1
|
Maremonti MI, Panzetta V, Netti PA, Causa F. HiViPore: a highly viable in-flow compression for a one-step cell mechanoporation in microfluidics to induce a free delivery of nano- macro-cargoes. J Nanobiotechnology 2024; 22:441. [PMID: 39068464 PMCID: PMC11282774 DOI: 10.1186/s12951-024-02730-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 07/21/2024] [Indexed: 07/30/2024] Open
Abstract
BACKGROUND Among mechanoporation techniques for intracellular delivery, microfluidic approaches succeed in high delivery efficiency and throughput. However, especially the entry of large cargoes (e.g. DNA origami, mRNAs, organic/inorganic nanoparticles) is currently impaired since it requires large cell membrane pores with the need to apply multi-step processes and high forces, dramatically reducing cell viability. RESULTS Here, HiViPore presents as a microfluidic viscoelastic contactless compression for one-step cell mechanoporation to produce large pores while preserving high cell viability. Inducing an increase of curvature at the equatorial region of cells, formation of a pore with a size of ~ 1 μm is obtained. The poration is coupled to an increase of membrane tension, measured as a raised fluorescence lifetime of 12% of a planarizable push-pull fluorescent probe (Flipper-TR) labelling the cell plasma membrane. Importantly, the local disruptions of cell membrane are transient and non-invasive, with a complete recovery of cell integrity and functions in ~ 10 min. As result, HiViPore guarantees cell viability as high as ~ 90%. In such conditions, an endocytic-free diffusion of large nanoparticles is obtained with typical size up to 500 nm and with a delivery efficiency up to 12 times higher than not-treated cells. CONCLUSIONS The proposed one-step contactless mechanoporation results in an efficient and safe approach for advancing intracellular delivery strategies. In detail, HiViPore solves the issues of low cell viability when multiple steps of poration are required to obtain large pores across the cell plasma membrane. Moreover, the compression uses a versatile, low-cost, biocompatible viscoelastic fluid, thus also optimizing the operational costs. With HiViPore, we aim to propose an easy-to-use microfluidic device to a wide range of users, involved in biomedical research, imaging techniques and nanotechnology for intracellular delivery applications in cell engineering.
Collapse
Affiliation(s)
- Maria Isabella Maremonti
- Interdisciplinary Research Centre on Biomaterials (CRIB), Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale, University of Naples "Federico II", Naples, 80125, Italy
| | - Valeria Panzetta
- Interdisciplinary Research Centre on Biomaterials (CRIB), Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale, University of Naples "Federico II", Naples, 80125, Italy
- Center for Advanced Biomaterials for Healthcare@CRIB, Istituto Italiano di Tecnologia, Naples, 80125, Italy
| | - Paolo Antonio Netti
- Interdisciplinary Research Centre on Biomaterials (CRIB), Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale, University of Naples "Federico II", Naples, 80125, Italy
- Center for Advanced Biomaterials for Healthcare@CRIB, Istituto Italiano di Tecnologia, Naples, 80125, Italy
| | - Filippo Causa
- Interdisciplinary Research Centre on Biomaterials (CRIB), Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale, University of Naples "Federico II", Naples, 80125, Italy.
| |
Collapse
|
2
|
Zhang X, Tang J, Kou X, Huang W, Zhu Y, Jiang Y, Yang K, Li C, Hao M, Qu Y, Ma L, Chen C, Shi S, Zhou Y. Proteomic analysis of MSC-derived apoptotic vesicles identifies Fas inheritance to ameliorate haemophilia a via activating platelet functions. J Extracell Vesicles 2022; 11:e12240. [PMID: 36856683 PMCID: PMC9927920 DOI: 10.1002/jev2.12240] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 06/07/2022] [Accepted: 06/08/2022] [Indexed: 12/12/2022] Open
Abstract
Apoptotic vesicles (apoVs) are apoptotic cell-derived nanosized vesicles that play a crucial role in multiple pathophysiological settings. However, their detailed characteristics, specific surface markers, and biological properties are not fully elucidated. In this study, we compared mesenchymal stem cell (MSC)-derived apoVs and exosomes from three different types of MSCs including human bone marrow MSCs (hBMSCs), human adipose MSCs (hASCs), and mouse bone marrow MSCs (mBMSCs). We established a unique protein map of MSC-derived apoVs and identified the differences between apoVs and exosomes in terms of functional protein cargo and surface markers. Furthermore, we identified 13 proteins specifically enriched in apoVs compared to exosomes, which can be used as apoV-specific biomarkers. In addition, we showed that apoVs inherited apoptotic imprints such as Fas to ameliorate haemophilia A in factor VIII knockout mice via binding to the platelets' FasL to activate platelet functions, and therefore rescuing the blood clotting disorder. In summary, we systemically characterized MSC-derived apoVs and identified their therapeutic role in haemophilia A treatment through a previously unknown Fas/FasL linkage mechanism.
Collapse
Affiliation(s)
- Xiao Zhang
- Department of ProsthodonticsPeking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental MaterialsBeijing100081China
- South China Center of Craniofacial Stem Cell ResearchHospital of Stomatology, Guanghua School of Stomatology, Sun Yat‐sen UniversityGuangzhou510080China
| | - Jianxia Tang
- Hunan Key Laboratory of Oral Health Research & Hunan Clinical Research Center of Oral Major Diseases and Oral HealthXiangya School of Stomatology, Xiangya Stomatological Hospital, Central South UniversityChangsha410000China
- South China Center of Craniofacial Stem Cell ResearchHospital of Stomatology, Guanghua School of Stomatology, Sun Yat‐sen UniversityGuangzhou510080China
| | - Xiaoxing Kou
- South China Center of Craniofacial Stem Cell ResearchHospital of Stomatology, Guanghua School of Stomatology, Sun Yat‐sen UniversityGuangzhou510080China
- Key Laboratory of Stem Cells and Tissue Engineering (Sun Yat‐Sen University)Ministry of EducationGuangzhou510080China
| | - Weiying Huang
- South China Center of Craniofacial Stem Cell ResearchHospital of Stomatology, Guanghua School of Stomatology, Sun Yat‐sen UniversityGuangzhou510080China
| | - Yuan Zhu
- Department of ProsthodonticsPeking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental MaterialsBeijing100081China
| | - Yuhe Jiang
- Department of ProsthodonticsPeking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental MaterialsBeijing100081China
| | - Kunkun Yang
- Department of ProsthodonticsPeking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental MaterialsBeijing100081China
| | - Can Li
- South China Center of Craniofacial Stem Cell ResearchHospital of Stomatology, Guanghua School of Stomatology, Sun Yat‐sen UniversityGuangzhou510080China
| | - Meng Hao
- South China Center of Craniofacial Stem Cell ResearchHospital of Stomatology, Guanghua School of Stomatology, Sun Yat‐sen UniversityGuangzhou510080China
| | - Yan Qu
- South China Center of Craniofacial Stem Cell ResearchHospital of Stomatology, Guanghua School of Stomatology, Sun Yat‐sen UniversityGuangzhou510080China
| | - Lan Ma
- South China Center of Craniofacial Stem Cell ResearchHospital of Stomatology, Guanghua School of Stomatology, Sun Yat‐sen UniversityGuangzhou510080China
| | - Chider Chen
- Department of Oral and Maxillofacial Surgery and PharmacologyUniversity of Pennsylvania, School of Dental MedicinePhiladelphiaPA 19104USA
| | - Songtao Shi
- South China Center of Craniofacial Stem Cell ResearchHospital of Stomatology, Guanghua School of Stomatology, Sun Yat‐sen UniversityGuangzhou510080China
- Key Laboratory of Stem Cells and Tissue Engineering (Sun Yat‐Sen University)Ministry of EducationGuangzhou510080China
| | - Yongsheng Zhou
- Department of ProsthodonticsPeking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental MaterialsBeijing100081China
| |
Collapse
|
3
|
Ecker M, Schregle R, Kapoor-Kaushik N, Rossatti P, Betzler VM, Kempe D, Biro M, Ariotti N, Redpath GMI, Rossy J. SNX9-induced membrane tubulation regulates CD28 cluster stability and signalling. eLife 2022; 11:e67550. [PMID: 35050850 PMCID: PMC8786313 DOI: 10.7554/elife.67550] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 01/12/2022] [Indexed: 12/12/2022] Open
Abstract
T cell activation requires engagement of a cognate antigen by the T cell receptor (TCR) and the co-stimulatory signal of CD28. Both TCR and CD28 aggregate into clusters at the plasma membrane of activated T cells. While the role of TCR clustering in T cell activation has been extensively investigated, little is known about how CD28 clustering contributes to CD28 signalling. Here, we report that upon CD28 triggering, the BAR-domain protein sorting nexin 9 (SNX9) is recruited to CD28 clusters at the immunological synapse. Using three-dimensional correlative light and electron microscopy, we show that SNX9 generates membrane tubulation out of CD28 clusters. Our data further reveal that CD28 clusters are in fact dynamic structures and that SNX9 regulates their stability as well as CD28 phosphorylation and the resulting production of the cytokine IL-2. In summary, our work suggests a model in which SNX9-mediated tubulation generates a membrane environment that promotes CD28 triggering and downstream signalling events.
Collapse
Affiliation(s)
- Manuela Ecker
- EMBL Australia Node in Single Molecule Science, School of Medical Sciences and the ARC Centre of Excellence in Advanced Molecular Imaging, University of New South WalesSydneyAustralia
| | - Richard Schregle
- Biotechnology Institute Thurgau (BITg) at the University of KonstanzKreuzlingenSwitzerland
- Department of Biology, University of KonstanzKonstanzGermany
| | - Natasha Kapoor-Kaushik
- Electron Microscopy Unit, Mark Wainwright Analytical Centre, University of New South WalesSydneyAustralia
| | - Pascal Rossatti
- Biotechnology Institute Thurgau (BITg) at the University of KonstanzKreuzlingenSwitzerland
| | - Verena M Betzler
- Biotechnology Institute Thurgau (BITg) at the University of KonstanzKreuzlingenSwitzerland
| | - Daryan Kempe
- EMBL Australia Node in Single Molecule Science, School of Medical Sciences and the ARC Centre of Excellence in Advanced Molecular Imaging, University of New South WalesSydneyAustralia
| | - Maté Biro
- EMBL Australia Node in Single Molecule Science, School of Medical Sciences and the ARC Centre of Excellence in Advanced Molecular Imaging, University of New South WalesSydneyAustralia
| | - Nicholas Ariotti
- Electron Microscopy Unit, Mark Wainwright Analytical Centre, University of New South WalesSydneyAustralia
- Institute for Molecular Bioscience (IMB), University of QueenslandBrisbaneAustralia
| | - Gregory MI Redpath
- EMBL Australia Node in Single Molecule Science, School of Medical Sciences and the ARC Centre of Excellence in Advanced Molecular Imaging, University of New South WalesSydneyAustralia
| | - Jeremie Rossy
- EMBL Australia Node in Single Molecule Science, School of Medical Sciences and the ARC Centre of Excellence in Advanced Molecular Imaging, University of New South WalesSydneyAustralia
- Biotechnology Institute Thurgau (BITg) at the University of KonstanzKreuzlingenSwitzerland
- Department of Biology, University of KonstanzKonstanzGermany
| |
Collapse
|
4
|
Parlak ZV, Wein S, Zybała R, Tymicki E, Kaszyca K, Rütten S, Labude N, Telle R, Schickle K, Neuss S. High-strength ceramics as innovative candidates for cardiovascular implants. J Biomater Appl 2019; 34:585-596. [DOI: 10.1177/0885328219861602] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Zümray Vuslat Parlak
- Department of Ceramics and Refractory Materials, RWTH Aachen University, Aachen, Germany
- *Zümray Vuslat Parlak and Svenja Wein contributed equally to this work
| | - Svenja Wein
- Helmholtz Institute for Biomedical Engineering, BioInterface Group, RWTH Aachen University, Aachen, Germany
- Institute of Pathology, RWTH Aachen University, Aachen, Germany
- *Zümray Vuslat Parlak and Svenja Wein contributed equally to this work
| | - Rafał Zybała
- University Research Center, Functional Materials Warsaw University of Technology, Warsaw, Poland
- Institute of Electronic Materials Technology, Warsaw, Poland
| | - Emil Tymicki
- Institute of Electronic Materials Technology, Warsaw, Poland
| | - Kamil Kaszyca
- Institute of Electronic Materials Technology, Warsaw, Poland
| | - Stephan Rütten
- Electron Microscopic Facility, University Clinics, RWTH Aachen University, Aachen, Germany
| | - Norina Labude
- Helmholtz Institute for Biomedical Engineering, BioInterface Group, RWTH Aachen University, Aachen, Germany
- Institute of Pathology, RWTH Aachen University, Aachen, Germany
| | - Rainer Telle
- Department of Ceramics and Refractory Materials, RWTH Aachen University, Aachen, Germany
| | - Karolina Schickle
- Department of Ceramics and Refractory Materials, RWTH Aachen University, Aachen, Germany
| | - Sabine Neuss
- Helmholtz Institute for Biomedical Engineering, BioInterface Group, RWTH Aachen University, Aachen, Germany
- Institute of Pathology, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
5
|
Thapa S, Lukat N, Selhuber-Unkel C, Cherstvy AG, Metzler R. Transient superdiffusion of polydisperse vacuoles in highly motile amoeboid cells. J Chem Phys 2019; 150:144901. [PMID: 30981236 DOI: 10.1063/1.5086269] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Affiliation(s)
- Samudrajit Thapa
- Institute for Physics and Astronomy, University of Potsdam, 14476 Potsdam-Golm, Germany
| | - Nils Lukat
- Institute of Materials Science, Christian-Albrechts-Universität zu Kiel, 24143 Kiel, Germany
| | | | - Andrey G. Cherstvy
- Institute for Physics and Astronomy, University of Potsdam, 14476 Potsdam-Golm, Germany
| | - Ralf Metzler
- Institute for Physics and Astronomy, University of Potsdam, 14476 Potsdam-Golm, Germany
| |
Collapse
|
6
|
AMPK-ACC signaling modulates platelet phospholipids and potentiates thrombus formation. Blood 2018; 132:1180-1192. [PMID: 30018077 DOI: 10.1182/blood-2018-02-831503] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Accepted: 07/08/2018] [Indexed: 02/06/2023] Open
Abstract
AMP-activated protein kinase (AMPK) α1 is activated in platelets on thrombin or collagen stimulation, and as a consequence, phosphorylates and inhibits acetyl-CoA carboxylase (ACC). Because ACC is crucial for the synthesis of fatty acids, which are essential for platelet activation, we hypothesized that this enzyme plays a central regulatory role in platelet function. To investigate this, we used a double knock-in (DKI) mouse model in which the AMPK phosphorylation sites Ser79 on ACC1 and Ser212 on ACC2 were mutated to prevent AMPK signaling to ACC. Suppression of ACC phosphorylation promoted injury-induced arterial thrombosis in vivo and enhanced thrombus growth ex vivo on collagen-coated surfaces under flow. After collagen stimulation, loss of AMPK-ACC signaling was associated with amplified thromboxane generation and dense granule secretion. ACC DKI platelets had increased arachidonic acid-containing phosphatidylethanolamine plasmalogen lipids. In conclusion, AMPK-ACC signaling is coupled to the control of thrombosis by specifically modulating thromboxane and granule release in response to collagen. It appears to achieve this by increasing platelet phospholipid content required for the generation of arachidonic acid, a key mediator of platelet activation.
Collapse
|
7
|
Kitamura Y, Isobe K, Kawabata H, Tsujino T, Watanabe T, Nakamura M, Toyoda T, Okudera H, Okuda K, Nakata K, Kawase T. Quantitative evaluation of morphological changes in activated platelets in vitro using digital holographic microscopy. Micron 2018; 113:1-9. [PMID: 29936304 DOI: 10.1016/j.micron.2018.06.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 05/05/2018] [Accepted: 06/15/2018] [Indexed: 12/13/2022]
Abstract
Platelet activation and aggregation have been conventionally evaluated using an aggregometer. However, this method is suitable for short-term but not long-term quantitative evaluation of platelet aggregation, morphological changes, and/or adhesion to specific materials. The recently developed digital holographic microscopy (DHM) has enabled the quantitative evaluation of cell size and morphology without labeling or destruction. Thus, we aim to validate its applicability in quantitatively evaluating changes in cell morphology, especially in the aggregation and spreading of activated platelets, thus modifying typical image analysis procedures to suit aggregated platelets. Freshly prepared platelet-rich plasma was washed with phosphate-buffered saline and treated with 0.1% CaCl2. Platelets were then fixed and subjected to DHM, scanning electron microscopy (SEM), atomic force microscopy, optical microscopy, and flow cytometry (FCM). Tightly aggregated platelets were identified as single cells. Data obtained from time-course experiments were plotted two-dimensionally according to the average optical thickness versus attachment area and divided into four regions. The majority of the control platelets, which supposedly contained small and round platelets, were distributed in the lower left region. As activation time increased, however, this population dispersed toward the upper right region. The distribution shift demonstrated by DHM was essentially consistent with data obtained from SEM and FCM. Therefore, DHM was validated as a promising device for testing platelet function given that it allows for the quantitative evaluation of activation-dependent morphological changes in platelets. DHM technology will be applicable to the quality assurance of platelet concentrates, as well as diagnosis and drug discovery related to platelet functions.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Kazuhiro Okuda
- Division of Periodontology, Institute of Medicine and Dentistry, Niigata University, Niigata, Japan
| | - Koh Nakata
- Bioscience Medical Research Center, Niigata University Medical and Dental Hospital, Niigata, Japan
| | - Tomoyuki Kawase
- Division of Oral Bioengineering, Institute of Medicine and Dentistry, Niigata University, Niigata, 951-8514, Japan.
| |
Collapse
|
8
|
Jia T, Choi J, Ciccione J, Henry M, Mehdi A, Martinez J, Eymin B, Subra G, Coll JL. Heteromultivalent targeting of integrin α vβ 3 and neuropilin 1 promotes cell survival via the activation of the IGF-1/insulin receptors. Biomaterials 2017; 155:64-79. [PMID: 29169039 DOI: 10.1016/j.biomaterials.2017.10.042] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 10/19/2017] [Accepted: 10/25/2017] [Indexed: 12/29/2022]
Abstract
Angiogenesis strongly depends on the activation of integrins, especially integrin αvβ3, and of neuropilin-1 (NRP-1), a co-receptor of VEGFR2. Dual-targeted molecules that simultaneously block both of them are expected have increased anti-angiogenic and antitumor activity. Toward this goal, we generated bifunctional 40 nm-sized silica nanoparticles (NPs) coated with controlled amounts of cRGD and ATWLPPR peptides and studied their affinity, selectivity and biological activity in HUVECs. Sub-nanomolar concentrations of NPs grafted either with ATWLPPR alone or in combination with cRGD exhibit potent and specific antagonist activity against VEGFR2/AKT signaling. However, a 1 nM concentration of the cRGD/ATWLPPR-heteromultivalent particles (RGD/ATW-NPs) also blocks the phosphorylation of VEGFR2 while co-inducing an unexpected long-lasting activation of AKT via IGF-1R/IR-AKT/GSK3β/eNOS signaling that stimulates cell survival and abrogates the intrinsic toxicity of silica-NPs to serum-starved HUVECs. We also showed that their repeated intravenous administration was associated with the proliferation of human U87MG tumor cells engrafted in nude mice and a dilatation of the tumor blood vessels. We present biochemical evidence for the complex cross-talk generated by the binding of the heteromultivalent NPs with αvβ3-integrin and with NRP1. In particular, we show for the first time that such heteromultivalent NPs can trans-activate IGF-1/insulin receptors and exert dose-dependent pro-survival activity. This study demonstrates the difficulties in designing targeted silica-based NPs for antiangiogenic therapies and the possible risks posed by undesirable side effects.
Collapse
Affiliation(s)
- Tao Jia
- INSERM-UGA U1209, CNRS UMR5309, Institute for Advanced Biosciences, La Tronche, France
| | - Jungyoon Choi
- INSERM-UGA U1209, CNRS UMR5309, Institute for Advanced Biosciences, La Tronche, France
| | - Jéremy Ciccione
- Institut des Biomolécules Max Mousseron (IBMM), UMR5247 CNRS, Université de Montpellier, ENSCM, Montpellier, France
| | - Maxime Henry
- INSERM-UGA U1209, CNRS UMR5309, Institute for Advanced Biosciences, La Tronche, France
| | - Ahmad Mehdi
- Institut Charles Gerhardt, UMR5253, CNRS, Université de Montpellier, ENSCM, Montpellier Cedex 05, France
| | - Jean Martinez
- Institut des Biomolécules Max Mousseron (IBMM), UMR5247 CNRS, Université de Montpellier, ENSCM, Montpellier, France
| | - Béatrice Eymin
- INSERM-UGA U1209, CNRS UMR5309, Institute for Advanced Biosciences, La Tronche, France
| | - Gilles Subra
- Institut des Biomolécules Max Mousseron (IBMM), UMR5247 CNRS, Université de Montpellier, ENSCM, Montpellier, France
| | - Jean-Luc Coll
- INSERM-UGA U1209, CNRS UMR5309, Institute for Advanced Biosciences, La Tronche, France.
| |
Collapse
|
9
|
Schubert T, Römer W. How synthetic membrane systems contribute to the understanding of lipid-driven endocytosis. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015. [PMID: 26211452 DOI: 10.1016/j.bbamcr.2015.07.014] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Synthetic membrane systems, such as giant unilamellar vesicles and solid supported lipid bilayers, have widened our understanding of biological processes occurring at or through membranes. Artificial systems are particularly suited to study the inherent properties of membranes with regard to their components and characteristics. This review critically reflects the emerging molecular mechanism of lipid-driven endocytosis and the impact of model membrane systems in elucidating the complex interplay of biomolecules within this process. Lipid receptor clustering induced by binding of several toxins, viruses and bacteria to the plasma membrane leads to local membrane bending and formation of tubular membrane invaginations. Here, lipid shape, and protein structure and valency are the essential parameters in membrane deformation. Combining observations of complex cellular processes and their reconstitution on minimal systems seems to be a promising future approach to resolve basic underlying mechanisms. This article is part of a Special Issue entitled: Mechanobiology.
Collapse
Affiliation(s)
- Thomas Schubert
- Faculty of Biology, Albert-Ludwigs-University Freiburg, Schänzlestraße 1, 79104 Freiburg, Germany; BIOSS - Centre for Biological Signalling Studies, Albert-Ludwigs-University Freiburg, Schänzlestraβe 18, 79104 Freiburg, Germany.
| | - Winfried Römer
- Faculty of Biology, Albert-Ludwigs-University Freiburg, Schänzlestraße 1, 79104 Freiburg, Germany; BIOSS - Centre for Biological Signalling Studies, Albert-Ludwigs-University Freiburg, Schänzlestraβe 18, 79104 Freiburg, Germany.
| |
Collapse
|
10
|
Urban S, Moin SM. A subset of membrane-altering agents and γ-secretase modulators provoke nonsubstrate cleavage by rhomboid proteases. Cell Rep 2014; 8:1241-7. [PMID: 25159145 DOI: 10.1016/j.celrep.2014.07.039] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Revised: 05/05/2014] [Accepted: 07/22/2014] [Indexed: 01/04/2023] Open
Abstract
Rhomboid proteases are integral membrane enzymes that regulate cell signaling, adhesion, and organelle homeostasis pathways, making substrate specificity a key feature of their function. Interestingly, we found that perturbing the membrane pharmacologically in living cells had little effect on substrate processing but induced inappropriate cleavage of nonsubstrates by rhomboid proteases. A subclass of drugs known to modulate γ-secretase activity acted on the membrane directly and induced nonsubstrate cleavage by rhomboid proteases but left true substrate cleavage sites unaltered. These observations highlight an active role for the membrane in guiding rhomboid selectivity and caution that membrane-targeted drugs should be evaluated for cross-activity against membrane-resident enzymes that are otherwise unrelated to the intended drug target. Furthermore, some γ-secretase-modulating activity or toxicity could partly result from global membrane effects.
Collapse
Affiliation(s)
- Siniša Urban
- Howard Hughes Medical Institute, Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | - Syed M Moin
- Howard Hughes Medical Institute, Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
11
|
Gilmore SF, Nanduri H, Parikh AN. Programmed bending reveals dynamic mechanochemical coupling in supported lipid bilayers. PLoS One 2012; 6:e28517. [PMID: 22216096 PMCID: PMC3245222 DOI: 10.1371/journal.pone.0028517] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Accepted: 11/09/2011] [Indexed: 12/31/2022] Open
Abstract
In living cells, mechanochemical coupling represents a dynamic means by which membrane components are spatially organized. An extra-ordinary example of such coupling involves curvature-dependent polar localization of chemically-distinct lipid domains at bacterial poles, which also undergo dramatic reequilibration upon subtle changes in their interfacial environment such as during sporulation. Here, we demonstrate that such interfacially-triggered mechanochemical coupling can be recapitulated in vitro by simultaneous, real-time introduction of mechanically-generated periodic curvatures and attendant strain-induced lateral forces in lipid bilayers supported on elastomeric substrates. In particular, we show that real-time wrinkling of the elastomeric substrate prompts a dynamic domain reorganization within the adhering bilayer, producing large, oriented liquid-ordered domains in regions of low curvature. Our results suggest a mechanism in which interfacial forces generated during surface wrinkling and the topographical deformation of the bilayer combine to facilitate dynamic reequilibration prompting the observed domain reorganization. We anticipate this curvature-generating model system will prove to be a simple and versatile tool for a broad range of studies of curvature-dependent dynamic reorganizations in membranes that are constrained by the interfacial elastic and dynamic frameworks such as the cell wall, glycocalyx, and cytoskeleton.
Collapse
Affiliation(s)
- Sean F. Gilmore
- Department of Applied Science, University of California Davis, Davis, California, United States of America
| | - Harika Nanduri
- Department of Biomedical Engineering, University of California Davis, Davis, California, United States of America
| | - Atul N. Parikh
- Department of Applied Science, University of California Davis, Davis, California, United States of America
- Department of Biomedical Engineering, University of California Davis, Davis, California, United States of America
- Department of Chemical Engineering and Materials Science, University of California Davis, Davis, California, United States of America
- * E-mail:
| |
Collapse
|
12
|
Khurana S, George SP. The role of actin bundling proteins in the assembly of filopodia in epithelial cells. Cell Adh Migr 2011; 5:409-20. [PMID: 21975550 PMCID: PMC3218608 DOI: 10.4161/cam.5.5.17644] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Accepted: 08/05/2011] [Indexed: 01/22/2023] Open
Abstract
The goal of this review is to highlight how emerging new models of filopodia assembly, which include tissue specific actin-bundling proteins, could provide more comprehensive representations of filopodia assembly that would describe more adequately and effectively the complexity and plasticity of epithelial cells. This review also describes how the true diversity of actin bundling proteins must be considered to predict the far-reaching significance and versatile functions of filopodia in epithelial cells.
Collapse
Affiliation(s)
- Seema Khurana
- Department of Biology and Biochemistry, University of Houston, Houston, TX, USA.
| | | |
Collapse
|
13
|
Larive RM, Baisamy L, Urbach S, Coopman P, Bettache N. Cell membrane extensions, generated by mechanical constraint, are associated with a sustained lipid raft patching and an increased cell signaling. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2009; 1798:389-400. [PMID: 19962956 DOI: 10.1016/j.bbamem.2009.11.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2009] [Revised: 10/13/2009] [Accepted: 11/18/2009] [Indexed: 11/25/2022]
Abstract
Platelet activation triggers an imbalance in plasma membrane phospholipids by a specific aminophospholipid outflux, resulting in filopodia formation. Similarly, the addition of a phospholipid excess in the outer leaflet of the plasma membrane induces cellular extensions and actin polymerization. The implication of membrane microdomains in sustaining these mechanical constraints remains, however, unknown and was investigated in human platelets and mouse fibroblasts. The disruption of lipid rafts by cholesterol depletion prevents actin polymerization and formation of cellular extensions. Phospholipid excess triggers raft patching underneath the cell extensions, recruitment of protein raft markers and increase of tyrosine phosphorylation of raft proteins. Using a mass spectrometric analysis of isolated platelet rafts, we identified tyrosine kinases and proteins implicated in the formation of cell membrane extensions, cell adhesion and motility. They are recruited to rafts in response to a mechanical constraint. Taken together, our results demonstrate that exogenous phospholipid addition causes a modulation of the lateral plasma membrane organization and an activation of the cell signaling triggering actin remodeling and the formation of cellular protrusions. Raft disruption abolishes these processes, demonstrating that their integrity is crucial for cell shape changes in response to a mechanical constraint on plasma membrane.
Collapse
Affiliation(s)
- Romain M Larive
- Universités de Montpellier 2 & 1, Centre de Recherche de Biochimie Moléculaire CRBM, CNRS-UMR 5237, 1919 Route de Mende, F-34293 Montpellier cedex 5, France.
| | | | | | | | | |
Collapse
|
14
|
Liebl D, Griffiths G. Transient assembly of F-actin by phagosomes delays phagosome fusion with lysosomes in cargo-overloaded macrophages. J Cell Sci 2009; 122:2935-45. [PMID: 19638408 DOI: 10.1242/jcs.048355] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Dynamic remodelling of the cortical actin cytoskeleton is required for phagocytic uptake of pathogens and other particles by macrophages. Actin can also be nucleated de novo on membranes of nascent phagosomes, a process that can stimulate or inhibit phagosome fusion with lysosomes. Recently, phagosomes were shown to polymerize actin in transient pulses, called actin ;flashing', whose function remains unexplained. Here, we investigated phagosomal actin dynamics in live macrophages expressing actin tagged with green fluorescent protein (GFP). We show that only immature phagosomes can transiently induce assembly of actin coat, which forms a barrier preventing phagosome-lysosome docking and fusion. The capacity of phagosomes to assemble actin is enhanced in cells exposed to increased phagocytic load, which also exhibit a delay in phagosome maturation. Parallel analysis indicated that polymerization of actin on macropinosomes also induces compression and propulsion. We show that dynamic interactions between membrane elastic tension and compression forces of polymerizing actin can also lead to macropinosome constriction and scission - a process that is obstructed on rigid phagosomes. We hypothesize that the rate of individual phagosome maturation, as well as the biogenesis and remodelling of macropinosomes, can be regulated by the extent and manner of actin assembly on their membrane.
Collapse
Affiliation(s)
- David Liebl
- Cell Biology and Biophysics Unit, EMBL Heidelberg, Meyerhofstrasse 1, 69117 Heidelberg, Germany.
| | | |
Collapse
|
15
|
Kim D, Kim J, Kang SS, Jin EJ. Transforming growth factor-β3-induced Smad signaling regulates actin reorganization during chondrogenesis of chick leg bud mesenchymal cells. J Cell Biochem 2009; 107:622-9. [DOI: 10.1002/jcb.22191] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
16
|
Abstract
Formation of protrusions and protein segregation on the membrane is of a great importance for the functioning of the living cell. This is most evident in recent experiments that show the effects of the mechanical properties of the surrounding substrate on cell morphology. We propose a mechanism for the formation of membrane protrusions and protein phase separation, which may lay behind this effect. In our model, the fluid cell membrane has a mobile but constant population of proteins with a convex spontaneous curvature. Our basic assumption is that these membrane proteins represent small adhesion complexes, and also include proteins that activate actin polymerization. Such a continuum model couples the membrane and protein dynamics, including cell-substrate adhesion and protrusive actin force. Linear stability analysis shows that sufficiently strong adhesion energy and actin polymerization force can bring about phase separation of the membrane protein and the appearance of protrusions. Specifically, this occurs when the spontaneous curvature and aggregation potential alone (passive system) do not cause phase separation. Finite-size patterns may appear in the regime where the spontaneous curvature energy is a strong factor. Different instability characteristics are calculated for the various regimes, and are compared to various types of observed protrusions and phase separations, both in living cells and in artificial model systems. A number of testable predictions are proposed.
Collapse
Affiliation(s)
- Alex Veksler
- Department of Chemical Physics, The Weizmann Institute of Science, Rehovot, Israel.
| | | |
Collapse
|
17
|
Frasch SC, Zemski-Berry K, Murphy RC, Borregaard N, Henson PM, Bratton DL. Lysophospholipids of Different Classes Mobilize Neutrophil Secretory Vesicles and Induce Redundant Signaling through G2A. THE JOURNAL OF IMMUNOLOGY 2007; 178:6540-8. [PMID: 17475884 DOI: 10.4049/jimmunol.178.10.6540] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Lysophosphatidylcholine has been shown to enhance neutrophil functions through a mechanism involving the G protein-coupled receptor G2A. Recent data support an indirect effect of lysophosphatidylcholine on G2A rather than direct ligand binding. These observations prompted the hypothesis that other lysophospholipids (lyso-PLs) may also signal for human neutrophil activation through G2A. To this end, 1-oleoyl-2-hydroxy-sn-glycero-3-[phospho-L-choline], but also C18:1/OH lyso-PLs bearing the phosphoserine and phosphoethanolamine head groups, presented on albumin, were shown to signal for calcium flux in a self- and cross-desensitizing manner, implicating a single receptor. Blocking Abs to G2A inhibited calcium signaling by all three lyso-PLs. Furthermore, inhibition by both pertussis toxin and U-73122 established signaling via the Galphai/phospholipase C pathway for calcium mobilization. Altered plasma membrane localization of G2A has been hypothesized to facilitate signaling. Accordingly, an increase in detectable G2A was demonstrated by 1 min after lyso-PL stimulation and was followed by visible patching of the receptor. Western blotting showed that G2A resides in the plasma membrane/secretory vesicle fraction and not in neutrophil primary, secondary, or tertiary granules. Enhanced detection of G2A induced by lyso-PLs was paralleled by enhanced detection of CD45, confirming mobilization of the labile secretory vesicle pool. Together, these data show that lyso-PLs bearing various head groups redundantly mobilize G2A latent within secretory vesicles and result in G2A receptor/Galphai/phospholipase C signaling for calcium flux in neutrophils.
Collapse
Affiliation(s)
- S Courtney Frasch
- Department of Pediatrics, Division of Cell Biology, National Jewish Medical and Research Center, Denver, CO 80206, USA
| | | | | | | | | | | |
Collapse
|
18
|
Abstract
Membrane curvature is no longer seen as a passive consequence of cellular activity but an active means to create membrane domains and to organize centres for membrane trafficking. Curvature can be dynamically modulated by changes in lipid composition, the oligomerization of curvature scaffolding proteins and the reversible insertion of protein regions that act like wedges in membranes. There is an interplay between curvature-generating and curvature-sensing proteins during vesicle budding. This is seen during vesicle budding and in the formation of microenvironments. On a larger scale, membrane curvature is a prime player in growth, division and movement.
Collapse
Affiliation(s)
- Harvey T McMahon
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, UK.
| | | |
Collapse
|
19
|
Bodin S, Welch MD. Plasma membrane organization is essential for balancing competing pseudopod- and uropod-promoting signals during neutrophil polarization and migration. Mol Biol Cell 2005; 16:5773-83. [PMID: 16207810 PMCID: PMC1289420 DOI: 10.1091/mbc.e05-04-0358] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Exposure of neutrophils to chemoattractant induces cell polarization and migration. These behaviors require the asymmetric activation of distinct signaling pathways and cytoskeletal elements in the protruding pseudopod at the front of cells and the retracting uropod at the rear. An important outstanding question is, how does the organization of the plasma membrane participate in establishing asymmetry during polarization and migration? To answer this question, we investigated the function of cholesterol, a lipid known to influence membrane organization. Using controlled cholesterol depletion, we found that a cholesterol-dependent membrane organization enabled cell polarization and migration by promoting uropod function and suppressing ectopic pseudopod formation. At a mechanistic level, we showed that cholesterol was directly required for suppressing inappropriate activation of the pseudopod-promoting Gi/PI3-kinase signaling pathway. Furthermore, cholesterol was required for dampening Gi-dependent negative feedback on the RhoA signaling pathway, thus enabling RhoA activation and uropod function. Our findings suggest a model in which a cholesterol-dependent membrane organization plays an essential role in the establishment of cellular asymmetry by balancing the activation and segregating the localization of competing pseudopod- and uropod-inducing signaling pathways during neutrophil polarization and migration.
Collapse
Affiliation(s)
- Stéphane Bodin
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA.
| | | |
Collapse
|
20
|
Ferreira IA, Mocking AIM, Urbanus RT, Varlack S, Wnuk M, Akkerman JWN. Glucose Uptake via Glucose Transporter 3 by Human Platelets Is Regulated by Protein Kinase B. J Biol Chem 2005; 280:32625-33. [PMID: 16049004 DOI: 10.1074/jbc.m507221200] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
In insulin-responsive tissues, insulin is a potent activator of protein kinase B (PKB)-mediated glucose uptake through the facilitative glucose transporter GLUT4. In platelets, glucose uptake is mediated through GLUT3, which is present in plasma (15%) and intracellular alpha-granule (85%) membranes. Here we report the PKB-mediated glucose uptake by platelets by agents that do (thrombin) or do not (insulin) induce alpha-granule translocation to the plasma membrane. Both thrombin and insulin activate PKB and induce glucose uptake albeit with different kinetics. Inhibition of PKB by the pharmacological inhibitor ML-9 decreases thrombin-induced alpha-granule release and thrombin- and insulin-induced glucose uptake. At low glucose (0.1 mm), both agents stimulate glucose uptake by lowering the Km for glucose (thrombin and insulin) and increasing Vmax (thrombin). At high glucose (5 mm), stimulation of glucose uptake by insulin disappears, and insulin becomes an inhibitor of thrombin-induced glucose uptake via mechanisms independent of PKB. We conclude that in platelets glucose transport through GLUT3 is regulated by changes in surface expression and affinity modulation, which are both under control of PKB.
Collapse
Affiliation(s)
- Irlando Andrade Ferreira
- Thrombosis and Haemostasis Laboratory, Department of Hematology, University Medical Center Utrecht
| | | | | | | | | | | |
Collapse
|
21
|
Abstract
Filopodium, a spike-like actin protrusion at the leading edge of migrating cells, functions as a sensor of the local environment and has a mechanical role in protrusion. We use modeling to examine mechanics and spatial-temporal dynamics of filopodia. We find that >10 actin filaments have to be bundled to overcome the membrane resistance and that the filopodial length is limited by buckling for 10-30 filaments and by G-actin diffusion for >30 filaments. There is an optimal number of bundled filaments, approximately 30, at which the filopodial length can reach a few microns. The model explains characteristic interfilopodial distance of a few microns as a balance of initiation, lateral drift, and merging of the filopodia. The theory suggests that F-actin barbed ends have to be focused and protected from capping (the capping rate has to decrease one order of magnitude) once every hundred seconds per micron of the leading edge to initiate the observed number of filopodia. The model generates testable predictions about how filopodial length, rate of growth, and interfilopodial distance should depend on the number of bundled filaments, membrane resistance, lamellipodial protrusion rate, and G-actin diffusion coefficient.
Collapse
Affiliation(s)
- A Mogilner
- Department of Mathematics, Center for Genetics and Development, University of California, Davis, 95616, USA.
| | | |
Collapse
|
22
|
Rafelski SM, Theriot JA. Crawling toward a unified model of cell mobility: spatial and temporal regulation of actin dynamics. Annu Rev Biochem 2004; 73:209-39. [PMID: 15189141 DOI: 10.1146/annurev.biochem.73.011303.073844] [Citation(s) in RCA: 151] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Crawling cells of various morphologies displace themselves in their biological environments by a similar overall mechanism of protrusion through actin assembly at the front coordinated with retraction at the rear. Different cell types organize very distinct protruding structures, yet they do so through conserved biochemical mechanisms to regulate actin polymerization dynamics and vary the mechanical properties of these structures. The moving cell must spatially and temporally regulate the biochemical interactions of its protein components to exert control over higher-order dynamic structures created by these proteins and global cellular responses four or more orders of magnitude larger in scale and longer in time than the individual protein-protein interactions that comprise them. To fulfill its biological role, a cell globally responds with high sensitivity to a local perturbation or signal and coordinates its many intracellular actin-based functional structures with the physical environment it experiences to produce directed movement. This review attempts to codify some unifying principles for cell motility that span organizational scales from single protein polymer filaments to whole crawling cells.
Collapse
Affiliation(s)
- Susanne M Rafelski
- Department of Biochemistry, Stanford University, Stanford, California 94305, USA.
| | | |
Collapse
|
23
|
Glatz R, Roberts HLS, Li D, Sarjan M, Theopold UH, Asgari S, Schmidt O. Lectin-induced haemocyte inactivation in insects. JOURNAL OF INSECT PHYSIOLOGY 2004; 50:955-963. [PMID: 15518663 DOI: 10.1016/j.jinsphys.2004.07.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2004] [Revised: 06/30/2004] [Accepted: 07/06/2004] [Indexed: 05/24/2023]
Abstract
Most multimeric lectins are adhesion molecules, promoting attachment and spreading on surface glycodeterminants. In addition, some lectins have counter-adhesion properties, detaching already spread cells which then acquire round or spindle-formed cell shapes. Since lectin-mediated adhesion and detachment is observed in haemocyte-like Drosophila cells, which have haemomucin as the major lectin-binding glycoprotein, the two opposite cell behaviours may be the result of lectin-mediated receptor rearrangements on the cell surface. To investigate oligomeric lectins as a possible extracellular driving force affecting cell shape changes, we examined lectin-mediated reactions in lepidopteran haemocytes after cytochalasin D-treatment and observed that while cell-spreading was dependent on F-actin, lectin-uptake was less dependent on F-actin. We propose a model of cell shape changes involving a dynamic balance between adhesion and uptake reactions.
Collapse
Affiliation(s)
- Richard Glatz
- Insect Molecular Biology, School of Agriculture, University of Adelaide, Glen Osmond, SA 5064, Australia
| | | | | | | | | | | | | |
Collapse
|
24
|
Abstract
Phosphorylated derivatives of the phospholipid phosphatidylinositol, or phosphoinositides, are implicated in many aspects of cell function. Binding of phosphoinositides that are localized within cell membranes to soluble protein ligands allows spatially selective regulation at the cytoplasm-membrane interface. Recently, studies that relate phosphoinositide production to membrane domains are converging with those that show effects of these lipids on the assembly of cellular actin, and are therefore linking membrane and cytoskeletal structures in new ways.
Collapse
Affiliation(s)
- Paul A Janmey
- Institute for Medicine and Engineering, University of Pennsylvania, 1010 Vagelos Laboratories, 3340 Smith Walk, Philadelphia, Pennsylvania 19104, USA.
| | | |
Collapse
|
25
|
Testai FD, Landek MA, Goswami R, Ahmed M, Dawson G. Acid sphingomyelinase and inhibition by phosphate ion: role of inhibition by phosphatidyl-myo-inositol 3,4,5-triphosphate in oligodendrocyte cell signaling. J Neurochem 2004; 89:636-44. [PMID: 15086520 DOI: 10.1046/j.1471-4159.2004.02374.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
There is ample evidence that both acid (ASMase) and neutral (NSMase) sphingomyelinases play a role in cell death so inhibitors of either enzyme could have significant value as protectors against neurodegeneration. We used a fluorogenic sphingomyelinase substrate, 6-hexadecanoylamino-4-methylumbelliferyl-phosphorylcholine, and a [(14)C]choline-labeled sphingomyelin substrate to screen large numbers of phosphocompounds for inhibition of ASMase in extracts of human oligodendroglioma cells (HOG) and neonatal rat oligodendrocytes. Non-competitive inhibition was observed with inorganic phosphate and AMP, which was a more potent inhibitor of ASMase than cyclic AMP, ADP or ATP. However, other nucleotide phosphates, sugar phosphates, nucleotide sugars and glycerol phosphate did not inhibit ASMase. Our key finding was that phosphatidyl-myo-inositol 3,4,5-triphosphate [PtdIns (3,4,5)P(3)] was a much more potent inhibitor of ASMase than lysophosphatidic acid or phosphatidyl-myo-inositol 4,5-diphosphate [PtdIns(4,5)P(2)]. When PtdIns(3,4,5)P(3) was added to cultured cells we observed 50% inhibition of ASMase but no inhibition of other lysosomal hydrolases. After transfection of HOG cells with the tumor supressor phosphatase and tensin homolog protein (PTEN), which hydrolyses PtdIns(3,4,5)P(3) to PtdIns(4,5)P(2), we observed a two-fold increase in ASMase activity. Furthermore, the phosphatidylinositol-3-kinase inhibitor wortmannin (which reduces PtdIns(3,4,5)P(3) levels) also resulted in activation of ASMase. We propose that the small amount of ASMase activity associated with detergent-resistant cell membranes (Rafts) is regulated by PtdIns(3,4,5)P(3) and is most likely involved in receptor clustering and capping.
Collapse
Affiliation(s)
- F D Testai
- Department of Pediatrics, University of Chicago, Chicago, Illinois, USA
| | | | | | | | | |
Collapse
|