1
|
Burda I, Brauns F, Clark FK, Li CB, Roeder AHK. Robust organ size in Arabidopsis is primarily governed by cell growth rather than cell division patterns. Development 2024; 151:dev202531. [PMID: 39324278 PMCID: PMC11488635 DOI: 10.1242/dev.202531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 09/16/2024] [Indexed: 09/27/2024]
Abstract
Organ sizes and shapes are highly reproducible, or robust, within a species and individuals. Arabidopsis thaliana sepals, which are the leaf-like organs that enclose flower buds, have consistent size and shape, indicating robust development. Cell growth is locally heterogeneous due to intrinsic and extrinsic noise. To achieve robust organ shape, fluctuations in cell growth must average to an even growth rate, which requires that fluctuations are uncorrelated or anti-correlated in time and space. Here, we live image and quantify the development of sepals with an increased or decreased number of cell divisions (lgo mutant and LGO overexpression, respectively), a mutant with altered cell growth variability (ftsh4), and double mutants combining these. Changes in the number of cell divisions do not change the overall growth pattern. By contrast, in ftsh4 mutants, cell growth accumulates in patches of over- and undergrowth owing to correlations that impair averaging, resulting in increased organ shape variability. Thus, we demonstrate in vivo that the number of cell divisions does not affect averaging of cell growth, preserving robust organ morphogenesis, whereas correlated growth fluctuations impair averaging.
Collapse
Affiliation(s)
- Isabella Burda
- Genetics, Genomics, and Development Graduate Program, Cornell University, Ithaca, NY 14850, USA
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14850, USA
- School of Integrative Plant Science, Section of Plant Biology,Cornell University, Ithaca, NY 14850, USA
| | - Fridtjof Brauns
- Kavli Institute for Theoretical Physics, University of California Santa Barbara, Santa Barbara, CA 93106, USA
| | - Frances K. Clark
- Genetics, Genomics, and Development Graduate Program, Cornell University, Ithaca, NY 14850, USA
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14850, USA
- School of Integrative Plant Science, Section of Plant Biology,Cornell University, Ithaca, NY 14850, USA
| | - Chun-Biu Li
- Department of Mathematics, Stockholm University, Stockholm 10691, Sweden
| | - Adrienne H. K. Roeder
- Genetics, Genomics, and Development Graduate Program, Cornell University, Ithaca, NY 14850, USA
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14850, USA
- School of Integrative Plant Science, Section of Plant Biology,Cornell University, Ithaca, NY 14850, USA
| |
Collapse
|
2
|
Pinelli M, Makdissi S, Scur M, Parsons BD, Baker K, Otley A, MacIntyre B, Nguyen HD, Kim PK, Stadnyk AW, Di Cara F. Peroxisomal cholesterol metabolism regulates yap-signaling, which maintains intestinal epithelial barrier function and is altered in Crohn's disease. Cell Death Dis 2024; 15:536. [PMID: 39069546 DOI: 10.1038/s41419-024-06925-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 07/08/2024] [Accepted: 07/18/2024] [Indexed: 07/30/2024]
Abstract
Intestinal epithelial cells line the luminal surface to establish the intestinal barrier, where the cells play essential roles in the digestion of food, absorption of nutrients and water, protection from microbial infections, and maintaining symbiotic interactions with the commensal microbial populations. Maintaining and coordinating all these functions requires tight regulatory signaling, which is essential for intestinal homeostasis and organismal health. Dysfunction of intestinal epithelial cells, indeed, is linked to gastrointestinal disorders such as irritable bowel syndrome, inflammatory bowel disease, and gluten-related enteropathies. Emerging evidence suggests that peroxisome metabolic functions are crucial in maintaining intestinal epithelial cell functions and intestinal epithelium regeneration and, therefore, homeostasis. Here, we investigated the molecular mechanisms by which peroxisome metabolism impacts enteric health using the fruit fly Drosophila melanogaster and murine model organisms and clinical samples. We show that peroxisomes control cellular cholesterol, which in turn regulates the conserved yes-associated protein-signaling and contributes to intestinal epithelial structure and epithelial barrier function. Moreover, analysis of intestinal organoid cultures derived from biopsies of patients affected by Crohn's Disease revealed that the dysregulation of peroxisome number, excessive cellular cholesterol, and inhibition of Yap-signaling are markers of disease and could be novel diagnostic and/or therapeutic targets for treating Crohn's Disease. Our studies provided mechanistic insights on peroxisomal signaling in intestinal epithelial cell functions and identified cholesterol as a novel metabolic regulator of yes-associated protein-signaling in tissue homeostasis.
Collapse
Affiliation(s)
- Marinella Pinelli
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
- Department of Pediatrics, Dalhousie University, Izaak Walton Killam (IWK) Health Centre, Halifax, NS, Canada
| | - Stephanie Makdissi
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
- Department of Pediatrics, Dalhousie University, Izaak Walton Killam (IWK) Health Centre, Halifax, NS, Canada
| | - Michal Scur
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
| | - Brendon D Parsons
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
| | - Kristi Baker
- Department of Oncology, University of Alberta, Edmonton, AB, Canada
| | - Anthony Otley
- Department of Pediatrics, Dalhousie University, Izaak Walton Killam (IWK) Health Centre, Halifax, NS, Canada
| | - Brad MacIntyre
- Department of Pediatrics, Dalhousie University, Izaak Walton Killam (IWK) Health Centre, Halifax, NS, Canada
| | - Huong D Nguyen
- Department of Pediatrics, Dalhousie University, Izaak Walton Killam (IWK) Health Centre, Halifax, NS, Canada
- Department of Pathology, Dalhousie University, Halifax, NS, Canada
| | - Peter K Kim
- The Hospital for Sick Children, Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Andrew W Stadnyk
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
- Department of Pediatrics, Dalhousie University, Izaak Walton Killam (IWK) Health Centre, Halifax, NS, Canada
- Department of Pathology, Dalhousie University, Halifax, NS, Canada
| | - Francesca Di Cara
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada.
- Department of Pediatrics, Dalhousie University, Izaak Walton Killam (IWK) Health Centre, Halifax, NS, Canada.
| |
Collapse
|
3
|
Liberali P, Schier AF. The evolution of developmental biology through conceptual and technological revolutions. Cell 2024; 187:3461-3495. [PMID: 38906136 DOI: 10.1016/j.cell.2024.05.053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/28/2024] [Accepted: 05/29/2024] [Indexed: 06/23/2024]
Abstract
Developmental biology-the study of the processes by which cells, tissues, and organisms develop and change over time-has entered a new golden age. After the molecular genetics revolution in the 80s and 90s and the diversification of the field in the early 21st century, we have entered a phase when powerful technologies provide new approaches and open unexplored avenues. Progress in the field has been accelerated by advances in genomics, imaging, engineering, and computational biology and by emerging model systems ranging from tardigrades to organoids. We summarize how revolutionary technologies have led to remarkable progress in understanding animal development. We describe how classic questions in gene regulation, pattern formation, morphogenesis, organogenesis, and stem cell biology are being revisited. We discuss the connections of development with evolution, self-organization, metabolism, time, and ecology. We speculate how developmental biology might evolve in an era of synthetic biology, artificial intelligence, and human engineering.
Collapse
Affiliation(s)
- Prisca Liberali
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland; University of Basel, Basel, Switzerland.
| | | |
Collapse
|
4
|
Bardhan S, Bhargava N, Dighe S, Vats N, Naganathan SR. Emergence of a left-right symmetric body plan in vertebrate embryos. Curr Top Dev Biol 2024; 159:310-342. [PMID: 38729680 DOI: 10.1016/bs.ctdb.2024.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2024]
Abstract
External bilateral symmetry is a prevalent feature in vertebrates, which emerges during early embryonic development. To begin with, vertebrate embryos are largely radially symmetric before transitioning to bilaterally symmetry, after which, morphogenesis of various bilateral tissues (e.g somites, otic vesicle, limb bud), and structures (e.g palate, jaw) ensue. While a significant amount of work has probed the mechanisms behind symmetry breaking in the left-right axis leading to asymmetric positioning of internal organs, little is known about how bilateral tissues emerge at the same time with the same shape and size and at the same position on the two sides of the embryo. By discussing emergence of symmetry in many bilateral tissues and structures across vertebrate model systems, we highlight that understanding symmetry establishment is largely an open field, which will provide deep insights into fundamental problems in developmental biology for decades to come.
Collapse
Affiliation(s)
- Siddhartha Bardhan
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | - Nandini Bhargava
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | - Swarali Dighe
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | - Neha Vats
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | - Sundar Ram Naganathan
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India.
| |
Collapse
|
5
|
Matamoro-Vidal A, Cumming T, Davidović A, Levillayer F, Levayer R. Patterned apoptosis has an instructive role for local growth and tissue shape regulation in a fast-growing epithelium. Curr Biol 2024; 34:376-388.e7. [PMID: 38215743 PMCID: PMC10808510 DOI: 10.1016/j.cub.2023.12.031] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 07/13/2023] [Accepted: 12/11/2023] [Indexed: 01/14/2024]
Abstract
What regulates organ size and shape remains one fundamental mystery of modern biology. Research in this area has primarily focused on deciphering the regulation in time and space of growth and cell division, while the contribution of cell death has been overall neglected. This includes studies of the Drosophila wing, one of the best-characterized systems for the study of growth and patterning, undergoing massive growth during larval stage and important morphogenetic remodeling during pupal stage. So far, it has been assumed that cell death was relatively neglectable in this tissue both during larval stage and pupal stage, and as a result, the pattern of growth was usually attributed to the distribution of cell division. Here, using systematic mapping and registration combined with quantitative assessment of clone size and disappearance as well as live imaging, we outline a persistent pattern of cell death and clone elimination emerging in the larval wing disc and persisting during pupal wing morphogenesis. Local variation of cell death is associated with local variation of clone size, pointing to an impact of cell death on local growth that is not fully compensated by proliferation. Using morphometric analyses of adult wing shape and genetic perturbations, we provide evidence that patterned death locally and globally affects adult wing shape and size. This study describes a roadmap for precise assessment of the contribution of cell death to tissue shape and outlines an important instructive role of cell death in modulating quantitatively local growth and morphogenesis of a fast-growing tissue.
Collapse
Affiliation(s)
- Alexis Matamoro-Vidal
- Department of Developmental and Stem Cell Biology, Institut Pasteur, CNRS UMR 3738, Université Paris Cité, Cell Death and Epithelial Homeostasis Unit, 75015 Paris, France
| | - Tom Cumming
- Department of Developmental and Stem Cell Biology, Institut Pasteur, CNRS UMR 3738, Université Paris Cité, Cell Death and Epithelial Homeostasis Unit, 75015 Paris, France; PPU program Institut Pasteur, Sorbonne Université, Collège Doctoral, 75005 Paris, France
| | - Anđela Davidović
- Institut Pasteur, Université Paris Cité, Bioinformatics and Biostatistics Hub, 75015 Paris, France
| | - Florence Levillayer
- Department of Developmental and Stem Cell Biology, Institut Pasteur, CNRS UMR 3738, Université Paris Cité, Cell Death and Epithelial Homeostasis Unit, 75015 Paris, France
| | - Romain Levayer
- Department of Developmental and Stem Cell Biology, Institut Pasteur, CNRS UMR 3738, Université Paris Cité, Cell Death and Epithelial Homeostasis Unit, 75015 Paris, France.
| |
Collapse
|
6
|
Stojanovski K, Gheorghe I, Lenart P, Lanjuin A, Mair WB, Towbin BD. Maintenance of appropriate size scaling of the C. elegans pharynx by YAP-1. Nat Commun 2023; 14:7564. [PMID: 37985670 PMCID: PMC10661912 DOI: 10.1038/s41467-023-43230-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 11/02/2023] [Indexed: 11/22/2023] Open
Abstract
Even slight imbalance between the growth rate of different organs can accumulate to a large deviation from their appropriate size during development. Here, we use live imaging of the pharynx of C. elegans to ask if and how organ size scaling nevertheless remains uniform among individuals. Growth trajectories of hundreds of individuals reveal that pharynxes grow by a near constant volume per larval stage that is independent of their initial size, such that undersized pharynxes catch-up in size during development. Tissue-specific depletion of RAGA-1, an activator of mTOR and growth, shows that maintaining correct pharynx-to-body size proportions involves a bi-directional coupling between pharynx size and body growth. In simulations, this coupling cannot be explained by limitation of food uptake alone, and genetic experiments reveal an involvement of the mechanotransducing transcriptional co-regulator yap-1. Our data suggests that mechanotransduction coordinates pharynx growth with other tissues, ensuring body plan uniformity among individuals.
Collapse
Affiliation(s)
| | - Ioana Gheorghe
- Institute of Cell Biology, University of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Peter Lenart
- Institute of Cell Biology, University of Bern, Bern, Switzerland
| | - Anne Lanjuin
- Department Molecular Metabolism, Harvard TH Chan School of Public Health, Boston, MA, USA
| | - William B Mair
- Department Molecular Metabolism, Harvard TH Chan School of Public Health, Boston, MA, USA
| | | |
Collapse
|
7
|
Burda I, Li CB, Clark FK, Roeder AHK. Robust organ size in Arabidopsis is primarily governed by cell growth rather than cell division patterns. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.11.566685. [PMID: 38014347 PMCID: PMC10680605 DOI: 10.1101/2023.11.11.566685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Organ sizes and shapes are highly reproducible, or robust, within a species and individuals. Arabidopsis thaliana sepals, which are the leaf-like organs that enclose flower buds, have consistent size and shape, which indicates robust development. Counterintuitively, variability in cell growth rate over time and between cells facilitates robust development because cumulative cell growth averages to a uniform rate. Here we investigate how sepal morphogenesis is robust to changes in cell division but not robust to changes in cell growth variability. We live image and quantitatively compare the development of sepals with increased or decreased cell division rate (lgo mutant and LGO overexpression, respectively), a mutant with altered cell growth variability (ftsh4), and double mutants combining these. We find that robustness is preserved when cell division rate changes because there is no change in the spatial pattern of growth. Meanwhile when robustness is lost in ftsh4 mutants, cell growth accumulates unevenly, and cells have disorganized growth directions. Thus, we demonstrate in vivo that both cell growth rate and direction average in robust development, preserving robustness despite changes in cell division.
Collapse
Affiliation(s)
- Isabella Burda
- Genetics, Genomics, and Development Graduate Program, Cornell University, Ithaca, NY 14850, USA
- Weill Institute for Cell and Molecular Biology Cornell University, Ithaca, NY, 14850, USA
- School of Integrative Plant Science, Section of Plant Biology, Cornell University, Ithaca, NY, 14850, USA
| | - Chun-Biu Li
- Department of Mathematics, Stockholm University, Stockholm 10691, Sweden
| | - Frances K. Clark
- Genetics, Genomics, and Development Graduate Program, Cornell University, Ithaca, NY 14850, USA
- Weill Institute for Cell and Molecular Biology Cornell University, Ithaca, NY, 14850, USA
- School of Integrative Plant Science, Section of Plant Biology, Cornell University, Ithaca, NY, 14850, USA
| | - Adrienne H. K. Roeder
- Genetics, Genomics, and Development Graduate Program, Cornell University, Ithaca, NY 14850, USA
- Weill Institute for Cell and Molecular Biology Cornell University, Ithaca, NY, 14850, USA
- School of Integrative Plant Science, Section of Plant Biology, Cornell University, Ithaca, NY, 14850, USA
| |
Collapse
|
8
|
Jing W, Gong F, Liu G, Deng Y, Liu J, Yang W, Sun X, Li Y, Gao J, Zhou X, Ma N. Petal size is controlled by the MYB73/TPL/HDA19-miR159-CKX6 module regulating cytokinin catabolism in Rosa hybrida. Nat Commun 2023; 14:7106. [PMID: 37925502 PMCID: PMC10625627 DOI: 10.1038/s41467-023-42914-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 10/25/2023] [Indexed: 11/06/2023] Open
Abstract
The size of plant lateral organs is determined by well-coordinated cell proliferation and cell expansion. Here, we report that miR159, an evolutionarily conserved microRNA, plays an essential role in regulating cell division in rose (Rosa hybrida) petals by modulating cytokinin catabolism. We uncover that Cytokinin Oxidase/Dehydrogenase6 (CKX6) is a target of miR159 in petals. Knocking down miR159 levels results in the accumulation of CKX6 transcripts and earlier cytokinin clearance, leading to a shortened cell division period and smaller petals. Conversely, knocking down CKX6 causes cytokinin accumulation and a prolonged developmental cell division period, mimicking the effects of exogenous cytokinin application. MYB73, a R2R3-type MYB transcription repressor, recruits a co-repressor (TOPLESS) and a histone deacetylase (HDA19) to form a suppression complex, which regulates MIR159 expression by modulating histone H3 lysine 9 acetylation levels at the MIR159 promoter. Our work sheds light on mechanisms for ensuring the correct timing of the exit from the cell division phase and thus organ size regulation by controlling cytokinin catabolism.
Collapse
Affiliation(s)
- Weikun Jing
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing, 100193, China
- Flower Research Institute of Yunnan Academy of Agricultural Sciences, Kunming, Yunnan, 650205, China
- School of Food and Medicine, Shenzhen Polytechnic, Shenzhen, Guangdong, 518055, China
| | - Feifei Gong
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Guoqin Liu
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing, 100193, China
- College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Yinglong Deng
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Jiaqi Liu
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Wenjing Yang
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Xiaoming Sun
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Yonghong Li
- School of Food and Medicine, Shenzhen Polytechnic, Shenzhen, Guangdong, 518055, China
| | - Junping Gao
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Xiaofeng Zhou
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing, 100193, China.
| | - Nan Ma
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
9
|
Xu W, Gong J, Chen Y, Chen Y, Chen S, Wu Y, He Y, Li C, Yu H, Xie L. Effects of Gestational Diabetes Mellitus and Selenium Deficiency on the Offspring Growth and Blood Glucose Mechanisms of C57BL/6J Mice. Nutrients 2023; 15:4519. [PMID: 37960172 PMCID: PMC10647445 DOI: 10.3390/nu15214519] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/21/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023] Open
Abstract
This study aimed to explore the effects and mechanisms of maternal gestational diabetes mellitus (GDM) and selenium (Se) deficiency on the growth and glucose metabolism of offspring. Female C57BL/6J mice were divided into four groups as follows: a control group, a GDM group, a Se deficiency group, and a GDM with Se deficiency group. GDM animal models were established via S961. Pregnant mice fed their offspring until weaning. Then, offspring continued to be fed with a basic diet until adulthood. Body weight and fasting blood glucose were measured weekly. Se content, oxidative stress indicators, and the protein expression of the PI3K/Akt signaling pathway were detected. GDM increased susceptibility to obesity in lactating offspring, with gender differences observed in adult offspring. The effect of Se deficiency on SOD activity only appeared in female offspring during adulthood but was shown in male offspring during weaning though it disappeared during adulthood. GDM and Se deficiency increased the risk of abnormal glucose metabolism in female offspring from weaning to adulthood but gradually decreased in male offspring. The influence on the expression of PI3K/Akt signaling pathway-related proteins showed the same trend. GDM and Se deficiency affected the growth and glucose metabolism of offspring through oxidative stress and PI3K/Akt signaling pathway-related proteins, and gender differences existed.
Collapse
Affiliation(s)
- Wenhui Xu
- School of Public Health, Jilin University, Changchun 130012, China; (W.X.); (J.G.); (Y.C.); (S.C.); (Y.W.); (Y.H.); (C.L.)
| | - Jiayu Gong
- School of Public Health, Jilin University, Changchun 130012, China; (W.X.); (J.G.); (Y.C.); (S.C.); (Y.W.); (Y.H.); (C.L.)
| | - Yifei Chen
- School of Public Health, Jilin University, Changchun 130012, China; (W.X.); (J.G.); (Y.C.); (S.C.); (Y.W.); (Y.H.); (C.L.)
| | - Yiru Chen
- Clinical Nutrition Department, Third Hospital of Jilin University, Changchun 130032, China;
| | - Shutong Chen
- School of Public Health, Jilin University, Changchun 130012, China; (W.X.); (J.G.); (Y.C.); (S.C.); (Y.W.); (Y.H.); (C.L.)
| | - Yanyan Wu
- School of Public Health, Jilin University, Changchun 130012, China; (W.X.); (J.G.); (Y.C.); (S.C.); (Y.W.); (Y.H.); (C.L.)
| | - Yuan He
- School of Public Health, Jilin University, Changchun 130012, China; (W.X.); (J.G.); (Y.C.); (S.C.); (Y.W.); (Y.H.); (C.L.)
| | - Chenxu Li
- School of Public Health, Jilin University, Changchun 130012, China; (W.X.); (J.G.); (Y.C.); (S.C.); (Y.W.); (Y.H.); (C.L.)
| | - Haitao Yu
- School of Public Health, Jilin University, Changchun 130012, China; (W.X.); (J.G.); (Y.C.); (S.C.); (Y.W.); (Y.H.); (C.L.)
| | - Lin Xie
- School of Public Health, Jilin University, Changchun 130012, China; (W.X.); (J.G.); (Y.C.); (S.C.); (Y.W.); (Y.H.); (C.L.)
| |
Collapse
|
10
|
Perez-Mockus G, Cocconi L, Alexandre C, Aerne B, Salbreux G, Vincent JP. The Drosophila ecdysone receptor promotes or suppresses proliferation according to ligand level. Dev Cell 2023; 58:2128-2139.e4. [PMID: 37769663 PMCID: PMC7615657 DOI: 10.1016/j.devcel.2023.08.032] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 07/20/2023] [Accepted: 08/30/2023] [Indexed: 10/03/2023]
Abstract
The steroid hormone 20-hydroxy-ecdysone (20E) promotes proliferation in Drosophila wing precursors at low titer but triggers proliferation arrest at high doses. Remarkably, wing precursors proliferate normally in the complete absence of the 20E receptor, suggesting that low-level 20E promotes proliferation by overriding the default anti-proliferative activity of the receptor. By contrast, 20E needs its receptor to arrest proliferation. Dose-response RNA sequencing (RNA-seq) analysis of ex vivo cultured wing precursors identifies genes that are quantitatively activated by 20E across the physiological range, likely comprising positive modulators of proliferation and other genes that are only activated at high doses. We suggest that some of these "high-threshold" genes dominantly suppress the activity of the pro-proliferation genes. We then show mathematically and with synthetic reporters that combinations of basic regulatory elements can recapitulate the behavior of both types of target genes. Thus, a relatively simple genetic circuit can account for the bimodal activity of this hormone.
Collapse
Affiliation(s)
| | - Luca Cocconi
- The Francis Crick Institute, London NW1 1AT, UK.
| | | | | | - Guillaume Salbreux
- The Francis Crick Institute, London NW1 1AT, UK; Department of Genetics and Evolution, University of Geneva, Quai Ernest-Ansermet 30, 1205 Geneva, Switzerland.
| | | |
Collapse
|
11
|
Napoli AJ, Laderwager S, Zoodsma JD, Biju B, Mucollari O, Schubel SK, Aprea C, Sayed A, Morgan K, Napoli A, Flanagan S, Wollmuth LP, Sirotkin HI. Loss of NMDA receptor function during development results in decreased KCC2 expression and increased neurons in the zebrafish forebrain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.25.554812. [PMID: 37786708 PMCID: PMC10541604 DOI: 10.1101/2023.08.25.554812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
Developmental neurogenesis is a tightly regulated spatiotemporal process with its dysregulation implicated in neurodevelopmental disorders. NMDA receptors are glutamate-gated ion channels that are widely expressed in the early nervous system, yet their contribution to neurogenesis is poorly understood. Notably, a variety of mutations in genes encoding NMDA receptor subunits are associated with neurodevelopmental disorders. To rigorously define the role of NMDA receptors in developmental neurogenesis, we used a mutant zebrafish line ( grin1 -/- ) that lacks all NMDA receptors yet survives to 10 days post-fertilization, offering the opportunity to study post-embryonic neurodevelopment in the absence of NMDA receptors. Focusing on the forebrain, we find that these fish have a progressive supernumerary neuron phenotype confined to the telencephalon at the end of embryonic neurogenesis, but which extends to all forebrain regions during postembryonic neurogenesis. This enhanced neuron population does not arise directly from increased numbers or mitotic activity of radial glia cells, the principal neural stem cells. Rather, it stems from a lack of timely maturation of transit-amplifying neuroblasts into post-mitotic neurons, as indicated by a decrease in expression of the ontogenetically-expressed chloride transporter, KCC2. Pharmacological blockade with MK-801 recapitulates the grin1 -/- supernumerary neuron phenotype, indicating a requirement for ionotropic signaling. Thus, NMDA receptors are required for suppression of indirect, transit amplifying cell-driven neurogenesis by promoting maturational termination of mitosis. Loss of suppression results in neuronal overpopulation that can fundamentally change brain circuitry and may be a key factor in pathogenesis of neurodevelopmental disorders caused by NMDA receptor dysfunction.
Collapse
|
12
|
Trinh DC, Martin M, Bald L, Maizel A, Trehin C, Hamant O. Increased gene expression variability hinders the formation of regional mechanical conflicts leading to reduced organ shape robustness. Proc Natl Acad Sci U S A 2023; 120:e2302441120. [PMID: 37459526 PMCID: PMC10372692 DOI: 10.1073/pnas.2302441120] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 05/04/2023] [Indexed: 07/20/2023] Open
Abstract
To relate gene networks and organ shape, one needs to address two wicked problems: i) Gene expression is often variable locally, and shape is reproducible globally; ii) gene expression can have cascading effects on tissue mechanics, with possibly counterintuitive consequences for the final organ shape. Here, we address such wicked problems, taking advantage of simpler plant organ development where shape only emerges from cell division and elongation. We confirm that mutation in VERNALIZATION INDEPENDENCE 3 (VIP3), a subunit of the conserved polymerase-associated factor 1 complex (Paf1C), increases gene expression variability in Arabidopsis. Then, we focused on the Arabidopsis sepal, which exhibits a reproducible shape and stereotypical regional growth patterns. In vip3 sepals, we measured higher growth heterogeneity between adjacent cells. This even culminated in the presence of negatively growing cells in specific growth conditions. Interestingly, such increased local noise interfered with the stereotypical regional pattern of growth. We previously showed that regional differential growth at the wild-type sepal tip triggers a mechanical conflict, to which cells resist by reinforcing their walls, leading to growth arrest. In vip3, the disturbed regional growth pattern delayed organ growth arrest and increased final organ shape variability. Altogether, we propose that gene expression variability is managed by Paf1C to ensure organ robustness by building up mechanical conflicts at the regional scale, instead of the local scale.
Collapse
Affiliation(s)
- Duy-Chi Trinh
- Laboratoire de Reproduction et Développement des Plantes, Université de Lyon, Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon, Institut National de la Recherche pour l’Agriculture, l’Alimentation et l’Environnement, CNRS, 69364Lyon Cedex 07, France
- Department of Pharmacological, Medical and Agronomical Biotechnology, University of Science and Technology of Hanoi, Cau Giay District, Hanoi11300, Vietnam
| | - Marjolaine Martin
- Laboratoire de Reproduction et Développement des Plantes, Université de Lyon, Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon, Institut National de la Recherche pour l’Agriculture, l’Alimentation et l’Environnement, CNRS, 69364Lyon Cedex 07, France
| | - Lotte Bald
- Center for Organismal Studies, University of Heidelberg, 69120Heidelberg, Germany
| | - Alexis Maizel
- Center for Organismal Studies, University of Heidelberg, 69120Heidelberg, Germany
| | - Christophe Trehin
- Laboratoire de Reproduction et Développement des Plantes, Université de Lyon, Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon, Institut National de la Recherche pour l’Agriculture, l’Alimentation et l’Environnement, CNRS, 69364Lyon Cedex 07, France
| | - Olivier Hamant
- Laboratoire de Reproduction et Développement des Plantes, Université de Lyon, Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon, Institut National de la Recherche pour l’Agriculture, l’Alimentation et l’Environnement, CNRS, 69364Lyon Cedex 07, France
| |
Collapse
|
13
|
Tenreiro MF, Branco MA, Cotovio JP, Cabral JMS, Fernandes TG, Diogo MM. Advancing organoid design through co-emergence, assembly, and bioengineering. Trends Biotechnol 2023; 41:923-938. [PMID: 36653200 DOI: 10.1016/j.tibtech.2022.12.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 12/19/2022] [Accepted: 12/30/2022] [Indexed: 01/18/2023]
Abstract
Human adult stem cells and patient-derived induced pluripotent stem cells represent promising tools to understand human biology, development, and disease. Under a permissive environment, stem cell derivatives can self-organize and reconstruct their native milieu, resulting in the creation of organ-like entities known as organoids. Although organoids represent a breakthrough in the stem cell field, there are still considerable shortcomings preventing their widespread use, namely their variability, limited function, and reductionist size. In the past few years, sophisticated methodologies have been proposed to allow the design of organoids with improved biological fidelity and physiological relevance. Here, we summarize these emerging technologies and provide insights into how they can be utilized to fulfill the potential of stem cells.
Collapse
Affiliation(s)
- Miguel F Tenreiro
- Department of Bioengineering and Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal; Associate Laboratory i4HB-Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| | - Mariana A Branco
- Department of Bioengineering and Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal; Associate Laboratory i4HB-Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| | - João P Cotovio
- Department of Bioengineering and Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal; Associate Laboratory i4HB-Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| | - Joaquim M S Cabral
- Department of Bioengineering and Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal; Associate Laboratory i4HB-Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| | - Tiago G Fernandes
- Department of Bioengineering and Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal; Associate Laboratory i4HB-Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| | - Maria Margarida Diogo
- Department of Bioengineering and Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal; Associate Laboratory i4HB-Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal.
| |
Collapse
|
14
|
Del Rocío Pérez Baca M, Jacobs EZ, Vantomme L, Leblanc P, Bogaert E, Dheedene A, De Cock L, Haghshenas S, Foroutan A, Levy MA, Kerkhof J, McConkey H, Chen CA, Batzir NA, Wang X, Palomares M, Carels M, Demaut B, Sadikovic B, Menten B, Yuan B, Vergult S, Callewaert B. A novel neurodevelopmental syndrome caused by loss-of-function of the Zinc Finger Homeobox 3 (ZFHX3) gene. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.05.22.23289895. [PMID: 37292950 PMCID: PMC10246128 DOI: 10.1101/2023.05.22.23289895] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Neurodevelopmental disorders (NDDs) result from impaired development and functioning of the brain. Here, we identify loss-of-function variation in ZFHX3 as a novel cause for syndromic intellectual disability (ID). ZFHX3, previously known as ATBF1, is a zinc-finger homeodomain transcription factor involved in multiple biological processes including cell differentiation and tumorigenesis. Through international collaboration, we collected clinical and morphometric data (Face2Gene) of 41 individuals with protein truncating variants (PTVs) or (partial) deletions of ZFHX3 . We used data mining, RNA and protein analysis to identify the subcellular localization and spatiotemporal expression of ZFHX3 in multiple in vitro models. We identified the DNA targets of ZFHX3 using ChIP seq. Immunoprecipitation followed by mass spectrometry indicated potential binding partners of endogenous ZFHX3 in neural stem cells that were subsequently confirmed by reversed co-immunoprecipitation and western blot. We evaluated a DNA methylation profile associated with ZFHX3 haploinsufficiency using DNA methylation analysis on whole blood extracted DNA of six individuals with ZFHX3 PTVs and four with a (partial) deletion of ZFHX3 . A reversed genetic approach characterized the ZFHX3 orthologue in Drosophila melanogaster . Loss-of-function variation of ZFHX3 consistently associates with (mild) ID and/or behavioural problems, postnatal growth retardation, feeding difficulties, and recognizable facial characteristics, including the rare occurrence of cleft palate. Nuclear abundance of ZFHX3 increases during human brain development and neuronal differentiation in neural stem cells and SH-SY5Y cells, ZFHX3 interacts with the chromatin remodelling BRG1/Brm-associated factor complex and the cleavage and polyadenylation complex. In line with a role for chromatin remodelling, ZFHX3 haploinsufficiency associates with a specific DNA methylation profile in leukocyte-derived DNA. The target genes of ZFHX3 are implicated in neuron and axon development. In Drosophila melanogaster , z fh2, considered to be the ZFHX3 orthologue, is expressed in the third instar larval brain. Ubiquitous and neuron-specific knockdown of zfh2 results in adult lethality underscoring a key role for zfh2 in development and neurodevelopment. Interestingly, ectopic expression of zfh2 as well as ZFHX3 in the developing wing disc results in a thoracic cleft phenotype. Collectively, our data shows that loss-of-function variants in ZFHX3 are a cause of syndromic ID, that associates with a specific DNA methylation profile. Furthermore, we show that ZFHX3 participates in chromatin remodelling and mRNA processing.
Collapse
|
15
|
Tkemaladze J. Reduction, proliferation, and differentiation defects of stem cells over time: a consequence of selective accumulation of old centrioles in the stem cells? Mol Biol Rep 2023; 50:2751-2761. [PMID: 36583780 DOI: 10.1007/s11033-022-08203-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 12/13/2022] [Indexed: 12/31/2022]
Abstract
BACKGROUND All molecules, structures, cells in organisms are subjected to destruction during the process of vital activities. In the organisms of most multicellular animals and humans, the regeneration process always takes place: destruction of old cells and their replacement with the new. The replacement of cells happens even if the cells are in perfect condition. The sooner the organism destroys the cells that emerged a certain time ago and replaces them with the new (i.e., the higher is the regeneration tempo), the younger the organism is. DISCUSSION Stem cells are progenitor cells of the substituting young cells. Asymmetric division of a mother stem cell gives rise to one, analogous to the mother, daughter cell, and to a second daughter cell that takes the path of further differentiation. Despite such asymmetric divisions, the pool of stem cells diminishes in its quantity over time. Moreover, intervals between stem cell divisions increase. The combination of these two processes causes the decline of regeneration tempo and aging of the organism. CONCLUSION During asymmetric stem cell divisions daughter cells, with preserved potency of the stem cell, selectively conserve mother (old) centrioles. In contrast with molecules of nuclear DNA, reparations do not take place in centrioles. Hypothetically, old centrioles are more subjected to destruction than other structures of a cell-which makes centrioles potentially the main structure of aging.
Collapse
Affiliation(s)
- Jaba Tkemaladze
- Free University of Tbilisi, 240 David Aghmashenebeli Alley, 0159, Tbilisi, Georgia.
| |
Collapse
|
16
|
Destefanis F, Manara V, Santarelli S, Zola S, Brambilla M, Viola G, Maragno P, Signoria I, Viero G, Pasini ME, Penzo M, Bellosta P. Reduction of nucleolar NOC1 leads to the accumulation of pre-rRNAs and induces Xrp1, affecting growth and resulting in cell competition. J Cell Sci 2022; 135:285861. [PMID: 36314272 PMCID: PMC9789402 DOI: 10.1242/jcs.260110] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 10/25/2022] [Indexed: 12/12/2022] Open
Abstract
NOC1 is a nucleolar protein necessary in yeast for both transport and maturation of ribosomal subunits. Here, we show that Drosophila NOC1 (annotated CG7839) is necessary for rRNAs maturation and for a correct animal development. Its ubiquitous downregulation results in a dramatic decrease in polysome level and of protein synthesis. NOC1 expression in multiple organs, such as the prothoracic gland and the fat body, is necessary for their proper functioning. Reduction of NOC1 in epithelial cells from the imaginal discs results in clones that die by apoptosis, an event that is partially rescued in a Minute/+ background, suggesting that reduction of NOC1 induces the cells to become less fit and to acquire a 'loser' state. NOC1 downregulation activates the pro-apoptotic Eiger-JNK pathway and leads to an increase of Xrp1, which results in the upregulation of DILP8, a member of the insulin/relaxin-like family known to coordinate organ growth with animal development. Our data underline NOC1 as an essential gene in ribosome biogenesis and highlight its novel functions in the control of growth and cell competition.
Collapse
Affiliation(s)
- Francesca Destefanis
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Via Sommarive 9, 38123 Trento, Italy
| | - Valeria Manara
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Via Sommarive 9, 38123 Trento, Italy
| | - Stefania Santarelli
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Via Sommarive 9, 38123 Trento, Italy
| | - Sheri Zola
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Via Sommarive 9, 38123 Trento, Italy
| | - Marco Brambilla
- Department of Biosciences, University of Milano, Via Celoria 25, 20133 Milano, Italy
| | - Giacomo Viola
- Department of Biosciences, University of Milano, Via Celoria 25, 20133 Milano, Italy
| | - Paola Maragno
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Via Sommarive 9, 38123 Trento, Italy
| | - Ilaria Signoria
- Institute of Biophysics, CNR, Via Sommarive 18, 38123 Trento, Italy
| | - Gabriella Viero
- Institute of Biophysics, CNR, Via Sommarive 18, 38123 Trento, Italy
| | - Maria Enrica Pasini
- Department of Biosciences, University of Milano, Via Celoria 25, 20133 Milano, Italy
| | - Marianna Penzo
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Via Massarenti 9, 40138 Bologna, Italy,Center for Applied Biomedical Research, University of Bologna, Via Massarenti 9, 40138 Bologna, Italy
| | - Paola Bellosta
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Via Sommarive 9, 38123 Trento, Italy,Department of Medicine, NYU Langone School of Medicine, 550 First Avenue, New York, 10016 NY, USA,Author for correspondence ()
| |
Collapse
|
17
|
Ptp61F integrates Hippo, TOR, and actomyosin pathways to control three-dimensional organ size. Cell Rep 2022; 41:111640. [DOI: 10.1016/j.celrep.2022.111640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 09/16/2022] [Accepted: 10/20/2022] [Indexed: 11/17/2022] Open
|
18
|
Lancman JJ, Hasso SM, Suzuki T, Kherdjemil Y, Kmita M, Ferris A, Dong PDS, Ros MA, Fallon JF. Downregulation of Grem1 expression in the distal limb mesoderm is a necessary precondition for phalanx development. Dev Dyn 2022; 251:1439-1455. [PMID: 34719843 PMCID: PMC9054941 DOI: 10.1002/dvdy.431] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 09/24/2021] [Accepted: 09/25/2021] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND The phalanges are the final skeletal elements to form in the vertebrate limb and their identity is regulated by signaling at the phalanx forming region (PFR) located at the tip of the developing digit ray. Here, we seek to explore the relationship between PFR activity and phalanx morphogenesis, which define the most distal limb skeletal elements, and signals associated with termination of limb outgrowth. RESULTS As Grem1 is extinguished in the distal chick limb mesoderm, the chondrogenesis marker Aggrecan is up-regulated in the metatarsals and phalanges. Fate mapping confirms that subridge mesoderm cells contribute to the metatarsal and phalanges when subridge Grem1 is down-regulated. Grem1 overexpression specifically blocks chick phalanx development by inhibiting PFR activity. PFR activity and digit development are also disrupted following overexpression of a Gli3 repressor, which results in Grem1 expression in the distal limb and downregulation of Bmpr1b. CONCLUSIONS Based on expression and fate mapping studies, we propose that downregulation of Grem1 in the distal limb marks the transition from metatarsal to phalanx development. This suggests that downregulation of Grem1 in the distal limb mesoderm is necessary for phalanx development. Grem1 downregulation allows for full PFR activity and phalanx progenitor cell commitment to digit fate.
Collapse
Affiliation(s)
- Joseph J Lancman
- Human Genetics Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Sean M Hasso
- Heat Biologics, Morrisville, North Carolina, USA
| | - Takayuki Suzuki
- Department of Animal Sciences, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Yacine Kherdjemil
- Genetics and Development Research Unit, Institut de Recherches Cliniques de Montréal, Montréal, Québec, Canada
- Département de Médecine, Université de Montréal, Montréal, Québec, Canada
| | - Marie Kmita
- Genetics and Development Research Unit, Institut de Recherches Cliniques de Montréal, Montréal, Québec, Canada
- Département de Médecine, Université de Montréal, Montréal, Québec, Canada
- Department of Experimental Medicine, McGill University, Montreal, Quebec, Canada
| | - Andrea Ferris
- Center for Cancer Research, National Cancer Institute, Frederick, Maryland, USA
| | - P Duc S Dong
- Human Genetics Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
- Graduate School of Biomedical Sciences, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Marian A Ros
- Instituto de Biomedicina y Biotecnología de Cantabria, Consejo Superior de Investigaciones Científicas-Universidad de Cantabria-Sociedad para al Desarrollo Cantabria, Santander, Spain
- Departamento de Anatomía y Biología Celular, Facultad de Medicina, Universidad de Cantabria, Santander, Spain
| | - John F Fallon
- Department of Anatomy, University of Wisconsin Madison, Madison, Wisconsin, USA
| |
Collapse
|
19
|
Pai VP, Cooper BG, Levin M. Screening Biophysical Sensors and Neurite Outgrowth Actuators in Human Induced-Pluripotent-Stem-Cell-Derived Neurons. Cells 2022; 11:cells11162470. [PMID: 36010547 PMCID: PMC9406775 DOI: 10.3390/cells11162470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/26/2022] [Accepted: 08/04/2022] [Indexed: 11/16/2022] Open
Abstract
All living cells maintain a charge distribution across their cell membrane (membrane potential) by carefully controlled ion fluxes. These bioelectric signals regulate cell behavior (such as migration, proliferation, differentiation) as well as higher-level tissue and organ patterning. Thus, voltage gradients represent an important parameter for diagnostics as well as a promising target for therapeutic interventions in birth defects, injury, and cancer. However, despite much progress in cell and molecular biology, little is known about bioelectric states in human stem cells. Here, we present simple methods to simultaneously track ion dynamics, membrane voltage, cell morphology, and cell activity (pH and ROS), using fluorescent reporter dyes in living human neurons derived from induced neural stem cells (hiNSC). We developed and tested functional protocols for manipulating ion fluxes, membrane potential, and cell activity, and tracking neural responses to injury and reinnervation in vitro. Finally, using morphology sensor, we tested and quantified the ability of physiological actuators (neurotransmitters and pH) to manipulate nerve repair and reinnervation. These methods are not specific to a particular cell type and should be broadly applicable to the study of bioelectrical controls across a wide range of combinations of models and endpoints.
Collapse
Affiliation(s)
- Vaibhav P. Pai
- Allen Discovery Center at Tufts University, Medford, MA 02155, USA
| | - Ben G. Cooper
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
| | - Michael Levin
- Allen Discovery Center at Tufts University, Medford, MA 02155, USA
- Correspondence:
| |
Collapse
|
20
|
Pishel I, Yankova T, Dubiley T, Shytikov D. Reciprocal blood exchange in heterochronic parabionts has a deleterious effect on the lifespan of young animals without a positive effect for old animals. Rejuvenation Res 2022; 25:191-199. [PMID: 35747947 DOI: 10.1089/rej.2022.0029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Our previous study showed that the exchange of blood between heterochronic parabionts for 3 months did not rejuvenate the immune system of the old partners. Moreover, the young immune system became more aged and began to function according to the "old" principle. Does this "forced aging" affect all organism's systems in this model? We checked the levels of corticosterone, testosterone, IGF-1, insulin, thyroxine in the blood of heterochronic parabionts but did not find significant changes compared to the age-related controls. Since numerous data support the possibility of rejuvenation of the brain, muscles, and other tissues using the model of heterochronic parabiosis, as well as opposite data, we planned to assess the overall effect of this long-term blood exchange on the rate of organism aging. We measured the lifespan of animals that exchanged with blood for 3 months and then were disconnected. Median and maximum life expectancy decreased in young heterochronic parabionts compared with the isochronic control. Old heterochronic parabionts showed only a small trend towards an increase in the median lifespan but it was not statistically significant, and the maximum lifespan did not change compared to the isochronic parabionts. These data support our assumption that old blood contains factors capable of inducing aging in young animals. Finding and selective suppression of aging factor production in the organism could be the key research field for life extension.
Collapse
Affiliation(s)
- Iryna Pishel
- Institute of Gerontology NAMS of Ukraine, Pathophysiology and Immunology , 67 Vyshgorodska St, Kyiv, Ukraine, 04114.,Institute of Gerontology NAMS of Ukraine, Pathophysiology and Immunology, 67 Vyshgorodska St, Kyiv, Ukraine, 04114;
| | | | - Tatiana Dubiley
- D F Chebotarev State Institute of Gerontology NAMS of Ukraine, 119156, Kyiv, Ukraine;
| | | |
Collapse
|
21
|
Pai VP, Levin M. HCN2 Channel-induced Rescue of Brain, Eye, Heart, and Gut Teratogenesis Caused by Nicotine, Ethanol, and Aberrant Notch Signaling. Wound Repair Regen 2022; 30:681-706. [PMID: 35662339 DOI: 10.1111/wrr.13032] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 04/28/2022] [Accepted: 05/19/2022] [Indexed: 11/30/2022]
Abstract
Organogenesis is a complex process that can be disrupted by embryonic exposure to teratogens or mutation-induced alterations in signaling pathways, both of which result in organ mispatterning. Building on prior work in Xenopus laevis that showed that increased HCN2 ion channel activity rescues nicotine-induced brain & eye morphogenesis, we demonstrate much broader HCN2-based rescue of organ patterning defects. Induced HCN2 expression in both local or distant tissues can rescue CNS (brain & eye) as well as non-CNS (heart, & gut) organ defects induced by three different teratogenic conditions: nicotine exposure, ethanol exposure, or aberrant Notch protein. Rescue can also be induced by small-molecule HCN2 channel activators, even with delayed treatment initiation. Our results suggest that HCN2 (likely mediated by bioelectric signals) can be an effective regulator of organogenesis from all three germ layers (ectoderm, mesoderm, and endoderm) and reveal non-cell-autonomous influences on organ formation that work at considerable distance during embryonic development. These results suggest molecular bioelectric strategies for repair that could be explored in the future for regenerative medicine. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Vaibhav P Pai
- Allen Discovery Center at Tufts University, Medford, Massachusetts, USA
| | - Michael Levin
- Allen Discovery Center at Tufts University, Medford, Massachusetts, USA
| |
Collapse
|
22
|
Hecht S, Perez-Mockus G, Schienstock D, Recasens-Alvarez C, Merino-Aceituno S, Smith M, Salbreux G, Degond P, Vincent JP. Mechanical constraints to cell-cycle progression in a pseudostratified epithelium. Curr Biol 2022; 32:2076-2083.e2. [PMID: 35338851 PMCID: PMC7615048 DOI: 10.1016/j.cub.2022.03.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 12/14/2021] [Accepted: 03/01/2022] [Indexed: 02/07/2023]
Abstract
As organs and tissues approach their normal size during development or regeneration, growth slows down, and cell proliferation progressively comes to a halt. Among the various processes suggested to contribute to growth termination,1-10 mechanical feedback, perhaps via adherens junctions, has been suggested to play a role.11-14 However, since adherens junctions are only present in a narrow plane of the subapical region, other structures are likely needed to sense mechanical stresses along the apical-basal (A-B) axis, especially in a thick pseudostratified epithelium. This could be achieved by nuclei, which have been implicated in mechanotransduction in tissue culture.15 In addition, mechanical constraints imposed by nuclear crowding and spatial confinement could affect interkinetic nuclear migration (IKNM),16 which allows G2 nuclei to reach the apical surface, where they normally undergo mitosis.17-25 To explore how mechanical constraints affect IKNM, we devised an individual-based model that treats nuclei as deformable objects constrained by the cell cortex and the presence of other nuclei. The model predicts changes in the proportion of cell-cycle phases during growth, which we validate with the cell-cycle phase reporter FUCCI (Fluorescent Ubiquitination-based Cell Cycle Indicator).26 However, this model does not preclude indefinite growth, leading us to postulate that nuclei must migrate basally to access a putative basal signal required for S phase entry. With this refinement, our updated model accounts for the observed progressive slowing down of growth and explains how pseudostratified epithelia reach a stereotypical thickness upon completion of growth.
Collapse
Affiliation(s)
- Sophie Hecht
- The Francis Crick Institute, London NW1 1AT, UK; Imperial College London, Department of Mathematics, London SW7 2AZ, UK
| | | | | | | | - Sara Merino-Aceituno
- University of Vienna, Faculty of Mathematics, Oskar-Morgenstern-Platz 1, Wien 1090, Austria; University of Sussex, Department of Mathematics, Falmer BN1 9RH, UK
| | - Matt Smith
- The Francis Crick Institute, London NW1 1AT, UK
| | | | - Pierre Degond
- Imperial College London, Department of Mathematics, London SW7 2AZ, UK.
| | | |
Collapse
|
23
|
Hirashima T. Mechanical Feedback Control for Multicellular Tissue Size Maintenance: A Minireview. Front Cell Dev Biol 2022; 9:820391. [PMID: 35096843 PMCID: PMC8795865 DOI: 10.3389/fcell.2021.820391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 12/27/2021] [Indexed: 11/13/2022] Open
Abstract
All living tissues and organs have their respective sizes, critical to various biological functions, such as development, growth, and homeostasis. As tissues and organs generally converge to a certain size, intrinsic regulatory mechanisms may be involved in the maintenance of size regulation. In recent years, important findings regarding size regulation have been obtained from diverse disciplines at the molecular and cellular levels. Here, I briefly review the size regulation of biological tissues from the perspective of control systems. This minireview focuses on how feedback systems engage in tissue size maintenance through the mechanical interactions of constituent cell collectives through intracellular signaling. I introduce a general framework of a feedback control system for tissue size regulation, followed by two examples: maintenance of epithelial tissue volume and epithelial tube diameter. The examples deliver the idea of how cellular mechano-response works for maintaining tissue size.
Collapse
Affiliation(s)
- Tsuyoshi Hirashima
- The Hakubi Center, Kyoto University, Kyoto, Japan
- Laboratory of Bioimaging and Cell Signaling, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
- Japan Science and Technology Agency, PRESTO, Kawaguchi, Japan
| |
Collapse
|
24
|
Harmansa S, Lecuit T. Forward and feedback control mechanisms of developmental tissue growth. Cells Dev 2021; 168:203750. [PMID: 34610484 DOI: 10.1016/j.cdev.2021.203750] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 09/27/2021] [Accepted: 09/27/2021] [Indexed: 01/23/2023]
Abstract
The size and proportions of animals are tightly controlled during development. How this is achieved remains poorly understood. The control of organ size entails coupling of cellular growth and cell division on one hand, and the measure of organ size on the other. In this review we focus on three layers of growth control consisting of genetic patterning, notably chemical gradients, mechanics and energetics which are complemented by a systemic control unit that modulates growth in response to the nutritional conditions and coordinates growth between different organs so as to maintain proportions. Growth factors, often present as concentration dependent chemical gradients, are positive inducers of cellular growth that may be considered as deterministic cues, hence acting as organ-intrinsic controllers of growth. However, the exponential growth dynamics in many developing tissues necessitate more stringent growth control in the form of negative feedbacks. Feedbacks endow biological systems with the capacity to quickly respond to perturbations and to correct the growth trajectory to avoid overgrowth. We propose to integrate chemical, mechanical and energetic control over cellular growth in a framework that emphasizes the self-organizing properties of organ-autonomous growth control in conjunction with systemic organ non-autonomous feedback on growth.
Collapse
Affiliation(s)
- Stefan Harmansa
- Aix-Marseille Université & CNRS, IBDM - UMR7288 & Turing Centre for Living Systems (CENTURI), Marseille, France
| | - Thomas Lecuit
- Aix-Marseille Université & CNRS, IBDM - UMR7288 & Turing Centre for Living Systems (CENTURI), Marseille, France; Collège de France, Paris, France.
| |
Collapse
|