakaguchi
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, JapanDepartment of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Science, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, JapanGraduate School of Agricultural Science, Tohoku University, 1-1 Tsutsumidori-Amamiyamachi, Aoba-ku, Sendai 981-8555, JapanBioscience and Biotechnology Center, Nagoya University, Chikusa, Nagoya, Aichi 464-8601, Japan
| | | | | | | | | | | |
Collapse
|
45
|
Ilegems M, Douet V, Meylan-Bettex M, Uyttewaal M, Brand L, Bowman JL, Stieger PA. Interplay of auxin, KANADI and Class III HD-ZIP transcription factors in vascular tissue formation. Development 2010; 137:975-84. [DOI: 10.1242/dev.047662] [Citation(s) in RCA: 166] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Class III HD-ZIP and KANADI gene family members have complementary expression patterns in the vasculature and their gain-of-function and loss-of-function mutants have complementary vascular phenotypes. This suggests that members of the two gene families are involved in the establishment of the spatial arrangement of phloem, cambium and xylem. In this study, we have investigated the role of these two gene families in vascular tissue differentiation, in particular their interactions with the plant hormone auxin. We have analyzed the vasculature of plants that have altered expression levels of Class III HD-ZIP and KANADI transcription factors in provascular cells. Removal of either KANADI or Class III HD-ZIP expression in procambium cells led to a wider distribution of auxin in internal tissues, to an excess of procambium cell recruitment and to increased cambium activity. Ectopic expression of KANADI1 in provascular cells inhibited procambium cell recruitment due to negative effects of KANADI1 on expression and polar localization of the auxin efflux-associated protein PIN-FORMED1. Ectopic expression of Class III HD-ZIP genes promoted xylem differentiation. We propose that Class III HD-ZIP and KANADI transcription factors control cambium activity: KANADI proteins by acting on auxin transport, and Class III HD-ZIP proteins by promoting axial cell elongation and xylem differentiation.
Collapse
Affiliation(s)
- Michael Ilegems
- Institute of Biology, University of Neuchâtel, Rue Emile Argand 11, 2009 Neuchâtel, Switzerland
| | - Véronique Douet
- Institute of Biology, University of Neuchâtel, Rue Emile Argand 11, 2009 Neuchâtel, Switzerland
| | - Marlyse Meylan-Bettex
- Institute of Biology, University of Neuchâtel, Rue Emile Argand 11, 2009 Neuchâtel, Switzerland
| | - Magalie Uyttewaal
- Laboratoire de Reproduction et Développement des Plantes, ENS, 46 allée d'Italie, 69364 Lyon Cedex O7, France
| | - Lukas Brand
- School of Biological Sciences, Monash University, Melbourne, Victoria 3800, Australia
| | - John L. Bowman
- School of Biological Sciences, Monash University, Melbourne, Victoria 3800, Australia
| | - Pia A. Stieger
- Institute of Biology, University of Neuchâtel, Rue Emile Argand 11, 2009 Neuchâtel, Switzerland
| |
Collapse
|
46
|
|
47
|
Kleine-Vehn J, Huang F, Naramoto S, Zhang J, Michniewicz M, Offringa R, Friml J. PIN auxin efflux carrier polarity is regulated by PINOID kinase-mediated recruitment into GNOM-independent trafficking in Arabidopsis. THE PLANT CELL 2009; 21:3839-49. [PMID: 20040538 PMCID: PMC2814515 DOI: 10.1105/tpc.109.071639] [Citation(s) in RCA: 151] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2009] [Revised: 12/03/2009] [Accepted: 12/11/2009] [Indexed: 05/18/2023]
Abstract
The phytohormone auxin plays a major role in embryonic and postembryonic plant development. The temporal and spatial distribution of auxin largely depends on the subcellular polar localization of members of the PIN-FORMED (PIN) auxin efflux carrier family. The Ser/Thr protein kinase PINOID (PID) catalyzes PIN phosphorylation and crucially contributes to the regulation of apical-basal PIN polarity. The GTP exchange factor on ADP-ribosylation factors (ARF-GEF), GNOM preferentially mediates PIN recycling at the basal side of the cell. Interference with GNOM activity leads to dynamic PIN transcytosis between different sides of the cell. Our genetic, pharmacological, and cell biological approaches illustrate that PID and GNOM influence PIN polarity and plant development in an antagonistic manner and that the PID-dependent PIN phosphorylation results in GNOM-independent polar PIN targeting. The data suggest that PID and the protein phosphatase 2A not only regulate the static PIN polarity, but also act antagonistically on the rate of GNOM-dependent polar PIN transcytosis. We propose a model that includes PID-dependent PIN phosphorylation at the plasma membrane and the subsequent sorting of PIN proteins to a GNOM-independent pathway for polarity alterations during developmental processes, such as lateral root formation and leaf vasculature development.
Collapse
Affiliation(s)
- Jürgen Kleine-Vehn
- Department of Plant Systems Biology, Flanders Institute for Biotechnology, B-9052 Gent, Belgium
- Department of Plant Biotechnology and Genetics, Ghent University, B-9052 Gent, Belgium
- Centre for Molecular Biology of Plants, University of Tübingen, D-72076 Tübingen, Germany
| | - Fang Huang
- Department of Molecular and Developmental Genetics, Institute of Biology, Leiden University, 2333 AL Leiden, The Netherlands
| | - Satoshi Naramoto
- Department of Plant Systems Biology, Flanders Institute for Biotechnology, B-9052 Gent, Belgium
- Department of Plant Biotechnology and Genetics, Ghent University, B-9052 Gent, Belgium
| | - Jing Zhang
- Department of Plant Systems Biology, Flanders Institute for Biotechnology, B-9052 Gent, Belgium
- Department of Plant Biotechnology and Genetics, Ghent University, B-9052 Gent, Belgium
- Centre for Molecular Biology of Plants, University of Tübingen, D-72076 Tübingen, Germany
| | - Marta Michniewicz
- Centre for Molecular Biology of Plants, University of Tübingen, D-72076 Tübingen, Germany
| | - Remko Offringa
- Department of Molecular and Developmental Genetics, Institute of Biology, Leiden University, 2333 AL Leiden, The Netherlands
| | - Jiří Friml
- Department of Plant Systems Biology, Flanders Institute for Biotechnology, B-9052 Gent, Belgium
- Department of Plant Biotechnology and Genetics, Ghent University, B-9052 Gent, Belgium
- Centre for Molecular Biology of Plants, University of Tübingen, D-72076 Tübingen, Germany
- Address correspondence to
| |
Collapse
|
48
|
Guo Y, Qin G, Gu H, Qu LJ. Dof5.6/HCA2, a Dof transcription factor gene, regulates interfascicular cambium formation and vascular tissue development in Arabidopsis. THE PLANT CELL 2009; 21:3518-34. [PMID: 19915089 PMCID: PMC2798324 DOI: 10.1105/tpc.108.064139] [Citation(s) in RCA: 129] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2008] [Revised: 09/21/2009] [Accepted: 10/25/2009] [Indexed: 05/18/2023]
Abstract
Vascular cambium, a type of lateral meristem, is the source of secondary xylem and secondary phloem, but little is known about the molecular mechanisms of its formation and development. Here, we report the characterization of an Arabidopsis thaliana gain-of-function mutant with dramatically increased cambial activity, designated high cambial activity2 (hca2). The hca2 mutant has no alternative organization of the vascular bundles/fibers in inflorescence stems, due to precocious formation of interfascicular cambium and its subsequent cell division. The phenotype results from elevated expression of HCA2, which encodes a nuclear-localized DNA binding with one finger (Dof) transcription factor Dof5.6. Dof5.6/HCA2 is preferentially expressed in the vasculature of all the organs, particularly in the cambium, phloem, and interfascicular parenchyma cells of inflorescence stems. Dominant-negative analysis further demonstrated that both ubiquitous and in situ repression of HCA2 activity led to disruption of interfascicular cambium formation and development in inflorescence stems. In-depth anatomical analysis showed that HCA2 promotes interfascicular cambium formation at a very early stage of inflorescence stem development. This report demonstrates that a transcription factor gene, HCA2, is involved in regulation of interfascicular cambium formation and vascular tissue development in Arabidopsis.
Collapse
Affiliation(s)
- Yong Guo
- National Laboratory for Protein Engineering and Plant Genetic Engineering, College of Life Sciences, Peking University, Beijing 100871, People's Republic of China
| | - Genji Qin
- National Laboratory for Protein Engineering and Plant Genetic Engineering, College of Life Sciences, Peking University, Beijing 100871, People's Republic of China
| | - Hongya Gu
- National Laboratory for Protein Engineering and Plant Genetic Engineering, College of Life Sciences, Peking University, Beijing 100871, People's Republic of China
- National Plant Gene Research Center (Beijing), Beijing 100101, People's Republic of China
| | - Li-Jia Qu
- National Laboratory for Protein Engineering and Plant Genetic Engineering, College of Life Sciences, Peking University, Beijing 100871, People's Republic of China
- National Plant Gene Research Center (Beijing), Beijing 100101, People's Republic of China
| |
Collapse
|
49
|
Carland F, Nelson T. CVP2- and CVL1-mediated phosphoinositide signaling as a regulator of the ARF GAP SFC/VAN3 in establishment of foliar vein patterns. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2009; 59:895-907. [PMID: 19473324 DOI: 10.1111/j.1365-313x.2009.03920.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
In foliar organs of dicots, veins are arranged in a highly branched or reticulated pattern for efficient distribution of water, photosynthates and signaling molecules. Recent evidence suggests that the patterns rely in part on regulation of intracellular vesicle transport and cell polarity in selected cells during leaf development. The sorting of vesicle cargos to discrete cellular sites is regulated in yeast and animal cells by the binding of specific phosphoinositides (PIs). We report here that, in the plant Arabidopsis, specific PIs guide the vesicle traffic that is essential for polarized and continuous vein pattern formation. Mutations in SFC/VAN3, an ADP-ribosylation factor GTPase-activating protein (ARF GAP) with a PI-binding pleckstrin homology domain, result in discontinuous vein patterns. Plants with mutations in both CVP2 and CVL1, which encode inositol polyphosphate 5'-phosphatases that generate the specific PI ligand for the pleckstrin homology domain of SFC/VAN3, phosphatidylinositol-4-monophosphate (PI(4)P), have a discontinuous vein phenotype identical to that of sfc/van3 mutants. Single cvp2 or cvl1 mutants show weak and no discontinuous vein phenotypes, respectively, suggesting that they act redundantly. We propose that these two 5'-phosphatases regulate vein continuity and cell polarity by generating a specific PI ligand for SFC/VAN3.
Collapse
Affiliation(s)
- Francine Carland
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06520, USA
| | | |
Collapse
|
50
|
Adventitious root formation in rice requires OsGNOM1 and is mediated by the OsPINs family. Cell Res 2009; 19:1110-9. [PMID: 19546891 DOI: 10.1038/cr.2009.70] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The fibrous root system in cereals comprises primarily adventitious roots (ARs), which play important roles in nutrient and water uptake. Current knowledge regarding the molecular mechanism underlying AR development is still limited. We report here the isolation of four rice (Oryza sativa L.) mutants, from different genetic backgrounds, all of which were defective in AR formation. These mutants exhibited reduced numbers of lateral roots (LRs) and partial loss of gravitropism. The mutants also displayed enhanced sensitivity to N-1-naphthylphthalamic acid, an inhibitor of polar auxin transport (PAT), indicating that the mutations affected auxin transport. Positional cloning using one of the four mutants revealed that it was caused by loss-of-function of a guanine nucleotide exchange factor for ADP-ribosylation factor (OsGNOM1). RT-PCR and analysis of promoter::GUS transgenic plants showed that OsGNOM1 is expressed in AR primordia, vascular tissues, LRs, root tips, leaves, anthers and lemma veins, with a distribution pattern similar to that of auxin. In addition, the expressions of OsPIN2, OsPIN5b and OsPIN9 were altered in the mutants. Taken together, these findings indicate that OsGNOM1 affects the formation of ARs through regulating PAT.
Collapse
|