1
|
Armistead J, Höpfl S, Goldhausen P, Müller-Hartmann A, Fahle E, Hatzold J, Franzen R, Brodesser S, Radde NE, Hammerschmidt M. A sphingolipid rheostat controls apoptosis versus apical cell extrusion as alternative tumour-suppressive mechanisms. Cell Death Dis 2024; 15:746. [PMID: 39397024 PMCID: PMC11471799 DOI: 10.1038/s41419-024-07134-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 10/02/2024] [Accepted: 10/04/2024] [Indexed: 10/15/2024]
Abstract
Evasion of cell death is a hallmark of cancer, and consequently the induction of cell death is a common strategy in cancer treatment. However, the molecular mechanisms regulating different types of cell death are poorly understood. We have formerly shown that in the epidermis of hypomorphic zebrafish hai1a mutant embryos, pre-neoplastic transformations of keratinocytes caused by unrestrained activity of the type II transmembrane serine protease Matriptase-1 heal spontaneously. This healing is driven by Matriptase-dependent increased sphingosine kinase (SphK) activity and sphingosine-1-phosphate (S1P)-mediated keratinocyte loss via apical cell extrusion. In contrast, amorphic hai1afr26 mutants with even higher Matriptase-1 and SphK activity die within a few days. Here we show that this lethality is not due to epidermal carcinogenesis, but to aberrant tp53-independent apoptosis of keratinocytes caused by increased levels of pro-apoptotic C16 ceramides, sphingolipid counterparts to S1P within the sphingolipid rheostat, which severely compromises the epidermal barrier. Mathematical modelling of sphingolipid rheostat homeostasis, combined with in vivo manipulations of components of the rheostat or the ceramide de novo synthesis pathway, indicate that this unexpected overproduction of ceramides is caused by a negative feedback loop sensing ceramide levels and controlling ceramide replenishment via de novo synthesis. Therefore, despite their initial decrease due to increased conversion to S1P, ceramides eventually reach cell death-inducing levels, making transformed pre-neoplastic keratinocytes die even before they are extruded, thereby abrogating the normally barrier-preserving mode of apical live cell extrusion. Our results offer an in vivo perspective of the dynamics of sphingolipid homeostasis and its relevance for epithelial cell survival versus cell death, linking apical cell extrusion and apoptosis. Implications for human carcinomas and their treatments are discussed.
Collapse
Affiliation(s)
- Joy Armistead
- Institute of Zoology / Developmental Biology, University of Cologne, Cologne, Germany.
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany.
| | - Sebastian Höpfl
- Institute for Stochastics and Applications, University of Stuttgart, Stuttgart, Germany
| | - Pierre Goldhausen
- Institute of Zoology / Developmental Biology, University of Cologne, Cologne, Germany
| | | | - Evelin Fahle
- Institute of Zoology / Developmental Biology, University of Cologne, Cologne, Germany
| | - Julia Hatzold
- Institute of Zoology / Developmental Biology, University of Cologne, Cologne, Germany
| | - Rainer Franzen
- Max-Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Susanne Brodesser
- Lipidomics/Metabolomics Facility, Cluster of Excellence Cellular Stress Responses in Aging-associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Nicole E Radde
- Institute for Stochastics and Applications, University of Stuttgart, Stuttgart, Germany
| | - Matthias Hammerschmidt
- Institute of Zoology / Developmental Biology, University of Cologne, Cologne, Germany.
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany.
| |
Collapse
|
2
|
Mastrogiovanni M, Martínez-Navarro FJ, Bowman TV, Cayuela ML. Inflammation in Development and Aging: Insights from the Zebrafish Model. Int J Mol Sci 2024; 25:2145. [PMID: 38396822 PMCID: PMC10889087 DOI: 10.3390/ijms25042145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 01/30/2024] [Accepted: 02/01/2024] [Indexed: 02/25/2024] Open
Abstract
Zebrafish are an emergent animal model to study human diseases due to their significant genetic similarity to humans, swift development, and genetic manipulability. Their utility extends to the exploration of the involvement of inflammation in host defense, immune responses, and tissue regeneration. Additionally, the zebrafish model system facilitates prompt screening of chemical compounds that affect inflammation. This study explored the diverse roles of inflammatory pathways in zebrafish development and aging. Serving as a crucial model, zebrafish provides insights into the intricate interplay of inflammation in both developmental and aging contexts. The evidence presented suggests that the same inflammatory signaling pathways often play instructive or beneficial roles during embryogenesis and are associated with malignancies in adults.
Collapse
Affiliation(s)
- Marta Mastrogiovanni
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Gottesman Institute for Stem Cell Biology and Regenerative Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Francisco Juan Martínez-Navarro
- Grupo de Telomerasa, Cáncer y Envejecimiento, Hospital Clínico Universitario Virgen de la Arrixaca, 30120 Murcia, Spain
- Instituto Murciano de Investigación Biosanitaria-Arrixaca, 30120 Murcia, Spain
| | - Teresa V. Bowman
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Gottesman Institute for Stem Cell Biology and Regenerative Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - María L. Cayuela
- Grupo de Telomerasa, Cáncer y Envejecimiento, Hospital Clínico Universitario Virgen de la Arrixaca, 30120 Murcia, Spain
- Instituto Murciano de Investigación Biosanitaria-Arrixaca, 30120 Murcia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, 30100 Murcia, Spain
| |
Collapse
|
3
|
Palsamy K, Chen JY, Skaggs K, Qadeer Y, Connors M, Cutler N, Richmond J, Kommidi V, Poles A, Affrunti D, Powell C, Goldman D, Parent JM. Microglial depletion after brain injury prolongs inflammation and impairs brain repair, adult neurogenesis and pro-regenerative signaling. Glia 2023; 71:2642-2663. [PMID: 37449457 PMCID: PMC10528132 DOI: 10.1002/glia.24444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 06/28/2023] [Accepted: 06/30/2023] [Indexed: 07/18/2023]
Abstract
The adult zebrafish brain, unlike mammals, has a remarkable regenerative capacity. Although inflammation in part hinders regeneration in mammals, it is necessary for zebrafish brain repair. Microglia are resident brain immune cells that regulate the inflammatory response. To explore the microglial role in repair, we used liposomal clodronate or colony stimulating factor-1 receptor (csf1r) inhibitor to suppress microglia after brain injury, and also examined regeneration in two genetic mutant lines that lack microglia. We found that microglial ablation impaired telencephalic regeneration after injury. Microglial suppression attenuated cell proliferation at the intermediate progenitor cell amplification stage of neurogenesis. Notably, the loss of microglia impaired phospho-Stat3 (signal transducer and activator of transcription 3) and ß-Catenin signaling after injury. Furthermore, the ectopic activation of Stat3 and ß-Catenin rescued neurogenesis defects caused by microglial loss. Microglial suppression also prolonged the post-injury inflammatory phase characterized by neutrophil accumulation, likely hindering the resolution of inflammation. These findings reveal specific roles of microglia and inflammatory signaling during zebrafish telencephalic regeneration that should advance strategies to improve mammalian brain repair.
Collapse
Affiliation(s)
- Kanagaraj Palsamy
- Department of Neurology, University of Michigan, Ann Arbor, Michigan, USA
| | - Jessica Y Chen
- Department of Neurology, University of Michigan, Ann Arbor, Michigan, USA
| | - Kaia Skaggs
- Department of Neurology, University of Michigan, Ann Arbor, Michigan, USA
- University of Findlay, Findlay, Ohio, USA
| | - Yusuf Qadeer
- Department of Neurology, University of Michigan, Ann Arbor, Michigan, USA
| | - Meghan Connors
- Department of Neurology, University of Michigan, Ann Arbor, Michigan, USA
| | - Noah Cutler
- Department of Neurology, University of Michigan, Ann Arbor, Michigan, USA
| | - Joshua Richmond
- Department of Neurology, University of Michigan, Ann Arbor, Michigan, USA
| | - Vineeth Kommidi
- Department of Neurology, University of Michigan, Ann Arbor, Michigan, USA
| | - Allison Poles
- Department of Neurology, University of Michigan, Ann Arbor, Michigan, USA
| | - Danielle Affrunti
- Department of Neurology, University of Michigan, Ann Arbor, Michigan, USA
| | - Curtis Powell
- Michigan Neuroscience Institute, Ann Arbor, Michigan, USA
- Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan, USA
| | - Daniel Goldman
- Michigan Neuroscience Institute, Ann Arbor, Michigan, USA
- Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan, USA
| | - Jack M Parent
- Department of Neurology, University of Michigan, Ann Arbor, Michigan, USA
- Michigan Neuroscience Institute, Ann Arbor, Michigan, USA
- VA Ann Arbor Healthcare System, Ann Arbor, Michigan, USA
| |
Collapse
|
4
|
Monfort T, Azzollini S, Brogard J, Clémençon M, Slembrouck-Brec A, Forster V, Picaud S, Goureau O, Reichman S, Thouvenin O, Grieve K. Dynamic full-field optical coherence tomography module adapted to commercial microscopes allows longitudinal in vitro cell culture study. Commun Biol 2023; 6:992. [PMID: 37770552 PMCID: PMC10539404 DOI: 10.1038/s42003-023-05378-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 09/20/2023] [Indexed: 09/30/2023] Open
Abstract
Dynamic full-field optical coherence tomography (D-FFOCT) has recently emerged as a label-free imaging tool, capable of resolving cell types and organelles within 3D live samples, whilst monitoring their activity at tens of milliseconds resolution. Here, a D-FFOCT module design is presented which can be coupled to a commercial microscope with a stage top incubator, allowing non-invasive label-free longitudinal imaging over periods of minutes to weeks on the same sample. Long term volumetric imaging on human induced pluripotent stem cell-derived retinal organoids is demonstrated, highlighting tissue and cell organization processes such as rosette formation and mitosis as well as cell shape and motility. Imaging on retinal explants highlights single 3D cone and rod structures. An optimal workflow for data acquisition, postprocessing and saving is demonstrated, resulting in a time gain factor of 10 compared to prior state of the art. Finally, a method to increase D-FFOCT signal-to-noise ratio is demonstrated, allowing rapid organoid screening.
Collapse
Affiliation(s)
- Tual Monfort
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, F-75012, Paris, France
- CHNO des Quinze-Vingts, INSERM-DGOS CIC 1423, 28 rue de Charenton, F-75012, Paris, France
- Paris Eye Imaging Group, Quinze-Vingts National Eye Hospital, INSERM-DGOS, CIC 1423, 28 rue de Charenton, Paris, 75012, France
| | - Salvatore Azzollini
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, F-75012, Paris, France
| | - Jérémy Brogard
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, F-75012, Paris, France
| | - Marilou Clémençon
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, F-75012, Paris, France
| | - Amélie Slembrouck-Brec
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, F-75012, Paris, France
| | - Valerie Forster
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, F-75012, Paris, France
| | - Serge Picaud
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, F-75012, Paris, France
| | - Olivier Goureau
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, F-75012, Paris, France
| | - Sacha Reichman
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, F-75012, Paris, France
| | - Olivier Thouvenin
- Institut Langevin, ESPCI Paris, Université PSL, CNRS, 75005, Paris, France
| | - Kate Grieve
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, F-75012, Paris, France.
- CHNO des Quinze-Vingts, INSERM-DGOS CIC 1423, 28 rue de Charenton, F-75012, Paris, France.
- Paris Eye Imaging Group, Quinze-Vingts National Eye Hospital, INSERM-DGOS, CIC 1423, 28 rue de Charenton, Paris, 75012, France.
| |
Collapse
|
5
|
Hatzold J, Nett V, Brantsch S, Zhang JL, Armistead J, Wessendorf H, Stephens R, Humbert PO, Iden S, Hammerschmidt M. Matriptase-dependent epidermal pre-neoplasm in zebrafish embryos caused by a combination of hypotonic stress and epithelial polarity defects. PLoS Genet 2023; 19:e1010873. [PMID: 37566613 PMCID: PMC10446194 DOI: 10.1371/journal.pgen.1010873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 08/23/2023] [Accepted: 07/17/2023] [Indexed: 08/13/2023] Open
Abstract
Aberrantly up-regulated activity of the type II transmembrane protease Matriptase-1 has been associated with the development and progression of a range of epithelial-derived carcinomas, and a variety of signaling pathways can mediate Matriptase-dependent tumorigenic events. During mammalian carcinogenesis, gain of Matriptase activity often results from imbalanced ratios between Matriptase and its cognate transmembrane inhibitor Hai1. Similarly, in zebrafish, unrestrained Matriptase activity due to loss of hai1a results in epidermal pre-neoplasms already during embryogenesis. Here, based on our former findings of a similar tumor-suppressive role for the Na+/K+-pump beta subunit ATP1b1a, we identify epithelial polarity defects and systemic hypotonic stress as another mode of aberrant Matriptase activation in the embryonic zebrafish epidermis in vivo. In this case, however, a different oncogenic pathway is activated which contains PI3K, AKT and NFkB, rather than EGFR and PLD (as in hai1a mutants). Strikingly, epidermal pre-neoplasm is only induced when epithelial polarity defects in keratinocytes (leading to disturbed Matriptase subcellular localization) occur in combination with systemic hypotonic stress (leading to increased proteolytic activity of Matriptase). A similar combinatorial effect of hypotonicity and loss of epithelial polarity was also obtained for the activity levels of Matriptase-1 in human MCF-10A epithelial breast cells. Together, this is in line with the multi-factor concept of carcinogenesis, with the notion that such factors can even branch off from one and the same initiator (here ATP1a1b) and can converge again at the level of one and the same mediator (here Matriptase). In sum, our data point to tonicity and epithelial cell polarity as evolutionarily conserved regulators of Matriptase activity that upon de-regulation can constitute an alternative mode of Matriptase-dependent carcinogenesis in vivo.
Collapse
Affiliation(s)
- Julia Hatzold
- Institute of Zoology–Developmental Biology, University of Cologne, Germany
| | - Verena Nett
- Cell and Developmental Biology, Center of Human and Molecular Biology (ZHMB), Saarland University, Faculty of Medicine, Homburg/Saar, Germany
| | - Stephanie Brantsch
- Institute of Zoology–Developmental Biology, University of Cologne, Germany
| | - Jin-Li Zhang
- Institute of Zoology–Developmental Biology, University of Cologne, Germany
| | - Joy Armistead
- Institute of Zoology–Developmental Biology, University of Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University Hospital Cologne, Cologne, Germany
| | - Heike Wessendorf
- Institute of Zoology–Developmental Biology, University of Cologne, Germany
| | - Rebecca Stephens
- Department of Biochemistry & Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia
| | - Patrick O. Humbert
- Department of Biochemistry & Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia
- Department of Biochemistry and Pharmacology, University of Melbourne, Melbourne, Victoria, Australia
- Department of Clinical Pathology, University of Melbourne, Melbourne, Victoria, Australia
| | - Sandra Iden
- Cell and Developmental Biology, Center of Human and Molecular Biology (ZHMB), Saarland University, Faculty of Medicine, Homburg/Saar, Germany
| | - Matthias Hammerschmidt
- Institute of Zoology–Developmental Biology, University of Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University Hospital Cologne, Cologne, Germany
| |
Collapse
|
6
|
Yadav K, Singh D, Singh MR, Minz S, Princely Ebenezer Gnanakani S, Sucheta, Yadav R, Vora L, Sahu KK, Bagchi A, Singh Chauhan N, Pradhan M. Preclinical study models of psoriasis: State-of-the-art techniques for testing pharmaceutical products in animal and nonanimal models. Int Immunopharmacol 2023; 117:109945. [PMID: 36871534 DOI: 10.1016/j.intimp.2023.109945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 02/18/2023] [Accepted: 02/23/2023] [Indexed: 03/06/2023]
Abstract
Local and systemic treatments exist for psoriasis, but none can do more than control its symptoms because of its numerous unknown mechanisms. The lack of validated testing models or a defined psoriatic phenotypic profile hinders antipsoriatic drug development. Despite their intricacy, immune-mediated diseases have no improved and precise treatment. The treatment actions may now be predicted for psoriasis and other chronic hyperproliferative skin illnesses using animal models. Their findings confirmed that a psoriasis animal model could mimic a few disease conditions. However, their ethical approval concerns and inability to resemble human psoriasis rightly offer to look for more alternatives. Hence, in this article, we have reported various cutting-edge techniques for the preclinical testing of pharmaceutical products for the treatment of psoriasis.
Collapse
Affiliation(s)
- Krishna Yadav
- University Institute of Pharmacy, Pt. Ravishankar Shukla University, Raipur, Chhattisgarh 492010, India; Raipur Institute of Pharmaceutical Education and Research, Sarona, Raipur, Chhattisgarh 492010, India
| | - Deependra Singh
- University Institute of Pharmacy, Pt. Ravishankar Shukla University, Raipur, Chhattisgarh 492010, India
| | - Manju Rawat Singh
- University Institute of Pharmacy, Pt. Ravishankar Shukla University, Raipur, Chhattisgarh 492010, India
| | - Sunita Minz
- Department of Pharmacy, Indira Gandhi National Tribal University, Amarkantak, India
| | | | - Sucheta
- School of Medical and Allied Sciences, K. R. Mangalam University, Gurugram, Haryana 122103, India
| | - Renu Yadav
- School of Medical and Allied Sciences, K. R. Mangalam University, Gurugram, Haryana 122103, India
| | - Lalitkumar Vora
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, BT9 7BL, UK
| | - Kantrol Kumar Sahu
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh 281406, India
| | - Anindya Bagchi
- Tumor Initiation & Maintenance Program, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road La Jolla, CA 92037, USA
| | - Nagendra Singh Chauhan
- Drugs Testing Laboratory Avam Anusandhan Kendra (AYUSH), Government Ayurvedic College, Raipur, India
| | | |
Collapse
|
7
|
Hernández-Silva D, Cantón-Sandoval J, Martínez-Navarro FJ, Pérez-Sánchez H, de Oliveira S, Mulero V, Alcaraz-Pérez F, Cayuela ML. Senescence-Independent Anti-Inflammatory Activity of the Senolytic Drugs Dasatinib, Navitoclax, and Venetoclax in Zebrafish Models of Chronic Inflammation. Int J Mol Sci 2022; 23:ijms231810468. [PMID: 36142384 PMCID: PMC9499634 DOI: 10.3390/ijms231810468] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 09/05/2022] [Accepted: 09/06/2022] [Indexed: 11/16/2022] Open
Abstract
Telomere shortening is the main molecular mechanism of aging, but not the only one. The adaptive immune system also ages, and older organisms tend to develop a chronic pro-inflammatory status with low-grade inflammation characterized by chronic activation of the innate immune system, called inflammaging. One of the main stimuli that fuels inflammaging is a high nutrient intake, triggering a metabolic inflammation process called metainflammation. In this study, we report the anti-inflammatory activity of several senolytic drugs in the context of chronic inflammation, by using two different zebrafish models: (i) a chronic skin inflammation model with a hypomorphic mutation in spint1a, the gene encoding the serine protease inhibitor, kunitz-type, 1a (also known as hai1a) and (ii) a non-alcoholic fatty liver disease/non-alcoholic steatohepatitis (NAFLD/NASH) model with inflammation induced by a high-fat diet. Our results show that, although these models do not manifest premature aging, the senolytic drugs dasatinib, navitoclax, and venetoclax have an anti-inflammatory effect that results in the amelioration of chronic inflammation.
Collapse
Affiliation(s)
- David Hernández-Silva
- Telomerase Cancer and Aging Group (TCAG), Hospital Clínico Universitario Virgen de la Arrixaca, 30120 Murcia, Spain
- Instituto Murciano de Investigación Biosanitaria-Arrixaca (IMIB-Arrixaca), 30120 Murcia, Spain
- Structural Bioinformatics and High-Performance Computing Research Group (BIO-HPC), Computer Engineering Department, Universidad Católica de Murcia (UCAM), Guadalupe, 30107 Murcia, Spain
| | - Joaquín Cantón-Sandoval
- Instituto Murciano de Investigación Biosanitaria-Arrixaca (IMIB-Arrixaca), 30120 Murcia, Spain
- Departamento de Biología Celular e Histología, Facultad de Biología, Universidad de Murcia, 30100 Murcia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, 30100 Murcia, Spain
| | - Francisco Juan Martínez-Navarro
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Department of Medicine (Hepatology), Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Horacio Pérez-Sánchez
- Structural Bioinformatics and High-Performance Computing Research Group (BIO-HPC), Computer Engineering Department, Universidad Católica de Murcia (UCAM), Guadalupe, 30107 Murcia, Spain
| | - Sofia de Oliveira
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Department of Medicine (Hepatology), Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Victoriano Mulero
- Instituto Murciano de Investigación Biosanitaria-Arrixaca (IMIB-Arrixaca), 30120 Murcia, Spain
- Departamento de Biología Celular e Histología, Facultad de Biología, Universidad de Murcia, 30100 Murcia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, 30100 Murcia, Spain
| | - Francisca Alcaraz-Pérez
- Telomerase Cancer and Aging Group (TCAG), Hospital Clínico Universitario Virgen de la Arrixaca, 30120 Murcia, Spain
- Instituto Murciano de Investigación Biosanitaria-Arrixaca (IMIB-Arrixaca), 30120 Murcia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, 30100 Murcia, Spain
- Correspondence: (F.A.-P.); (M.L.C.); Tel.: +34-968395328 (M.L.C.)
| | - María Luisa Cayuela
- Telomerase Cancer and Aging Group (TCAG), Hospital Clínico Universitario Virgen de la Arrixaca, 30120 Murcia, Spain
- Instituto Murciano de Investigación Biosanitaria-Arrixaca (IMIB-Arrixaca), 30120 Murcia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, 30100 Murcia, Spain
- Correspondence: (F.A.-P.); (M.L.C.); Tel.: +34-968395328 (M.L.C.)
| |
Collapse
|
8
|
Lozano-Gil JM, Rodríguez-Ruiz L, Tyrkalska SD, García-Moreno D, Pérez-Oliva AB, Mulero V. Gasdermin E mediates pyroptotic cell death of neutrophils and macrophages in a zebrafish model of chronic skin inflammation. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2022; 132:104404. [PMID: 35341794 DOI: 10.1016/j.dci.2022.104404] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/21/2022] [Accepted: 03/21/2022] [Indexed: 06/14/2023]
Abstract
Chronic diseases and hematopoietic disorders are associated with dysregulation of the inflammasome. Our group has recently reported the relevance of the inflammasome in the differentiation of hematopoietic stem and progenitor cells. However, the impact of the inflammasome of myeloid cells in the regulation of hematopoiesis is largely unknown. In this study, we used the unique advantages of the zebrafish model to demonstrate that genetic inhibition of macrophage inflammasome resulted in increased number of macrophages in larvae with skin inflammation without affecting erythrocyte and neutrophil counts. Similarly, the inhibition of the neutrophil inflammasome by the same strategy resulted in increased number of neutrophils in larvae with skin inflammation but did not affect erythrocytes and macrophages. Consistently, hyperactivation of the inflammasome in neutrophils in this model promoted neutrophil death, which was recovered by pharmacological inhibition of Gasdermin E. We conclude that the myeloid inflammasome autonomously regulates pyroptotic cell death in chronic inflammation through a Gasdermin E-dependent pathway in zebrafish.
Collapse
Affiliation(s)
- Juan M Lozano-Gil
- Departmento de Biología Celular e Histología, Facultad de Biología, Universidad de Murcia, 30100, Murcia, Spain; Instituto Murciano de Investigación Biosanitaria (IMIB)-Arrixaca, 30120, Murcia, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Lola Rodríguez-Ruiz
- Departmento de Biología Celular e Histología, Facultad de Biología, Universidad de Murcia, 30100, Murcia, Spain; Instituto Murciano de Investigación Biosanitaria (IMIB)-Arrixaca, 30120, Murcia, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Sylwia D Tyrkalska
- Departmento de Biología Celular e Histología, Facultad de Biología, Universidad de Murcia, 30100, Murcia, Spain; Instituto Murciano de Investigación Biosanitaria (IMIB)-Arrixaca, 30120, Murcia, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Diana García-Moreno
- Departmento de Biología Celular e Histología, Facultad de Biología, Universidad de Murcia, 30100, Murcia, Spain; Instituto Murciano de Investigación Biosanitaria (IMIB)-Arrixaca, 30120, Murcia, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Ana B Pérez-Oliva
- Instituto Murciano de Investigación Biosanitaria (IMIB)-Arrixaca, 30120, Murcia, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, 28029, Madrid, Spain.
| | - Victoriano Mulero
- Departmento de Biología Celular e Histología, Facultad de Biología, Universidad de Murcia, 30100, Murcia, Spain; Instituto Murciano de Investigación Biosanitaria (IMIB)-Arrixaca, 30120, Murcia, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, 28029, Madrid, Spain.
| |
Collapse
|
9
|
Russo I, Sartor E, Fagotto L, Colombo A, Tiso N, Alaibac M. The Zebrafish model in dermatology: an update for clinicians. Discov Oncol 2022; 13:48. [PMID: 35713744 PMCID: PMC9206045 DOI: 10.1007/s12672-022-00511-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 06/08/2022] [Indexed: 11/04/2022] Open
Abstract
Recently, the zebrafish has been established as one of the most important model organisms for medical research. Several studies have proved that there is a high level of similarity between human and zebrafish genomes, which encourages the use of zebrafish as a model for understanding human genetic disorders, including cancer. Interestingly, zebrafish skin shows several similarities to human skin, suggesting that this model organism is particularly suitable for the study of neoplastic and inflammatory skin disorders. This paper appraises the specific characteristics of zebrafish skin and describes the major applications of the zebrafish model in dermatological research.
Collapse
Affiliation(s)
- Irene Russo
- Unit of Dermatology, University of Padua, Via Gallucci 4, 35128, Padua, Italy
| | - Emma Sartor
- Unit of Dermatology, University of Padua, Via Gallucci 4, 35128, Padua, Italy
| | - Laura Fagotto
- Unit of Dermatology, University of Padua, Via Gallucci 4, 35128, Padua, Italy
| | - Anna Colombo
- Unit of Dermatology, University of Padua, Via Gallucci 4, 35128, Padua, Italy
| | - Natascia Tiso
- Department of Biology, University of Padua, Via U. Bassi 58/B, 35131, Padua, Italy
| | - Mauro Alaibac
- Unit of Dermatology, University of Padua, Via Gallucci 4, 35128, Padua, Italy.
| |
Collapse
|
10
|
Lieke T, Steinberg CEW, Meinelt T, Knopf K, Kloas W. Modification of the chemically induced inflammation assay reveals the Janus face of a phenol rich fulvic acid. Sci Rep 2022; 12:5886. [PMID: 35393468 PMCID: PMC8991211 DOI: 10.1038/s41598-022-09782-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 03/28/2022] [Indexed: 11/09/2022] Open
Abstract
Inflammation is an essential process as a reaction towards infections or wounding. Exposure to hazardous environmental pollutants can lead to chronic inflammations, where the resolving phase is delayed or blocked. Very contradictory studies have been reported on the pro- and anti-inflammatory effects of humic substances (HSs) leading to significant disagreements between researchers. To a certain extent, this can be attributed to the chemical heterogeneity of this group of xenobiotics. Here we show for the first time that pro- and anti-inflammatory effects can occur by one HSs. We adapted an assay that uses green fluorescence-labeled zebrafish larvae and CuSO4 to indue an inflammation. In wild-type larvae, exposure to 50 µM CuSO4 for 2 h activated the production of reactive oxygen species, which can be monitored with a fluorescence dye (H2DCFDA) and a microplate reader. This allows not only the use of wild-type fish but also a temporal separation of copper exposure and inflammatory substance while retaining the high throughput. This modified assay was then used to evaluate the inflammatory properties of a fulvic acid (FA). We found, that the aromatic structure of the FA protects from inflammation at 5 and 50 mg C/L, while the persistent free radicals enhance the copper-induced inflammation at ≥ 300 mg C/L.
Collapse
Affiliation(s)
- Thora Lieke
- Department of Ecophysiology and Aquaculture, Leibniz-Institute of Freshwater Ecology and Inland Fisheries, 12587, Berlin, Germany. .,Faculty of Life Sciences, Humboldt University of Berlin, 10115, Berlin, Germany.
| | - Christian E W Steinberg
- Faculty of Life Sciences, Humboldt University of Berlin, 10115, Berlin, Germany.,Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China
| | - Thomas Meinelt
- Department of Ecophysiology and Aquaculture, Leibniz-Institute of Freshwater Ecology and Inland Fisheries, 12587, Berlin, Germany
| | - Klaus Knopf
- Department of Ecophysiology and Aquaculture, Leibniz-Institute of Freshwater Ecology and Inland Fisheries, 12587, Berlin, Germany.,Faculty of Life Sciences, Humboldt University of Berlin, 10115, Berlin, Germany
| | - Werner Kloas
- Department of Ecophysiology and Aquaculture, Leibniz-Institute of Freshwater Ecology and Inland Fisheries, 12587, Berlin, Germany.,Faculty of Life Sciences, Humboldt University of Berlin, 10115, Berlin, Germany
| |
Collapse
|
11
|
Robertson TF, Huttenlocher A. Real-time imaging of inflammation and its resolution: It's apparent because it's transparent. Immunol Rev 2022; 306:258-270. [PMID: 35023170 PMCID: PMC8855992 DOI: 10.1111/imr.13061] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 12/06/2021] [Accepted: 12/07/2021] [Indexed: 02/06/2023]
Abstract
The ability to directly observe leukocyte behavior in vivo has dramatically expanded our understanding of the immune system. Zebrafish are particularly amenable to the high-resolution imaging of leukocytes during both homeostasis and inflammation. Due to its natural transparency, intravital imaging in zebrafish does not require any surgical manipulation. As a result, zebrafish are particularly well-suited for the long-term imaging required to observe the temporal and spatial events during the onset and resolution of inflammation. Here, we review major insights about neutrophil and macrophage function gained from real-time imaging of zebrafish. We discuss neutrophil reverse migration, the process whereby neutrophils leave sites of tissue damage and resolve local inflammation. Further, we discuss the current tools available for investigating immune function in zebrafish and how future studies that simultaneously image multiple leukocyte subsets can be used to further dissect mechanisms that regulate both the onset and resolution of inflammation.
Collapse
Affiliation(s)
- Tanner F. Robertson
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI
| | - Anna Huttenlocher
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI.,Department of Pediatrics, University of Wisconsin-Madison, Madison, WI
| |
Collapse
|
12
|
Research Techniques Made Simple: Zebrafish Models for Human Dermatologic Disease. J Invest Dermatol 2022; 142:499-506.e1. [DOI: 10.1016/j.jid.2021.10.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 10/13/2021] [Accepted: 10/20/2021] [Indexed: 11/22/2022]
|
13
|
Martínez-Morcillo FJ, Cantón-Sandoval J, Martínez-Navarro FJ, Cabas I, Martínez-Vicente I, Armistead J, Hatzold J, López-Muñoz A, Martínez-Menchón T, Corbalán-Vélez R, Lacal J, Hammerschmidt M, García-Borrón JC, García-Ayala A, Cayuela ML, Pérez-Oliva AB, García-Moreno D, Mulero V. NAMPT-derived NAD+ fuels PARP1 to promote skin inflammation through parthanatos cell death. PLoS Biol 2021; 19:e3001455. [PMID: 34748530 PMCID: PMC8601609 DOI: 10.1371/journal.pbio.3001455] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 11/18/2021] [Accepted: 10/22/2021] [Indexed: 01/26/2023] Open
Abstract
Several studies have revealed a correlation between chronic inflammation and nicotinamide adenine dinucleotide (NAD+) metabolism, but the precise mechanism involved is unknown. Here, we report that the genetic and pharmacological inhibition of nicotinamide phosphoribosyltransferase (Nampt), the rate-limiting enzyme in the salvage pathway of NAD+ biosynthesis, reduced oxidative stress, inflammation, and keratinocyte DNA damage, hyperproliferation, and cell death in zebrafish models of chronic skin inflammation, while all these effects were reversed by NAD+ supplementation. Similarly, genetic and pharmacological inhibition of poly(ADP-ribose) (PAR) polymerase 1 (Parp1), overexpression of PAR glycohydrolase, inhibition of apoptosis-inducing factor 1, inhibition of NADPH oxidases, and reactive oxygen species (ROS) scavenging all phenocopied the effects of Nampt inhibition. Pharmacological inhibition of NADPH oxidases/NAMPT/PARP/AIFM1 axis decreased the expression of pathology-associated genes in human organotypic 3D skin models of psoriasis. Consistently, an aberrant induction of NAMPT and PARP activity, together with AIFM1 nuclear translocation, was observed in lesional skin from psoriasis patients. In conclusion, hyperactivation of PARP1 in response to ROS-induced DNA damage, fueled by NAMPT-derived NAD+, mediates skin inflammation through parthanatos cell death.
Collapse
Affiliation(s)
- Francisco J. Martínez-Morcillo
- Departmento de Biología Celular e Histología, Facultad de Biología, Universidad de Murcia, Spain
- Instituto Murciano de Investigación Biosanitaria-Arrixaca, Murcia, Spain
| | - Joaquín Cantón-Sandoval
- Departmento de Biología Celular e Histología, Facultad de Biología, Universidad de Murcia, Spain
- Instituto Murciano de Investigación Biosanitaria-Arrixaca, Murcia, Spain
| | - Francisco J. Martínez-Navarro
- Departmento de Biología Celular e Histología, Facultad de Biología, Universidad de Murcia, Spain
- Instituto Murciano de Investigación Biosanitaria-Arrixaca, Murcia, Spain
| | - Isabel Cabas
- Departmento de Biología Celular e Histología, Facultad de Biología, Universidad de Murcia, Spain
- Instituto Murciano de Investigación Biosanitaria-Arrixaca, Murcia, Spain
| | - Idoya Martínez-Vicente
- Instituto Murciano de Investigación Biosanitaria-Arrixaca, Murcia, Spain
- Departamento de Bioquímica y Biología Molecular A e Inmmunología, Facultad de Medicina, Universidad de Murcia, Murcia, Spain
| | - Joy Armistead
- Institute of Zoology, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases and Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Julia Hatzold
- Institute of Zoology, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases and Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Azucena López-Muñoz
- Departmento de Biología Celular e Histología, Facultad de Biología, Universidad de Murcia, Spain
- Instituto Murciano de Investigación Biosanitaria-Arrixaca, Murcia, Spain
| | - Teresa Martínez-Menchón
- Instituto Murciano de Investigación Biosanitaria-Arrixaca, Murcia, Spain
- Hospital Clínico Universitario Virgen de la Arrixaca, Murcia, Spain
| | - Raúl Corbalán-Vélez
- Instituto Murciano de Investigación Biosanitaria-Arrixaca, Murcia, Spain
- Hospital Clínico Universitario Virgen de la Arrixaca, Murcia, Spain
| | - Jesús Lacal
- Departamento de Microbiología y Genética, Facultad de Biología, Universidad de Salamanca, Spain
| | - Matthias Hammerschmidt
- Institute of Zoology, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases and Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - José C. García-Borrón
- Instituto Murciano de Investigación Biosanitaria-Arrixaca, Murcia, Spain
- Departamento de Bioquímica y Biología Molecular A e Inmmunología, Facultad de Medicina, Universidad de Murcia, Murcia, Spain
| | - Alfonsa García-Ayala
- Departmento de Biología Celular e Histología, Facultad de Biología, Universidad de Murcia, Spain
- Instituto Murciano de Investigación Biosanitaria-Arrixaca, Murcia, Spain
| | - María L. Cayuela
- Instituto Murciano de Investigación Biosanitaria-Arrixaca, Murcia, Spain
- Hospital Clínico Universitario Virgen de la Arrixaca, Murcia, Spain
| | - Ana B. Pérez-Oliva
- Departmento de Biología Celular e Histología, Facultad de Biología, Universidad de Murcia, Spain
- Instituto Murciano de Investigación Biosanitaria-Arrixaca, Murcia, Spain
- * E-mail: (ABP-O); (DG-M); (VM)
| | - Diana García-Moreno
- Departmento de Biología Celular e Histología, Facultad de Biología, Universidad de Murcia, Spain
- Instituto Murciano de Investigación Biosanitaria-Arrixaca, Murcia, Spain
- * E-mail: (ABP-O); (DG-M); (VM)
| | - Victoriano Mulero
- Departmento de Biología Celular e Histología, Facultad de Biología, Universidad de Murcia, Spain
- Instituto Murciano de Investigación Biosanitaria-Arrixaca, Murcia, Spain
- * E-mail: (ABP-O); (DG-M); (VM)
| |
Collapse
|
14
|
Barndt RB, Lee MJ, Huang N, Lu DD, Lee SC, Du PW, Chang CC, Tsai PFB, Huang YSK, Chang HM, Wang JK, Lai CH, Johnson MD, Lin CY. Targeted HAI-2 deletion causes excessive proteolysis with prolonged active prostasin and depletion of HAI-1 monomer in intestinal but not epidermal epithelial cells. Hum Mol Genet 2021; 30:1833-1850. [PMID: 34089062 PMCID: PMC8444455 DOI: 10.1093/hmg/ddab150] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 05/25/2021] [Accepted: 05/26/2021] [Indexed: 11/12/2022] Open
Abstract
Mutations of SPINT2, the gene encoding the integral membrane, Kunitz-type serine inhibitor HAI-2, primarily affect the intestine, while sparing many other HAI-2-expressing tissues, causing sodium loss in patients with syndromic congenital sodium diarrhea. The membrane-bound serine protease prostasin was previously identified as a HAI-2 target protease in intestinal tissues but not in the skin. In both tissues, the highly related inhibitor HAI-1 is, however, the default inhibitor for prostasin and the type 2 transmembrane serine protease matriptase. This cell-type selective functional linkage may contribute to the organ-selective damage associated with SPINT 2 mutations. To this end, the impact of HAI-2 deletion on matriptase and prostasin proteolysis was, here, compared using Caco-2 human colorectal adenocarcinoma cells and HaCaT human keratinocytes. Greatly enhanced prostasin proteolytic activity with a prolonged half-life and significant depletion of HAI-1 monomer were observed with HAI-2 loss in Caco-2 cells but not HaCaT cells. The constitutive, high level prostasin zymogen activation observed in Caco-2 cells, but not in HaCaT cells, also contributes to the excessive prostasin proteolytic activity caused by HAI-2 loss. HAI-2 deletion also caused increased matriptase zymogen activation, likely as an indirect result of increased prostasin proteolysis. This increase in activated matriptase, however, only had a negligible role in depletion of HAI-1 monomer. Our study suggests that the constitutive, high level of prostasin zymogen activation and the cell-type selective functional relationship between HAI-2 and prostasin renders Caco-2 cells more susceptible than HaCaT cells to the loss of HAI-2, causing a severe imbalance favoring prostasin proteolysis.
Collapse
Affiliation(s)
- Robert B Barndt
- Lombardi Comprehensive Cancer Center, Department of Oncology Georgetown University, Washington, DC 20057, USA
| | - Mon-Juan Lee
- Lombardi Comprehensive Cancer Center, Department of Oncology Georgetown University, Washington, DC 20057, USA
- Department of Bioscience Technology, Chang Jung Christian University, Tainan 71101, Taiwan
- Department of Medical Science Industries, Chang Jung Christian University, Tainan 71101, Taiwan
| | - Nanxi Huang
- Lombardi Comprehensive Cancer Center, Department of Oncology Georgetown University, Washington, DC 20057, USA
| | - Dajun D Lu
- Lombardi Comprehensive Cancer Center, Department of Oncology Georgetown University, Washington, DC 20057, USA
| | - See-Chi Lee
- Lombardi Comprehensive Cancer Center, Department of Oncology Georgetown University, Washington, DC 20057, USA
| | - Po-Wen Du
- Lombardi Comprehensive Cancer Center, Department of Oncology Georgetown University, Washington, DC 20057, USA
- Department of Biochemistry National Defense Medical Center, Taipei 114, Taiwan
| | - Chun-Chia Chang
- School of Medicine, National Defense Medical Center, Taipei 114, Taiwan
| | - Ping-Feng B Tsai
- School of Medicine, National Defense Medical Center, Taipei 114, Taiwan
| | - Yu-Siou K Huang
- School of Medicine, National Defense Medical Center, Taipei 114, Taiwan
| | - Hao-Ming Chang
- Department of Surgery, Tri-Service General Hospital, Taipei 114, Taiwan
| | - Jehng-Kang Wang
- Department of Biochemistry National Defense Medical Center, Taipei 114, Taiwan
| | - Chih-Hsin Lai
- Department of Dentistry Renai Branch, Taipei City Hospital, Taipei 106, Taiwan
| | - Michael D Johnson
- Lombardi Comprehensive Cancer Center, Department of Oncology Georgetown University, Washington, DC 20057, USA
| | - Chen-Yong Lin
- Lombardi Comprehensive Cancer Center, Department of Oncology Georgetown University, Washington, DC 20057, USA
| |
Collapse
|
15
|
Ma J, Scott CA, Ho YN, Mahabaleshwar H, Marsay KS, Zhang C, Teow CK, Ng SS, Zhang W, Tergaonkar V, Partridge LJ, Roy S, Amaya E, Carney TJ. Matriptase activation of Gq drives epithelial disruption and inflammation via RSK and DUOX. eLife 2021; 10:66596. [PMID: 34165081 PMCID: PMC8291973 DOI: 10.7554/elife.66596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 06/23/2021] [Indexed: 11/13/2022] Open
Abstract
Epithelial tissues are primed to respond to insults by activating epithelial cell motility and rapid inflammation. Such responses are also elicited upon overexpression of the membrane-bound protease, Matriptase, or mutation of its inhibitor, Hai1. Unrestricted Matriptase activity also predisposes to carcinoma. How Matriptase leads to these cellular outcomes is unknown. We demonstrate that zebrafish hai1a mutants show increased H2O2, NfκB signalling, and IP3R -mediated calcium flashes, and that these promote inflammation, but do not generate epithelial cell motility. In contrast, inhibition of the Gq subunit in hai1a mutants rescues both the inflammation and epithelial phenotypes, with the latter recapitulated by the DAG analogue, PMA. We demonstrate that hai1a has elevated MAPK pathway activity, inhibition of which rescues the epidermal defects. Finally, we identify RSK kinases as MAPK targets disrupting adherens junctions in hai1a mutants. Our work maps novel signalling cascades mediating the potent effects of Matriptase on epithelia, with implications for tissue damage response and carcinoma progression. Cancer occurs when normal processes in the cell become corrupted or unregulated. Many proteins can contribute, including one enzyme called Matriptase that cuts other proteins at specific sites. Matriptase activity is tightly controlled by a protein called Hai1. In mice and zebrafish, when Hai1 cannot adequately control Matriptase activity, invasive cancers with severe inflammation develop. However, it is unclear how unregulated Matriptase leads to both inflammation and cancer invasion. One outcome of Matriptase activity is removal of proteins called Cadherins from the cell surface. These proteins have a role in cell adhesion: they act like glue to stick cells together. Without them, cells can dissociate from a tissue and move away, a critical step in cancer cells invading other organs. However, it is unknown exactly how Matriptase triggers the removal of Cadherins from the cell surface to promote invasion. Previous work has shown that Matriptase switches on a receptor called Proteinase-activated receptor 2, or Par2 for short, which is known to activate many enzymes, including one called phospholipase C. When activated, this enzyme releases two signals into the cell: a sugar called inositol triphosphate, IP3; and a lipid or fat called diacylglycerol, DAG. It is possible that these two signals have a role to play in how Matriptase removes Cadherins from the cell surface. To find out, Ma et al. mapped the effects of Matriptase in zebrafish lacking the Hai1 protein. This revealed that Matriptase increases IP3 and DAG levels, which initiate both inflammation and invasion. IP3 promotes inflammation by switching on pro-inflammatory signals inside the cell such as the chemical hydrogen peroxide. At the same time, DAG promotes cell invasion by activating a well-known cancer signalling pathway called MAPK. This pathway activates a protein called RSK. Ma et al. show that this protein is required to remove Cadherins from the surface of cells, thus connecting Matriptase’s activation of phospholipase C with its role in disrupting cell adhesion. An increase in the ratio of Matriptase to HAI-1 (the human equivalent of Hai1) is present in many cancers. For this reason, the signal cascades described by Ma et al. may be of interest in developing treatments for these cancers. Understanding how these signals work together could lead to more direct targeted anti-cancer approaches in the future.
Collapse
Affiliation(s)
- Jiajia Ma
- Lee Kong Chian School of Medicine, Experimental Medicine Building, Yunnan Garden Campus, 59 Nanyang Drive, Nanyang Technological University, Singapore, Singapore
| | - Claire A Scott
- Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Singapore, Singapore.,Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Ying Na Ho
- Lee Kong Chian School of Medicine, Experimental Medicine Building, Yunnan Garden Campus, 59 Nanyang Drive, Nanyang Technological University, Singapore, Singapore
| | - Harsha Mahabaleshwar
- Lee Kong Chian School of Medicine, Experimental Medicine Building, Yunnan Garden Campus, 59 Nanyang Drive, Nanyang Technological University, Singapore, Singapore
| | - Katherine S Marsay
- Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Singapore, Singapore.,Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, United Kingdom
| | - Changqing Zhang
- Lee Kong Chian School of Medicine, Experimental Medicine Building, Yunnan Garden Campus, 59 Nanyang Drive, Nanyang Technological University, Singapore, Singapore
| | - Christopher Kj Teow
- Lee Kong Chian School of Medicine, Experimental Medicine Building, Yunnan Garden Campus, 59 Nanyang Drive, Nanyang Technological University, Singapore, Singapore
| | - Ser Sue Ng
- Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Singapore, Singapore
| | - Weibin Zhang
- Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Singapore, Singapore
| | - Vinay Tergaonkar
- Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Singapore, Singapore
| | - Lynda J Partridge
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, United Kingdom
| | - Sudipto Roy
- Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Singapore, Singapore.,Department of Biological Sciences, National University of Singapore, Singapore, Singapore.,Department of Pediatrics, Yong Loo Ling School of Medicine, National University of Singapore, Singapore, Singapore
| | - Enrique Amaya
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Tom J Carney
- Lee Kong Chian School of Medicine, Experimental Medicine Building, Yunnan Garden Campus, 59 Nanyang Drive, Nanyang Technological University, Singapore, Singapore.,Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Singapore, Singapore
| |
Collapse
|
16
|
Guo L, Bloom J, Sykes S, Huang E, Kashif Z, Pham E, Ho K, Alcaraz A, Xiao XG, Duarte-Vogel S, Kruglyak L. Genetics of white color and iridophoroma in "Lemon Frost" leopard geckos. PLoS Genet 2021; 17:e1009580. [PMID: 34166378 PMCID: PMC8224956 DOI: 10.1371/journal.pgen.1009580] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 05/04/2021] [Indexed: 12/16/2022] Open
Abstract
The squamates (lizards and snakes) are close relatives of birds and mammals, with more than 10,000 described species that display extensive variation in a number of important biological traits, including coloration, venom production, and regeneration. Due to a lack of genomic tools, few genetic studies in squamates have been carried out. The leopard gecko, Eublepharis macularius, is a popular companion animal, and displays a variety of coloration patterns. We took advantage of a large breeding colony and used linkage analysis, synteny, and homozygosity mapping to investigate a spontaneous semi-dominant mutation, “Lemon Frost”, that produces white coloration and causes skin tumors (iridophoroma). We localized the mutation to a single locus which contains a strong candidate gene, SPINT1, a tumor suppressor implicated in human skin cutaneous melanoma (SKCM) and over-proliferation of epithelial cells in mice and zebrafish. Our work establishes the leopard gecko as a tractable genetic system and suggests that a tumor suppressor in melanocytes in humans can also suppress tumor development in iridophores in lizards. The squamates (lizards and snakes) comprise a diverse group of reptiles, with more than 10,000 described species that display extensive variation in a number of important biological traits, including coloration. In this manuscript, we used quantitative genetics and genomics to map the mutation underlying white coloration in the Lemon Frost morph of the common leopard gecko, Eublepharis macularius. Lemon Frost geckos have increased white body coloration with brightened yellow and orange areas. This morph also displays a high incidence of iridophoroma, a tumor of white-colored cells. We obtained phenotype information and DNA samples from geckos in a large breeding colony and used genome sequencing and genetic linkage analysis to localize the Lemon Frost mutation to a single locus. This locus contains a strong candidate gene, SPINT1, a tumor suppressor implicated in human skin cutaneous melanoma. Together with other recent advances, our work brings reptiles into the modern genetics era.
Collapse
Affiliation(s)
- Longhua Guo
- Department of Human Genetics, Department of Biological Chemistry, Howard Hughes Medical Institute, University of California, Los Angeles, California, United States of America
- * E-mail: (LG); (LK)
| | - Joshua Bloom
- Department of Human Genetics, Department of Biological Chemistry, Howard Hughes Medical Institute, University of California, Los Angeles, California, United States of America
| | - Steve Sykes
- Geckos Etc. Herpetoculture, Rocklin, California, United States of America
| | - Elaine Huang
- Department of Integrative Biology and Physiology, University of California, Los Angeles, California, United States of America
| | - Zain Kashif
- Department of Human Genetics, Department of Biological Chemistry, Howard Hughes Medical Institute, University of California, Los Angeles, California, United States of America
| | - Elise Pham
- Department of Human Genetics, Department of Biological Chemistry, Howard Hughes Medical Institute, University of California, Los Angeles, California, United States of America
| | - Katarina Ho
- Department of Human Genetics, Department of Biological Chemistry, Howard Hughes Medical Institute, University of California, Los Angeles, California, United States of America
| | - Ana Alcaraz
- College of Veterinary Medicine, Western University of Health Sciences, Pomona, California, United States of America
| | - Xinshu Grace Xiao
- Department of Integrative Biology and Physiology, University of California, Los Angeles, California, United States of America
| | - Sandra Duarte-Vogel
- Division of Laboratory Animal Medicine, David Geffen School of Medicine, University of California, Los Angeles, California, United States of America
| | - Leonid Kruglyak
- Department of Human Genetics, Department of Biological Chemistry, Howard Hughes Medical Institute, University of California, Los Angeles, California, United States of America
- * E-mail: (LG); (LK)
| |
Collapse
|
17
|
Huang D, Yang B, Yao Y, Liao M, Zhang Y, Zeng Y, Zhang F, Wang N, Tong G. Autophagic Inhibition of Caveolin-1 by Compound Phyllanthus urinaria L. Activates Ubiquitination and Proteasome Degradation of β-catenin to Suppress Metastasis of Hepatitis B-Associated Hepatocellular Carcinoma. Front Pharmacol 2021; 12:659325. [PMID: 34168559 PMCID: PMC8217966 DOI: 10.3389/fphar.2021.659325] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 05/24/2021] [Indexed: 12/29/2022] Open
Abstract
Compound Phyllanthus urinaria L. (CP) is a traditional Chinese medicine (TCM) formula for cancer treatment in the clinic, particularly during progression of hepatitis B-associated hepatocellular carcinoma (HBV-associated HCC). Nevertheless, its anti-metastatic action and mechanisms are not well elucidated. In this study, CP was found to exert remarkable inhibitory effects on the proliferation, migration and invasion of HBV-associated HCC cells. The following network and biological analyses predicted that CP mainly targeted Caveolin-1 (Cav-1) to induce anti-metastatic effects, and Wnt/β-catenin pathway was one of the core mechanisms of CP action against HBV-associated HCC. Further experimental validation implied that Cav-1 overexpression promoted metastasis of HBV-associated HCC by stabilizing β-catenin, while CP administration induced autophagic degradation of Cav-1, activated the Akt/GSK3β-mediated proteasome degradation of β-catenin via ubiquitination activation, and subsequently attenuated the metastasis-promoting effect of Cav-1. In addition, the anti-cancer and anti-metastatic action of CP was further confirmed by in vivo and ex vivo experiments. It was found that CP inhibited the tumor growth and metastasis of HBV-associated HCC in both mice liver cancer xenograft and zebrafish xenotransplantation models. Taken together, our study not only highlights the novel function of CP formula in suppressing metastasis of HBV-associated HCC, but it also addresses the critical role of Cav-1 in mediating Akt/GSK3β/β-catenin axis to control the late-phase of cancer progression.
Collapse
Affiliation(s)
- Danping Huang
- Department of Hepatology, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Bowen Yang
- The Research Center for Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yaoyao Yao
- The Research Center for Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Mianmian Liao
- The Research Center for Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yu Zhang
- The Research Center for Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yihao Zeng
- The Research Center for Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Fengxue Zhang
- The Research Center for Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Neng Wang
- The Research Center for Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China.,Department of Medical Biotechnology, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Guangdong Tong
- Department of Hepatology, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
| |
Collapse
|
18
|
Xie Y, Meijer AH, Schaaf MJM. Modeling Inflammation in Zebrafish for the Development of Anti-inflammatory Drugs. Front Cell Dev Biol 2021; 8:620984. [PMID: 33520995 PMCID: PMC7843790 DOI: 10.3389/fcell.2020.620984] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Accepted: 12/18/2020] [Indexed: 12/16/2022] Open
Abstract
Dysregulation of the inflammatory response in humans can lead to various inflammatory diseases, like asthma and rheumatoid arthritis. The innate branch of the immune system, including macrophage and neutrophil functions, plays a critical role in all inflammatory diseases. This part of the immune system is well-conserved between humans and the zebrafish, which has emerged as a powerful animal model for inflammation, because it offers the possibility to image and study inflammatory responses in vivo at the early life stages. This review focuses on different inflammation models established in zebrafish, and how they are being used for the development of novel anti-inflammatory drugs. The most commonly used model is the tail fin amputation model, in which part of the tail fin of a zebrafish larva is clipped. This model has been used to study fundamental aspects of the inflammatory response, like the role of specific signaling pathways, the migration of leukocytes, and the interaction between different immune cells, and has also been used to screen libraries of natural compounds, approved drugs, and well-characterized pathway inhibitors. In other models the inflammation is induced by chemical treatment, such as lipopolysaccharide (LPS), leukotriene B4 (LTB4), and copper, and some chemical-induced models, such as treatment with trinitrobenzene sulfonic acid (TNBS), specifically model inflammation in the gastro-intestinal tract. Two mutant zebrafish lines, carrying a mutation in the hepatocyte growth factor activator inhibitor 1a gene (hai1a) and the cdp-diacylglycerolinositol 3-phosphatidyltransferase (cdipt) gene, show an inflammatory phenotype, and they provide interesting model systems for studying inflammation. These zebrafish inflammation models are often used to study the anti-inflammatory effects of glucocorticoids, to increase our understanding of the mechanism of action of this class of drugs and to develop novel glucocorticoid drugs. In this review, an overview is provided of the available inflammation models in zebrafish, and how they are used to unravel molecular mechanisms underlying the inflammatory response and to screen for novel anti-inflammatory drugs.
Collapse
|
19
|
Chiu YL, Wu YY, Barndt RB, Lin YW, Sytwo HP, Cheng A, Yang K, Chan KS, Wang JK, Johnson MD, Lin CY. Differential subcellular distribution renders HAI-2 a less effective protease inhibitor than HAI-1 in the control of extracellular matriptase proteolytic activity. Genes Dis 2020; 9:1049-1061. [PMID: 35685459 PMCID: PMC9170578 DOI: 10.1016/j.gendis.2020.12.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 12/02/2020] [Indexed: 01/09/2023] Open
|
20
|
Rodríguez-Ruiz L, Lozano-Gil JM, Lachaud C, Mesa-Del-Castillo P, Cayuela ML, García-Moreno D, Pérez-Oliva AB, Mulero V. Zebrafish Models to Study Inflammasome-Mediated Regulation of Hematopoiesis. Trends Immunol 2020; 41:1116-1127. [PMID: 33162327 DOI: 10.1016/j.it.2020.10.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 10/08/2020] [Accepted: 10/09/2020] [Indexed: 12/17/2022]
Abstract
Hematopoiesis is a complex process through which immature bone marrow precursor cells mature into all types of blood cells. Although the association of hematopoietic lineage bias (including anemia and neutrophilia) with chronic inflammatory diseases has long been appreciated, the causes involved are obscure. Recently, cytosolic multiprotein inflammasome complexes were shown to activate inflammatory and immune responses, and directly regulate hematopoiesis in zebrafish models; this was deemed to occur via cleavage and inactivation of the master erythroid transcription factor GATA1. Herein summarized are the zebrafish models that are currently available to study this unappreciated role of inflammasome-mediated regulation of hematopoiesis. Novel putative therapeutic strategies, for the treatment of hematopoietic alterations associated with chronic inflammatory diseases in humans, are also proposed.
Collapse
Affiliation(s)
- Lola Rodríguez-Ruiz
- Departamento de Biología Celular e Histología, Facultad de Biología, Universidad de Murcia, IMIB-Arrixaca, Centro de Investigación Biomédica en Red de Enfermedades Raras, 30100 Murcia, Spain
| | - Juan M Lozano-Gil
- Departamento de Biología Celular e Histología, Facultad de Biología, Universidad de Murcia, IMIB-Arrixaca, Centro de Investigación Biomédica en Red de Enfermedades Raras, 30100 Murcia, Spain
| | - Christophe Lachaud
- Aix-Marseille Univ, INSERM, CNRS, Institut Paoli-Calmettes, CRCM, Marseille, France
| | - Pablo Mesa-Del-Castillo
- Hospital Clínico Universitario Virgen de la Arrixaca, IMIB-Arrixaca, Centro de Investigación Biomédica en Red de Enfermedades Raras, 30120 Murcia, Spain
| | - María L Cayuela
- Hospital Clínico Universitario Virgen de la Arrixaca, IMIB-Arrixaca, Centro de Investigación Biomédica en Red de Enfermedades Raras, 30120 Murcia, Spain
| | - Diana García-Moreno
- Departamento de Biología Celular e Histología, Facultad de Biología, Universidad de Murcia, IMIB-Arrixaca, Centro de Investigación Biomédica en Red de Enfermedades Raras, 30100 Murcia, Spain.
| | - Ana B Pérez-Oliva
- Departamento de Biología Celular e Histología, Facultad de Biología, Universidad de Murcia, IMIB-Arrixaca, Centro de Investigación Biomédica en Red de Enfermedades Raras, 30100 Murcia, Spain.
| | - Victoriano Mulero
- Departamento de Biología Celular e Histología, Facultad de Biología, Universidad de Murcia, IMIB-Arrixaca, Centro de Investigación Biomédica en Red de Enfermedades Raras, 30100 Murcia, Spain.
| |
Collapse
|
21
|
Zanandrea R, Bonan CD, Campos MM. Zebrafish as a model for inflammation and drug discovery. Drug Discov Today 2020; 25:2201-2211. [PMID: 33035664 DOI: 10.1016/j.drudis.2020.09.036] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 08/17/2020] [Accepted: 09/30/2020] [Indexed: 12/24/2022]
Abstract
Zebrafish is a small teleost (bony) fish used in many areas of pharmacology and toxicology. This animal model has advantages for the discovery of anti-inflammatory drugs, such as the potential for real-time assessment of cell migration mechanisms. Additionally, zebrafish display a repertoire of inflammatory cells, mediators, and receptors that are similar to those in mammals, including humans. Inflammatory disease modeling in either larvae or adult zebrafish represents a promising tool for the screening of new anti-inflammatory compounds, contributing to our understanding of the mechanisms involved in chronic inflammatory conditions. In this review, we provide an overview of the characterization of inflammatory responses in zebrafish, emphasizing its relevance for drug discovery in this research area.
Collapse
Affiliation(s)
- Rodrigo Zanandrea
- Pontifícia Universidade Católica do Rio Grande do Sul, Escola de Medicina, Programa de Pós-Graduação em Medicina e Ciências da Saúde, Porto Alegre, RS, Brazil; Pontifícia Universidade Católica do Rio Grande do Sul, Escola de Ciências da Saúde e da Vida, Laboratório de Neuroquímica e Psicofarmacologia, Porto Alegre, RS, Brazil
| | - Carla D Bonan
- Pontifícia Universidade Católica do Rio Grande do Sul, Escola de Medicina, Programa de Pós-Graduação em Medicina e Ciências da Saúde, Porto Alegre, RS, Brazil; Pontifícia Universidade Católica do Rio Grande do Sul, Escola de Ciências da Saúde e da Vida, Laboratório de Neuroquímica e Psicofarmacologia, Porto Alegre, RS, Brazil; Pontifícia Universidade Católica do Rio Grande do Sul, Escola de Ciências da Saúde e da Vida, Programa de Pós-Graduação em Biologia Celular e Molecular, Porto Alegre, RS, Brazil
| | - Maria M Campos
- Pontifícia Universidade Católica do Rio Grande do Sul, Escola de Medicina, Programa de Pós-Graduação em Medicina e Ciências da Saúde, Porto Alegre, RS, Brazil; Pontifícia Universidade Católica do Rio Grande do Sul, Escola de Ciências da Saúde e da Vida, Programa de Pós-Graduação em Biologia Celular e Molecular, Porto Alegre, RS, Brazil; Pontifícia Universidade Católica do Rio Grande do Sul, Escola de Ciências da Saúde e da Vida, Centro de Pesquisa em Toxicologia e Farmacologia, Porto Alegre, RS, Brazil.
| |
Collapse
|
22
|
Armistead J, Hatzold J, van Roye A, Fahle E, Hammerschmidt M. Entosis and apical cell extrusion constitute a tumor-suppressive mechanism downstream of Matriptase. J Cell Biol 2020; 219:132730. [PMID: 31819976 PMCID: PMC7041680 DOI: 10.1083/jcb.201905190] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 10/02/2019] [Accepted: 11/04/2019] [Indexed: 12/21/2022] Open
Abstract
Armistead et al. show that in a bilayered epithelium in vivo, apical cell extrusion of basal cells is achieved via their engulfment by surface cells. In zebrafish hai1a mutants, this constitutes a tumor-suppressive mechanism, revealing a double face of Matriptase. The type II transmembrane serine protease Matriptase 1 (ST14) is commonly known as an oncogene, yet it also plays an understudied role in suppressing carcinogenesis. This double face is evident in the embryonic epidermis of zebrafish loss-of-function mutants in the cognate Matriptase inhibitor Hai1a (Spint1a). Mutant embryos display epidermal hyperplasia, but also apical cell extrusions, during which extruding outer keratinocytes carry out an entosis-like engulfment and entrainment of underlying basal cells, constituting a tumor-suppressive effect. These counteracting Matriptase effects depend on EGFR and the newly identified mediator phospholipase D (PLD), which promotes both mTORC1-dependent cell proliferation and sphingosine-1-phosphate (S1P)–dependent entosis and apical cell extrusion. Accordingly, hypomorphic hai1a mutants heal spontaneously, while otherwise lethal hai1a amorphs are efficiently rescued upon cotreatment with PLD inhibitors and S1P. Together, our data elucidate the mechanisms underlying the double face of Matriptase function in vivo and reveal the potential use of combinatorial carcinoma treatments when such double-face mechanisms are involved.
Collapse
Affiliation(s)
- Joy Armistead
- Institute of Zoology, Developmental Biology Unit, University of Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Julia Hatzold
- Institute of Zoology, Developmental Biology Unit, University of Cologne, Cologne, Germany
| | - Anna van Roye
- Institute of Zoology, Developmental Biology Unit, University of Cologne, Cologne, Germany
| | - Evelin Fahle
- Institute of Zoology, Developmental Biology Unit, University of Cologne, Cologne, Germany
| | - Matthias Hammerschmidt
- Institute of Zoology, Developmental Biology Unit, University of Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany
| |
Collapse
|
23
|
Patmore DM, Jassim A, Nathan E, Gilbertson RJ, Tahan D, Hoffmann N, Tong Y, Smith KS, Kanneganti TD, Suzuki H, Taylor MD, Northcott P, Gilbertson RJ. DDX3X Suppresses the Susceptibility of Hindbrain Lineages to Medulloblastoma. Dev Cell 2020; 54:455-470.e5. [PMID: 32553121 PMCID: PMC7483908 DOI: 10.1016/j.devcel.2020.05.027] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 04/19/2020] [Accepted: 05/22/2020] [Indexed: 12/13/2022]
Abstract
DEAD-Box Helicase 3 X-Linked (DDX3X) is frequently mutated in the Wingless (WNT) and Sonic hedghog (SHH) subtypes of medulloblastoma-the commonest malignant childhood brain tumor, but whether DDX3X functions as a medulloblastoma oncogene or tumor suppressor gene is not known. Here, we show that Ddx3x regulates hindbrain patterning and development by controlling Hox gene expression and cell stress signaling. In mice predisposed to Wnt- or Shh medulloblastoma, Ddx3x sensed oncogenic stress and suppressed tumor formation. WNT and SHH medulloblastomas normally arise only in the lower and upper rhombic lips, respectively. Deletion of Ddx3x removed this lineage restriction, enabling both medulloblastoma subtypes to arise in either germinal zone. Thus, DDX3X is a medulloblastoma tumor suppressor that regulates hindbrain development and restricts the competence of cell lineages to form medulloblastoma subtypes.
Collapse
Affiliation(s)
- Deanna M Patmore
- CRUK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK
| | - Amir Jassim
- CRUK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK
| | - Erica Nathan
- CRUK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK
| | - Reuben J Gilbertson
- CRUK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK
| | - Daniel Tahan
- CRUK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK
| | - Nadin Hoffmann
- CRUK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK
| | - Yiai Tong
- Department of Developmental Neurobiology, St Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Kyle S Smith
- Department of Developmental Neurobiology, St Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Thirumala-Devi Kanneganti
- Department of Immunology, St Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Hiromichi Suzuki
- Division of Neurosurgery, The Hospital for Sick Children, 555 University Avenue, Toronto, ON M5G 1X8, Canada
| | - Michael D Taylor
- Division of Neurosurgery, The Hospital for Sick Children, 555 University Avenue, Toronto, ON M5G 1X8, Canada
| | - Paul Northcott
- Department of Developmental Neurobiology, St Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Richard J Gilbertson
- CRUK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK; Department of Oncology, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK.
| |
Collapse
|
24
|
Martínez-Navarro FJ, Martínez-Morcillo FJ, López-Muñoz A, Pardo-Sánchez I, Martínez-Menchón T, Corbalán-Vélez R, Cayuela ML, Pérez-Oliva AB, García-Moreno D, Mulero V. The vitamin B6-regulated enzymes PYGL and G6PD fuel NADPH oxidases to promote skin inflammation. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 108:103666. [PMID: 32126244 DOI: 10.1016/j.dci.2020.103666] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 02/26/2020] [Accepted: 02/26/2020] [Indexed: 06/10/2023]
Abstract
Psoriasis is a skin inflammatory disorder that affects 3% of the human population. Although several therapies based on the neutralization of proinflammatory cytokines have been used with relative success, additional treatments are required. The in silico analysis of gene expression data of psoriasis lesional skin and an analysis of vitamin B6 metabolites in the sera of psoriasis patients point to altered vitamin B6 metabolism at both local and systemic levels. Functional studies showed that vitamin B6 vitamers reduced skin neutrophil infiltration, oxidative stress and Nfkb activity in two zebrafish models of skin inflammation. Strikingly, inhibition of glycogen phosphorylase L (Pygl) and glucose-6-phosphate dehydrogenase (G6pd), two vitamin B6-regulated enzymes, alleviated oxidative-stress induced inflammation in zebrafish skin inflammation models. Despite the central role of G6pd in antioxidant defenses, the results of the study demonstrate that glycogen stores and G6pd fuel NADPH oxidase to promote skin inflammation, revealing novel targets for the treatment of skin inflammatory disorders.
Collapse
Affiliation(s)
- Francisco J Martínez-Navarro
- Departmento de Biología Celular e Histología, Facultad de Biología, Universidad de Murcia, Spain; Instituto Murciano de Investigación Biosanitaria (IMIB)-Arrixaca, Murcia, Spain
| | - Francisco J Martínez-Morcillo
- Departmento de Biología Celular e Histología, Facultad de Biología, Universidad de Murcia, Spain; Instituto Murciano de Investigación Biosanitaria (IMIB)-Arrixaca, Murcia, Spain
| | - Azucena López-Muñoz
- Departmento de Biología Celular e Histología, Facultad de Biología, Universidad de Murcia, Spain; Instituto Murciano de Investigación Biosanitaria (IMIB)-Arrixaca, Murcia, Spain
| | - Irene Pardo-Sánchez
- Departmento de Biología Celular e Histología, Facultad de Biología, Universidad de Murcia, Spain; Instituto Murciano de Investigación Biosanitaria (IMIB)-Arrixaca, Murcia, Spain
| | - Teresa Martínez-Menchón
- Instituto Murciano de Investigación Biosanitaria (IMIB)-Arrixaca, Murcia, Spain; Hospital Clínico Universitario Virgen de la Arrixaca, Murcia, Spain
| | - Raúl Corbalán-Vélez
- Instituto Murciano de Investigación Biosanitaria (IMIB)-Arrixaca, Murcia, Spain; Hospital Clínico Universitario Virgen de la Arrixaca, Murcia, Spain
| | - María L Cayuela
- Instituto Murciano de Investigación Biosanitaria (IMIB)-Arrixaca, Murcia, Spain; Hospital Clínico Universitario Virgen de la Arrixaca, Murcia, Spain
| | - Ana B Pérez-Oliva
- Departmento de Biología Celular e Histología, Facultad de Biología, Universidad de Murcia, Spain; Instituto Murciano de Investigación Biosanitaria (IMIB)-Arrixaca, Murcia, Spain.
| | - Diana García-Moreno
- Departmento de Biología Celular e Histología, Facultad de Biología, Universidad de Murcia, Spain; Instituto Murciano de Investigación Biosanitaria (IMIB)-Arrixaca, Murcia, Spain.
| | - Victoriano Mulero
- Departmento de Biología Celular e Histología, Facultad de Biología, Universidad de Murcia, Spain; Instituto Murciano de Investigación Biosanitaria (IMIB)-Arrixaca, Murcia, Spain.
| |
Collapse
|
25
|
Martínez-Navarro FJ, Martínez-Morcillo FJ, de Oliveira S, Candel S, Cabas I, García-Ayala A, Martínez-Menchón T, Corbalán-Vélez R, Mesa-Del-Castillo P, Cayuela ML, Pérez-Oliva AB, García-Moreno D, Mulero V. Hydrogen peroxide in neutrophil inflammation: Lesson from the zebrafish. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 105:103583. [PMID: 31862296 DOI: 10.1016/j.dci.2019.103583] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 12/16/2019] [Accepted: 12/16/2019] [Indexed: 05/15/2023]
Abstract
The zebrafish has become an excellent model for the study of inflammation and immunity. Its unique advantages for in vivo imaging and gene and drug screening have allowed the visualization of dual oxidase 1 (Duox1)-derived hydrogen peroxide (H2O2) tissue gradients and its crosstalk with neutrophil infiltration to inflamed tissue. Thus, it has been shown that H2O2 directly recruits neutrophils via the Src-family tyrosine kinase Lyn and indirectly by the activation of several signaling pathways involved in inflammation, such as nuclear factor κB (NF-κB), mitogen activated kinases and the transcription factor AP1. In addition, this model has also unmasked the unexpected ability of H2O2 to induce the expression of the gene encoding the key neutrophil chemoattractant CXC chemokine ligand 8 by facilitating the accessibility of transcription factors to its promoter through histone covalent modifications. Finally, zebrafish models of psoriasis have shown that a H2O2/NF-κB/Duox1 positive feedback inflammatory loop operates in this chronic inflammatory disorder and that pharmacological inhibition of Duox1, but not of downstream mediators, inhibits inflammation and restores epithelial homeostasis. Therefore, these results have pointed out DUOX1 and H2O2 as therapeutic targets for the treatment of skin inflammatory disorders, such as psoriasis.
Collapse
Affiliation(s)
- Francisco J Martínez-Navarro
- Departmento de Biología Celular e Histología, Facultad de Biología, Universidad de Murcia, Spain; Instituto Murciano de Investigación Biosanitaria (IMIB)-Arrixaca, Murcia, Spain
| | - Francisco J Martínez-Morcillo
- Departmento de Biología Celular e Histología, Facultad de Biología, Universidad de Murcia, Spain; Instituto Murciano de Investigación Biosanitaria (IMIB)-Arrixaca, Murcia, Spain
| | - Sofia de Oliveira
- Departmento de Biología Celular e Histología, Facultad de Biología, Universidad de Murcia, Spain; Instituto Murciano de Investigación Biosanitaria (IMIB)-Arrixaca, Murcia, Spain
| | - Sergio Candel
- Departmento de Biología Celular e Histología, Facultad de Biología, Universidad de Murcia, Spain; Instituto Murciano de Investigación Biosanitaria (IMIB)-Arrixaca, Murcia, Spain
| | - Isabel Cabas
- Departmento de Biología Celular e Histología, Facultad de Biología, Universidad de Murcia, Spain; Instituto Murciano de Investigación Biosanitaria (IMIB)-Arrixaca, Murcia, Spain
| | - Alfonsa García-Ayala
- Departmento de Biología Celular e Histología, Facultad de Biología, Universidad de Murcia, Spain; Instituto Murciano de Investigación Biosanitaria (IMIB)-Arrixaca, Murcia, Spain
| | - Teresa Martínez-Menchón
- Instituto Murciano de Investigación Biosanitaria (IMIB)-Arrixaca, Murcia, Spain; Hospital Clínico Universitario Virgen de la Arrixaca, Murcia, Spain
| | - Raúl Corbalán-Vélez
- Instituto Murciano de Investigación Biosanitaria (IMIB)-Arrixaca, Murcia, Spain; Hospital Clínico Universitario Virgen de la Arrixaca, Murcia, Spain
| | - Pablo Mesa-Del-Castillo
- Instituto Murciano de Investigación Biosanitaria (IMIB)-Arrixaca, Murcia, Spain; Hospital Clínico Universitario Virgen de la Arrixaca, Murcia, Spain
| | - María L Cayuela
- Instituto Murciano de Investigación Biosanitaria (IMIB)-Arrixaca, Murcia, Spain; Hospital Clínico Universitario Virgen de la Arrixaca, Murcia, Spain
| | - Ana B Pérez-Oliva
- Departmento de Biología Celular e Histología, Facultad de Biología, Universidad de Murcia, Spain; Instituto Murciano de Investigación Biosanitaria (IMIB)-Arrixaca, Murcia, Spain.
| | - Diana García-Moreno
- Departmento de Biología Celular e Histología, Facultad de Biología, Universidad de Murcia, Spain; Instituto Murciano de Investigación Biosanitaria (IMIB)-Arrixaca, Murcia, Spain.
| | - Victoriano Mulero
- Departmento de Biología Celular e Histología, Facultad de Biología, Universidad de Murcia, Spain; Instituto Murciano de Investigación Biosanitaria (IMIB)-Arrixaca, Murcia, Spain.
| |
Collapse
|
26
|
Isolation of Neutrophils from Larval Zebrafish and Their Transplantation into Recipient Larvae for Functional Studies. Methods Mol Biol 2020; 2087:61-75. [PMID: 31728983 DOI: 10.1007/978-1-0716-0154-9_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Live imaging of neutrophils within optically transparent larval zebrafish has proved a powerful technique to investigate how specific gene products control neutrophil function. To resolve whether a gene contributes to neutrophil function in a cell-autonomous manner necessitates a way to examine gene-deficient neutrophils in an otherwise wild type background. To this end, here we describe methods to harvest fluorescent neutrophils from larval donor zebrafish and transplant them into age-matched recipients. We show that transplanted neutrophils can survive in recipient larvae for at least 3 days providing ample opportunity for functional studies. Focusing on bactericidal activity, we show that transplanted neutrophils phagocytose and kill live bacteria with similar kinetics to nontransplanted neutrophils, indicating that the transplantation process does not influence these neutrophil effector functions. Following the methods described here to transplant neutrophils between gene-deficient and wild type larval zebrafish will enable investigations into whether a gene's contribution to neutrophil function is cell-autonomous.
Collapse
|
27
|
Gómez-Abenza E, Ibáñez-Molero S, García-Moreno D, Fuentes I, Zon LI, Mione MC, Cayuela ML, Gabellini C, Mulero V. Zebrafish modeling reveals that SPINT1 regulates the aggressiveness of skin cutaneous melanoma and its crosstalk with tumor immune microenvironment. J Exp Clin Cancer Res 2019; 38:405. [PMID: 31519199 PMCID: PMC6743187 DOI: 10.1186/s13046-019-1389-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 08/23/2019] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Skin cutaneous melanoma (SKCM) is the most lethal form of skin cancer and while incidence rates are declining for most cancers, they have been steadily rising for SKCM. Serine protease inhibitor, kunitz-type, 1 (SPINT1) is a type II transmembrane serine protease inhibitor that has been shown to be involved in the development of several types of cancer, such as squamous cell carcinoma and colorectal cancer. METHODS We used the unique advantages of the zebrafish to model the impact of Spint1a deficiency in early transformation, progression and metastatic invasion of SKCM together with in silico analysis of the occurrence and relevance of SPINT1 genetic alterations of the SKCM TCGA cohort. RESULTS We report here a high prevalence of SPINT1 genetic alterations in SKCM patients and their association with altered tumor immune microenvironment and poor patient survival. The zebrafish model reveals that Spint1a deficiency facilitates oncogenic transformation, regulates the tumor immune microenvironment crosstalk, accelerates the onset of SKCM and promotes metastatic invasion. Notably, Spint1a deficiency is required at both cell autonomous and non-autonomous levels to enhance invasiveness of SKCM. CONCLUSIONS These results reveal a novel therapeutic target for SKCM.
Collapse
Affiliation(s)
- Elena Gómez-Abenza
- Departamento de Biología Celular e Histología, Facultad de Biología, Universidad de Murcia, Murcia, Spain
- Instituto Murciano de Investigación Biosanitaria (IMIB)-Arrixaca, Murcia, Spain
| | - Sofía Ibáñez-Molero
- Departamento de Biología Celular e Histología, Facultad de Biología, Universidad de Murcia, Murcia, Spain
- Instituto Murciano de Investigación Biosanitaria (IMIB)-Arrixaca, Murcia, Spain
| | - Diana García-Moreno
- Departamento de Biología Celular e Histología, Facultad de Biología, Universidad de Murcia, Murcia, Spain
- Instituto Murciano de Investigación Biosanitaria (IMIB)-Arrixaca, Murcia, Spain
| | - Inmaculada Fuentes
- Departamento de Biología Celular e Histología, Facultad de Biología, Universidad de Murcia, Murcia, Spain
- Instituto Murciano de Investigación Biosanitaria (IMIB)-Arrixaca, Murcia, Spain
| | - Leonard I. Zon
- Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Cambridge, MA USA
- Stem Cell Program and Division of Hematology/Oncology, Boston Children’s Hospital and Dana-Farber Cancer Institute, Howard Hughes Medical Institute, Harvard Stem Cell Institute, Harvard Medical School, Boston, MA USA
| | - Maria C. Mione
- Laboratory of Experimental Cancer Biology, Cibio, University of Trento, Trento, Italy
| | - María L. Cayuela
- Hospital Clínico Universitario Virgen de la Arrixaca, IMIB-Arrixaca, Murcia, Spain
| | - Chiara Gabellini
- Departamento de Biología Celular e Histología, Facultad de Biología, Universidad de Murcia, Murcia, Spain
- Instituto Murciano de Investigación Biosanitaria (IMIB)-Arrixaca, Murcia, Spain
- Present Address: Unit of Cell and Developmental Biology, Department of Biology, University of Pisa, S.S. 12 Abetone e Brennero 4, Pisa, Italy
| | - Victoriano Mulero
- Departamento de Biología Celular e Histología, Facultad de Biología, Universidad de Murcia, Murcia, Spain
- Instituto Murciano de Investigación Biosanitaria (IMIB)-Arrixaca, Murcia, Spain
| |
Collapse
|
28
|
Martínez-Navarro FJ, Martínez-Menchón T, Mulero V, Galindo-Villegas J. Models of human psoriasis: Zebrafish the newly appointed player. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2019; 97:76-87. [PMID: 30953679 DOI: 10.1016/j.dci.2019.03.018] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 02/26/2019] [Accepted: 03/28/2019] [Indexed: 06/09/2023]
Abstract
Psoriasis is a human chronic, immune disease with severe cutaneous and systemic manifestations. Its prevalence, among the world population, highly varies with ethnicity and geography, but not sex from remarkable low levels in Asia to 2.3% in Spain, or an impressive 11.5% in Norway. The pathogenesis of psoriasis derives from complex genetic and environmental interactions, which creates aberrant crosstalk between keratinocytes and variated immune cell, resulting in open amplified inflammatory and pro-proliferative circuits. Both, innate and adaptive immune systems are known to be involved in the response at the cellular and humoral levels. Nevertheless, the exact molecular mechanisms are still under debate. Therefore, discovering useful therapeutic targets to stretch the molecular gaps in psoriasis pathogenesis and its associated comorbidities is still mandatory. So far, some mutagenic or pharmacological studies in vitro or using comparative vertebrate models have provided critical molecular insights and directed the human research. Although highly feasible in rodents, the versatile physiology, genetic similarity to humans and outstanding molecular toolbox available, suggest that elaborate forward genetic screenings are far easier to be conducted using the zebrafish model. Thus, in this review, we intend to briefly overview psoriasis and revise in a digested fashion the preclinical research models available, emphasizing the zebrafish as a powerful tool in the study of immune effectors on the same, and how it supports the discovering of new therapies that may help in controlling this widespread disease around the globe.
Collapse
Affiliation(s)
- F J Martínez-Navarro
- Department of Cell Biology and Histology, Faculty of Biology, Institute of Biomedical Research of Murcia-Arrixaca, Campus Universitario de Espinardo, University of Murcia, 30100, Murcia, Spain
| | - T Martínez-Menchón
- Dermatology Service, Clinical University Hospital Virgen de la Arrixaca, Institute of Biomedical Research of Murcia (IMIB-Arrixaca), El Palmar, 30120, Murcia, Spain
| | - V Mulero
- Department of Cell Biology and Histology, Faculty of Biology, Institute of Biomedical Research of Murcia-Arrixaca, Campus Universitario de Espinardo, University of Murcia, 30100, Murcia, Spain
| | | |
Collapse
|
29
|
Tyrkalska SD, Pérez-Oliva AB, Rodríguez-Ruiz L, Martínez-Morcillo FJ, Alcaraz-Pérez F, Martínez-Navarro FJ, Lachaud C, Ahmed N, Schroeder T, Pardo-Sánchez I, Candel S, López-Muñoz A, Choudhuri A, Rossmann MP, Zon LI, Cayuela ML, García-Moreno D, Mulero V. Inflammasome Regulates Hematopoiesis through Cleavage of the Master Erythroid Transcription Factor GATA1. Immunity 2019; 51:50-63.e5. [PMID: 31174991 DOI: 10.1016/j.immuni.2019.05.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 02/07/2019] [Accepted: 05/14/2019] [Indexed: 10/26/2022]
Abstract
Chronic inflammatory diseases are associated with altered hematopoiesis that could result in neutrophilia and anemia. Here we report that genetic or chemical manipulation of different inflammasome components altered the differentiation of hematopoietic stem and progenitor cells (HSPC) in zebrafish. Although the inflammasome was dispensable for the emergence of HSPC, it was intrinsically required for their myeloid differentiation. In addition, Gata1 transcript and protein amounts increased in inflammasome-deficient larvae, enforcing erythropoiesis and inhibiting myelopoiesis. This mechanism is evolutionarily conserved, since pharmacological inhibition of the inflammasome altered erythroid differentiation of human erythroleukemic K562 cells. In addition, caspase-1 inhibition rapidly upregulated GATA1 protein in mouse HSPC promoting their erythroid differentiation. Importantly, pharmacological inhibition of the inflammasome rescued zebrafish disease models of neutrophilic inflammation and anemia. These results indicate that the inflammasome plays a major role in the pathogenesis of neutrophilia and anemia of chronic diseases and reveal druggable targets for therapeutic interventions.
Collapse
Affiliation(s)
- Sylwia D Tyrkalska
- Departamento de Biología Celular e Histología, Facultad de Biología, Universidad de Murcia, IMIB-Arrixaca, Murcia, Spain
| | - Ana B Pérez-Oliva
- Departamento de Biología Celular e Histología, Facultad de Biología, Universidad de Murcia, IMIB-Arrixaca, Murcia, Spain.
| | - Lola Rodríguez-Ruiz
- Departamento de Biología Celular e Histología, Facultad de Biología, Universidad de Murcia, IMIB-Arrixaca, Murcia, Spain
| | - Francisco J Martínez-Morcillo
- Departamento de Biología Celular e Histología, Facultad de Biología, Universidad de Murcia, IMIB-Arrixaca, Murcia, Spain
| | | | - Francisco J Martínez-Navarro
- Departamento de Biología Celular e Histología, Facultad de Biología, Universidad de Murcia, IMIB-Arrixaca, Murcia, Spain
| | - Christophe Lachaud
- Aix-Marseille University, Inserm, CNRS, Institut Paoli-Calmettes, CRCM, Marseille, France
| | - Nouraiz Ahmed
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Timm Schroeder
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Irene Pardo-Sánchez
- Departamento de Biología Celular e Histología, Facultad de Biología, Universidad de Murcia, IMIB-Arrixaca, Murcia, Spain
| | - Sergio Candel
- Departamento de Biología Celular e Histología, Facultad de Biología, Universidad de Murcia, IMIB-Arrixaca, Murcia, Spain
| | - Azucena López-Muñoz
- Departamento de Biología Celular e Histología, Facultad de Biología, Universidad de Murcia, IMIB-Arrixaca, Murcia, Spain
| | - Avik Choudhuri
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Stem Cell Program and Division of Hematology/Oncology, Children's Hospital Boston, Howard Hughes Medical Institute, Boston, MA 02115, USA
| | - Marlies P Rossmann
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Stem Cell Program and Division of Hematology/Oncology, Children's Hospital Boston, Howard Hughes Medical Institute, Boston, MA 02115, USA
| | - Leonard I Zon
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Stem Cell Program and Division of Hematology/Oncology, Children's Hospital Boston, Howard Hughes Medical Institute, Boston, MA 02115, USA; Dana-Farber Cancer Institute, Boston, MA 02215, USA; Harvard Stem Cell Institute, Boston, MA 02115, USA; Harvard Medical School, Boston, MA 02115, USA
| | - María L Cayuela
- Hospital Clínico Universitario Virgen de la Arrixaca, IMIB-Arrixaca, Murcia, Spain
| | - Diana García-Moreno
- Departamento de Biología Celular e Histología, Facultad de Biología, Universidad de Murcia, IMIB-Arrixaca, Murcia, Spain.
| | - Victoriano Mulero
- Departamento de Biología Celular e Histología, Facultad de Biología, Universidad de Murcia, IMIB-Arrixaca, Murcia, Spain.
| |
Collapse
|
30
|
Chiu YL, Wu YY, Barndt RB, Yeo YH, Lin YW, Sytwo HP, Liu HC, Xu Y, Jia B, Wang JK, Johnson MD, Lin CY. Aberrant regulation favours matriptase proteolysis in neoplastic B-cells that co-express HAI-2. J Enzyme Inhib Med Chem 2019; 34:692-702. [PMID: 30777474 PMCID: PMC6383611 DOI: 10.1080/14756366.2019.1577831] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Matriptase is ectopically expressed in neoplastic B-cells, in which matriptase activity is enhanced by negligible expression of its endogenous inhibitor, hepatocyte growth factor activator inhibitor (HAI)-1. HAI-1, however, is also involved in matriptase synthesis and intracellular trafficking. The lack of HAI-1 indicates that other related inhibitor, such as HAI-2, might be expressed. Here, we show that HAI-2 is commonly co-expressed in matriptase-expressing neoplastic B-cells. The level of active matriptase shed after induction of matriptase zymogen activation in 7 different neoplastic B-cells was next determined and characterised. Our data reveal that active matriptase can only be generated and shed by those cells able to activate matriptase and in a rough correlation with the levels of matriptase protein. While HAI-2 can potently inhibit matriptase, the levels of active matriptase are not proportionally suppressed in those cells with high HAI-2. Our survey suggests that matriptase proteolysis might aberrantly remain high in neoplastic B-cells regardless of the levels of HAI-2.
Collapse
Affiliation(s)
- Yi-Lin Chiu
- a Lombardi Comprehensive Cancer Center, Department of Oncology , Georgetown University , Washington , DC, USA.,b Department of Biochemistry , National Defense Medical Center , Taipei , Taiwan
| | - Yi-Ying Wu
- c Division of Hematology/Oncology, Department of Internal Medicine , Tri-Service General Hospital, National Defense Medical Center , Taipei , Taiwan
| | - Robert B Barndt
- a Lombardi Comprehensive Cancer Center, Department of Oncology , Georgetown University , Washington , DC, USA
| | - Yee Hui Yeo
- a Lombardi Comprehensive Cancer Center, Department of Oncology , Georgetown University , Washington , DC, USA
| | - Yu-Wen Lin
- a Lombardi Comprehensive Cancer Center, Department of Oncology , Georgetown University , Washington , DC, USA.,b Department of Biochemistry , National Defense Medical Center , Taipei , Taiwan
| | - Hou-Ping Sytwo
- d School of Medicine , National Defense Medical Center , Taipei , Taiwan
| | - Huan-Cheng Liu
- a Lombardi Comprehensive Cancer Center, Department of Oncology , Georgetown University , Washington , DC, USA.,e Langley High School , McLean , VA, USA
| | - Yuan Xu
- a Lombardi Comprehensive Cancer Center, Department of Oncology , Georgetown University , Washington , DC, USA
| | - Bailing Jia
- a Lombardi Comprehensive Cancer Center, Department of Oncology , Georgetown University , Washington , DC, USA.,f Department of Gastroenterology , Henan Provincial People's Hospital , Zhengzhou , China
| | - Jehng-Kang Wang
- b Department of Biochemistry , National Defense Medical Center , Taipei , Taiwan
| | - Michael D Johnson
- a Lombardi Comprehensive Cancer Center, Department of Oncology , Georgetown University , Washington , DC, USA
| | - Chen-Yong Lin
- a Lombardi Comprehensive Cancer Center, Department of Oncology , Georgetown University , Washington , DC, USA
| |
Collapse
|
31
|
Wu XX, Yue GGL, Dong JR, Lam CWK, Wong CK, Qiu MH, Lau CBS. Actein Inhibits the Proliferation and Adhesion of Human Breast Cancer Cells and Suppresses Migration in vivo. Front Pharmacol 2018; 9:1466. [PMID: 30618758 PMCID: PMC6299023 DOI: 10.3389/fphar.2018.01466] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 11/30/2018] [Indexed: 12/12/2022] Open
Abstract
Background and purpose: Metastasis is an important cause of death in breast cancer patients. Anti-metastatic agents are urgently needed since standard chemotherapeutics cannot diminish the metastatic rate. Actein, a cycloartane triterpenoid, has been demonstrated to exhibit anti-angiogenic and anti-cancer activities. Its anti-metastatic activity and underlying mechanisms were evaluated in the present study. Methods: The effects of actein on the proliferation, cell cycle phase distribution, migration, motility and adhesion were evaluated using two human breast cancer cell lines, MDA-MB-231 (estrogen receptor-negative) and MCF-7 cells (estrogen receptor-positive) in vitro. Western blots and real-time PCR were employed to examine the protein and mRNA expression of relevant signaling pathways. A human metastatic breast cancer cell xenograft model was established in transparent zebrafish embryos to examine the anti-migration effect of actein in vivo. Results:In vitro results showed that actein treatment significantly decreased cell proliferation, migration and motility. Furthermore, actein significantly caused G1 phase cell cycle arrest and suppressed the protein expression of matrix metalloproteinases of MDA-MB-231 cells. In addition, actein inhibited breast cancer cell adhesion to collagen, also reduced the expression of integrins. Actein treatment down-regulated the protein expression of epidermal growth factor receptor (EGFR), AKT and NF-κB signaling proteins. In vivo results demonstrated that actein (60 μM) significantly decreased the number of zebrafish embryos with migrated cells by 74% and reduced the number of migrated cells in embryos. Conclusion: Actein exhibited anti-proliferative, anti-adhesion and anti-migration activities, with the underlying mechanisms involved the EGFR/AKT and NF-kappaB signalings. These findings shed light for the development of actein as novel anti-migration natural compound for advanced breast cancer.
Collapse
Affiliation(s)
- Xiao-Xiao Wu
- Department of Chemical Pathology, The Chinese University of Hong Kong, Hong Kong, China
| | - Grace Gar-Lee Yue
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Hong Kong, China.,State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Hong Kong, China
| | - Jin-Run Dong
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Christopher Wai-Kei Lam
- State Key Laboratory of Quality Research in Chinese Medicines, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, China
| | - Chun-Kwok Wong
- Department of Chemical Pathology, The Chinese University of Hong Kong, Hong Kong, China.,Institute of Chinese Medicine, The Chinese University of Hong Kong, Hong Kong, China.,State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Hong Kong, China.,Li Dak Sum Yip Yio Chin R & D Centre for Chinese Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Ming-Hua Qiu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Clara Bik-San Lau
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Hong Kong, China.,State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
32
|
Intestinal microbiome adjusts the innate immune setpoint during colonization through negative regulation of MyD88. Nat Commun 2018; 9:4099. [PMID: 30291253 PMCID: PMC6173721 DOI: 10.1038/s41467-018-06658-4] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 09/17/2018] [Indexed: 11/17/2022] Open
Abstract
Host pathways mediating changes in immune states elicited by intestinal microbial colonization are incompletely characterized. Here we describe alterations of the host immune state induced by colonization of germ-free zebrafish larvae with an intestinal microbial community or single bacterial species. We show that microbiota-induced changes in intestinal leukocyte subsets and whole-body host gene expression are dependent on the innate immune adaptor gene myd88. Similar patterns of gene expression are elicited by colonization with conventional microbiome, as well as mono-colonization with two different zebrafish commensal bacterial strains. By studying loss-of-function myd88 mutants, we find that colonization suppresses Myd88 at the mRNA level. Tlr2 is essential for microbiota-induced effects on myd88 transcription and intestinal immune cell composition. It remains unclear how microbial sensing during early-life colonization results in immune homeostasis rather than acute inflammation. Here the authors show that zebrafish larvae colonization suppresses intestinal MyD88, accounting for a considerable proportion of microbiota-induced alterations in immune setpoint.
Collapse
|
33
|
Schepis A, Barker A, Srinivasan Y, Balouch E, Zheng Y, Lam I, Clay H, Hsiao CD, Coughlin SR. Protease signaling regulates apical cell extrusion, cell contacts, and proliferation in epithelia. J Cell Biol 2018; 217:1097-1112. [PMID: 29301867 PMCID: PMC5839797 DOI: 10.1083/jcb.201709118] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 11/27/2017] [Accepted: 12/07/2017] [Indexed: 11/22/2022] Open
Abstract
Mechanisms that sense and regulate epithelial morphogenesis, integrity, and homeostasis are incompletely understood. Protease-activated receptor 2 (Par2), the Par2-activating membrane-tethered protease matriptase, and its inhibitor, hepatocyte activator inhibitor 1 (Hai1), are coexpressed in most epithelia and may make up a local signaling system that regulates epithelial behavior. We explored the role of Par2b in matriptase-dependent skin abnormalities in Hai1a-deficient zebrafish embryos. We show an unexpected role for Par2b in regulation of epithelial apical cell extrusion, roles in regulating proliferation that were opposite in distinct but adjacent epithelial monolayers, and roles in regulating cell-cell junctions, mobility, survival, and expression of genes involved in tissue remodeling and inflammation. The epidermal growth factor receptor Erbb2 and matrix metalloproteinases, the latter induced by Par2b, may contribute to some matriptase- and Par2b-dependent phenotypes and be permissive for others. Our results suggest that local protease-activated receptor signaling can coordinate cell behaviors known to contribute to epithelial morphogenesis and homeostasis.
Collapse
Affiliation(s)
- Antonino Schepis
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA
| | - Adrian Barker
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA
| | - Yoga Srinivasan
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA
| | - Eaman Balouch
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA
| | - Yaowu Zheng
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA
| | - Ian Lam
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA
| | - Hilary Clay
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA
| | - Chung-Der Hsiao
- Department of Bioscience Technology, Chung Yuan Christian University, Chung-Li, Taiwan
| | - Shaun R Coughlin
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA
| |
Collapse
|
34
|
Gore AV, Pillay LM, Venero Galanternik M, Weinstein BM. The zebrafish: A fintastic model for hematopoietic development and disease. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2018; 7:e312. [PMID: 29436122 DOI: 10.1002/wdev.312] [Citation(s) in RCA: 122] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 11/30/2017] [Accepted: 12/03/2017] [Indexed: 12/19/2022]
Abstract
Hematopoiesis is a complex process with a variety of different signaling pathways influencing every step of blood cell formation from the earliest precursors to final differentiated blood cell types. Formation of blood cells is crucial for survival. Blood cells carry oxygen, promote organ development and protect organs in different pathological conditions. Hematopoietic stem and progenitor cells (HSPCs) are responsible for generating all adult differentiated blood cells. Defects in HSPCs or their downstream lineages can lead to anemia and other hematological disorders including leukemia. The zebrafish has recently emerged as a powerful vertebrate model system to study hematopoiesis. The developmental processes and molecular mechanisms involved in zebrafish hematopoiesis are conserved with higher vertebrates, and the genetic and experimental accessibility of the fish and the optical transparency of its embryos and larvae make it ideal for in vivo analysis of hematopoietic development. Defects in zebrafish hematopoiesis reliably phenocopy human blood disorders, making it a highly attractive model system to screen small molecules to design therapeutic strategies. In this review, we summarize the key developmental processes and molecular mechanisms of zebrafish hematopoiesis. We also discuss recent findings highlighting the strengths of zebrafish as a model system for drug discovery against hematopoietic disorders. This article is categorized under: Adult Stem Cells, Tissue Renewal, and Regeneration > Stem Cell Differentiation and Reversion Vertebrate Organogenesis > Musculoskeletal and Vascular Nervous System Development > Vertebrates: Regional Development Comparative Development and Evolution > Organ System Comparisons Between Species.
Collapse
Affiliation(s)
- Aniket V Gore
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, Maryland
| | - Laura M Pillay
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, Maryland
| | - Marina Venero Galanternik
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, Maryland
| | - Brant M Weinstein
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, Maryland
| |
Collapse
|
35
|
Targeted deletion of the zebrafish actin-bundling protein L-plastin (lcp1). PLoS One 2018; 13:e0190353. [PMID: 29293625 PMCID: PMC5749806 DOI: 10.1371/journal.pone.0190353] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2017] [Accepted: 12/13/2017] [Indexed: 01/09/2023] Open
Abstract
Regulation of the cytoskeleton is essential for cell migration in health and disease. Lymphocyte cytosolic protein 1 (lcp1, also called L-plastin) is a hematopoietic-specific actin-bundling protein that is highly conserved in zebrafish, mice and humans. In addition, L-plastin expression is documented as both a genetic marker and a cellular mechanism contributing to the invasiveness of tumors and transformed cell lines. Despite L-plastin’s role in both immunity and cancer, in zebrafish there are no direct studies of its function, and no mutant, knockout or reporter lines available. Using CRISPR-Cas9 genome editing, we generated null alleles of zebrafish lcp1 and examined the phenotypes of these fish throughout the life cycle. Our editing strategy used gRNA to target the second exon of lcp1, producing F0 mosaic fish that were outcrossed to wild types to confirm germline transmission. F1 heterozygotes were then sequenced to identify three unique null alleles, here called ‘Charlie’, ‘Foxtrot’ and ‘Lima’. In silico, each allele truncates the endogenous protein to less than 5% normal size and removes both essential actin-binding domains (ABD1 and ABD2). Although none of the null lines express detectable LCP1 protein, homozygous mutant zebrafish (-/-) can develop and reproduce normally, a finding consistent with that of the L-plastin null mouse (LPL -/-). However, such mice do have a profound immune defect when challenged by lung bacteria. Interestingly, we observed reduced long-term survival of zebrafish lcp1 -/- homozygotes (~30% below the expected numbers) in all three of our knockout lines, with greatest mortality corresponding to the period (4–6 weeks post-fertilization) when the innate immune system is functional, but the adaptive immune system is not yet mature. This suggests that null zebrafish may have reduced capacity to combat opportunistic infections, which are more easily transmissible in the aquatic environment. Overall, our novel mutant lines establish a sound genetic model and an enhanced platform for further studies of L-plastin gene function in hematopoiesis and cancer.
Collapse
|
36
|
Gurol T, Zhou W, Deng Q. MicroRNAs in neutrophils: potential next generation therapeutics for inflammatory ailments. Immunol Rev 2017; 273:29-47. [PMID: 27558326 DOI: 10.1111/imr.12450] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Neutrophils play fundamental roles in both acute and chronic inflammatory conditions, and directly contribute to the immune pathologies in both infectious and autoimmune ailments. MicroRNAs (miRs) regulate homeostasis in health and disease by fine tuning the expression of a network of genes through post-transcriptional regulation. Many miRs are expressed in restricted tissues, regulated by stress and disease, and are emerging as mediators for intercellular communication. MiR profiles have been recently utilized as biomarkers for diagnosis and prognostic purposes. In addition, several miRs are in clinical development for various diseases. A short list of miRs that regulate hematopoiesis and neutrophil development is identified. Unfortunately, very limited information is available regarding how miRs regulate neutrophil migration and activation in vivo. Extensive future work is required, especially in animal models such as mice, to illustrate the pivotal and complex miR-mediated regulatory network. In addition, zebrafish, a vertebrate model organism with conserved innate immunity, potentiated by the availability of imaging and genetic tools, will provide a platform for rapid discovery and characterization of miRs that are relevant to neutrophilic inflammation. Advances in this field are expected to provide the foundation for highly selective miR-based therapy to manipulate neutrophils in infection and inflammatory disorders.
Collapse
Affiliation(s)
- Theodore Gurol
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
| | - Wenqing Zhou
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
| | - Qing Deng
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
| |
Collapse
|
37
|
Vincent WJB, Harvie EA, Sauer JD, Huttenlocher A. Neutrophil derived LTB4 induces macrophage aggregation in response to encapsulated Streptococcus iniae infection. PLoS One 2017; 12:e0179574. [PMID: 28658259 PMCID: PMC5489177 DOI: 10.1371/journal.pone.0179574] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 05/31/2017] [Indexed: 01/10/2023] Open
Abstract
Immune cells sense and react to a multitude of factors including both host and microbe-derived signals. Understanding how cells translate these cues into particular cellular behaviors is a complex yet critical area of study. We have previously shown that both neutrophils and macrophages are important for controlling the fish pathogen Streptococcus iniae. Here, we report both host and bacterial determinants leading to the formation of organized macrophage aggregates as part of the host inflammatory response in a subset of infected larvae. Streptococcal capsule was a required signal for aggregate formation. Macrophage aggregation coincided with NFκB activity, and the formation of these aggregates is mediated by leukotriene B4 (LTB4) produced by neutrophils. Depletion, inhibition, or genetic deletion of leukotriene A4 hydrolase (Lta4h), which catalyzes the last step in LTB4 synthesis, resulted in the absence of macrophage aggregation. Larvae with impaired neutrophil function also had impaired macrophage aggregation; however, aggregate formation was partially rescued with the addition of exogenous LTB4. Neutrophil-specific expression of lta4h was sufficient to rescue macrophage aggregation in Lta4h-deficient larvae and increased host survival following infection. In summary, our findings highlight a novel innate immune response to infection in which specific bacterial products drive neutrophils that modulate macrophage behavior through eicosanoid signaling.
Collapse
Affiliation(s)
- William J. B. Vincent
- Microbiology Doctoral Training Program, Department of Medical Microbiology and Immunology, University of Wisconsin-Madison; Madison, WI; United States of America
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison; Madison, WI; United States of America
| | - Elizabeth A. Harvie
- Microbiology Doctoral Training Program, Department of Medical Microbiology and Immunology, University of Wisconsin-Madison; Madison, WI; United States of America
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison; Madison, WI; United States of America
| | - John-Demian Sauer
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison; Madison, WI; United States of America
| | - Anna Huttenlocher
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison; Madison, WI; United States of America
- Department of Pediatrics, University of Wisconsin-Madison; Madison, WI; United States of America
- * E-mail:
| |
Collapse
|
38
|
Sullivan C, Jurcyzszak D, Goody MF, Gabor KA, Longfellow JR, Millard PJ, Kim CH. Using Zebrafish Models of Human Influenza A Virus Infections to Screen Antiviral Drugs and Characterize Host Immune Cell Responses. J Vis Exp 2017:55235. [PMID: 28190053 PMCID: PMC5352282 DOI: 10.3791/55235] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Each year, seasonal influenza outbreaks profoundly affect societies worldwide. In spite of global efforts, influenza remains an intractable healthcare burden. The principle strategy to curtail infections is yearly vaccination. In individuals who have contracted influenza, antiviral drugs can mitigate symptoms. There is a clear and unmet need to develop alternative strategies to combat influenza. Several animal models have been created to model host-influenza interactions. Here, protocols for generating zebrafish models for systemic and localized human influenza A virus (IAV) infection are described. Using a systemic IAV infection model, small molecules with potential antiviral activity can be screened. As a proof-of-principle, a protocol that demonstrates the efficacy of the antiviral drug Zanamivir in IAV-infected zebrafish is described. It shows how disease phenotypes can be quantified to score the relative efficacy of potential antivirals in IAV-infected zebrafish. In recent years, there has been increased appreciation for the critical role neutrophils play in the human host response to influenza infection. The zebrafish has proven to be an indispensable model for the study of neutrophil biology, with direct impacts on human medicine. A protocol to generate a localized IAV infection in the Tg(mpx:mCherry) zebrafish line to study neutrophil biology in the context of a localized viral infection is described. Neutrophil recruitment to localized infection sites provides an additional quantifiable phenotype for assessing experimental manipulations that may have therapeutic applications. Both zebrafish protocols described faithfully recapitulate aspects of human IAV infection. The zebrafish model possesses numerous inherent advantages, including high fecundity, optical clarity, amenability to drug screening, and availability of transgenic lines, including those in which immune cells such as neutrophils are labeled with fluorescent proteins. The protocols detailed here exploit these advantages and have the potential to reveal critical insights into host-IAV interactions that may ultimately translate into the clinic.
Collapse
Affiliation(s)
- Con Sullivan
- Department of Molecular and Biomedical Sciences, University of Maine; Graduate School of Biomedical Sciences and Engineering, University of Maine
| | - Denise Jurcyzszak
- Department of Molecular and Biomedical Sciences, University of Maine
| | | | - Kristin A Gabor
- Division of Intramural Research, Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, NIH
| | | | - Paul J Millard
- Graduate School of Biomedical Sciences and Engineering, University of Maine; Department of Chemical and Biological Engineering, University of Maine
| | - Carol H Kim
- Department of Molecular and Biomedical Sciences, University of Maine; Graduate School of Biomedical Sciences and Engineering, University of Maine;
| |
Collapse
|
39
|
Chen L, Groenewoud A, Tulotta C, Zoni E, Kruithof-de Julio M, van der Horst G, van der Pluijm G, Ewa Snaar-Jagalska B. A zebrafish xenograft model for studying human cancer stem cells in distant metastasis and therapy response. Methods Cell Biol 2016; 138:471-496. [PMID: 28129855 DOI: 10.1016/bs.mcb.2016.10.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Lethal and incurable bone metastasis is one of the main causes of death in multiple types of cancer. A small subpopulation of cancer stem/progenitor-like cells (CSCs), also known as tumor-initiating cells from heterogenetic cancer is considered to mediate bone metastasis. Although over the past decades numerous studies have been performed in different types of cancer, it is still difficult to track small numbers of CSCs during the onset of metastasis. With use of noninvasive high-resolution imaging, transparent zebrafish embryos can be employed to dynamically visualize cancer progression and reciprocal interaction with stroma in a living organism. Recently we established a zebrafish CSC-xenograft model to visually and functionally analyze the role of CSCs and their interactions with the microenvironment at the onset of metastasis. Given the highly conserved human and zebrafish genome, transplanted human cancer cells are able to respond to zebrafish cytokines, modulate the zebrafish microenvironment, and take advantage of the zebrafish stroma during cancer progression. This chapter delineates the zebrafish CSC-xenograft model as a useful tool for both CSC biological study and anticancer drug screening.
Collapse
Affiliation(s)
- L Chen
- Leiden University, Leiden, The Netherlands
| | | | - C Tulotta
- Leiden University, Leiden, The Netherlands
| | - E Zoni
- University of Bern, Bern, Switzerland; Leiden University Medical Centre, Leiden, The Netherlands
| | - M Kruithof-de Julio
- University of Bern, Bern, Switzerland; Leiden University Medical Centre, Leiden, The Netherlands
| | | | | | | |
Collapse
|
40
|
Chatzopoulou A, Heijmans JPM, Burgerhout E, Oskam N, Spaink HP, Meijer AH, Schaaf MJM. Glucocorticoid-Induced Attenuation of the Inflammatory Response in Zebrafish. Endocrinology 2016; 157:2772-84. [PMID: 27219276 DOI: 10.1210/en.2015-2050] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Glucocorticoids are steroid hormones that are secreted upon stress. Their effects are mediated by the glucocorticoid receptor, which acts as a transcription factor. Because the antiinflammatory activity of glucocorticoids has been well established, they are widely used clinically to treat many inflammatory and immune-related diseases. However, the exact specificity, mechanisms, and level of regulation of different inflammatory pathways have not been fully elucidated. In the present study, a tail fin amputation assay was used in 3-day-old zebrafish larvae to study the immunomodulatory effects of the synthetic glucocorticoid beclomethasone. First, a transcriptome analysis was performed, which showed that upon amputation mainly immune-related genes are regulated. This regulation was inhibited by beclomethasone for 86% of regulated genes. For two immune-related genes, tlr4bb and alox5ap, the amputation-induced increase was not attenuated by beclomethasone. Alox5ap is involved in eicosanoid biosynthesis, but the increase in leukotriene B4 concentration upon amputation was abolished, and lipoxin A4 levels were unaffected by beclomethasone. Furthermore, we studied the migration of neutrophils and macrophages toward the wound site. Our results show that amputation induced migration of both types of leukocytes and that this migration was dependent on de novo protein synthesis. Beclomethasone treatment attenuated the migratory behavior of neutrophils in a glucocorticoid receptor-dependent manner but left the migration of macrophages unaffected. In conclusion, beclomethasone has a dramatic inhibitory effect on the amputation-induced proinflammatory gene regulation, and this is reflected in an inhibition of the neutrophil migration but not the migration of macrophages, which are likely to be involved in inflammation resolution.
Collapse
Affiliation(s)
| | | | - Erik Burgerhout
- Institute of Biology, Leiden University, 2333CC Leiden, The Netherlands
| | - Nienke Oskam
- Institute of Biology, Leiden University, 2333CC Leiden, The Netherlands
| | - Herman P Spaink
- Institute of Biology, Leiden University, 2333CC Leiden, The Netherlands
| | | | - Marcel J M Schaaf
- Institute of Biology, Leiden University, 2333CC Leiden, The Netherlands
| |
Collapse
|
41
|
Koep TH, Jenkins S, M Hammerlund ME, Clemens C, Fracica E, Ekker SC, Enders FT, Huskins WC, Pierret C. Promotion of Influenza Prevention Beliefs and Behaviors through Primary School Science Education. JOURNAL OF COMMUNITY MEDICINE & HEALTH EDUCATION 2016; 6:444. [PMID: 27525193 PMCID: PMC4982516 DOI: 10.4172/2161-0711.1000444] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND School-based campaigns to improve student health have demonstrated short-term success across various health topics. However, evidence of the effectiveness of programs in promoting healthy beliefs and behaviors is limited. We hypothesized that educational curricula teaching the science behind health promotion would increase student knowledge, beliefs and adherence to healthy behaviors, in this case related to influenza. METHODS Integrated Science Education Outreach is a successful education intervention in Rochester, Minnesota public schools that has demonstrated improvements in student learning. Within this program, we designed novel curricula and assessments to determine if gains in knowledge extended to influenza prevention. Further, we coupled InSciEd Out programming with a clinical intervention, Influenza Prevention Prescription Education (IPPE), to compare students' attitudes, intentions and healthy behaviors utilizing surveys and hand hygiene monitoring equipment. RESULTS 95 students participated in (IPPE) in the intervention school. Talking drawings captured improvement in influenza prevention understanding related to hand washing [pre n=17(43%); post n=30(77%)] and vaccination [pre n=2(5%); post n=15(38%)]. Findings from 1024 surveys from 566 students revealed strong baseline understanding and attitudes related to hand washing and cough etiquette (74% or greater positive responses). Automated hand hygiene monitoring in school bathrooms and classrooms estimated compliance for both soap (overall median 63%, IQR 38% to 100%) and hand sanitizer use (0.04 to 0.24 uses per student per day) but did not show significant pre/ post IPPE differences. CONCLUSIONS Student understanding of principles of influenza prevention was reasonably high. Even with this baseline, InSciEd Out and IPPE improved students' unprompted knowledge of behaviors to prevent influenza, as reflected by talking drawings. This novel metric may be more sensitive in capturing knowledge among students than traditional assessment methods. However, IPPE did not produce further significant differences in student attitudes and behaviors regarding the flu.
Collapse
Affiliation(s)
- TH Koep
- Clinical and Translational Sciences, Mayo Graduate School, Mayo Clinic, Rochester, MN, USA
- Department of Biology Teaching and Learning, University of MN, St. Paul, MN, USA
| | - S Jenkins
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - ME M Hammerlund
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - C Clemens
- Clinical and Translational Sciences, Mayo Graduate School, Mayo Clinic, Rochester, MN, USA
| | - E Fracica
- Mayo Medical School, Mayo Clinic, Rochester, MN, USA
| | - SC Ekker
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - FT Enders
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - WC Huskins
- Division of Pediatric Infectious Diseases, Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN, USA
| | - C Pierret
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
42
|
LeBert DC, Squirrell JM, Rindy J, Broadbridge E, Lui Y, Zakrzewska A, Eliceiri KW, Meijer AH, Huttenlocher A. Matrix metalloproteinase 9 modulates collagen matrices and wound repair. Development 2015; 142:2136-46. [PMID: 26015541 DOI: 10.1242/dev.121160] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 05/01/2015] [Indexed: 12/15/2022]
Abstract
Acute and chronic injuries are characterized by leukocyte infiltration into tissues. Although matrix metalloproteinase 9 (Mmp9) has been implicated in both conditions, its role in wound repair remains unclear. We previously reported a zebrafish chronic inflammation mutant caused by an insertion in the hepatocyte growth factor activator inhibitor gene 1 (hai1; also known as spint1) that is characterized by epithelial extrusions and neutrophil infiltration into the fin. Here, we performed a microarray analysis and found increased inflammatory gene expression in the mutant larvae, including a marked increase in mmp9 expression. Depletion of mmp9 partially rescued the chronic inflammation and epithelial phenotypes, in addition to restoring collagen fiber organization, as detected by second-harmonic generation imaging. Additionally, we found that acute wounding induces epithelial cell mmp9 expression and is associated with a thickening of collagen fibers. Interestingly, depletion of mmp9 impaired this collagen fiber reorganization. Moreover, mmp9 depletion impaired tissue regeneration after tail transection, implicating Mmp9 in acute wound repair. Thus, Mmp9 regulates both acute and chronic tissue damage and plays an essential role in collagen reorganization during wound repair.
Collapse
Affiliation(s)
- Danny C LeBert
- Cellular and Molecular Pathology Graduate Program, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Jayne M Squirrell
- Laboratory for Optical and Computational Instrumentation, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Julie Rindy
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Elizabeth Broadbridge
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Yuming Lui
- Laboratory for Optical and Computational Instrumentation, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Anna Zakrzewska
- Institute of Biology, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Kevin W Eliceiri
- Laboratory for Optical and Computational Instrumentation, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Annemarie H Meijer
- Institute of Biology, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Anna Huttenlocher
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI 53706, USA Department of Pediatrics, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
43
|
Fink IR, Benard EL, Hermsen T, Meijer AH, Forlenza M, Wiegertjes GF. Molecular and functional characterization of the scavenger receptor CD36 in zebrafish and common carp. Mol Immunol 2015; 63:381-93. [DOI: 10.1016/j.molimm.2014.09.010] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Revised: 09/11/2014] [Accepted: 09/17/2014] [Indexed: 11/26/2022]
|
44
|
Benard EL, Roobol SJ, Spaink HP, Meijer AH. Phagocytosis of mycobacteria by zebrafish macrophages is dependent on the scavenger receptor Marco, a key control factor of pro-inflammatory signalling. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2014; 47:223-233. [PMID: 25086293 DOI: 10.1016/j.dci.2014.07.022] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Revised: 07/24/2014] [Accepted: 07/25/2014] [Indexed: 06/03/2023]
Abstract
Scavenger receptors on the cell surface of macrophages play an important role in host defence through their ability to bind microbial ligands and induce phagocytosis. Concurrently, signal transduction pathways are initiated that aid in defence mechanisms against the invading microbe. Here we report on the function of scavenger receptor Marco (Macrophage receptor with collagenous structure) during infection of zebrafish embryos with Mycobacterium marinum, a close relative of M. tuberculosis. Morpholino knockdown demonstrates that Marco is required for the rapid phagocytosis of M. marinum following intravenous infection. Furthermore, gene expression analysis shows that Marco controls the initial transient pro-inflammatory response to M. marinum and remains a determining factor for the immune response signature at later stages of infection. Increased bacterial burden following marco knockdown indicates that this scavenger receptor is important for control of M. marinum growth, likely due to delayed phagocytosis and reduced pro-inflammatory signalling observed under conditions of Marco deficiency.
Collapse
Affiliation(s)
- Erica L Benard
- Institute of Biology, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Stefan J Roobol
- Institute of Biology, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Herman P Spaink
- Institute of Biology, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Annemarie H Meijer
- Institute of Biology, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands.
| |
Collapse
|
45
|
Keightley MC, Wang CH, Pazhakh V, Lieschke GJ. Delineating the roles of neutrophils and macrophages in zebrafish regeneration models. Int J Biochem Cell Biol 2014; 56:92-106. [DOI: 10.1016/j.biocel.2014.07.010] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Revised: 06/18/2014] [Accepted: 07/14/2014] [Indexed: 12/24/2022]
|
46
|
Benard EL, Racz PI, Rougeot J, Nezhinsky AE, Verbeek FJ, Spaink HP, Meijer AH. Macrophage-expressed perforins mpeg1 and mpeg1.2 have an anti-bacterial function in zebrafish. J Innate Immun 2014; 7:136-52. [PMID: 25247677 DOI: 10.1159/000366103] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 07/24/2014] [Indexed: 11/19/2022] Open
Abstract
Macrophage-expressed gene 1 (MPEG1) encodes an evolutionarily conserved protein with a predicted membrane attack complex/perforin domain associated with host defence against invading pathogens. In vertebrates, MPEG1/perforin-2 is an integral membrane protein of macrophages, suspected to be involved in the killing of intracellular bacteria by pore-forming activity. Zebrafish have 3 copies of MPEG1; 2 are expressed in macrophages, whereas the third could be a pseudogene. The mpeg1 and mpeg1.2 genes show differential regulation during infection of zebrafish embryos with the bacterial pathogens Mycobacterium marinum and Salmonella typhimurium. While mpeg1 is downregulated during infection with both pathogens, mpeg1.2 is infection inducible. Upregulation of mpeg1.2 is partially dependent on the presence of functional Mpeg1 and requires the Toll-like receptor adaptor molecule MyD88 and the transcription factor NFκB. Knockdown of mpeg1 alters the immune response to M. marinum infection and results in an increased bacterial burden. In Salmonella typhimurium infection, both mpeg1 and mpeg1.2 knockdown increase the bacterial burdens, but mpeg1 morphants show increased survival times. The combined results of these two in vivo infection models support the anti-bacterial function of the MPEG1/perforin-2 family and indicate that the intricate cross-regulation of the two mpeg1 copies aids the zebrafish host in combatting infection of various pathogens.
Collapse
Affiliation(s)
- Erica L Benard
- Institute of Biology, Leiden University, Leiden, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
47
|
Prykhozhij SV, Berman JN. The progress and promise of zebrafish as a model to study mast cells. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2014; 46:74-83. [PMID: 24508982 DOI: 10.1016/j.dci.2014.01.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Revised: 01/29/2014] [Accepted: 01/29/2014] [Indexed: 06/03/2023]
Abstract
Immunological and hematological research using the zebrafish (Danio rerio) has significantly advanced our understanding of blood lineage ontology, cellular functions and mechanisms, and provided opportunities for disease modeling. Mast cells are an immunological cell type involved in innate and adaptive immune systems, hypersensitivity reactions and cancer progression. The application of zebrafish to study mast cell biology exploits the developmental and imaging opportunities inherent in this model system to enable detailed genetic and molecular studies of this lineage outside of traditional mammalian models. In this review, we first place the importance of mast cell research in zebrafish into the context of comparative studies of mast cells in other fish species and highlight its advantages due to superior experimental tractability and direct visualization in transparent embryos. We discuss current and future tools for mast cell research in zebrafish and the notable results of using zebrafish for understanding mast cell fate determination and our development of a systemic mastocytosis model.
Collapse
Affiliation(s)
- Sergey V Prykhozhij
- Department of Pediatrics, Dalhousie University, IWK Health Centre, Halifax, NS B3K 6R8, Canada
| | - Jason N Berman
- Department of Pediatrics, Dalhousie University, IWK Health Centre, Halifax, NS B3K 6R8, Canada.
| |
Collapse
|
48
|
Petrie TA, Strand NS, Yang CT, Tsung-Yang C, Rabinowitz JS, Moon RT. Macrophages modulate adult zebrafish tail fin regeneration. Development 2014; 141:2581-91. [PMID: 24961798 PMCID: PMC4067955 DOI: 10.1242/dev.098459] [Citation(s) in RCA: 237] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Neutrophils and macrophages, as key mediators of inflammation, have defined functionally important roles in mammalian tissue repair. Although recent evidence suggests that similar cells exist in zebrafish and also migrate to sites of injury in larvae, whether these cells are functionally important for wound healing or regeneration in adult zebrafish is unknown. To begin to address these questions, we first tracked neutrophils (lyzC+, mpo+) and macrophages (mpeg1+) in adult zebrafish following amputation of the tail fin, and detailed a migratory timecourse that revealed conserved elements of the inflammatory cell response with mammals. Next, we used transgenic zebrafish in which we could selectively ablate macrophages, which allowed us to investigate whether macrophages were required for tail fin regeneration. We identified stage-dependent functional roles of macrophages in mediating fin tissue outgrowth and bony ray patterning, in part through modulating levels of blastema proliferation. Moreover, we also sought to detail molecular regulators of inflammation in adult zebrafish and identified Wnt/β-catenin as a signaling pathway that regulates the injury microenvironment, inflammatory cell migration and macrophage phenotype. These results provide a cellular and molecular link between components of the inflammation response and regeneration in adult zebrafish.
Collapse
Affiliation(s)
- Timothy A Petrie
- HHMI, Chevy Chase, MD 20815, USA Department of Pharmacology, University of Washington, Seattle, WA 98109, USA
| | - Nicholas S Strand
- HHMI, Chevy Chase, MD 20815, USA Department of Pharmacology, University of Washington, Seattle, WA 98109, USA
| | | | - Chao Tsung-Yang
- Department of Microbiology, University of Washington, Seattle, WA 98105, USA
| | - Jeremy S Rabinowitz
- HHMI, Chevy Chase, MD 20815, USA Department of Pharmacology, University of Washington, Seattle, WA 98109, USA
| | - Randall T Moon
- HHMI, Chevy Chase, MD 20815, USA Department of Pharmacology, University of Washington, Seattle, WA 98109, USA
| |
Collapse
|
49
|
Pimtong W, Datta M, Ulrich AM, Rhodes J. Drl.3 governs primitive hematopoiesis in zebrafish. Sci Rep 2014; 4:5791. [PMID: 25051985 PMCID: PMC4107348 DOI: 10.1038/srep05791] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Accepted: 06/19/2014] [Indexed: 12/16/2022] Open
Abstract
The molecular program controlling hematopoietic differentiation is not fully understood. Here, we describe a family of zebrafish genes that includes a novel hematopoietic regulator, draculin-like 3 (drl.3). We found that drl.3 is expressed in mesoderm-derived hematopoietic cells and is retained during erythroid maturation. Moreover, drl.3 expression correlated with erythroid development in gata1a- and spi1b-depleted embryos. Loss-of-function analysis indicated that drl.3 plays an essential role in primitive erythropoiesis and, to a lesser extent, myelopoiesis that is independent of effects on vasculature, emergence of primitive and definitive progenitor cells and cell viability. While drl.3 depletion reduced gata1a expression and inhibited erythroid development, enforced expression of gata1a was not sufficient to rescue erythropoiesis, indicating that the regulation of hematopoiesis by drl.3 extends beyond control of gata1a expression. Knockdown of drl.3 increased the proportion of less differentiated, primitive hematopoietic cells without affecting proliferation, establishing drl.3 as an important regulator of primitive hematopoietic cell differentiation.
Collapse
Affiliation(s)
- Wittaya Pimtong
- 1] Immune Cell Development and Host Defense Program, Fox Chase Cancer Center, Temple University Health System, Philadelphia, PA, 19111, USA [2]
| | - Madhusmita Datta
- 1] Immune Cell Development and Host Defense Program, Fox Chase Cancer Center, Temple University Health System, Philadelphia, PA, 19111, USA [2]
| | - Allison M Ulrich
- Immune Cell Development and Host Defense Program, Fox Chase Cancer Center, Temple University Health System, Philadelphia, PA, 19111, USA
| | - Jennifer Rhodes
- Immune Cell Development and Host Defense Program, Fox Chase Cancer Center, Temple University Health System, Philadelphia, PA, 19111, USA
| |
Collapse
|
50
|
Veneman WJ, Marín-Juez R, de Sonneville J, Ordas A, Jong-Raadsen S, Meijer AH, Spaink HP. Establishment and optimization of a high throughput setup to study Staphylococcus epidermidis and Mycobacterium marinum infection as a model for drug discovery. J Vis Exp 2014:e51649. [PMID: 24998295 PMCID: PMC4206090 DOI: 10.3791/51649] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Zebrafish are becoming a valuable tool in the preclinical phase of drug discovery screenings as a whole animal model with high throughput screening possibilities. They can be used to bridge the gap between cell based assays at earlier stages and in vivo validation in mammalian models, reducing, in this way, the number of compounds passing through to testing on the much more expensive rodent models. In this light, in the present manuscript is described a new high throughput pipeline using zebrafish as in vivo model system for the study of Staphylococcus epidermidis and Mycobacterium marinum infection. This setup allows the generation and analysis of large number of synchronous embryos homogenously infected. Moreover the flexibility of the pipeline allows the user to easily implement other platforms to improve the resolution of the analysis when needed. The combination of the zebrafish together with innovative high throughput technologies opens the field of drug testing and discovery to new possibilities not only because of the strength of using a whole animal model but also because of the large number of transgenic lines available that can be used to decipher the mode of action of new compounds.
Collapse
|