1
|
Chatzifrangkeskou M, Kouis P, Skourides PA. JNK regulates ciliogenesis through the interflagellar transport complex and actin networks. J Cell Biol 2023; 222:e202303052. [PMID: 37851005 PMCID: PMC10585068 DOI: 10.1083/jcb.202303052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 06/16/2023] [Accepted: 08/29/2023] [Indexed: 10/19/2023] Open
Abstract
The c-Jun N-terminal kinase (JNK) regulates various important physiological processes. Although the JNK pathway has been under intense investigation for over 20 yr, its complexity is still perplexing, with multiple protein partners underlying the diversity of its activity. We show that JNK is associated with the basal bodies in both primary and motile cilia. Loss of JNK disrupts basal body migration and docking and leads to severe ciliogenesis defects. JNK's involvement in ciliogenesis stems from a dual role in the regulation of the actin networks of multiciliated cells (MCCs) and the establishment of the intraflagellar transport-B core complex. JNK signaling is also critical for the maintenance of the actin networks and ciliary function in mature MCCs. JNK is implicated in the development of diabetes, neurodegeneration, and liver disease, all of which have been linked to ciliary dysfunction. Our work uncovers a novel role of JNK in ciliogenesis and ciliary function that could have important implications for JNK's role in the disease.
Collapse
Affiliation(s)
| | - Panayiotis Kouis
- Respiratory Physiology Laboratory, Medical School, University of Cyprus, Nicosia, Cyprus
| | - Paris A. Skourides
- Department of Biological Sciences, University of Cyprus, Nicosia, Cyprus
| |
Collapse
|
2
|
Zhao S, Luo J, Hu J, Wang H, Zhao N, Cao M, Zhang C, Hu R, Liu L. Role of Ezrin in Asthma-Related Airway Inflammation and Remodeling. Mediators Inflamm 2022; 2022:6255012. [PMID: 36530558 PMCID: PMC9750775 DOI: 10.1155/2022/6255012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 11/22/2022] [Accepted: 11/22/2022] [Indexed: 08/13/2023] Open
Abstract
Ezrin is an actin binding protein connecting the cell membrane and the cytoskeleton, which is crucial to maintaining cell morphology, intercellular adhesion, and cytoskeleton remodeling. Asthma involves dysfunction of inflammatory cells, cytokines, and airway structural cells. Recent studies have shown that ezrin, whose function is affected by extensive phosphorylation and protein interactions, is closely associated with asthma, may be a therapeutic target for asthma treatment. In this review, we summarize studies on ezrin and discuss its role in asthma-related airway inflammation and remodeling.
Collapse
Affiliation(s)
- Shumei Zhao
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing 210029, China
- Nanjing University of Chinese Medicine, Nanjing 210029, China
| | - Jiaqi Luo
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing 210029, China
- Nanjing University of Chinese Medicine, Nanjing 210029, China
| | - Jun Hu
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing 210029, China
- Nanjing University of Chinese Medicine, Nanjing 210029, China
| | - Hesheng Wang
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing 210029, China
- Nanjing University of Chinese Medicine, Nanjing 210029, China
| | - Ningwei Zhao
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing 210029, China
- Shimadzu Biomedical Research Laboratory, Shanghai 200233, China
| | - Meng Cao
- Nanjing University of Chinese Medicine, Nanjing 210029, China
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine Nanjing University of Chinese Medicine, Nanjing 210028, China
| | - Cong Zhang
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing 210029, China
- Nanjing University of Chinese Medicine, Nanjing 210029, China
| | - Rongkui Hu
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing 210029, China
- Nanjing University of Chinese Medicine, Nanjing 210029, China
| | - Lanying Liu
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing 210029, China
- Nanjing University of Chinese Medicine, Nanjing 210029, China
| |
Collapse
|
3
|
Konkimalla A, Konishi S, Kobayashi Y, Kadur Lakshminarasimha Murthy P, Macadlo L, Mukherjee A, Elmore Z, Kim SJ, Pendergast AM, Lee PJ, Asokan A, Knudsen L, Bravo-Cordero JJ, Tata A, Tata PR. Multi-apical polarity of alveolar stem cells and their dynamics during lung development and regeneration. iScience 2022; 25:105114. [PMID: 36185377 PMCID: PMC9519774 DOI: 10.1016/j.isci.2022.105114] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 08/25/2022] [Accepted: 09/08/2022] [Indexed: 11/24/2022] Open
Abstract
Epithelial cells of diverse tissues are characterized by the presence of a single apical domain. In the lung, electron microscopy studies have suggested that alveolar type-2 epithelial cells (AT2s) en face multiple alveolar sacs. However, apical and basolateral organization of the AT2s and their establishment during development and remodeling after injury repair remain unknown. Thick tissue imaging and electron microscopy revealed that a single AT2 can have multiple apical domains that enface multiple alveoli. AT2s gradually establish multi-apical domains post-natally, and they are maintained throughout life. Lineage tracing, live imaging, and selective cell ablation revealed that AT2s dynamically reorganize multi-apical domains during injury repair. Single-cell transcriptome signatures of residual AT2s revealed changes in cytoskeleton and cell migration. Significantly, cigarette smoke and oncogene activation lead to dysregulation of multi-apical domains. We propose that the multi-apical domains of AT2s enable them to be poised to support the regeneration of a large array of alveolar sacs.
Collapse
Affiliation(s)
- Arvind Konkimalla
- Department of Cell Biology, Duke University School of Medicine, Durham, NC 27710, USA
- Medical Scientist Training Program, Duke University School of Medicine, Durham, NC 27710, USA
| | - Satoshi Konishi
- Department of Cell Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Yoshihiko Kobayashi
- Department of Cell Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | | | - Lauren Macadlo
- Department of Cell Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Ananya Mukherjee
- Division of Hematology and Oncology, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Zachary Elmore
- Department of Surgery, Duke University School of Medicine, Durham, NC 27710, USA
| | - So-Jin Kim
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Duke University School of Medicine and the Durham Veterans Administration Medical Center, Durham, NC 27710, USA
| | - Ann Marie Pendergast
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27710, USA
- Duke Cancer Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Patty J. Lee
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Duke University School of Medicine and the Durham Veterans Administration Medical Center, Durham, NC 27710, USA
| | - Aravind Asokan
- Department of Surgery, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Biomedical Engineering, Regeneration Next, Duke University, Durham, NC 27710, USA
- Center for Advanced Genomic Technologies, Duke University, Durham, NC 27710, USA
| | - Lars Knudsen
- Institute of Functional and Applied Anatomy, Hannover Medical School, Hannover 30625, Germany
| | - Jose Javier Bravo-Cordero
- Division of Hematology and Oncology, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Aleksandra Tata
- Department of Cell Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Purushothama Rao Tata
- Department of Cell Biology, Duke University School of Medicine, Durham, NC 27710, USA
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Duke University School of Medicine and the Durham Veterans Administration Medical Center, Durham, NC 27710, USA
- Duke Cancer Institute, Duke University School of Medicine, Durham, NC 27710, USA
- Center for Advanced Genomic Technologies, Duke University, Durham, NC 27710, USA
- Duke Regeneration Center, Duke University, Durham, NC 27710, USA
| |
Collapse
|
4
|
Schreiner T, Allnoch L, Beythien G, Marek K, Becker K, Schaudien D, Stanelle-Bertram S, Schaumburg B, Mounogou Kouassi N, Beck S, Zickler M, Gabriel G, Baumgärtner W, Armando F, Ciurkiewicz M. SARS-CoV-2 Infection Dysregulates Cilia and Basal Cell Homeostasis in the Respiratory Epithelium of Hamsters. Int J Mol Sci 2022; 23:5124. [PMID: 35563514 PMCID: PMC9102945 DOI: 10.3390/ijms23095124] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 04/27/2022] [Accepted: 05/03/2022] [Indexed: 02/04/2023] Open
Abstract
Similar to many other respiratory viruses, SARS-CoV-2 targets the ciliated cells of the respiratory epithelium and compromises mucociliary clearance, thereby facilitating spread to the lungs and paving the way for secondary infections. A detailed understanding of mechanism involved in ciliary loss and subsequent regeneration is crucial to assess the possible long-term consequences of COVID-19. The aim of this study was to characterize the sequence of histological and ultrastructural changes observed in the ciliated epithelium during and after SARS-CoV-2 infection in the golden Syrian hamster model. We show that acute infection induces a severe, transient loss of cilia, which is, at least in part, caused by cilia internalization. Internalized cilia colocalize with membrane invaginations, facilitating virus entry into the cell. Infection also results in a progressive decline in cells expressing the regulator of ciliogenesis FOXJ1, which persists beyond virus clearance and the termination of inflammatory changes. Ciliary loss triggers the mobilization of p73+ and CK14+ basal cells, which ceases after regeneration of the cilia. Although ciliation is restored after two weeks despite the lack of FOXJ1, an increased frequency of cilia with ultrastructural alterations indicative of secondary ciliary dyskinesia is observed. In summary, the work provides new insights into SARS-CoV-2 pathogenesis and expands our understanding of virally induced damage to defense mechanisms in the conducting airways.
Collapse
Affiliation(s)
- Tom Schreiner
- Department of Pathology, University of Veterinary Medicine Hanover Foundation, 30559 Hanover, Germany; (T.S.); (L.A.); (G.B.); (K.M.); (K.B.); (F.A.); (M.C.)
- Center for Systems Neuroscience (ZSN), University of Veterinary Medicine Hanover Foundation, 30559 Hanover, Germany
| | - Lisa Allnoch
- Department of Pathology, University of Veterinary Medicine Hanover Foundation, 30559 Hanover, Germany; (T.S.); (L.A.); (G.B.); (K.M.); (K.B.); (F.A.); (M.C.)
- Center for Systems Neuroscience (ZSN), University of Veterinary Medicine Hanover Foundation, 30559 Hanover, Germany
| | - Georg Beythien
- Department of Pathology, University of Veterinary Medicine Hanover Foundation, 30559 Hanover, Germany; (T.S.); (L.A.); (G.B.); (K.M.); (K.B.); (F.A.); (M.C.)
| | - Katarzyna Marek
- Department of Pathology, University of Veterinary Medicine Hanover Foundation, 30559 Hanover, Germany; (T.S.); (L.A.); (G.B.); (K.M.); (K.B.); (F.A.); (M.C.)
- Center for Systems Neuroscience (ZSN), University of Veterinary Medicine Hanover Foundation, 30559 Hanover, Germany
| | - Kathrin Becker
- Department of Pathology, University of Veterinary Medicine Hanover Foundation, 30559 Hanover, Germany; (T.S.); (L.A.); (G.B.); (K.M.); (K.B.); (F.A.); (M.C.)
| | - Dirk Schaudien
- Fraunhofer Institute for Toxicology and Experimental Medicine, 30625 Hanover, Germany;
| | - Stephanie Stanelle-Bertram
- Department for Viral Zoonoses-One Health, Leibniz Institute for Experimental Virology (HPI), 20251 Hamburg, Germany; (S.S.-B.); (B.S.); (N.M.K.); (S.B.); (M.Z.); (G.G.)
| | - Berfin Schaumburg
- Department for Viral Zoonoses-One Health, Leibniz Institute for Experimental Virology (HPI), 20251 Hamburg, Germany; (S.S.-B.); (B.S.); (N.M.K.); (S.B.); (M.Z.); (G.G.)
| | - Nancy Mounogou Kouassi
- Department for Viral Zoonoses-One Health, Leibniz Institute for Experimental Virology (HPI), 20251 Hamburg, Germany; (S.S.-B.); (B.S.); (N.M.K.); (S.B.); (M.Z.); (G.G.)
| | - Sebastian Beck
- Department for Viral Zoonoses-One Health, Leibniz Institute for Experimental Virology (HPI), 20251 Hamburg, Germany; (S.S.-B.); (B.S.); (N.M.K.); (S.B.); (M.Z.); (G.G.)
| | - Martin Zickler
- Department for Viral Zoonoses-One Health, Leibniz Institute for Experimental Virology (HPI), 20251 Hamburg, Germany; (S.S.-B.); (B.S.); (N.M.K.); (S.B.); (M.Z.); (G.G.)
| | - Gülsah Gabriel
- Department for Viral Zoonoses-One Health, Leibniz Institute for Experimental Virology (HPI), 20251 Hamburg, Germany; (S.S.-B.); (B.S.); (N.M.K.); (S.B.); (M.Z.); (G.G.)
| | - Wolfgang Baumgärtner
- Department of Pathology, University of Veterinary Medicine Hanover Foundation, 30559 Hanover, Germany; (T.S.); (L.A.); (G.B.); (K.M.); (K.B.); (F.A.); (M.C.)
- Center for Systems Neuroscience (ZSN), University of Veterinary Medicine Hanover Foundation, 30559 Hanover, Germany
| | - Federico Armando
- Department of Pathology, University of Veterinary Medicine Hanover Foundation, 30559 Hanover, Germany; (T.S.); (L.A.); (G.B.); (K.M.); (K.B.); (F.A.); (M.C.)
| | - Malgorzata Ciurkiewicz
- Department of Pathology, University of Veterinary Medicine Hanover Foundation, 30559 Hanover, Germany; (T.S.); (L.A.); (G.B.); (K.M.); (K.B.); (F.A.); (M.C.)
| |
Collapse
|
5
|
The COVID-19 Cell Signalling Problem: Spike, RAGE, PKC, p38, NFκB & IL-6 Hyper-Expression and the Human Ezrin Peptide, VIP, PKA-CREB Solution. IMMUNO 2022. [DOI: 10.3390/immuno2020017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
SARS-CoV-2 infection inhibits interferon expression, while hyper-activating innate-immune signalling and expression of pro-inflammatory cytokines. SARS-CoV-2 proteins: Spike, M and nsp6, nsp12 and nsp13 inhibit IFR3-mediated Type-1-interferon defence, but hyper-activate intracellular signalling, which leads to dysfunctional expression of pro-inflammatory cytokines, particularly IL-1β IL-6, IL-8, and TNFα. Ezrin, a sub-membrane adaptor-protein, organises multi-protein-complexes such as ezrin+NHERF1+NHE+CFTR, which control the density and location of ACE2 receptor expression on the luminal surface of airway-epithelial-cells, as well as determining susceptibility to SARS-CoV-2 infection. This protein complex is vital for lung-surfactant production for efficient gas-exchange. Ezrin also forms multi-protein-complexes that regulate signalling kinases; Ras, PKC, PI3K, and PKA. m-RAGE is a pattern-recognition-receptor of the innate immune system that is triggered by AGEs, which are chemically modified proteins common in the elderly and obese. m-RAGE forms multi-protein complexes with ezrin and TIRAP, a toll-like-receptor adaptor-protein. The main cause of COVID-19 is not viral infection but pro-inflammatory p38MAPK signalling mediated by TLRs and RAGE. In contrast, it appears that activated ezrin+PKA signalling results in the activation of transcription-factor CREB, which suppresses NFκB mediated pro-inflammatory cytokine expression. In addition, competition between ezrin and TIRAP to form multi-protein-complexes on membrane PIP2-lipid-rafts is a macromolecular-switch that changes the priority from innate immune activation programs to adaptive immune activation programs. Human Vasoactive Intestinal Peptide (VIP), and Human Ezrin Peptides (HEP-1 and RepG3) probably inhibit COVID-19 by activating the ezrin+PKA and ras>Raf>MEK>ERK>RSK>CREB>IL-10 signalling, which favours activation of adaptive immunity programs and inhibition of the dysfunctional innate-inflammation, the cause of COVID-19. HEP-1, RepG3, and VIP in individual human volunteers and in small clinical studies have been shown to be effective COVID-19 therapies, and seem to have a closely related mechanism of action.
Collapse
|
6
|
Kawaguchi K, Asano S. Pathophysiological Roles of Actin-Binding Scaffold Protein, Ezrin. Int J Mol Sci 2022; 23:ijms23063246. [PMID: 35328667 PMCID: PMC8952289 DOI: 10.3390/ijms23063246] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/14/2022] [Accepted: 03/14/2022] [Indexed: 02/06/2023] Open
Abstract
Ezrin is one of the members of the ezrin/radixin/moesin (ERM) family of proteins. It was originally discovered as an actin-binding protein in the microvilli structure about forty years ago. Since then, it has been revealed as a key protein with functions in a variety of fields including cell migration, survival, and signal transduction, as well as functioning as a structural component. Ezrin acts as a cross-linker of membrane proteins or phospholipids in the plasma membrane and the actin cytoskeleton. It also functions as a platform for signaling molecules at the cell surface. Moreover, ezrin is regarded as an important target protein in cancer diagnosis and therapy because it is a key protein involved in cancer progression and metastasis, and its high expression is linked to poor survival in many cancers. Small molecule inhibitors of ezrin have been developed and investigated as candidate molecules that suppress cancer metastasis. Here, we wish to comprehensively review the roles of ezrin from the pathophysiological points of view.
Collapse
|
7
|
Kawaguchi K, Nakayama S, Saito D, Kogiso H, Yasuoka K, Marunaka Y, Nakahari T, Asano S. Ezrin knockdown reduces procaterol-stimulated ciliary beating without morphological changes in mouse airway cilia. J Cell Sci 2022; 135:274273. [PMID: 35132996 DOI: 10.1242/jcs.259201] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 01/31/2022] [Indexed: 11/20/2022] Open
Abstract
The mucociliary clearance, which is conducted by the beating cilia cooperating with the surface mucous layer, is a major host defense mechanism of the airway epithelium. Ezrin, a crosslinker between membrane proteins and actin cytoskeleton, is located in microvilli and around the basal bodies in airway ciliary cells. It is also likely that ezrin may play the important role of apical localization of β2-adrenergic receptor (β2AR) in airway ciliary cells. Here we studied the physiological roles of ezrin by using the trachea and airway epithelial cells prepared from the ezrin-knockdown (Vil2kd/kd) mice. The trachea and airway ciliary cells of Vil2kd/kd mice represented normal morphology and basal body orientation, suggesting that ezrin is not directly involved in development and planer cell polarity of cilia. Procaterol stimulates ciliary beating (frequency and amplitude) via β2AR in the airway ciliary cells. In the Vil2kd/kd mice, airway ciliary beating stimulated with procaterol was partly inhibited due to the impairment of cell surface expression of β2AR. These results suggest that ezrin regulates the beating of airway ciliary cells by promoting the apical surface localization of β2AR.
Collapse
Affiliation(s)
- Kotoku Kawaguchi
- Department of Molecular Physiology, College of Pharmaceutical Sciences, Ritsumeikan University, Shiga, 525-8577, Japan
| | - Shogo Nakayama
- Laboratory for Lung Development and Regeneration, Riken Center for Biosystems Dynamics Research (BDR), Kobe, 650-0047, Japan
| | - Daichi Saito
- Department of Molecular Physiology, College of Pharmaceutical Sciences, Ritsumeikan University, Shiga, 525-8577, Japan
| | - Haruka Kogiso
- Research Unit for Epithelial Physiology, Research Organization of Science and Technology, Ritsumeikan University, Shiga, 525-8577, Japan
| | - Kasane Yasuoka
- Department of Molecular Physiology, College of Pharmaceutical Sciences, Ritsumeikan University, Shiga, 525-8577, Japan
| | - Yoshinori Marunaka
- Research Unit for Epithelial Physiology, Research Organization of Science and Technology, Ritsumeikan University, Shiga, 525-8577, Japan.,Department of Molecular Cell Physiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan.,Medical Research Institute, Kyoto Industrial Health Association, Kyoto 604-8472, Japan
| | - Takashi Nakahari
- Research Unit for Epithelial Physiology, Research Organization of Science and Technology, Ritsumeikan University, Shiga, 525-8577, Japan
| | - Shinji Asano
- Department of Molecular Physiology, College of Pharmaceutical Sciences, Ritsumeikan University, Shiga, 525-8577, Japan.,Research Unit for Epithelial Physiology, Research Organization of Science and Technology, Ritsumeikan University, Shiga, 525-8577, Japan
| |
Collapse
|
8
|
Rao VG, Kulkarni SS. Xenopus to the rescue: A model to validate and characterize candidate ciliopathy genes. Genesis 2021; 59:e23414. [PMID: 33576572 DOI: 10.1002/dvg.23414] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/27/2021] [Accepted: 01/28/2021] [Indexed: 12/14/2022]
Abstract
Cilia are present on most vertebrate cells and play a central role in development, growth, and homeostasis. Thus, cilia dysfunction can manifest into an array of diseases, collectively termed ciliopathies, affecting millions of lives worldwide. Yet, our understanding of the gene regulatory networks that control cilia assembly and functions remain incomplete. With the advances in next-generation sequencing technologies, we can now rapidly predict pathogenic variants from hundreds of ciliopathy patients. While the pace of candidate gene discovery is exciting, most of these genes have never been previously implicated in cilia assembly or function. This makes assigning the disease causality difficult. This review discusses how Xenopus, a genetically tractable and high-throughput vertebrate model, has played a central role in identifying, validating, and characterizing candidate ciliopathy genes. The review is focused on multiciliated cells (MCCs) and diseases associated with MCC dysfunction. MCCs harbor multiple motile cilia on their apical surface to generate extracellular fluid flow inside the airway, the brain ventricles, and the oviduct. In Xenopus, these cells are external and present on the embryonic epidermal epithelia, facilitating candidate genes analysis in MCC development in vivo. The ability to introduce patient variants to study their effects on disease progression makes Xenopus a powerful model to improve our understanding of the underlying disease mechanisms and explain the patient phenotype.
Collapse
Affiliation(s)
- Venkatramanan G Rao
- Department of Cell Biology, University of Virginia, Charlottesville, Virginia, USA
| | - Saurabh S Kulkarni
- Department of Cell Biology, University of Virginia, Charlottesville, Virginia, USA.,Department of Biology, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
9
|
Révész C, Wasik AA, Godó M, Tod P, Lehtonen S, Szénási G, Hamar P. Cold Saline Perfusion before Ischemia-Reperfusion Is Harmful to the Kidney and Is Associated with the Loss of Ezrin, a Cytoskeletal Protein, in Rats. Biomedicines 2021; 9:biomedicines9010030. [PMID: 33401597 PMCID: PMC7824567 DOI: 10.3390/biomedicines9010030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 12/27/2020] [Accepted: 12/28/2020] [Indexed: 11/30/2022] Open
Abstract
Background: Organ protection for transplantation is perfusion with ice-cold preservation solutions, although saline is also used in animal experiments and living donor transplantations. However, ice-cold perfusion can contribute to initial graft injury. Our aim was to test if cytoskeletal damage of parenchymal cells is caused by saline itself or by the ice-cold solution. Methods: F344 rat kidneys were flushed with cold (4 °C) saline, ischemic and sham kidneys were not perfused. In a separate set, F344 kidneys were flushed with saline or preservation solution at 4 or 15 °C. Ischemia time was 30 min. Results: Renal injury was significantly more severe following cold ischemia (CI) than after ischemia-reperfusion without flushing (ischemia/reperfusion (I/R)). Functional and morphologic damage was accompanied by severe loss of ezrin from glomerular and tubular epithelial cells after CI. Moreover, saline caused serious injury independently from its temperature, while the perfusion solution was more beneficial, especially at 4 °C. Conclusions: Flushing the kidney with ice-cold saline can cause more severe injury than ischemia-reperfusion at body temperature even during a short (30 min) ischemia. Saline perfusion can prolong recovery from ischemia in kidney transplantation, which can be prevented by using preservation solutions.
Collapse
Affiliation(s)
- Csaba Révész
- Institute of Translational Medicine, Faculty of Medicine, Semmelweis University, 1143 Budapest, Hungary; (C.R.); (M.G.); (P.T.); (G.S.)
| | - Anita A. Wasik
- Department of Pathology, Faculty of Medicine, University of Helsinki, FIN-00014 Helsinki, Finland; (A.A.W.); (S.L.)
| | - Mária Godó
- Institute of Translational Medicine, Faculty of Medicine, Semmelweis University, 1143 Budapest, Hungary; (C.R.); (M.G.); (P.T.); (G.S.)
| | - Pál Tod
- Institute of Translational Medicine, Faculty of Medicine, Semmelweis University, 1143 Budapest, Hungary; (C.R.); (M.G.); (P.T.); (G.S.)
| | - Sanna Lehtonen
- Department of Pathology, Faculty of Medicine, University of Helsinki, FIN-00014 Helsinki, Finland; (A.A.W.); (S.L.)
- Research Program for Clinical and Molecular Metabolism, University of Helsinki, FIN-00014 Helsinki, Finland
| | - Gábor Szénási
- Institute of Translational Medicine, Faculty of Medicine, Semmelweis University, 1143 Budapest, Hungary; (C.R.); (M.G.); (P.T.); (G.S.)
| | - Péter Hamar
- Institute of Translational Medicine, Faculty of Medicine, Semmelweis University, 1143 Budapest, Hungary; (C.R.); (M.G.); (P.T.); (G.S.)
- Correspondence: ; Tel.: +36-20-825-9751; Fax: +36-1-210-0100
| |
Collapse
|
10
|
Smith CEL, Lake AVR, Johnson CA. Primary Cilia, Ciliogenesis and the Actin Cytoskeleton: A Little Less Resorption, A Little More Actin Please. Front Cell Dev Biol 2020; 8:622822. [PMID: 33392209 PMCID: PMC7773788 DOI: 10.3389/fcell.2020.622822] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 11/24/2020] [Indexed: 12/13/2022] Open
Abstract
Primary cilia are microtubule-based organelles that extend from the apical surface of most mammalian cells, forming when the basal body (derived from the mother centriole) docks at the apical cell membrane. They act as universal cellular "antennae" in vertebrates that receive and integrate mechanical and chemical signals from the extracellular environment, serving diverse roles in chemo-, mechano- and photo-sensation that control developmental signaling, cell polarity and cell proliferation. Mutations in ciliary genes cause a major group of inherited developmental disorders called ciliopathies. There are very few preventative treatments or new therapeutic interventions that modify disease progression or the long-term outlook of patients with these conditions. Recent work has identified at least four distinct but interrelated cellular processes that regulate cilia formation and maintenance, comprising the cell cycle, cellular proteostasis, signaling pathways and structural influences of the actin cytoskeleton. The actin cytoskeleton is composed of microfilaments that are formed from filamentous (F) polymers of globular G-actin subunits. Actin filaments are organized into bundles and networks, and are attached to the cell membrane, by diverse cross-linking proteins. During cell migration, actin filament bundles form either radially at the leading edge or as axial stress fibers. Early studies demonstrated that loss-of-function mutations in ciliopathy genes increased stress fiber formation and impaired ciliogenesis whereas pharmacological inhibition of actin polymerization promoted ciliogenesis. These studies suggest that polymerization of the actin cytoskeleton, F-actin branching and the formation of stress fibers all inhibit primary cilium formation, whereas depolymerization or depletion of actin enhance ciliogenesis. Here, we review the mechanistic basis for these effects on ciliogenesis, which comprise several cellular processes acting in concert at different timescales. Actin polymerization is both a physical barrier to both cilia-targeted vesicle transport and to the membrane remodeling required for ciliogenesis. In contrast, actin may cause cilia loss by localizing disassembly factors at the ciliary base, and F-actin branching may itself activate the YAP/TAZ pathway to promote cilia disassembly. The fundamental role of actin polymerization in the control of ciliogenesis may present potential new targets for disease-modifying therapeutic approaches in treating ciliopathies.
Collapse
Affiliation(s)
| | | | - Colin A. Johnson
- Leeds Institute of Medical Research at St. James’s, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
11
|
Lemeille S, Paschaki M, Baas D, Morlé L, Duteyrat JL, Ait-Lounis A, Barras E, Soulavie F, Jerber J, Thomas J, Zhang Y, Holtzman MJ, Kistler WS, Reith W, Durand B. Interplay of RFX transcription factors 1, 2 and 3 in motile ciliogenesis. Nucleic Acids Res 2020; 48:9019-9036. [PMID: 32725242 PMCID: PMC7498320 DOI: 10.1093/nar/gkaa625] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 07/08/2020] [Accepted: 07/16/2020] [Indexed: 12/16/2022] Open
Abstract
Cilia assembly is under strict transcriptional control during animal development. In vertebrates, a hierarchy of transcription factors (TFs) are involved in controlling the specification, differentiation and function of multiciliated epithelia. RFX TFs play key functions in the control of ciliogenesis in animals. Whereas only one RFX factor regulates ciliogenesis in C. elegans, several distinct RFX factors have been implicated in this process in vertebrates. However, a clear understanding of the specific and redundant functions of different RFX factors in ciliated cells remains lacking. Using RNA-seq and ChIP-seq approaches we identified genes regulated directly and indirectly by RFX1, RFX2 and RFX3 in mouse ependymal cells. We show that these three TFs have both redundant and specific functions in ependymal cells. Whereas RFX1, RFX2 and RFX3 occupy many shared genomic loci, only RFX2 and RFX3 play a prominent and redundant function in the control of motile ciliogenesis in mice. Our results provide a valuable list of candidate ciliary genes. They also reveal stunning differences between compensatory processes operating in vivo and ex vivo.
Collapse
Affiliation(s)
- Sylvain Lemeille
- Department of Pathology and Immunology, University of Geneva Medical School, CMU, Geneva, Switzerland
| | - Marie Paschaki
- Univ Lyon, Université Claude Bernard Lyon-1, CNRS UMR-5310, INSERM U-1217, Institut NeuroMyoGène, F-69008, Lyon, France
| | - Dominique Baas
- Univ Lyon, Université Claude Bernard Lyon-1, CNRS UMR-5310, INSERM U-1217, Institut NeuroMyoGène, F-69008, Lyon, France
| | - Laurette Morlé
- Univ Lyon, Université Claude Bernard Lyon-1, CNRS UMR-5310, INSERM U-1217, Institut NeuroMyoGène, F-69008, Lyon, France
| | - Jean-Luc Duteyrat
- Univ Lyon, Université Claude Bernard Lyon-1, CNRS UMR-5310, INSERM U-1217, Institut NeuroMyoGène, F-69008, Lyon, France
| | - Aouatef Ait-Lounis
- Department of Pathology and Immunology, University of Geneva Medical School, CMU, Geneva, Switzerland
| | - Emmanuèle Barras
- Department of Pathology and Immunology, University of Geneva Medical School, CMU, Geneva, Switzerland
| | - Fabien Soulavie
- Univ Lyon, Université Claude Bernard Lyon-1, CNRS UMR-5310, INSERM U-1217, Institut NeuroMyoGène, F-69008, Lyon, France
| | - Julie Jerber
- Univ Lyon, Université Claude Bernard Lyon-1, CNRS UMR-5310, INSERM U-1217, Institut NeuroMyoGène, F-69008, Lyon, France
| | - Joëlle Thomas
- Univ Lyon, Université Claude Bernard Lyon-1, CNRS UMR-5310, INSERM U-1217, Institut NeuroMyoGène, F-69008, Lyon, France
| | - Yong Zhang
- Department of Medicine and Department of Cell Biology, Washington University School of Medicine, St. Louis, Missouri
| | - Michael J Holtzman
- Department of Medicine and Department of Cell Biology, Washington University School of Medicine, St. Louis, Missouri
| | - W Stephen Kistler
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina, United States of America
| | - Walter Reith
- Department of Pathology and Immunology, University of Geneva Medical School, CMU, Geneva, Switzerland
| | - Bénédicte Durand
- Univ Lyon, Université Claude Bernard Lyon-1, CNRS UMR-5310, INSERM U-1217, Institut NeuroMyoGène, F-69008, Lyon, France
| |
Collapse
|
12
|
Kuek LE, Lee RJ. First contact: the role of respiratory cilia in host-pathogen interactions in the airways. Am J Physiol Lung Cell Mol Physiol 2020; 319:L603-L619. [PMID: 32783615 PMCID: PMC7516383 DOI: 10.1152/ajplung.00283.2020] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/28/2020] [Accepted: 07/28/2020] [Indexed: 02/07/2023] Open
Abstract
Respiratory cilia are the driving force of the mucociliary escalator, working in conjunction with secreted airway mucus to clear inhaled debris and pathogens from the conducting airways. Respiratory cilia are also one of the first contact points between host and inhaled pathogens. Impaired ciliary function is a common pathological feature in patients with chronic airway diseases, increasing susceptibility to respiratory infections. Common respiratory pathogens, including viruses, bacteria, and fungi, have been shown to target cilia and/or ciliated airway epithelial cells, resulting in a disruption of mucociliary clearance that may facilitate host infection. Despite being an integral component of airway innate immunity, the role of respiratory cilia and their clinical significance during airway infections are still poorly understood. This review examines the expression, structure, and function of respiratory cilia during pathogenic infection of the airways. This review also discusses specific known points of interaction of bacteria, fungi, and viruses with respiratory cilia function. The emerging biological functions of motile cilia relating to intracellular signaling and their potential immunoregulatory roles during infection will also be discussed.
Collapse
Affiliation(s)
- Li Eon Kuek
- Department of Otorhinolaryngology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Robert J Lee
- Department of Otorhinolaryngology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
- Department of Physiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| |
Collapse
|
13
|
Cochrane DR, Campbell KR, Greening K, Ho GC, Hopkins J, Bui M, Douglas JM, Sharlandjieva V, Munzur AD, Lai D, DeGrood M, Gibbard EW, Leung S, Boyd N, Cheng AS, Chow C, Lim JL, Farnell DA, Kommoss S, Kommoss F, Roth A, Hoang L, McAlpine JN, Shah SP, Huntsman DG. Single cell transcriptomes of normal endometrial derived organoids uncover novel cell type markers and cryptic differentiation of primary tumours. J Pathol 2020; 252:201-214. [PMID: 32686114 DOI: 10.1002/path.5511] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 06/11/2020] [Accepted: 07/14/2020] [Indexed: 01/04/2023]
Abstract
Endometrial carcinoma, the most common gynaecological cancer, develops from endometrial epithelium which is composed of secretory and ciliated cells. Pathologic classification is unreliable and there is a need for prognostic tools. We used single cell sequencing to study organoid model systems derived from normal endometrial endometrium to discover novel markers specific for endometrial ciliated or secretory cells. A marker of secretory cells (MPST) and several markers of ciliated cells (FAM92B, WDR16, and DYDC2) were validated by immunohistochemistry on organoids and tissue sections. We performed single cell sequencing on endometrial and ovarian tumours and found both secretory-like and ciliated-like tumour cells. We found that ciliated cell markers (DYDC2, CTH, FOXJ1, and p73) and the secretory cell marker MPST were expressed in endometrial tumours and positively correlated with disease-specific and overall survival of endometrial cancer patients. These findings suggest that expression of differentiation markers in tumours correlates with less aggressive disease, as would be expected for tumours that retain differentiation capacity, albeit cryptic in the case of ciliated cells. These markers could be used to improve the risk stratification of endometrial cancer patients, thereby improving their management. We further assessed whether consideration of MPST expression could refine the ProMiSE molecular classification system for endometrial tumours. We found that higher expression levels of MPST could be used to refine stratification of three of the four ProMiSE molecular subgroups, and that any level of MPST expression was able to significantly refine risk stratification of the copy number high subgroup which has the worst prognosis. Taken together, this shows that single cell sequencing of putative cells of origin has the potential to uncover novel biomarkers that could be used to guide management of cancers. © 2020 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Dawn R Cochrane
- Department of Molecular Oncology, BC Cancer Agency, Vancouver, BC, Canada
| | - Kieran R Campbell
- Department of Molecular Oncology, BC Cancer Agency, Vancouver, BC, Canada
| | - Kendall Greening
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Germain C Ho
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - James Hopkins
- Department of Molecular Oncology, BC Cancer Agency, Vancouver, BC, Canada
| | - Minh Bui
- Department of Molecular Oncology, BC Cancer Agency, Vancouver, BC, Canada
| | - J Maxwell Douglas
- Department of Molecular Oncology, BC Cancer Agency, Vancouver, BC, Canada
| | | | - Aslı D Munzur
- Department of Molecular Oncology, BC Cancer Agency, Vancouver, BC, Canada
| | - Daniel Lai
- Department of Molecular Oncology, BC Cancer Agency, Vancouver, BC, Canada
| | - Maya DeGrood
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Evan W Gibbard
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Samuel Leung
- Genetic Pathology Evaluation Centre, Vancouver General Hospital, Vancouver, BC, Canada
| | - Niki Boyd
- Department of Molecular Oncology, BC Cancer Agency, Vancouver, BC, Canada
| | - Angela S Cheng
- Genetic Pathology Evaluation Centre, Vancouver General Hospital, Vancouver, BC, Canada
| | - Christine Chow
- Genetic Pathology Evaluation Centre, Vancouver General Hospital, Vancouver, BC, Canada
| | - Jamie Lp Lim
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
| | - David A Farnell
- Department of Anatomical Pathology, Vancouver General Hospital, Vancouver, BC, Canada
| | - Stefan Kommoss
- Department of Obstetrics and Gynecology, University of Tübingen, Tübingen, Germany
| | - Friedrich Kommoss
- Institute of Pathology, Medizin Campus Bodensee, Friedrichshafen, Germany
| | - Andrew Roth
- Department of Molecular Oncology, BC Cancer Agency, Vancouver, BC, Canada
| | - Lien Hoang
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Jessica N McAlpine
- Department of Gynecology and Obstetrics, University of British Columbia, Vancouver, BC, Canada
| | - Sohrab P Shah
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
| | - David G Huntsman
- Department of Molecular Oncology, BC Cancer Agency, Vancouver, BC, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada.,Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
14
|
Kulappu Arachchige SN, Young ND, Shil PK, Legione AR, Kanci Condello A, Browning GF, Wawegama NK. Differential Response of the Chicken Trachea to Chronic Infection with Virulent Mycoplasma gallisepticum Strain Ap3AS and Vaxsafe MG (Strain ts-304): a Transcriptional Profile. Infect Immun 2020; 88:e00053-20. [PMID: 32122943 PMCID: PMC7171234 DOI: 10.1128/iai.00053-20] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 02/26/2020] [Indexed: 12/29/2022] Open
Abstract
Mycoplasma gallisepticum is the primary etiological agent of chronic respiratory disease in chickens. Live attenuated vaccines are most commonly used in the field to control the disease, but current vaccines have some limitations. Vaxsafe MG (strain ts-304) is a new vaccine candidate that is efficacious at a lower dose than the current commercial vaccine strain ts-11, from which it is derived. In this study, the transcriptional profiles of the trachea of unvaccinated chickens and chickens vaccinated with strain ts-304 were compared 2 weeks after challenge with M. gallisepticum strain Ap3AS during the chronic stage of infection. After challenge, genes, gene ontologies, pathways, and protein classes involved in inflammation, cytokine production and signaling, and cell proliferation were upregulated, while those involved in formation and motor movement of cilia, formation of intercellular junctional complexes, and formation of the cytoskeleton were downregulated in the unvaccinated birds compared to the vaccinated birds, reflecting immune dysregulation and the pathological changes induced in the trachea by infection with M. gallisepticum Vaccination appears to protect the structural and functional integrity of the tracheal mucosa 2 weeks after infection with M. gallisepticum.
Collapse
Affiliation(s)
- Sathya N Kulappu Arachchige
- Asia-Pacific Centre for Animal Health, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Neil D Young
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Pollob K Shil
- Asia-Pacific Centre for Animal Health, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Werribee, Victoria, Australia
| | - Alistair R Legione
- Asia-Pacific Centre for Animal Health, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Anna Kanci Condello
- Asia-Pacific Centre for Animal Health, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Glenn F Browning
- Asia-Pacific Centre for Animal Health, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Nadeeka K Wawegama
- Asia-Pacific Centre for Animal Health, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
15
|
Kulkarni SS, Griffin JN, Date PP, Liem KF, Khokha MK. WDR5 Stabilizes Actin Architecture to Promote Multiciliated Cell Formation. Dev Cell 2018; 46:595-610.e3. [PMID: 30205038 PMCID: PMC6177229 DOI: 10.1016/j.devcel.2018.08.009] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 06/18/2018] [Accepted: 08/11/2018] [Indexed: 12/16/2022]
Abstract
The actin cytoskeleton is critical to shape cells and pattern intracellular organelles, which collectively drives tissue morphogenesis. In multiciliated cells (MCCs), apical actin drives expansion of the cell surface necessary to host hundreds of cilia. The apical actin also forms a lattice to uniformly distribute basal bodies. This apical actin network is dynamically remodeled, but the molecules that regulate its architecture remain poorly understood. We identify the chromatin modifier, WDR5, as a regulator of apical F-actin in MCCs. Unexpectedly in MCCs, WDR5 has a function independent of chromatin modification. We discover a scaffolding role for WDR5 between the basal body and F-actin. Specifically, WDR5 binds to basal bodies and migrates apically, where F-actin organizes around WDR5. Using a monomer trap for G-actin, we show that WDR5 stabilizes F-actin to maintain lattice architecture. In summary, we identify a non-chromatin role for WDR5 in stabilizing F-actin in MCCs.
Collapse
Affiliation(s)
- Saurabh S Kulkarni
- Pediatric Genomics Discovery Program, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA; Department of Pediatrics, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA; Department of Genetics, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA
| | - John N Griffin
- Pediatric Genomics Discovery Program, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA; Department of Pediatrics, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA; Department of Genetics, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA
| | - Priya P Date
- Pediatric Genomics Discovery Program, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA; Department of Pediatrics, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA; Department of Genetics, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA
| | - Karel F Liem
- Department of Pediatrics, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA
| | - Mustafa K Khokha
- Pediatric Genomics Discovery Program, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA; Department of Pediatrics, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA; Department of Genetics, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA.
| |
Collapse
|
16
|
Hahn A, Salomon JJ, Leitz D, Feigenbutz D, Korsch L, Lisewski I, Schrimpf K, Millar-Büchner P, Mall MA, Frings S, Möhrlen F. Expression and function of Anoctamin 1/TMEM16A calcium-activated chloride channels in airways of in vivo mouse models for cystic fibrosis research. Pflugers Arch 2018; 470:1335-1348. [DOI: 10.1007/s00424-018-2160-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 04/30/2018] [Accepted: 05/23/2018] [Indexed: 01/17/2023]
|
17
|
Abstract
Mammalian circadian clocks have a hierarchical organization, governed by the suprachiasmatic nucleus (SCN) in the hypothalamus. The brain itself contains multiple loci that maintain autonomous circadian rhythmicity, but the contribution of the non-SCN clocks to this hierarchy remains unclear. We examine circadian oscillations of clock gene expression in various brain loci and discovered that in mouse, robust, higher amplitude, relatively faster oscillations occur in the choroid plexus (CP) compared to the SCN. Our computational analysis and modeling show that the CP achieves these properties by synchronization of “twist” circadian oscillators via gap-junctional connections. Using an in vitro tissue coculture model and in vivo targeted deletion of the Bmal1 gene to silence the CP circadian clock, we demonstrate that the CP clock adjusts the SCN clock likely via circulation of cerebrospinal fluid, thus finely tuning behavioral circadian rhythms. The suprachiasmatic nucleus (SCN) has been thought of as the master circadian clock, but peripheral circadian clocks do exist. Here, the authors show that the choroid plexus displays oscillations more robust than the SCN and that can be described as a Poincaré oscillator with negative twist.
Collapse
|
18
|
Cochrane DR, Tessier-Cloutier B, Lawrence KM, Nazeran T, Karnezis AN, Salamanca C, Cheng AS, McAlpine JN, Hoang LN, Gilks CB, Huntsman DG. Clear cell and endometrioid carcinomas: are their differences attributable to distinct cells of origin? J Pathol 2017; 243:26-36. [PMID: 28678427 DOI: 10.1002/path.4934] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2017] [Revised: 06/09/2017] [Accepted: 06/29/2017] [Indexed: 01/18/2023]
Abstract
Endometrial epithelium is the presumed tissue of origin for both eutopic and endometriosis-derived clear cell and endometrioid carcinomas. We had previously hypothesized that the morphological, biological and clinical differences between these carcinomas are due to histotype-specific mutations. Although some mutations and genomic landscape features are more likely to be found in one of these histotypes, we were not able to identify a single class of mutations that was exclusively present in one histotype and not the other. This lack of genomic differences led us to an alternative hypothesis that these cancers could arise from distinct cells of origin within endometrial tissue, and that it is the cellular context that accounts for their differences. In a proteomic screen, we identified cystathionine γ-lyase (CTH) as a marker for clear cell carcinoma, as it is expressed at high levels in clear cell carcinomas of the ovary and endometrium. In the current study, we analysed normal Müllerian tissues, and found that CTH is expressed in ciliated cells of endometrium (both eutopic endometrium and endometriosis) and fallopian tubes. We then demonstrated that other ciliated cell markers are expressed in clear cell carcinomas, whereas endometrial secretory cell markers are expressed in endometrioid carcinomas. The same differential staining of secretory and ciliated cells was demonstrable in a three-dimensional organoid culture system, in which stem cells were stimulated to differentiate into an admixture of secretory and ciliated cells. These data suggest that endometrioid carcinomas are derived from cells of the secretory cell lineage, whereas clear cell carcinomas are derived from, or have similarities to, cells of the ciliated cell lineage. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Dawn R Cochrane
- Department of Molecular Oncology, BC Cancer Agency, Vancouver, BC, Canada
| | - Basile Tessier-Cloutier
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | | | - Tayyebeh Nazeran
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Anthony N Karnezis
- Department of Molecular Oncology, BC Cancer Agency, Vancouver, BC, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Clara Salamanca
- Department of Molecular Oncology, BC Cancer Agency, Vancouver, BC, Canada
| | - Angela S Cheng
- Department of Molecular Oncology, BC Cancer Agency, Vancouver, BC, Canada
| | - Jessica N McAlpine
- Department of Gynecology and Obstetrics, University of British Columbia, Vancouver, BC, Canada
| | - Lien N Hoang
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada.,Department of Anatomical Pathology, Vancouver General Hospital, Vancouver, BC, Canada
| | - C Blake Gilks
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada.,Department of Anatomical Pathology, Vancouver General Hospital, Vancouver, BC, Canada
| | - David G Huntsman
- Department of Molecular Oncology, BC Cancer Agency, Vancouver, BC, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada.,Department of Gynecology and Obstetrics, University of British Columbia, Vancouver, BC, Canada.,Department of Anatomical Pathology, Vancouver General Hospital, Vancouver, BC, Canada
| |
Collapse
|
19
|
Stauber M, Weidemann M, Dittrich-Breiholz O, Lobschat K, Alten L, Mai M, Beckers A, Kracht M, Gossler A. Identification of FOXJ1 effectors during ciliogenesis in the foetal respiratory epithelium and embryonic left-right organiser of the mouse. Dev Biol 2016; 423:170-188. [PMID: 27914912 DOI: 10.1016/j.ydbio.2016.11.019] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 10/05/2016] [Accepted: 11/27/2016] [Indexed: 10/20/2022]
Abstract
Formation of motile cilia in vertebrate embryos is essential for proper development and tissue function. Key regulators of motile ciliogenesis are the transcription factors FOXJ1 and NOTO, which are conserved throughout vertebrates. Downstream target genes of FOXJ1 have been identified in a variety of species, organs and cultured cell lines; in murine embryonic and foetal tissues, however, FOXJ1 and NOTO effectors have not been comprehensively analysed and our knowledge of the downstream genetic programme driving motile ciliogenesis in the mammalian lung and ventral node is fragmentary. We compared genome-wide expression profiles of undifferentiated E14.5 vs. abundantly ciliated E18.5 micro-dissected airway epithelia as well as Foxj1+ vs. Foxj1-deficient foetal (E16.5) lungs of the mouse using microarray hybridisation. 326 genes deregulated in both screens are candidates for FOXJ1-dependent, ciliogenesis-associated factors at the endogenous onset of motile ciliogenesis in the lung, including 123 genes that have not been linked to ciliogenesis before; 46% of these novel factors lack known homologues outside mammals. Microarray screening of Noto+ vs. Noto null early headfold embryos (E7.75) identified 59 of the lung candidates as NOTO/FOXJ1-dependent factors in the embryonic left-right organiser that carries a different subtype of motile cilia. For several uncharacterised factors from this small overlap - including 1700012B09Rik, 1700026L06Rik and Fam183b - we provide extended experimental evidence for a ciliary function.
Collapse
Affiliation(s)
- Michael Stauber
- Institut für Molekularbiologie, OE 5250, Medizinische Hochschule Hannover, Carl-Neuberg-Str. 1, 30625 Hannover, Germany.
| | - Marina Weidemann
- Institut für Molekularbiologie, OE 5250, Medizinische Hochschule Hannover, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Oliver Dittrich-Breiholz
- Institut für Physiologische Chemie, OE 4310, Medizinische Hochschule Hannover, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Katharina Lobschat
- Institut für Molekularbiologie, OE 5250, Medizinische Hochschule Hannover, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Leonie Alten
- Institut für Molekularbiologie, OE 5250, Medizinische Hochschule Hannover, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Michaela Mai
- Institut für Molekularbiologie, OE 5250, Medizinische Hochschule Hannover, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Anja Beckers
- Institut für Molekularbiologie, OE 5250, Medizinische Hochschule Hannover, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Michael Kracht
- Rudolf-Buchheim-Institut für Pharmakologie, Justus-Liebig-Universität Gießen, Schubertstr. 81, 35392 Gießen, Germany
| | - Achim Gossler
- Institut für Molekularbiologie, OE 5250, Medizinische Hochschule Hannover, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| |
Collapse
|
20
|
Janssen WJ, Stefanski AL, Bochner BS, Evans CM. Control of lung defence by mucins and macrophages: ancient defence mechanisms with modern functions. Eur Respir J 2016; 48:1201-1214. [PMID: 27587549 DOI: 10.1183/13993003.00120-2015] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2016] [Accepted: 06/12/2016] [Indexed: 12/14/2022]
Abstract
Owing to the need to balance the requirement for efficient respiration in the face of tremendous levels of exposure to endogenous and environmental challenges, it is crucial for the lungs to maintain a sustainable defence that minimises damage caused by this exposure and the detrimental effects of inflammation to delicate gas exchange surfaces. Accordingly, epithelial and macrophage defences constitute essential first and second lines of protection that prevent the accumulation of potentially harmful agents in the lungs, and under homeostatic conditions do so effectively without inducing inflammation. Though epithelial and macrophage-mediated defences are seemingly distinct, recent data show that they are linked through their shared reliance on airway mucins, in particular the polymeric mucin MUC5B. This review highlights our understanding of novel mechanisms that link mucus and macrophage defences. We discuss the roles of phagocytosis and the effects of factors contained within mucus on phagocytosis, as well as newly identified roles for mucin glycoproteins in the direct regulation of leukocyte functions. The emergence of this nascent field of glycoimmunobiology sets forth a new paradigm for considering how homeostasis is maintained under healthy conditions and how it is restored in disease.
Collapse
Affiliation(s)
- William J Janssen
- Dept of Medicine, National Jewish Health, Denver, CO, USA Dept of Medicine, University of Colorado School of Medicine, Aurora, CO, USA
| | | | - Bruce S Bochner
- Dept of Medicine, Division of Allergy-Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Christopher M Evans
- Dept of Medicine, University of Colorado School of Medicine, Aurora, CO, USA
| |
Collapse
|
21
|
Mercey O, Kodjabachian L, Barbry P, Marcet B. MicroRNAs as key regulators of GTPase-mediated apical actin reorganization in multiciliated epithelia. Small GTPases 2016; 7:54-8. [PMID: 27144998 PMCID: PMC4905265 DOI: 10.1080/21541248.2016.1151099] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Multiciliated cells (MCCs), which are present in specialized vertebrate tissues such as mucociliary epithelia, project hundreds of motile cilia from their apical membrane. Coordinated ciliary beating in MCCs contributes to fluid propulsion in several biological processes. In a previous work, we demonstrated that microRNAs of the miR-34/449 family act as new conserved regulators of MCC differentiation by specifically repressing cell cycle genes and the Notch pathway. Recently, we have shown that miR-34/449 also modulate small GTPase pathways to promote, in a later stage of differentiation, the assembly of the apical actin network, a prerequisite for proper anchoring of centrioles-derived neo-synthesized basal bodies. We characterized several miR-34/449 targets related to small GTPase pathways including R-Ras, which represents a key and conserved regulator during MCC differentiation. Direct RRAS repression by miR-34/449 is necessary for apical actin meshwork assembly, notably by allowing the apical relocalization of the actin binding protein Filamin-A near basal bodies. Our studies establish miR-34/449 as central players that orchestrate several steps of MCC differentiation program by regulating distinct signaling pathways.
Collapse
Affiliation(s)
- Olivier Mercey
- a CNRS-IPMC, UMR-7275 , Sophia-Antipolis , France.,b University of Nice-Sophia-Antipolis (UNS) , Sophia-Antipolis , France
| | | | - Pascal Barbry
- a CNRS-IPMC, UMR-7275 , Sophia-Antipolis , France.,b University of Nice-Sophia-Antipolis (UNS) , Sophia-Antipolis , France
| | - Brice Marcet
- a CNRS-IPMC, UMR-7275 , Sophia-Antipolis , France.,b University of Nice-Sophia-Antipolis (UNS) , Sophia-Antipolis , France
| |
Collapse
|
22
|
An FGFR1-SPRY2 Signaling Axis Limits Basal Cell Proliferation in the Steady-State Airway Epithelium. Dev Cell 2016; 37:85-97. [PMID: 27046834 PMCID: PMC4825408 DOI: 10.1016/j.devcel.2016.03.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Revised: 01/06/2016] [Accepted: 03/01/2016] [Indexed: 12/30/2022]
Abstract
The steady-state airway epithelium has a low rate of stem cell turnover but can nevertheless mount a rapid proliferative response following injury. This suggests a mechanism to restrain proliferation at steady state. One such mechanism has been identified in skeletal muscle in which pro-proliferative FGFR1 signaling is antagonized by SPRY1 to maintain satellite cell quiescence. Surprisingly, we found that deletion of Fgfr1 or Spry2 in basal cells of the adult mouse trachea caused an increase in steady-state proliferation. We show that in airway basal cells, SPRY2 is post-translationally modified in response to FGFR1 signaling. This allows SPRY2 to inhibit intracellular signaling downstream of other receptor tyrosine kinases and restrain basal cell proliferation. An FGFR1-SPRY2 signaling axis has previously been characterized in cell lines in vitro. We now demonstrate an in vivo biological function of this interaction and thus identify an active signaling mechanism that maintains quiescence in the airway epithelium.
Collapse
|
23
|
Wang W, Li J, Wang K, Zhang Z, Zhang W, Zhou G, Cao Y, Ye M, Zou H, Liu W. Induction of predominant tenogenic phenotype in human dermal fibroblasts via synergistic effect of TGF-β and elongated cell shape. Am J Physiol Cell Physiol 2015; 310:C357-72. [PMID: 26632599 DOI: 10.1152/ajpcell.00300.2015] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 11/27/2015] [Indexed: 02/07/2023]
Abstract
Micropattern topography is widely investigated for its role in mediating stem cell differentiation, but remains unexplored for phenotype switch between mature cell types. This study investigated the potential of inducing tenogenic phenotype in human dermal fibroblasts (hDFs) by artificial elongation of cultured cells. Our results showed that a parallel microgrooved topography could convert spread hDFs into an elongated shape and induce a predominant tenogenic phenotype as the expression of biomarkers was significantly enhanced, such as scleraxis, tenomodulin, collagens I, III, VI, and decorin. It also enhanced the expression of transforming growth factor (TGF)-β1, but not α-smooth muscle actin. Elongated hDFs failed to induce other phenotypes, such as adiopogenic, chondrogenic, neurogenic, and myogenic lineages. By contrast, no tenogenic phenotype could be induced in elongated human chondrocytes, although chondrogenic phenotype was inhibited. Exogenous TGF-β1 could enhance the tenogenic phenotype in elongated hDFs at low dose (2 ng/ml), but promoted myofibroblast transdifferentiation of hDFs at high dose (10 ng/ml), regardless of cell shape. Elongated shape also resulted in decreased RhoA activity and increased Rho-associated protein kinase (ROCK) activity. Antagonizing TGF-β or inhibiting ROCK activity with Y27632 or depolymerizing actin with cytochalasin D could all significantly inhibit tenogenic phenotype induction, particularly in elongated hDFs. In conclusion, elongation of cultured dermal fibroblasts can induce a predominant tenogenic phenotype likely via synergistic effect of TGF-β and cytoskeletal signaling.
Collapse
Affiliation(s)
- Wenbo Wang
- Department of Plastic and Reconstructive Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jie Li
- Department of Plastic and Reconstructive Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Keyun Wang
- National Chromatography R&A Centre, CAS Key Lab of Separation for Analytical Chemistry, Dalian Institute of Chemical Physics, CAS, Dalian, China; and University of Chinese Academy of Sciences, Beijing, China
| | - Zhiyong Zhang
- Department of Plastic and Reconstructive Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; National Tissue Engineering Center of China, Shanghai, China
| | - Wenjie Zhang
- Department of Plastic and Reconstructive Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; National Tissue Engineering Center of China, Shanghai, China
| | - Guangdong Zhou
- Department of Plastic and Reconstructive Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; National Tissue Engineering Center of China, Shanghai, China
| | - Yilin Cao
- Department of Plastic and Reconstructive Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; National Tissue Engineering Center of China, Shanghai, China
| | - Mingliang Ye
- National Chromatography R&A Centre, CAS Key Lab of Separation for Analytical Chemistry, Dalian Institute of Chemical Physics, CAS, Dalian, China; and University of Chinese Academy of Sciences, Beijing, China
| | - Hanfa Zou
- National Chromatography R&A Centre, CAS Key Lab of Separation for Analytical Chemistry, Dalian Institute of Chemical Physics, CAS, Dalian, China; and University of Chinese Academy of Sciences, Beijing, China
| | - Wei Liu
- Department of Plastic and Reconstructive Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; National Tissue Engineering Center of China, Shanghai, China;
| |
Collapse
|
24
|
Morphogenesis of respiratory syncytial virus in human primary nasal ciliated epithelial cells occurs at surface membrane microdomains that are distinct from cilia. Virology 2015; 484:395-411. [DOI: 10.1016/j.virol.2015.05.014] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 05/12/2015] [Accepted: 05/19/2015] [Indexed: 11/21/2022]
|
25
|
Chevalier B, Adamiok A, Mercey O, Revinski DR, Zaragosi LE, Pasini A, Kodjabachian L, Barbry P, Marcet B. miR-34/449 control apical actin network formation during multiciliogenesis through small GTPase pathways. Nat Commun 2015; 6:8386. [PMID: 26381333 PMCID: PMC4595761 DOI: 10.1038/ncomms9386] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 08/17/2015] [Indexed: 12/13/2022] Open
Abstract
Vertebrate multiciliated cells (MCCs) contribute to fluid propulsion in several biological processes. We previously showed that microRNAs of the miR-34/449 family trigger MCC differentiation by repressing cell cycle genes and the Notch pathway. Here, using human and Xenopus MCCs, we show that beyond this initial step, miR-34/449 later promote the assembly of an apical actin network, required for proper basal bodies anchoring. Identification of miR-34/449 targets related to small GTPase pathways led us to characterize R-Ras as a key regulator of this process. Protection of RRAS messenger RNA against miR-34/449 binding impairs actin cap formation and multiciliogenesis, despite a still active RhoA. We propose that miR-34/449 also promote relocalization of the actin binding protein Filamin-A, a known RRAS interactor, near basal bodies in MCCs. Our study illustrates the intricate role played by miR-34/449 in coordinating several steps of a complex differentiation programme by regulating distinct signalling pathways. MicroRNAs of the miR-34/449 family initiate formation of multiciliated cells through the suppression of cell cycle genes and Notch. Here the authors show that miR-34/449 also regulate the assembly of an apical actin network necessary for basal body anchoring by regulating the expression of R-Ras.
Collapse
Affiliation(s)
- Benoît Chevalier
- CNRS, Institut de Pharmacologie Moléculaire et Cellulaire (IPMC), UMR-7275, 660 route des Lucioles, 06560 Sophia-Antipolis, France.,University of Nice-Sophia-Antipolis (UNS), Institut de Pharmacologie Moléculaire et Cellulaire, 660 route des Lucioles, Valbonne, 06560 Sophia-Antipolis, France
| | - Anna Adamiok
- Aix-Marseille Université, CNRS, UMR7288, Institut de Biologie du Développement de Marseille (IBDM), 13288 Marseille, France
| | - Olivier Mercey
- CNRS, Institut de Pharmacologie Moléculaire et Cellulaire (IPMC), UMR-7275, 660 route des Lucioles, 06560 Sophia-Antipolis, France.,University of Nice-Sophia-Antipolis (UNS), Institut de Pharmacologie Moléculaire et Cellulaire, 660 route des Lucioles, Valbonne, 06560 Sophia-Antipolis, France
| | - Diego R Revinski
- Aix-Marseille Université, CNRS, UMR7288, Institut de Biologie du Développement de Marseille (IBDM), 13288 Marseille, France
| | - Laure-Emmanuelle Zaragosi
- CNRS, Institut de Pharmacologie Moléculaire et Cellulaire (IPMC), UMR-7275, 660 route des Lucioles, 06560 Sophia-Antipolis, France.,University of Nice-Sophia-Antipolis (UNS), Institut de Pharmacologie Moléculaire et Cellulaire, 660 route des Lucioles, Valbonne, 06560 Sophia-Antipolis, France
| | - Andrea Pasini
- Aix-Marseille Université, CNRS, UMR7288, Institut de Biologie du Développement de Marseille (IBDM), 13288 Marseille, France
| | - Laurent Kodjabachian
- Aix-Marseille Université, CNRS, UMR7288, Institut de Biologie du Développement de Marseille (IBDM), 13288 Marseille, France
| | - Pascal Barbry
- CNRS, Institut de Pharmacologie Moléculaire et Cellulaire (IPMC), UMR-7275, 660 route des Lucioles, 06560 Sophia-Antipolis, France.,University of Nice-Sophia-Antipolis (UNS), Institut de Pharmacologie Moléculaire et Cellulaire, 660 route des Lucioles, Valbonne, 06560 Sophia-Antipolis, France
| | - Brice Marcet
- CNRS, Institut de Pharmacologie Moléculaire et Cellulaire (IPMC), UMR-7275, 660 route des Lucioles, 06560 Sophia-Antipolis, France.,University of Nice-Sophia-Antipolis (UNS), Institut de Pharmacologie Moléculaire et Cellulaire, 660 route des Lucioles, Valbonne, 06560 Sophia-Antipolis, France
| |
Collapse
|
26
|
Dutta S, Sriskanda S, Boobalan E, Alur RP, Elkahloun A, Brooks BP. nlz1 is required for cilia formation in zebrafish embryogenesis. Dev Biol 2015; 406:203-11. [PMID: 26327644 DOI: 10.1016/j.ydbio.2015.08.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Revised: 08/21/2015] [Accepted: 08/28/2015] [Indexed: 10/23/2022]
Abstract
The formation of cilia is a fundamental developmental process affecting diverse functions such as cellular signaling, tissue morphogenesis and body patterning. However, the mechanisms of ciliogenesis during vertebrate development are not fully understood. In this report we describe a novel role of the Nlz1 protein in ciliogenesis. We demonstrate morpholino-mediated knockdown of nlz1 in zebrafish causes abnormal specification of the cells of Kupffer's vesicle (KV); a severe reduction of the number of cilia in KV, the pronephros, and the neural floorplate; and a spectrum of later phenotypes reminiscent of human ciliopathies. In vitro and in vivo data indicate that Nlz1 acts downstream of Foxj1a and Wnt8a/presumed canonical Wnt signaling. Furthermore, Nlz1 contributes to motile cilia formation by positively regulating Wnt11/presumed non-canonical Wnt signaling. Together, our data suggest a novel role of nlz1 in ciliogenesis and the morphogenesis of multiple tissues.
Collapse
Affiliation(s)
- Sunit Dutta
- Unit on Pediatric, Developmental & Genetic Ophthalmology, Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Shahila Sriskanda
- Unit on Pediatric, Developmental & Genetic Ophthalmology, Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Elangovan Boobalan
- Unit on Pediatric, Developmental & Genetic Ophthalmology, Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ramakrishna P Alur
- Unit on Pediatric, Developmental & Genetic Ophthalmology, Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Abdel Elkahloun
- Microarray Core, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Brian P Brooks
- Unit on Pediatric, Developmental & Genetic Ophthalmology, Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
27
|
Huntingtin is required for ciliogenesis and neurogenesis during early Xenopus development. Dev Biol 2015; 408:305-15. [PMID: 26192473 DOI: 10.1016/j.ydbio.2015.07.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Revised: 05/09/2015] [Accepted: 07/13/2015] [Indexed: 11/21/2022]
Abstract
Huntington's Disease (HD) is a neurodegenerative disorder that results from the abnormal expansion of poly-glutamine (polyQ) repeats in the Huntingtin (HTT) gene. Although HTT has been linked to a variety of cellular events, it is still not clear what the physiological functions of the protein are. Because of its critical role during mouse embryonic mouse development, we investigated the functions of Htt during early Xenopus embryogenesis. We find that reduction of Htt levels affects cilia polarity and function and causes whole body paralysis. Moreover, Htt loss of function leads to abnormal development of trigeminal and motor neurons. Interestingly, these phenotypes are partially rescued by either wild-type or expanded HTT. These results show that the Htt activity is required for normal embryonic development, and highlight the usefulness of the Xenopus system for investigating proteins involved in human diseases.
Collapse
|
28
|
Epting D, Slanchev K, Boehlke C, Hoff S, Loges NT, Yasunaga T, Indorf L, Nestel S, Lienkamp SS, Omran H, Kuehn EW, Ronneberger O, Walz G, Kramer-Zucker A. The Rac1 regulator ELMO controls basal body migration and docking in multiciliated cells through interaction with Ezrin. Development 2015; 142:174-84. [PMID: 25516973 DOI: 10.1242/dev.112250] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Cilia are microtubule-based organelles that are present on most cells and are required for normal tissue development and function. Defective cilia cause complex syndromes with multiple organ manifestations termed ciliopathies. A crucial step during ciliogenesis in multiciliated cells (MCCs) is the association of future basal bodies with the apical plasma membrane, followed by their correct spacing and planar orientation. Here, we report a novel role for ELMO-DOCK1, which is a bipartite guanine nucleotide exchange factor complex for the small GTPase Rac1, and for the membrane-cytoskeletal linker Ezrin, in regulating centriole/basal body migration, docking and spacing. Downregulation of each component results in ciliopathy-related phenotypes in zebrafish and disrupted ciliogenesis in Xenopus epidermal MCCs. Subcellular analysis revealed a striking impairment of basal body docking and spacing, which is likely to account for the observed phenotypes. These results are substantiated by showing a genetic interaction between elmo1 and ezrin b. Finally, we provide biochemical evidence that the ELMO-DOCK1-Rac1 complex influences Ezrin phosphorylation and thereby probably serves as an important molecular switch. Collectively, we demonstrate that the ELMO-Ezrin complex orchestrates ciliary basal body migration, docking and positioning in vivo.
Collapse
Affiliation(s)
- Daniel Epting
- Renal Division, University Hospital Freiburg, Freiburg 79106, Germany
| | - Krasimir Slanchev
- Renal Division, University Hospital Freiburg, Freiburg 79106, Germany
| | | | - Sylvia Hoff
- Renal Division, University Hospital Freiburg, Freiburg 79106, Germany
| | - Niki T Loges
- Department of General Pediatrics, University Children's Hospital Münster, Münster 48149, Germany
| | - Takayuki Yasunaga
- Renal Division, University Hospital Freiburg, Freiburg 79106, Germany
| | - Lara Indorf
- Renal Division, University Hospital Freiburg, Freiburg 79106, Germany
| | - Sigrun Nestel
- Department of Anatomy and Cell Biology, University of Freiburg, Freiburg 79104, Germany
| | - Soeren S Lienkamp
- Renal Division, University Hospital Freiburg, Freiburg 79106, Germany BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg 79108, Germany
| | - Heymut Omran
- Department of General Pediatrics, University Children's Hospital Münster, Münster 48149, Germany
| | - E Wolfgang Kuehn
- Renal Division, University Hospital Freiburg, Freiburg 79106, Germany BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg 79108, Germany
| | - Olaf Ronneberger
- BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg 79108, Germany Department of Computer Science, University of Freiburg, Freiburg 79110, Germany
| | - Gerd Walz
- Renal Division, University Hospital Freiburg, Freiburg 79106, Germany BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg 79108, Germany
| | | |
Collapse
|
29
|
Genin EC, Caron N, Vandenbosch R, Nguyen L, Malgrange B. Concise review: forkhead pathway in the control of adult neurogenesis. Stem Cells 2015; 32:1398-407. [PMID: 24510844 DOI: 10.1002/stem.1673] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Revised: 01/09/2014] [Accepted: 01/09/2014] [Indexed: 12/23/2022]
Abstract
New cells are continuously generated from immature proliferating cells in the adult brain in two neurogenic niches known as the subgranular zone (SGZ) of the dentate gyrus (DG) of the hippocampus and the sub-ventricular zone (SVZ) of the lateral ventricles. However, the molecular mechanisms regulating their proliferation, differentiation, migration and functional integration of newborn neurons in pre-existing neural network remain largely unknown. Forkhead box (Fox) proteins belong to a large family of transcription factors implicated in a wide variety of biological processes. Recently, there has been accumulating evidence that several members of this family of proteins play important roles in adult neurogenesis. Here, we describe recent advances in our understanding of regulation provided by Fox factors in adult neurogenesis, and evaluate the potential role of Fox proteins as targets for therapeutic intervention in neurodegenerative diseases.
Collapse
Affiliation(s)
- Emmanuelle C Genin
- GIGA-Neurosciences, Developmental Neurobiology Unit, University of Liège, Liège, Belgium
| | | | | | | | | |
Collapse
|
30
|
Murad N, Kokkinaki M, Gunawardena N, Gunawan MS, Hathout Y, Janczura KJ, Theos AC, Golestaneh N. miR-184 regulates ezrin, LAMP-1 expression, affects phagocytosis in human retinal pigment epithelium and is downregulated in age-related macular degeneration. FEBS J 2014; 281:5251-64. [PMID: 25251993 DOI: 10.1111/febs.13066] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Revised: 09/15/2014] [Accepted: 09/19/2014] [Indexed: 01/06/2023]
Abstract
MicroRNA 184 (miR-184) is known to play a key role in neurological development and apoptosis and is highly expressed in mouse brain, mouse corneal epithelium, zebrafish lens and human retinal pigment epithelium (RPE). However, the role of miR-184 in RPE is largely unknown. We investigated the role of miR-184 in RPE and its possible implication in age-related macular degeneration (AMD). Proteomic analysis identified the ezrin (EZR) gene as a target of miR-184 in human RPE. EZR is a membrane cytoskeleton crosslinker that is also known to bind to lysosomal-associated membrane protein 1 (LAMP-1) during the formation of phagocytic vacuoles. In adult retinal pigment epithelium 19 (ARPE19) cells, inhibition of miR-184 resulted in upregulation of EZR mRNA and EZR protein, and induced downregulation of LAMP-1. The inhibition of miR-184 decreased EZR-bound LAMP-1 protein levels and affected phagocytic activity in ARPE19 cells. In primary culture of human RPE isolated from eyes of AMD donors (AMD RPE), miR-184 was significantly downregulated compared with control (normal) RPE. Downregulation of miR-184 was consistent with significantly lower levels of LAMP-1 protein in AMD RPE, and overexpression of MIR-184 in AMD RPE was able to rescue LAMP-1 protein expression to normal levels. Altogether, these observations suggest a novel role for miR-184 in RPE health and support a model proposing that downregulation of miR-184 expression during aging may result in dysregulation of RPE function, contributing to retinal degeneration.
Collapse
Affiliation(s)
- Najiba Murad
- Department of Biochemistry and Molecular and Cellular Biology, Georgetown University Medical Center, Washington, DC, USA
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Abstract
Cilia are microtubule-based projections that serve a wide variety of essential functions in animal cells. Defects in cilia structure or function have recently been found to underlie diverse human diseases. While many eukaryotic cells possess only one or two cilia, some cells, including those of many unicellular organisms, exhibit many cilia. In vertebrates, multiciliated cells are a specialized population of post-mitotic cells decorated with dozens of motile cilia that beat in a polarized and synchronized fashion to drive directed fluid flow across an epithelium. Dysfunction of human multiciliated cells is associated with diseases of the brain, airway and reproductive tracts. Despite their importance, multiciliated cells are relatively poorly studied and we are only beginning to understand the mechanisms underlying their development and function. Here, we review the general phylogeny and physiology of multiciliation and detail our current understanding of the developmental and cellular events underlying the specification, differentiation and function of multiciliated cells in vertebrates.
Collapse
Affiliation(s)
- Eric R Brooks
- Department of Molecular Biosciences and the Institute for Cell and Molecular Biology, the University of Texas at Austin, Patterson Labs, 2401 Speedway, Austin, TX 78712, USA.
| | - John B Wallingford
- Department of Molecular Biosciences and the Institute for Cell and Molecular Biology, the University of Texas at Austin, Patterson Labs, 2401 Speedway, Austin, TX 78712, USA; The Howard Hughes Medical Institute.
| |
Collapse
|
32
|
Adam D, Perotin JM, Lebargy F, Birembaut P, Deslée G, Coraux C. [Regeneration of airway epithelium]. Rev Mal Respir 2013; 31:300-11. [PMID: 24750950 DOI: 10.1016/j.rmr.2013.11.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Accepted: 10/04/2013] [Indexed: 11/19/2022]
Abstract
INTRODUCTION Epithelial regeneration is a complex process. It can lead to the remodeling of the airway epithelium as in asthma, COPD or cystic fibrosis. BACKGROUND The development of in vivo and in vitro models has allowed the analysis of remodeling mechanisms and showed the role of components of extracellular matrix, proteases, cytokines and growth factors. Airway epithelial progenitors and stems cells have been studied in these models. However, their identification remains difficult. CONCLUSION Identification and characterization of airway epithelial progenitor/stem-cells, and a better knowledge of the regeneration process may allow the development of new therapeutic strategies for airway epithelial reconstitution.
Collapse
Affiliation(s)
- D Adam
- Inserm UMRS 903, CHU de Reims, 45, rue Cognacq-Jay, 51092 Reims, France
| | - J-M Perotin
- Inserm UMRS 903, CHU de Reims, 45, rue Cognacq-Jay, 51092 Reims, France; Service des maladies respiratoires, CHU de Reims, 45, rue Cognacq-Jay, 51100 Reims, France
| | - F Lebargy
- Service des maladies respiratoires, CHU de Reims, 45, rue Cognacq-Jay, 51100 Reims, France
| | - P Birembaut
- Inserm UMRS 903, CHU de Reims, 45, rue Cognacq-Jay, 51092 Reims, France; Laboratoire d'histologie Pol Bouin, CHU de Reims, 45, rue Cognacq-Jay, 51092 Reims, France
| | - G Deslée
- Inserm UMRS 903, CHU de Reims, 45, rue Cognacq-Jay, 51092 Reims, France; Service des maladies respiratoires, CHU de Reims, 45, rue Cognacq-Jay, 51100 Reims, France.
| | - C Coraux
- Inserm UMRS 903, CHU de Reims, 45, rue Cognacq-Jay, 51092 Reims, France
| |
Collapse
|
33
|
Didon L, Zwick RK, Chao IW, Walters MS, Wang R, Hackett NR, Crystal RG. RFX3 modulation of FOXJ1 regulation of cilia genes in the human airway epithelium. Respir Res 2013; 14:70. [PMID: 23822649 PMCID: PMC3710277 DOI: 10.1186/1465-9921-14-70] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Accepted: 06/10/2013] [Indexed: 11/30/2022] Open
Abstract
Background Ciliated cells play a central role in cleansing the airways of inhaled contaminants. They are derived from basal cells that include the airway stem/progenitor cells. In animal models, the transcription factor FOXJ1 has been shown to induce differentiation to the ciliated cell lineage, and the RFX transcription factor-family has been shown to be necessary for, but not sufficient to induce, correct cilia development. Methods To test the hypothesis that FOXJ1 and RFX3 cooperatively induce expression of ciliated genes in the differentiation process of basal progenitor cells toward a ciliated cell linage in the human airway epithelium, primary human airway basal cells were assessed under conditions of in vitro differentiation induced by plasmid-mediated gene transfer of FOXJ1 and/or RFX3. TaqMan PCR was used to quantify mRNA levels of basal, secretory, and cilia-associated genes. Results Basal cells, when cultured in air-liquid interface, differentiated into a ciliated epithelium, expressing FOXJ1 and RFX3. Transfection of FOXJ1 into resting basal cells activated promoters and induced expression of ciliated cell genes as well as both FOXJ1 and RFX3, but not basal cell genes. Transfection of RFX3 induced expression of RFX3 but not FOXJ1, nor the expression of cilia-related genes. The combination of FOXJ1 + RFX3 enhanced ciliated gene promoter activity and mRNA expression beyond that due to FOXJ1 alone. Corroborating immunoprecipitation studies demonstrated an interaction between FOXJ1 and RFX3. Conclusion FOXJ1 is an important regulator of cilia gene expression during ciliated cell differentiation, with RFX3 as a transcriptional co-activator to FOXJ1, helping to induce the expression of cilia genes in the process of ciliated cell differentiation of basal/progenitor cells.
Collapse
Affiliation(s)
- Lukas Didon
- Department of Genetic Medicine, Weill Cornell Medical College, New York, NY 10065, USA
| | | | | | | | | | | | | |
Collapse
|
34
|
Alfaro-Cervello C, Soriano-Navarro M, Mirzadeh Z, Alvarez-Buylla A, Garcia-Verdugo JM. Biciliated ependymal cell proliferation contributes to spinal cord growth. J Comp Neurol 2013; 520:3528-52. [PMID: 22434575 DOI: 10.1002/cne.23104] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Two neurogenic regions have been described in the adult brain, the lateral ventricle subventricular zone and the dentate gyrus subgranular zone. It has been suggested that neural stem cells also line the central canal of the adult spinal cord. Using transmission and scanning electron microscopy and immunostaining, we describe here the organization and cell types of the central canal epithelium in adult mice. The identity of dividing cells was determined by 3D ultrastructural reconstructions of [(3) H]thymidine-labeled cells and confocal analysis of bromodeoxyuridine labeling. The most common cell type lining the central canal had two long motile (9+2) cilia and was vimentin+, CD24+, FoxJ1+, Sox2+, and CD133+, but nestin- and glial fibrillary acidic protein (GFAP)-. These biciliated ependymal cells of the central canal (Ecc) resembled E2 cells of the lateral ventricles, but their basal bodies were different from those of E2 or E1 cells. Interestingly, we frequently found Ecc cells with two nuclei and four cilia, suggesting they are formed by incomplete cytokinesis or cell fusion. GFAP+ astrocytes with a single cilium and an orthogonally oriented centriole were also observed. The majority of dividing cells corresponded to biciliated Ecc cells. Central canal proliferation was most common during the active period of spinal cord growth. Pairs of labeled Ecc cells were observed within the central canal in adult mice 2.5 weeks post labeling. Our work suggests that the vast majority of postnatal dividing cells in the central canal are Ecc cells and their proliferation is associated with the growth of the spinal cord.
Collapse
Affiliation(s)
- Clara Alfaro-Cervello
- Laboratorio de Neurobiología Comparada, Instituto Cavanilles, Universidad de Valencia, 46980, Valencia, Spain
| | | | | | | | | |
Collapse
|
35
|
Xenopus laevis nucleotide binding protein 1 (xNubp1) is important for convergent extension movements and controls ciliogenesis via regulation of the actin cytoskeleton. Dev Biol 2013; 380:243-58. [PMID: 23685253 DOI: 10.1016/j.ydbio.2013.05.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Revised: 04/24/2013] [Accepted: 05/07/2013] [Indexed: 11/21/2022]
Abstract
Nucleotide binding protein 1 (Nubp1) is a highly conserved phosphate loop (P-loop) ATPase involved in diverse processes including iron-sulfur protein assembly, centrosome duplication and lung development. Here, we report the cloning, expression and functional characterization of Xenopus laevis Nubp1. We show that xNubp1 is expressed maternally, displays elevated expression in neural tissues and is required for convergent extension movements and neural tube closure. In addition, xNubp1knockdown leads to defective ciliogenesis of the multi-ciliated cells of the epidermis as well as the monociliated cells of the gastrocoel roof plate. Specifically, xNubp1 is required for basal body migration, spacing and docking in multi-ciliated cells and basal body positioning and axoneme elongation in monociliated gastrocoel roof plate cells. Live imaging of the different pools of actin and basal body migration during the process of ciliated cell intercalation revealed that two independent pools of actin are present from the onset of cell intercalation; an internal network surrounding the basal bodies, anchoring them to the cell cortex and an apical pool of punctate actin which eventually matures into the characteristic apical actin network. We show that xNubp1 colocalizes with the apical actin network of multiciliated cells and that problems in basal body transport in xNubp1 morphants are associated with defects of the internal network of actin, while spacing and polarity issues are due to a failure of the apical and sub-apical actin pools to mature into a network. Effects of xNubp1 knockdown on the actin cytoskeleton are independent of RhoA localization and activation, suggesting that xNubp1 may have a direct role in the regulation of the actin cytoskeleton.
Collapse
|
36
|
Transcriptional activation of Odf2/Cenexin by cell cycle arrest and the stress activated signaling pathway (JNK pathway). BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1833:1338-46. [PMID: 23458833 DOI: 10.1016/j.bbamcr.2013.02.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Revised: 02/01/2013] [Accepted: 02/21/2013] [Indexed: 01/28/2023]
Abstract
The centrosome/basal body protein ODF2/Cenexin is necessary for the formation of the primary cilium. Primary cilia are essential organelles that sense and transduce environmental signals. Primary cilia are therefore critical for embryonic and postnatal development as well as for tissue homeostasis in adulthood. Impaired function of primary cilia causes severe human diseases. ODF2 deficiency prevents formation of the primary cilium and is embryonically lethal. To explore the regulation of primary cilia formation we analyzed the promoter region of Odf2 and its transcriptional activity. In cycling cells, Odf2 transcription is depressed but becomes up-regulated in quiescent cells. Low transcriptional activity is mediated by sequences located upstream from the basal promoter, and neither transcription factors with predicted binding sites in the Odf2 promoter nor Rfx3 or Foxj, which are known to control ciliary gene expression, could activate Odf2 transcription. However, co-expression of either C/EBPα, c-Jun or c-Jun and its regulator MEKK1 enhances Odf2 transcription in cycling cells. Our results provide the first analysis of transcriptional regulation of a ciliary gene. Furthermore, we suggest that transcription of even more ciliary genes is largely inhibited in cycling cells but could be activated by cell cycle arrest and by the stress signaling JNK pathway.
Collapse
|
37
|
Jerber J, Thomas J, Durand B. [Transcriptional control of ciliogenesis in animal development]. Biol Aujourdhui 2012; 206:205-18. [PMID: 23171843 DOI: 10.1051/jbio/2012023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Indexed: 12/20/2022]
Abstract
Cilia and flagella are eukaryotic organelles with a conserved structure and function from unicellular organisms to human. In animals, different types of cilia can be found and cilia assembly during development is a highly dynamic process. Ciliary defects in human lead to a wide spectrum of diseases called ciliopathies. Understanding the molecular mechanisms that govern dynamic cilia assembly during development and in different tissues in metazoans is an important biological challenge. The FOXJ1 (Forkhead Box J1) and RFX (Regulatory Factor X) family of transcription factors have been shown to be important factors in ciliogenesis control. FOXJ1 proteins are required for motile ciliogenesis in vertebrates. By contrast, RFX proteins are essential to assemble both primary and motile cilia through the regulation of specific sets of genes such as those encoding intraflagellar transport components. Recently, new actors with more specific roles in cilia biogenesis and physiology have also been discovered. All these factors are subject to complex regulation, allowing for the dynamic and specific regulation of ciliogenesis in metazoans.
Collapse
Affiliation(s)
- Julie Jerber
- Centre de Genetique et de Physiologie Moleculare et Cellulaire, Universite Lyon, Villeurbanne, Lyon, France
| | | | | |
Collapse
|
38
|
Carlile G, Keyzers R, Teske K, Robert R, Williams D, Linington R, Gray C, Centko R, Yan L, Anjos S, Sampson H, Zhang D, Liao J, Hanrahan J, Andersen R, Thomas D. Correction of F508del-CFTR Trafficking by the Sponge Alkaloid Latonduine Is Modulated by Interaction with PARP. ACTA ACUST UNITED AC 2012; 19:1288-99. [DOI: 10.1016/j.chembiol.2012.08.014] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Revised: 08/04/2012] [Accepted: 08/16/2012] [Indexed: 12/31/2022]
|
39
|
Abstract
Airway epithelial healing is defined as restoration of health or soundness; to cure. Our research indicates that two types of progenitor cells participate in this process: the tissue-specific stem cell (TSC) and the facultative basal progenitor (FBP). The TSC restores the epithelium to its normal structure and function. Thus, the TSC regenerates the epithelium. In contrast, the FBP-derived epithelium is characterized by regions of cellular hyperplasia and hypoplasia. Since the FBP-derived epithelium deviates from normal, we term the FBP-mediated process repair. Our work indicates that the TSC responds to signals from other epithelial cells, including the FBP. These signals instruct the TSC to proliferate or to select one of several differentiation pathways. We interpret these data in the context of Stephen Padget's "seed and soil" paradigm. Therein, Padget explained that metastasis of a tumor, the seed, to a specific site, the soil, was determined by the growth and differentiation requirements of the tumor cell. By extending the seed and soil paradigm to airway epithelial healing, we suggest that proliferation and differentiation of the TSC, the seed, is determined by its interactions with other cell types, the soil. Based on this concept, we provide a set of suggestions for development of cell-based therapies that are directed toward chronic airways disease.
Collapse
|
40
|
Alten L, Schuster-Gossler K, Beckers A, Groos S, Ulmer B, Hegermann J, Ochs M, Gossler A. Differential regulation of node formation, nodal ciliogenesis and cilia positioning by Noto and Foxj1. Development 2012; 139:1276-84. [DOI: 10.1242/dev.072728] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The mouse transcription factor Noto is expressed in the node and controls node morphogenesis, formation of nodal cilia and left-right asymmetry. Noto acts upstream of Foxj1, which regulates ciliogenesis in other mouse tissues. However, the significance of Foxj1 for the formation of cilia in the mouse node is unclear; in non-amniote species Foxj1 is required for ciliogenesis in the structures equivalent to the node. Here, we analyzed nodes, nodal cilia and nodal flow in mouse embryos in which we replaced the Noto-coding sequence with that of Foxj1, or in embryos that were deficient for Foxj1. We show that Foxj1 expressed from the Noto locus is functional and restores the formation of structurally normal motile cilia in the absence of Noto. However, Foxj1 is not sufficient for the correct positioning of cilia on the cell surface within the plane of the nodal epithelium, and cannot restore normal node morphology. We also show that Foxj1 is essential for ciliogenesis upstream of Rfx3 in the node. Thus, the function of Foxj1 in vertebrate organs of asymmetry is conserved, and Noto regulates node morphogenesis and the posterior localization of cilia on node cells independently of Foxj1.
Collapse
Affiliation(s)
- Leonie Alten
- Institute for Molecular Biology, Medizinische Hochschule Hannover, Carl-Neuberg-Strasse 1, D-30625 Hannover, Germany
| | - Karin Schuster-Gossler
- Institute for Molecular Biology, Medizinische Hochschule Hannover, Carl-Neuberg-Strasse 1, D-30625 Hannover, Germany
| | - Anja Beckers
- Institute for Molecular Biology, Medizinische Hochschule Hannover, Carl-Neuberg-Strasse 1, D-30625 Hannover, Germany
| | - Stephanie Groos
- Department of Cell Biology, Medizinische Hochschule Hannover, Carl-Neuberg-Strasse 1, D-30625 Hannover, Germany
| | - Bärbel Ulmer
- University of Hohenheim, Institute of Zoology (220), Garbenstrasse 30, D-70593 Stuttgart, Germany
| | - Jan Hegermann
- Institute of Functional and Applied Anatomy, Medizinische Hochschule Hannover, Carl-Neuberg-Strasse 1, D-30625 Hannover, Germany
| | - Matthias Ochs
- Institute of Functional and Applied Anatomy, Medizinische Hochschule Hannover, Carl-Neuberg-Strasse 1, D-30625 Hannover, Germany
| | - Achim Gossler
- Institute for Molecular Biology, Medizinische Hochschule Hannover, Carl-Neuberg-Strasse 1, D-30625 Hannover, Germany
| |
Collapse
|
41
|
The actin cytoskeleton as a barrier to virus infection of polarized epithelial cells. Viruses 2011; 3:2462-77. [PMID: 22355449 PMCID: PMC3280511 DOI: 10.3390/v3122462] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2011] [Revised: 12/07/2011] [Accepted: 12/15/2011] [Indexed: 12/12/2022] Open
Abstract
Many diverse viruses target a polarized epithelial monolayer during host invasion. The polarized epithelium is adept at restricting the movement of solutes, ions, macromolecules, and pathogens across the mucosa. This regulation can be attributed to the presence of a junctional complex between adjacent cells and to an intricate network of actin filaments that provides support to the subapical membrane and stabilizes intercellular junctions. It is therefore not surprising that many viruses have evolved highly varied strategies to dissolve or modulate the cortical actin meshwork to promote infection of polarized cells. In this review, we will discuss the cell biological properties of the actin cytoskeleton in polarized epithelial cells and review the known mechanisms utilized by viral pathogens to manipulate this system in order to facilitate their infection.
Collapse
|
42
|
Porter JL, Bukey BR, Geyer AJ, Willnauer CP, Reynolds PR. Immunohistochemical detection and regulation of α5 nicotinic acetylcholine receptor (nAChR) subunits by FoxA2 during mouse lung organogenesis. Respir Res 2011; 12:82. [PMID: 21682884 PMCID: PMC3127772 DOI: 10.1186/1465-9921-12-82] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Accepted: 06/17/2011] [Indexed: 05/07/2023] Open
Abstract
Background α5 nicotinic acetylcholine receptor (nAChR) subunits structurally stabilize functional nAChRs in many non-neuronal tissue types. The expression of α5 nAChR subunits and cell-specific markers were assessed during lung morphogenesis by co-localizing immunohistochemistry from embryonic day (E) 13.5 to post natal day (PN) 20. Transcriptional control of α5 nAChR expression by FoxA2 and GATA-6 was determined by reporter gene assays. Results Steady expression of α5 nAChR subunits was observed in distal lung epithelial cells during development while proximal lung expression significantly alternates between abundant prenatal expression, absence at PN4 and PN10, and a return to intense expression at PN20. α5 expression was most abundant on luminal edges of alveolar type (AT) I and ATII cells, non-ciliated Clara cells, and ciliated cells in the proximal lung at various periods of lung formation. Expression of α5 nAChR subunits correlated with cell differentiation and reporter gene assays suggest expression of α5 is regulated in part by FoxA2, with possible cooperation by GATA-6. Conclusions Our data reveal a highly regulated temporal-spatial pattern of α5 nAChR subunit expression during important periods of lung morphogenesis. Due to specific regulation by FoxA2 and distinct identification of α5 in alveolar epithelium and Clara cells, future studies may identify possible mechanisms of cell differentiation and lung homeostasis mediated at least in part by α5-containing nAChRs.
Collapse
Affiliation(s)
- Jason L Porter
- Department of Physiology and Developmental Biology, Brigham Young University, Provo, UT 84602, USA
| | | | | | | | | |
Collapse
|
43
|
Beule AG. Physiology and pathophysiology of respiratory mucosa of the nose and the paranasal sinuses. GMS CURRENT TOPICS IN OTORHINOLARYNGOLOGY, HEAD AND NECK SURGERY 2011; 9:Doc07. [PMID: 22073111 PMCID: PMC3199822 DOI: 10.3205/cto000071] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In this review, anatomy and physiology of the respiratory mucosa of nose and paranasal sinuses are summarized under the aspect of its clinical significance. Basics of endonasal cleaning including mucociliary clearance and nasal reflexes, as well as defence mechanisms are explained. Physiological wound healing, aspects of endonasal topical medical therapy and typical diagnostic procedures to evaluate the respiratory functions are presented. Finally, the pathophysiologies of different subtypes of non-allergic rhinitis are outlined together with treatment recommendations.
Collapse
Affiliation(s)
- Achim G Beule
- Department of Otorhinolaryngology, Head and Neck Surgery, University Greifswald, Germany
| |
Collapse
|
44
|
Wallingford JB, Mitchell B. Strange as it may seem: the many links between Wnt signaling, planar cell polarity, and cilia. Genes Dev 2011; 25:201-13. [PMID: 21289065 DOI: 10.1101/gad.2008011] [Citation(s) in RCA: 241] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Cilia are important cellular structures that have been implicated in a variety of signaling cascades. In this review, we discuss the current evidence for and against a link between cilia and both the canonical Wnt/β-catenin pathway and the noncanonical Wnt/planar cell polarity (PCP) pathway. Furthermore, we address the evidence implicating a role for PCP components in ciliogenesis. Given the lack of consensus in the field, we use new data on the control of ciliary protein localization as a basis for proposing new models by which cell type-specific regulation of ciliary components via differential transport, regulated entry and exit, or diffusion barriers might generate context-dependent functions for cilia.
Collapse
Affiliation(s)
- John B Wallingford
- Howard Hughes Medical Institute, Section of Molecular Cell and Developmental Biology, Institute for Cellular and Molecular Biology, University of Texas, Austin, TX 78712, USA.
| | | |
Collapse
|
45
|
Transcriptional control of genes involved in ciliogenesis: a first step in making cilia. Biol Cell 2010; 102:499-513. [PMID: 20690903 DOI: 10.1042/bc20100035] [Citation(s) in RCA: 115] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Cilia and flagella have essential functions in a wide range of organisms. Cilia assembly is dynamic during development and different types of cilia are found in multicellular organisms. How this dynamic and specific assembly is regulated remains an important question in cilia biology. In metazoans, the regulation of the overall expression level of key components necessary for cilia assembly or function is an important way to achieve ciliogenesis control. The FOXJ1 (forkhead box J1) and RFX (regulatory factor X) family of transcription factors have been shown to be important players in controlling ciliary gene expression. They fulfill a complementary and synergistic function by regulating specific and common target genes. FOXJ1 is essential to allow for the assembly of motile cilia in vertebrates through the regulation of genes specific to motile cilia or necessary for basal body apical transport, whereas RFX proteins are necessary to assemble both primary and motile cilia in metazoans, in particular, by regulating genes involved in intraflagellar transport. Recently, different transcription factors playing specific roles in cilia biogenesis and physiology have also been discovered. All these factors are subject to complex regulation to allow for the dynamic and specific regulation of ciliogenesis in metazoans.
Collapse
|
46
|
Pérez P, Aguilera S, Olea N, Alliende C, Molina C, Brito M, Barrera MJ, Leyton C, Rowzee A, González MJ. Aberrant localization of ezrin correlates with salivary acini disorganization in Sjogren's Syndrome. Rheumatology (Oxford) 2010; 49:915-23. [PMID: 20185532 DOI: 10.1093/rheumatology/keq033] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
OBJECTIVES To analyse whether the alterations in the structure and organization of microvilli in salivary acinar cells from SS patients are linked to changes in the expression and/or cellular localization of ezrin. METHODS Salivary gland (SG) acini from controls and SS patients were used to evaluate ezrin expression by western blot and localization of total and activated (phospho-Thr567) ezrin by IF and EM. RESULTS In acini from control labial SGs, ezrin was located predominantly at the apical pole and to a lesser extent at the basal region of these cells. Conversely, in acini extracts from SS patients, ezrin showed significantly elevated levels, which were accompanied with localization mostly at the basal region. Moreover, F-actin maintained its distribution in both the apical region and basolateral cortex; however, it was also observed in the acinar cytoplasm. Phospho-ezrin (active form) was located exclusively at the apical pole of acinar cells from control subjects and abundantly located at the basal cytoplasm in SS samples. These results were confirmed by immunogold studies. CONCLUSIONS The decrease of ezrin and phospho-ezrin at the apical pole and the cytoplasmic redistribution of F-actin suggest an altered interaction between the F-actin-cytoskeleton and plasma membrane in SS patient acini, which may explain the microvilli disorganization. These alterations could eventually contribute to SG hyposecretion in SS patients.
Collapse
Affiliation(s)
- Paola Pérez
- Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Casilla 70061, Santiago 7, Chile.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Ibricevic A, Brody SL, Youngs WJ, Cannon CL. ATP7B detoxifies silver in ciliated airway epithelial cells. Toxicol Appl Pharmacol 2009; 243:315-22. [PMID: 20005242 DOI: 10.1016/j.taap.2009.11.023] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2009] [Revised: 11/20/2009] [Accepted: 11/26/2009] [Indexed: 12/26/2022]
Abstract
Silver is a centuries-old antibiotic agent currently used to treat infected burns. The sensitivity of a wide range of drug-resistant microorganisms to silver killing suggests that it may be useful for treating refractory lung infections. Toward this goal, we previously developed a methylated caffeine silver acetate compound, SCC1, that exhibits broad-spectrum antimicrobial activity against clinical strains of bacteria in vitro and when nebulized to lungs in mouse infection models. Preclinical testing of high concentrations of SCC1 in primary culture mouse tracheal epithelial cells (mTEC) showed selective ciliated cell death. Ciliated cell death was induced by both silver- and copper-containing compounds but not by the methylated caffeine portion of SCC1. We hypothesized that copper transporting P-type ATPases, ATP7A and ATP7B, play a role in silver detoxification in the airway. In mTEC, ATP7A was expressed in non-ciliated cells, whereas ATP7B was expressed only in ciliated cells. The exposure of mTEC to SCC1 induced the trafficking of ATP7B, but not ATP7A, suggesting the presence of a cell-specific silver uptake and detoxification mechanisms. Indeed, the expression of the copper uptake protein CTR1 was also restricted to ciliated cells. A role of ATP7B in silver detoxification was further substantiated when treatment of SCC1 significantly increased cell death in ATP7B shRNA-treated HepG2 cells. In addition, mTEC from ATP7B(-/-) mice showed enhanced loss of ciliated cells compared to wild type. These studies are the first to demonstrate a cell type-specific expression of the Ag+/Cu+ transporters ATP7A, ATP7B, and CTR1 in airway epithelial cells and a role for ATP7B in detoxification of these metals in the lung.
Collapse
Affiliation(s)
- Aida Ibricevic
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | | | |
Collapse
|
48
|
El Zein L, Ait-Lounis A, Morlé L, Thomas J, Chhin B, Spassky N, Reith W, Durand B. RFX3 governs growth and beating efficiency of motile cilia in mouse and controls the expression of genes involved in human ciliopathies. J Cell Sci 2009; 122:3180-9. [PMID: 19671664 DOI: 10.1242/jcs.048348] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cilia are cellular organelles that play essential physiological and developmental functions in various organisms. They can be classified into two categories, primary cilia and motile cilia, on the basis of their axonemal architecture. Regulatory factor X (RFX) transcription factors have been shown to be involved in the assembly of primary cilia in Caenorhabditis elegans, Drosophila and mice. Here, we have taken advantage of a novel primary-cell culture system derived from mouse brain to show that RFX3 is also necessary for biogenesis of motile cilia. We found that the growth and beating efficiencies of motile cilia are impaired in multiciliated Rfx3(-/-) cells. RFX3 was required for optimal expression of the FOXJ1 transcription factor, a key player in the differentiation program of motile cilia. Furthermore, we demonstrate for the first time that RFX3 regulates the expression of axonemal dyneins involved in ciliary motility by binding directly to the promoters of their genes. In conclusion, RFX proteins not only regulate genes involved in ciliary assembly, but also genes that are involved in ciliary motility and that are associated with ciliopathies such as primary ciliary dyskinesia in humans.
Collapse
|
49
|
Carvalho-Oliveira IM, Charro N, Aarbiou J, Buijs-Offerman RM, Wilke M, Schettgen T, Kraus T, Titulaer MK, Burgers P, Luider TM, Penque D, Scholte BJ. Proteomic Analysis of Naphthalene-Induced Airway Epithelial Injury and Repair in a Cystic Fibrosis Mouse Model. J Proteome Res 2009; 8:3606-16. [DOI: 10.1021/pr900021m] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Isabel M. Carvalho-Oliveira
- Department of Cell Biology, Erasmus Medical Centre, Rotterdam, The Netherlands, Laboratório de Proteómica, Departamento de Genética, Instituto Nacional de Saúde Dr Ricardo Jorge, Lisboa, Portugal, Department of Biochemistry, Erasmus University Medical Centre, Rotterdam, The Netherlands, Institut für Arbeitsmedizin und Sozialmedizin Universitätsklinikum Aachen, and Department of Neurology, Erasmus Medical Centre, Rotterdam, The Netherlands
| | - Nuno Charro
- Department of Cell Biology, Erasmus Medical Centre, Rotterdam, The Netherlands, Laboratório de Proteómica, Departamento de Genética, Instituto Nacional de Saúde Dr Ricardo Jorge, Lisboa, Portugal, Department of Biochemistry, Erasmus University Medical Centre, Rotterdam, The Netherlands, Institut für Arbeitsmedizin und Sozialmedizin Universitätsklinikum Aachen, and Department of Neurology, Erasmus Medical Centre, Rotterdam, The Netherlands
| | - Jamil Aarbiou
- Department of Cell Biology, Erasmus Medical Centre, Rotterdam, The Netherlands, Laboratório de Proteómica, Departamento de Genética, Instituto Nacional de Saúde Dr Ricardo Jorge, Lisboa, Portugal, Department of Biochemistry, Erasmus University Medical Centre, Rotterdam, The Netherlands, Institut für Arbeitsmedizin und Sozialmedizin Universitätsklinikum Aachen, and Department of Neurology, Erasmus Medical Centre, Rotterdam, The Netherlands
| | - Ruvalic M. Buijs-Offerman
- Department of Cell Biology, Erasmus Medical Centre, Rotterdam, The Netherlands, Laboratório de Proteómica, Departamento de Genética, Instituto Nacional de Saúde Dr Ricardo Jorge, Lisboa, Portugal, Department of Biochemistry, Erasmus University Medical Centre, Rotterdam, The Netherlands, Institut für Arbeitsmedizin und Sozialmedizin Universitätsklinikum Aachen, and Department of Neurology, Erasmus Medical Centre, Rotterdam, The Netherlands
| | - Martina Wilke
- Department of Cell Biology, Erasmus Medical Centre, Rotterdam, The Netherlands, Laboratório de Proteómica, Departamento de Genética, Instituto Nacional de Saúde Dr Ricardo Jorge, Lisboa, Portugal, Department of Biochemistry, Erasmus University Medical Centre, Rotterdam, The Netherlands, Institut für Arbeitsmedizin und Sozialmedizin Universitätsklinikum Aachen, and Department of Neurology, Erasmus Medical Centre, Rotterdam, The Netherlands
| | - Thomas Schettgen
- Department of Cell Biology, Erasmus Medical Centre, Rotterdam, The Netherlands, Laboratório de Proteómica, Departamento de Genética, Instituto Nacional de Saúde Dr Ricardo Jorge, Lisboa, Portugal, Department of Biochemistry, Erasmus University Medical Centre, Rotterdam, The Netherlands, Institut für Arbeitsmedizin und Sozialmedizin Universitätsklinikum Aachen, and Department of Neurology, Erasmus Medical Centre, Rotterdam, The Netherlands
| | - Thomas Kraus
- Department of Cell Biology, Erasmus Medical Centre, Rotterdam, The Netherlands, Laboratório de Proteómica, Departamento de Genética, Instituto Nacional de Saúde Dr Ricardo Jorge, Lisboa, Portugal, Department of Biochemistry, Erasmus University Medical Centre, Rotterdam, The Netherlands, Institut für Arbeitsmedizin und Sozialmedizin Universitätsklinikum Aachen, and Department of Neurology, Erasmus Medical Centre, Rotterdam, The Netherlands
| | - Mark K. Titulaer
- Department of Cell Biology, Erasmus Medical Centre, Rotterdam, The Netherlands, Laboratório de Proteómica, Departamento de Genética, Instituto Nacional de Saúde Dr Ricardo Jorge, Lisboa, Portugal, Department of Biochemistry, Erasmus University Medical Centre, Rotterdam, The Netherlands, Institut für Arbeitsmedizin und Sozialmedizin Universitätsklinikum Aachen, and Department of Neurology, Erasmus Medical Centre, Rotterdam, The Netherlands
| | - Peter Burgers
- Department of Cell Biology, Erasmus Medical Centre, Rotterdam, The Netherlands, Laboratório de Proteómica, Departamento de Genética, Instituto Nacional de Saúde Dr Ricardo Jorge, Lisboa, Portugal, Department of Biochemistry, Erasmus University Medical Centre, Rotterdam, The Netherlands, Institut für Arbeitsmedizin und Sozialmedizin Universitätsklinikum Aachen, and Department of Neurology, Erasmus Medical Centre, Rotterdam, The Netherlands
| | - Theo M. Luider
- Department of Cell Biology, Erasmus Medical Centre, Rotterdam, The Netherlands, Laboratório de Proteómica, Departamento de Genética, Instituto Nacional de Saúde Dr Ricardo Jorge, Lisboa, Portugal, Department of Biochemistry, Erasmus University Medical Centre, Rotterdam, The Netherlands, Institut für Arbeitsmedizin und Sozialmedizin Universitätsklinikum Aachen, and Department of Neurology, Erasmus Medical Centre, Rotterdam, The Netherlands
| | - Deborah Penque
- Department of Cell Biology, Erasmus Medical Centre, Rotterdam, The Netherlands, Laboratório de Proteómica, Departamento de Genética, Instituto Nacional de Saúde Dr Ricardo Jorge, Lisboa, Portugal, Department of Biochemistry, Erasmus University Medical Centre, Rotterdam, The Netherlands, Institut für Arbeitsmedizin und Sozialmedizin Universitätsklinikum Aachen, and Department of Neurology, Erasmus Medical Centre, Rotterdam, The Netherlands
| | - Bob J. Scholte
- Department of Cell Biology, Erasmus Medical Centre, Rotterdam, The Netherlands, Laboratório de Proteómica, Departamento de Genética, Instituto Nacional de Saúde Dr Ricardo Jorge, Lisboa, Portugal, Department of Biochemistry, Erasmus University Medical Centre, Rotterdam, The Netherlands, Institut für Arbeitsmedizin und Sozialmedizin Universitätsklinikum Aachen, and Department of Neurology, Erasmus Medical Centre, Rotterdam, The Netherlands
| |
Collapse
|
50
|
Halldorsson S, Gudjonsson T, Gottfredsson M, Singh PK, Gudmundsson GH, Baldursson O. Azithromycin maintains airway epithelial integrity during Pseudomonas aeruginosa infection. Am J Respir Cell Mol Biol 2009; 42:62-8. [PMID: 19372247 DOI: 10.1165/rcmb.2008-0357oc] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Tight junctions (TJs) play a key role in maintaining bronchial epithelial integrity, including apical-basolateral polarity and paracellular trafficking. Patients with chronic obstructive pulmonary disease (COPD) and cystic fibrosis (CF) often suffer from chronic infections by the opportunistic Gram-negative bacterium Pseudomonas aeruginosa, which produces multiple virulence factors, including rhamnolipids. The macrolide antibiotic azithromycin (azm) has been shown to improve lung function in patients with CF without reducing the bacterial count within the lung. However, the mechanism of this effect is still debated. It has previously been shown that azm increased transepithelial electrical resistance (TER) in a bronchial epithelial cell line. In this study we used an air-liquid interface model of human airway epithelia and measured TER, changes in TJ expression and architecture after exposure to live P. aeruginosa PAO1, and PAO1-Deltarhl which is a PAO1 mutant lacking rhlA and rhlB, which encode key enzymes for rhamnolipid production. In addition, the cells were challenged with bacterial culture medium conditioned by these strains, purified rhamnolipids, or synthetic 3O-C(12)-HSL. Virulence factors secreted by P. aeruginosa reduced TER and caused TJ rearrangement in the bronchial epithelium, exposing the epithelium to further bacterial infiltration. Pretreatment of the bronchial epithelium with azm attenuated this effect and facilitated epithelial recovery. These data suggest that azm protects the bronchial epithelium during P. aeruginosa infection independent of antimicrobial activity, and could explain in part the beneficial results seen in clinical trials of patients with CF.
Collapse
Affiliation(s)
- Skarphedinn Halldorsson
- Institute of Biology, Biomedical Center, University of Iceland, Landspitali, Eiriksgata 5, Reykjavik, Iceland
| | | | | | | | | | | |
Collapse
|