1
|
Jara-Cornejo K, Zúñiga PE, Rivera-Mora C, Bustos E, Garrido-Bigotes A, Ruiz-Lara S, Figueroa CR. YABBY transcription factor family in the octoploid Fragaria × ananassa and five diploid Fragaria species. PLANT BIOLOGY (STUTTGART, GERMANY) 2024; 26:735-748. [PMID: 38924267 DOI: 10.1111/plb.13656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 04/02/2024] [Indexed: 06/28/2024]
Abstract
YABBY genes encode specific TFs of seed plants involved in development and formation of leaves, flowers, and fruit. In the present work, genome-wide and expression analyses of the YABBY gene family were performed in six species of the Fragaria genus: Fragaria × ananassa, F. daltoniana, F. nilgerrensis, F. pentaphylla, F. viridis, and F. vesca. The chromosomal location, synteny pattern, gene structure, and phylogenetic analyses were carried out. By combining RNA-seq data and RT-qPCR analysis we explored specific expression of YABBYs in F. × ananassa and F. vesca. We also analysed the promoter regions of FaYABBYs and performed MeJA application to F. × ananassa fruit to observe effects on gene expression. We identified and characterized 25 YABBY genes in F. × ananassa and six in each of the other five species, which belong to FIL/YAB3 (YABBY1), YAB2 (YABBY2), YAB5 (YABBY5), CRC, and INO clades previously described. Division of the YABBY1 clade into YABBY1.1 and YABBY1.2 subclades is reported. We observed differential expression according to tissue, where some FaYABBYs are expressed mainly in leaves and flowers and to a minor extent during fruit development of F. × ananassa. Specifically, the FaINO genes contain jasmonate-responsive cis-acting elements in their promoters which may be functional since FaINOs are upregulated in F. × ananassa fruit under MeJA treatment. This study suggests that YABBY TFs play an important role in the development- and environment-associated responses of the Fragaria genus.
Collapse
Affiliation(s)
- K Jara-Cornejo
- Laboratory of Plant Molecular Physiology, Institute of Biological Sciences, Campus Talca, Universidad de Talca, Talca, Chile
- Doctoral Program in Sciences mention in Plant Biology and Biotechnology, Institute of Biological Sciences, Campus Talca, Universidad de Talca, Talca, Chile
- Functional Genomics Laboratory, Institute of Biological Sciences, Campus Talca, Universidad de Talca, Talca, Chile
- Millennium Nucleus for the Development of Super Adaptable Plants (MN-SAP), Santiago, Chile
| | - P E Zúñiga
- Laboratory of Plant Molecular Physiology, Institute of Biological Sciences, Campus Talca, Universidad de Talca, Talca, Chile
- Doctoral Program in Sciences mention in Plant Biology and Biotechnology, Institute of Biological Sciences, Campus Talca, Universidad de Talca, Talca, Chile
- Millennium Nucleus for the Development of Super Adaptable Plants (MN-SAP), Santiago, Chile
| | - C Rivera-Mora
- Laboratory of Plant Molecular Physiology, Institute of Biological Sciences, Campus Talca, Universidad de Talca, Talca, Chile
- Doctoral Program in Sciences mention in Plant Biology and Biotechnology, Institute of Biological Sciences, Campus Talca, Universidad de Talca, Talca, Chile
- Millennium Nucleus for the Development of Super Adaptable Plants (MN-SAP), Santiago, Chile
| | - E Bustos
- Laboratory of Plant Molecular Physiology, Institute of Biological Sciences, Campus Talca, Universidad de Talca, Talca, Chile
- Doctoral Program in Sciences mention in Plant Biology and Biotechnology, Institute of Biological Sciences, Campus Talca, Universidad de Talca, Talca, Chile
- Millennium Nucleus for the Development of Super Adaptable Plants (MN-SAP), Santiago, Chile
| | - A Garrido-Bigotes
- Laboratorio de Epigenética Vegetal, Departamento de Silvicultura, Facultad de Ciencias Forestales, Universidad de Concepción, Concepción, Chile
| | - S Ruiz-Lara
- Functional Genomics Laboratory, Institute of Biological Sciences, Campus Talca, Universidad de Talca, Talca, Chile
- Millennium Nucleus for the Development of Super Adaptable Plants (MN-SAP), Santiago, Chile
| | - C R Figueroa
- Laboratory of Plant Molecular Physiology, Institute of Biological Sciences, Campus Talca, Universidad de Talca, Talca, Chile
- Millennium Nucleus for the Development of Super Adaptable Plants (MN-SAP), Santiago, Chile
| |
Collapse
|
2
|
Han K, Lai M, Zhao T, Yang X, An X, Chen Z. Plant YABBY transcription factors: a review of gene expression, biological functions, and prospects. Crit Rev Biotechnol 2024:1-22. [PMID: 38830825 DOI: 10.1080/07388551.2024.2344576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 04/08/2023] [Indexed: 06/05/2024]
Abstract
Transcription factors often contain several different functional regions, including DNA-binding domains, and play an important regulatory role in plant growth, development, and the response to external stimuli. YABYY transcription factors are plant-specific and contain two special domains (N-terminal C2C2 zinc-finger and C-terminal helix-loop-helix domains) that are indispensable. Specifically, YABBY transcription factors play key roles in maintaining the polarity of the adaxial-abaxial axis of leaves, as well as in regulating: vegetative and reproductive growth, hormone response, stress resistance, and secondary metabolite synthesis in plants. Recently, the identification and functional verification of YABBY transcription factors in different plants has increased. On this basis, we summarize recent advances in the: identification, classification, expression patterns, and functions of the YABBY transcription factor family. The normal expression and function of YABBY transcription factors rely on a regulatory network that is established through the interaction of YABBY family members with other genes. We discuss the interaction network of YABBY transcription factors during leaf polarity establishment and floral organ development. This article provides a reference for research on YABBY function, plant genetic improvement, and molecular breeding.
Collapse
Affiliation(s)
- Kaiyuan Han
- State Key Laboratory for Efficient Production of Forest Resources, Key Laboratory of Silviculture and Conservation of the Ministry of Education, National Energy R&D Center for Non-food Biomass, College of Forestry, Beijing Forestry University, Beijing, China
| | - Meng Lai
- College of Forestry, Jiangxi Agricultural University, Nanchang, China
| | - Tianyun Zhao
- State Key Laboratory for Efficient Production of Forest Resources, Key Laboratory of Silviculture and Conservation of the Ministry of Education, National Energy R&D Center for Non-food Biomass, College of Forestry, Beijing Forestry University, Beijing, China
| | - Xiong Yang
- State Key Laboratory for Efficient Production of Forest Resources, Key Laboratory of Silviculture and Conservation of the Ministry of Education, National Energy R&D Center for Non-food Biomass, College of Forestry, Beijing Forestry University, Beijing, China
| | - Xinmin An
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
| | - Zhong Chen
- State Key Laboratory for Efficient Production of Forest Resources, Key Laboratory of Silviculture and Conservation of the Ministry of Education, National Energy R&D Center for Non-food Biomass, College of Forestry, Beijing Forestry University, Beijing, China
| |
Collapse
|
3
|
Wang C, Niu J, Wei L, Li C, Li G, Tian Q, Ju M, Ma Q, Cao H, Duan Y, Guo H, Zhang H, Miao H. A 4.43-Kb deletion of chromosomal segment containing an ovate family protein confers long capsule in sesame (Sesamum indicum L.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:221. [PMID: 37819543 DOI: 10.1007/s00122-023-04465-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 09/14/2023] [Indexed: 10/13/2023]
Abstract
KEY MESSAGE A 4.43-Kb structural variation in the sesame genome results in the deletion of the Siofp1 gene and induces the long capsule length trait. Capsule length (CL) has a positive effect on seed weight and yield in various agronomically important species; however, the molecular mechanism underlying long capsule trait regulation in sesame remains unknown. The inheritance analysis showed that long capsule traits (CL > 4.0 cm) were dominant over normal length (average CL = 3.0 cm) and were controlled by a single gene pair. Association mapping with a RIL population and 259 natural sesame germplasm accessions indicated that the target interval was 52,830-730,961 bp of SiChr.10 in sesame. Meanwhile, the structural variation (SV) of the association mapping revealed that only SV_414325 on chromosome 10 was significantly associated with the CL trait, with a P value of 1.1135E-19. SV_414325 represents a 4430-bp deletion from 414,325 to 418,756 bp on SiChr.10, covering Sindi_2155000 (named SiOFP1). In the normal length type, Siofp1 encodes 411 amino acids of the ovate family proteins and is highly expressed in the leaf, stem, bud, and capsule tissues of sesame. In accordance with the transcriptional repressor character, Siofp1 overexpression in transgenic Arabidopsis (T0 and T1 generations) induced a 25-39% greater shortening of silique length than the wild type (P < 0.05), as well as round cauline leaves and short carpels. These results confirm that SiOFP1 plays a key role in regulating CL trait in sesame and other flowering plants. These findings provide a theoretical and material basis for sesame capsule development and high-yield breeding research.
Collapse
Affiliation(s)
- Cuiying Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, Henan, People's Republic of China
- Key Laboratory of Specific Oilseed Crops Genomics of Henan Province, Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, Henan, China
| | - Jiaojiao Niu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Libin Wei
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, Henan, People's Republic of China
- Key Laboratory of Specific Oilseed Crops Genomics of Henan Province, Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, Henan, China
| | - Chun Li
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, Henan, People's Republic of China
- The Shennong Laboratory, Zhengzhou, 450002, Henan, China
- Key Laboratory of Specific Oilseed Crops Genomics of Henan Province, Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, Henan, China
| | - Guiting Li
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, Henan, People's Republic of China
- Key Laboratory of Specific Oilseed Crops Genomics of Henan Province, Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, Henan, China
| | - Qiuzhen Tian
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, Henan, People's Republic of China
- Key Laboratory of Specific Oilseed Crops Genomics of Henan Province, Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, Henan, China
| | - Ming Ju
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, Henan, People's Republic of China
- Key Laboratory of Specific Oilseed Crops Genomics of Henan Province, Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, Henan, China
| | - Qin Ma
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, Henan, People's Republic of China
- Key Laboratory of Specific Oilseed Crops Genomics of Henan Province, Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, Henan, China
| | - Hengchun Cao
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, Henan, People's Republic of China
- Key Laboratory of Specific Oilseed Crops Genomics of Henan Province, Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, Henan, China
| | - Yinghui Duan
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, Henan, People's Republic of China
- The Shennong Laboratory, Zhengzhou, 450002, Henan, China
- Key Laboratory of Specific Oilseed Crops Genomics of Henan Province, Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, Henan, China
| | - Hui Guo
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, Henan, People's Republic of China
- Key Laboratory of Specific Oilseed Crops Genomics of Henan Province, Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, Henan, China
| | - Haiyang Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China.
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, Henan, People's Republic of China.
- The Shennong Laboratory, Zhengzhou, 450002, Henan, China.
- Key Laboratory of Specific Oilseed Crops Genomics of Henan Province, Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, Henan, China.
| | - Hongmei Miao
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, Henan, People's Republic of China.
- Key Laboratory of Specific Oilseed Crops Genomics of Henan Province, Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, Henan, China.
| |
Collapse
|
4
|
Qin Z, Liang ZZ, Wu YN, Zhou XQ, Xu M, Jiang LW, Li S, Zhang Y. Embryo sac development relies on symplastic signals from ovular integuments in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 116:161-172. [PMID: 37381795 DOI: 10.1111/tpj.16368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 06/12/2023] [Accepted: 06/16/2023] [Indexed: 06/30/2023]
Abstract
Ovules are female reproductive organs of angiosperms, consisting of sporophytic integuments surrounding female gametophytes, that is, embryo sacs. Synchronization between integument growth and embryo sac development requires intracellular communication. However, signaling routes through which cells of the two generations communicate are unclear. We report that symplastic signals through plasmodesmata (PDs) of integuments are critical for the development of female gametophytes. Genetic interferences of PD biogenesis either by functional loss of CHOLINE TRANSPORTER-LIKE1 (CTL1) or by integument-specific expression of a mutated CALLOSE SYNTHASE 3 (cals3m) compromised PD formation in integuments and reduced fertility. Close examination of pINO:cals3m or ctl1 ovules indicated that female gametophytic development was either arrested at various stages after the formation of functional megaspores. In both cases, defective ovules could not attract pollen tubes, leading to the failure of fertilization. Results presented here demonstrate a key role of the symplastic route in sporophytic control of female gametophytic development.
Collapse
Affiliation(s)
- Zheng Qin
- Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tian'jin, 300017, China
| | - Zi-Zhen Liang
- State Key Laboratory of Agrobiotechnology, School of Life Sciences, Centre for Cell & Developmental Biology, The Chinese University of Hong Kong, Hong Kong, China
| | - Ya-Nan Wu
- Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tian'jin, 300017, China
| | - Xue-Qing Zhou
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Meng Xu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Li-Wen Jiang
- State Key Laboratory of Agrobiotechnology, School of Life Sciences, Centre for Cell & Developmental Biology, The Chinese University of Hong Kong, Hong Kong, China
| | - Sha Li
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Yan Zhang
- Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tian'jin, 300017, China
| |
Collapse
|
5
|
Golenberg EM, Popadić A, Hao W. Transcriptome analyses of leaf architecture in Sansevieria support a common genetic toolkit in the parallel evolution of unifacial leaves in monocots. PLANT DIRECT 2023; 7:e511. [PMID: 37559824 PMCID: PMC10407180 DOI: 10.1002/pld3.511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 06/02/2023] [Accepted: 06/12/2023] [Indexed: 08/11/2023]
Abstract
Planar structures dramatically increase the surface-area-to-volume ratio, which is critically important for multicellular organisms. In this study, we utilize naturally occurring phenotypic variation among three Sansivieria species (Asperagaceae) to investigate leaf margin expression patterns that are associated with mediolateral and adaxial/abaxial development. We identified differentially expressed genes (DEGs) between center and margin leaf tissues in two planar-leaf species Sansevieria subspicata and Sansevieria trifasciata and compared these with expression patterns within the cylindrically leaved Sansevieria cylindrica. Two YABBY family genes, homologs of FILAMENTOUS FLOWER and DROOPING LEAF, are overexpressed in the center leaf tissue in the planar-leaf species and in the tissue of the cylindrical leaves. As mesophyll structure does not indicate adaxial versus abaxial differentiation, increased leaf thickness results in more water-storage tissue and enhances resistance to aridity. This suggests that the cylindrical-leaf in S. cylindrica is analogous to the central leaf tissue in the planar-leaf species. Furthermore, the congruence of the expression patterns of these YABBY genes in Sansevieria with expression patterns found in other unifacial monocot species suggests that patterns of parallel evolution may be the result of similar solutions derived from a limited developmental toolbox.
Collapse
Affiliation(s)
| | - Aleksandar Popadić
- Department of Biological SciencesWayne State UniversityDetroitMichiganUSA
| | - Weilong Hao
- Department of Biological SciencesWayne State UniversityDetroitMichiganUSA
| |
Collapse
|
6
|
Zhao Y, Wang Y, Yan M, Liu C, Yuan Z. BELL1 interacts with CRABS CLAW and INNER NO OUTER to regulate ovule and seed development in pomegranate. PLANT PHYSIOLOGY 2023; 191:1066-1083. [PMID: 36477345 PMCID: PMC9922403 DOI: 10.1093/plphys/kiac554] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 11/03/2022] [Indexed: 06/17/2023]
Abstract
Pomegranate (Punica granatum) flowers are classified as bisexual flowers and functional male flowers. Functional male flowers have sterile pistils that show abnormal ovule development. In previous studies, we identified INNER NO OUTER (INO), CRABS CLAW (CRC), and BELL1 (BEL1), which were specifically expressed in bisexual and functional male flowers. However, the functions of ovule identity genes and the mechanism underlying ovule sterility in pomegranate remain unknown. Here, we found that the integument primordia formed and then ceased developing in the ovules of functional male flowers with a vertical diameter of 8.1-13.0 mm. Megaspore mother cells were observed in bisexual flowers when the vertical diameters of flowers were 10.1-13.0 mm, but not in functional male flowers. We analyzed the expression patterns of ovule-related genes in pomegranate ovule sterility and found that PgCRC mRNA was highly expressed at a critical stage of ovule development in bisexual flowers. Ectopic expression of PgCRC and PgINO was sufficient to increase seed number in transgenic lines. PgCRC partially complemented the Arabidopsis (Arabidopsis thaliana) crc mutant, and PgINO successfully rescued the seeds set in the Arabidopsis ino mutant. The results of yeast two-hybrid assays, bimolecular fluorescence complementation assays, and genetic data analyses showed that PgCRC and PgINO directly interact with PgBEL1. Our results also showed that PgCRC and PgINO could not interact directly with MADS-box proteins and that PgBEL1 interacted with SEPALLATA proteins. We report the function of PgCRC and PgINO in ovule and seed development and show that PgCRC and PgINO interact with PgBEL1. Thus, our results provide understanding of the genetic regulatory networks underlying ovule development in pomegranate.
Collapse
Affiliation(s)
- Yujie Zhao
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
- College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| | - Yuying Wang
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
- College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| | - Ming Yan
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
- College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| | - Cuiyu Liu
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
- College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| | | |
Collapse
|
7
|
Skinner DJ, Dang T, Gasser CS. The Arabidopsis INNER NO OUTER ( INO) gene acts exclusively and quantitatively in regulation of ovule outer integument development. PLANT DIRECT 2023; 7:e485. [PMID: 36845169 PMCID: PMC9947456 DOI: 10.1002/pld3.485] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 01/09/2023] [Accepted: 02/06/2023] [Indexed: 05/25/2023]
Abstract
The INNER NO OUTER (INO) gene is essential for formation of the outer integument of ovules in Arabidopsis thaliana. Initially described lesions in INO were missense mutations resulting in aberrant mRNA splicing. To determine the null mutant phenotype, we generated frameshift mutations and found, in confirmation of results on another recently identified frameshift mutation, that such mutants have a phenotype identical to the most severe splicing mutant (ino-1), with effects specific to outer integument development. We show that the altered protein of an ino mRNA splicing mutant with a less severe phenotype (ino-4) does not have INO activity, and the mutant is partial because it produces a small amount of correctly spliced INO mRNA. Screening for suppressors of ino-4 in a fast neutron-mutagenized population identified a translocated duplication of the ino-4 gene, leading to an increase in the amount of this mRNA. The increased expression led to a decrease in the severity of the mutant effects, indicating that the amount of INO activity quantitatively regulates outer integument growth. The results further confirm that the role of INO in Arabidopsis development is specific to the outer integument of ovules where it quantitatively affects the growth of this structure.
Collapse
Affiliation(s)
- Debra J. Skinner
- Dept. of Molecular and Cellular BiologyUniversity of California—DavisDavisCaliforniaUSA
- Present address:
Dept. of Plant BiologyUniversity of California—DavisDavisCaliforniaUSA
| | - Trang Dang
- Dept. of Molecular and Cellular BiologyUniversity of California—DavisDavisCaliforniaUSA
- Present address:
Lark Seeds InternationalDavisCaliforniaUSA
| | - Charles S. Gasser
- Dept. of Molecular and Cellular BiologyUniversity of California—DavisDavisCaliforniaUSA
| |
Collapse
|
8
|
Jiang M, Jian J, Zhou C, Li L, Wang Y, Zhang W, Song Z, Yang J. Does integument arise de novo or from pre-existing structures? ── Insights from the key regulatory genes controlling integument development. FRONTIERS IN PLANT SCIENCE 2023; 13:1078248. [PMID: 36714739 PMCID: PMC9880897 DOI: 10.3389/fpls.2022.1078248] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 12/29/2022] [Indexed: 06/18/2023]
Abstract
The origin of seeds is one of the key innovations in land plant evolution. Ovules are the developmental precursors of seeds. The integument is the envelope structure surrounding the nucellus within the ovule and developing into the seed coat when ovules mature upon fertilization. The question of whether the integument arise de novo or evolve from elaboration of pre-existing structures has caused much debate. By exploring the origin and evolution of the key regulatory genes controlling integument development and their functions during both individual and historical developmental processes, we showed the widespread presence of the homologs of ANT, CUC, BEL1, SPL, C3HDZ, INO, ATS, and ETT in seedless plant genomes. All of these genes have undergone duplication-divergence events in their evolutionary history, with most of the descendant paralogous suffering motif gain and/or loss in the coding regions. Expression and functional characterization have shown that these genes are key components of the genetic program that patterns leaf-like lateral organs. Serial homology can thus be postulated between integuments and other lateral organs in terms of the shared master regulatory genes. Given that the genetic program patterning leaf-like lateral organs formed in seedless plants, and was reused during seed origin, the integument is unlikely to arise de novo but evolved from the stem segment-specific modification of pre-existing serially homologous structures. The master 'switches' trigging the modification to specify the integument identity remain unclear. We propose a successive transformation model of integument origin.
Collapse
Affiliation(s)
- Min Jiang
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Center for Evolutionary Biology, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai, China
| | - Jinjing Jian
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Center for Evolutionary Biology, Fudan University, Shanghai, China
| | - Chengchuan Zhou
- Institute of Tree Genetics Breeding and Cultivation, Jiangxi Academy of Forestry, Nanchang, China
| | - Linfeng Li
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Center for Evolutionary Biology, Fudan University, Shanghai, China
| | - Yuguo Wang
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Center for Evolutionary Biology, Fudan University, Shanghai, China
| | - Wenju Zhang
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Center for Evolutionary Biology, Fudan University, Shanghai, China
| | - Zhiping Song
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Center for Evolutionary Biology, Fudan University, Shanghai, China
| | - Ji Yang
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Center for Evolutionary Biology, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai, China
| |
Collapse
|
9
|
Chen JJ, Wang W, Qin WQ, Men SZ, Li HL, Mitsuda N, Ohme-Takagi M, Wu AM. Transcription factors KNAT3 and KNAT4 are essential for integument and ovule formation in Arabidopsis. PLANT PHYSIOLOGY 2023; 191:463-478. [PMID: 36342216 PMCID: PMC9806662 DOI: 10.1093/plphys/kiac513] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 10/03/2022] [Indexed: 06/16/2023]
Abstract
Integuments form important protective cell layers surrounding the developing ovules in gymno- and angiosperms. Although several genes have been shown to influence the development of integuments, the transcriptional regulatory mechanism is still poorly understood. In this work, we report that the Class II KNOTTED1-LIKE HOMEOBOX (KNOX II) transcription factors KNOTTED1-LIKE HOMEBOX GENE 3 (KNAT3) and KNAT4 regulate integument development in Arabidopsis (Arabidopsis thaliana). KNAT3 and KNAT4 were co-expressed in inflorescences and especially in young developing ovules. The loss-of-function double mutant knat3 knat4 showed an infertility phenotype, in which both inner and outer integuments of the ovule are arrested at an early stage and form an amorphous structure as in the bell1 (bel1) mutant. The expression of chimeric KNAT3- and KNAT4-EAR motif repression domain (SRDX repressors) resulted in severe seed abortion. Protein-protein interaction assays demonstrated that KNAT3 and KNAT4 interact with each other and also with INNER NO OUTER (INO), a key transcription factor required for the outer integument formation. Transcriptome analysis showed that the expression of genes related with integument development is influenced in the knat3 knat4 mutant. The knat3 knat4 mutant also had a lower indole-3-acetic acid (IAA) content, and some auxin signaling pathway genes were downregulated. Moreover, transactivation analysis indicated that KNAT3/4 and INO activate the auxin signaling gene IAA INDUCIBLE 14 (IAA14). Taken together, our study identified KNAT3 and KNAT4 as key factors in integument development in Arabidopsis.
Collapse
Affiliation(s)
- Jia-Jun Chen
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architectures, South China Agricultural University, Guangzhou 510642, China
| | - Wei Wang
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå 90183, Sweden
| | - Wen-Qi Qin
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architectures, South China Agricultural University, Guangzhou 510642, China
| | - Shu-Zhen Men
- Tianjin Key Laboratory of Protein Sciences, Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Hui-Ling Li
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architectures, South China Agricultural University, Guangzhou 510642, China
| | - Nobutaka Mitsuda
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Ibaraki, Japan
| | - Masaru Ohme-Takagi
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Ibaraki, Japan
| | - Ai-Min Wu
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architectures, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory of Lingnan Modern Agriculture, Guangzhou 510642, China
| |
Collapse
|
10
|
Petrella R, Gabrieli F, Cavalleri A, Schneitz K, Colombo L, Cucinotta M. Pivotal role of STIP in ovule pattern formation and female germline development in Arabidopsis thaliana. Development 2022; 149:276792. [DOI: 10.1242/dev.201184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 08/30/2022] [Indexed: 11/20/2022]
Abstract
ABSTRACT
In spermatophytes the sporophytic (diploid) and the gametophytic (haploid) generations co-exist in ovules, and the coordination of their developmental programs is of pivotal importance for plant reproduction. To achieve efficient fertilization, the haploid female gametophyte and the diploid ovule structures must coordinate their development to form a functional and correctly shaped ovule. WUSCHEL-RELATED HOMEOBOX (WOX) genes encode a family of transcription factors that share important roles in a wide range of processes throughout plant development. Here, we show that STIP is required for the correct patterning and curvature of the ovule in Arabidopsis thaliana. The knockout mutant stip-2 is characterized by a radialized ovule phenotype due to severe defects in outer integument development. In addition, alteration of STIP expression affects the correct differentiation and progression of the female germline. Finally, our results reveal that STIP is required to tightly regulate the key ovule factors INNER NO OUTER, PHABULOSA and WUSCHEL, and they define a novel genetic interplay in the regulatory networks determining ovule development.
Collapse
Affiliation(s)
- Rosanna Petrella
- Università degli Studi di Milano 1 Dipartimento di Bioscienze , , Via Celoria 26, 20133 Milan , Italy
| | - Flavio Gabrieli
- Università degli Studi di Milano 1 Dipartimento di Bioscienze , , Via Celoria 26, 20133 Milan , Italy
| | - Alex Cavalleri
- Università degli Studi di Milano 1 Dipartimento di Bioscienze , , Via Celoria 26, 20133 Milan , Italy
| | - Kay Schneitz
- , Technical University of Munich 2 Plant Developmental Biology, School of Life Sciences , 85354 Freising , Germany
| | - Lucia Colombo
- Università degli Studi di Milano 1 Dipartimento di Bioscienze , , Via Celoria 26, 20133 Milan , Italy
| | - Mara Cucinotta
- Università degli Studi di Milano 1 Dipartimento di Bioscienze , , Via Celoria 26, 20133 Milan , Italy
| |
Collapse
|
11
|
Luo C, Yan J, Liu W, Xu Y, Sun P, Wang M, Xie D, Jiang B. Genetic mapping and genome-wide association study identify BhYAB4 as the candidate gene regulating seed shape in wax gourd ( Benincasa hispida). FRONTIERS IN PLANT SCIENCE 2022; 13:961864. [PMID: 36161030 PMCID: PMC9493316 DOI: 10.3389/fpls.2022.961864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 07/06/2022] [Indexed: 06/16/2023]
Abstract
Wax gourd is an important vegetable crop of the Cucurbitaceae family. According to the shape and structure of the seed coat, the seeds of the wax gourd can be divided into bilateral and unilateral. Bilateral seeds usually germinate quickly and have a high germination rate than unilateral seeds. Thereby, wax gourd varieties with bilateral seeds are more welcomed by seed companies and growers. However, the genetic basis and molecular mechanism regulating seed shape remain unclear in the wax gourd. In this study, the genetic analysis demonstrated that the seed shape of wax gourd was controlled by a single gene, with bilateral dominant to unilateral. Combined with genetic mapping and genome-wide association study, Bhi04G000544 (BhYAB4), encoding a YABBY transcription factor, was identified as the candidate gene for seed shape determination in the wax gourd. A G/A single nucleotide polymorphism variation of BhYAB4 was detected among different germplasm resources, with BhYAB4G specifically enriched in bilateral seeds and BhYAB4A in unilateral seeds. The G to A mutation caused intron retention and premature stop codon of BhYAB4. Expression analysis showed that both BhYAB4G and BhYAB4A were highly expressed in seeds, while the nuclear localization of BhYAB4A protein was disturbed compared with that of BhYAB4G protein. Finally, a derived cleaved amplified polymorphic sequence marker that could efficiently distinguish between bilateral and unilateral seeds was developed, thereby facilitating the molecular marker-assisted breeding of wax gourd cultivars.
Collapse
Affiliation(s)
- Chen Luo
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Guangdong Key Laboratory for New Technology Research of Vegetables, Guangzhou, China
| | - Jinqiang Yan
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Guangdong Key Laboratory for New Technology Research of Vegetables, Guangzhou, China
| | - Wenrui Liu
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Guangdong Key Laboratory for New Technology Research of Vegetables, Guangzhou, China
| | - Yuanchao Xu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Piaoyun Sun
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Guangdong Key Laboratory for New Technology Research of Vegetables, Guangzhou, China
| | - Min Wang
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Guangdong Key Laboratory for New Technology Research of Vegetables, Guangzhou, China
| | - Dasen Xie
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Guangdong Key Laboratory for New Technology Research of Vegetables, Guangzhou, China
| | - Biao Jiang
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Guangdong Key Laboratory for New Technology Research of Vegetables, Guangzhou, China
| |
Collapse
|
12
|
Huang S, Liu W, Xu J, Liu Z, Li C, Feng H. The SAP function in pistil development was proved by two allelic mutations in Chinese cabbage (Brassica rapa L. ssp. pekinensis). BMC PLANT BIOLOGY 2020; 20:538. [PMID: 33256588 PMCID: PMC7708145 DOI: 10.1186/s12870-020-02741-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 11/16/2020] [Indexed: 06/12/2023]
Abstract
BACKGROUND Pistil development is a complicated process in plants, and female sterile mutants are ideal material for screening and cloning pistil development-related genes. Using the female sterile mutant (fsm1), BraA04g009730.3C was previously predicted as a candidate mutant gene encoding the STERILE APETALA (SAP) transcriptional regulator. In the current study, a parallel female sterile mutant (fsm2) was derived from EMS mutagenesis of a Chinese cabbage DH line 'FT' seeds. RESULTS Both fsm2 and fsm1 mutant phenotypes exhibited pistil abortion and smaller floral organs. Genetic analysis indicated that the phenotype of mutant fsm2 was also controlled by a single recessive nuclear gene. Allelism testing showed that the mutated fsm1 and fsm2 genes were allelic. A single-nucleotide mutation (G-to-A) in the first exon of BraA04g009730.3C caused a missense mutation from GAA (glutamic acid) to GGA (glycine) in mutant fsm2 plants. Both allelic mutations of BraA04g009730.3C in fsm1 and fsm2 conferred the similar pistil abortion phenotype, which verified the SAP function in pistil development. To probe the mechanism of SAP-induced pistil abortion, we compared the mutant fsm1 and wild-type 'FT' pistil transcriptomes. Among the 3855 differentially expressed genes obtained, 29 were related to ovule development and 16 were related to organ size. CONCLUSION Our study clarified the function of BraA04g009730.3C and revealed that it was responsible for ovule development and organ size. These results lay a foundation to elucidate the molecular mechanism of pistil development in Chinese cabbage.
Collapse
Affiliation(s)
- Shengnan Huang
- Department of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenhe District, Shenyang, 110866, China
| | - Wenjie Liu
- Department of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenhe District, Shenyang, 110866, China
| | - Junjie Xu
- Department of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenhe District, Shenyang, 110866, China
| | - Zhiyong Liu
- Department of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenhe District, Shenyang, 110866, China
| | - Chengyu Li
- Department of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenhe District, Shenyang, 110866, China
| | - Hui Feng
- Department of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenhe District, Shenyang, 110866, China.
| |
Collapse
|
13
|
Jia D, Chen LG, Yin G, Yang X, Gao Z, Guo Y, Sun Y, Tang W. Brassinosteroids regulate outer ovule integument growth in part via the control of INNER NO OUTER by BRASSINOZOLE-RESISTANT family transcription factors. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2020; 62:1093-1111. [PMID: 32009278 DOI: 10.1111/jipb.12915] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 01/27/2020] [Indexed: 05/14/2023]
Abstract
Brassinosteroids (BRs) play important roles in regulating plant reproductive processes. BR signaling or BR biosynthesis null mutants do not produce seeds under natural conditions, but the molecular mechanism underlying this infertility is poorly understood. In this study, we report that outer integument growth and embryo sac development were impaired in the ovules of the Arabidopsis thaliana BR receptor null mutant bri1-116. Gene expression and RNA-seq analyses showed that the expression of INNER NO OUTER (INO), an essential regulator of outer integument growth, was significantly reduced in the bri1-116 mutant. Increased INO expression due to overexpression or increased transcriptional activity of BRASSINAZOLE-RESISTANT 1 (BZR1) in the mutant alleviated the outer integument growth defect in bri1-116 ovules, suggesting that BRs regulate outer integument growth partially via BZR1-mediated transcriptional regulation of INO. Meanwhile, INO expression in bzr-h, a null mutant for all BZR1 family genes, was barely detectable; and the outer integument of bzr-h ovules had much more severe growth defects than those of the bri1-116 mutant. Together, our findings establish a new role for BRs in regulating ovule development and suggest that BZR1 family transcription factors might regulate outer integument growth through both BRI1-dependent and BRI1-independent pathways.
Collapse
Affiliation(s)
- Dandan Jia
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Lian-Ge Chen
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Guimin Yin
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Xiaorui Yang
- College of Bioscience & Bioengineering, Hebei University of Science and Technology, Shijiazhuang, 050018, China
| | - Zhihua Gao
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Yi Guo
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Yu Sun
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Wenqiang Tang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| |
Collapse
|
14
|
Scholz S, Pleßmann J, Enugutti B, Hüttl R, Wassmer K, Schneitz K. The AGC protein kinase UNICORN controls planar growth by attenuating PDK1 in Arabidopsis thaliana. PLoS Genet 2019; 15:e1007927. [PMID: 30742613 PMCID: PMC6386418 DOI: 10.1371/journal.pgen.1007927] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 02/22/2019] [Accepted: 01/02/2019] [Indexed: 11/19/2022] Open
Abstract
Tissue morphogenesis critically depends on the coordination of cellular growth patterns. In plants, many organs consist of clonally distinct cell layers, such as the epidermis, whose cells undergo divisions that are oriented along the plane of the layer. The developmental control of such planar growth is poorly understood. We have previously identified the Arabidopsis AGCVIII-class protein kinase UNICORN (UCN) as a central regulator of this process. Plants lacking UCN activity show spontaneous formation of ectopic multicellular protrusions in integuments and malformed petals indicating that UCN suppresses uncontrolled growth in those tissues. In the current model UCN regulates planar growth of integuments in part by directly repressing the putative transcription factor ABERRANT TESTA SHAPE (ATS). Here we report on the identification of 3-PHOSPHOINOSITIDE-DEPENDENT PROTEIN KINASE 1 (PDK1) as a novel factor involved in UCN-mediated growth control. PDK1 constitutes a basic component of signaling mediated by AGC protein kinases throughout eukaryotes. Arabidopsis PDK1 is implied in stress responses and growth promotion. Here we show that loss-of-function mutations in PDK1 suppress aberrant growth in integuments and petals of ucn mutants. Additional genetic, in vitro, and cell biological data support the view that UCN functions by repressing PDK1. Furthermore, our data indicate that PDK1 is indirectly required for deregulated growth caused by ATS overexpression. Our findings support a model proposing that UCN suppresses ectopic growth in integuments through two independent processes: the attenuation of the protein kinase PDK1 in the cytoplasm and the repression of the transcription factor ATS in the nucleus.
Collapse
Affiliation(s)
- Sebastian Scholz
- Entwicklungsbiologie der Pflanzen, Wissenschaftszentrum Weihenstephan, Technische Universität München, Freising, Germany
| | - Janys Pleßmann
- Entwicklungsbiologie der Pflanzen, Wissenschaftszentrum Weihenstephan, Technische Universität München, Freising, Germany
| | - Balaji Enugutti
- Entwicklungsbiologie der Pflanzen, Wissenschaftszentrum Weihenstephan, Technische Universität München, Freising, Germany
| | - Regina Hüttl
- Entwicklungsbiologie der Pflanzen, Wissenschaftszentrum Weihenstephan, Technische Universität München, Freising, Germany
| | - Katrin Wassmer
- Entwicklungsbiologie der Pflanzen, Wissenschaftszentrum Weihenstephan, Technische Universität München, Freising, Germany
| | - Kay Schneitz
- Entwicklungsbiologie der Pflanzen, Wissenschaftszentrum Weihenstephan, Technische Universität München, Freising, Germany
- * E-mail:
| |
Collapse
|
15
|
Gasser CS, Skinner DJ. Development and evolution of the unique ovules of flowering plants. Curr Top Dev Biol 2018; 131:373-399. [PMID: 30612624 DOI: 10.1016/bs.ctdb.2018.10.007] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Ovules are the precursors to seeds and as such are critical to plant propagation and food production. Mutant studies have led to the identification of numerous genes regulating ovule development. Genes encoding transcription factors have been shown to direct ovule spacing, ovule identity and integument formation. Particular co-regulators have now been associated with activities of some of these transcription factors, and other protein families including cell surface receptors have been shown to regulate ovule development. Hormone levels and transport, especially of auxin, have also been shown to play critical roles in ovule emergence and morphogenesis and to interact with the transcriptional regulators. Ovule diversification has been studied using orthologs of regulatory genes in divergent angiosperm groups. Combining modern genetic evidence with expanding knowledge of the fossil record illuminates the possible origin of the unique bitegmic ovules of angiosperms.
Collapse
Affiliation(s)
- Charles S Gasser
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA, United States.
| | - Debra J Skinner
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA, United States
| |
Collapse
|
16
|
Vivek A. In silico identification and characterization of microRNAs based on EST and GSS in orphan legume crop, Lens culinaris medik. (Lentil). ACTA ACUST UNITED AC 2018. [DOI: 10.1016/j.aggene.2018.05.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
17
|
Liu X, Ning K, Che G, Yan S, Han L, Gu R, Li Z, Weng Y, Zhang X. CsSPL functions as an adaptor between HD-ZIP III and CsWUS transcription factors regulating anther and ovule development in Cucumis sativus (cucumber). THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 94:535-547. [PMID: 29474743 DOI: 10.1111/tpj.13877] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 02/05/2018] [Accepted: 02/13/2018] [Indexed: 05/12/2023]
Abstract
Anther and ovule genesis preconditions crop fertilization and fruit production; however, coordinative regulation of anther and ovule development and underlying molecular pathways remain largely elusive. Here, we found that SPOROCYTELESS (SPL)/NOZZLE (NZZ) expression was nearly abolished in a Cucumis sativus (cucumber) mutant with severely defective anther and ovule development. CsSPL was expressed specifically in the developing anthers and ovules. Knock-down of CsSPL reduced male and female fertility with malformed pollen and suppressed ovule development. Importantly, CsSPL directly interacted with CsWUS (WUSCHEL) in the nucellus and YABBY family genes in integuments, and positively regulated CsWUS expression, meanwhile the HD-ZIP III gene CsPHB (PHABULOSA), expressed specifically in the nucellus, promoted CsSPL expression by binding to the CsSPL promoter. Thus, CsSPL acts as an adaptor to link CsPHB and CsWUS functioning, underpinning a previously unidentified regulatory pathway orchestrating sex organ development in planta. In addition, auxin accumulation was reduced in the reproductive organs of CsSPL knock-down plants. Biochemical analyses further showed that CsSPL stimulated the expression of AUXIN RESPONSE FACTOR 3 (CsARF3), and was positively regulated by CsARF13 during reproductive organ development, indicating sequential interactions of CsSPL with auxin signaling components in orchestrating anther and ovule development.
Collapse
Affiliation(s)
- Xiaofeng Liu
- Department of Vegetable Sciences, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing, 100193, China
| | - Kang Ning
- Department of Vegetable Sciences, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing, 100193, China
| | - Gen Che
- Department of Vegetable Sciences, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing, 100193, China
| | - Shuangshuang Yan
- Department of Vegetable Sciences, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing, 100193, China
| | - Lijie Han
- Department of Vegetable Sciences, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing, 100193, China
| | - Ran Gu
- Department of Vegetable Sciences, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing, 100193, China
| | - Zheng Li
- College of Horticulture, Northwest A&F University, Yangling, Shanxi, 712100, China
| | - Yiqun Weng
- Department of Horticulture, University of Wisconsin-Madison, Madison, WI, 53706, USA
- USDA-ARS, Vegetable Crops Research Unit, 1575 Linden Drive, Madison, WI, 53706, USA
| | - Xiaolan Zhang
- Department of Vegetable Sciences, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
18
|
Huang S, Liu Z, Li C, Yao R, Li D, Hou L, Li X, Liu W, Feng H. Transcriptome Analysis of a Female-sterile Mutant ( fsm) in Chinese Cabbage ( Brassica campestris ssp. pekinensis). FRONTIERS IN PLANT SCIENCE 2017; 8:546. [PMID: 28443127 PMCID: PMC5385380 DOI: 10.3389/fpls.2017.00546] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 03/27/2017] [Indexed: 05/03/2023]
Abstract
Female-sterile mutants are ideal materials for studying pistil development in plants. Here, we identified a female-sterile mutant fsm in Chinese cabbage. This mutant, which exhibited stable inheritance, was derived from Chinese cabbage DH line 'FT' using a combination of isolated microspore culture and ethyl methanesulfonate mutagenesis. Compared with the wild-type line 'FT,' the fsm plants exhibited pistil abortion, and floral organs were also relatively smaller. Genetic analysis indicated that the phenotype of fsm is controlled by a single recessive nuclear gene. Morphological observations revealed that the presence of abnormal ovules in fsm likely influenced normal fertilization process, ultimately leading to female sterility. Comparative transcriptome analysis on the flower buds of 'FT' and fsm using RNA-Seq revealed a total of 1,872 differentially expressed genes (DEGs). Of these, a number of genes involved in pistil development were identified, such as PRETTY FEW SEEDS 2 (PFS2), temperature-induced lipocalin (TIL), AGAMOUS-LIKE (AGL), and HECATE (HEC). Furthermore, GO and KEGG pathway enrichment analyses of the DEGs suggested that a variety of biological processes and metabolic pathways are significantly enriched during pistil development. In addition, the expression patterns of 16 DEGs, including four pistil development-related genes and 12 floral organ development-related genes, were analyzed using qRT-PCR. A total of 31,272 single nucleotide polymorphisms were specifically detected in fsm. These results contribute to shed light on the regulatory mechanisms underlying pistil development in Chinese cabbage.
Collapse
|
19
|
Chen L, Zhang J, Li H, Niu J, Xue H, Liu B, Wang Q, Luo X, Zhang F, Zhao D, Cao S. Transcriptomic Analysis Reveals Candidate Genes for Female Sterility in Pomegranate Flowers. FRONTIERS IN PLANT SCIENCE 2017; 8:1430. [PMID: 28878788 PMCID: PMC5572335 DOI: 10.3389/fpls.2017.01430] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Accepted: 08/03/2017] [Indexed: 05/19/2023]
Abstract
Pomegranate has two types of flowers on the same plant: functional male flowers (FMF) and bisexual flowers (BF). BF are female-fertile flowers that can set fruits. FMF are female-sterile flowers that fail to set fruit and that eventually drop. The putative cause of pomegranate FMF female sterility is abnormal ovule development. However, the key stage at which the FMF pomegranate ovules become abnormal and the mechanism of regulation of pomegranate female sterility remain unknown. Here, we studied ovule development in FMF and BF, using scanning electron microscopy to explore the key stage at which ovule development was terminated and then analyzed genes differentially expressed (differentially expressed genes - DEGs) between FMF and BF to investigate the mechanism responsible for pomegranate female sterility. Ovule development in FMF ceased following the formation of the inner integument primordium. The key stage for the termination of FMF ovule development was when the bud vertical diameter was 5.0-13.0 mm. Candidate genes influencing ovule development may be crucial factors in pomegranate female sterility. INNER OUTER (INO/YABBY4) (Gglean016270) and AINTEGUMENTA (ANT) homolog genes (Gglean003340 and Gglean011480), which regulate the development of the integument, showed down-regulation in FMF at the key stage of ovule development cessation (ATNSII). Their upstream regulator genes, such as AGAMOUS-like (AG-like) (Gglean028014, Gglean026618, and Gglean028632) and SPOROCYTELESS (SPL) homolog genes (Gglean005812), also showed differential expression pattern between BF and FMF at this key stage. The differential expression of the ethylene response signal genes, ETR (ethylene-resistant) (Gglean022853) and ERF1/2 (ethylene-responsive factor) (Gglean022880), between FMF and BF indicated that ethylene signaling may also be an important factor in the development of pomegranate female sterility. The increase in BF observed after spraying with ethephon supported this interpretation. Results from qRT-PCR confirmed the findings of the transcriptomic analysis.
Collapse
|
20
|
Hao S, Ariizumi T, Ezura H. SEXUAL STERILITY is Essential for Both Male and Female Gametogenesis in Tomato. PLANT & CELL PHYSIOLOGY 2017; 58:22-34. [PMID: 28082517 DOI: 10.1093/pcp/pcw214] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 11/27/2016] [Indexed: 05/12/2023]
Abstract
Gametogenesis is a key step in the production of ovules or pollen in higher plants. The molecular aspects of gametogenesis are well characterized in the model plant Arabidopsis; however, little information is known in tomato, which is a model plant for fleshy fruit development. In this study, we characterized a tomato (Solanum lycopersicum L.) γ-ray mutant, sexual sterility (Slses), that exhibited both male and female sterility. Morphological analysis revealed that the Slses mutant forms incomplete ovules and wilted anthers devoid of pollen grains at the anthesis stage. Genetic and next-generation sequencing analyses revealed that the Slses mutant carried a 13 bp deletion within the first exon of a homolog of SPOROCYTELESS/NOZZLE (SPL/NZZ), which plays an important role in gametogenesis in Arabidopsis. Complementation analysis in which the complete SlSES genomic region was introduced into the Slses mutant fully restored normal phenotypes, demonstrating that Solyc07g063670 is responsible for the Slses mutation. SlSES probably act as a transcriptional repressor because of an EAR motif at the C-terminal region. Gene expression levels of WUSCHEL (SlWUS) and INNER NO OUTER (SlINO), both of which are required for ovule development, were dramatically reduced in the early stages of pistil development in the Slses mutant, suggesting a positive regulatory role for SlSES in the transcription of gametogenesis genes and differences in the regulation of INO (SlINO) and integument development by SPL/NZZ (SLSES) between Arabidopsis and tomato. Taken together, our results indicate that SlSES is a novel tomato gametogenesis gene essential for both male and female gametogenesis.
Collapse
Affiliation(s)
- Shuhei Hao
- Graduate School of Life and Environmental Science, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Tohru Ariizumi
- Graduate School of Life and Environmental Science, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Hiroshi Ezura
- Graduate School of Life and Environmental Science, University of Tsukuba, Tsukuba, Ibaraki, Japan
| |
Collapse
|
21
|
Wang JG, Feng C, Liu HH, Ge FR, Li S, Li HJ, Zhang Y. HAPLESS13-Mediated Trafficking of STRUBBELIG Is Critical for Ovule Development in Arabidopsis. PLoS Genet 2016; 12:e1006269. [PMID: 27541731 PMCID: PMC4991792 DOI: 10.1371/journal.pgen.1006269] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Accepted: 07/30/2016] [Indexed: 11/18/2022] Open
Abstract
Planar morphogenesis, a distinct feature of multicellular organisms, is crucial for the development of ovule, progenitor of seeds. Both receptor-like kinases (RLKs) such as STRUBBELIG (SUB) and auxin gradient mediated by PIN-FORMED1 (PIN1) play instructive roles in this process. Fine-tuned intercellular communications between different cell layers during ovule development demands dynamic membrane distribution of these cell-surface proteins, presumably through vesicle-mediated sorting. However, the way it's achieved and the trafficking routes involved are obscure. We report that HAPLESS13 (HAP13)-mediated trafficking of SUB is critical for ovule development. HAP13 encodes the μ subunit of adaptor protein 1 (AP1) that mediates protein sorting at the trans-Golgi network/early endosome (TGN/EE). The HAP13 mutant, hap13-1, is defective in outer integument growth, resulting in exposed nucellus accompanied with impaired pollen tube guidance and reception. SUB is mis-targeted in hap13-1. However, unlike that of PIN2, the distribution of PIN1 is independent of HAP13. Genetic interference of exocytic trafficking at the TGN/EE by specifically downregulating HAP13 phenocopied the defects of hap13-1 in SUB targeting and ovule development, supporting a key role of sporophytically expressed SUB in instructing female gametogenesis.
Collapse
Affiliation(s)
- Jia-Gang Wang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an, China
| | - Chong Feng
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an, China
| | - Hai-Hong Liu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an, China
| | - Fu-Rong Ge
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an, China
| | - Sha Li
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an, China
| | - Hong-Ju Li
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Yan Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an, China
- * E-mail:
| |
Collapse
|
22
|
The molecular mechanism of sporocyteless/nozzle in controlling Arabidopsis ovule development. Cell Res 2014; 25:121-34. [PMID: 25378179 PMCID: PMC4650584 DOI: 10.1038/cr.2014.145] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Revised: 10/07/2014] [Accepted: 10/09/2014] [Indexed: 11/09/2022] Open
Abstract
Ovules are essential for plant reproduction and develop into seeds after fertilization. Sporocyteless/nozzle (SPL/NZZ) has been known for more than 15 years as an essential factor for ovule development in Arabidopsis, but the biochemical nature of SPL function has remained unsolved. Here, we demonstrate that SPL functions as an adaptor-like transcriptional repressor. We show that SPL recruits topless/topless-related (TPL/TPR) co-repressors to inhibit the Cincinnata (CIN)-like Teosinte branched1/cycloidea/PCF (TCP) transcription factors. We reveal that SPL uses its EAR motif at the C-terminal end to recruit TPL/TPRs and its N-terminal part to bind and inhibit the TCPs. We demonstrate that either disruption of TPL/TPRs or overexpression of TCPs partially phenocopies the defects of megasporogenesis in spl. Moreover, disruption of TCPs causes phenotypes that resemble spl-D gain-of-function mutants. These results define the action mechanism for SPL, which along with TPL/TPRs controls ovule development by repressing the activities of key transcription factors. Our findings suggest that a similar gene repression strategy is employed by both plants and fungi to control sporogenesis.
Collapse
|
23
|
Liu L, Fan XD. Tapetum: regulation and role in sporopollenin biosynthesis in Arabidopsis. PLANT MOLECULAR BIOLOGY 2013; 83:165-75. [PMID: 23756817 DOI: 10.1007/s11103-013-0085-5] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Accepted: 05/25/2013] [Indexed: 05/07/2023]
Abstract
Pollen acts as a biological protector for protecting male sperm from various harsh conditions and is covered by an outer cell wall polymer called the exine, a major constituent of which is sporopollenin. The tapetum is in direct contact with the developing gametophytes and plays an essential role in pollen wall and pollen coat formation. The precise molecular mechanisms underlying tapetal development remain highly elusive, but molecular genetic studies have identified a number of genes that control the formation, differentiation, and programmed cell death of tapetum and interactions of genes in tapetal development. Herein, several lines of evidence suggest that sporopollenin is built up via catalytic enzyme reactions in the tapetum. Furthermore, as based on genetic evidence, we review the currently accepted understanding of the molecular regulation of sporopollenin biosynthesis and examine unanswered questions regarding the requirements underpinning proper exine pattern formation.
Collapse
Affiliation(s)
- Liang Liu
- National Centre for Molecular Crop Design, Beijing, 100085, China,
| | | |
Collapse
|
24
|
Enugutti B, Kirchhelle C, Schneitz K. On the genetic control of planar growth during tissue morphogenesis in plants. PROTOPLASMA 2013; 250:651-61. [PMID: 22983223 DOI: 10.1007/s00709-012-0452-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Accepted: 09/05/2012] [Indexed: 05/15/2023]
Abstract
Tissue morphogenesis requires extensive intercellular communication. Plant organs are composites of distinct radial cell layers. A typical layer, such as the epidermis, is propagated by stereotypic anticlinal cell divisions. It is presently unclear what mechanisms coordinate cell divisions relative to the plane of a layer, resulting in planar growth and maintenance of the layer structure. Failure in the regulation of coordinated growth across a tissue may result in spatially restricted abnormal growth and the formation of a tumor-like protrusion. Therefore, one way to approach planar growth control is to look for genetic mutants that exhibit localized tumor-like outgrowths. Interestingly, plants appear to have evolved quite robust genetic mechanisms that govern these aspects of tissue morphogenesis. Here we provide a short summary of the current knowledge about the genetics of tumor formation in plants and relate it to the known control of coordinated cell behavior within a tissue layer. We further portray the integuments of Arabidopsis thaliana as an excellent model system to study the regulation of planar growth. The value of examining this process in integuments was established by the recent identification of the Arabidopsis AGC VIII kinase UNICORN as a novel growth suppressor involved in the regulation of planar growth and the inhibition of localized ectopic growth in integuments and other floral organs. An emerging insight is that misregulation of central determinants of adaxial-abaxial tissue polarity can lead to the formation of spatially restricted multicellular outgrowths in several tissues. Thus, there may exist a link between the mechanisms regulating adaxial-abaxial tissue polarity and planar growth in plants.
Collapse
Affiliation(s)
- Balaji Enugutti
- Entwicklungsbiologie der Pflanzen, Wissenschaftszentrum Weihenstephan, Technische Universität München, Emil-Ramann-Strasse 4, 85354, Freising, Germany.
| | | | | |
Collapse
|
25
|
Regulation of planar growth by the Arabidopsis AGC protein kinase UNICORN. Proc Natl Acad Sci U S A 2012; 109:15060-5. [PMID: 22927420 DOI: 10.1073/pnas.1205089109] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The spatial coordination of growth is of central importance for the regulation of plant tissue architecture. Individual layers, such as the epidermis, are clonally propagated and structurally maintained by symmetric cell divisions that are oriented along the plane of the layer. The developmental control of this process is poorly understood. The simple cellular basis and sheet-like structure of Arabidopsis integuments make them an attractive model system to address planar growth. Here we report on the characterization of the Arabidopsis UNICORN (UCN) gene. Analysis of ucn integuments reveals localized distortion of planar growth, eventually resulting in an ectopic multicellular protrusion. In addition, ucn mutants exhibit ectopic growth in filaments and petals, as well as aberrant embryogenesis. We further show that UCN encodes an active AGC VIII kinase. Genetic, biochemical, and cell biological data suggest that UCN suppresses ectopic growth in integuments by directly repressing the KANADI transcription factor ABERRANT TESTA SHAPE. Our findings indicate that UCN represents a unique plant growth regulator that maintains planar growth of integuments by repressing a developmental regulator involved in the control of early integument growth and polarity.
Collapse
|
26
|
Wu S, Xiao H, Cabrera A, Meulia T, van der Knaap E. SUN regulates vegetative and reproductive organ shape by changing cell division patterns. PLANT PHYSIOLOGY 2011; 157:1175-86. [PMID: 21921117 PMCID: PMC3252170 DOI: 10.1104/pp.111.181065] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2011] [Accepted: 09/08/2011] [Indexed: 05/20/2023]
Abstract
One of the major genes controlling the elongated fruit shape of tomato (Solanum lycopersicum) is SUN. In this study, we explored the roles of SUN in vegetative and reproductive development using near isogenic lines (NILs) that differ at the sun locus, and SUN overexpressors in both the wild species LA1589 (Solanum pimpinellifolium) and the cultivar Sun1642 background. Our results demonstrate that SUN controls tomato shape through redistribution of mass that is mediated by increased cell division in the longitudinal and decreased cell division in the transverse direction of the fruit. The expression of SUN is positively correlated with slender phenotypes in cotyledon, leaflet, and floral organs, an elongated ovary, and negatively correlated with seed weight. Overexpression of SUN leads to more extreme phenotypes than those shown in the NILs and include thinner leaf rachises and stems, twisted leaf rachises, increased serrations of the leaflets, and dramatically increased elongation at the proximal end of the ovary and fruit. In situ hybridizations of the NILs showed that SUN is expressed throughout the ovary and young fruit, particularly in the vascular tissues and placenta surface, and in the ovules and developing seed. The phenotypic effects resulting from high expression of SUN suggest that the gene is involved in several plant developmental processes.
Collapse
|
27
|
Yamada T, Yokota S, Hirayama Y, Imaichi R, Kato M, Gasser CS. Ancestral expression patterns and evolutionary diversification of YABBY genes in angiosperms. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2011; 67:26-36. [PMID: 21435049 DOI: 10.1111/j.1365-313x.2011.04570.x] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Lateral organ growth in seed plants is controlled in part by members of the YABBY (YAB) and class III homeodomain/leucine zipper (HD-ZIPIII) families of transcription factors. HD-ZIPIII genes appear to play a conserved role in such organs, but YAB genes have diversified, with some members of the family having specialized functions in leaves, carpels or ovule integuments. The ancestral expression patterns and timing of divergence of the various classes of YAB genes remain to be established. We isolated and evaluated the expression of one HD-ZIPIII and five YAB genes representing the five major YAB gene classes from Cabomba caroliniana, a member of the earliest-diverging angiosperms. Consistent with observations in eudicots, the FILAMENTOUS FLOWER (FIL) and YABBY5 (YAB5) genes of C. caroliniana were expressed in the abaxial regions of the leaf where new laminar segments arise, and the patterns of expression were mutually exclusive to those of HD-ZIPIII, indicating that these expression patterns are ancestral. Expression of CRABS CLAW (CRC) in the abaxial carpel wall, and of INNER NO OUTER (INO) in the abaxial outer integument of ovules was also conserved between eudicots and C. caroliniana, indicating that these patterns are primitive. However, the CRC gene was also expressed in other floral organs in C. caroliniana, and expression in stamens was also observed in another early-diverging species, Amborella trichopoda, indicating that carpel-specific expression was acquired after divergence of the Nymphaeales. The expression data and phylogeny for YAB genes suggest that the ancestral YAB gene was expressed in proliferating tissues of lateral organs.
Collapse
Affiliation(s)
- Toshihiro Yamada
- Department of Life Sciences, Graduate School of Natural Science and Technology, Kanazawa University, Kanazawa 920-1192, Japan
| | | | | | | | | | | |
Collapse
|
28
|
Endress PK. Angiosperm ovules: diversity, development, evolution. ANNALS OF BOTANY 2011; 107:1465-89. [PMID: 21606056 PMCID: PMC3108811 DOI: 10.1093/aob/mcr120] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2011] [Revised: 03/29/2011] [Accepted: 04/11/2011] [Indexed: 05/18/2023]
Abstract
BACKGROUND Ovules as developmental precursors of seeds are organs of central importance in angiosperm flowers and can be traced back in evolution to the earliest seed plants. Angiosperm ovules are diverse in their position in the ovary, nucellus thickness, number and thickness of integuments, degree and direction of curvature, and histological differentiations. There is a large body of literature on this diversity, and various views on its evolution have been proposed over the course of time. Most recently evo-devo studies have been concentrated on molecular developmental genetics in ovules of model plants. SCOPE The present review provides a synthetic treatment of several aspects of the sporophytic part of ovule diversity, development and evolution, based on extensive research on the vast original literature and on experience from my own comparative studies in a broad range of angiosperm clades. CONCLUSIONS In angiosperms the presence of an outer integument appears to be instrumental for ovule curvature, as indicated from studies on ovule diversity through the major clades of angiosperms, molecular developmental genetics in model species, abnormal ovules in a broad range of angiosperms, and comparison with gymnosperms with curved ovules. Lobation of integuments is not an atavism indicating evolution from telomes, but simply a morphogenetic constraint from the necessity of closure of the micropyle. Ovule shape is partly dependent on locule architecture, which is especially indicated by the occurrence of orthotropous ovules. Some ovule features are even more conservative than earlier assumed and thus of special interest in angiosperm macrosystematics.
Collapse
Affiliation(s)
- Peter K Endress
- Institute of Systematic Botany, University of Zurich, Zollikerstrasse 107, 8008 Zurich, Switzerland.
| |
Collapse
|
29
|
Park HC, Kim ML, Kim HS, Park JH, Jung MS, Shen M, Kang CH, Kim MC, Lee SY, Cho MJ, Chung WS, Yun DJ. Specificity of DNA sequences recognized by the zinc-finger homeodomain protein, GmZF-HD1 in soybean. PHYTOCHEMISTRY 2010; 71:1832-8. [PMID: 20804996 DOI: 10.1016/j.phytochem.2010.07.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2010] [Revised: 06/01/2010] [Accepted: 07/26/2010] [Indexed: 05/29/2023]
Abstract
Zinc finger-homeodomain proteins (ZF-HDs) have been identified in many plant species. In soybean (Glycine max), GmZF-HD1 functions as a transcription factor that activates the soybean calmodulin isoform-4 (GmCaM-4) gene in response to pathogens. Recently, we reported specific binding of GmZF-HD1 to a 30-nt A/T-rich cis-element which constitutes two repeats of a conserved homeodomain binding site, ATTA, within -1207 to -1128bp of the GmCaM-4 promoter. Herein, homeodomain sequences of the GmZF-HD1 protein were compared to those of other homeodomain proteins and characterized the specificity of DNA sequences in the interaction of the GmCaM-4 promoter with GmZF-HD1 protein. Considering the conservation of homeodomains in plants, the AG sequence within a 30-nt A/T-rich cis-element is required for binding of the GmZF-HD1 protein. Approximately 25-bp of A/T-rich DNA sequences containing an AG sequence is necessary for effective binding to the GmZF-HD1 protein. Taken together, the results support the notion that the GmZF-HD1 protein specifically functions in plant stress signalling by interacting with the promoter of GmCaM-4.
Collapse
Affiliation(s)
- Hyeong Cheol Park
- Division of Applied Life Science (BK21 program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 660-701, Republic of Korea.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Berr A, McCallum EJ, Ménard R, Meyer D, Fuchs J, Dong A, Shen WH. Arabidopsis SET DOMAIN GROUP2 is required for H3K4 trimethylation and is crucial for both sporophyte and gametophyte development. THE PLANT CELL 2010; 22:3232-48. [PMID: 20810545 PMCID: PMC2990135 DOI: 10.1105/tpc.110.079962] [Citation(s) in RCA: 127] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2010] [Revised: 09/28/2010] [Accepted: 10/13/2010] [Indexed: 05/18/2023]
Abstract
Histone H3 lysine 4 trimethylation (H3K4me3) is abundant in euchromatin and is in general associated with transcriptional activation in eukaryotes. Although some Arabidopsis thaliana SET DOMAIN GROUP (SDG) genes have been previously shown to be involved in H3K4 methylation, they are unlikely to be responsible for global genome-wide deposition of H3K4me3. Most strikingly, sparse knowledge is currently available about the role of histone methylation in gametophyte development. In this study, we show that the previously uncharacterized SDG2 is required for global H3K4me3 deposition and its loss of function causes wide-ranging defects in both sporophyte and gametophyte development. Transcriptome analyses of young flower buds have identified 452 genes downregulated by more than twofold in the sdg2-1 mutant; among them, 11 genes, including SPOROCYTELESS/NOZZLE (SPL/NZZ) and MALE STERILITY1 (MS1), have been previously shown to be essential for male and/or female gametophyte development. We show that both SPL/NZZ and MS1 contain bivalent chromatin domains enriched simultaneously with the transcriptionally active mark H3K4me3 and the transcriptionally repressive mark H3K27me3 and that SDG2 is specifically required for the H3K4me3 deposition. Our data suggest that SDG2-mediated H3K4me3 deposition poises SPL/NZZ and MS1 for transcriptional activation, forming a key regulatory mechanism in the gene networks responsible for gametophyte development.
Collapse
Affiliation(s)
- Alexandre Berr
- Institut de Biologie Moléculaire des Plantes du Centre National de la Recherche Scientifique, Université de Strasbourg, 67084 Strasbourg Cedex, France
| | - Emily J. McCallum
- Institut de Biologie Moléculaire des Plantes du Centre National de la Recherche Scientifique, Université de Strasbourg, 67084 Strasbourg Cedex, France
| | - Rozenn Ménard
- Institut de Biologie Moléculaire des Plantes du Centre National de la Recherche Scientifique, Université de Strasbourg, 67084 Strasbourg Cedex, France
| | - Denise Meyer
- Institut de Biologie Moléculaire des Plantes du Centre National de la Recherche Scientifique, Université de Strasbourg, 67084 Strasbourg Cedex, France
| | - Jörg Fuchs
- Leibniz-Institute of Plant Genetics and Crop Plant Research, D-06466 Gatersleben, Germany
| | - Aiwu Dong
- State Key Laboratory of Genetic Engineering, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200433, PR China
| | - Wen-Hui Shen
- Institut de Biologie Moléculaire des Plantes du Centre National de la Recherche Scientifique, Université de Strasbourg, 67084 Strasbourg Cedex, France
- Address correspondence to
| |
Collapse
|
31
|
Buxdorf K, Hendelman A, Stav R, Lapidot M, Ori N, Arazi T. Identification and characterization of a novel miR159 target not related to MYB in tomato. PLANTA 2010; 232:1009-1022. [PMID: 20661587 DOI: 10.1007/s00425-010-1231-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2010] [Accepted: 07/07/2010] [Indexed: 05/29/2023]
Abstract
MicroRNA 159 (miR159) is a highly conserved miRNA with roles in flowering under short days, anther development and seed germination via repression of GAMYB-like genes. In tomato, the function of miR159 (Sl-miR159) is currently unknown and target transcripts have not been experimentally validated. Here, we identified and characterized a new miR159 target gene (SGN-U567133) in Solanum lycopersicum (tomato) that is not related to MYB. SGN-U567133 is predominantly expressed in flowers and encodes a nuclear-localized protein that contains a unique NOZZLE-like domain at its N terminus. In tomato, SGN-U567133 represents a small gene family and orthologs have been identified in other plant species, all containing a conserved miR159 target site in their coding sequence. Accordingly, 5'-RACE cleavage assay supported miRNA-mediated cleavage of SGN-U567133 transcripts in vivo. Moreover, the SGN-U567133 transcript accumulated in P19-HA-expressing tomato leaves in which miRNA-mediated cleavage is inhibited. In addition, transgenic tomato plants expressing a miR159-resistant form of SGN-U567133 accumulated higher levels of the SGN-U567133 transcript and exhibited defects in leaf and flower development. Together, our results suggest that SGN-U567133 represents a novel class of miR159 targets in plants and raise the possibility that its post-transcriptional regulation by Sl-miR159 is essential for normal tomato development.
Collapse
MESH Headings
- Amino Acid Sequence
- Blotting, Southern
- Flowers/genetics
- Flowers/growth & development
- Flowers/metabolism
- Flowers/ultrastructure
- Gene Expression Regulation, Plant/genetics
- Solanum lycopersicum/genetics
- Solanum lycopersicum/growth & development
- Solanum lycopersicum/metabolism
- Solanum lycopersicum/ultrastructure
- MicroRNAs/genetics
- MicroRNAs/physiology
- Microscopy, Electron, Scanning
- Molecular Sequence Data
- Plant Leaves/genetics
- Plant Leaves/growth & development
- Plant Leaves/metabolism
- Plant Proteins/genetics
- Plant Proteins/physiology
- Plants, Genetically Modified/genetics
- Plants, Genetically Modified/growth & development
- Plants, Genetically Modified/metabolism
- Plants, Genetically Modified/ultrastructure
- RNA, Plant/genetics
- RNA, Plant/physiology
- Reverse Transcriptase Polymerase Chain Reaction
- Sequence Homology, Amino Acid
Collapse
Affiliation(s)
- Kobi Buxdorf
- Institute of Plant Sciences, Agricultural Research Organization, The Volcani Center, Bet Dagan, Israel
| | | | | | | | | | | |
Collapse
|
32
|
Alvarez-Buylla ER, Benítez M, Corvera-Poiré A, Chaos Cador Á, de Folter S, Gamboa de Buen A, Garay-Arroyo A, García-Ponce B, Jaimes-Miranda F, Pérez-Ruiz RV, Piñeyro-Nelson A, Sánchez-Corrales YE. Flower development. THE ARABIDOPSIS BOOK 2010; 8:e0127. [PMID: 22303253 PMCID: PMC3244948 DOI: 10.1199/tab.0127] [Citation(s) in RCA: 176] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Flowers are the most complex structures of plants. Studies of Arabidopsis thaliana, which has typical eudicot flowers, have been fundamental in advancing the structural and molecular understanding of flower development. The main processes and stages of Arabidopsis flower development are summarized to provide a framework in which to interpret the detailed molecular genetic studies of genes assigned functions during flower development and is extended to recent genomics studies uncovering the key regulatory modules involved. Computational models have been used to study the concerted action and dynamics of the gene regulatory module that underlies patterning of the Arabidopsis inflorescence meristem and specification of the primordial cell types during early stages of flower development. This includes the gene combinations that specify sepal, petal, stamen and carpel identity, and genes that interact with them. As a dynamic gene regulatory network this module has been shown to converge to stable multigenic profiles that depend upon the overall network topology and are thus robust, which can explain the canalization of flower organ determination and the overall conservation of the basic flower plan among eudicots. Comparative and evolutionary approaches derived from Arabidopsis studies pave the way to studying the molecular basis of diverse floral morphologies.
Collapse
Affiliation(s)
- Elena R. Alvarez-Buylla
- Laboratorio de Genética Molecular, Desarrollo y Evolución de Plantas, Departamento de Ecología Funcional, Instituto de Ecología, Universidad Nacional Autónoma de México. 3er Circuito Exterior S/N Junto a Jardín Botánico Exterior, Cd. Universitaria, Coyoacán, México D.F. 04510, Mexico
| | - Mariana Benítez
- Laboratorio de Genética Molecular, Desarrollo y Evolución de Plantas, Departamento de Ecología Funcional, Instituto de Ecología, Universidad Nacional Autónoma de México. 3er Circuito Exterior S/N Junto a Jardín Botánico Exterior, Cd. Universitaria, Coyoacán, México D.F. 04510, Mexico
| | - Adriana Corvera-Poiré
- Laboratorio de Genética Molecular, Desarrollo y Evolución de Plantas, Departamento de Ecología Funcional, Instituto de Ecología, Universidad Nacional Autónoma de México. 3er Circuito Exterior S/N Junto a Jardín Botánico Exterior, Cd. Universitaria, Coyoacán, México D.F. 04510, Mexico
| | - Álvaro Chaos Cador
- Laboratorio de Genética Molecular, Desarrollo y Evolución de Plantas, Departamento de Ecología Funcional, Instituto de Ecología, Universidad Nacional Autónoma de México. 3er Circuito Exterior S/N Junto a Jardín Botánico Exterior, Cd. Universitaria, Coyoacán, México D.F. 04510, Mexico
| | - Stefan de Folter
- Laboratorio de Genética Molecular, Desarrollo y Evolución de Plantas, Departamento de Ecología Funcional, Instituto de Ecología, Universidad Nacional Autónoma de México. 3er Circuito Exterior S/N Junto a Jardín Botánico Exterior, Cd. Universitaria, Coyoacán, México D.F. 04510, Mexico
| | - Alicia Gamboa de Buen
- Laboratorio de Genética Molecular, Desarrollo y Evolución de Plantas, Departamento de Ecología Funcional, Instituto de Ecología, Universidad Nacional Autónoma de México. 3er Circuito Exterior S/N Junto a Jardín Botánico Exterior, Cd. Universitaria, Coyoacán, México D.F. 04510, Mexico
| | - Adriana Garay-Arroyo
- Laboratorio de Genética Molecular, Desarrollo y Evolución de Plantas, Departamento de Ecología Funcional, Instituto de Ecología, Universidad Nacional Autónoma de México. 3er Circuito Exterior S/N Junto a Jardín Botánico Exterior, Cd. Universitaria, Coyoacán, México D.F. 04510, Mexico
| | - Berenice García-Ponce
- Laboratorio de Genética Molecular, Desarrollo y Evolución de Plantas, Departamento de Ecología Funcional, Instituto de Ecología, Universidad Nacional Autónoma de México. 3er Circuito Exterior S/N Junto a Jardín Botánico Exterior, Cd. Universitaria, Coyoacán, México D.F. 04510, Mexico
| | - Fabiola Jaimes-Miranda
- Laboratorio de Genética Molecular, Desarrollo y Evolución de Plantas, Departamento de Ecología Funcional, Instituto de Ecología, Universidad Nacional Autónoma de México. 3er Circuito Exterior S/N Junto a Jardín Botánico Exterior, Cd. Universitaria, Coyoacán, México D.F. 04510, Mexico
| | - Rigoberto V. Pérez-Ruiz
- Laboratorio de Genética Molecular, Desarrollo y Evolución de Plantas, Departamento de Ecología Funcional, Instituto de Ecología, Universidad Nacional Autónoma de México. 3er Circuito Exterior S/N Junto a Jardín Botánico Exterior, Cd. Universitaria, Coyoacán, México D.F. 04510, Mexico
| | - Alma Piñeyro-Nelson
- Laboratorio de Genética Molecular, Desarrollo y Evolución de Plantas, Departamento de Ecología Funcional, Instituto de Ecología, Universidad Nacional Autónoma de México. 3er Circuito Exterior S/N Junto a Jardín Botánico Exterior, Cd. Universitaria, Coyoacán, México D.F. 04510, Mexico
| | - Yara E. Sánchez-Corrales
- Laboratorio de Genética Molecular, Desarrollo y Evolución de Plantas, Departamento de Ecología Funcional, Instituto de Ecología, Universidad Nacional Autónoma de México. 3er Circuito Exterior S/N Junto a Jardín Botánico Exterior, Cd. Universitaria, Coyoacán, México D.F. 04510, Mexico
| |
Collapse
|
33
|
Kelley DR, Skinner DJ, Gasser CS. Roles of polarity determinants in ovule development. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2009; 57:1054-64. [PMID: 19054366 PMCID: PMC4096117 DOI: 10.1111/j.1365-313x.2008.03752.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Ovules are the female reproductive structures that develop into seeds. Angiosperm ovules include one, or more commonly two, integuments that cover the nucellus and female gametophyte. Mutations in the Arabidopsis KANADI (KAN) and YABBY polarity genes result in amorphous or arrested integument growth, suggesting that polarity determinants play key roles in ovule development. We show that the class III homeodomain leucine zipper (HD-ZIPIII) genes CORONA (CNA), PHABULOSA (PHB) and PHAVOLUTA (PHV) are expressed adaxially in the inner integument during ovule development, independent of ABERRANT TESTA SHAPE (ATS, also known as KANADI4) activity. Loss of function of these genes leads to aberrant integument growth. Additionally, over-expression of PHB or PHV in ovules is not sufficient to repress ATS expression, and can produce phenotypes similar to those of the HD-ZIPIII loss-of-function lines. The absence of evidence of mutual negative regulation by KAN and HD-ZIPIII transcription factors is in contrast to known mechanisms in leaves. Loss of HD-ZIPIII activity can partially compensate for loss of ATS activity in the ats cna phb phv quadruple mutant, showing that CNA/PHB/PHV act in concert with ATS to control integument morphogenesis. In a parallel pathway, ATS acts with REVOLUTA (REV) to restrict expression of INNER NO OUTER (INO) and outer integument growth. Based on these expression and genetic studies, we propose a model in which a balance between the relative levels of adaxial/abaxial activities, rather than maintenance of boundaries of expression domains, is necessary to support laminar growth of the two integuments.
Collapse
|
34
|
Yamada T, Hirayama Y, Imaichi R, Kato M. AINTEGUMENTA homolog expression in Gnetum (gymnosperms) and implications for the evolution of ovulate axes in seed plants. Evol Dev 2008; 10:280-7. [PMID: 18460090 DOI: 10.1111/j.1525-142x.2008.00237.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The expression of GpANTL1, a homolog of AINTEGUMENTA (ANT) found in the gymnosperm Gnetum parvifolium, was analyzed by RT-PCR and in situ hybridization. GpANTL1 was expressed in the leaf primordia, root tips, and young ovules. In the ovulate axis, expression was detected as four distinct rings around the outer, middle, and inner envelope primordia as well as around the nucellar tip. This pattern of expression is similar to that of ANT in Arabidopsis thaliana. A comparison of the expression of GpANTL1 with that of PtANTL1 in the conifer Pinus thunbergii suggests that the integrated expression of PtANTL1 may have been caused by congenital fusion of the integument, ovuliferous scale, and bract.
Collapse
Affiliation(s)
- Toshihiro Yamada
- Division of Life Sciences, Graduate School of Natural Science and Technology, Kanazawa University, Kanazawa 920-1192, Japan.
| | | | | | | |
Collapse
|
35
|
Colombo L, Battaglia R, Kater MM. Arabidopsis ovule development and its evolutionary conservation. TRENDS IN PLANT SCIENCE 2008; 13:444-50. [PMID: 18571972 DOI: 10.1016/j.tplants.2008.04.011] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2008] [Revised: 04/03/2008] [Accepted: 04/28/2008] [Indexed: 05/03/2023]
Abstract
Ovules have an important role during the life cycle of the plant, and they provide an excellent model for studying organogenesis in plants. As such, the molecular control of ovule development has been studied for many years. Recent studies in Arabidopsis have revealed important new data concerning ovule primordia formation, ovule identity determination, and patterning. Furthermore, interesting results about ovule development in other species, such as Petunia and rice, have been published recently. In this review, we discuss these recent findings in reference to ovule development in Arabidopsis. We compare available data with those of other species to investigate the evolutionary conservation of the regulatory pathways.
Collapse
Affiliation(s)
- Lucia Colombo
- Dipartimento di Biologia, Università degli Studi di Milano, Via Celoria 26, 20133 Milano, Italy.
| | | | | |
Collapse
|
36
|
Li LC, Qin GJ, Tsuge T, Hou XH, Ding MY, Aoyama T, Oka A, Chen Z, Gu H, Zhao Y, Qu LJ. SPOROCYTELESS modulates YUCCA expression to regulate the development of lateral organs in Arabidopsis. THE NEW PHYTOLOGIST 2008; 179:751-764. [PMID: 18557819 DOI: 10.1111/j.1469-8137.2008.02514.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
* Auxin is essential for many aspects of plant growth and development, including the determination of lateral organ shapes. * Here, the characterization of a dominant Arabidopsis thaliana mutant spl-D (SPOROCYTELESS dominant), and the roles of SPL in auxin homeostasis and plant development, are reported. * The spl-D mutant displayed a severe up-curling leaf phenotype caused by increased expression of SPOROCYTELESS/NOZZLE (SPL/NZZ), a putative transcription factor gene that was previously linked to sporocyte formation. The spl-D plants also displayed pleiotropic developmental defects including fewer lateral roots, simpler venation patterns, and reduced shoot apical dominance. The leaf and floral phenotypes of spl-D and SPL over-expression lines were reminiscent of yucca (yuc) triple and quadruple mutants, suggesting that SPL may regulate auxin homeostasis. Consistent with this hypothesis, it was found that over-expression of SPL led to down-regulation of the auxin reporter DR5-GUS, and that many auxin-responsive genes were down-regulated in spl-D leaves. Interestingly, the expression of YUC2 and YUC6, two key genes in auxin biosynthesis, was significantly repressed in spl-D plants. * Taken together with the genetic and phenotypic analysis of spl-D/yuc6-D double mutant, these data suggest that SPL may regulate auxin homeostasis by repressing the transcription of YUC2 and YUC6 and participate in lateral organ morphogenesis.
Collapse
Affiliation(s)
- Lin-Chuan Li
- National Laboratory for Protein Engineering and Plant Genetic Engineering, Peking-Yale Joint Research Center for Plant Molecular Genetics and AgroBiotechnology, College of Life Sciences, Peking University, Beijing 100871, China
| | - Gen-Ji Qin
- National Laboratory for Protein Engineering and Plant Genetic Engineering, Peking-Yale Joint Research Center for Plant Molecular Genetics and AgroBiotechnology, College of Life Sciences, Peking University, Beijing 100871, China
| | - Tomohiko Tsuge
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Xian-Hui Hou
- National Laboratory for Protein Engineering and Plant Genetic Engineering, Peking-Yale Joint Research Center for Plant Molecular Genetics and AgroBiotechnology, College of Life Sciences, Peking University, Beijing 100871, China
| | - Mao-Yu Ding
- National Laboratory for Protein Engineering and Plant Genetic Engineering, Peking-Yale Joint Research Center for Plant Molecular Genetics and AgroBiotechnology, College of Life Sciences, Peking University, Beijing 100871, China
| | - Takashi Aoyama
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Atsuhiro Oka
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Zhangliang Chen
- National Laboratory for Protein Engineering and Plant Genetic Engineering, Peking-Yale Joint Research Center for Plant Molecular Genetics and AgroBiotechnology, College of Life Sciences, Peking University, Beijing 100871, China
| | - Hongya Gu
- National Laboratory for Protein Engineering and Plant Genetic Engineering, Peking-Yale Joint Research Center for Plant Molecular Genetics and AgroBiotechnology, College of Life Sciences, Peking University, Beijing 100871, China
- The National Plant Gene Research Center (Beijing), Beijing 100101, China
| | - Yunde Zhao
- Section of Cell and Developmental Biology, University of California at San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0116, USA
| | - Li-Jia Qu
- National Laboratory for Protein Engineering and Plant Genetic Engineering, Peking-Yale Joint Research Center for Plant Molecular Genetics and AgroBiotechnology, College of Life Sciences, Peking University, Beijing 100871, China
- The National Plant Gene Research Center (Beijing), Beijing 100101, China
| |
Collapse
|
37
|
Wijeratne AJ, Zhang W, Sun Y, Liu W, Albert R, Zheng Z, Oppenheimer DG, Zhao D, Ma H. Differential gene expression in Arabidopsis wild-type and mutant anthers: insights into anther cell differentiation and regulatory networks. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2007; 52:14-29. [PMID: 17666023 DOI: 10.1111/j.1365-313x.2007.03217.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
In flowering plants, the anther contains highly specialized reproductive and somatic cells that are required for male fertility. Genetic studies have uncovered several genes that are important for anther development. However, little information is available regarding most genes active during anther development, including possible relationships between these genes and genetically defined regulators. In Arabidopsis, two previously isolated male-sterile mutants display dramatically altered anther cell differentiation patterns. The sporocyteless (spl)/nozzle (nzz) mutant is defective in the differentiation of primary sporogenous cells into microsporocytes, and does not properly form the anther wall. The excess microsporocytes1 (ems1)/extrasporogenous cells (exs) mutants produce excess microsporocytes at the expense of the tapetum. To gain additional insights into microsporocyte and tapetum differentiation and to uncover potential genetic interactions, expression profiles were compared between wild-type anthers (stage 4-6) and those of the spl or ems1 mutants. A total of 1954 genes were found to be differentially expressed in the ems1 and/or spl anthers, and these were grouped into 14 co-expression clusters. The presence of genes with known and predicted functions in specific clusters suggests potential functions for other genes in the same cluster. To obtain clues about possible co-regulation within co-expression clusters, we searched for shared cis-regulatory motifs in putative promoter regions. Our analyses were combined with data from previous studies to develop a model of the anther gene regulatory network. This model includes hypotheses that can be tested experimentally to gain further understanding of the mechanisms controlling anther development.
Collapse
Affiliation(s)
- Asela J Wijeratne
- Intercollege Graduate Program in Plant Biology, Pennsylvania State University, University Park, PA 16802, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Jones-Rhoades MW, Borevitz JO, Preuss D. Genome-wide expression profiling of the Arabidopsis female gametophyte identifies families of small, secreted proteins. PLoS Genet 2007; 3:1848-61. [PMID: 17937500 PMCID: PMC2014789 DOI: 10.1371/journal.pgen.0030171] [Citation(s) in RCA: 140] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2007] [Accepted: 08/22/2007] [Indexed: 01/10/2023] Open
Abstract
The female gametophyte of flowering plants, the embryo sac, develops within the diploid (sporophytic) tissue of the ovule. While embryo sac–expressed genes are known to be required at multiple stages of the fertilization process, the set of embryo sac–expressed genes has remained poorly defined. In particular, the set of genes responsible for mediating intracellular communication between the embryo sac and the male gametophyte, the pollen grain, is unknown. We used high-throughput cDNA sequencing and whole-genome tiling arrays to compare gene expression in wild-type ovules to that in dif1 ovules, which entirely lack embryo sacs, and myb98 ovules, which are impaired in pollen tube attraction. We identified nearly 400 genes that are downregulated in dif1 ovules. Seventy-eight percent of these embryo sac–dependent genes were predicted to encode for secreted proteins, and 60% belonged to multigenic families. Our results define a large number of candidate extracellular signaling molecules that may act during embryo sac development or fertilization; less than half of these are represented on the widely used ATH1 expression array. In particular, we found that 37 out of 40 genes encoding Domain of Unknown Function 784 (DUF784) domains require the synergid-specific transcription factor MYB98 for expression. Several DUF784 genes were transcribed in synergid cells of the embryo sac, implicating the DUF784 gene family in mediating late stages of embryo sac development or interactions with pollen tubes. The coexpression of highly similar proteins suggests a high degree of functional redundancy among embryo sac genes. During the sexual reproduction of flowering plants, a pollen tube delivers sperm cells to a specialized group of cells known as the embryo sac, which contains the egg cell. It is known that embryo sacs are active participants in guiding the growth of pollen tubes, in facilitating fertilization, and in initiating seed development. However, the genes responsible for the complex biology of embryo sacs are poorly understood. The authors use two recently developed technologies, whole-genome tiling microarrays and high-throughput cDNA sequencing, to identify hundreds of genes expressed in embryo sacs of Arabidopsis thaliana. Most embryo sac–dependent genes have no known function, and include entire families of related genes that are only expressed in embryo sacs. Furthermore, most embryo sac–dependent genes encode small proteins that are potentially secreted from their cells of origin, suggesting that they may act as intracellular signals or to modify the extracellular matrix during fertilization or embryo sac development. These results illustrate the extent to which our understanding of plant sexual reproduction is limited and identifies hundreds of candidate genes for future studies investigating the molecular biology of the embryo sac.
Collapse
Affiliation(s)
- Matthew W Jones-Rhoades
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, Illinois, United States of America
| | - Justin O Borevitz
- Department of Ecology and Evolution, The University of Chicago, Chicago, Illinois, United States of America
| | - Daphne Preuss
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, Illinois, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
39
|
Liu HL, Xu YY, Xu ZH, Chong K. A rice YABBY gene, OsYABBY4, preferentially expresses in developing vascular tissue. Dev Genes Evol 2007; 217:629-37. [PMID: 17676337 DOI: 10.1007/s00427-007-0173-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2007] [Revised: 04/02/2007] [Accepted: 07/08/2007] [Indexed: 10/23/2022]
Abstract
Developmental gene families have diversified during land plant evolution. The primary role of YABBY gene family is promoting abaxial fate in model eudicot, Arabidopsis thaliana. However recent results suggest that roles of YABBY genes are not conserved in the angiosperms. In this paper, a rice YABBY gene was isolated, and its expression patterns were analyzed in detail. Sequence characterization and phylogenetic analyses showed the gene is OsYABBY4, which is group-classified into FIL/YAB3 subfamily. Beta-glucuronidase reporter assay and in situ analysis consistently revealed that OsYABBY4 was expressed in the meristems and developing vascular tissue of rice, predominantly in the phloem tissue, suggesting that the function of the rice gene is different from those of its counterparts in eudicots. OsYABBY4 may have been recruited to regulate the development of vasculature in rice. However, transgenic Arabidopsis plants ectopically expressing OsYABBY4 behaved very like those over-expressing FIL or YAB3 with abaxialized lateral organs, suggesting the OsYABBY4 protein domain is conserved with its Arabidopsis counterparts in sequences. Our results also indicate that the functional diversification of OsYABBY4 may be associated with the divergent spatial-temporal expression patterns, and YABBY family members may have preserved different expression regulatory systems and functions during the evolution of different kinds of species.
Collapse
MESH Headings
- Arabidopsis/genetics
- Arabidopsis/growth & development
- Arabidopsis/metabolism
- Base Sequence
- Biological Evolution
- Cloning, Molecular
- DNA, Complementary/genetics
- DNA, Plant/genetics
- Gene Expression Regulation, Developmental
- Gene Expression Regulation, Plant
- Genes, Plant
- Genes, Reporter
- Green Fluorescent Proteins/genetics
- Green Fluorescent Proteins/metabolism
- In Situ Hybridization
- Multigene Family
- Oryza/genetics
- Oryza/growth & development
- Oryza/metabolism
- Plant Proteins/genetics
- Plant Proteins/metabolism
- Plant Structures/genetics
- Plant Structures/growth & development
- Plant Structures/metabolism
- Plants, Genetically Modified
- RNA, Plant/genetics
- RNA, Plant/metabolism
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
Collapse
Affiliation(s)
- Hui-li Liu
- Key Laboratory of Photosynthesis and Environmental Molecular Physiology, Institute of Botany, the Chinese Academy of Sciences, Nanxincun 20, Xiangshan, Beijing, 100093, People's Republic of China
| | | | | | | |
Collapse
|
40
|
Brambilla V, Battaglia R, Colombo M, Masiero S, Bencivenga S, Kater MM, Colombo L. Genetic and molecular interactions between BELL1 and MADS box factors support ovule development in Arabidopsis. THE PLANT CELL 2007; 19:2544-56. [PMID: 17693535 PMCID: PMC2002616 DOI: 10.1105/tpc.107.051797] [Citation(s) in RCA: 144] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
In Arabidopsis thaliana and many other plant species, ovules arise from carpel tissue as new meristematic formations. Cell fate in proliferating ovule primordia is specified by particular ovule identity factors, such as the homeodomain factor BELL1 (BEL1) and MADS box family members SEEDSTICK (STK), SHATTERPROOF1 (SHP1), SHP2, and AGAMOUS. Both in the bel1 mutant and the stk shp1 shp2 triple mutant, integuments are transformed into carpelloid structures. Combining these mutants in a bel1 stk shp1 shp2 quadruple mutant, we showed that the bel1 phenotype is significantly enhanced. We also demonstrate that ovule differentiation requires the regulation of the stem cell maintenance gene WUSCHEL, repression of which is predominantly maintained by BEL1 during ovule development. Based on yeast three-hybrid assays and genetic data, we show that BEL1 interacts with the ovule identity MADS box factors when they dimerize with SEPALLATA proteins. We propose a model for ovule development that explains how the balance between carpel identity activity and ovule identity activity is established by a MADS box homeodomain protein complex.
Collapse
Affiliation(s)
- Vittoria Brambilla
- Dipartimento di Biologia, Università degli Studi di Milano, 20133 Milano, Italy
| | | | | | | | | | | | | |
Collapse
|
41
|
Tran LSP, Nakashima K, Sakuma Y, Osakabe Y, Qin F, Simpson SD, Maruyama K, Fujita Y, Shinozaki K, Yamaguchi-Shinozaki K. Co-expression of the stress-inducible zinc finger homeodomain ZFHD1 and NAC transcription factors enhances expression of the ERD1 gene in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2007; 49:46-63. [PMID: 17233795 DOI: 10.1111/j.1365-313x.2006.02932.x] [Citation(s) in RCA: 171] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The ZFHD recognition sequence (ZFHDRS) and NAC recognition sequence (NACRS) play an important role in the dehydration-inducible expression of the Arabidopsisthaliana EARLY RESPONSIVETO DEHYDRATION STRESS 1 (ERD1) gene. Using the yeast one-hybrid system, we isolated a cDNA encoding the ZFHD1 transcriptional activator that specifically binds to the 62 bp promoter region of ERD1, which contains the ZFHDRS. Both in vitro and in vivo analyses confirmed specific binding of the ZFHD1 to ZFHDRS, and the expression of ZFHD1 was induced by drought, high salinity and abscisic acid. The DNA-binding and activation domains of ZFHD1 were localized on the C-terminal homeodomain and N-terminal zinc finger domain, respectively. Microarray analysis of transgenic plants over-expressing ZFHD1 revealed that several stress-inducible genes were upregulated in the transgenic plants. Transgenic plants exhibited a smaller morphological phenotype and had a significant improvement of drought stress tolerance. Using the yeast two-hybrid system, we detected an interaction between ZFHD1 and NACRS-binding NAC proteins. Moreover, co-over-expression of the ZFHD1 and NAC genes restored the morphological phenotype of the transgenic plants to a near wild-type state and enhanced expression of ERD1 in both Arabidopsis T87 protoplasts and transgenic Arabidopsis plants.
Collapse
Affiliation(s)
- Lam-Son Phan Tran
- Biological Resources Division, Japan International Research Center for Agricultural Sciences, 1-1 Ohwashi, Tsukuba, Ibaraki, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Levi A, Davis A, Hernandez A, Wechter P, Thimmapuram J, Trebitsh T, Tadmor Y, Katzir N, Portnoy V, King S. Genes expressed during the development and ripening of watermelon fruit. PLANT CELL REPORTS 2006; 25:1233-45. [PMID: 16802118 DOI: 10.1007/s00299-006-0163-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2005] [Revised: 03/01/2006] [Accepted: 03/25/2006] [Indexed: 05/10/2023]
Abstract
A normalized cDNA library was constructed using watermelon flesh mRNA from three distinct developmental time-points and was subtracted by hybridization with leaf cDNA. Random cDNA clones of the watermelon flesh subtraction library were sequenced from the 5' end in order to identify potentially informative genes associated with fruit setting, development, and ripening. One-thousand and forty-six 5'-end sequences (expressed sequence tags; ESTs) were assembled into 832 non-redundant sequences, designated as "EST-unigenes". Of these 832 "EST-unigenes", 254 ( approximately 30%) have no significant homology to sequences published so far for other plant species. Additionally, 168 "EST-unigenes" ( approximately 20%) correspond to genes with unknown function, whereas 410 "EST-unigenes" ( approximately 50%) correspond to genes with known function in other plant species. These "EST-unigenes" are mainly associated with metabolism, membrane transport, cytoskeleton synthesis and structure, cell wall formation and cell division, signal transduction, nucleic acid binding and transcription factors, defense and stress response, and secondary metabolism. This study provides the scientific community with novel genetic information for watermelon as well as an expanded pool of genes associated with fruit development in watermelon. These genes will be useful targets in future genetic and functional genomic studies of watermelon and its development.
Collapse
Affiliation(s)
- A Levi
- USDA, ARS, U.S. Vegetable Laboratory, 2700 Savannah Highway, Charleston, SC 29414, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
McAbee JM, Hill TA, Skinner DJ, Izhaki A, Hauser BA, Meister RJ, Venugopala Reddy G, Meyerowitz EM, Bowman JL, Gasser CS. ABERRANT TESTA SHAPE encodes a KANADI family member, linking polarity determination to separation and growth of Arabidopsis ovule integuments. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2006; 46:522-31. [PMID: 16623911 DOI: 10.1111/j.1365-313x.2006.02717.x] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The Arabidopsis aberrant testa shape (ats) mutant produces a single integument instead of the two integuments seen in wild-type ovules. Cellular anatomy and patterns of marker gene expression indicate that the single integument results from congenital fusion of the two integuments of the wild type. Isolation of the ATS locus showed it to encode a member of the KANADI (KAN) family of putative transcription factors, previously referred to as KAN4. ATS was expressed at the border between the two integuments at the time of their initiation, with expression later confined to the abaxial layer of the inner integument. In an inner no outer (ino) mutant background, where an outer integument does not form, the ats mutation led to amorphous inner integument growth. The kan1kan2 double mutant exhibits a similar amorphous growth of the outer integument without affecting inner integument growth. We hypothesize that ATS and KAN1/KAN2 play similar roles in the specification of polarity in the inner and outer integuments, respectively, that parallel the known roles of KAN proteins in promoting abaxial identity during leaf development. INO and other members of the YABBY gene family have been hypothesized to have similar parallel roles in outer integument and leaf development. Together, these two hypotheses lead us to propose a model for normal integument growth that also explains the described mutant phenotypes.
Collapse
Affiliation(s)
- Jessica Messmer McAbee
- Section of Molecular Biology, University of California, 1 Shields Ave., Davis, CA 95616, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Sieber P, Gheyselinck J, Gross-Hardt R, Laux T, Grossniklaus U, Schneitz K. Pattern formation during early ovule development in Arabidopsis thaliana. Dev Biol 2004; 273:321-34. [PMID: 15328016 DOI: 10.1016/j.ydbio.2004.05.037] [Citation(s) in RCA: 114] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2003] [Revised: 05/20/2004] [Accepted: 05/25/2004] [Indexed: 11/16/2022]
Abstract
Ovules of higher plants are the precursors of seeds. Ovules emerge from placental tissue inside the gynoecium of flowers. Three elements, funiculus, chalaza, and nucellus, can be distinguished along the proximal-distal axis of the outgrowing radially symmetrical ovule primordium. The asymmetric initiation of the outer integument marks the switch to adaxial-abaxial development, which leads to the formation of a bilaterally symmetrical ovule. The putative transcriptional regulator NOZZLE (NZZ) plays a role in mediating this transition by controlling the timing of expression of the putative transcriptional regulator INNER NO OUTER (INO) in an abaxial domain of the chalaza, from where the outer integument initiates. Integument formation depends on the homeobox gene WUSCHEL (WUS), which is expressed in the nucellus and is sufficient to induce integuments non-cell autonomously from a region adjacent to its expression domain. In this study, we describe the expression pattern of the homeobox-leucine zipper gene PHABULOSA (PHB) during ovule development, demonstrating that adaxial-abaxial polarity is established from the very beginning of ovule development. Furthermore, we examined the expression pattern of PHB, INO, and WUS in ovules of plants, which are affected in integument initiation and thus defective in the transition from proximal-distal to adaxial-abaxial development. We found that NZZ is required to restrict PHB expression to the distal chalaza, from where the inner integument initiates. PHB expression is not established in the distal chalaza of two mutants, aintegumenta (ant) and wus, which fail to form integuments. Furthermore, we suggest that one mechanism by which WUS controls integument formation is by establishing the chalaza and that outer and inner integument identity determination depends on additional region-specific factors. In addition, we present evidence that NZZ is essential for the normal nucellar expression pattern of WUS. Thus, both WUS and PHB affect processes downstream of NZZ action during the transition from proximal--distal to adaxial--abaxial ovule development.
Collapse
Affiliation(s)
- Patrick Sieber
- Institute of Plant Biology and Zürich Basel Plant Science Centre, University of Zürich, Zollikerstrasse 107, Zürich 8008, Switzerland
| | | | | | | | | | | |
Collapse
|
45
|
Ito T, Wellmer F, Yu H, Das P, Ito N, Alves-Ferreira M, Riechmann JL, Meyerowitz EM. The homeotic protein AGAMOUS controls microsporogenesis by regulation of SPOROCYTELESS. Nature 2004; 430:356-60. [PMID: 15254538 DOI: 10.1038/nature02733] [Citation(s) in RCA: 217] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2004] [Accepted: 06/07/2004] [Indexed: 11/08/2022]
Abstract
The Arabidopsis homeotic gene AGAMOUS (AG) is necessary for the specification of reproductive organs (stamens and carpels) during the early steps of flower development. AG encodes a transcription factor of the MADS-box family that is expressed in stamen and carpel primordia. At later stages of development, AG is expressed in distinct regions of the reproductive organs. This suggests that AG might function during the maturation of stamens and carpels, as well as in their early development. However, the developmental processes that AG might control during organogenesis and the genes that are regulated by this factor are largely unknown. Here we show that microsporogenesis, the process leading to pollen formation, is induced by AG through activation of the SPOROCYTELESS gene (SPL, also known as NOZZLE,NZZ), a regulator of sporogenesis. Furthermore, we demonstrate that SPL can induce microsporogenesis in the absence of AG function, suggesting that AG controls a specific process during organogenesis by activating another regulator that performs a subset of its functions.
Collapse
Affiliation(s)
- Toshiro Ito
- Division of Biology 156-29, California Institute of Technology, 1200 E. California Blvd, Pasadena, California 91125, USA
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Sieber P, Petrascheck M, Barberis A, Schneitz K. Organ polarity in Arabidopsis. NOZZLE physically interacts with members of the YABBY family. PLANT PHYSIOLOGY 2004; 135:2172-85. [PMID: 15299139 PMCID: PMC520788 DOI: 10.1104/pp.104.040154] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2004] [Revised: 04/21/2004] [Accepted: 04/25/2004] [Indexed: 05/19/2023]
Abstract
Plant lateral organs exhibit proximal-distal and adaxial-abaxial polarity. In Arabidopsis, abaxial cell fate is regulated in part by putative transcription factors of the YABBY family, such as FILAMENTOUS FLOWER (FIL) and INNER NO OUTER (INO), by a mechanism that currently is not fully understood. NOZZLE (NZZ) encodes a plant-specific nuclear protein. Genetic evidence has shown that NZZ is involved in the positive feedback regulation of INO, thereby acting both as a temporal and spatial repressor of INO transcription. This mechanism allows the ovule primordium to complete its proximal-distal organization, prior to the onset of adaxial-abaxial development in the chalaza. During our study, we isolated FIL in a yeast two-hybrid screen using NZZ as bait. In vitro pull-down experiments confirmed the NZZ-FIL interaction. NZZ also bound INO and YABBY3, suggesting that NZZ generally interacts with YABBY proteins in vitro. The polar-charged region of NZZ was necessary and sufficient to bind to the zinc finger of INO and to interact with its C terminus carrying the high mobility group-like domain. We suggest that NZZ coordinates proximal-distal patterning and adaxial-abaxial polarity establishment in the developing ovule by directly binding to INO.
Collapse
Affiliation(s)
- Patrick Sieber
- Institute of Plant Biology and Zürich-Basel Plant Science Center, University of Zürich, 8008 Zurich, Switzerland
| | | | | | | |
Collapse
|
47
|
Park SO, Hwang S, Hauser BA. The phenotype of Arabidopsis ovule mutants mimics the morphology of primitive seed plants. Proc Biol Sci 2004; 271:311-6. [PMID: 15058443 PMCID: PMC1691585 DOI: 10.1098/rspb.2003.2544] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In seed plants, the ovule is the female reproductive structure, which surrounds and nourishes the gametophyte and embryo. This investigation describes the PRETTY FEW SEEDS2 (PFS2) locus, which regulates ovule patterning. The pfs2 mutant exhibited developmental defects in the maternal integuments and gametophyte. This mutation was inherited as a maternal trait, indicating that gametophyte defects resulted from ovule patterning aberrations. Specifically, the boundary between the chalaza and the nucellus, two regions of the ovule primordia, shifted towards the distal end of pfs2 ovule primordia. Results indicated that the PFS2 locus could: (i) be involved in the development of either the nucellus or the chalaza; or (ii) establish a boundary between these two regions. Examination of genetic interactions of the pfs2 mutation with other well-characterized ovule loci indicates that this locus affects integument morphogenesis. Interestingly, the pfs2 inner no outer and pfs2 strubbelig double mutants had inner integuments that appeared similar to their ancestral precursor. The fossil record indicates that the inner integument evolved by fusion of sterilized sporangia or branches around a central megasporangium. The question of whether the structures observed in these double mutants are homologous or merely analogous to the ancestral precursors of the inner integument is discussed.
Collapse
Affiliation(s)
- Sung Ok Park
- Department of Botany, University of Florida, Gainesville 32611-8526, USA
| | | | | |
Collapse
|
48
|
Meister RJ, Williams LA, Monfared MM, Gallagher TL, Kraft EA, Nelson CG, Gasser CS. Definition and interactions of a positive regulatory element of the Arabidopsis INNER NO OUTER promoter. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2004; 37:426-38. [PMID: 14731261 DOI: 10.1046/j.1365-313x.2003.01971.x] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
INNER NO OUTER (INO) expression is limited to the abaxial cell layer of the incipient and developing outer integument in Arabidopsis ovules. Using deletion analysis of the previously defined INO promoter (P-INO), at least three distinct regions that contribute to the endogenous INO expression pattern were identified. One such positive element, designated POS9, which comprises at least three distinct subelements, was found to include sufficient information to duplicate the INO expression pattern when four or more copies were used in conjunction with a heterologous minimal promoter. While known regulators of INO, including INO, SUPERMAN, BELL1, and AINTEGUMENTA, did not detectably interact with POS9 in yeast one-hybrid assays, two groups of proteins that interact specifically with POS9 were identified in one-hybrid library screens. Members of one group include C2H2 zinc finger motifs. Members of the second group contain a novel, conserved DNA-binding region and were designated the BASIC PENTACYSTEINE (BPC) proteins on the basis of conserved features of this region. The BPC proteins are nuclear localized and specifically bind in vitro to GA dinucleotide repeats located within POS9. The widespread expression patterns of the BPCs and the large number of GA repeat potential target sequences in the Arabidopsis genome indicate that BPC proteins may affect expression of genes involved in a variety of plant processes.
Collapse
Affiliation(s)
- Robert J Meister
- Section of Molecular and Cellular Biology, University of California-Davis, One Shields Avenue, Davis, CA 95616, USA
| | | | | | | | | | | | | |
Collapse
|
49
|
Chen H, Rosin FM, Prat S, Hannapel DJ. Interacting transcription factors from the three-amino acid loop extension superclass regulate tuber formation. PLANT PHYSIOLOGY 2003; 132:1391-404. [PMID: 12857821 PMCID: PMC167079 DOI: 10.1104/pp.103.022434] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2003] [Revised: 03/28/2003] [Accepted: 04/04/2003] [Indexed: 05/18/2023]
Abstract
Using the yeast (Saccharomyces cerevisiae) two-hybrid system and a potato (Solanum tuberosum) KNOX protein, designated POTH1, as bait, we have identified seven distinct interacting proteins from a stolon library of potato. All seven cDNAs are members of the BEL1-like family of transcription factors. Among these proteins, there are at least four regions of high sequence conservation including the homeodomain, the proline-tyrosine-proline three-amino acid loop extension, the SKY box, and a 120-amino acid region upstream from the homeodomain. Through deletion analysis, we identified a protein-binding domain present in the carboxy end of the KNOX domain of POTH1. The protein-binding domain in the BEL1 protein is located in the amino-terminal one-half of the 120-residue conserved region of the BELs. RNA-blot analysis showed differential patterns of RNA accumulation for the BELs in various potato organs. The level of StBEL5 mRNA increased in response to a short-day photoperiod in both leaves and stolons. Similar to sense mutants of POTH1, transgenic lines that overexpressed StBEL5 exhibited enhanced tuber formation even under noninductive conditions. Unlike POTH1 sense lines, however, these BEL lines did not exhibit the extreme leaf and stem morphology characteristic of KNOX overexpressers and displayed a more rapid rate of growth than control plants. Both StBEL5 and POTH1 sense lines exhibited an increase in cytokinin levels in shoot tips. StBEL5 lines also exhibited a decrease in the levels of GA 20-oxidase1 mRNA in stolon tips from long-day plants. Our results demonstrate an interaction between KNOX and BEL1-like transcription factors of potato that may potentially regulate processes of development.
Collapse
Affiliation(s)
- Hao Chen
- Interdepartmental Plant Physiology Major, Department of Horticulture, Iowa State University, Ames, Iowa 50011-1100, USA
| | | | | | | |
Collapse
|