1
|
Liu T, Li J, Yin X, Lu F, Zhao H, Wang L, Qin CF. Establishment of enterically transmitted hepatitis virus animal models using lipid nanoparticle-based full-length viral genome RNA delivery system. Gut 2024:gutjnl-2024-332784. [PMID: 39353724 DOI: 10.1136/gutjnl-2024-332784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 09/19/2024] [Indexed: 10/04/2024]
Abstract
BACKGROUND Enterically transmitted hepatitis viruses, such as hepatitis A virus (HAV) and hepatitis E virus (HEV), remain notable threats to public health. However, stable and reliable animal models of HAV and HEV infection are lacking. OBJECTIVE This study aimed to establish HAV and HEV infections in multiple small animals by intravenously injecting lipid nanoparticle (LNP)-encapsulated full-length viral RNAs (LNP-vRNA). DESIGN In vitro transcribed and capped full-length HAV RNA was encapsulated into LNP and was intravenously inoculated to Ifnar-/- mice, and HEV RNA to rabbits and gerbils. Virological parameters were determined by RT-qPCR, ELISA and immunohistochemistry. Liver histopathological changes were analysed by H&E staining. Antiviral drug and vaccine efficacy were further evaluated by using the LNP-vRNA-based animal model. RESULTS On intravenous injection of LNP-vRNA, stable viral shedding was detected in the faeces and infectious HAV or HEV was recovered from the livers of the inoculated animals. Liver damage was observed in LNP-vRNA (HAV)-injected mice and LNP-vRNA (HEV)-injected rabbits. Mongolian gerbils were also susceptible to LNP-vRNA (HEV) injections. Finally, the antiviral countermeasures and in vivo function of HEV genome deletions were validated in the LNP-vRNA-based animal model. CONCLUSION This stable and standardised LNP-vRNA-based animal model provides a powerful platform to investigate the pathogenesis and evaluate countermeasures for enterically transmitted hepatitis viruses and can be further expanded to other viruses that are not easily cultured in vitro or in vivo.
Collapse
Affiliation(s)
- Tianxu Liu
- Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Jian Li
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing 100071, China
- School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China
| | - Xin Yin
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang, China
| | - Fengmin Lu
- Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
- Shenzhen Blood Center, Shen Zhen, Guangdong, China
| | - Hui Zhao
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing 100071, China
| | - Lin Wang
- Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
- Shenzhen Blood Center, Shen Zhen, Guangdong, China
| | - Cheng-Feng Qin
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing 100071, China
- School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China
- Research Unit of Discovery and Tracing of Natural Focus Diseases, Chinese Academy of Medical Sciences, Beijing 100071, China
| |
Collapse
|
2
|
Solignac J, Boschi C, Pernin V, Fouilloux V, Motte A, Aherfi S, Fabre-Aubrespy M, Legris T, Brunet P, Colson P, Moal V. The question of screening organ donors for hepatitis e virus: a case report of transmission by kidney transplantation in France and a review of the literature. Virol J 2024; 21:136. [PMID: 38867299 PMCID: PMC11167830 DOI: 10.1186/s12985-024-02401-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 05/28/2024] [Indexed: 06/14/2024] Open
Abstract
BACKGROUND Hepatitis E is a potentially serious infection in organ recipients, with an estimated two-thirds of cases becoming chronic, and with a subsequent risk of cirrhosis and death. In Europe, transmission occurs most often through the consumption of raw or undercooked pork, more rarely through blood transfusion, but also after solid organ transplantation. Here we describe a case of Hepatitis E virus (HEV) infection transmitted following kidney transplantation and review the literature describing cases of HEV infection transmitted by solid organ transplantation. CASE PRESENTATION Three weeks after kidney transplantation, the patient presented with an isolated minimal increase in GGT and hepatic cytolysis 6 months later, leading to the diagnosis of genotype 3c hepatitis E, with a plasma viral load of 6.5 log10IU/mL. In retrospect, HEV RNA was detected in the patient's serum from the onset of hepatitis, and in the donor's serum on the day of donation, with 100% identity between the viral sequences, confirming donor-derived HEV infection. Hepatitis E had a chronic course, was treated by ribavirin, and relapsed 10 months after the end of treatment. DISCUSSION Seven cases of transmission of HEV by solid organ transplantation have been described since 2012 without systematic screening for donors, all diagnosed at the chronic infection stage; two patients died. HEV organ donor transmission may be underestimated and there is insufficient focus on immunocompromised patients in whom mild liver function test impairment is potentially related to hepatitis E. However, since HEV infection is potentially severe in these patients, and as evidence accumulates, we believe that systematic screening of organ donors should be implemented for deceased and living donors regardless of liver function abnormalities, as is already the case in the UK and Spain. In January 2024, the French regulatory agency of transplantation has implemented mandatory screening of organ donors for HEV RNA.
Collapse
Affiliation(s)
- Justine Solignac
- Centre de Néphrologie Et Transplantation Rénale, Aix Marseille Université, Publique Hôpitaux de Marseille, Hôpital Conception, 147 Boulevard Baille, 13005, Marseille, France
| | - Celine Boschi
- IHU Méditerranée Infection, Publique Hôpitaux de Marseille, 19-21 Boulevard Jean Moulin, 13005, Marseille, France
- Aix Marseille Université, Institut de Recherche Et Développement, Microbes Evolution Phylogeny and Infections, 27 Boulevard Jean Moulin, 13005, Marseille, France
| | - Vincent Pernin
- Department of Nephrology Dialysis and Kidney Transplantation, Lapeyronie University Hospital, Montpellier, France
- Institute for Regenerative Medicine and Biotherapy (IRMB), Montpellier, France
| | - Virginie Fouilloux
- Department of Congenital and Pediatric Cardiac Surgery, Timone Children's Hospital, Marseille, France
| | - Anne Motte
- IHU Méditerranée Infection, Publique Hôpitaux de Marseille, 19-21 Boulevard Jean Moulin, 13005, Marseille, France
- Aix Marseille Université, Institut de Recherche Et Développement, Microbes Evolution Phylogeny and Infections, 27 Boulevard Jean Moulin, 13005, Marseille, France
| | - Sarah Aherfi
- IHU Méditerranée Infection, Publique Hôpitaux de Marseille, 19-21 Boulevard Jean Moulin, 13005, Marseille, France
- Aix Marseille Université, Institut de Recherche Et Développement, Microbes Evolution Phylogeny and Infections, 27 Boulevard Jean Moulin, 13005, Marseille, France
| | - Maxime Fabre-Aubrespy
- Department of Orthopaedic Surgery, Sainte-Marguerite University Hospital, Marseille, France
| | - Tristan Legris
- Centre de Néphrologie Et Transplantation Rénale, Publique Hôpitaux de Marseille, Hôpital Conception, Marseille, France
| | - Philippe Brunet
- Centre de Néphrologie Et Transplantation Rénale, Aix Marseille Université, Publique Hôpitaux de Marseille, Hôpital Conception, 147 Boulevard Baille, 13005, Marseille, France
| | - Philippe Colson
- IHU Méditerranée Infection, Publique Hôpitaux de Marseille, 19-21 Boulevard Jean Moulin, 13005, Marseille, France
- Aix Marseille Université, Institut de Recherche Et Développement, Microbes Evolution Phylogeny and Infections, 27 Boulevard Jean Moulin, 13005, Marseille, France
| | - Valérie Moal
- Centre de Néphrologie Et Transplantation Rénale, Aix Marseille Université, Publique Hôpitaux de Marseille, Hôpital Conception, 147 Boulevard Baille, 13005, Marseille, France.
- Aix Marseille Université, Institut de Recherche Et Développement, Microbes Evolution Phylogeny and Infections, 27 Boulevard Jean Moulin, 13005, Marseille, France.
| |
Collapse
|
3
|
Panajotov J, Falkenhagen A, Gadicherla AK, Johne R. Molecularly generated rat hepatitis E virus strains from human and rat show efficient replication in a human hepatoma cell line. Virus Res 2024; 344:199364. [PMID: 38522562 PMCID: PMC10995862 DOI: 10.1016/j.virusres.2024.199364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 03/18/2024] [Accepted: 03/18/2024] [Indexed: 03/26/2024]
Abstract
The hepatitis E virus (HEV) can cause acute and chronic hepatitis in humans. Whereas HEV genotypes 1-4 of species Paslahepevirus balayani are commonly found in humans, infections with ratHEV (species Rocahepevirus ratti) were previously considered to be restricted to rats. However, several cases of human ratHEV infections have been described recently. To investigate the zoonotic potential of this virus, a genomic clone was constructed here based on sequence data of ratHEV strain pt2, originally identified in a human patient with acute hepatitis from Hongkong. For comparison, genomic clones of ratHEV strain R63 from a rat and of HEV genotype 3 strain 47832mc from a human patient were used. After transfection of in vitro-transcribed RNA from the genomic clones into the human hepatoma cell line HuH-7-Lunet BLR, virus replication was shown for all strains by increasing genome copy numbers in cell culture supernatants. These cells developed persistent virus infections, and virus particles in the culture supernatant as well as viral antigen within the cells were demonstrated. All three generated virus strains successfully infected fresh HuH-7-Lunet BLR cells. In contrast, the human hepatoma cell lines HuH-7 and PLC/PRF/5 could only be infected with the genotype 3 strain and to a lesser extent with ratHEV strain R63. Infection of the rat-derived hepatoma cell lines clone 9, MH1C1 and H-4-II-E did not result in efficient virus replication for either strain. The results indicate that ratHEV strains from rats and humans can infect human hepatoma cells. The replication efficiency is strongly dependent on the cell line and virus strain. The investigated rat hepatoma cell lines could not be infected and other rat-derived cells should be tested in future to identify permissive cell lines from rats. The developed genomic clone can represent a useful tool for future research investigating pathogenicity and zoonotic potential of ratHEV.
Collapse
Affiliation(s)
| | | | - Ashish K Gadicherla
- German Federal Institute for Risk Assessment, 10589 Berlin, Germany; Center for Quantitative Cell Imaging, University of Wisconsin, Madison, USA
| | - Reimar Johne
- German Federal Institute for Risk Assessment, 10589 Berlin, Germany.
| |
Collapse
|
4
|
Xu L, Bie M, Li J, Zhou H, Hu T, Carr MJ, Lu L, Shi W. Isolation and characterization of a novel rodent hepevirus in long-tailed dwarf hamsters ( Cricetulus longicaudatus) in China. J Gen Virol 2024; 105. [PMID: 38767609 DOI: 10.1099/jgv.0.001989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024] Open
Abstract
Hepeviruses have been identified in a broad range of animal hosts, including mammals, birds, and fish. In this study, rodents (n=91) from seven different species and ten pikas (Ochotona curzoniae) were collected in Qinghai Province, China. Using transcriptomic sequencing and confirmatory molecular testing, hepeviruses were detected in 27 of 45 (60 %) long-tailed dwarf hamsters (Cricetulus longicaudatus) and were undetected in other rodents and pika. The complete genome sequences from 14 representative strains were subsequently obtained, and phylogenetic analyses suggested that they represent a novel species within the genus Rocahepevirus, which we tentatively designated as Cl-2018QH. The virus was successfully isolated in human hepatoma (Huh-7) and murine fibroblast (17 Cl-1) cell lines, though both exhibited limited replication as assayed by detection of negative-sense RNA intermediates. A129 immunodeficient mice were inoculated with Cl-2018QH and the virus was consistently detected in multiple organs, despite relatively low viral loads. In summary, this study has described a novel rodent hepevirus, which enhances our knowledge of the genetic diversity of rodent hepeviruses and highlights its potential for cross-species transmission.
Collapse
Affiliation(s)
- Lin Xu
- School of Public Health, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan 250117, PR China
- Key Laboratory of Emerging Infectious Diseases in Universities of Shandong, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian 271000, PR China
| | - Mengyu Bie
- School of Public Health, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan 250117, PR China
- Key Laboratory of Emerging Infectious Diseases in Universities of Shandong, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian 271000, PR China
| | - Juan Li
- Key Laboratory of Emerging Infectious Diseases in Universities of Shandong, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian 271000, PR China
| | - Hong Zhou
- Key Laboratory of Emerging Infectious Diseases in Universities of Shandong, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian 271000, PR China
| | - Tao Hu
- Key Laboratory of Emerging Infectious Diseases in Universities of Shandong, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian 271000, PR China
| | - Michael J Carr
- National Virus Reference Laboratory, School of Medicine, University College Dublin, Dublin, D04 E1W1, Ireland
- International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo 001-0020, Japan
| | - Liang Lu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, PR China
| | - Weifeng Shi
- Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, PR China
- Shanghai Institute of Virology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, PR China
| |
Collapse
|
5
|
Sridhar S, Wu S, Situ J, Shun EHK, Li Z, Zhang AJX, Hui K, Fong CHY, Poon VKM, Chew NFS, Yip CCY, Chan WM, Cai JP, Yuen KY. A small animal model of chronic hepatitis E infection using immunocompromised rats. JHEP Rep 2022; 4:100546. [PMID: 36052220 PMCID: PMC9424580 DOI: 10.1016/j.jhepr.2022.100546] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 06/30/2022] [Accepted: 07/08/2022] [Indexed: 12/14/2022] Open
Abstract
Background & Aims HEV variants such as swine genotypes within Paslahepevirus species balayani (HEV-A) and rat HEV (Rocahepevirus ratti; HEV-C1) cause chronic hepatitis E in immunocompromised individuals. There are few reliable and accessible small animal models that accurately reflect chronic HEV infection. We aimed to develop an immunocompromised rat model of chronic hepatitis E infection. Methods In this animal model infection study, rats were immunosuppressed with a drug combination (prednisolone, tacrolimus, and mycophenolate mofetil) commonly taken by transplant recipients. Rats were challenged with human- and rat-derived HEV-C1 strains or a human-derived HEV-A strain. Viral load, liver function, liver histology, humoural, and cellular immune responses were monitored. Results A high-dose (HD) immunosuppressive regimen consistently prolonged human- and rat-derived HEV-C1 infection in rats (up to 12 weeks post infection) compared with transient infections in low-dose (LD) immunosuppressant-treated and immunocompetent (IC) rats. Mean HEV-C1 viral loads in stool, serum, and liver tissue were higher in HD regimen-treated rats than in LD or IC rats (p <0.05). Alanine aminotransferase elevation was observed in chronically infected rats, which was consistent with histological hepatitis and HEV-C1 antigen expression in liver tissue. None (0/6) of the HD regimen-treated, 5/6 LD regimen-treated, and 6/6 IC rats developed antibodies to HEV-C1 in species-specific immunoblots. Reversal of immunosuppression was associated with clearance of viraemia and restoration of HEV-C1-specific humoural and cellular immune responses in HD regimen-treated rats, mimicking patterns in treated patients with chronic hepatitis E. Viral load suppression was observed with i.p. ribavirin treatment. HD regimen-treated rats remained unsusceptible to HEV-A infection. Conclusions We developed a scalable immunosuppressed rat model of chronic hepatitis E that closely mimics this infection phenotype in transplant recipients. Lay summary Convenient small animal models are required for the study of chronic hepatitis E in humans. We developed an animal model of chronic hepatitis E by suppressing immune responses of rats with drugs commonly taken by humans as organ transplant rejection prophylaxis. This model closely mimicked features of chronic hepatitis E in humans. Chronic HEV infection is challenging to model with small animals. Rats can be immunocompromised by transplant rejection drugs taken by patients. This model supports chronic rat HEV infection robustly and consistently. Immunosuppression in this model is scalable, reversible, and responsive to ribavirin.
Collapse
Key Words
- ALT, alanine aminotransferase
- HD, high dose
- HEV
- HEV, hepatitis E virus
- HEV-A, Paslahepevirus balayani
- HEV-C1
- HEV-C1, Rocahepevirus ratti genotype 1
- IC, immunocompetent
- IFN-γ, interferon-γ
- Immunosuppression
- LD, low dose
- MMF, mycophenolate mofetil
- Orthohepevirus C
- PBS, phosphate buffered saline
- Rat hepatitis E
- Ribavirin
- Rocahepevirus ratti
- VTM, virus transport medium
- dpi, days post infection
- rRT-PCR, real-time reverse-transcription PCR
Collapse
Affiliation(s)
- Siddharth Sridhar
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.,State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong, China.,Carol Yu Centre for Infection, The University of Hong Kong, Hong Kong, China
| | - Shusheng Wu
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Jianwen Situ
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Estie Hon-Kiu Shun
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Zhiyu Li
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Anna Jin-Xia Zhang
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Kyle Hui
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Carol Ho-Yan Fong
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Vincent Kwok-Man Poon
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Nicholas Foo-Siong Chew
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Cyril Chik-Yan Yip
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Wan-Mui Chan
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Jian-Piao Cai
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Kwok-Yung Yuen
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.,State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong, China.,Carol Yu Centre for Infection, The University of Hong Kong, Hong Kong, China.,The Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
6
|
Schemmerer M, Erl M, Wenzel JJ. HuH-7-Lunet BLR Cells Propagate Rat Hepatitis E Virus (HEV) in a Cell Culture System Optimized for HEV. Viruses 2022; 14:v14051116. [PMID: 35632857 PMCID: PMC9147593 DOI: 10.3390/v14051116] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/19/2022] [Accepted: 05/21/2022] [Indexed: 02/05/2023] Open
Abstract
The family Hepeviridae comprises the species Orthohepevirus A–D (HEV-A to -D). HEV-C genotype 1 (HEV-C1, rat HEV) is able to infect humans. This study investigated whether an optimized HEV-A cell culture system is able to propagate the cell culture-derived rat HEV, and if de novo isolation of the virus from rat liver is possible. We tested the liver carcinoma cell lines PLC/PRF/5, HuH-7, and HuH-7-Lunet BLR for their susceptibility to HEV-C1 strains. Cells were infected with the cell culture-derived HEV-C1 strain R63 and rat liver-derived strain R68. Cells were maintained in MEMM medium, which was refreshed every 3–4 days. The viral load of HEV-C1 was determined by RT-qPCR in the supernatant and expressed as genome copies per mL (c/mL). Rat HEV replication was most efficient in the newly introduced HuH-7-Lunet BLR cell line. Even if the rat HEV isolate had been pre-adapted to PLC/PRF/5 by multiple passages, replication in HuH-7-Lunet BLR was still at least equally effective. Only HuH-7-Lunet BLR cells were susceptible to the isolation of HEV-C1 from the liver homogenate. These results suggest HuH-7-Lunet BLR as the most permissive cell line for rat HEV. Our HEV-C1 cell culture system may be useful for basic research, the animal-free generation of large amounts of the virus as well as for the testing of antiviral compounds and drugs.
Collapse
|
7
|
Abstract
Hepatitis E virus (HEV) is a major cause of acute viral hepatitis in humans. A convenient small mammalian model for basic research and antiviral testing is still greatly needed. Although a small rodent, the Mongolian gerbil, was reported to be susceptible to swine genotype-4 HEV infection, whether the previous results were reliable and consistent needs to be validated by using biologically pure HEV stocks or infectious RNA. In this study, we revisited this gerbil infection model for human HEV of genotype 1, 3, or 4 (G1, G3, or G4) by HEV reverse genetics. Gerbils inoculated intrahepatically with capped G3 HEV RNA transcripts or intraperitoneally with infectious G3 cloned HEV produced robust infection, as evidenced by presence of HEV in livers, spleens, and feces for up to 7 weeks post inoculation, seroconversion, and pathological liver lesions. Furthermore, the value of the gerbil model in antiviral testing and type I IFN in host defense was assessed. We demonstrated the effectiveness of peg-IFNα-2a and ribavirin in inhibiting HEV replication in gerbils. By treatment with two molecule inhibitors of TBK1, we also revealed a role of RIG-I like receptor-interferon regulatory factor 3 in host anti-HEV innate immune sensing in this in vivo model. Finally, susceptibility of G4 HEV was demonstrated in intrahepatically inoculated gerbils with infectious HEV RNA transcripts, whereas no evidence for G1 HEV susceptibility was found. The availability of the convenient gerbil model will greatly facilitate HEV-specific antiviral development and assess the mechanism of host immune response during HEV infection. IMPORTANCE HEV infects >20 million people annually, causing acute viral hepatitis as well as chronic hepatitis, neurological diseases, and pregnancy-associated high mortality, which require therapeutic intervention. The HEV antiviral research is largely limited by the lack of a convenient small animal model. Here we revisit the Mongolian gerbil model for three genotypes of human HEV by infectious HEV clones and recognized standards of experimental procedures. Fecal virus shedding, seroconversion, and pathological liver lesions could be detected in HEV-inoculated gerbils. We demonstrate the effectiveness and usefulness of this model in testing antiviral drugs, and in assessing the mechanism of host innate immune response upon HEV infection. This conventional rodent model will aid in future antiviral development and delineating mechanism of host immune response.
Collapse
|
8
|
Thakur V, Ratho RK, Kumar S, Saxena SK, Bora I, Thakur P. Viral Hepatitis E and Chronicity: A Growing Public Health Concern. Front Microbiol 2020; 11:577339. [PMID: 33133046 PMCID: PMC7550462 DOI: 10.3389/fmicb.2020.577339] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 09/03/2020] [Indexed: 12/15/2022] Open
Abstract
Hepatitis E viral infection recently emerges as a global health concern. Over the last decade, the understanding of hepatitis E virus (HEV) had changed with the discovery of new genotypes like genotype-7 and genotype-8 with associated host and mode of infection. Diversification in the mode of hepatitis E infection transmission through blood transfusion, and organ transplants in contrast to classical feco-oral and zoonotic mode is the recent medical concern. The wide spectrum of infection ranging from self-limiting to acute liver failure is now overpowered by HEV genotype-specific chronic infection especially in transplant patients. This concern is further escalated by the extra-hepatic manifestations of HEV targeting the central nervous system (CNS), kidney, heart, and pancreas. However, with the development of advanced efficient cell culture systems and animal models simulating the infection, much clarity toward understanding the pathogenetic mechanism of HEV has been developed. Also this facilitates the development of vaccines research or therapeutics. In this review, we highlight all the novel findings in every aspect of HEV with special emphasis on recently emerging chronic mode of infection with specific diagnosis and treatment regime with an optimistic hope to help virologists and/or liver specialists working in the field of viral hepatitis.
Collapse
Affiliation(s)
- Vikram Thakur
- Department of Virology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Radha Kanta Ratho
- Department of Virology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Swatantra Kumar
- Centre for Advanced Research, Faculty of Medicine, King George's Medical University, Lucknow, India
| | - Shailendra K Saxena
- Centre for Advanced Research, Faculty of Medicine, King George's Medical University, Lucknow, India
| | - Ishani Bora
- Department of Virology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Pryanka Thakur
- Department of Virology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
9
|
Scholz J, Falkenhagen A, Bock CT, Johne R. Reverse genetics approaches for hepatitis E virus and related viruses. Curr Opin Virol 2020; 44:121-128. [PMID: 32818718 DOI: 10.1016/j.coviro.2020.07.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 06/05/2020] [Accepted: 07/06/2020] [Indexed: 12/19/2022]
Abstract
The hepatitis E virus (HEV) is the causative agent of acute and chronic hepatitis in humans. Related viruses have been found in several animal species. Reverse genetics systems (RGSs), which enable the generation of infectious virus from cloned cDNA by transfection of cultured cells or intrahepatic injection into laboratory animals, have been developed for HEV genotypes 1, 3, 4, 5 and 7 as well as for avian HEV and rat HEV. However, low virus recovery rates and slow replication in cell cultures are observed for most of the HEV types. Nevertheless, the RGSs enabled the site-directed mutagenesis of single nucleotides, deletion of genome fragments, insertion of sequence tags and a marker gene as well as the generation of chimeric viruses.
Collapse
Affiliation(s)
- Johannes Scholz
- Department Biological Safety, German Federal Institute for Risk Assessment, Berlin, Germany
| | - Alexander Falkenhagen
- Department Biological Safety, German Federal Institute for Risk Assessment, Berlin, Germany
| | - Claus-Thomas Bock
- Division of Viral Gastroenteritis and Hepatitis Pathogens and Enteroviruses, Department of Infectious Diseases, Robert Koch Institute, Berlin, Germany
| | - Reimar Johne
- Department Biological Safety, German Federal Institute for Risk Assessment, Berlin, Germany.
| |
Collapse
|
10
|
Sayed IM, Elkhawaga AA, El-Mokhtar MA. In vivo models for studying Hepatitis E virus infection; Updates and applications. Virus Res 2019; 274:197765. [PMID: 31563457 DOI: 10.1016/j.virusres.2019.197765] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 09/17/2019] [Accepted: 09/20/2019] [Indexed: 02/08/2023]
Abstract
Hepatitis E virus (HEV) is the most common cause of acute viral hepatitis globally. HEV belongs to the Hepeviridae family and at least five genotypes (gt) infect humans. Several animal species are reservoirs for different HEV strains, and they are the source of infection for humans. Some HEV strains are species specific, but other strains could cross species and infect many hosts. The study of HEV infection and pathogenesis was hampered due to the lack of an in vitro and in vivo robust model system. The cell culture system has been established for certain HEV strains, especially gt3 and 4, but gt1 strains replicate poorly in vitro. To date, animal models are the best tool for studying HEV infection. Non-human primates (NHPs) and pigs are the main animal models used for studying HEV infection, but ethical and financial concerns restrict the use of NHPs in research. Therefore, new small animal models have been developed which help more progress in HEV research. In this review, we give updates on the animal models used for studying HEV infection, focusing on the applicability of each model in studying different HEV infections, cross-species infection, virus-host interaction, evaluation of anti-HEV therapies and testing potential HEV vaccines.
Collapse
Affiliation(s)
- Ibrahim M Sayed
- Department of Pathology, School of Medicine, University of California, San Diego, La Jolla, California, USA; Medical Microbiology and Immunology Department, Faculty of Medicine, Assiut University, Assiut, Egypt.
| | - Amal A Elkhawaga
- Medical Microbiology and Immunology Department, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Mohamed A El-Mokhtar
- Medical Microbiology and Immunology Department, Faculty of Medicine, Assiut University, Assiut, Egypt
| |
Collapse
|
11
|
Hepatitis E virus in Tibetan pigs on the Qinghai-Tibetan Plateau: detection, molecular characterization and infection of BALB/c mice. Arch Virol 2019; 164:2943-2951. [PMID: 31549302 DOI: 10.1007/s00705-019-04410-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Accepted: 08/20/2019] [Indexed: 12/24/2022]
Abstract
This study was performed to investigate the prevalence and genetic variation of hepatitis E virus (HEV) in Tibetan pigs and to determine its ability to infect mice. A total of 38 out of 229 (16.59%; 95% CI = 12.00%-22.10%) fecal samples from Tibetan pigs from the Qinghai-Tibetan Plateau in 2018 were positive for HEV RNA, which was detected by RT-nPCR. Significantly different detection rates were observed between samples from diarrheic and clinically healthy animals (OR = 9.56; 95% CI, 2.84-32.14; p < 0.001), suggesting a potential association between HEV infection and diarrhea in Tibetan pigs. Phylogenetic analysis showed that the HEV isolates were clustered into subtypes 4a (31 samples), 4b (1), 4d (2), and 4j (4). HEV-4a was the predominant subtype, indicating that it might be circulating in Tibetan pigs. Nine complete HEV genome sequences obtained from Tibetan pigs were found by phylogenetic analysis to be closely related to those of genotype 4 HEV isolates from humans. Two recombinant events were identified in both HEV-4a strains; a novel recombination breakpoint was first identified at the 3' end of the ORF2 region in the SWU/L9/2018 strain, and a common recombination region was found at the junction of the ORF1 and ORF2 regions in the SWU/31-12/2018 strain. Furthermore, HEV-4a could be detected in all BALB/c mice that were experimentally infected by gavage and contact exposure. The information presented here about the prevalence and genotype diversity of HEV from Tibetan pigs provides important insights into the epidemic features of HEV on the Qinghai-Tibetan Plateau.
Collapse
|
12
|
Czekaj P, Król M, Limanówka Ł, Michalik M, Lorek K, Gramignoli R. Assessment of animal experimental models of toxic liver injury in the context of their potential application as preclinical models for cell therapy. Eur J Pharmacol 2019; 861:172597. [PMID: 31408648 DOI: 10.1016/j.ejphar.2019.172597] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 08/04/2019] [Accepted: 08/08/2019] [Indexed: 02/06/2023]
Abstract
Preclinical animal models allow to study development and progression of several diseases, including liver disorders. These studies, for ethical reasons and medical limits, are impossible to carry out in human patients. At the same time, such experimental models constitute an important source of knowledge on pathomechanisms for drug- and virus-induced hepatotoxicity, both acute and chronic. Carbon tetrachloride, D-Galactosamine, and retrorsine are xenobiotics that can be used in immunocompetent animal models of hepatotoxicity, where chemical-intoxicated livers present histological features representative of human viruses-related infection. A prolonged derangement into liver architecture and functions commonly lead to cirrhosis, eventually resulting in hepatocellular carcinoma. In human, orthotopic liver transplantation commonly resolve most the problems related to cirrhosis. However, the shortage of donors does not allow all the patients in the waiting list to receive an organ on time. A promising alternative treatment for acute and chronic liver disease has been advised in liver cell transplantation, but the limited availability of hepatocytes for clinical approaches, in addition to the immunosuppressant regiment required to sustain cellular long-term engraftment have been encouraging the use of alternative cell sources. A recent effective source of stem cells have been recently identified in the human amnion membrane. Human amnion epithelial cells (hAEC) have been preclinically tested and proven sufficient to rescue immunocompetent rodents lethally intoxicated with drugs. The adoption of therapeutic procedures based on hAEC transplant in immunocompetent recipients affected by liver diseases, as well as patients with immune-related disorders, may constitute a successful new alternative therapy in regenerative medicine.
Collapse
Affiliation(s)
- Piotr Czekaj
- Department of Cytophysiology, Chair of Histology and Embryology, School of Medicine in Katowice, Medical University of Silesia, Katowice, Poland, Medyków 18 str., 40-752, Katowice, Poland.
| | - Mateusz Król
- Students Scientific Society, Department of Cytophysiology, Chair of Histology and Embryology, School of Medicine in Katowice, Medical University of Silesia, Katowice, Poland, Medyków 18 str., 40-752, Katowice, Poland.
| | - Łukasz Limanówka
- Students Scientific Society, Department of Cytophysiology, Chair of Histology and Embryology, School of Medicine in Katowice, Medical University of Silesia, Katowice, Poland, Medyków 18 str., 40-752, Katowice, Poland
| | - Marcin Michalik
- Students Scientific Society, Department of Cytophysiology, Chair of Histology and Embryology, School of Medicine in Katowice, Medical University of Silesia, Katowice, Poland, Medyków 18 str., 40-752, Katowice, Poland
| | - Katarzyna Lorek
- Students Scientific Society, Department of Cytophysiology, Chair of Histology and Embryology, School of Medicine in Katowice, Medical University of Silesia, Katowice, Poland, Medyków 18 str., 40-752, Katowice, Poland
| | - Roberto Gramignoli
- Department of Laboratory Medicine (LABMED), H5, Division of Pathology, Karolinska Institutet, Alfred Nobels Allé 8, 14152, Huddinge, Sweden.
| |
Collapse
|
13
|
Li TC, Wakita T. Small Animal Models of Hepatitis E Virus Infection. Cold Spring Harb Perspect Med 2019; 9:cshperspect.a032581. [PMID: 29735581 DOI: 10.1101/cshperspect.a032581] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Novel hepeviruses have been recovered from many different animal species in recent years, increasing the diversity known to exist among the Hepeviridae, which now include two genera, Piscihepevirus and Orthohepevirus Multiple viral genotypes in the Orthohepevirus A species are able to replicate and cause acute hepatitis E in humans, and thus represent an important public health problem in industrialized as well as developing countries. Although hepatitis E virus (HEV) infections typically result in acute and self-limited hepatitis, immunocompromised and transplant patients are vulnerable to prolonged infections and to chronic hepatitis. Cell culture systems have been established for several HEV strains and offer new opportunities for the study of HEV biology. Similarly, a variety of new small animal models have been developed, using either nonhuman hepeviruses in their cognate hosts as surrogates for human HEV, or human HEV infection of immunodeficient mice with chimeric livers engrafted with human hepatocytes. These new models provide several advantages over previous nonhuman primate models of hepatitis E infection and will facilitate studies of pathogenicity, cross-species infection, mechanisms of virus replication, and vaccine and antiviral agent development. This article reviews the current understanding of small animal models for HEV.
Collapse
Affiliation(s)
- Tian-Cheng Li
- Department of Virology II, National Institute of Infectious Diseases, Tokyo 208-0011, Japan
| | - Takaji Wakita
- Department of Virology II, National Institute of Infectious Diseases, Tokyo 208-0011, Japan
| |
Collapse
|
14
|
Fu RM, Decker CC, Dao Thi VL. Cell Culture Models for Hepatitis E Virus. Viruses 2019; 11:E608. [PMID: 31277308 PMCID: PMC6669563 DOI: 10.3390/v11070608] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 06/24/2019] [Accepted: 06/29/2019] [Indexed: 12/14/2022] Open
Abstract
Despite a growing awareness, hepatitis E virus (HEV) remains understudied and investigations have been historically hampered by the absence of efficient cell culture systems. As a result, the pathogenesis of HEV infection and basic steps of the HEV life cycle are poorly understood. Major efforts have recently been made through the development of HEV infectious clones and cellular systems that significantly advanced HEV research. Here, we summarize these systems, discussing their advantages and disadvantages for HEV studies. We further capitalize on the need for HEV-permissive polarized cell models to better recapitulate the entire HEV life cycle and transmission.
Collapse
Affiliation(s)
- Rebecca Menhua Fu
- Schaller Research Group at Department of Infectious Diseases and Virology, Heidelberg University Hospital, Cluster of Excellence CellNetworks, 69120 Heidelberg, Germany
- Heidelberg Biosciences International Graduate School, Heidelberg University, 69120 Heidelberg, Germany
| | - Charlotte Caroline Decker
- Schaller Research Group at Department of Infectious Diseases and Virology, Heidelberg University Hospital, Cluster of Excellence CellNetworks, 69120 Heidelberg, Germany
- Heidelberg Biosciences International Graduate School, Heidelberg University, 69120 Heidelberg, Germany
| | - Viet Loan Dao Thi
- Schaller Research Group at Department of Infectious Diseases and Virology, Heidelberg University Hospital, Cluster of Excellence CellNetworks, 69120 Heidelberg, Germany.
| |
Collapse
|
15
|
Animal Models for Hepatitis E virus. Viruses 2019; 11:v11060564. [PMID: 31216711 PMCID: PMC6630473 DOI: 10.3390/v11060564] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Revised: 06/11/2019] [Accepted: 06/12/2019] [Indexed: 02/06/2023] Open
Abstract
Hepatitis E virus (HEV) is an underdiagnosed pathogen with approximately 20 million infections each year and currently the most common cause of acute viral hepatitis. HEV was long considered to be confined to developing countries but there is increasing evidence that it is also a medical problem in the Western world. HEV that infects humans belongs to the Orthohepevirus A species of the Hepeviridae family. Novel HEV-like viruses have been observed in a variety of animals and some have been shown to be able to cross the species barrier, causing infection in humans. Several cell culture models for HEV have been established in the past years, but their efficiency is usually relatively low. With the circulation of this virus and related viruses in a variety of species, several different animal models have been developed. In this review, we give an overview of these animal models, indicate their main characteristics, and highlight how they may contribute to our understanding of the basic aspects of the viral life cycle and cross-species infection, the study of pathogenesis, and the evaluation of novel preventative and therapeutic strategies.
Collapse
|
16
|
Murphy EG, Williams NJ, Jennings D, Chantrey J, Verin R, Grierson S, McElhinney LM, Bennett M. First detection of Hepatitis E virus (Orthohepevirus C) in wild brown rats (Rattus norvegicus) from Great Britain. Zoonoses Public Health 2019; 66:686-694. [PMID: 31033238 PMCID: PMC6767579 DOI: 10.1111/zph.12581] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 03/21/2019] [Accepted: 04/06/2019] [Indexed: 12/20/2022]
Abstract
In the United Kingdom, there has been an increase in the number of hepatitis E virus (HEV) infections in people annually since 2010. Most of these are thought to be indigenously acquired Orthohepevirus A genotype 3 (HEV G3), which has been linked to pork production and consumption. However, the dominant subgroup circulating in British pigs differs from that which is found in people; therefore, an alternative, potentially zoonotic, source is suspected as a possible cause of these infections. Rodents, brown rats (Rattus norvegicus) in particular, have been shown to carry HEV, both the swine HEV G3 genotype and Orthohepevirus C, genotype C1 (rat HEV). To investigate the prevalence of HEV in British rodents, liver tissue was taken from 307 rodents collected from pig farms (n = 12) and other locations (n = 10). The RNA from these samples was extracted and tested using a pan‐HEV nested RT‐PCR. Limited histopathology was also performed. In this study, 8/61 (13%, 95% CI, 5–21) of brown rat livers were positive for HEV RNA. Sequencing of amplicons demonstrated all infections to be rat HEV with 87%–92% nucleotide identity to other rat HEV sequences circulating within Europe and China (224 nt ORF‐1). Lesions and necrosis were observed histologically in 2/3 samples examined. No rat HEV RNA was detected in any other species, and no HEV G3 RNA was detected in any rodent in this study. This is the first reported detection of rat HEV in Great Britain. A human case of rat HEV infection has recently been reported in Asia, suggesting that rat HEV could pose a risk to public health.
Collapse
Affiliation(s)
- Ellen G Murphy
- NIHR Health Protection Research Unit in Emerging Zoonotic Infections, Institute of Infection and Global Health, NCZR, Neston, UK.,Epidemiology and Population Health, Institute of Global Health, NCZR, Neston, UK
| | - Nicola J Williams
- NIHR Health Protection Research Unit in Emerging Zoonotic Infections, Institute of Infection and Global Health, NCZR, Neston, UK.,Epidemiology and Population Health, Institute of Global Health, NCZR, Neston, UK
| | - Daisy Jennings
- Wildlife Zoonoses and Vector Borne Disease Research Group, Animal and Plant Health Agency, Weybridge, UK
| | - Julian Chantrey
- Department of Veterinary Pathology & Public Health, School of Veterinary Science, University of Liverpool, Liverpool, UK
| | - Ranieri Verin
- Department of Veterinary Pathology & Public Health, School of Veterinary Science, University of Liverpool, Liverpool, UK
| | - Sylvia Grierson
- Department of Virology, Animal and Plant Health Agency, Addlestone, UK
| | - Lorraine M McElhinney
- NIHR Health Protection Research Unit in Emerging Zoonotic Infections, Institute of Infection and Global Health, NCZR, Neston, UK.,Wildlife Zoonoses and Vector Borne Disease Research Group, Animal and Plant Health Agency, Weybridge, UK
| | - Malcolm Bennett
- School of Veterinary Science, University of Nottingham, Leicestershire, UK
| |
Collapse
|
17
|
Nishiyama T, Kobayashi T, Jirintai S, Kii I, Nagashima S, Prathiwi Primadharsini P, Nishizawa T, Okamoto H. Screening of novel drugs for inhibiting hepatitis E virus replication. J Virol Methods 2019; 270:1-11. [PMID: 31004661 DOI: 10.1016/j.jviromet.2019.04.017] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 03/05/2019] [Accepted: 04/16/2019] [Indexed: 12/12/2022]
Abstract
Hepatitis E, which is caused by hepatitis E virus (HEV), is generally a self-limiting, acute, and rarely fatal disease. It is sometimes fulminant and lethal, especially during pregnancy. Indeed, it occasionally takes a chronic course in immunocompromised individuals. To cure hepatitis E patients, the broad-spectrum antivirals (ribavirin and pegylated interferon α) are used. However, this treatment is insufficient and unsafe in some patients due to embryoteratogenic effects, leukopenia, and thrombocytopenia. In this study, we constructed an HEV replication reporter system with Gaussia luciferase for comprehensively screening anti-HEV drug candidates, and developed a cell-culture system using cells robustly producing HEV to validate the efficacy of anti-HEV drug candidates. We screened anti-HEV drug candidates from United States Food and Drug Administration-approved drugs using the established HEV replication reporter system, and investigated the selected candidates and type III interferons (interferon λ1-3) using the cell-culture system. In conclusion, we constructed an HEV replicon system for anti-HEV drug screening and a novel cell-culture system to strictly evaluate the replication-inhibitory activities of the obtained anti-HEV candidates. Our findings suggested that interferon λ1-3 might be effective for treating hepatitis E.
Collapse
Affiliation(s)
- Takashi Nishiyama
- Division of Virology, Department of Infection and Immunity, Jichi Medical University School of Medicine, 3311-1 Yakushiji, Shimotsuke-Shi, Tochigi 329-0498, Japan
| | - Tominari Kobayashi
- Division of Virology, Department of Infection and Immunity, Jichi Medical University School of Medicine, 3311-1 Yakushiji, Shimotsuke-Shi, Tochigi 329-0498, Japan
| | - Suljid Jirintai
- Division of Virology, Department of Infection and Immunity, Jichi Medical University School of Medicine, 3311-1 Yakushiji, Shimotsuke-Shi, Tochigi 329-0498, Japan; Division of Pathology, Department of Basic Veterinary Medicine, Inner Mongolia Agricultural University College of Medicine, Hohhot, Inner Mongolia, China
| | - Isao Kii
- Common Facilities Unit, Integrated Research Group, Compass to Healthy Life Research Complex Program, RIKEN Cluster for Science, Technology and Innovation Hub, Kobe, Japan
| | - Shigeo Nagashima
- Division of Virology, Department of Infection and Immunity, Jichi Medical University School of Medicine, 3311-1 Yakushiji, Shimotsuke-Shi, Tochigi 329-0498, Japan
| | - Putu Prathiwi Primadharsini
- Division of Virology, Department of Infection and Immunity, Jichi Medical University School of Medicine, 3311-1 Yakushiji, Shimotsuke-Shi, Tochigi 329-0498, Japan
| | - Tsutomu Nishizawa
- Division of Virology, Department of Infection and Immunity, Jichi Medical University School of Medicine, 3311-1 Yakushiji, Shimotsuke-Shi, Tochigi 329-0498, Japan
| | - Hiroaki Okamoto
- Division of Virology, Department of Infection and Immunity, Jichi Medical University School of Medicine, 3311-1 Yakushiji, Shimotsuke-Shi, Tochigi 329-0498, Japan.
| |
Collapse
|
18
|
Lee EB, Kim JH, Hur W, Choi JE, Kim SM, Park DJ, Kang BY, Lee GW, Yoon SK. Liver-specific Gene Delivery Using Engineered Virus-Like Particles of Hepatitis E Virus. Sci Rep 2019; 9:1616. [PMID: 30733562 PMCID: PMC6367430 DOI: 10.1038/s41598-019-38533-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 12/31/2018] [Indexed: 01/09/2023] Open
Abstract
Virus-like particles (VLPs) possess great potential for organ-specific transport of therapeutic agents due to their central cavity surrounded by viral capsid proteins and similar tropism to their original viruses. The N-terminal truncated second open reading frame (Nt-ORF2) of the hepatotropic hepatitis E virus (HEV) forms VLPs via self-assembly. In the present study, we investigated whether HEV-LPs could deliver foreign genes specifically to the liver. HEV-LPs were obtained from Nt-ORF2 expression in Huh7 cells that were transduced with recombinant baculoviruses and purified by continuous density gradient centrifugation. The purified HEV-LPs efficiently penetrated liver-derived cell lines and the liver tissues. To evaluate HEV-LPs as gene delivery tools, we encapsulated foreign plasmids in HEV-LPs with disassembly/reassembly systems. Green fluorescence was detected at higher frequency in liver-derived Huh7 cells treated with HEV-LPs bearing GFP-encoding plasmids than in control cells. Additionally, HEV-LPs bearing Bax-encoding plasmids induced apoptotic signatures in Huh7 cells. In conclusion, HEV-LPs produced in mammalian cells can encapsulate foreign genes in their central cavity and specifically transport these genes to liver-derived cells, where they are expressed. The present study could contribute to advances in liver-targeted gene therapy.
Collapse
Affiliation(s)
- Eun Byul Lee
- The Catholic University Liver Research Center & WHO Collaborating Center of Viral Hepatitis, Department of Biomedicine & Health Sciences, The Catholic University of Korea, Seoul, 06591, Republic of Korea
| | - Jung-Hee Kim
- The Catholic University Liver Research Center & WHO Collaborating Center of Viral Hepatitis, Department of Biomedicine & Health Sciences, The Catholic University of Korea, Seoul, 06591, Republic of Korea
- am SCIENCES, C-912, SK V1 GL Metrocity, 128, Beobwonro, Songpa-gu, Seoul, 05854, Republic of Korea
| | - Wonhee Hur
- The Catholic University Liver Research Center & WHO Collaborating Center of Viral Hepatitis, Department of Biomedicine & Health Sciences, The Catholic University of Korea, Seoul, 06591, Republic of Korea
| | - Jung Eun Choi
- The Catholic University Liver Research Center & WHO Collaborating Center of Viral Hepatitis, Department of Biomedicine & Health Sciences, The Catholic University of Korea, Seoul, 06591, Republic of Korea
- 1014, A Building Gangseo-Hangang-Xi Tower 401 Yangcheon-ro, Gangseo-gu, Seoul, 157-801, Republic of Korea
| | - Sung Min Kim
- The Catholic University Liver Research Center & WHO Collaborating Center of Viral Hepatitis, Department of Biomedicine & Health Sciences, The Catholic University of Korea, Seoul, 06591, Republic of Korea
| | - Dong Jun Park
- The Catholic University Liver Research Center & WHO Collaborating Center of Viral Hepatitis, Department of Biomedicine & Health Sciences, The Catholic University of Korea, Seoul, 06591, Republic of Korea
| | - Byung-Yoon Kang
- The Catholic University Liver Research Center & WHO Collaborating Center of Viral Hepatitis, Department of Biomedicine & Health Sciences, The Catholic University of Korea, Seoul, 06591, Republic of Korea
| | - Gil Won Lee
- The Catholic University Liver Research Center & WHO Collaborating Center of Viral Hepatitis, Department of Biomedicine & Health Sciences, The Catholic University of Korea, Seoul, 06591, Republic of Korea
| | - Seung Kew Yoon
- The Catholic University Liver Research Center & WHO Collaborating Center of Viral Hepatitis, Department of Biomedicine & Health Sciences, The Catholic University of Korea, Seoul, 06591, Republic of Korea.
| |
Collapse
|
19
|
Meister TL, Bruening J, Todt D, Steinmann E. Cell culture systems for the study of hepatitis E virus. Antiviral Res 2019; 163:34-49. [PMID: 30653997 DOI: 10.1016/j.antiviral.2019.01.007] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 01/08/2019] [Accepted: 01/13/2019] [Indexed: 12/26/2022]
Abstract
Hepatitis E virus (HEV) is the causative agent of hepatitis E in humans and is the leading cause of enterically-transmitted viral hepatitis worldwide. Increasing numbers of HEV infections, together with no available specific anti-HEV treatment, contributes to the pathogen's major health burden. A robust cell culture system is required for virologic studies and the development of new antiviral drugs. Unfortunately, like other hepatitis viruses, HEV is difficult to propagate in conventional cell lines. Many different cell culture systems have been tested using various HEV strains, but viral replication usually progresses very slowly, and infection with low virion counts results in non-productive HEV replication. However, recent progress involving generation of cDNA clones and passaging primary patient isolates in distinct cell lines has improved in vitro HEV propagation. This review describes various approaches to cultivate HEV in cellular and animal models and how these systems are used to study HEV infections and evaluate anti-HEV drug candidates.
Collapse
Affiliation(s)
- Toni L Meister
- Ruhr-University Bochum, Faculty of Medicine, Department of Molecular and Medical Virology, Bochum, Germany
| | - Janina Bruening
- Ruhr-University Bochum, Faculty of Medicine, Department of Molecular and Medical Virology, Bochum, Germany
| | - Daniel Todt
- Ruhr-University Bochum, Faculty of Medicine, Department of Molecular and Medical Virology, Bochum, Germany.
| | - Eike Steinmann
- Ruhr-University Bochum, Faculty of Medicine, Department of Molecular and Medical Virology, Bochum, Germany.
| |
Collapse
|
20
|
Life cycle and morphogenesis of the hepatitis E virus. Emerg Microbes Infect 2018; 7:196. [PMID: 30498191 PMCID: PMC6265337 DOI: 10.1038/s41426-018-0198-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 11/01/2018] [Accepted: 11/05/2018] [Indexed: 12/19/2022]
Abstract
Hepatitis E virus (HEV) is transmitted primarily via contaminated water and food by the fecal oral route and causes epidemics in developing countries. In industrialized countries, zoonotic transmission of HEV is prevalent. In addition, HEV is the major cause of acute hepatitis in healthy adults and can cause chronic hepatitis in immunocompromised patients, with pregnant HEV-infected women having increased mortality rates of approximately 25%. HEV was once an understudied and neglected virus. However, in recent years, the safety of blood products with respect to HEV has increasingly been considered to be a public health problem. The establishment of HEV infection models has enabled significant progress to be made in understanding its life cycle. HEV infects cells via a receptor (complex) that has yet to be identified. The HEV replication cycle is initiated immediately after the (+) stranded RNA genome is released into the cell cytosol. Subsequently, infectious viral particles are released by the ESCRT complex as quasi-enveloped viruses (eHEVs) into the serum, whereas feces and urine contain only nonenveloped infectious viral progeny. The uncoating of the viral envelope takes place in the biliary tract, resulting in the generation of a nonenveloped virus that is more resistant to environmental stress and possesses a higher infectivity than that of eHEV. This review summarizes the current knowledge regarding the HEV life cycle, viral morphogenesis, established model systems and vaccine development.
Collapse
|
21
|
Abstract
Hepatitis E virus (HEV) is an important human pathogen that historically has been difficult to study. Limited levels of replication in vitro hindered our understanding of the viral life cycle. Sporadic and low-level virus shedding, lack of standardized detection methods, and subclinical infections made the development of animal models difficult. Better diagnostic techniques and understanding of the virus increased our ability to identify and characterize animal strains and animals that are amenable to model human-relevant infection. These advances are translating into the development of useful HEV animal models so that some of the greatest concerns associated with HEV infection, including host immunology, chronic infection, severe pregnancy mortality, and extrahepatic manifestations, can now be studied. Continued development of these animal models will be instrumental in understanding the many complex questions associated with HEV infection and for assessing therapeutics and prevention strategies to minimize HEV becoming a greater risk to the human population.
Collapse
Affiliation(s)
- Scott P Kenney
- Food Animal Health Research Program, College of Veterinary Medicine, Ohio State University, Wooster, Ohio 44691, USA;
| | - Xiang-Jin Meng
- Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24060, USA;
| |
Collapse
|
22
|
Sun Y, Lu Q, Liu B, Sheng Y, Du T, Hiscox JA, Zhou EM, Zhao Q. Cross-species infection of mice by rabbit hepatitis E virus. Vet Microbiol 2018; 225:48-52. [PMID: 30322532 DOI: 10.1016/j.vetmic.2018.09.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 09/10/2018] [Accepted: 09/16/2018] [Indexed: 12/13/2022]
Abstract
Rabbits are recognized as a zoonotic reservoir of hepatitis E virus (HEV) for transmission to humans and other zoonotic reservoirs such as swine. The purpose of this study was to assess the ability of rabbit HEV to cross the species barrier to infect mice and also the usefulness of this animal to study HEV transmission and pathogenesis. In this study, uninfected BALB/c mice were experimentally inoculated with rabbit HEV either via gavage or through contact-exposure with infected mice. Rabbit HEV propagation in mice was evaluated by studying fecal virus shedding, viremia, seroconversion and microscopic liver lesions. Rabbit HEV could be detected in all mice infected by gavage, but only in some contact-exposed mice, with some animals exhibiting fecal virus shedding, seroconversion or viremia (one mouse only). Compared with inoculated mice, anti-rabbit HEV antibody titers and viral copy numbers in fecal and serum samples were lower in contact-exposed mice. Infected mice mainly exhibited phlebitis, hepatocyte swelling and necrosis. Microscopic liver lesion scores for inoculated and contact-exposed infected mice were higher than scores for negative controls. This study therefore demonstrates that rabbit HEV could infect BALB/c mice both though inoculation via gavage and through contact-exposure.
Collapse
Affiliation(s)
- Yani Sun
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, China; Scientific Observing and Experimental Station of Veterinary Pharmacology and Diagnostic Technology, Ministry of Agriculture, China
| | - Qizhong Lu
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, China; Scientific Observing and Experimental Station of Veterinary Pharmacology and Diagnostic Technology, Ministry of Agriculture, China
| | - Baoyuan Liu
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, China; Scientific Observing and Experimental Station of Veterinary Pharmacology and Diagnostic Technology, Ministry of Agriculture, China
| | - Yamin Sheng
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, China; Scientific Observing and Experimental Station of Veterinary Pharmacology and Diagnostic Technology, Ministry of Agriculture, China
| | - Taofeng Du
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, China; Scientific Observing and Experimental Station of Veterinary Pharmacology and Diagnostic Technology, Ministry of Agriculture, China
| | - Julian A Hiscox
- Department of Infection Biology, Institute of Infection and Global Health, University of Liverpool, Liverpool, UK
| | - En-Min Zhou
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, China; Scientific Observing and Experimental Station of Veterinary Pharmacology and Diagnostic Technology, Ministry of Agriculture, China.
| | - Qin Zhao
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, China; Scientific Observing and Experimental Station of Veterinary Pharmacology and Diagnostic Technology, Ministry of Agriculture, China.
| |
Collapse
|
23
|
Tanggis, Kobayashi T, Takahashi M, Jirintai S, Nishizawa T, Nagashima S, Nishiyama T, Kunita S, Hayama E, Tanaka T, Mulyanto, Okamoto H. An analysis of two open reading frames (ORF3 and ORF4) of rat hepatitis E virus genome using its infectious cDNA clones with mutations in ORF3 or ORF4. Virus Res 2018; 249:16-30. [DOI: 10.1016/j.virusres.2018.02.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 02/14/2018] [Accepted: 02/14/2018] [Indexed: 01/13/2023]
|
24
|
Abstract
At least 20 million hepatitis E virus (HEV) infections occur annually, with >3 million symptomatic cases and ∼60,000 fatalities. Hepatitis E is generally self-limiting, with a case fatality rate of 0.5-3% in young adults. However, it can cause up to 30% mortality in pregnant women in the third trimester and can become chronic in immunocompromised individuals, such as those receiving organ transplants or chemotherapy and individuals with HIV infection. HEV is transmitted primarily via the faecal-oral route and was previously thought to be a public health concern only in developing countries. It is now also being frequently reported in industrialized countries, where it is transmitted zoonotically or through organ transplantation or blood transfusions. Although a vaccine for HEV has been developed, it is only licensed in China. Additionally, no effective, non-teratogenic and specific treatments against HEV infections are currently available. Although progress has been made in characterizing HEV biology, the scarcity of adequate experimental platforms has hampered further research. In this Review, we focus on providing an update on the HEV life cycle. We will further discuss existing cell culture and animal models and highlight platforms that have proven to be useful and/or are emerging for studying other hepatotropic (viral) pathogens.
Collapse
Affiliation(s)
- Ila Nimgaonkar
- Department of Molecular Biology, Princeton University, Lewis Thomas Laboratory, Washington Road, Princeton, New Jersey 08544, USA
| | - Qiang Ding
- Department of Molecular Biology, Princeton University, Lewis Thomas Laboratory, Washington Road, Princeton, New Jersey 08544, USA
| | - Robert E Schwartz
- Division of Gastroenterology and Hepatology, Department of Medicine, Weill Medical College of Cornell University, New York, New York 10021, USA
| | - Alexander Ploss
- Department of Molecular Biology, Princeton University, Lewis Thomas Laboratory, Washington Road, Princeton, New Jersey 08544, USA
| |
Collapse
|
25
|
Abstract
Future prospects continue to be strong for research using the rat as a model organism. New technology has enabled the proliferation of many new transgenic and knockout rat strains, the genomes of more than 40 rat strains have been sequenced, publications using the rat as a model continue to be produced at a steady rate, and discoveries of disease-associated genes and mechanisms from rat experiments abound, frequently with conservation of function between rats and humans. However, advances in genome technology have led to increasing insights into human disease directly from human genetic studies, pulling more and more researchers into the human genetics arena and placing funding for model organisms and their databases under threat. This, therefore, is a pivotal time for rat-based biomedical research - a timely moment to review progress and prospects - providing the inspiration for a new Special Collection focused on the impact of the model on translational science, launched in this issue of Disease Models & Mechanisms. What disease areas are most appropriate for research using rats? Why should the rat be favoured over other model organisms, and should the present levels of funding be continued? Which approaches should we expect to yield biologically and medically useful insights in the coming years? These are key issues that are addressed in the original Research Articles and reviews published in this Special Collection, and in this introductory Editorial. These exemplar articles serve as a landmark for the present status quo after a decade of major advances using the rat model and could help to guide the direction of rat research in the coming decade.
Collapse
Affiliation(s)
- Tim Aitman
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Paraminder Dhillon
- Disease Models & Mechanisms, The Company of Biologists, Bidder Building, Station Road, Histon, Cambridge CB24 9LF, UK
| | - Aron M Geurts
- Department of Physiology and Genome Editing Rat Resource Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| |
Collapse
|