1
|
Lee G, Kim S, Hwang DE, Eom YG, Jang G, Park HY, Choi JM, Ko J, Shin Y. Thermodynamic modulation of gephyrin condensation by inhibitory synapse components. Proc Natl Acad Sci U S A 2024; 121:e2313236121. [PMID: 38466837 PMCID: PMC10963017 DOI: 10.1073/pnas.2313236121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 02/05/2024] [Indexed: 03/13/2024] Open
Abstract
Phase separation drives compartmentalization of intracellular contents into various biomolecular condensates. Individual condensate components are thought to differentially contribute to the organization and function of condensates. However, how intermolecular interactions among constituent biomolecules modulate the phase behaviors of multicomponent condensates remains unclear. Here, we used core components of the inhibitory postsynaptic density (iPSD) as a model system to quantitatively probe how the network of intra- and intermolecular interactions defines the composition and cellular distribution of biomolecular condensates. We found that oligomerization-driven phase separation of gephyrin, an iPSD-specific scaffold, is critically modulated by an intrinsically disordered linker region exhibiting minimal homotypic attractions. Other iPSD components, such as neurotransmitter receptors, differentially promote gephyrin condensation through distinct binding modes and affinities. We further demonstrated that the local accumulation of scaffold-binding proteins at the cell membrane promotes the nucleation of gephyrin condensates in neurons. These results suggest that in multicomponent systems, the extent of scaffold condensation can be fine-tuned by scaffold-binding factors, a potential regulatory mechanism for self-organized compartmentalization in cells.
Collapse
Affiliation(s)
- Gyehyun Lee
- Department of Mechanical Engineering, Seoul National University, Seoul08826, Republic of Korea
| | - Seungjoon Kim
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu42988, Republic of Korea
- Center for Synapse Diversity and Specificity, Daegu Gyeongbuk Institute of Science and Technology, Daegu42988, Republic of Korea
| | - Da-Eun Hwang
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan46241, Republic of Korea
| | - Yu-Gon Eom
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan46241, Republic of Korea
| | - Gyubin Jang
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu42988, Republic of Korea
- Center for Synapse Diversity and Specificity, Daegu Gyeongbuk Institute of Science and Technology, Daegu42988, Republic of Korea
| | - Hye Yoon Park
- Department of Physics and Astronomy, Seoul National University, Seoul08826, Republic of Korea
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN55455
| | - Jeong-Mo Choi
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan46241, Republic of Korea
| | - Jaewon Ko
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu42988, Republic of Korea
- Center for Synapse Diversity and Specificity, Daegu Gyeongbuk Institute of Science and Technology, Daegu42988, Republic of Korea
| | - Yongdae Shin
- Department of Mechanical Engineering, Seoul National University, Seoul08826, Republic of Korea
- Interdisciplinary Program in Bioengineering, Seoul National University, Seoul08826, Republic of Korea
| |
Collapse
|
2
|
Thirouin ZS, Figueiredo M, Hleihil M, Gill R, Bosshard G, McKinney RA, Tyagarajan SK. Trophic factor BDNF inhibits GABAergic signaling by facilitating dendritic enrichment of SUMO E3 ligase PIAS3 and altering gephyrin scaffold. J Biol Chem 2022; 298:101840. [PMID: 35307349 PMCID: PMC9019257 DOI: 10.1016/j.jbc.2022.101840] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 03/03/2022] [Accepted: 03/04/2022] [Indexed: 11/18/2022] Open
Abstract
Posttranslational addition of a small ubiquitin-like modifier (SUMO) moiety (SUMOylation) has been implicated in pathologies such as brain ischemia, diabetic peripheral neuropathy, and neurodegeneration. However, nuclear enrichment of SUMO pathway proteins has made it difficult to ascertain how ion channels, proteins that are typically localized to and function at the plasma membrane, and mitochondria are SUMOylated. Here, we report that the trophic factor, brain-derived neurotrophic factor (BDNF) regulates SUMO proteins both spatially and temporally in neurons. We show that BDNF signaling via the receptor tropomyosin-related kinase B facilitates nuclear exodus of SUMO proteins and subsequent enrichment within dendrites. Of the various SUMO E3 ligases, we found that PIAS-3 dendrite enrichment in response to BDNF signaling specifically modulates subsequent ERK1/2 kinase pathway signaling. In addition, we found the PIAS-3 RING and Ser/Thr domains, albeit in opposing manners, functionally inhibit GABA-mediated inhibition. Finally, using oxygen–glucose deprivation as an in vitro model for ischemia, we show that BDNF–tropomyosin-related kinase B signaling negatively impairs clustering of the main scaffolding protein at GABAergic postsynapse, gephyrin, whereby reducing GABAergic neurotransmission postischemia. SUMOylation-defective gephyrin K148R/K724R mutant transgene expression reversed these ischemia-induced changes in gephyrin cluster density. Taken together, these data suggest that BDNF signaling facilitates the temporal relocation of nuclear-enriched SUMO proteins to dendrites to influence postsynaptic protein SUMOylation.
Collapse
Affiliation(s)
- Zahra S Thirouin
- Institute of Pharmacology and Toxicology, University of Zürich, Zürich, Switzerland
| | - Marta Figueiredo
- Institute of Pharmacology and Toxicology, University of Zürich, Zürich, Switzerland
| | - Mohammad Hleihil
- Institute of Pharmacology and Toxicology, University of Zürich, Zürich, Switzerland
| | - Raminder Gill
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Canada
| | - Giovanna Bosshard
- Institute of Pharmacology and Toxicology, University of Zürich, Zürich, Switzerland
| | - R Anne McKinney
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Canada
| | - Shiva K Tyagarajan
- Institute of Pharmacology and Toxicology, University of Zürich, Zürich, Switzerland.
| |
Collapse
|
3
|
Gregor KM, Becker SC, Hellhammer F, Baumgärtner W, Puff C. Immunohistochemical Characterization of the Nervous System of Culex pipiens (Diptera, Culicidae). BIOLOGY 2022; 11:57. [PMID: 35053056 PMCID: PMC8772823 DOI: 10.3390/biology11010057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/29/2021] [Accepted: 12/30/2021] [Indexed: 11/24/2022]
Abstract
Arthropod-borne diseases represent one of the greatest infection-related threats as a result of climate change and globalization. Repeatedly, arbovirus-infected mosquitoes show behavioral changes whose underlying mechanisms are still largely unknown, but might help to develop control strategies. However, in contrast to well-characterized insects such as fruit flies, little is known about neuroanatomy and neurotransmission in mosquitoes. To overcome this limitation, the study focuses on the immunohistochemical characterization of the nervous system of Culex pipiens biotype molestus in comparison to Drosophila melanogaster using 13 antibodies labeling nervous tissue, neurotransmitters or neurotransmitter-related enzymes. Antibodies directed against γ-aminobutyric acid, serotonin, tyrosine-hydroxylase and glutamine synthetase were suitable for investigations in Culex pipiens and Drosophila melanogaster, albeit species-specific spatial differences were observed. Likewise, similar staining results were achieved for neuronal glycoproteins, axons, dendrites and synaptic zones in both species. Interestingly, anti-phosphosynapsin and anti-gephyrin appear to represent novel markers for synapses and glial cells, respectively. In contrast, antibodies directed against acetylcholine, choline acetyltransferase, elav and repo failed to produce a signal in Culex pipiens comparable to that in Drosophila melanogaster. In summary, present results enable a detailed investigation of the nervous system of mosquitoes, facilitating further studies of behavioral mechanisms associated with arboviruses in the course of vector research.
Collapse
Affiliation(s)
- Katharina M. Gregor
- Department of Pathology, University of Veterinary Medicine Hannover, Bünteweg 17, Lower Saxony, 30559 Hannover, Germany; (K.M.G.); (C.P.)
| | - Stefanie C. Becker
- Institute for Parasitology, University of Veterinary Medicine Hannover, Bünteweg 17, Lower Saxony, 30559 Hannover, Germany; (S.C.B.); (F.H.)
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Bünteweg 17, Lower Saxony, 30559 Hannover, Germany
| | - Fanny Hellhammer
- Institute for Parasitology, University of Veterinary Medicine Hannover, Bünteweg 17, Lower Saxony, 30559 Hannover, Germany; (S.C.B.); (F.H.)
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Bünteweg 17, Lower Saxony, 30559 Hannover, Germany
| | - Wolfgang Baumgärtner
- Department of Pathology, University of Veterinary Medicine Hannover, Bünteweg 17, Lower Saxony, 30559 Hannover, Germany; (K.M.G.); (C.P.)
| | - Christina Puff
- Department of Pathology, University of Veterinary Medicine Hannover, Bünteweg 17, Lower Saxony, 30559 Hannover, Germany; (K.M.G.); (C.P.)
| |
Collapse
|
4
|
Fang H, Bygrave AM, Roth RH, Johnson RC, Huganir RL. An optimized CRISPR/Cas9 approach for precise genome editing in neurons. eLife 2021; 10:65202. [PMID: 33689678 PMCID: PMC7946428 DOI: 10.7554/elife.65202] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 02/22/2021] [Indexed: 01/01/2023] Open
Abstract
The efficient knock-in of large DNA fragments to label endogenous proteins remains especially challenging in non-dividing cells such as neurons. We developed Targeted Knock-In with Two (TKIT) guides as a novel CRISPR/Cas9 based approach for efficient, and precise, genomic knock-in. Through targeting non-coding regions TKIT is resistant to INDEL mutations. We demonstrate TKIT labeling of endogenous synaptic proteins with various tags, with efficiencies up to 42% in mouse primary cultured neurons. Utilizing in utero electroporation or viral injections in mice TKIT can label AMPAR subunits with Super Ecliptic pHluorin, enabling visualization of endogenous AMPARs in vivo using two-photon microscopy. We further use TKIT to assess the mobility of endogenous AMPARs using fluorescence recovery after photobleaching. Finally, we show that TKIT can be used to tag AMPARs in rat neurons, demonstrating precise genome editing in another model organism and highlighting the broad potential of TKIT as a method to visualize endogenous proteins.
Collapse
Affiliation(s)
- Huaqiang Fang
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, United States.,Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, United States.,PKU-Nanjing Institute of Translational Medicine, Nanjing, China.,Research Unit of Mitochondria in Brain Diseases, Chinese Academy of Medical Sciences, Nanjing, China
| | - Alexei M Bygrave
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, United States
| | - Richard H Roth
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, United States
| | - Richard C Johnson
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, United States
| | - Richard L Huganir
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, United States.,Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, United States
| |
Collapse
|
5
|
Lorenzo LE, Godin AG, Ferrini F, Bachand K, Plasencia-Fernandez I, Labrecque S, Girard AA, Boudreau D, Kianicka I, Gagnon M, Doyon N, Ribeiro-da-Silva A, De Koninck Y. Enhancing neuronal chloride extrusion rescues α2/α3 GABA A-mediated analgesia in neuropathic pain. Nat Commun 2020; 11:869. [PMID: 32054836 PMCID: PMC7018745 DOI: 10.1038/s41467-019-14154-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 12/16/2019] [Indexed: 02/06/2023] Open
Abstract
Spinal disinhibition has been hypothesized to underlie pain hypersensitivity in neuropathic pain. Apparently contradictory mechanisms have been reported, raising questions on the best target to produce analgesia. Here, we show that nerve injury is associated with a reduction in the number of inhibitory synapses in the spinal dorsal horn. Paradoxically, this is accompanied by a BDNF-TrkB-mediated upregulation of synaptic GABAARs and by an α1-to-α2GABAAR subunit switch, providing a mechanistic rationale for the analgesic action of the α2,3GABAAR benzodiazepine-site ligand L838,417 after nerve injury. Yet, we demonstrate that impaired Cl- extrusion underlies the failure of L838,417 to induce analgesia at high doses due to a resulting collapse in Cl- gradient, dramatically limiting the benzodiazepine therapeutic window. In turn, enhancing KCC2 activity not only potentiated L838,417-induced analgesia, it rescued its analgesic potential at high doses, revealing a novel strategy for analgesia in pathological pain, by combined targeting of the appropriate GABAAR-subtypes and restoring Cl- homeostasis.
Collapse
Affiliation(s)
- Louis-Etienne Lorenzo
- CERVO Brain Research Centre, Quebec Mental Health Institute, Québec, QC, Canada
- Department of Pharmacology & Therapeutics, McGill University, Montreal, QC, Canada
| | - Antoine G Godin
- CERVO Brain Research Centre, Quebec Mental Health Institute, Québec, QC, Canada
- Department of Psychiatry & Neuroscience, Université Laval, Québec, QC, Canada
- Graduate program in Neuroscience, Université Laval, Québec, QC, Canada
| | - Francesco Ferrini
- CERVO Brain Research Centre, Quebec Mental Health Institute, Québec, QC, Canada
- Department of Psychiatry & Neuroscience, Université Laval, Québec, QC, Canada
- Graduate program in Neuroscience, Université Laval, Québec, QC, Canada
- Department of Veterinary Sciences, University of Turin, Turin, Italy
| | - Karine Bachand
- CERVO Brain Research Centre, Quebec Mental Health Institute, Québec, QC, Canada
| | - Isabel Plasencia-Fernandez
- CERVO Brain Research Centre, Quebec Mental Health Institute, Québec, QC, Canada
- Graduate program in Neuroscience, Université Laval, Québec, QC, Canada
| | - Simon Labrecque
- CERVO Brain Research Centre, Quebec Mental Health Institute, Québec, QC, Canada
| | - Alexandre A Girard
- CERVO Brain Research Centre, Quebec Mental Health Institute, Québec, QC, Canada
- Ecole Polytechnique, IP Paris, Palaiseau, France
| | - Dominic Boudreau
- CERVO Brain Research Centre, Quebec Mental Health Institute, Québec, QC, Canada
- Graduate program in Neuroscience, Université Laval, Québec, QC, Canada
| | - Irenej Kianicka
- Chlorion Pharma, Laval, Québec, QC, Canada
- Laurent Pharmaceuticals Inc., Montreal, QC, Canada
| | - Martin Gagnon
- CERVO Brain Research Centre, Quebec Mental Health Institute, Québec, QC, Canada
- Centre for Innovation, University of Otago, Dunedin, New Zealand
| | - Nicolas Doyon
- CERVO Brain Research Centre, Quebec Mental Health Institute, Québec, QC, Canada
- Finite Element Interdisciplinary Research Group (GIREF), Université Laval, Québec, QC, Canada
| | - Alfredo Ribeiro-da-Silva
- Department of Pharmacology & Therapeutics, McGill University, Montreal, QC, Canada
- Department of Anatomy & Cell Biology, McGill University, Montreal, QC, Canada
- Alan Edwards Centre for Research on Pain, McGill University, Montreal, QC, Canada
| | - Yves De Koninck
- CERVO Brain Research Centre, Quebec Mental Health Institute, Québec, QC, Canada.
- Department of Pharmacology & Therapeutics, McGill University, Montreal, QC, Canada.
- Department of Psychiatry & Neuroscience, Université Laval, Québec, QC, Canada.
- Graduate program in Neuroscience, Université Laval, Québec, QC, Canada.
- Alan Edwards Centre for Research on Pain, McGill University, Montreal, QC, Canada.
| |
Collapse
|
6
|
Specht CG. Fractional occupancy of synaptic binding sites and the molecular plasticity of inhibitory synapses. Neuropharmacology 2019; 169:107493. [PMID: 30648560 DOI: 10.1016/j.neuropharm.2019.01.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 12/01/2018] [Accepted: 01/09/2019] [Indexed: 01/20/2023]
Abstract
The postsynaptic density (PSD) at inhibitory synapses is a complex molecular assembly that serves as a platform for the interaction of neurotransmitter receptors, scaffold and adapter proteins, cytoskeletal elements and signalling molecules. The stability of the PSD depends on a multiplicity of interactions linking individual components. At the same time the PSD retains a substantial degree of flexibility. The continuous exchange of synaptic molecules and the preferential addition or removal of certain components induce plastic changes in the synaptic structure. This property necessarily implies that interactors are in dynamic equilibrium and that not all synaptic binding sites are occupied simultaneously. This review discusses the molecular plasticity of inhibitory synapses in terms of the connectivity of their components. Whereas stable protein complexes are marked by stoichiometric relationships between subunits, the majority of synaptic interactions have fractional occupancy, which is here defined as the non-saturation of synaptic binding sites. Fractional occupancy can have several causes: reduced kinetic or thermodynamic stability of the interactions, an imbalance in the concentrations or limited spatio-temporal overlap of interacting proteins, negative cooperativity or mutually exclusive binding. The role of fractional occupancy in the regulation of synaptic structure and function is explored based on recent data about the connectivity of inhibitory receptors and scaffold proteins. I propose that the absolute quantification of interactors and their stoichiometry at identified synapses can provide new mechanistic insights into the dynamic properties of inhibitory PSDs at the molecular level. This article is part of the special issue entitled 'Mobility and trafficking of neuronal membrane proteins'.
Collapse
Affiliation(s)
- Christian G Specht
- École Normale Supérieure, PSL Research University, CNRS, Inserm, Institute of Biology (IBENS), Paris, 75005, France.
| |
Collapse
|
7
|
Activity-Dependent Inhibitory Synapse Scaling Is Determined by Gephyrin Phosphorylation and Subsequent Regulation of GABA A Receptor Diffusion. eNeuro 2018; 5:eN-NWR-0203-17. [PMID: 29379879 PMCID: PMC5780843 DOI: 10.1523/eneuro.0203-17.2017] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 12/14/2017] [Accepted: 12/21/2017] [Indexed: 12/21/2022] Open
Abstract
Synaptic plasticity relies on the rapid changes in neurotransmitter receptor number at postsynaptic sites. Using superresolution photoactivatable localization microscopy imaging and quantum dot-based single-particle tracking in rat hippocampal cultured neurons, we investigated whether the phosphorylation status of the main scaffolding protein gephyrin influenced the organization of the gephyrin scaffold and GABAA receptor (GABAAR) membrane dynamics. We found that gephyrin phosphorylation regulates gephyrin microdomain compaction. Extracellular signal-regulated kinase 1/2 and glycogen synthase kinase 3β (GSK3β) signaling alter the gephyrin scaffold mesh differentially. Differences in scaffold organization similarly affected the diffusion of synaptic GABAARs, suggesting reduced gephyrin receptor-binding properties. In the context of synaptic scaling, our results identify a novel role of the GSK3β signaling pathway in the activity-dependent regulation of extrasynaptic receptor surface trafficking and GSK3β, protein kinase A, and calcium/calmodulin-dependent protein kinase IIα pathways in facilitating adaptations of synaptic receptors.
Collapse
|
8
|
Virtanen MA, Lacoh CM, Fiumelli H, Kosel M, Tyagarajan S, de Roo M, Vutskits L. Development of inhibitory synaptic inputs on layer 2/3 pyramidal neurons in the rat medial prefrontal cortex. Brain Struct Funct 2018; 223:1999-2012. [PMID: 29322238 DOI: 10.1007/s00429-017-1602-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 12/28/2017] [Indexed: 02/03/2023]
Abstract
Inhibitory control of pyramidal neurons plays a major role in governing the excitability in the brain. While spatial mapping of inhibitory inputs onto pyramidal neurons would provide important structural data on neuronal signaling, studying their distribution at the single cell level is difficult due to the lack of easily identifiable anatomical proxies. Here, we describe an approach where in utero electroporation of a plasmid encoding for fluorescently tagged gephyrin into the precursors of pyramidal cells along with ionotophoretic injection of Lucifer Yellow can reliably and specifically detect GABAergic synapses on the dendritic arbour of single pyramidal neurons. Using this technique and focusing on the basal dendritic arbour of layer 2/3 pyramidal cells of the medial prefrontal cortex, we demonstrate an intense development of GABAergic inputs onto these cells between postnatal days 10 and 20. While the spatial distribution of gephyrin clusters was not affected by the distance from the cell body at postnatal day 10, we found that distal dendritic segments appeared to have a higher gephyrin density at later developmental stages. We also show a transient increase around postnatal day 20 in the percentage of spines that are carrying a gephyrin cluster, indicative of innervation by a GABAergic terminal. Since the precise spatial arrangement of synaptic inputs is an important determinant of neuronal responses, we believe that the method described in this work may allow a better understanding of how inhibition settles together with excitation, and serve as basics for further modelling studies focusing on the geometry of dendritic inhibition during development.
Collapse
Affiliation(s)
- Mari A Virtanen
- Department of Basic Neuroscience, University of Geneva Medical School, Geneva, Switzerland.,Department of Biosciences, University of Helsinki, Helsinki, Finland
| | - Claudia Marvine Lacoh
- Department of Basic Neuroscience, University of Geneva Medical School, Geneva, Switzerland
| | - Hubert Fiumelli
- Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Markus Kosel
- Department of Psychiatry, University of Geneva Medical School, Geneva, Switzerland
| | - Shiva Tyagarajan
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| | - Mathias de Roo
- Department of Basic Neuroscience, University of Geneva Medical School, Geneva, Switzerland.,Department of Anesthesiology, Pharmacology and Intensive Care, University Hospitals of Geneva, 4, rue Gabrielle-Perret-Gentil, 1211, Geneva 4, Switzerland
| | - Laszlo Vutskits
- Department of Basic Neuroscience, University of Geneva Medical School, Geneva, Switzerland. .,Department of Anesthesiology, Pharmacology and Intensive Care, University Hospitals of Geneva, 4, rue Gabrielle-Perret-Gentil, 1211, Geneva 4, Switzerland.
| |
Collapse
|
9
|
Joshi A, Salib M, Viney TJ, Dupret D, Somogyi P. Behavior-Dependent Activity and Synaptic Organization of Septo-hippocampal GABAergic Neurons Selectively Targeting the Hippocampal CA3 Area. Neuron 2017; 96:1342-1357.e5. [PMID: 29198757 PMCID: PMC5746169 DOI: 10.1016/j.neuron.2017.10.033] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 08/23/2017] [Accepted: 10/25/2017] [Indexed: 12/12/2022]
Abstract
Rhythmic medial septal (MS) GABAergic input coordinates cortical theta oscillations. However, the rules of innervation of cortical cells and regions by diverse septal neurons are unknown. We report a specialized population of septal GABAergic neurons, the Teevra cells, selectively innervating the hippocampal CA3 area bypassing CA1, CA2, and the dentate gyrus. Parvalbumin-immunopositive Teevra cells show the highest rhythmicity among MS neurons and fire with short burst duration (median, 38 ms) preferentially at the trough of both CA1 theta and slow irregular oscillations, coincident with highest hippocampal excitability. Teevra cells synaptically target GABAergic axo-axonic and some CCK interneurons in restricted septo-temporal CA3 segments. The rhythmicity of their firing decreases from septal to temporal termination of individual axons. We hypothesize that Teevra neurons coordinate oscillatory activity across the septo-temporal axis, phasing the firing of specific CA3 interneurons, thereby contributing to the selection of pyramidal cell assemblies at the theta trough via disinhibition. VIDEO ABSTRACT.
Collapse
Affiliation(s)
- Abhilasha Joshi
- Department of Pharmacology, University of Oxford, Oxford OX1 3QT, UK; MRC Brain Network Dynamics Unit, Department of Pharmacology, University of Oxford, Oxford OX1 3TH, UK.
| | - Minas Salib
- Department of Pharmacology, University of Oxford, Oxford OX1 3QT, UK
| | - Tim James Viney
- Department of Pharmacology, University of Oxford, Oxford OX1 3QT, UK
| | - David Dupret
- Department of Pharmacology, University of Oxford, Oxford OX1 3QT, UK; MRC Brain Network Dynamics Unit, Department of Pharmacology, University of Oxford, Oxford OX1 3TH, UK
| | - Peter Somogyi
- Department of Pharmacology, University of Oxford, Oxford OX1 3QT, UK; Center for Brain Research, Medical University of Vienna, Vienna 1090, Austria.
| |
Collapse
|
10
|
Leimkühler S. Shared function and moonlighting proteins in molybdenum cofactor biosynthesis. Biol Chem 2017; 398:1009-1026. [PMID: 28284029 DOI: 10.1515/hsz-2017-0110] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 03/03/2017] [Indexed: 11/15/2022]
Abstract
The biosynthesis of the molybdenum cofactor (Moco) is a highly conserved pathway in bacteria, archaea and eukaryotes. The molybdenum atom in Moco-containing enzymes is coordinated to the dithiolene group of a tricyclic pyranopterin monophosphate cofactor. The biosynthesis of Moco can be divided into three conserved steps, with a fourth present only in bacteria and archaea: (1) formation of cyclic pyranopterin monophosphate, (2) formation of molybdopterin (MPT), (3) insertion of molybdenum into MPT to form Mo-MPT, and (4) additional modification of Mo-MPT in bacteria with the attachment of a GMP or CMP nucleotide, forming the dinucleotide variants of Moco. While the proteins involved in the catalytic reaction of each step of Moco biosynthesis are highly conserved among the Phyla, a surprising link to other cellular pathways has been identified by recent discoveries. In particular, the pathways for FeS cluster assembly and thio-modifications of tRNA are connected to Moco biosynthesis by sharing the same protein components. Further, proteins involved in Moco biosynthesis are not only shared with other pathways, but additionally have moonlighting roles. This review gives an overview of Moco biosynthesis in bacteria and humans and highlights the shared function and moonlighting roles of the participating proteins.
Collapse
|
11
|
Ghosh H, Auguadri L, Battaglia S, Simone Thirouin Z, Zemoura K, Messner S, Acuña MA, Wildner H, Yévenes GE, Dieter A, Kawasaki H, O Hottiger M, Zeilhofer HU, Fritschy JM, Tyagarajan SK. Several posttranslational modifications act in concert to regulate gephyrin scaffolding and GABAergic transmission. Nat Commun 2016; 7:13365. [PMID: 27819299 PMCID: PMC5103071 DOI: 10.1038/ncomms13365] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 09/26/2016] [Indexed: 11/18/2022] Open
Abstract
GABAA receptors (GABAARs) mediate the majority of fast inhibitory neurotransmission in the brain via synergistic association with the postsynaptic scaffolding protein gephyrin and its interaction partners. However, unlike their counterparts at glutamatergic synapses, gephyrin and its binding partners lack canonical protein interaction motifs; hence, the molecular basis for gephyrin scaffolding has remained unclear. In this study, we identify and characterize two new posttranslational modifications of gephyrin, SUMOylation and acetylation. We demonstrate that crosstalk between SUMOylation, acetylation and phosphorylation pathways regulates gephyrin scaffolding. Pharmacological intervention of SUMO pathway or transgenic expression of SUMOylation-deficient gephyrin variants rescued gephyrin clustering in CA1 or neocortical neurons of Gabra2-null mice, which otherwise lack gephyrin clusters, indicating that gephyrin SUMO modification is an essential determinant for scaffolding at GABAergic synapses. Together, our results demonstrate that concerted modifications on a protein scaffold by evolutionarily conserved yet functionally diverse signalling pathways facilitate GABAergic transmission. Gephyrin is a cytoplasmic scaffolding protein that selectively forms postsynaptic scaffolds at GABAergic and glycinergic synapses. Here the authors characterize regulatory mechanisms determining gephyrin scaffolding and GABAA receptor synaptic transmission that involve acetylation, SUMOylation and phosphorylation.
Collapse
Affiliation(s)
- Himanish Ghosh
- Institute of Pharmacology and Toxicology, University of Zurich, Winterthurerstrasse 190, CH 8057 Zurich, Switzerland.,Center for Neuroscience Zurich, CH 8057 Zurich, Switzerland
| | - Luca Auguadri
- Institute of Pharmacology and Toxicology, University of Zurich, Winterthurerstrasse 190, CH 8057 Zurich, Switzerland
| | - Sereina Battaglia
- Institute of Pharmacology and Toxicology, University of Zurich, Winterthurerstrasse 190, CH 8057 Zurich, Switzerland
| | - Zahra Simone Thirouin
- Institute of Pharmacology and Toxicology, University of Zurich, Winterthurerstrasse 190, CH 8057 Zurich, Switzerland.,Center for Neuroscience Zurich, CH 8057 Zurich, Switzerland
| | - Khaled Zemoura
- Institute of Pharmacology and Toxicology, University of Zurich, Winterthurerstrasse 190, CH 8057 Zurich, Switzerland.,Center for Neuroscience Zurich, CH 8057 Zurich, Switzerland
| | - Simon Messner
- Department of Molecular Mechanisms of Disease, University of Zurich, CH 8057 Zurich, Switzerland
| | - Mario A Acuña
- Institute of Pharmacology and Toxicology, University of Zurich, Winterthurerstrasse 190, CH 8057 Zurich, Switzerland.,Center for Neuroscience Zurich, CH 8057 Zurich, Switzerland
| | - Hendrik Wildner
- Institute of Pharmacology and Toxicology, University of Zurich, Winterthurerstrasse 190, CH 8057 Zurich, Switzerland.,Center for Neuroscience Zurich, CH 8057 Zurich, Switzerland
| | - Gonzalo E Yévenes
- Institute of Pharmacology and Toxicology, University of Zurich, Winterthurerstrasse 190, CH 8057 Zurich, Switzerland
| | - Andrea Dieter
- Institute of Pharmacology and Toxicology, University of Zurich, Winterthurerstrasse 190, CH 8057 Zurich, Switzerland
| | - Hiroshi Kawasaki
- Department of Molecular and Systems Neurobiology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Michael O Hottiger
- Department of Molecular Mechanisms of Disease, University of Zurich, CH 8057 Zurich, Switzerland
| | - Hanns Ulrich Zeilhofer
- Institute of Pharmacology and Toxicology, University of Zurich, Winterthurerstrasse 190, CH 8057 Zurich, Switzerland.,Center for Neuroscience Zurich, CH 8057 Zurich, Switzerland.,Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology, CH 8093 Zurich, Switzerland
| | - Jean-Marc Fritschy
- Institute of Pharmacology and Toxicology, University of Zurich, Winterthurerstrasse 190, CH 8057 Zurich, Switzerland.,Center for Neuroscience Zurich, CH 8057 Zurich, Switzerland
| | - Shiva K Tyagarajan
- Institute of Pharmacology and Toxicology, University of Zurich, Winterthurerstrasse 190, CH 8057 Zurich, Switzerland.,Center for Neuroscience Zurich, CH 8057 Zurich, Switzerland
| |
Collapse
|
12
|
Alvarez FJ. Gephyrin and the regulation of synaptic strength and dynamics at glycinergic inhibitory synapses. Brain Res Bull 2016; 129:50-65. [PMID: 27612963 DOI: 10.1016/j.brainresbull.2016.09.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 08/23/2016] [Accepted: 09/05/2016] [Indexed: 01/23/2023]
Abstract
Glycinergic synapses predominate in brainstem and spinal cord where they modulate motor and sensory processing. Their postsynaptic mechanisms have been considered rather simple because they lack a large variety of glycine receptor isoforms and have relatively simple postsynaptic densities at the ultrastructural level. However, this simplicity is misleading being their postsynaptic regions regulated by a variety of complex mechanisms controlling the efficacy of synaptic inhibition. Early studies suggested that glycinergic inhibitory strength and dynamics depend largely on structural features rather than on molecular complexity. These include regulation of the number of postsynaptic glycine receptors, their localization and the amount of co-localized GABAA receptors and GABA-glycine co-transmission. These properties we now know are under the control of gephyrin. Gephyrin is the first postsynaptic scaffolding protein ever discovered and it was recently found to display a large degree of variation and regulation by splice variants, posttranslational modifications, intracellular trafficking and interactions with the underlying cytoskeleton. Many of these mechanisms are governed by converging excitatory activity and regulate gephyrin oligomerization and receptor binding, the architecture of the postsynaptic density (and by extension the whole synaptic complex), receptor retention and stability. These newly uncovered molecular mechanisms define the size and number of gephyrin postsynaptic regions and the numbers and proportions of glycine and GABAA receptors contained within. All together, they control the emergence of glycinergic synapses of different strength and temporal properties to best match the excitatory drive received by each individual neuron or local dendritic compartment.
Collapse
Affiliation(s)
- Francisco J Alvarez
- Department of Physiology, Emory University, Atlanta, GA 30322-3110, United States.
| |
Collapse
|
13
|
Mircsof D, Langouët M, Rio M, Moutton S, Siquier-Pernet K, Bole-Feysot C, Cagnard N, Nitschke P, Gaspar L, Žnidarič M, Alibeu O, Fritz AK, Wolfer DP, Schröter A, Bosshard G, Rudin M, Koester C, Crestani F, Seebeck P, Boddaert N, Prescott K, Hines R, Moss SJ, Fritschy JM, Munnich A, Amiel J, Brown SA, Tyagarajan SK, Colleaux L. Mutations in NONO lead to syndromic intellectual disability and inhibitory synaptic defects. Nat Neurosci 2015; 18:1731-6. [PMID: 26571461 PMCID: PMC5392243 DOI: 10.1038/nn.4169] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 10/15/2015] [Indexed: 12/14/2022]
Abstract
The NONO protein has been characterized as an important transcriptional regulator in diverse cellular contexts. Here we show that loss of NONO function is a likely cause of human intellectual disability and that NONO-deficient mice have cognitive and affective deficits. Correspondingly, we find specific defects at inhibitory synapses, where NONO regulates synaptic transcription and gephyrin scaffold structure. Our data identify NONO as a possible neurodevelopmental disease gene and highlight the key role of the DBHS protein family in functional organization of GABAergic synapses.
Collapse
Affiliation(s)
- Dennis Mircsof
- Chronobiology and Sleep Research Group, Institute of Pharmacology and Toxicology, University of Zürich, Zürich, Switzerland.,Neuromorphology Group, Institute of Pharmacology and Toxicology, University of Zürich, Zürich, Switzerland
| | - Maéva Langouët
- INSERM UMR 1163, Laboratory of Molecular and Pathophysiological Bases of Cognitive Disorders, Paris Descartes-Sorbonne Paris Cité University, Imagine Institute, Necker-Enfants Malades Hospital, Paris, France
| | - Marlène Rio
- INSERM UMR 1163, Laboratory of Molecular and Pathophysiological Bases of Cognitive Disorders, Paris Descartes-Sorbonne Paris Cité University, Imagine Institute, Necker-Enfants Malades Hospital, Paris, France.,Service de Génétique, Hôpital Necker-Enfants Malades, Assistance Publique Hôpitaux de Paris, Paris, France
| | - Sébastien Moutton
- INSERM UMR 1163, Laboratory of Molecular and Pathophysiological Bases of Cognitive Disorders, Paris Descartes-Sorbonne Paris Cité University, Imagine Institute, Necker-Enfants Malades Hospital, Paris, France
| | - Karine Siquier-Pernet
- INSERM UMR 1163, Laboratory of Molecular and Pathophysiological Bases of Cognitive Disorders, Paris Descartes-Sorbonne Paris Cité University, Imagine Institute, Necker-Enfants Malades Hospital, Paris, France
| | - Christine Bole-Feysot
- Genomic Platform, INSERM UMR 1163, Paris Descartes-Sorbonne Paris Cité University, Imagine Institute, Necker-Enfants Malades Hospital, Paris, France
| | - Nicolas Cagnard
- Bioinformatic Platform, INSERM UMR 1163, Paris Descartes-Sorbonne Paris Cité University, Imagine Institute, Necker-Enfants Malades Hospital, Paris, France
| | - Patrick Nitschke
- Bioinformatic Platform, INSERM UMR 1163, Paris Descartes-Sorbonne Paris Cité University, Imagine Institute, Necker-Enfants Malades Hospital, Paris, France
| | - Ludmila Gaspar
- Chronobiology and Sleep Research Group, Institute of Pharmacology and Toxicology, University of Zürich, Zürich, Switzerland
| | - Matej Žnidarič
- Chronobiology and Sleep Research Group, Institute of Pharmacology and Toxicology, University of Zürich, Zürich, Switzerland
| | - Olivier Alibeu
- Genomic Platform, INSERM UMR 1163, Paris Descartes-Sorbonne Paris Cité University, Imagine Institute, Necker-Enfants Malades Hospital, Paris, France
| | - Ann-Kristina Fritz
- Institute of Anatomy, University of Zürich and Institute of Human Movement Sciences and Sport, ETH Zürich, Switzerland
| | - David P Wolfer
- Institute of Anatomy, University of Zürich and Institute of Human Movement Sciences and Sport, ETH Zürich, Switzerland
| | - Aileen Schröter
- Molecular Imaging and Functional Pharmacology Group, University of Zürich, Zürich, Switzerland
| | - Giovanna Bosshard
- Neuromorphology Group, Institute of Pharmacology and Toxicology, University of Zürich, Zürich, Switzerland
| | - Markus Rudin
- Molecular Imaging and Functional Pharmacology Group, University of Zürich, Zürich, Switzerland
| | - Christina Koester
- Neuromorphology Group, Institute of Pharmacology and Toxicology, University of Zürich, Zürich, Switzerland
| | - Florence Crestani
- Neuromorphology Group, Institute of Pharmacology and Toxicology, University of Zürich, Zürich, Switzerland
| | - Petra Seebeck
- Center for Integrative Rodent Physiology, University of Zürich, Zürich, Switzerland
| | - Nathalie Boddaert
- INSERM UMR 1163, Laboratory of Molecular and Pathophysiological Bases of Cognitive Disorders, Paris Descartes-Sorbonne Paris Cité University, Imagine Institute, Necker-Enfants Malades Hospital, Paris, France.,Service de radiologie pédiatrique, Hôpital Necker-Enfants Malades, Assistance Publique Hôpitaux de Paris, Paris, France
| | - Katrina Prescott
- Yorkshire Regional Genetics Service, Leeds Teaching Hospitals National Health Service Trust, Department of Clinical Genetics, Chapel Allerton Hospital, Chapeltown Road, Leeds, UK
| | | | - Rochelle Hines
- Tufts University, Sackler School of Graduate Biomedical Sciences, Boston, Massachusetts, USA
| | - Steven J Moss
- Tufts University, Sackler School of Graduate Biomedical Sciences, Boston, Massachusetts, USA
| | - Jean-Marc Fritschy
- Neuromorphology Group, Institute of Pharmacology and Toxicology, University of Zürich, Zürich, Switzerland
| | - Arnold Munnich
- INSERM UMR 1163, Laboratory of Molecular and Pathophysiological Bases of Cognitive Disorders, Paris Descartes-Sorbonne Paris Cité University, Imagine Institute, Necker-Enfants Malades Hospital, Paris, France
| | - Jeanne Amiel
- INSERM UMR 1163, Laboratory of Molecular and Pathophysiological Bases of Cognitive Disorders, Paris Descartes-Sorbonne Paris Cité University, Imagine Institute, Necker-Enfants Malades Hospital, Paris, France.,Service de Génétique, Hôpital Necker-Enfants Malades, Assistance Publique Hôpitaux de Paris, Paris, France
| | - Steven A Brown
- Chronobiology and Sleep Research Group, Institute of Pharmacology and Toxicology, University of Zürich, Zürich, Switzerland
| | - Shiva K Tyagarajan
- Neuromorphology Group, Institute of Pharmacology and Toxicology, University of Zürich, Zürich, Switzerland
| | - Laurence Colleaux
- INSERM UMR 1163, Laboratory of Molecular and Pathophysiological Bases of Cognitive Disorders, Paris Descartes-Sorbonne Paris Cité University, Imagine Institute, Necker-Enfants Malades Hospital, Paris, France
| |
Collapse
|
14
|
Beshara S, Beston BR, Pinto JGA, Murphy KM. Effects of Fluoxetine and Visual Experience on Glutamatergic and GABAergic Synaptic Proteins in Adult Rat Visual Cortex. eNeuro 2015; 2:ENEURO.0126-15.2015. [PMID: 26730408 PMCID: PMC4698542 DOI: 10.1523/eneuro.0126-15.2015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Revised: 12/04/2015] [Accepted: 12/08/2015] [Indexed: 01/12/2023] Open
Abstract
Fluoxetine has emerged as a novel treatment for persistent amblyopia because in adult animals it reinstates critical period-like ocular dominance plasticity and promotes recovery of visual acuity. Translation of these results from animal models to the clinic, however, has been challenging because of the lack of understanding of how this selective serotonin reuptake inhibitor affects glutamatergic and GABAergic synaptic mechanisms that are essential for experience-dependent plasticity. An appealing hypothesis is that fluoxetine recreates a critical period (CP)-like state by shifting synaptic mechanisms to be more juvenile. To test this we studied the effect of fluoxetine treatment in adult rats, alone or in combination with visual deprivation [monocular deprivation (MD)], on a set of highly conserved presynaptic and postsynaptic proteins (synapsin, synaptophysin, VGLUT1, VGAT, PSD-95, gephyrin, GluN1, GluA2, GluN2B, GluN2A, GABAAα1, GABAAα3). We did not find evidence that fluoxetine shifted the protein amounts or balances to a CP-like state. Instead, it drove the balances in favor of the more mature subunits (GluN2A, GABAAα1). In addition, when fluoxetine was paired with MD it created a neuroprotective-like environment by normalizing the glutamatergic gain found in adult MDs. Together, our results suggest that fluoxetine treatment creates a novel synaptic environment dominated by GluN2A- and GABAAα1-dependent plasticity.
Collapse
Affiliation(s)
- Simon Beshara
- McMaster Integrative Neuroscience Discovery and Study (MiNDS) Program, McMaster University, Hamilton, Ontario L8S 4K1, Canada
| | - Brett R. Beston
- McMaster Integrative Neuroscience Discovery and Study (MiNDS) Program, McMaster University, Hamilton, Ontario L8S 4K1, Canada
- Department of Psychology, Neuroscience & Behavior, McMaster University, Hamilton, Ontario L8S 4K1, Canada
- Department of Psychology, University of Toronto Mississauga, Mississauga, L5L 1C6, ON
| | - Joshua G. A. Pinto
- McMaster Integrative Neuroscience Discovery and Study (MiNDS) Program, McMaster University, Hamilton, Ontario L8S 4K1, Canada
- Health Care Investment Banking, Credit Suisse AG, San Francisco, CA 94108
| | - Kathryn M. Murphy
- McMaster Integrative Neuroscience Discovery and Study (MiNDS) Program, McMaster University, Hamilton, Ontario L8S 4K1, Canada
- Department of Psychology, Neuroscience & Behavior, McMaster University, Hamilton, Ontario L8S 4K1, Canada
| |
Collapse
|
15
|
Costa JT, Mele M, Baptista MS, Gomes JR, Ruscher K, Nobre RJ, de Almeida LP, Wieloch T, Duarte CB. Gephyrin Cleavage in In Vitro Brain Ischemia Decreases GABAA Receptor Clustering and Contributes to Neuronal Death. Mol Neurobiol 2015; 53:3513-3527. [PMID: 26093381 DOI: 10.1007/s12035-015-9283-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 06/02/2015] [Indexed: 02/01/2023]
Abstract
GABA (γ-aminobutyric acid) is the major inhibitory neurotransmitter in the central nervous system, and changes in GABAergic neurotransmission modulate the activity of neuronal networks. Gephyrin is a scaffold protein responsible for the traffic and synaptic anchoring of GABAA receptors (GABAAR); therefore, changes in gephyrin expression and oligomerization may affect the activity of GABAergic synapses. In this work, we investigated the changes in gephyrin protein levels during brain ischemia and in excitotoxic conditions, which may affect synaptic clustering of GABAAR. We found that gephyrin is cleaved by calpains following excitotoxic stimulation of hippocampal neurons with glutamate, as well as after intrahippocampal injection of kainate, giving rise to a stable cleavage product. Gephyrin cleavage was also observed in cultured hippocampal neurons subjected to transient oxygen-glucose deprivation (OGD), an in vitro model of brain ischemia, and after transient middle cerebral artery occlusion (MCAO) in mice, a model of focal brain ischemia. Furthermore, a truncated form of gephyrin decreased the synaptic clustering of the protein, reduced the synaptic pool of GABAAR containing γ2 subunits and upregulated OGD-induced cell death in hippocampal cultures. Our results show that excitotoxicity and brain ischemia downregulate full-length gephyrin with a concomitant generation of truncated products, which affect synaptic clustering of GABAAR and cell death.
Collapse
Affiliation(s)
- João T Costa
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504, Coimbra, Portugal
| | - Miranda Mele
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504, Coimbra, Portugal.,Institute for Interdisciplinary Research, University of Coimbra (IIIUC), Coimbra, 3030-789, Portugal
| | - Márcio S Baptista
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504, Coimbra, Portugal
| | - João R Gomes
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504, Coimbra, Portugal
| | - Karsten Ruscher
- Laboratory for Experimental Brain Research, Division of Neurosurgery, Department of Clinical Sciences, Lund University, BMC A13, S-22184, Lund, Sweden
| | - Rui J Nobre
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504, Coimbra, Portugal.,Institute for Interdisciplinary Research, University of Coimbra (IIIUC), Coimbra, 3030-789, Portugal
| | - Luís Pereira de Almeida
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504, Coimbra, Portugal.,Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - Tadeusz Wieloch
- Laboratory for Experimental Brain Research, Division of Neurosurgery, Department of Clinical Sciences, Lund University, BMC A13, S-22184, Lund, Sweden
| | - Carlos B Duarte
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504, Coimbra, Portugal. .,Department of Life Sciences, University of Coimbra, 3004-517, Coimbra, Portugal. .,Center for Neuroscience and Cell Biology, Faculty of Medicine, Polo I, Rua Larga, University of Coimbra, 3004-504, Coimbra, Portugal.
| |
Collapse
|
16
|
Choii G, Ko J. Gephyrin: a central GABAergic synapse organizer. Exp Mol Med 2015; 47:e158. [PMID: 25882190 DOI: 10.1038/emm.2015.5] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2014] [Accepted: 12/18/2014] [Indexed: 01/22/2023] Open
Abstract
Gephyrin is a central element that anchors, clusters and stabilizes glycine and γ-aminobutyric acid type A receptors at inhibitory synapses of the mammalian brain. It self-assembles into a hexagonal lattice and interacts with various inhibitory synaptic proteins. Intriguingly, the clustering of gephyrin, which is regulated by multiple posttranslational modifications, is critical for inhibitory synapse formation and function. In this review, we summarize the basic properties of gephyrin and describe recent findings regarding its roles in inhibitory synapse formation, function and plasticity. We will also discuss the implications for the pathophysiology of brain disorders and raise the remaining open questions in this field.
Collapse
Affiliation(s)
- Gayoung Choii
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, Korea
| | - Jaewon Ko
- 1] Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, Korea [2] Department of Psychiatry, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
17
|
Protein kinase C-dependent growth-associated protein 43 phosphorylation regulates gephyrin aggregation at developing GABAergic synapses. Mol Cell Biol 2015; 35:1712-26. [PMID: 25755278 DOI: 10.1128/mcb.01332-14] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 02/24/2015] [Indexed: 11/20/2022] Open
Abstract
Growth-associated protein 43 (GAP43) is known to regulate axon growth, but whether it also plays a role in synaptogenesis remains unclear. Here, we found that GAP43 regulates the aggregation of gephyrin, a pivotal protein for clustering postsynaptic GABA(A) receptors (GABA(A)Rs), in developing cortical neurons. Pharmacological blockade of either protein kinase C (PKC) or neuronal activity increased both GAP43-gephyrin association and gephyrin misfolding-induced aggregation, suggesting the importance of PKC-dependent regulation of GABAergic synapses. Furthermore, we found that PKC phosphorylation-resistant GAP43(S41A), but not PKC phosphorylation-mimicking GAP43(S41D), interacted with cytosolic gephyrin to trigger gephyrin misfolding and its sequestration into aggresomes. In contrast, GAP43(S41D), but not GAP43(S41A), inhibited the physiological aggregation/clustering of gephyrin, reduced surface GABA(A)Rs under physiological conditions, and attenuated gephyrin misfolding under transient oxygen-glucose deprivation (tOGD) that mimics pathological neonatal hypoxia. Calcineurin-mediated GAP43 dephosphorylation that accompanied tOGD also led to GAP43-gephyrin association and gephyrin misfolding. Thus, PKC-dependent phosphorylation of GAP43 plays a critical role in regulating postsynaptic gephyrin aggregation in developing GABAergic synapses.
Collapse
|
18
|
Pinto JGA, Jones DG, Williams CK, Murphy KM. Characterizing synaptic protein development in human visual cortex enables alignment of synaptic age with rat visual cortex. Front Neural Circuits 2015; 9:3. [PMID: 25729353 PMCID: PMC4325922 DOI: 10.3389/fncir.2015.00003] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Accepted: 01/08/2015] [Indexed: 11/23/2022] Open
Abstract
Although many potential neuroplasticity based therapies have been developed in the lab, few have translated into established clinical treatments for human neurologic or neuropsychiatric diseases. Animal models, especially of the visual system, have shaped our understanding of neuroplasticity by characterizing the mechanisms that promote neural changes and defining timing of the sensitive period. The lack of knowledge about development of synaptic plasticity mechanisms in human cortex, and about alignment of synaptic age between animals and humans, has limited translation of neuroplasticity therapies. In this study, we quantified expression of a set of highly conserved pre- and post-synaptic proteins (Synapsin, Synaptophysin, PSD-95, Gephyrin) and found that synaptic development in human primary visual cortex (V1) continues into late childhood. Indeed, this is many years longer than suggested by neuroanatomical studies and points to a prolonged sensitive period for plasticity in human sensory cortex. In addition, during childhood we found waves of inter-individual variability that are different for the four proteins and include a stage during early development (<1 year) when only Gephyrin has high inter-individual variability. We also found that pre- and post-synaptic protein balances develop quickly, suggesting that maturation of certain synaptic functions happens within the 1 year or 2 of life. A multidimensional analysis (principle component analysis) showed that most of the variance was captured by the sum of the four synaptic proteins. We used that sum to compare development of human and rat visual cortex and identified a simple linear equation that provides robust alignment of synaptic age between humans and rats. Alignment of synaptic ages is important for age-appropriate targeting and effective translation of neuroplasticity therapies from the lab to the clinic.
Collapse
Affiliation(s)
- Joshua G A Pinto
- McMaster Integrative Neuroscience Discovery and Study (MiNDS) Program, McMaster University Hamilton, ON, Canada
| | | | - C Kate Williams
- McMaster Integrative Neuroscience Discovery and Study (MiNDS) Program, McMaster University Hamilton, ON, Canada
| | - Kathryn M Murphy
- McMaster Integrative Neuroscience Discovery and Study (MiNDS) Program, McMaster University Hamilton, ON, Canada ; Psychology, Neuroscience and Behavior, McMaster University Hamilton, ON, Canada
| |
Collapse
|
19
|
Pin1-dependent signalling negatively affects GABAergic transmission by modulating neuroligin2/gephyrin interaction. Nat Commun 2014; 5:5066. [PMID: 25297980 PMCID: PMC4197815 DOI: 10.1038/ncomms6066] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Accepted: 08/25/2014] [Indexed: 01/06/2023] Open
Abstract
The cell adhesion molecule Neuroligin2 (NL2) is localized selectively at GABAergic synapses, where it interacts with the scaffolding protein gephyrin in the post-synaptic density. However, the role of this interaction for formation and plasticity of GABAergic synapses is unclear. Here, we demonstrate that endogenous NL2 undergoes proline-directed phosphorylation at its unique S714-P consensus site, leading to the recruitment of the peptidyl-prolyl cis-trans isomerase Pin1. This signalling cascade negatively regulates NL2's ability to interact with gephyrin at GABAergic post-synaptic sites. As a consequence, enhanced accumulation of NL2, gephyrin and GABAA receptors was detected at GABAergic synapses in the hippocampus of Pin1-knockout mice (Pin1-/-) associated with an increase in amplitude of spontaneous GABAA-mediated post-synaptic currents. Our results suggest that Pin1-dependent signalling represents a mechanism to modulate GABAergic transmission by regulating NL2/gephyrin interaction.
Collapse
|
20
|
Linsalata AE, Chen X, Winters CA, Reese TS. Electron tomography on γ-aminobutyric acid-ergic synapses reveals a discontinuous postsynaptic network of filaments. J Comp Neurol 2014; 522:921-36. [PMID: 23982982 DOI: 10.1002/cne.23453] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Revised: 08/05/2013] [Accepted: 08/13/2013] [Indexed: 12/16/2022]
Abstract
The regulation of synaptic strength at γ-aminobutyric acid (GABA)-ergic synapses is dependent on the dynamic capture, retention, and modulation of GABA A-type receptors by cytoplasmic proteins at GABAergic postsynaptic sites. How these proteins are oriented and organized in the postsynaptic cytoplasm is not yet established. To better understand these structures and gain further insight into the mechanisms by which they regulate receptor populations at postsynaptic sites, we utilized electron tomography to examine GABAergic synapses in dissociated rat hippocampal cultures. GABAergic synapses were identified and selected for tomography by using a set of criteria derived from the structure of immunogold-labeled GABAergic synapses. Tomography revealed a complex postsynaptic network composed of filaments that extend ∼ 100 nm into the cytoplasm from the postsynaptic membrane. The distribution of these postsynaptic filaments was strikingly similar to that of the immunogold label for gephyrin. Filaments were interconnected through uniform patterns of contact, forming complexes composed of 2-12 filaments each. Complexes did not link to form an integrated, continuous scaffold, suggesting that GABAergic postsynaptic specializations are less rigidly organized than glutamatergic postsynaptic densities.
Collapse
Affiliation(s)
- Alexander E Linsalata
- Laboratory of Neurobiology, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, 20892
| | | | | | | |
Collapse
|
21
|
Gephyrin clusters are absent from small diameter primary afferent terminals despite the presence of GABA(A) receptors. J Neurosci 2014; 34:8300-17. [PMID: 24920633 DOI: 10.1523/jneurosci.0159-14.2014] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Whereas both GABA(A) receptors (GABA(A)Rs) and glycine receptors (GlyRs) play a role in control of dorsal horn neuron excitability, their relative contribution to inhibition of small diameter primary afferent terminals remains controversial. To address this, we designed an approach for quantitative analyses of the distribution of GABA(A)R-subunits, GlyR α1-subunit and their anchoring protein, gephyrin, on terminals of rat spinal sensory afferents identified by Calcitonin-Gene-Related-Peptide (CGRP) for peptidergic terminals, and by Isolectin-B4 (IB4) for nonpeptidergic terminals. The approach was designed for light microscopy, which is compatible with the mild fixation conditions necessary for immunodetection of several of these antigens. An algorithm was designed to recognize structures with dimensions similar to those of the microscope resolution. To avoid detecting false colocalization, the latter was considered significant only if the degree of pixel overlap exceeded that expected from randomly overlapping pixels given a hypergeometric distribution. We found that both CGRP(+) and IB4(+) terminals were devoid of GlyR α1-subunit and gephyrin. The α1 GABA(A)R was also absent from these terminals. In contrast, the GABA(A)R α2/α3/α5 and β3 subunits were significantly expressed in both terminal types, as were other GABA(A)R-associated-proteins (α-Dystroglycan/Neuroligin-2/Collybistin-2). Ultrastructural immunocytochemistry confirmed the presence of GABA(A)R β3 subunits in small afferent terminals. Real-time quantitative PCR (qRT-PCR) confirmed the results of light microscopy immunochemical analysis. These results indicate that dorsal horn inhibitory synapses follow different rules of organization at presynaptic versus postsynaptic sites (nociceptive afferent terminals vs inhibitory synapses on dorsal horn neurons). The absence of gephyrin clusters from primary afferent terminals suggests a more diffuse mode of GABA(A)-mediated transmission at presynaptic than at postsynaptic sites.
Collapse
|
22
|
Neuronal nitric oxide synthase-dependent S-nitrosylation of gephyrin regulates gephyrin clustering at GABAergic synapses. J Neurosci 2014; 34:7763-8. [PMID: 24899700 DOI: 10.1523/jneurosci.0531-14.2014] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Gephyrin, the principal scaffolding protein at inhibitory synapses, is essential for postsynaptic clustering of glycine and GABA type A receptors (GABA(A)Rs). Gephyrin cluster formation, which determines the strength of GABAergic transmission, is modulated by interaction with signaling proteins and post-translational modifications. Here, we show that gephyrin was found to be associated with neuronal nitric oxide synthase (nNOS), the major source of the ubiquitous and important signaling molecule NO in brain. Furthermore, we identified that gephyrin is S-nitrosylated in vivo. Overexpression of nNOS decreased the size of postsynaptic gephyrin clusters in primary hippocampal neurons. Conversely, inhibition of nNOS resulted in a loss of S-nitrosylation of gephyrin and the formation of larger gephyrin clusters at synaptic sites, ultimately increasing the number of cell surface expressed synaptic GABA(A)Rs. In conclusion, S-nitrosylation of gephyrin is important for homeostatic assembly and plasticity of GABAergic synapses.
Collapse
|
23
|
Dejanovic B, Semtner M, Ebert S, Lamkemeyer T, Neuser F, Lüscher B, Meier JC, Schwarz G. Palmitoylation of gephyrin controls receptor clustering and plasticity of GABAergic synapses. PLoS Biol 2014; 12:e1001908. [PMID: 25025157 PMCID: PMC4099074 DOI: 10.1371/journal.pbio.1001908] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Accepted: 06/05/2014] [Indexed: 12/03/2022] Open
Abstract
Gephyrin, the principal scaffolding protein at inhibitory synapses, needs to be palmitoylated in order to cluster and to assemble functional synapses. Postsynaptic scaffolding proteins regulate coordinated neurotransmission by anchoring and clustering receptors and adhesion molecules. Gephyrin is the major instructive molecule at inhibitory synapses, where it clusters glycine as well as major subsets of GABA type A receptors (GABAARs). Here, we identified palmitoylation of gephyrin as an important mechanism of strengthening GABAergic synaptic transmission, which is regulated by GABAAR activity. We mapped palmitoylation to Cys212 and Cys284, which are critical for both association of gephyrin with the postsynaptic membrane and gephyrin clustering. We identified DHHC-12 as the principal palmitoyl acyltransferase that palmitoylates gephyrin. Furthermore, gephyrin pamitoylation potentiated GABAergic synaptic transmission, as evidenced by an increased amplitude of miniature inhibitory postsynaptic currents. Consistently, inhibiting gephyrin palmitoylation either pharmacologically or by expression of palmitoylation-deficient gephyrin reduced the gephyrin cluster size. In aggregate, our study reveals that palmitoylation of gephyrin by DHHC-12 contributes to dynamic and functional modulation of GABAergic synapses. Efficient signal transmission at synapses is essential for higher brain functions. Inhibitory signaling in the brain takes place primarily at GABA (γ-aminobutyric acid)-ergic synapses. GABA type A receptors (GABAARs) are clustered at the postsynaptic side by a scaffold composed of the peripheral membrane protein gephyrin. We demonstrate that gephyrin is modulated by palmitoylation, a reversible posttranslational fatty acid modification. Palmitoylation facilitates the membrane association of gephyrin and is therefore essential for normal clustering of gephyrin at GABAergic synapses. Reciprocally, palmitoylation of gephyrin is regulated by GABAAR activity. Of the 23 known palmitoyl transferases that catalyze the palmitoylation of proteins in human cells, we identified one enzyme, DHHC-12, to specifically modify gephyrin. Our results provide a new aspect to the posttranslational control of synaptic plasticity.
Collapse
Affiliation(s)
- Borislav Dejanovic
- Institute of Biochemistry, Department of Chemistry, University of Cologne, Cologne, Germany
| | - Marcus Semtner
- RNA Editing and Hyperexcitability Disorders Helmholtz Group, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Silvia Ebert
- Institute of Biochemistry, Department of Chemistry, University of Cologne, Cologne, Germany
| | - Tobias Lamkemeyer
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Franziska Neuser
- Institute of Biochemistry, Department of Chemistry, University of Cologne, Cologne, Germany
| | - Bernhard Lüscher
- Department of Biology and Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Jochen C. Meier
- RNA Editing and Hyperexcitability Disorders Helmholtz Group, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Guenter Schwarz
- Institute of Biochemistry, Department of Chemistry, University of Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
- * E-mail:
| |
Collapse
|
24
|
Dejanovic B, Lal D, Catarino CB, Arjune S, Belaidi AA, Trucks H, Vollmar C, Surges R, Kunz WS, Motameny S, Altmüller J, Köhler A, Neubauer BA, EPICURE Consortium, Nürnberg P, Noachtar S, Schwarz G, Sander T. Exonic microdeletions of the gephyrin gene impair GABAergic synaptic inhibition in patients with idiopathic generalized epilepsy. Neurobiol Dis 2014; 67:88-96. [DOI: 10.1016/j.nbd.2014.02.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 01/09/2014] [Accepted: 02/10/2014] [Indexed: 12/29/2022] Open
|
25
|
Pallotto M, Deprez F. Regulation of adult neurogenesis by GABAergic transmission: signaling beyond GABAA-receptors. Front Cell Neurosci 2014; 8:166. [PMID: 24999317 PMCID: PMC4064292 DOI: 10.3389/fncel.2014.00166] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Accepted: 06/02/2014] [Indexed: 01/09/2023] Open
Abstract
In the adult mammalian brain, neurogenesis occurs in the olfactory bulb (OB) and in the dentate gyrus (DG) of the hippocampus. Several studies have shown that multiple stages of neurogenesis are regulated by GABAergic transmission with precise spatio-temporal selectivity, and involving mechanisms common to both systems or specific only to one. In the subgranular zone (SGZ) of the DG, GABA neurotransmitter, released by a specific population of interneurons, regulates stem cell quiescence and neuronal cell fate decisions. Similarly, in the subventricular zone (SVZ), OB neuroblast production is modulated by ambient GABA. Ambient GABA, acting on extrasynaptic GABAA receptors (GABAAR), is also crucial for proper adult-born granule cell (GC) maturation and synaptic integration in the OB as well as in the DG. Throughout adult-born neuron development, various GABA receptors and receptor subunits play specific roles. Previous work has demonstrated that adult-born GCs in both the OB and the DG show a time window of increased plasticity in which adult-born cells are more prone to modification by external stimuli. One mechanism that controls this "critical period" is GABAergic modulation. Indeed, depleting the main phasic GABAergic inputs in adult-born neurons results in dramatic effects, such as reduction of spine density and dendritic branching in adult-born OB GCs. In this review, we systematically compare the role of GABAergic transmission in the regulation of adult neurogenesis between the OB and the hippocampus, focusing on the role of GABA in modulating plasticity and critical periods of adult-born neuron development. Finally, we discuss signaling pathways that might mediate some of the deficits observed upon targeted deletion of postsynaptic GABAARs in adult-born neurons.
Collapse
Affiliation(s)
- Marta Pallotto
- Circuit Dynamics and Connectivity Unit, National Institute Neurological Disorders and Stroke, National Institute of Health Bethesda, MD, USA
| | - Francine Deprez
- Neuroscience Center Zurich, Institute of Pharmacology and Toxicology, University of Zurich Zurich, Switzerland
| |
Collapse
|
26
|
Abstract
The neurotransmitters GABA and glycine mediate fast synaptic inhibition by activating ligand-gated chloride channels--namely, type A GABA (GABA(A)) and glycine receptors. Both types of receptors are anchored postsynaptically by gephyrin, which self-assembles into a scaffold and interacts with the cytoskeleton. Current research indicates that postsynaptic gephyrin clusters are dynamic assemblies that are held together and regulated by multiple protein-protein interactions. Moreover, post-translational modifications of gephyrin regulate the formation and plasticity of GABAergic synapses by altering the clustering properties of postsynaptic scaffolds and thereby the availability and function of receptors and other signalling molecules. Here, we discuss the formation and regulation of the gephyrin scaffold, its role in GABAergic and glycinergic synaptic function and the implications for the pathophysiology of brain disorders caused by abnormal inhibitory neurotransmission.
Collapse
|
27
|
Affiliation(s)
- Russ Hille
- Department of Biochemistry, University of California, Riverside, Riverside, California 92521, United States
| | - James Hall
- Department of Biochemistry, University of California, Riverside, Riverside, California 92521, United States
| | - Partha Basu
- Department of Chemistry and Biochemistry, Duquesne University, Pittsburgh, Pennsylvania 15282, United States
| |
Collapse
|
28
|
Recombinant probes reveal dynamic localization of CaMKIIα within somata of cortical neurons. J Neurosci 2013; 33:14579-90. [PMID: 24005308 DOI: 10.1523/jneurosci.2108-13.2013] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
In response to NMDA receptor stimulation, CaMKIIα moves rapidly from a diffuse distribution within the shafts of neuronal dendrites to a clustered postsynaptic distribution. However, less is known about CaMKIIα localization and trafficking within neuronal somata. Here we use a novel recombinant probe capable of labeling endogenous CaMKIIα in living rat neurons to examine its localization and trafficking within the somata of cortical neurons. This probe, which was generated using an mRNA display selection, binds to endogenous CaMKIIα at high affinity and specificity following expression in rat cortical neurons in culture. In ∼45% of quiescent cortical neurons, labeled clusters of CaMKIIα 1-4 μm in diameter were present. Upon exposure to glutamate and glycine, CaMKIIα clusters disappeared in a Ca(2+)-dependent manner within seconds. Moreover, minutes after the removal of glutamate and glycine, the clusters returned to their original configuration. The clusters, which also appear in cortical neurons in sections taken from mouse brains, contain actin and disperse upon exposure to cytochalasin D, an actin depolymerizer. In conclusion, within the soma, CaMKII localizes and traffics in a manner that is distinct from its localization and trafficking within the dendrites.
Collapse
|
29
|
Pinto JGA, Jones DG, Murphy KM. Comparing development of synaptic proteins in rat visual, somatosensory, and frontal cortex. Front Neural Circuits 2013; 7:97. [PMID: 23754984 PMCID: PMC3664769 DOI: 10.3389/fncir.2013.00097] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Accepted: 05/02/2013] [Indexed: 01/12/2023] Open
Abstract
Two theories have influenced our understanding of cortical development: the integrated network theory, where synaptic development is coordinated across areas; and the cascade theory, where the cortex develops in a wave-like manner from sensory to non-sensory areas. These different views on cortical development raise challenges for current studies aimed at comparing detailed maturation of the connectome among cortical areas. We have taken a different approach to compare synaptic development in rat visual, somatosensory, and frontal cortex by measuring expression of pre-synaptic (synapsin and synaptophysin) proteins that regulate vesicle cycling, and post-synaptic density (PSD-95 and Gephyrin) proteins that anchor excitatory or inhibitory (E-I) receptors. We also compared development of the balances between the pairs of pre- or post-synaptic proteins, and the overall pre- to post-synaptic balance, to address functional maturation and emergence of the E-I balance. We found that development of the individual proteins and the post-synaptic index overlapped among the three cortical areas, but the pre-synaptic index matured later in frontal cortex. Finally, we applied a neuroinformatics approach using principal component analysis and found that three components captured development of the synaptic proteins. The first component accounted for 64% of the variance in protein expression and reflected total protein expression, which overlapped among the three cortical areas. The second component was gephyrin and the E-I balance, it emerged as sequential waves starting in somatosensory, then frontal, and finally visual cortex. The third component was the balance between pre- and post-synaptic proteins, and this followed a different developmental trajectory in somatosensory cortex. Together, these results give the most support to an integrated network of synaptic development, but also highlight more complex patterns of development that vary in timing and end point among the cortical areas.
Collapse
Affiliation(s)
- Joshua G A Pinto
- McMaster Integrative Neuroscience Discovery and Study Program, McMaster University Hamilton, ON, Canada
| | | | | |
Collapse
|
30
|
Tyagarajan SK, Ghosh H, Yévenes GE, Imanishi SY, Zeilhofer HU, Gerrits B, Fritschy JM. Extracellular signal-regulated kinase and glycogen synthase kinase 3β regulate gephyrin postsynaptic aggregation and GABAergic synaptic function in a calpain-dependent mechanism. J Biol Chem 2013; 288:9634-9647. [PMID: 23408424 DOI: 10.1074/jbc.m112.442616] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Molecular mechanisms of plasticity at GABAergic synapses are currently poorly understood. To identify signaling cascades that converge onto GABAergic postsynaptic density proteins, we performed MS analysis using gephyrin isolated from rat brain and identified multiple novel phosphorylation and acetylation residues on gephyrin. Here, we report the characterization of one of these phosphoresidues, Ser-268, which when dephosphorylated leads to the formation of larger postsynaptic scaffolds. Using a combination of mutagenesis, pharmacological treatment, and biochemical assays, we identify ERK as the kinase phosphorylating Ser-268 and describe a functional interaction between residues Ser-268 and Ser-270. We further demonstrate that alterations in gephyrin clustering via ERK modulation are reflected by amplitude and frequency changes in miniature GABAergic postsynaptic currents. We unravel novel mechanisms for activity- and ERK-dependent calpain action on gephyrin, which are likely relevant in the context of cellular signaling affecting GABAergic transmission and homeostatic synaptic plasticity in pathology.
Collapse
Affiliation(s)
- Shiva K Tyagarajan
- Institute of Pharmacology and Toxicology, University of Zurich, 8057 Zurich, Switzerland; Neuroscience Center Zurich, Zurich, 8057 Switzerland.
| | - Himanish Ghosh
- Institute of Pharmacology and Toxicology, University of Zurich, 8057 Zurich, Switzerland; Neuroscience Center Zurich, Zurich, 8057 Switzerland
| | - Gonzalo E Yévenes
- Institute of Pharmacology and Toxicology, University of Zurich, 8057 Zurich, Switzerland
| | - Susumu Y Imanishi
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, 20520 Turku, Finland
| | - Hanns Ulrich Zeilhofer
- Institute of Pharmacology and Toxicology, University of Zurich, 8057 Zurich, Switzerland; Neuroscience Center Zurich, Zurich, 8057 Switzerland; Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, 8093 Switzerland
| | | | - Jean-Marc Fritschy
- Institute of Pharmacology and Toxicology, University of Zurich, 8057 Zurich, Switzerland; Neuroscience Center Zurich, Zurich, 8057 Switzerland
| |
Collapse
|
31
|
Metal insertion into the molybdenum cofactor: product–substrate channelling demonstrates the functional origin of domain fusion in gephyrin. Biochem J 2013; 450:149-57. [DOI: 10.1042/bj20121078] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The complexity of eukaryotic multicellular organisms relies on evolutionary developments that include compartmentalization, alternative splicing, protein domain fusion and post-translational modification. Mammalian gephyrin uniquely exemplifies these processes by combining two enzymatic functions within the biosynthesis of the Moco (molybdenum cofactor) in a multidomain protein. It also undergoes extensive alternative splicing, especially in neurons, where it also functions as a scaffold protein at inhibitory synapses. Two out of three gephyrin domains are homologous to bacterial Moco-synthetic proteins (G and E domain) while being fused by a third gephyrin-specific central C domain. In the present paper, we have established the in vitro Moco synthesis using purified components and demonstrated an over 300-fold increase in Moco synthesis for gephyrin compared with the isolated G domain, which synthesizes adenylylated molybdopterin, and E domain, which catalyses the metal insertion at physiological molybdate concentrations in an ATP-dependent manner. We show that the C domain impacts the catalytic efficacy of gephyrin, suggesting an important structural role in product–substrate channelling as depicted by a structural model that is in line with a face-to-face orientation of both active sites. Our functional studies demonstrate the evolutionary advantage of domain fusion in metabolic proteins, which can lead to the development of novel functions in higher eukaryotes.
Collapse
|
32
|
|
33
|
Kowalczyk S, Winkelmann A, Smolinsky B, Förstera B, Neundorf I, Schwarz G, Meier JC. Direct binding of GABAA receptor β2 and β3 subunits to gephyrin. Eur J Neurosci 2012. [PMID: 23205938 DOI: 10.1111/ejn.12078] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
GABAergic transmission is essential to brain function, and a large repertoire of GABA type A receptor (GABA(A) R) subunits is at a neuron's disposition to serve this function. The glycine receptor (GlyR)-associated protein gephyrin has been shown to be essential for the clustering of a subset of GABA(A) R. Despite recent progress in the field of gephyrin-dependent mechanisms of postsynaptic GABA(A) R stabilisation, the role of gephyrin in synaptic GABA(A) R localisation has remained a complex matter with many open questions. Here, we analysed comparatively the interaction of purified rat gephyrin and mouse brain gephyrin with the large cytoplasmic loops of GABA(A) R α1, α2, β2 and β3 subunits. Binding affinities were determined using surface plasmon resonance spectroscopy, and showed an ~ 20-fold lower affinity of the β2 loop to gephyrin as compared to the GlyR β loop-gephyrin interaction. We also probed in vivo binding in primary cortical neurons by the well-established use of chimaeras of GlyR α1 that harbour respective gephyrin-binding motifs derived from the different GABA(A) R subunits. These studies identify a novel gephyrin-binding motif in GABA(A) R β2 and β3 large cytoplasmic loops.
Collapse
Affiliation(s)
- Sarah Kowalczyk
- Department of Chemistry, Institute of Biochemistry, University of Cologne, Cologne, Germany
| | | | | | | | | | | | | |
Collapse
|
34
|
Mendel RR, Kruse T. Cell biology of molybdenum in plants and humans. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2012; 1823:1568-79. [PMID: 22370186 DOI: 10.1016/j.bbamcr.2012.02.007] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2011] [Revised: 02/08/2012] [Accepted: 02/10/2012] [Indexed: 12/29/2022]
Abstract
The transition element molybdenum (Mo) needs to be complexed by a special cofactor in order to gain catalytic activity. With the exception of bacterial Mo-nitrogenase, where Mo is a constituent of the FeMo-cofactor, Mo is bound to a pterin, thus forming the molybdenum cofactor Moco, which in different variants is the active compound at the catalytic site of all other Mo-containing enzymes. In eukaryotes, the most prominent Mo-enzymes are nitrate reductase, sulfite oxidase, xanthine dehydrogenase, aldehyde oxidase, and the mitochondrial amidoxime reductase. The biosynthesis of Moco involves the complex interaction of six proteins and is a process of four steps, which also requires iron, ATP and copper. After its synthesis, Moco is distributed to the apoproteins of Mo-enzymes by Moco-carrier/binding proteins. A deficiency in the biosynthesis of Moco has lethal consequences for the respective organisms. In humans, Moco deficiency is a severe inherited inborn error in metabolism resulting in severe neurodegeneration in newborns and causing early childhood death. This article is part of a Special Issue entitled: Cell Biology of Metals.
Collapse
Affiliation(s)
- Ralf R Mendel
- Institute of Plant Biology, Braunschweig University of Technology, 1 Humboldt Street, 38106 Braunschweig, Germany.
| | | |
Collapse
|
35
|
Herweg J, Schwarz G. Splice-specific glycine receptor binding, folding, and phosphorylation of the scaffolding protein gephyrin. J Biol Chem 2012; 287:12645-56. [PMID: 22351777 DOI: 10.1074/jbc.m112.341826] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The multimeric scaffolding protein gephyrin forms post-synaptic clusters at inhibitory sites, thereby anchoring inhibitory glycine (GlyR) and subsets of γ-aminobutyric acid type A (GABAA) receptors. Gephyrin is composed of three domains, the conserved N-terminal G- and C-terminal E-domain, connected by the central (C-) domain. In this study we investigated the oligomerization, folding and stability, GlyR β-loop binding, and phosphorylation of three gephyrin splice variants (Geph, Geph-C3, Geph-C4) after expression and purification from insect cells (Sf9). In contrast to Escherichia coli-derived trimeric gephyrin, we found that Sf9 gephyrins form hexamers as basic oligomeric form. In the case of Geph and Geph-C4, also high-oligomeric forms (∼900 kDa) were isolated. Partial proteolysis revealed a compact folding of the Gephyrin G and C domain in one complex, whereas a much lower stability for the E domain was found. After GlyR β-loop binding, the stability of the E domain increased in Geph and Geph-C4 significantly. In contrast, the E domain in Geph-C3 is less stable and binds the GlyR β-loop with one order of magnitude lower affinity. Finally, we identified 18 novel phosphorylation sites in gephyrin, of which all except one are located within the C domain. We propose two models for the domain arrangement in hexameric gephyrin based on the oligomerization of either the E or C domains, with the latter being crucial for the regulation of gephyrin clustering.
Collapse
Affiliation(s)
- Jens Herweg
- Institute of Biochemistry, Department of Chemistry and Center for Molecular Medicine, University of Cologne, 50674 Cologne, Germany
| | | |
Collapse
|
36
|
Tyagarajan SK, Ghosh H, Harvey K, Fritschy JM. Collybistin splice variants differentially interact with gephyrin and Cdc42 to regulate gephyrin clustering at GABAergic synapses. J Cell Sci 2011; 124:2786-96. [PMID: 21807943 DOI: 10.1242/jcs.086199] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Collybistin (CB) is a guanine-nucleotide-exchange factor (GEF) selectively activating Cdc42. CB mutations cause X-linked mental retardation due to defective clustering of gephyrin, a postsynaptic protein associated with both glycine and GABA(A) receptors. Using a combination of biochemistry and cell biology we provide novel insights into the roles of the CB2 splice variants, CB2(SH3+) and CB2(SH3-), and their substrate, Cdc42, in regulating gephyrin clustering at GABAergic synapses. Transfection of Myc-tagged CB2(SH3+) and CB2(SH3-) into cultured neurons revealed strong, but distinct, effects promoting postsynaptic gephyrin clustering, denoting mechanistic differences in their function. In addition, overexpression of constitutively active or dominant-negative Cdc42 mutants identified a new function of Cdc42 in regulating the shape and size of postsynaptic gephyrin clusters. Using biochemical assays and native brain tissue, we identify a direct interaction between gephyrin and Cdc42, independent of its activation state. Finally, our data show that CB2(SH3-), but not CB2(SH3+), can form a ternary complex with gephyrin and Cdc42, providing a biochemical substrate for the distinct contribution of these CB isoforms in gephyrin clustering at GABAergic postsynaptic sites. Taken together, our results identify CB and Cdc42 as major regulators of GABAergic postsynaptic densities.
Collapse
Affiliation(s)
- Shiva K Tyagarajan
- Institute of Pharmacology and Toxicology, University of Zurich, 8057 Zurich, Switzerland.
| | | | | | | |
Collapse
|
37
|
Plank C, Zelphati O, Mykhaylyk O. Magnetically enhanced nucleic acid delivery. Ten years of magnetofection-progress and prospects. Adv Drug Deliv Rev 2011; 63:1300-31. [PMID: 21893135 PMCID: PMC7103316 DOI: 10.1016/j.addr.2011.08.002] [Citation(s) in RCA: 251] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2011] [Revised: 08/18/2011] [Accepted: 08/19/2011] [Indexed: 12/28/2022]
Abstract
Nucleic acids carry the building plans of living systems. As such, they can be exploited to make cells produce a desired protein, or to shut down the expression of endogenous genes or even to repair defective genes. Hence, nucleic acids are unique substances for research and therapy. To exploit their potential, they need to be delivered into cells which can be a challenging task in many respects. During the last decade, nanomagnetic methods for delivering and targeting nucleic acids have been developed, methods which are often referred to as magnetofection. In this review we summarize the progress and achievements in this field of research. We discuss magnetic formulations of vectors for nucleic acid delivery and their characterization, mechanisms of magnetofection, and the application of magnetofection in viral and nonviral nucleic acid delivery in cell culture and in animal models. We summarize results that have been obtained with using magnetofection in basic research and in preclinical animal models. Finally, we describe some of our recent work and end with some conclusions and perspectives.
Collapse
|
38
|
Ako R, Wakimoto M, Ebisu H, Tanno K, Hira R, Kasai H, Matsuzaki M, Kawasaki H. Simultaneous visualization of multiple neuronal properties with single-cell resolution in the living rodent brain. Mol Cell Neurosci 2011; 48:246-57. [PMID: 21884798 DOI: 10.1016/j.mcn.2011.08.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2011] [Revised: 08/08/2011] [Accepted: 08/12/2011] [Indexed: 11/25/2022] Open
Abstract
To understand the fine-scale structures and functional properties of individual neurons in vivo, we developed and validated a rapid genetic technique that enables simultaneous investigation of multiple neuronal properties with single-cell resolution in the living rodent brain. Our technique PASME (promoter-assisted sparse-neuron multiple-gene labeling using in uteroelectroporation) targets specific small subsets of sparse pyramidal neurons in layer 2/3, layer 5 of the cerebral cortex and in the hippocampus with multiple fluorescent reporter proteins such as postsynaptic PSD-95-GFP and GFP-gephyrin. The technique is also applicable for targeting independently individual neurons and their presynaptic inputs derived from surrounding neurons. Targeting sparse layer 2/3 neurons, we uncovered a novel subpopulation of layer 2/3 neurons in the mouse cerebral cortex. This technique, broadly applicable for probing and manipulating neurons with single-cell resolution in vivo, should provide a robust means to uncover the basic mechanisms employed by the brain, especially when combined with in vivo two-photon laser-scanning microscopy and/or optogenetic technologies.
Collapse
Affiliation(s)
- Rie Ako
- Department of Molecular and Systems Neurobiology, Graduate School of Medicine, The University of Tokyo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Luscher B, Fuchs T, Kilpatrick CL. GABAA receptor trafficking-mediated plasticity of inhibitory synapses. Neuron 2011; 70:385-409. [PMID: 21555068 DOI: 10.1016/j.neuron.2011.03.024] [Citation(s) in RCA: 316] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/30/2011] [Indexed: 12/22/2022]
Abstract
Proper developmental, neural cell-type-specific, and activity-dependent regulation of GABAergic transmission is essential for virtually all aspects of CNS function. The number of GABA(A) receptors in the postsynaptic membrane directly controls the efficacy of GABAergic synaptic transmission. Thus, regulated trafficking of GABA(A) receptors is essential for understanding brain function in both health and disease. Here we summarize recent progress in the understanding of mechanisms that allow dynamic adaptation of cell surface expression and postsynaptic accumulation and function of GABA(A) receptors. This includes activity-dependent and cell-type-specific changes in subunit gene expression, assembly of subunits into receptors, as well as exocytosis, endocytic recycling, diffusion dynamics, and degradation of GABA(A) receptors. In particular, we focus on the roles of receptor-interacting proteins, scaffold proteins, synaptic adhesion proteins, and enzymes that regulate the trafficking and function of receptors and associated proteins. In addition, we review neuropeptide signaling pathways that affect neural excitability through changes in GABA(A)R trafficking.
Collapse
Affiliation(s)
- Bernhard Luscher
- Department of Biology, Pennsylvania State University, University Park, PA 16802, USA.
| | | | | |
Collapse
|
40
|
|
41
|
Machado P, Rostaing P, Guigonis JM, Renner M, Dumoulin A, Samson M, Vannier C, Triller A. Heat shock cognate protein 70 regulates gephyrin clustering. J Neurosci 2011; 31:3-14. [PMID: 21209184 PMCID: PMC6622739 DOI: 10.1523/jneurosci.2533-10.2011] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2010] [Revised: 07/27/2010] [Accepted: 08/02/2010] [Indexed: 11/21/2022] Open
Abstract
Formation and stabilization of postsynaptic glycine receptor (GlyR) clusters result from their association with the polymerized scaffold protein gephyrin. At the cell surface, lateral diffusion and local trapping of GlyR by synaptic gephyrin clusters is one of the main factors controlling their number. However, the mechanisms regulating gephyrin/GlyR cluster sizes are not fully understood. To identify molecular binding partners able to control gephyrin cluster stability, we performed pull-down assays with full-length or truncated gephyrin forms incubated in a rat spinal cord extract, combined with mass spectrometric analysis. We found that heat shock cognate protein 70 (Hsc70), a constitutive member of the heat shock protein 70 (Hsp70) family, selectively binds to the gephyrin G-domain. Immunoelectron microscopy of mouse spinal cord sections showed that Hsc70 could be colocalized with gephyrin at inhibitory synapses. Furthermore, ternary Hsc70-gephyrin-GlyR coclusters were formed following transfection of COS-7 cells. Upon overexpression of Hsc70 in mouse spinal cord neurons, synaptic accumulation of gephyrin was significantly decreased, but GlyR amounts were unaffected. In the same way, Hsc70 inhibition increased gephyrin accumulation at inhibitory synapses without modifying GlyR clustering. Single particle tracking experiments revealed that the increase of gephyrin molecules reduced GlyR diffusion rates without altering GlyR residency at synapses. Our findings demonstrate that Hsc70 regulates gephyrin polymerization independently of its interaction with GlyR. Therefore, gephyrin polymerization and synaptic clustering of GlyR are uncoupled events.
Collapse
Affiliation(s)
- Patricia Machado
- Institut de Biologie de l'Ecole Normale Supérieure
- Institut National de la Santé et de la Recherche Médicale U1024
- Centre National de la Recherche Scientifique Unité Mixte de Recherche 8197, 75005 Paris, France, and
| | - Philippe Rostaing
- Institut de Biologie de l'Ecole Normale Supérieure
- Institut National de la Santé et de la Recherche Médicale U1024
- Centre National de la Recherche Scientifique Unité Mixte de Recherche 8197, 75005 Paris, France, and
| | - Jean-Marie Guigonis
- Institut Fédératif de Recherche 50 - Université de Nice-Sophia Antipolis, Faculté de Médecine Pasteur, 06107 Nice, France
| | - Marianne Renner
- Institut de Biologie de l'Ecole Normale Supérieure
- Institut National de la Santé et de la Recherche Médicale U1024
- Centre National de la Recherche Scientifique Unité Mixte de Recherche 8197, 75005 Paris, France, and
| | - Andréa Dumoulin
- Institut de Biologie de l'Ecole Normale Supérieure
- Institut National de la Santé et de la Recherche Médicale U1024
- Centre National de la Recherche Scientifique Unité Mixte de Recherche 8197, 75005 Paris, France, and
| | - Michel Samson
- Institut Fédératif de Recherche 50 - Université de Nice-Sophia Antipolis, Faculté de Médecine Pasteur, 06107 Nice, France
| | - Christian Vannier
- Institut de Biologie de l'Ecole Normale Supérieure
- Institut National de la Santé et de la Recherche Médicale U1024
- Centre National de la Recherche Scientifique Unité Mixte de Recherche 8197, 75005 Paris, France, and
| | - Antoine Triller
- Institut de Biologie de l'Ecole Normale Supérieure
- Institut National de la Santé et de la Recherche Médicale U1024
- Centre National de la Recherche Scientifique Unité Mixte de Recherche 8197, 75005 Paris, France, and
| |
Collapse
|
42
|
Regulation of GABAergic synapse formation and plasticity by GSK3beta-dependent phosphorylation of gephyrin. Proc Natl Acad Sci U S A 2010; 108:379-84. [PMID: 21173228 DOI: 10.1073/pnas.1011824108] [Citation(s) in RCA: 170] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Postsynaptic scaffolding proteins ensure efficient neurotransmission by anchoring receptors and signaling molecules in synapse-specific subcellular domains. In turn, posttranslational modifications of scaffolding proteins contribute to synaptic plasticity by remodeling the postsynaptic apparatus. Though these mechanisms are operant in glutamatergic synapses, little is known about regulation of GABAergic synapses, which mediate inhibitory transmission in the CNS. Here, we focused on gephyrin, the main scaffolding protein of GABAergic synapses. We identify a unique phosphorylation site in gephyrin, Ser270, targeted by glycogen synthase kinase 3β (GSK3β) to modulate GABAergic transmission. Abolishing Ser270 phosphorylation increased the density of gephyrin clusters and the frequency of miniature GABAergic postsynaptic currents in cultured hippocampal neurons. Enhanced, phosphorylation-dependent gephyrin clustering was also induced in vitro and in vivo with lithium chloride. Lithium is a GSK3β inhibitor used therapeutically as mood-stabilizing drug, which underscores the relevance of this posttranslational modification for synaptic plasticity. Conversely, we show that gephyrin availability for postsynaptic clustering is limited by Ca(2+)-dependent gephyrin cleavage by the cysteine protease calpain-1. Together, these findings identify gephyrin as synaptogenic molecule regulating GABAergic synaptic plasticity, likely contributing to the therapeutic action of lithium.
Collapse
|
43
|
Förstera B, Belaidi AA, Jüttner R, Bernert C, Tsokos M, Lehmann TN, Horn P, Dehnicke C, Schwarz G, Meier JC. Irregular RNA splicing curtails postsynaptic gephyrin in the cornu ammonis of patients with epilepsy. Brain 2010; 133:3778-94. [DOI: 10.1093/brain/awq298] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
|
44
|
Bürli T, Baer K, Ewers H, Sidler C, Fuhrer C, Fritschy JM. Single particle tracking of alpha7 nicotinic AChR in hippocampal neurons reveals regulated confinement at glutamatergic and GABAergic perisynaptic sites. PLoS One 2010; 5:e11507. [PMID: 20634896 PMCID: PMC2901346 DOI: 10.1371/journal.pone.0011507] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2010] [Accepted: 06/18/2010] [Indexed: 01/05/2023] Open
Abstract
Alpha7 neuronal nicotinic acetylcholine receptors (alpha7-nAChR) form Ca(2+)-permeable homopentameric channels modulating cortical network activity and cognitive processing. They are located pre- and postsynaptically and are highly abundant in hippocampal GABAergic interneurons. It is unclear how alpha7-nAChRs are positioned in specific membrane microdomains, particularly in cultured neurons which are devoid of cholinergic synapses. To address this issue, we monitored by single particle tracking the lateral mobility of individual alpha7-nAChRs labeled with alpha-bungarotoxin linked to quantum dots in live rat cultured hippocampal interneurons. Quantitative analysis revealed different modes of lateral diffusion of alpha7-nAChR dependent on their subcellular localization. Confined receptors were found in the immediate vicinity of glutamatergic and GABAergic postsynaptic densities, as well as in extrasynaptic clusters of alpha-bungarotoxin labeling on dendrites. alpha7-nAChRs avoided entering postsynaptic densities, but exhibited reduced mobility and long dwell times at perisynaptic locations, indicative of regulated confinement. Their diffusion coefficient was lower, on average, at glutamatergic than at GABAergic perisynaptic sites, suggesting differential, synapse-specific tethering mechanisms. Disruption of the cytoskeleton affected alpha7-nAChR mobility and cell surface expression, but not their ability to form clusters. Finally, using tetrodotoxin to silence network activity, as well as exposure to a selective alpha7-nAChR agonist or antagonist, we observed that alpha7-nAChRs cell surface dynamics is modulated by chronic changes in neuronal activity. Altogether, given their high Ca(2+)-permeability, our results suggest a possible role of alpha7-nAChR on interneurons for activating Ca(2+)-dependent signaling in the vicinity of GABAergic and glutamatergic synapses.
Collapse
Affiliation(s)
- Thomas Bürli
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| | - Kristin Baer
- School of Medicine, Institute of Life Science, Swansea University, Swansea, United Kingdom
| | - Helge Ewers
- Laboratory of Physical Chemistry, ETH Zurich, Zurich, Switzerland
| | - Corinne Sidler
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| | - Christian Fuhrer
- Department of Neurochemistry, Brain Research Institute, University of Zurich, Zurich, Switzerland
| | - Jean-Marc Fritschy
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
45
|
Abstract
Synapses between nerve cells in the mammalian brain are not only extremely numerous but also very diverse with respect to their structural and functional characteristics. This heterogeneity arises despite the fact that a set of common basic protein 'building blocks' is shared by many synapses. Among these, postsynaptic scaffolding proteins play a key role. They have the ability to assemble into membrane-tethered lattices and to adopt unique conformational states in different postsynaptic microenvironments, which may represent a key prerequisite of synapse heterogeneity. Analyses of such synaptic superstructures, rather than individual proteins and their interactions, are required to develop a mechanistic understanding of postsynaptic differentiation, synapse diversity, and dynamics.
Collapse
|
46
|
Teschner J, Lachmann N, Schulze J, Geisler M, Selbach K, Santamaria-Araujo J, Balk J, Mendel RR, Bittner F. A novel role for Arabidopsis mitochondrial ABC transporter ATM3 in molybdenum cofactor biosynthesis. THE PLANT CELL 2010; 22:468-80. [PMID: 20164445 PMCID: PMC2845412 DOI: 10.1105/tpc.109.068478] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2009] [Revised: 12/29/2009] [Accepted: 02/03/2010] [Indexed: 05/18/2023]
Abstract
The molybdenum cofactor (Moco) is a prosthetic group required by a number of enzymes, such as nitrate reductase, sulfite oxidase, xanthine dehydrogenase, and aldehyde oxidase. Its biosynthesis in eukaryotes can be divided into four steps, of which the last three are proposed to occur in the cytosol. Here, we report that the mitochondrial ABC transporter ATM3, previously implicated in the maturation of extramitochondrial iron-sulfur proteins, has a crucial role also in Moco biosynthesis. In ATM3 insertion mutants of Arabidopsis thaliana, the activities of nitrate reductase and sulfite oxidase were decreased to approximately 50%, whereas the activities of xanthine dehydrogenase and aldehyde oxidase, whose activities also depend on iron-sulfur clusters, were virtually undetectable. Moreover, atm3 mutants accumulated cyclic pyranopterin monophosphate, the first intermediate of Moco biosynthesis, but showed decreased amounts of Moco. Specific antibodies against the Moco biosynthesis proteins CNX2 and CNX3 showed that the first step of Moco biosynthesis is localized in the mitochondrial matrix. Together with the observation that cyclic pyranopterin monophosphate accumulated in purified mitochondria, particularly in atm3 mutants, our data suggest that mitochondria and the ABC transporter ATM3 have a novel role in the biosynthesis of Moco.
Collapse
Affiliation(s)
- Julia Teschner
- Institut für Pflanzenbiologie, Technische Universität Braunschweig, 38023 Braunschweig, Germany
| | - Nicole Lachmann
- Institut für Pflanzenbiologie, Technische Universität Braunschweig, 38023 Braunschweig, Germany
| | - Jutta Schulze
- Institut für Pflanzenbiologie, Technische Universität Braunschweig, 38023 Braunschweig, Germany
| | - Mirco Geisler
- Institut für Pflanzenbiologie, Technische Universität Braunschweig, 38023 Braunschweig, Germany
| | - Kristina Selbach
- Institut für Pflanzenbiologie, Technische Universität Braunschweig, 38023 Braunschweig, Germany
| | | | - Janneke Balk
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom
| | - Ralf R. Mendel
- Institut für Pflanzenbiologie, Technische Universität Braunschweig, 38023 Braunschweig, Germany
- Address correspondence to
| | - Florian Bittner
- Institut für Pflanzenbiologie, Technische Universität Braunschweig, 38023 Braunschweig, Germany
| |
Collapse
|
47
|
Tyagarajan SK, Fritschy JM. GABA(A) receptors, gephyrin and homeostatic synaptic plasticity. J Physiol 2009; 588:101-6. [PMID: 19752109 DOI: 10.1113/jphysiol.2009.178517] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Homeostatic synaptic plasticity describes the changes in synapse gain and function that occur in response to global changes in neuronal activity to maintain the stability of neuronal networks. In this review, we argue that a coordinated regulation of excitatory and inhibitory synaptic transmission is essential for maintaining CNS function while allowing both global and local changes in synaptic strength and connectivity. Therefore, we postulate that homeostatic synaptic plasticity depends on signalling cascades regulating in parallel the efficacy of glutamatergic and GABAergic transmission. Since neurotransmitter receptors interact closely with scaffolding proteins in the postsynaptic density, this coordinated regulation of excitatory and inhibitory synaptic transmission probably involves posttranslational modifications of scaffolding proteins, which in turn modulate local synaptic function. Here we review the current state of knowledge on the regulation of GABA(A) receptors and their main scaffolding protein gephyrin by posttranslational modifications; we outline future lines of research that might contribute to furthering our understanding of the molecular mechanisms regulating GABAergic synapse function and homeostatic plasticity.
Collapse
Affiliation(s)
- Shiva K Tyagarajan
- University of Zurich, Institute of Pharmacology and Toxicology, Winterhurerstrasse 190, CH-8057 Zurich, Switzerland
| | | |
Collapse
|
48
|
Abstract
High local concentrations of glycine receptors (GlyRs) at inhibitory postsynaptic sites are achieved through their binding to the scaffold protein gephyrin. The N- and C-terminal domains of gephyrin are believed to trimerize and dimerize, respectively, thus contributing to the formation of submembranous gephyrin clusters at synapses. GlyRs are associated with gephyrin also at extrasynaptic locations. We have investigated how gephyrin oligomerization influences GlyR dynamics and clustering in COS-7 cells and in cultured spinal cord neurons. To this aim, we have expressed isolated N- and C-terminal domains of gephyrin that interfere with the oligomerization of the full-length protein. We also studied the effect of an endogenous splice variant, ge(2,4,5), with a decreased propensity to trimerize. A reduction of the size and number of gephyrin-GlyR clusters was found in cells expressing the various interfering gephyrin constructs. Using fluorescence recovery after photobleaching, we studied the exchange kinetics of synaptic gephyrin clusters. Real-time single-particle tracking was used to analyze the mobility of GlyRs. We found that all the tested constructs displayed faster rates of recovery than wild-type gephyrin and increased the mobility of extrasynaptic receptors, showing that gephyrin-gephyrin interactions modulate the lateral diffusion of GlyRs. Furthermore, we observed an inverse correlation between GlyR diffusion properties and gephyrin cluster size that depended on the number of binding sites blocked by the different constructs. Since alterations in the oligomerization properties of gephyrin are related to the dynamics of GlyRs, the gephyrin splice variant ge(2,4,5) may be implicated in the modulation of synaptic strength.
Collapse
|
49
|
|
50
|
Dresbach T, Nawrotzki R, Kremer T, Schumacher S, Quinones D, Kluska M, Kuhse J, Kirsch J. Molecular architecture of glycinergic synapses. Histochem Cell Biol 2008; 130:617-33. [DOI: 10.1007/s00418-008-0491-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/07/2008] [Indexed: 10/21/2022]
|