1
|
Johnson GA, Krishnamoorthy RR, Nagaraj RH, Stankowska DL. A Neuroprotective Peptide Modulates Retinal cAMP Response Element-Binding Protein (CREB), Synapsin I (SYN1), and Growth-Associated Protein 43 (GAP43) in Rats with Silicone Oil-Induced Ocular Hypertension. Biomolecules 2025; 15:219. [PMID: 40001522 PMCID: PMC11852426 DOI: 10.3390/biom15020219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 01/17/2025] [Accepted: 01/25/2025] [Indexed: 02/27/2025] Open
Abstract
This study evaluated the neuroprotective potential of peptain-1 conjugated to a cell-penetrating peptide (CPP-P1) in an ocular hypertension model of glaucoma. Brown Norway (BN) rats were subjected to intraocular pressure (IOP) elevation via intracameral injection of silicone oil (SO), with concurrent intravitreal injections of either CPP-P1 or a vehicle. Retinal cross-sections were analyzed for markers of neuroprotection, including cAMP response element-binding protein (CREB), phosphorylated CREB (p-CREB), growth-associated protein-43 (GAP43), synapsin-1 (SYN1), and superoxide dismutase 2 (SOD2). Hematoxylin and eosin staining was used to assess retinal-layer thickness. SO-treated rats exhibited significant reductions in the thickness of the inner nuclear layer (INL, 41%, p = 0.016), inner plexiform layer (IPL, 52%, p = 0.0002), and ganglion cell layer (GCL, 57%, p = 0.001). CPP-P1 treatment mitigated these reductions, preserving INL thickness by 32% (p = 0.059), IPL by 19% (p = 0.119), and GCL by 31% (p = 0.057). Increased levels of CREB (p = 0.17) and p-CREB (p = 0.04) were observed in IOP-elevated, CPP-P1-treated retinas compared to IOP-elevated, vehicle-treated retinas. Although overall GAP43 levels were low, there was a modest increase in expression within the IPL and GCL in SO- and CPP-P1-treated retinas (p = 0.15 and p = 0.09, respectively) compared to SO- and vehicle-treated retinas. SO injection reduced SYN1 expression in both IPL and GCL (p = 0.01), whereas CPP-P1 treatment significantly increased SYN1 levels in the IPL (p = 0.03) and GCL (p = 0.002). While SOD2 expression in the GCL was minimal across all groups, a trend toward increased expression was observed in CPP-P1-treated animals (p = 0.16). The SO model was replicated with SO removal after 7 days and monitored for 21 days followed by retinal flat-mount preparation to assess retinal ganglion cell (RGC) survival. A 42% loss in RGCs (p = 0.009) was observed in SO-injected eyes, which were reduced by approximately 37% (p = 0.03) with CPP-P1 treatment. These findings suggest that CPP-P1 is a promising neuroprotective agent that promotes retinal ganglion cell survival and the preservation of other retinal neurons, potentially through enhanced CREB signaling in a rat model of SO-induced ocular hypertension.
Collapse
Affiliation(s)
- Gretchen A. Johnson
- North Texas Eye Research Institute, College of Biomedical and Translational Sciences, University of North Texas Health Science Center, Fort Worth, TX 76107, USA (R.R.K.)
- Department of Microbiology, Immunology, and Genetics, College of Biomedical and Translational Sciences, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Raghu R. Krishnamoorthy
- North Texas Eye Research Institute, College of Biomedical and Translational Sciences, University of North Texas Health Science Center, Fort Worth, TX 76107, USA (R.R.K.)
- Department of Pharmacology and Neuroscience, College of Biomedical and Translational Sciences, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Ram H. Nagaraj
- Department of Ophthalmology, School of Medicine, Anschutz Medical Campus, University of Colorado, Aurora, CO 80045, USA;
| | - Dorota L. Stankowska
- North Texas Eye Research Institute, College of Biomedical and Translational Sciences, University of North Texas Health Science Center, Fort Worth, TX 76107, USA (R.R.K.)
- Department of Microbiology, Immunology, and Genetics, College of Biomedical and Translational Sciences, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| |
Collapse
|
2
|
Obeng E, Shen B, Wang W, Xie Z, Zhang W, Li Z, Yao Q, Wu W. Engineered bio-functional material-based nerve guide conduits for optic nerve regeneration: a view from the cellular perspective, challenges and the future outlook. Regen Biomater 2024; 12:rbae133. [PMID: 39776856 PMCID: PMC11703557 DOI: 10.1093/rb/rbae133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/16/2024] [Accepted: 11/03/2024] [Indexed: 01/11/2025] Open
Abstract
Nerve injuries can be tantamount to severe impairment, standard treatment such as the use of autograft or surgery comes with complications and confers a shortened relief. The mechanism relevant to the regeneration of the optic nerve seems yet to be fully uncovered. The prevailing rate of vision loss as a result of direct or indirect insult on the optic nerve is alarming. Currently, the use of nerve guide conduits (NGC) to some extent has proven reliable especially in rodents and among the peripheral nervous system, a promising ground for regeneration and functional recovery, however in the optic nerve, this NGC function seems quite unfamous. The insufficient NGC application and the unabridged regeneration of the optic nerve could be a result of the limited information on cellular and molecular activities. This review seeks to tackle two major factors (i) the cellular and molecular activity involved in traumatic optic neuropathy and (ii) the NGC application for the optic nerve regeneration. The understanding of cellular and molecular concepts encompassed, ocular inflammation, extrinsic signaling and intrinsic signaling for axon growth, mobile zinc role, Ca2+ factor associated with the optic nerve, alternative therapies from nanotechnology based on the molecular information and finally the nanotechnological outlook encompassing applicable biomaterials and the use of NGC for regeneration. The challenges and future outlook regarding optic nerve regenerations are also discussed. Upon the many approaches used, the comprehensive role of the cellular and molecular mechanism may set grounds for the efficient application of the NGC for optic nerve regeneration.
Collapse
Affiliation(s)
- Enoch Obeng
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
- The Eye Hospital, School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou 325027, China
| | - Baoguo Shen
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
- The Eye Hospital, School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou 325027, China
| | - Wei Wang
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
- The Eye Hospital, School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou 325027, China
| | - Zhenyuan Xie
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
- The Eye Hospital, School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou 325027, China
| | - Wenyi Zhang
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
- The Eye Hospital, School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou 325027, China
| | - Zhixing Li
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
- The Eye Hospital, School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou 325027, China
| | - Qinqin Yao
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
- The Eye Hospital, School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou 325027, China
| | - Wencan Wu
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
- The Eye Hospital, School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou 325027, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health), Wenzhou, Zhejiang 325000, China
| |
Collapse
|
3
|
Lukomska A, Rheaume BA, Frost MP, Theune WC, Xing J, Damania A, Trakhtenberg EF. Augmenting fibronectin levels in injured adult CNS promotes axon regeneration in vivo. Exp Neurol 2024; 379:114877. [PMID: 38944331 PMCID: PMC11283980 DOI: 10.1016/j.expneurol.2024.114877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 06/06/2024] [Accepted: 06/25/2024] [Indexed: 07/01/2024]
Abstract
In an attempt to repair injured central nervous system (CNS) nerves/tracts, immune cells are recruited into the injury site, but endogenous response in adult mammals is insufficient for promoting regeneration of severed axons. Here, we found that a portion of retinal ganglion cell (RGC) CNS projection neurons that survive after optic nerve crush (ONC) injury are enriched for and upregulate fibronectin (Fn)-interacting integrins Itga5 and ItgaV, and that Fn promotes long-term survival and long-distance axon regeneration of a portion of axotomized adult RGCs in culture. We then show that, Fn is developmentally downregulated in the axonal tracts of optic nerve and spinal cord, but injury-activated macrophages/microglia upregulate Fn while axon regeneration-promoting zymosan augments their recruitment (and thereby increases Fn levels) in the injured optic nerve. Finally, we found that Fn's RGD motif, established to interact with Itga5 and ItgaV, promotes long-term survival and long-distance axon regeneration of adult RGCs after ONC in vivo, with some axons reaching the optic chiasm when co-treated with Rpl7a gene therapy. Thus, experimentally augmenting Fn levels in the injured CNS is a promising approach for therapeutic neuroprotection and axon regeneration of at least a portion of neurons.
Collapse
Affiliation(s)
- Agnieszka Lukomska
- Department of Neuroscience, University of Connecticut School of Medicine, 263 Farmington Ave., Farmington, CT 06030, USA
| | - Bruce A Rheaume
- Department of Neuroscience, University of Connecticut School of Medicine, 263 Farmington Ave., Farmington, CT 06030, USA
| | - Matthew P Frost
- Department of Neuroscience, University of Connecticut School of Medicine, 263 Farmington Ave., Farmington, CT 06030, USA
| | - William C Theune
- Department of Neuroscience, University of Connecticut School of Medicine, 263 Farmington Ave., Farmington, CT 06030, USA
| | - Jian Xing
- Department of Neuroscience, University of Connecticut School of Medicine, 263 Farmington Ave., Farmington, CT 06030, USA
| | - Ashiti Damania
- Department of Neuroscience, University of Connecticut School of Medicine, 263 Farmington Ave., Farmington, CT 06030, USA
| | - Ephraim F Trakhtenberg
- Department of Neuroscience, University of Connecticut School of Medicine, 263 Farmington Ave., Farmington, CT 06030, USA..
| |
Collapse
|
4
|
Tai WL, Cho KS, Kriukov E, Ashok A, Wang X, Monavarfeshani A, Yan W, Li Y, Guan T, Sanes JR, Baranov P, Chen DF. Suppressing DNMT3a Alleviates the Intrinsic Epigenetic Barrier for Optic Nerve Regeneration and Restores Vision in Adult Mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.17.567614. [PMID: 38014168 PMCID: PMC10680854 DOI: 10.1101/2023.11.17.567614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
The limited regenerative potential of the optic nerve in adult mammals presents a major challenge for restoring vision after optic nerve trauma or disease. The mechanisms of this regenerative failure are not fully understood1,2. Here, through small-molecule and genetic screening for epigenetic modulators3, we identify DNA methyltransferase 3a (DNMT3a) as a potent inhibitor of axon regeneration in mouse and human retinal explants. Selective suppression of DNMT3a in retinal ganglion cells (RGCs) by gene targeting or delivery of shRNA leads to robust, full-length regeneration of RGC axons through the optic nerve and restoration of vision in adult mice after nerve crush injury. Genome-wide bisulfite and transcriptome profiling in combination with single nucleus RNA-sequencing of RGCs revealed selective DNA demethylation and reactivation of genetic programs supporting neuronal survival and axonal growth/regeneration by DNMT3a deficiency. This was accompanied by the suppression of gene networks associated with apoptosis and inflammation. Our results identify DNMT3a as the central orchestrator of an RGC-intrinsic mechanism that limits optic nerve regeneration. Suppressing DNMT3a expression in RGCs unlocks the epigenetic switch for optic nerve regeneration and presents a promising therapeutic avenue for effectively reversing vision loss resulted from optic nerve trauma or diseases.
Collapse
Affiliation(s)
- Wai Lydia Tai
- Schepens Eye Research Institute of Mass Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Kin-Sang Cho
- Schepens Eye Research Institute of Mass Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Emil Kriukov
- Schepens Eye Research Institute of Mass Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Ajay Ashok
- Schepens Eye Research Institute of Mass Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Xuejian Wang
- Schepens Eye Research Institute of Mass Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
- School of Pharmacy, Weifang Medical University, Weifang, Shandong, China
| | - Aboozar Monavarfeshani
- Department of Cellular and Molecular Biology, Center for Brain Science, Harvard University, MA, USA
| | - Wenjun Yan
- Department of Cellular and Molecular Biology, Center for Brain Science, Harvard University, MA, USA
| | - Yingqian Li
- Schepens Eye Research Institute of Mass Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Timothy Guan
- Schepens Eye Research Institute of Mass Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Joshua R Sanes
- Department of Cellular and Molecular Biology, Center for Brain Science, Harvard University, MA, USA
| | - Petr Baranov
- Schepens Eye Research Institute of Mass Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Dong Feng Chen
- Schepens Eye Research Institute of Mass Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
5
|
Pekna M, Siqin S, de Pablo Y, Stokowska A, Torinsson Naluai Å, Pekny M. Astrocyte Responses to Complement Peptide C3a are Highly Context-Dependent. Neurochem Res 2023; 48:1233-1241. [PMID: 36097103 PMCID: PMC10030406 DOI: 10.1007/s11064-022-03743-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 07/07/2022] [Accepted: 08/29/2022] [Indexed: 11/27/2022]
Abstract
Astrocytes perform a range of homeostatic and regulatory tasks that are critical for normal functioning of the central nervous system. In response to an injury or disease, astrocytes undergo a pronounced transformation into a reactive state that involves changes in the expression of many genes and dramatically changes astrocyte morphology and functions. This astrocyte reactivity is highly dependent on the initiating insult and pathological context. C3a is a peptide generated by the proteolytic cleavage of the third complement component. C3a has been shown to exert neuroprotective effects, stimulate neural plasticity and promote astrocyte survival but can also contribute to synapse loss, Alzheimer's disease type neurodegeneration and blood-brain barrier dysfunction. To test the hypothesis that C3a elicits differential effects on astrocytes depending on their reactivity state, we measured the expression of Gfap, Nes, C3ar1, C3, Ngf, Tnf and Il1b in primary mouse cortical astrocytes after chemical ischemia, after exposure to lipopolysaccharide (LPS) as well as in control naïve astrocytes. We found that C3a down-regulated the expression of Gfap, C3 and Nes in astrocytes after ischemia. Further, C3a increased the expression of Tnf and Il1b in naive astrocytes and the expression of Nes in astrocytes exposed to LPS but did not affect the expression of C3ar1 or Ngf. Jointly, these results provide the first evidence that the complement peptide C3a modulates the responses of astrocytes in a highly context-dependent manner.
Collapse
Affiliation(s)
- Marcela Pekna
- Laboratory of Regenerative Neuroimmunology, Department of Clinical Neuroscience, Center for Brain Repair, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Box 440, 405 30, Göteborg, Sweden.
| | - Sumen Siqin
- Laboratory of Regenerative Neuroimmunology, Department of Clinical Neuroscience, Center for Brain Repair, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Box 440, 405 30, Göteborg, Sweden
- Division of Episomal Persistent DNA in Cancer and Chronic Diseases, German Cancer Research Centre (DKFZ), 69120, Heidelberg, Germany
| | - Yolanda de Pablo
- Laboratory of Astrocyte Biology and CNS Regeneration, Department of Clinical Neuroscience, Center for Brain Repair, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Box 440, 405 30, Göteborg, Sweden
| | - Anna Stokowska
- Laboratory of Regenerative Neuroimmunology, Department of Clinical Neuroscience, Center for Brain Repair, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Box 440, 405 30, Göteborg, Sweden
| | - Åsa Torinsson Naluai
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy at the University of Gothenburg, Göteborg, Sweden
| | - Milos Pekny
- Laboratory of Astrocyte Biology and CNS Regeneration, Department of Clinical Neuroscience, Center for Brain Repair, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Box 440, 405 30, Göteborg, Sweden.
- Florey Institute of Neuroscience and and Mental Health, Parkville, Melbourne, Australia.
- University of Newcastle, Newcastle, NSW, Australia.
| |
Collapse
|
6
|
Meng Z, You R, Mahmood A, Yan F, Wang Y. Application of Proteomics Analysis and Animal Models in Optic Nerve Injury Diseases. Brain Sci 2023; 13:404. [PMID: 36979214 PMCID: PMC10046207 DOI: 10.3390/brainsci13030404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/08/2023] [Accepted: 02/14/2023] [Indexed: 03/03/2023] Open
Abstract
Optic nerve damage is a common cause of blindness. Optic nerve injury is often accompanied by fundus vascular disease, retinal ganglion cell apoptosis, and changes in retinal thickness. These changes can cause alterations in protein expression within neurons in the retina. Proteomics analysis offers conclusive evidence to decode a biological system. Furthermore, animal models of optic nerve injury made it possible to gain insight into pathological mechanisms, therapeutic targets, and effective treatment of such injuries. Proteomics takes the proteome as the research object and studies protein changes in cells and tissues. At present, a variety of proteomic analysis methods have been widely used in the research of optic nerve injury diseases. This review summarizes the application of proteomic research in optic nerve injury diseases and animal models of optic nerve injury. Additionally, differentially expressed proteins are summarized and analyzed. Various optic nerve injuries, including those associated with different etiologies, are discussed along with their potential therapeutic targets and future directions.
Collapse
Affiliation(s)
- Zhaoyang Meng
- Department of Ophthalmology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Ran You
- Department of Ophthalmology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Arif Mahmood
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha 410078, China
| | - Fancheng Yan
- Department of Ophthalmology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Yanling Wang
- Department of Ophthalmology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| |
Collapse
|
7
|
Abstract
More than 27 yr ago, the vimentin knockout (Vim-/- ) mouse was reported to develop and reproduce without an obvious phenotype, implying that this major cytoskeletal protein was nonessential. Subsequently, comprehensive and careful analyses have revealed numerous phenotypes in Vim-/- mice and their organs, tissues, and cells, frequently reflecting altered responses in the recovery of tissues following various insults or injuries. These findings have been supported by cell-based experiments demonstrating that vimentin intermediate filaments (IFs) play a critical role in regulating cell mechanics and are required to coordinate mechanosensing, transduction, signaling pathways, motility, and inflammatory responses. This review highlights the essential functions of vimentin IFs revealed from studies of Vim-/- mice and cells derived from them.
Collapse
Affiliation(s)
- Karen M Ridge
- Division of Pulmonary and Critical Care Medicine, Northwestern University, Chicago, Illinois 60611, USA
- Department of Cell and Developmental Biology, Northwestern University, Chicago, Illinois 60611, USA
| | - John E Eriksson
- Cell Biology, Faculty of Science and Technology, Åbo Akademi University, FIN-20521 Turku, Finland
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, FIN-20521 Turku, Finland
- Euro-Bioimaging European Research Infrastructure Consortium (ERIC), FIN-20521 Turku, Finland
| | - Milos Pekny
- Laboratory of Astrocyte Biology and CNS Regeneration, Center for Brain Repair, Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, 413 90 Gothenburg, Sweden
- Florey Institute of Neuroscience and Mental Health, Parkville, Victoria 3052, Australia
- University of Newcastle, Newcastle, New South Wales 2300, Australia
| | - Robert D Goldman
- Division of Pulmonary and Critical Care Medicine, Northwestern University, Chicago, Illinois 60611, USA
- Department of Cell and Developmental Biology, Northwestern University, Chicago, Illinois 60611, USA
| |
Collapse
|
8
|
Reactive Astrocytes Prevent Maladaptive Plasticity after Ischemic Stroke. Prog Neurobiol 2021; 209:102199. [PMID: 34921928 DOI: 10.1016/j.pneurobio.2021.102199] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 10/14/2021] [Accepted: 12/13/2021] [Indexed: 12/24/2022]
Abstract
Restoration of functional connectivity is a major contributor to functional recovery after stroke. We investigated the role of reactive astrocytes in functional connectivity and recovery after photothrombotic stroke in mice with attenuated reactive gliosis (GFAP-/-Vim-/-). Infarct volume and longitudinal functional connectivity changes were determined by in vivo T2-weighted magnetic resonance imaging (MRI) and resting-state functional MRI. Sensorimotor function was assessed with behavioral tests, and glial and neural plasticity responses were quantified in the peri-infarct region. Four weeks after stroke, GFAP-/-Vim-/- mice showed impaired recovery of sensorimotor function and aberrant restoration of global neuronal connectivity. These mice also exhibited maladaptive plasticity responses, shown by higher number of lost and newly formed functional connections between primary and secondary targets of cortical stroke regions and increased peri-infarct expression of the axonal plasticity marker Gap43. We conclude that reactive astrocytes modulate recovery-promoting plasticity responses after ischemic stroke.
Collapse
|
9
|
Matejuk A, Vandenbark AA, Offner H. Cross-Talk of the CNS With Immune Cells and Functions in Health and Disease. Front Neurol 2021; 12:672455. [PMID: 34135852 PMCID: PMC8200536 DOI: 10.3389/fneur.2021.672455] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 04/19/2021] [Indexed: 12/16/2022] Open
Abstract
The immune system's role is much more than merely recognizing self vs. non-self and involves maintaining homeostasis and integrity of the organism starting from early development to ensure proper organ function later in life. Unlike other systems, the central nervous system (CNS) is separated from the peripheral immune machinery that, for decades, has been envisioned almost entirely as detrimental to the nervous system. New research changes this view and shows that blood-borne immune cells (both adaptive and innate) can provide homeostatic support to the CNS via neuroimmune communication. Neurodegeneration is mostly viewed through the lens of the resident brain immune populations with little attention to peripheral circulation. For example, cognition declines with impairment of peripheral adaptive immunity but not with the removal of microglia. Therapeutic failures of agents targeting the neuroinflammation framework (inhibiting immune response), especially in neurodegenerative disorders, call for a reconsideration of immune response contributions. It is crucial to understand cross-talk between the CNS and the immune system in health and disease to decipher neurodestructive and neuroprotective immune mechanisms for more efficient therapeutic strategies.
Collapse
Affiliation(s)
- Agata Matejuk
- Department of Immunology, Collegium Medicum, University of Zielona Góra, Zielona Góra, Poland
| | - Arthur A Vandenbark
- Neuroimmunology Research, VA Portland Health Care System, Portland, OR, United States.,Department of Neurology, Oregon Health and Science University, Portland, OR, United States.,Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, OR, United States
| | - Halina Offner
- Neuroimmunology Research, VA Portland Health Care System, Portland, OR, United States.,Department of Neurology, Oregon Health and Science University, Portland, OR, United States.,Department of Anesthesiology and Perioperative Medicine, Oregon Health and Science University, Portland, OR, United States
| |
Collapse
|
10
|
Morad T, Hendler RM, Canji E, Weiss OE, Sion G, Minnes R, Polaq AHG, Merfeld I, Dubinsky Z, Nesher E, Baranes D. Aragonite-Polylysine: Neuro-Regenerative Scaffolds with Diverse Effects on Astrogliosis. Polymers (Basel) 2020; 12:E2850. [PMID: 33260420 PMCID: PMC7760860 DOI: 10.3390/polym12122850] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 11/21/2020] [Accepted: 11/25/2020] [Indexed: 02/03/2023] Open
Abstract
Biomaterials, especially when coated with adhesive polymers, are a key tool for restorative medicine, being biocompatible and supportive for cell adherence, growth, and function. Aragonite skeletons of corals are biomaterials that support survival and growth of a range of cell types, including neurons and glia. However, it is not known if this scaffold affects neural cell migration or elongation of neuronal and astrocytic processes, prerequisites for initiating repair of damage in the nervous system. To address this, hippocampal cells were aggregated into neurospheres and cultivated on aragonite skeleton of the coral Trachyphyllia geoffroyi (Coral Skeleton (CS)), on naturally occurring aragonite (Geological Aragonite (GA)), and on glass, all pre-coated with the oligomer poly-D-lysine (PDL). The two aragonite matrices promoted equally strong cell migration (4.8 and 4.3-fold above glass-PDL, respectively) and axonal sprouting (1.96 and 1.95-fold above glass-PDL, respectively). However, CS-PDL had a stronger effect than GA-PDL on the promotion of astrocytic processes elongation (1.7 vs. 1.2-fold above glass-PDL, respectively) and expression of the glial fibrillary acidic protein (3.8 vs. and 1.8-fold above glass-PDL, respectively). These differences are likely to emerge from a reaction of astrocytes to the degree of roughness of the surface of the scaffold, which is higher on CS than on GA. Hence, CS-PDL and GA-PDL are scaffolds of strong capacity to derive neural cell movements and growth required for regeneration, while controlling the extent of astrocytic involvement. As such, implants of PDL-aragonites have significant potential as tools for damage repair and the reduction of scar formation in the brain following trauma or disease.
Collapse
Affiliation(s)
- Tzachy Morad
- Department of Molecular Biology, Ariel University, Ariel 4070000, Israel; (T.M.); (R.M.H.); (E.C.); (O.E.W.); (A.H.G.P.); (I.M.); (E.N.)
| | - Roni Mina Hendler
- Department of Molecular Biology, Ariel University, Ariel 4070000, Israel; (T.M.); (R.M.H.); (E.C.); (O.E.W.); (A.H.G.P.); (I.M.); (E.N.)
| | - Eyal Canji
- Department of Molecular Biology, Ariel University, Ariel 4070000, Israel; (T.M.); (R.M.H.); (E.C.); (O.E.W.); (A.H.G.P.); (I.M.); (E.N.)
| | - Orly Eva Weiss
- Department of Molecular Biology, Ariel University, Ariel 4070000, Israel; (T.M.); (R.M.H.); (E.C.); (O.E.W.); (A.H.G.P.); (I.M.); (E.N.)
| | - Guy Sion
- School of Zoology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel;
- Institute for Land Water and Society, Charles Sturt University, P.O. Box 789, Elizabeth Mitchell Drive, Albury, NSW 2642, Australia
| | - Refael Minnes
- Department of Physics, Ariel University, Ariel 4070000, Israel;
| | - Ania Hava Grushchenko Polaq
- Department of Molecular Biology, Ariel University, Ariel 4070000, Israel; (T.M.); (R.M.H.); (E.C.); (O.E.W.); (A.H.G.P.); (I.M.); (E.N.)
| | - Ido Merfeld
- Department of Molecular Biology, Ariel University, Ariel 4070000, Israel; (T.M.); (R.M.H.); (E.C.); (O.E.W.); (A.H.G.P.); (I.M.); (E.N.)
| | - Zvy Dubinsky
- The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel;
| | - Elimelech Nesher
- Department of Molecular Biology, Ariel University, Ariel 4070000, Israel; (T.M.); (R.M.H.); (E.C.); (O.E.W.); (A.H.G.P.); (I.M.); (E.N.)
- Institute for Personalized and Translational Medicine, Ariel University, Ariel 4070000, Israel
| | - Danny Baranes
- Department of Molecular Biology, Ariel University, Ariel 4070000, Israel; (T.M.); (R.M.H.); (E.C.); (O.E.W.); (A.H.G.P.); (I.M.); (E.N.)
| |
Collapse
|
11
|
Matejuk A, Ransohoff RM. Crosstalk Between Astrocytes and Microglia: An Overview. Front Immunol 2020; 11:1416. [PMID: 32765501 PMCID: PMC7378357 DOI: 10.3389/fimmu.2020.01416] [Citation(s) in RCA: 247] [Impact Index Per Article: 49.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 06/02/2020] [Indexed: 12/19/2022] Open
Abstract
Based on discoveries enabled by new technologies and analysis using novel computational tools, neuroscience can be re-conceived in terms of information exchange in dense networks of intercellular connections rather than in the context of individual populations, such as glia or neurons. Cross-talk between neurons and microglia or astrocytes has been addressed, however, the manner in which non-neuronal cells communicate and interact remains less well-understood. We review this intriguing crosstalk among CNS cells, focusing on astrocytes and microglia and how it contributes to brain development and neurodegenerative diseases. The goal of studying these intercellular communications is to promote our ability to combat incurable neurological disorders.
Collapse
Affiliation(s)
- Agata Matejuk
- Department of Immunology, Collegium Medicum, University of Zielona Góra, Zielona Góra, Poland
| | - Richard M Ransohoff
- Third Rock Ventures, Boston, MA, United States.,Department of Cell Biology, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
12
|
Turnbull G, Clarke J, Picard F, Zhang W, Riches P, Li B, Shu W. 3D biofabrication for soft tissue and cartilage engineering. Med Eng Phys 2020; 82:13-39. [PMID: 32709263 DOI: 10.1016/j.medengphy.2020.06.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 05/25/2020] [Accepted: 06/08/2020] [Indexed: 02/07/2023]
Abstract
Soft tissue injuries (STIs) affect patients of all age groups and represent a common worldwide clinical problem, resulting from conditions including trauma, infection, cancer and burns. Within the spectrum of STIs a mixture of tissues can be injured, ranging from skin to underlying nerves, blood vessels, tendons and cartilaginous tissues. However, significant limitations affect current treatment options and clinical demand for soft tissue and cartilage regenerative therapies continues to rise. Improving the regeneration of soft tissues has therefore become a key area of focus within tissue engineering. As an emerging technology, 3D bioprinting can be used to build complex soft tissue constructs "from the bottom up," by depositing cells, growth factors, extracellular matrices and other biomaterials in a layer-by-layer fashion. In this way, regeneration of cartilage, skin, vasculature, nerves, tendons and other bodily tissues can be performed in a patient specific manner. This review will focus on recent use of 3D bioprinting and other biofabrication strategies in soft tissue repair and regeneration. Biofabrication of a variety of soft tissue types will be reviewed following an overview of available cell sources, bioinks and bioprinting techniques.
Collapse
Affiliation(s)
- Gareth Turnbull
- Department of Biomedical Engineering, Wolfson Building, University of Strathclyde, 106 Rottenrow, Glasgow G4 0NW, United Kingdom; Department of Orthopaedic Surgery, Golden Jubilee National Hospital, Agamemnon St, Clydebank G81 4DY, United Kingdom
| | - Jon Clarke
- Department of Orthopaedic Surgery, Golden Jubilee National Hospital, Agamemnon St, Clydebank G81 4DY, United Kingdom
| | - Frédéric Picard
- Department of Biomedical Engineering, Wolfson Building, University of Strathclyde, 106 Rottenrow, Glasgow G4 0NW, United Kingdom; Department of Orthopaedic Surgery, Golden Jubilee National Hospital, Agamemnon St, Clydebank G81 4DY, United Kingdom
| | - Weidong Zhang
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Orthopedic Institute, Soochow University, Suzhou, Jiangsu, China
| | - Philip Riches
- Department of Biomedical Engineering, Wolfson Building, University of Strathclyde, 106 Rottenrow, Glasgow G4 0NW, United Kingdom
| | - Bin Li
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Orthopedic Institute, Soochow University, Suzhou, Jiangsu, China
| | - Wenmiao Shu
- Department of Biomedical Engineering, Wolfson Building, University of Strathclyde, 106 Rottenrow, Glasgow G4 0NW, United Kingdom.
| |
Collapse
|
13
|
Targeted Krüppel-Like Factor 4 Gene Knock-Out in Retinal Ganglion Cells Improves Visual Function in Multiple Sclerosis Mouse Model. eNeuro 2020; 7:ENEURO.0320-19.2020. [PMID: 32165410 PMCID: PMC7139550 DOI: 10.1523/eneuro.0320-19.2020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 02/12/2020] [Accepted: 02/20/2020] [Indexed: 12/26/2022] Open
Abstract
Axonal demyelination injury and neuronal degeneration are the primary causes of visual disability in multiple sclerosis (MS)-linked optic neuritis patients. Immunomodulatory therapies targeting inflammation have failed to avert the disease progression and no therapies exist to prevent the neuronal deficits seen in MS to date. Neuroprotective strategies targeting oligodendrocytes and astroglia have shown limited success due to a lack of axonal regeneration from injured neurons. In this study, we used the chronic experimental autoimmune encephalomyelitis (EAE) mouse model of MS to investigate the axonal regenerative approach to improve the neuronal function. Our approach focused on targeted knock-out (KO) of the developmentally regulated axon growth inhibitory Krüppel-like factor 4 (Klf4) gene in retinal ganglion cells (RGCs) of Klf4fl/flmice by intravitreal delivery of AAV2-Cre-ires-EGFP recombinant virus (1) at the time of EAE sensitization and (2) after the onset of optic neuritis-mediated visual defects in the mice. Klf4 gene KO performed simultaneous with EAE sensitization prevented the visual loss as assessed by pattern electroretinograms (PERGs) in the mice and protected the RGCs from EAE-mediated death. More importantly, however, Klf4 gene KO after the onset of optic neuritis also resulted in RGC neuroprotection with additional restoration of their function, thereby improving the visual function outcomes in the EAE model. This study establishes the efficacy of Klf4 targeted knock-down in EAE even after the onset of disease symptoms, and thus should be further explored as a potential treatment strategy for MS/optic neuritis patients.
Collapse
|
14
|
Lasič E, Trkov Bobnar S, Wilhelmsson U, Pablo Y, Pekny M, Zorec R, Stenovec M. Nestin affects fusion pore dynamics in mouse astrocytes. Acta Physiol (Oxf) 2020; 228:e13399. [PMID: 31597221 DOI: 10.1111/apha.13399] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 09/17/2019] [Accepted: 09/30/2019] [Indexed: 12/15/2022]
Abstract
AIM Astrocytes play a homeostatic role in the central nervous system and influence numerous aspects of neurophysiology via intracellular trafficking of vesicles. Intermediate filaments (IFs), also known as nanofilaments, regulate a number of cellular processes including organelle trafficking and adult hippocampal neurogenesis. We have recently demonstrated that the IF protein nestin, a marker of neural stem cells and immature and reactive astrocytes, is also expressed in some astrocytes in the unchallenged hippocampus and regulates neurogenesis through Notch signalling from astrocytes to neural stem cells, possibly via altered trafficking of vesicles containing the Notch ligand Jagged-1. METHODS We thus investigated whether nestin affects vesicle dynamics in astrocytes by examining single vesicle interactions with the plasmalemma and vesicle trafficking with high-resolution cell-attached membrane capacitance measurements and confocal microscopy. We used cell cultures of astrocytes from nestin-deficient (Nes-/- ) and wild-type (wt) mice, and fluorescent dextran and Fluo-2 to examine vesicle mobility and intracellular Ca2+ concentration respectively. RESULTS Nes-/- astrocytes exhibited altered sizes of vesicles undergoing full fission and transient fusion, altered vesicle fusion pore geometry and kinetics, decreased spontaneous vesicle mobility and altered ATP-evoked mobility. Purinergic stimulation evoked Ca2+ signalling that was slightly attenuated in Nes-/- astrocytes, which exhibited more oscillatory Ca2+ responses than wt astrocytes. CONCLUSION These results demonstrate at the single vesicle level that nestin regulates vesicle interactions with the plasmalemma and vesicle trafficking, indicating its potential role in astrocyte vesicle-based communication.
Collapse
Affiliation(s)
- Eva Lasič
- Laboratory of Neuroendocrinology‐Molecular Cell Physiology Institute of Pathophysiology Faculty of Medicine University of Ljubljana Ljubljana Slovenia
| | - Saša Trkov Bobnar
- Laboratory of Neuroendocrinology‐Molecular Cell Physiology Institute of Pathophysiology Faculty of Medicine University of Ljubljana Ljubljana Slovenia
- Celica Biomedical Ljubljana Slovenia
| | - Ulrika Wilhelmsson
- Laboratory of Astrocyte Biology and CNS Regeneration Center for Brain Repair Department of Clinical Neuroscience Institute of Neuroscience and Physiology Sahlgrenska Academy at the University of Gothenburg Gothenburg Sweden
| | - Yolanda Pablo
- Laboratory of Astrocyte Biology and CNS Regeneration Center for Brain Repair Department of Clinical Neuroscience Institute of Neuroscience and Physiology Sahlgrenska Academy at the University of Gothenburg Gothenburg Sweden
| | - Milos Pekny
- Laboratory of Astrocyte Biology and CNS Regeneration Center for Brain Repair Department of Clinical Neuroscience Institute of Neuroscience and Physiology Sahlgrenska Academy at the University of Gothenburg Gothenburg Sweden
- Florey Institute of Neuroscience and Mental Health Parkville Vic. Australia
- University of Newcastle Newcastle NSW Australia
| | - Robert Zorec
- Laboratory of Neuroendocrinology‐Molecular Cell Physiology Institute of Pathophysiology Faculty of Medicine University of Ljubljana Ljubljana Slovenia
- Celica Biomedical Ljubljana Slovenia
| | - Matjaž Stenovec
- Laboratory of Neuroendocrinology‐Molecular Cell Physiology Institute of Pathophysiology Faculty of Medicine University of Ljubljana Ljubljana Slovenia
- Celica Biomedical Ljubljana Slovenia
| |
Collapse
|
15
|
Wilhelmsson U, Pozo-Rodrigalvarez A, Kalm M, de Pablo Y, Widestrand Å, Pekna M, Pekny M. The role of GFAP and vimentin in learning and memory. Biol Chem 2020; 400:1147-1156. [PMID: 31063456 DOI: 10.1515/hsz-2019-0199] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 04/11/2019] [Indexed: 11/15/2022]
Abstract
Intermediate filaments (also termed nanofilaments) are involved in many cellular functions and play important roles in cellular responses to stress. The upregulation of glial fibrillary acidic protein (GFAP) and vimentin (Vim), intermediate filament proteins of astrocytes, is the hallmark of astrocyte activation and reactive gliosis in response to injury, ischemia or neurodegeneration. Reactive gliosis is essential for the protective role of astrocytes at acute stages of neurotrauma or ischemic stroke. However, GFAP and Vim were also linked to neural plasticity and regenerative responses in healthy and injured brain. Mice deficient for GFAP and vimentin (GFAP-/-Vim-/-) exhibit increased post-traumatic synaptic plasticity and increased basal and post-traumatic hippocampal neurogenesis. Here we assessed the locomotor and exploratory behavior of GFAP-/-Vim-/- mice, their learning, memory and memory extinction, by using the open field, object recognition and Morris water maze tests, trace fear conditioning, and by recording reversal learning in IntelliCages. While the locomotion, exploratory behavior and learning of GFAP-/-Vim-/- mice, as assessed by object recognition, the Morris water maze, and trace fear conditioning tests, were comparable to wildtype mice, GFAP-/-Vim-/- mice showed more pronounced memory extinction when tested in IntelliCages, a finding compatible with the scenario of an increased rate of reorganization of the hippocampal circuitry.
Collapse
Affiliation(s)
- Ulrika Wilhelmsson
- Laboratory of Astrocyte Biology and CNS Regeneration, Center for Brain Repair, Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Box 440, S-40530 Gothenburg, Sweden
| | - Andrea Pozo-Rodrigalvarez
- Laboratory of Regenerative Neuroimmunology, Center for Brain Repair, Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, S-40530 Gothenburg, Sweden
| | - Marie Kalm
- Department of Pharmacology, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, S-40530 Gothenburg, Sweden
| | - Yolanda de Pablo
- Laboratory of Astrocyte Biology and CNS Regeneration, Center for Brain Repair, Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Box 440, S-40530 Gothenburg, Sweden
| | - Åsa Widestrand
- Laboratory of Astrocyte Biology and CNS Regeneration, Center for Brain Repair, Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Box 440, S-40530 Gothenburg, Sweden
| | - Marcela Pekna
- Laboratory of Regenerative Neuroimmunology, Center for Brain Repair, Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, S-40530 Gothenburg, Sweden.,Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia.,University of Newcastle, Newcastle, NSW, Australia
| | - Milos Pekny
- Laboratory of Astrocyte Biology and CNS Regeneration, Center for Brain Repair, Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Box 440, S-40530 Gothenburg, Sweden.,Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia.,University of Newcastle, Newcastle, NSW, Australia
| |
Collapse
|
16
|
Wilhelmsson U, Stillemark-Billton P, Borén J, Pekny M. Vimentin is required for normal accumulation of body fat. Biol Chem 2020; 400:1157-1162. [PMID: 30995202 DOI: 10.1515/hsz-2019-0170] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 04/11/2019] [Indexed: 01/01/2023]
Abstract
Intermediate filaments (nanofilaments) have many functions, especially in response to cellular stress. Mice lacking vimentin (Vim-/-) display phenotypes reflecting reduced levels of cell activation and ability to counteract stress, for example, decreased reactivity of astrocytes after neurotrauma, decreased migration of astrocytes and fibroblasts, attenuated inflammation and fibrosis in lung injury, delayed wound healing, impaired vascular adaptation to nephrectomy, impaired transendothelial migration of lymphocytes and attenuated atherosclerosis. To address the role of vimentin in fat accumulation, we assessed the body weight and fat by dual-energy X-ray absorptiometry (DEXA) in Vim-/- and matched wildtype (WT) mice. While the weight of 1.5-month-old Vim-/- and WT mice was comparable, Vim-/- mice showed decreased body weight at 3.5, 5.5 and 8.5 months (males by 19-22%, females by 18-29%). At 8.5 months, Vim-/- males and females had less body fat compared to WT mice (a decrease by 24%, p < 0.05, and 33%, p < 0.0001, respectively). The body mass index in 8.5 months old Vim-/- mice was lower in males (6.8 vs. 7.8, p < 0.005) and females (6.0 vs. 7.7, p < 0.0001) despite the slightly lower body length of Vim-/- mice. Increased mortality was observed in adult Vim-/- males. We conclude that vimentin is required for the normal accumulation of body fat.
Collapse
Affiliation(s)
- Ulrika Wilhelmsson
- Laboratory of Astrocyte Biology and CNS Regeneration, Center for Brain Repair, Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Box 440, S-40530 Gothenburg, Sweden
| | - Pia Stillemark-Billton
- Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Sahlgrenska Academy at the University of Gothenburg, S-40530 Gothenburg, Sweden
| | - Jan Borén
- Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Sahlgrenska Academy at the University of Gothenburg, S-40530 Gothenburg, Sweden
| | - Milos Pekny
- Laboratory of Astrocyte Biology and CNS Regeneration, Center for Brain Repair, Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Box 440, S-40530 Gothenburg, Sweden.,Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia.,University of Newcastle, Newcastle, NSW, Australia
| |
Collapse
|
17
|
Nestin Null Mice Show Improved Reversal Place Learning. Neurochem Res 2019; 45:215-220. [PMID: 31562576 PMCID: PMC6942580 DOI: 10.1007/s11064-019-02854-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 07/04/2019] [Accepted: 08/03/2019] [Indexed: 01/01/2023]
Abstract
The intermediate filament protein nestin is expressed by neural stem cells, but also by some astrocytes in the neurogenic niche of the hippocampus in the adult rodent brain. We recently reported that nestin-deficient (Nes−/−) mice showed increased adult hippocampal neurogenesis, reduced Notch signaling from Nes−/− astrocytes to the neural stem cells, and impaired long-term memory. Here we assessed learning and memory of Nes−/− mice in a home cage set up using the IntelliCage system, in which the mice learn in which cage corner a nose poke earns access to drinking water. Nes−/− and wildtype mice showed comparable place learning assessed as the incorrect corner visit ratio and the incorrect nose poke ratio. However, during reversal place learning, a more challenging task, Nes−/− mice, compared to wildtype mice, showed improved learning over time demonstrated by the incorrect visit ratio and improved memory extinction over time assessed as nose pokes per visit to the previous drinking corner. In addition, Nes−/− mice showed increased explorative activity as judged by the increased total numbers of corner visits and nose pokes. We conclude that Nes−/− mice exhibit improved reversal place learning and memory extinction, a finding which together with the previous results supports the concept of the dual role of hippocampal neurogenesis in cognitive functions.
Collapse
|
18
|
de Pablo Y, Marasek P, Pozo-Rodrigálvarez A, Wilhelmsson U, Inagaki M, Pekna M, Pekny M. Vimentin Phosphorylation Is Required for Normal Cell Division of Immature Astrocytes. Cells 2019; 8:cells8091016. [PMID: 31480524 PMCID: PMC6769829 DOI: 10.3390/cells8091016] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 08/20/2019] [Accepted: 08/28/2019] [Indexed: 12/17/2022] Open
Abstract
Vimentin (VIM) is an intermediate filament (nanofilament) protein expressed in multiple cell types, including astrocytes. Mice with VIM mutations of serine sites phosphorylated during mitosis (VIMSA/SA) show cytokinetic failure in fibroblasts and lens epithelial cells, chromosomal instability, facilitated cell senescence, and increased neuronal differentiation of neural progenitor cells. Here we report that in vitro immature VIMSA/SA astrocytes exhibit cytokinetic failure and contain vimentin accumulations that co-localize with mitochondria. This phenotype is transient and disappears with VIMSA/SA astrocyte maturation and expression of glial fibrillary acidic protein (GFAP); it is also alleviated by the inhibition of cell proliferation. To test the hypothesis that GFAP compensates for the effect of VIMSA/SA in astrocytes, we crossed the VIMSA/SA and GFAP−/− mice. Surprisingly, the fraction of VIMSA/SA immature astrocytes with abundant vimentin accumulations was reduced when on GFAP−/− background. This indicates that the disappearance of vimentin accumulations and cytokinetic failure in mature astrocyte cultures are independent of GFAP expression. Both VIMSA/SA and VIMSA/SAGFAP−/− astrocytes showed normal mitochondrial membrane potential and vulnerability to H2O2, oxygen/glucose deprivation, and chemical ischemia. Thus, mutation of mitotic phosphorylation sites in vimentin triggers formation of vimentin accumulations and cytokinetic failure in immature astrocytes without altering their vulnerability to oxidative stress.
Collapse
Affiliation(s)
- Yolanda de Pablo
- Laboratory of Astrocyte Biology and CNS Regeneration, Center for Brain Repair, Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, 40530 Gothenburg, Sweden
| | - Pavel Marasek
- Laboratory of Astrocyte Biology and CNS Regeneration, Center for Brain Repair, Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, 40530 Gothenburg, Sweden
| | - Andrea Pozo-Rodrigálvarez
- Laboratory of Regenerative Neuroimmunology, Center for Brain Repair, Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, 40530 Gothenburg, Sweden
| | - Ulrika Wilhelmsson
- Laboratory of Astrocyte Biology and CNS Regeneration, Center for Brain Repair, Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, 40530 Gothenburg, Sweden
| | - Masaki Inagaki
- Department of Physiology, Mie University Graduate School of Medicine, Mie 5148507, Japan
| | - Marcela Pekna
- Laboratory of Regenerative Neuroimmunology, Center for Brain Repair, Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, 40530 Gothenburg, Sweden
- Florey Institute of Neuroscience and Mental Health, Parkville, Victoria 3052, Australia
- University of Newcastle, New South Wales 2308, Australia
| | - Milos Pekny
- Laboratory of Astrocyte Biology and CNS Regeneration, Center for Brain Repair, Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, 40530 Gothenburg, Sweden.
- Florey Institute of Neuroscience and Mental Health, Parkville, Victoria 3052, Australia.
- University of Newcastle, New South Wales 2308, Australia.
| |
Collapse
|
19
|
Mertsch S, Schlicht K, Melkonyan H, Schlatt S, Thanos S. snRPN controls the ability of neurons to regenerate axons. Restor Neurol Neurosci 2018; 36:31-43. [PMID: 29439367 DOI: 10.3233/rnn-170780] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Retinal ganglion cells (RGCs) of mammals lose the ability to regenerate injured axons during postnatal maturation, but little is known about the underlying molecular mechanisms. OBJECTIVE It remains of particular importance to understand the mechanisms of axonal regeneration to develop new therapeutic approaches for nerve injuries. METHODS Retinas from newborn to adult monkeys (Callithrix jacchus)1 were obtained immediately after death and cultured in vitro. Growths of axons were monitored using microscopy and time-lapse video cinematography. Immunohistochemistry, Western blotting, qRT-PCR, and genomics were performed to characterize molecules associated with axonal regeneration and growth. A genomic screen was performed by using retinal explants versus native and non-regenerative explants obtained from eye cadavers on the day of birth, and hybridizing the mRNA with cross-reacting cDNA on conventional human microarrays. Followed the genomic screen, siRNA experiments were conducted to identify the functional involvement of identified candidates. RESULTS Neuron-specific human ribonucleoprotein N (snRPN) was found to be a potential regulator of impaired axonal regeneration during neuronal maturation in these animals. In particular, up-regulation of snRPN was observed during retinal maturation, coinciding with a decline in regenerative ability. Axon regeneration was reactivated in snRPN-knockout retinal ex vivo explants of adult monkey. CONCLUSION These results suggest that coordinated snRPN-driven activities within the neuron-specific ribonucleoprotein complex regulate the regenerative ability of RGCs in primates, thereby highlighting a potential new role for snRPN within neurons and the possibility of novel postinjury therapies.
Collapse
Affiliation(s)
- Sonja Mertsch
- Institute of Experimental Ophthalmology and DFG-Excellence Center, Cells in Motion (CiM, area C.4), School of Medicine, University of Münster, Münster, Germany.,Department of Ophthalmology, Laboratory of Experimental Ophthalmology, University Clinic Duesseldorf, Duesseldorf, Germany
| | - Katrin Schlicht
- Institute of Experimental Ophthalmology and DFG-Excellence Center, Cells in Motion (CiM, area C.4), School of Medicine, University of Münster, Münster, Germany
| | - Harutyun Melkonyan
- Institute of Experimental Ophthalmology and DFG-Excellence Center, Cells in Motion (CiM, area C.4), School of Medicine, University of Münster, Münster, Germany
| | - Stefan Schlatt
- Institute of Regenerative Medicine (CeRA) and DFG-Excellence Center, Cells in Motion (CiM, area A.2), School of Medicine, University of Münster, Münster, Germany
| | - Solon Thanos
- Institute of Experimental Ophthalmology and DFG-Excellence Center, Cells in Motion (CiM, area C.4), School of Medicine, University of Münster, Münster, Germany
| |
Collapse
|
20
|
Zhao H, Lu Y, Wang Y, Han X, Zhang Y, Han B, Wang T, Li Y, Wang S. Electroacupunture contributes to recovery of neurological deficits in experimental stroke by activating astrocytes. Restor Neurol Neurosci 2018; 36:301-312. [PMID: 29758953 DOI: 10.3233/rnn-170722] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Neurological deficits is one of the most prevalent clinical manifestation after stroke. The effects of astrocytes activated by electroacupunture (EA) after stroke on the neurological recovery in middle cerebral artery occlusion (MCAO) rats was not clear and definite. OBJECTIVE Our previous study showed that treatment with EA for 7 days contributed to the activation of astrocytes in MCAO rats. The purposes of this study were to 1) confirm the effects of EA for 14 days on activation of astrocytes in MCAO rats, and 2) test the relationships between activation of astrocytes and neurological functional recovery induced by EA in MCAO rats. METHODS All rats were randomly divided into five groups: naïve control group, sham control control group, MCAO, MCAO/EAn, MCAO/EAd (n = 8, for each group). Rats in MCAO/EAn group received EA treatment at acupoints of Neiguan (PC06). MCAO/EAd group received EA stimulus at acupoints of Diji (SP08). The primary indicators were locomotor recovery, histopathology, immunohistochemistry, RT-PCR and Western blot. RESULTS The neurological deficit and histopathological improvements and activation of astrocytes were observed after EA treatment at acupoints PC06. Parametric correlation analyses revealed a cubic correlation relationship between activation of astrocytes and neurological recovery of MCAO rats treated with EA. CONCLUSION EA treatment at the acupoints of Neiguan involved in the regulation of activation of astrocytes, which our data suggested has a cubic correlation relationship with the neurological recovery of MCAO rats.
Collapse
Affiliation(s)
- Haijun Zhao
- Department of Anatomy and Histology, College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Changqing District, Jinan, Shandong, China
| | - Yan Lu
- Department of Experimental Acupuncture Science, College of Acumox and Tuina, Shandong University of Traditional Chinese Medicine, Changqing District, Jinan, Shandong, China
| | - Yuan Wang
- Department of Anatomy and Histology, College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Changqing District, Jinan, Shandong, China
| | - Xiaochun Han
- Department of Preventive Medicine, College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Changqing District, Jinan, Shandong, China
| | - Yanan Zhang
- Department of Pathology, College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Changqing District, Jinan, Shandong, China
| | - Bingbing Han
- Department of Pathology, College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Changqing District, Jinan, Shandong, China
| | - Tong Wang
- Department of Traditional Chinese Medicine Nursing, College of Nursing Care, Shandong University of Traditional Chinese Medicine, Changqing District, Jinan, China
| | - Yan Li
- Department of Pathology, College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Changqing District, Jinan, Shandong, China.,Department of Pharmaceutical Engineering, School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology, Changqing District, Jinan, Shandong, China
| | - Shijun Wang
- Department of Pathology, College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Changqing District, Jinan, Shandong, China
| |
Collapse
|
21
|
Commensal microflora-induced T cell responses mediate progressive neurodegeneration in glaucoma. Nat Commun 2018; 9:3209. [PMID: 30097565 PMCID: PMC6086830 DOI: 10.1038/s41467-018-05681-9] [Citation(s) in RCA: 199] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 07/18/2018] [Indexed: 01/18/2023] Open
Abstract
Glaucoma is the most prevalent neurodegenerative disease and a leading cause of blindness worldwide. The mechanisms causing glaucomatous neurodegeneration are not fully understood. Here we show, using mice deficient in T and/or B cells and adoptive cell transfer, that transient elevation of intraocular pressure (IOP) is sufficient to induce T-cell infiltration into the retina. This T-cell infiltration leads to a prolonged phase of retinal ganglion cell degeneration that persists after IOP returns to a normal level. Heat shock proteins (HSP) are identified as target antigens of T-cell responses in glaucomatous mice and human glaucoma patients. Furthermore, retina-infiltrating T cells cross-react with human and bacterial HSPs; mice raised in the absence of commensal microflora do not develop glaucomatous T-cell responses or the associated neurodegeneration. These results provide compelling evidence that glaucomatous neurodegeneration is mediated in part by T cells that are pre-sensitized by exposure to commensal microflora.
Collapse
|
22
|
Stark DT, Anderson DMG, Kwong JMK, Patterson NH, Schey KL, Caprioli RM, Caprioli J. Optic Nerve Regeneration After Crush Remodels the Injury Site: Molecular Insights From Imaging Mass Spectrometry. Invest Ophthalmol Vis Sci 2018; 59:212-222. [PMID: 29340649 PMCID: PMC5770179 DOI: 10.1167/iovs.17-22509] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose Mammalian central nervous system axons fail to regenerate after injury. Contributing factors include limited intrinsic growth capacity and an inhibitory glial environment. Inflammation-induced optic nerve regeneration (IIR) is thought to boost retinal ganglion cell (RGC) intrinsic growth capacity through progrowth gene expression, but effects on the inhibitory glial environment of the optic nerve are unexplored. To investigate progrowth molecular changes associated with reactive gliosis during IIR, we developed an imaging mass spectrometry (IMS)-based approach that identifies discriminant molecular signals in and around optic nerve crush (ONC) sites. Methods ONC was performed in rats, and IIR was established by intravitreal injection of a yeast cell wall preparation. Optic nerves were collected at various postcrush intervals, and longitudinal sections were analyzed with matrix-assisted laser desorption/ionization (MALDI) IMS and data mining. Immunohistochemistry and confocal microscopy were used to compare discriminant molecular features with cellular features of reactive gliosis. Results IIR increased the area of the crush site that was occupied by a dense cellular infiltrate and mass spectral features consistent with lysosome-specific lipids. IIR also increased immunohistochemical labeling for microglia and macrophages. IIR enhanced clearance of lipid sulfatide myelin-associated inhibitors of axon growth and accumulation of simple GM3 gangliosides in a spatial distribution consistent with degradation of plasma membrane from degenerated axons. Conclusions IIR promotes a robust phagocytic response that improves clearance of myelin and axon debris. This growth-permissive molecular remodeling of the crush injury site extends our current understanding of IIR to include mechanisms extrinsic to the RGC.
Collapse
Affiliation(s)
- David T Stark
- Stein Eye Institute, David Geffen School of Medicine at UCLA, Los Angeles, California, United States
| | - David M G Anderson
- Vanderbilt Mass Spectrometry Research Center and Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee, United States
| | - Jacky M K Kwong
- Stein Eye Institute, David Geffen School of Medicine at UCLA, Los Angeles, California, United States
| | - Nathan Heath Patterson
- Vanderbilt Mass Spectrometry Research Center and Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee, United States
| | - Kevin L Schey
- Vanderbilt Mass Spectrometry Research Center and Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee, United States
| | - Richard M Caprioli
- Vanderbilt Mass Spectrometry Research Center and Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee, United States
| | - Joseph Caprioli
- Stein Eye Institute, David Geffen School of Medicine at UCLA, Los Angeles, California, United States
| |
Collapse
|
23
|
Pekny M, Wilhelmsson U, Tatlisumak T, Pekna M. Astrocyte activation and reactive gliosis-A new target in stroke? Neurosci Lett 2018; 689:45-55. [PMID: 30025833 DOI: 10.1016/j.neulet.2018.07.021] [Citation(s) in RCA: 153] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 07/03/2018] [Accepted: 07/14/2018] [Indexed: 11/27/2022]
Abstract
Stroke is an acute insult to the central nervous system (CNS) that triggers a sequence of responses in the acute, subacute as well as later stages, with prominent involvement of astrocytes. Astrocyte activation and reactive gliosis in the acute stage of stroke limit the tissue damage and contribute to the restoration of homeostasis. Astrocytes also control many aspects of neural plasticity that is the basis for functional recovery. Here, we discuss the concept of intermediate filaments (nanofilaments) and the complement system as two handles on the astrocyte responses to injury that both present attractive opportunities for novel treatment strategies modulating astrocyte functions and reactive gliosis.
Collapse
Affiliation(s)
- Milos Pekny
- Center for Brain Repair, Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Box 440, 40530 Gothenburg, Sweden; Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia; University of Newcastle, Newcastle, NSW, Australia.
| | - Ulrika Wilhelmsson
- Center for Brain Repair, Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Box 440, 40530 Gothenburg, Sweden
| | - Turgut Tatlisumak
- Center for Brain Repair, Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Box 440, 40530 Gothenburg, Sweden; Department of Neurology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Marcela Pekna
- Center for Brain Repair, Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Box 440, 40530 Gothenburg, Sweden; Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia; University of Newcastle, Newcastle, NSW, Australia
| |
Collapse
|
24
|
Larson TA. Sex Steroids, Adult Neurogenesis, and Inflammation in CNS Homeostasis, Degeneration, and Repair. Front Endocrinol (Lausanne) 2018; 9:205. [PMID: 29760681 PMCID: PMC5936772 DOI: 10.3389/fendo.2018.00205] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 04/12/2018] [Indexed: 01/16/2023] Open
Abstract
Sex steroidal hormones coordinate the development and maintenance of tissue architecture in many organs, including the central nervous systems (CNS). Within the CNS, sex steroids regulate the morphology, physiology, and behavior of a wide variety of neural cells including, but not limited to, neurons, glia, endothelial cells, and immune cells. Sex steroids spatially and temporally control distinct molecular networks, that, in turn modulate neural activity, synaptic plasticity, growth factor expression and function, nutrient exchange, cellular proliferation, and apoptosis. Over the last several decades, it has become increasingly evident that sex steroids, often in conjunction with neuroinflammation, have profound impact on the occurrence and severity of neuropsychiatric and neurodegenerative disorders. Here, I review the foundational discoveries that established the regulatory role of sex steroids in the CNS and highlight recent advances toward elucidating the complex interaction between sex steroids, neuroinflammation, and CNS regeneration through adult neurogenesis. The majority of recent work has focused on neuroinflammatory responses following acute physical damage, chronic degeneration, or pharmacological insult. Few studies directly assess the role of immune cells in regulating adult neurogenesis under healthy, homeostatic conditions. As such, I also introduce tractable, non-traditional models for examining the role of neuroimmune cells in natural neuronal turnover, seasonal plasticity of neural circuits, and extreme CNS regeneration.
Collapse
Affiliation(s)
- Tracy A. Larson
- Department of Biology, University of Virginia, Charlottesville, VA, United States
| |
Collapse
|
25
|
Cheng L, Wong LJ, Yan N, Han RC, Yu H, Guo C, Batsuuri K, Zinzuwadia A, Guan R, Cho KS, Chen DF. Ezh2 does not mediate retinal ganglion cell homeostasis or their susceptibility to injury. PLoS One 2018; 13:e0191853. [PMID: 29408885 PMCID: PMC5800601 DOI: 10.1371/journal.pone.0191853] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 01/12/2018] [Indexed: 02/05/2023] Open
Abstract
Epigenetic predisposition is thought to critically contribute to adult-onset disorders, such as retinal neurodegeneration. The histone methyltransferase, enhancer of zeste homolog 2 (Ezh2), is transiently expressed in the perinatal retina, particularly enriched in retinal ganglion cells (RGCs). We previously showed that embryonic deletion of Ezh2 from retinal progenitors led to progressive photoreceptor degeneration throughout life, demonstrating a role for embryonic predisposition of Ezh2-mediated repressive mark in maintaining the survival and function of photoreceptors in the adult. Enrichment of Ezh2 in RGCs leads to the question if Ezh2 also mediates gene expression and function in postnatal RGCs, and if its deficiency changes RGC susceptibility to cell death under injury or disease in the adult. To test this, we generated mice carrying targeted deletion of Ezh2 from RGC progenitors driven by Math5-Cre (mKO). mKO mice showed no detectable defect in RGC development, survival, or cell homeostasis as determined by physiological analysis, live imaging, histology, and immunohistochemistry. Moreover, RGCs of Ezh2 deficient mice revealed similar susceptibility against glaucomatous and acute optic nerve trauma-induced neurodegeneration compared to littermate floxed or wild-type control mice. In agreement with the above findings, analysis of RNA sequencing of RGCs purified from Ezh2 deficient mice revealed few gene changes that were related to RGC development, survival and function. These results, together with our previous report, support a cell lineage-specific mechanism of Ezh2-mediated gene repression, especially those critically involved in cellular function and homeostasis.
Collapse
Affiliation(s)
- Lin Cheng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
- Schepens Eye Research Institute, Massachusetts Eye & Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Lucy J. Wong
- Schepens Eye Research Institute, Massachusetts Eye & Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, United States of America
- Eye Center, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Naihong Yan
- Schepens Eye Research Institute, Massachusetts Eye & Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Ophthalmology and Ophthalmic Laboratories, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, P. R. China
| | - Richard C. Han
- Schepens Eye Research Institute, Massachusetts Eye & Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Honghua Yu
- Schepens Eye Research Institute, Massachusetts Eye & Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Chenying Guo
- Schepens Eye Research Institute, Massachusetts Eye & Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Khulan Batsuuri
- Schepens Eye Research Institute, Massachusetts Eye & Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Aniket Zinzuwadia
- Schepens Eye Research Institute, Massachusetts Eye & Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Ryan Guan
- Schepens Eye Research Institute, Massachusetts Eye & Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Kin-Sang Cho
- Schepens Eye Research Institute, Massachusetts Eye & Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Dong Feng Chen
- Schepens Eye Research Institute, Massachusetts Eye & Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
26
|
Laterza C, Uoshima N, Tornero D, Wilhelmsson U, Stokowska A, Ge R, Pekny M, Lindvall O, Kokaia Z. Attenuation of reactive gliosis in stroke-injured mouse brain does not affect neurogenesis from grafted human iPSC-derived neural progenitors. PLoS One 2018; 13:e0192118. [PMID: 29401502 PMCID: PMC5798785 DOI: 10.1371/journal.pone.0192118] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 01/18/2018] [Indexed: 11/19/2022] Open
Abstract
Induced pluripotent stem cells (iPSCs) or their progeny, derived from human somatic cells, can give rise to functional improvements after intracerebral transplantation in animal models of stroke. Previous studies have indicated that reactive gliosis, which is associated with stroke, inhibits neurogenesis from both endogenous and grafted neural stem/progenitor cells (NSPCs) of rodent origin. Here we have assessed whether reactive astrocytes affect the fate of human iPSC-derived NSPCs transplanted into stroke-injured brain. Mice with genetically attenuated reactive gliosis (deficient for GFAP and vimentin) were subjected to cortical stroke and cells were implanted adjacent to the ischemic lesion one week later. At 8 weeks after transplantation, immunohistochemical analysis showed that attenuated reactive gliosis did not affect neurogenesis or commitment towards glial lineage of the grafted NSPCs. Our findings, obtained in a human-to-mouse xenograft experiment, provide evidence that the reactive gliosis in stroke-injured brain does not affect the formation of new neurons from intracortically grafted human iPSC-derived NSPCs. However, for a potential clinical translation of these cells in stroke, it will be important to clarify whether the lack of effect of reactive gliosis on neurogenesis is observed also in a human-to-human experimental setting.
Collapse
Affiliation(s)
- Cecilia Laterza
- Department of Clinical Sciences, Laboratory of Stem Cells & Restorative Neurology, Lund Stem Cell Center, University Hospital, Lund, Sweden
| | - Naomi Uoshima
- Department of Clinical Sciences, Laboratory of Stem Cells & Restorative Neurology, Lund Stem Cell Center, University Hospital, Lund, Sweden
- Department of Anesthesiology, Tokyo Medical University, Nishishinjuku, Shinjuku-ku, Tokyo, Japan
| | - Daniel Tornero
- Department of Clinical Sciences, Laboratory of Stem Cells & Restorative Neurology, Lund Stem Cell Center, University Hospital, Lund, Sweden
| | - Ulrika Wilhelmsson
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Laboratory of Astrocyte Biology and CNS Regeneration, Center for Brain Repair, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Anna Stokowska
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Laboratory of Regenerative Neuroimmunology, Center for Brain Repair, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Ruimin Ge
- Department of Clinical Sciences, Laboratory of Stem Cells & Restorative Neurology, Lund Stem Cell Center, University Hospital, Lund, Sweden
| | - Milos Pekny
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Laboratory of Astrocyte Biology and CNS Regeneration, Center for Brain Repair, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Olle Lindvall
- Department of Clinical Sciences, Laboratory of Stem Cells & Restorative Neurology, Lund Stem Cell Center, University Hospital, Lund, Sweden
| | - Zaal Kokaia
- Department of Clinical Sciences, Laboratory of Stem Cells & Restorative Neurology, Lund Stem Cell Center, University Hospital, Lund, Sweden
- * E-mail:
| |
Collapse
|
27
|
Liberman AC, Trias E, da Silva Chagas L, Trindade P, Dos Santos Pereira M, Refojo D, Hedin-Pereira C, Serfaty CA. Neuroimmune and Inflammatory Signals in Complex Disorders of the Central Nervous System. Neuroimmunomodulation 2018; 25:246-270. [PMID: 30517945 DOI: 10.1159/000494761] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 10/17/2018] [Indexed: 11/19/2022] Open
Abstract
An extensive microglial-astrocyte-monocyte-neuronal cross talk seems to be crucial for normal brain function, development, and recovery. However, under certain conditions neuroinflammatory interactions between brain cells and neuroimmune cells influence disease outcome and brain pathology. Microglial cells express a range of functional states with dynamically pleomorphic profiles from a surveilling status of synaptic transmission to an active player in major events of development such as synaptic elimination, regeneration, and repair. Also, inflammation mediates a series of neurotoxic roles in neuropsychiatric conditions and neurodegenerative diseases. The present review discusses data on the involvement of neuroinflammatory conditions that alter neuroimmune interactions in four different pathologies. In the first section of this review, we discuss the ability of the early developing brain to respond to a focal lesion with a rapid compensatory plasticity of intact axons and the role of microglial activation and proinflammatory cytokines in brain repair. In the second section, we present data of neuroinflammation and neurodegenerative disorders and discuss the role of reactive astrocytes in motor neuron toxicity and the progression of amyotrophic lateral sclerosis. In the third section, we discuss major depressive disorders as the consequence of dysfunctional interactions between neural and immune signals that result in increased peripheral immune responses and increase proinflammatory cytokines. In the last section, we discuss autism spectrum disorders and altered brain circuitries that emerge from abnormal long-term responses of innate inflammatory cytokines and microglial phenotypic dysfunctions.
Collapse
Affiliation(s)
- Ana Clara Liberman
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)-CONICET-Partner Institute of the Max Planck Society, Buenos Aires, Argentina,
| | - Emiliano Trias
- Neurodegeneration Laboratory, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | | | - Pablo Trindade
- D'OR Institute for Research and Education, Rio de Janeiro, Brazil
| | - Marissol Dos Santos Pereira
- National Institute of Science and Technology on Neuroimmunomodulation - INCT-NIM, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- Laboratory for Cellular NeuroAnatomy, Institute for Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Damian Refojo
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)-CONICET-Partner Institute of the Max Planck Society, Buenos Aires, Argentina
| | - Cecilia Hedin-Pereira
- National Institute of Science and Technology on Neuroimmunomodulation - INCT-NIM, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- Laboratory for Cellular NeuroAnatomy, Institute for Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- VPPCB, Fiocruz, Rio de Janeiro, Brazil
| | - Claudio A Serfaty
- Neuroscience Program, Federal Fluminense University, Niterói, Brazil
| |
Collapse
|
28
|
de Pablo Y, Chen M, Möllerström E, Pekna M, Pekny M. Drugs targeting intermediate filaments can improve neurosupportive properties of astrocytes. Brain Res Bull 2018; 136:130-138. [DOI: 10.1016/j.brainresbull.2017.01.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 01/15/2017] [Accepted: 01/27/2017] [Indexed: 12/25/2022]
|
29
|
Chen M, Puschmann TB, Marasek P, Inagaki M, Pekna M, Wilhelmsson U, Pekny M. Increased Neuronal Differentiation of Neural Progenitor Cells Derived from Phosphovimentin-Deficient Mice. Mol Neurobiol 2017; 55:5478-5489. [PMID: 28956310 PMCID: PMC5994207 DOI: 10.1007/s12035-017-0759-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Accepted: 08/27/2017] [Indexed: 01/06/2023]
Abstract
Vimentin is an intermediate filament (also known as nanofilament) protein expressed in several cell types of the central nervous system, including astrocytes and neural stem/progenitor cells. Mutation of the vimentin serine sites that are phosphorylated during mitosis (VIMSA/SA) leads to cytokinetic failures in fibroblasts and lens epithelial cells, resulting in chromosomal instability and increased expression of cell senescence markers. In this study, we investigated morphology, proliferative capacity, and motility of VIMSA/SA astrocytes, and their effect on the differentiation of neural stem/progenitor cells. VIMSA/SA astrocytes expressed less vimentin and more GFAP but showed a well-developed intermediate filament network, exhibited normal cell morphology, proliferation, and motility in an in vitro wound closing assay. Interestingly, we found a two- to fourfold increased neuronal differentiation of VIMSA/SA neurosphere cells, both in a standard 2D and in Bioactive3D cell culture systems, and determined that this effect was neurosphere cell autonomous and not dependent on cocultured astrocytes. Using BrdU in vivo labeling to assess neural stem/progenitor cell proliferation and differentiation in the hippocampus of adult mice, one of the two major adult neurogenic regions, we found a modest increase (by 8%) in the fraction of newly born and surviving neurons. Thus, mutation of the serine sites phosphorylated in vimentin during mitosis alters intermediate filament protein expression but has no effect on astrocyte morphology or proliferation, and leads to increased neuronal differentiation of neural progenitor cells.
Collapse
Affiliation(s)
- Meng Chen
- Laboratory of Astrocyte Biology and CNS Regeneration, Center for Brain Repair and Rehabilitation, Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Box 440, 40530, Gothenburg, Sweden
| | - Till B Puschmann
- Laboratory of Astrocyte Biology and CNS Regeneration, Center for Brain Repair and Rehabilitation, Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Box 440, 40530, Gothenburg, Sweden
| | - Pavel Marasek
- Laboratory of Astrocyte Biology and CNS Regeneration, Center for Brain Repair and Rehabilitation, Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Box 440, 40530, Gothenburg, Sweden
| | - Masaki Inagaki
- Department of Physiology, Mie University Graduate School of Medicine, Mie, Japan
| | - Marcela Pekna
- Laboratory of Regenerative Neuroimmunology, Center for Brain Repair and Rehabilitation, Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden.,Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia.,University of Newcastle, Newcastle, NSW, Australia
| | - Ulrika Wilhelmsson
- Laboratory of Astrocyte Biology and CNS Regeneration, Center for Brain Repair and Rehabilitation, Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Box 440, 40530, Gothenburg, Sweden
| | - Milos Pekny
- Laboratory of Astrocyte Biology and CNS Regeneration, Center for Brain Repair and Rehabilitation, Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Box 440, 40530, Gothenburg, Sweden. .,Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia. .,University of Newcastle, Newcastle, NSW, Australia.
| |
Collapse
|
30
|
Teo JD, Morris MJ, Jones NM. Maternal obesity increases inflammation and exacerbates damage following neonatal hypoxic-ischaemic brain injury in rats. Brain Behav Immun 2017; 63:186-196. [PMID: 27746186 DOI: 10.1016/j.bbi.2016.10.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 10/11/2016] [Accepted: 10/12/2016] [Indexed: 11/18/2022] Open
Abstract
OBJECTIVE In humans, maternal obesity is associated with an increase in the incidence of birth related difficulties. However, the impact of maternal obesity on the severity of brain injury in offspring is not known. Recent studies have found evidence of increased glial response and inflammatory mediators in the brains as a result of obesity in humans and rodents. We hypothesised that hypoxic-ischaemic (HI) brain injury is greater in neonatal offspring from obese rat mothers compared to lean controls. METHODS Female Sprague Dawley rats were randomly allocated to high fat (HFD, n=8) or chow (n=4) diet and mated with lean male rats. On postnatal day 7 (P7), male and female pups were randomly assigned to HI injury or control (C) groups. HI injury was induced by occlusion of the right carotid artery followed by 3h exposure to 8% oxygen, at 37°C. Control pups were removed from the mother for the same duration under ambient conditions. Righting behaviour was measured on day 1 and 7 following HI. The extent of brain injury was quantified in brain sections from P14 pups using cresyl violet staining and the difference in volume between brain hemispheres was measured. RESULTS Before mating, HFD mothers were 11% heavier than Chow mothers (p<0.05, t-test). Righting reflex was delayed in offspring from HFD-fed mothers compared to the Chow mothers. The Chow-HI pups showed a loss in ipsilateral brain tissue, while the HFD-HI group had significantly greater loss. No significant difference was detected in brain volume between the HFD-C and Chow-C pups. When analysed on a per litter basis, the size of the injury was significantly correlated with maternal weight. Similar observations were made with neuronal staining showing a greater loss of neurons in the brain of offspring from HFD-mothers following HI compared to Chow. Astrocytes appeared to more hypertrophic and a greater number of microglia were present in the injured hemisphere in offspring from mothers on HFD. HI caused an increase in the proportion of amoeboid microglia and exposure to maternal HFD exacerbated this response. In the contralateral hemisphere, offspring exposed to maternal HFD displayed a reduced proportion of ramified microglia. CONCLUSIONS Our data clearly demonstrate that maternal obesity can exacerbate the severity of brain damage caused by HI in neonatal offspring. Given that previous studies have shown enhanced inflammatory responses in offspring of obese mothers, these factors including gliosis and microglial infiltration are likely to contribute to enhanced brain injury.
Collapse
Affiliation(s)
- Jonathan D Teo
- Department of Pharmacology, School of Medical Sciences, UNSW Australia, New South Wales, Australia
| | - Margaret J Morris
- Department of Pharmacology, School of Medical Sciences, UNSW Australia, New South Wales, Australia
| | - Nicole M Jones
- Department of Pharmacology, School of Medical Sciences, UNSW Australia, New South Wales, Australia.
| |
Collapse
|
31
|
|
32
|
Shao WY, Liu X, Gu XL, Ying X, Wu N, Xu HW, Wang Y. Promotion of axon regeneration and inhibition of astrocyte activation by alpha A-crystallin on crushed optic nerve. Int J Ophthalmol 2016; 9:955-66. [PMID: 27500100 DOI: 10.18240/ijo.2016.07.04] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2016] [Accepted: 05/25/2016] [Indexed: 11/23/2022] Open
Abstract
AIM To explore the effects of αA-crystallin in astrocyte gliosis after optic nerve crush (ONC) and the mechanism of α-crystallin in neuroprotection and axon regeneration. METHODS ONC was established on the Sprague-Dawley rat model and αA-crystallin (10(-4) g/L, 4 µL) was intravitreously injected into the rat model. Flash-visual evoked potential (F-VEP) was examined 14d after ONC, and the glial fibrillary acidic protein (GFAP) levels in the retina and crush site were analyzed 1, 3, 5, 7 and 14d after ONC by immunohistochemistry (IHC) and Western blot respectively. The levels of beta Tubulin (TUJ1), growth-associated membrane phosphoprotein-43 (GAP-43), chondroitin sulfate proteoglycans (CSPGs) and neurocan were also determined by IHC 14d after ONC. RESULTS GFAP level in the retina and the optic nerve significantly increased 1d after ONC, and reached the peak level 7d post-ONC. Injection of αA-crystallin significantly decreased GFAP level in both the retina and the crush site 3d after ONC, and induced astrocytes architecture remodeling at the crush site. Quantification of retinal ganglion cell (RGC) axons indicated αA-crystallin markedly promoted axon regeneration in ONC rats and enhanced the regenerated axons penetrated into the glial scar. CSPGs and neurocan expression also decreased 14d after αA-crystallin injection. The amplitude (N1-P1) and latency (P1) of F-VEP were also restored. CONCLUSION Our results suggest α-crystallin promotes the axon regeneration of RGCs and suppresses the activation of astrocytes.
Collapse
Affiliation(s)
- Wei-Yang Shao
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University, Chongqing 400038, China; Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing 400038, China
| | - Xiao Liu
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University, Chongqing 400038, China; Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing 400038, China
| | - Xian-Liang Gu
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University, Chongqing 400038, China; Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing 400038, China
| | - Xi Ying
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University, Chongqing 400038, China; Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing 400038, China
| | - Nan Wu
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University, Chongqing 400038, China; Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing 400038, China
| | - Hai-Wei Xu
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University, Chongqing 400038, China; Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing 400038, China
| | - Yi Wang
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University, Chongqing 400038, China; Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing 400038, China
| |
Collapse
|
33
|
Silverman SM, Kim BJ, Howell GR, Miller J, John SWM, Wordinger RJ, Clark AF. C1q propagates microglial activation and neurodegeneration in the visual axis following retinal ischemia/reperfusion injury. Mol Neurodegener 2016; 11:24. [PMID: 27008854 PMCID: PMC4806521 DOI: 10.1186/s13024-016-0089-0] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 03/18/2016] [Indexed: 12/03/2022] Open
Abstract
Background C1q represents the initiating protein of the classical complement cascade, however recent findings indicate pathway independent roles such as developmental pruning of retinal ganglion cell (RGC) axons. Furthermore, chronic neuroinflammation, including increased expression of C1q and activation of microglia and astrocytes, appears to be a common finding among many neurodegenerative disease models. Here we compare the effects of a retinal ischemia/reperfusion (I/R) injury on glial activation and neurodegeneration in wild type (WT) and C1qa-deficient mice in the retina and superior colliculus (SC). Retinal I/R was induced in mice through elevation of intraocular pressure to 120 mmHg for 60 min followed by reperfusion. Glial cell activation and population changes were assessed using immunofluorescence. Neuroprotection was determined using histological measurements of retinal layer thickness, RGC counts, and visual function by flash electroretinography (ERG). Results Retinal I/R injury significantly upregulated C1q expression in the retina as early as 72 h and within 7 days in the superficial SC, and was sustained as long as 28 days. Accompanying increased C1q expression was activation of microglia and astrocytes as well as a significantly increased glial population density observed in the retina and SC. Microglial activation and changes in density were completely ablated in C1qa-deficient mice, interestingly however there was no effect on astrocytes. Furthermore, loss of C1qa significantly rescued I/R-induced loss of RGCs and protected against retinal layer thinning in comparison to WT mice. ERG assessment revealed early preservation of b-wave amplitude deficits from retinal I/R injury due to C1qa-deficiency that was lost by day 28. Conclusions Our results for the first time demonstrate the spatiotemporal changes in the neuroinflammatory response following retinal I/R injury at both local and distal sites of injury. In addition, we have shown a role for C1q as a primary mediator of microglial activation and pathological damage. This suggests developmental mechanisms of C1q may be re-engaged during injury response, modulation of which may be beneficial for neuroprotection. Electronic supplementary material The online version of this article (doi:10.1186/s13024-016-0089-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sean M Silverman
- North Texas Eye Research Institute, University of North Texas Health Science Center, CBH-441, 3500 Camp Bowie Boulevard, Fort Worth, TX, 76107, USA
| | - Byung-Jin Kim
- North Texas Eye Research Institute, University of North Texas Health Science Center, CBH-441, 3500 Camp Bowie Boulevard, Fort Worth, TX, 76107, USA
| | | | | | - Simon W M John
- The Jackson Laboratory, Bar Harbor, 04609, ME, USA.,Howard Hughes Medical Institute, Bar Harbor, ME, 04609, USA
| | - Robert J Wordinger
- North Texas Eye Research Institute, University of North Texas Health Science Center, CBH-441, 3500 Camp Bowie Boulevard, Fort Worth, TX, 76107, USA
| | - Abbot F Clark
- North Texas Eye Research Institute, University of North Texas Health Science Center, CBH-441, 3500 Camp Bowie Boulevard, Fort Worth, TX, 76107, USA.
| |
Collapse
|
34
|
Pekny M, Pekna M, Messing A, Steinhäuser C, Lee JM, Parpura V, Hol EM, Sofroniew MV, Verkhratsky A. Astrocytes: a central element in neurological diseases. Acta Neuropathol 2016; 131:323-45. [PMID: 26671410 DOI: 10.1007/s00401-015-1513-1] [Citation(s) in RCA: 540] [Impact Index Per Article: 60.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 10/28/2015] [Accepted: 11/21/2015] [Indexed: 12/18/2022]
Abstract
The neurone-centred view of the past disregarded or downplayed the role of astroglia as a primary component in the pathogenesis of neurological diseases. As this concept is changing, so is also the perceived role of astrocytes in the healthy and diseased brain and spinal cord. We have started to unravel the different signalling mechanisms that trigger specific molecular, morphological and functional changes in reactive astrocytes that are critical for repairing tissue and maintaining function in CNS pathologies, such as neurotrauma, stroke, or neurodegenerative diseases. An increasing body of evidence shows that the effects of astrogliosis on the neural tissue and its functions are not uniform or stereotypic, but vary in a context-specific manner from astrogliosis being an adaptive beneficial response under some circumstances to a maladaptive and deleterious process in another context. There is a growing support for the concept of astrocytopathies in which the disruption of normal astrocyte functions, astrodegeneration or dysfunctional/maladaptive astrogliosis are the primary cause or the main factor in neurological dysfunction and disease. This review describes the multiple roles of astrocytes in the healthy CNS, discusses the diversity of astroglial responses in neurological disorders and argues that targeting astrocytes may represent an effective therapeutic strategy for Alexander disease, neurotrauma, stroke, epilepsy and Alzheimer's disease as well as other neurodegenerative diseases.
Collapse
Affiliation(s)
- Milos Pekny
- Department of Clinical Neuroscience and Rehabilitation, Center for Brain Repair and Rehabilitation, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, 405 30, Gothenburg, Sweden.
- Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia.
- University of Newcastle, New South Wales, Australia.
| | - Marcela Pekna
- Department of Clinical Neuroscience and Rehabilitation, Center for Brain Repair and Rehabilitation, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, 405 30, Gothenburg, Sweden
- Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia
- University of Newcastle, New South Wales, Australia
| | - Albee Messing
- Waisman Center, University of Wisconsin-Madison, 1500 Highland Avenue, Madison, WI, 53705, USA
| | - Christian Steinhäuser
- Medical faculty, Institute of Cellular Neurosciences, University of Bonn, Bonn, Germany
| | - Jin-Moo Lee
- Department of Neurology, The Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, USA
| | - Vladimir Parpura
- Department of Neurobiology, Civitan International Research Center, Center for Glial Biology in Medicine, Evelyn F. McKnight Brain Institute, Atomic Force Microscopy and Nanotechnology Laboratories, University of Alabama at Birmingham, 1719 6th Avenue South, CIRC 429, Birmingham, AL, 35294, USA
| | - Elly M Hol
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
- Netherlands Institute for Neuroscience, An Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands
- Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam, Amsterdam, The Netherlands
| | - Michael V Sofroniew
- Department of Neurobiology, University of California, Los Angeles, CA, 90095, USA
| | - Alexei Verkhratsky
- Faculty of Life Sciences, The University of Manchester, Oxford Road, Manchester, M13 9PT, UK.
- Achucarro Center for Neuroscience, IKERBASQUE, Basque Foundation for Science, 48011, Bilbao, Spain.
- Department of Neurosciences, University of the Basque Country UPV/EHU and CIBERNED, Leioa, Spain.
- University of Nizhny Novgorod, Nizhny Novgorod, 603022, Russia.
| |
Collapse
|
35
|
Reactive gliosis in the pathogenesis of CNS diseases. Biochim Biophys Acta Mol Basis Dis 2016; 1862:483-91. [DOI: 10.1016/j.bbadis.2015.11.014] [Citation(s) in RCA: 157] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 11/19/2015] [Accepted: 11/30/2015] [Indexed: 01/11/2023]
|
36
|
Pushchina EV, Varaksin AA, Obukhov DK. Reparative neurogenesis in the brain and changes in the optic nerve of adult trout Oncorhynchus mykiss after mechanical damage of the eye. Russ J Dev Biol 2016. [DOI: 10.1134/s1062360416010057] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
37
|
Intrinsic Neuronal Mechanisms in Axon Regeneration After Spinal Cord Injury. Transl Neurosci 2016. [DOI: 10.1007/978-1-4899-7654-3_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
38
|
Yu J, Luan X, Lan S, Yan B, Maier A. Fasudil, a Rho-Associated Protein Kinase Inhibitor, Attenuates Traumatic Retinal Nerve Injury in Rabbits. J Mol Neurosci 2015; 58:74-82. [DOI: 10.1007/s12031-015-0691-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2015] [Accepted: 11/23/2015] [Indexed: 12/17/2022]
|
39
|
Liu Z, Chopp M. Astrocytes, therapeutic targets for neuroprotection and neurorestoration in ischemic stroke. Prog Neurobiol 2015; 144:103-20. [PMID: 26455456 DOI: 10.1016/j.pneurobio.2015.09.008] [Citation(s) in RCA: 425] [Impact Index Per Article: 42.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Revised: 08/06/2015] [Accepted: 09/05/2015] [Indexed: 01/04/2023]
Abstract
Astrocytes are the most abundant cell type within the central nervous system. They play essential roles in maintaining normal brain function, as they are a critical structural and functional part of the tripartite synapses and the neurovascular unit, and communicate with neurons, oligodendrocytes and endothelial cells. After an ischemic stroke, astrocytes perform multiple functions both detrimental and beneficial, for neuronal survival during the acute phase. Aspects of the astrocytic inflammatory response to stroke may aggravate the ischemic lesion, but astrocytes also provide benefit for neuroprotection, by limiting lesion extension via anti-excitotoxicity effects and releasing neurotrophins. Similarly, during the late recovery phase after stroke, the glial scar may obstruct axonal regeneration and subsequently reduce the functional outcome; however, astrocytes also contribute to angiogenesis, neurogenesis, synaptogenesis, and axonal remodeling, and thereby promote neurological recovery. Thus, the pivotal involvement of astrocytes in normal brain function and responses to an ischemic lesion designates them as excellent therapeutic targets to improve functional outcome following stroke. In this review, we will focus on functions of astrocytes and astrocyte-mediated events during stroke and recovery. We will provide an overview of approaches on how to reduce the detrimental effects and amplify the beneficial effects of astrocytes on neuroprotection and on neurorestoration post stroke, which may lead to novel and clinically relevant therapies for stroke.
Collapse
Affiliation(s)
- Zhongwu Liu
- Department of Neurology, Henry Ford Hospital, Detroit, MI, USA.
| | - Michael Chopp
- Department of Neurology, Henry Ford Hospital, Detroit, MI, USA; Department of Physics, Oakland University, Rochester, MI, USA
| |
Collapse
|
40
|
Lebkuechner I, Wilhelmsson U, Möllerström E, Pekna M, Pekny M. Heterogeneity of Notch signaling in astrocytes and the effects of GFAP and vimentin deficiency. J Neurochem 2015; 135:234-48. [DOI: 10.1111/jnc.13213] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Revised: 06/09/2015] [Accepted: 06/11/2015] [Indexed: 11/29/2022]
Affiliation(s)
- Isabell Lebkuechner
- Center for Brain Repair and Rehabilitation; Department of Clinical Neuroscience and Rehabilitation; Institute of Neuroscience and Physiology; Sahlgrenska Academy at the University of Gothenburg; Gothenburg Sweden
| | - Ulrika Wilhelmsson
- Center for Brain Repair and Rehabilitation; Department of Clinical Neuroscience and Rehabilitation; Institute of Neuroscience and Physiology; Sahlgrenska Academy at the University of Gothenburg; Gothenburg Sweden
| | - Elin Möllerström
- Center for Brain Repair and Rehabilitation; Department of Clinical Neuroscience and Rehabilitation; Institute of Neuroscience and Physiology; Sahlgrenska Academy at the University of Gothenburg; Gothenburg Sweden
| | - Marcela Pekna
- Center for Brain Repair and Rehabilitation; Department of Clinical Neuroscience and Rehabilitation; Institute of Neuroscience and Physiology; Sahlgrenska Academy at the University of Gothenburg; Gothenburg Sweden
- Florey Institute of Neuroscience and Mental Health; Parkville Victoria Australia
- University of Newcastle; New South Wales Australia
| | - Milos Pekny
- Center for Brain Repair and Rehabilitation; Department of Clinical Neuroscience and Rehabilitation; Institute of Neuroscience and Physiology; Sahlgrenska Academy at the University of Gothenburg; Gothenburg Sweden
- Florey Institute of Neuroscience and Mental Health; Parkville Victoria Australia
- University of Newcastle; New South Wales Australia
| |
Collapse
|
41
|
Vecino E, Rodriguez FD, Ruzafa N, Pereiro X, Sharma SC. Glia-neuron interactions in the mammalian retina. Prog Retin Eye Res 2015; 51:1-40. [PMID: 26113209 DOI: 10.1016/j.preteyeres.2015.06.003] [Citation(s) in RCA: 538] [Impact Index Per Article: 53.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 05/18/2015] [Accepted: 06/02/2015] [Indexed: 02/07/2023]
Abstract
The mammalian retina provides an excellent opportunity to study glia-neuron interactions and the interactions of glia with blood vessels. Three main types of glial cells are found in the mammalian retina that serve to maintain retinal homeostasis: astrocytes, Müller cells and resident microglia. Müller cells, astrocytes and microglia not only provide structural support but they are also involved in metabolism, the phagocytosis of neuronal debris, the release of certain transmitters and trophic factors and K(+) uptake. Astrocytes are mostly located in the nerve fibre layer and they accompany the blood vessels in the inner nuclear layer. Indeed, like Müller cells, astrocytic processes cover the blood vessels forming the retinal blood barrier and they fulfil a significant role in ion homeostasis. Among other activities, microglia can be stimulated to fulfil a macrophage function, as well as to interact with other glial cells and neurons by secreting growth factors. This review summarizes the main functional relationships between retinal glial cells and neurons, presenting a general picture of the retina recently modified based on experimental observations. The preferential involvement of the distinct glia cells in terms of the activity in the retina is discussed, for example, while Müller cells may serve as progenitors of retinal neurons, astrocytes and microglia are responsible for synaptic pruning. Since different types of glia participate together in certain activities in the retina, it is imperative to explore the order of redundancy and to explore the heterogeneity among these cells. Recent studies revealed the association of glia cell heterogeneity with specific functions. Finally, the neuroprotective effects of glia on photoreceptors and ganglion cells under normal and adverse conditions will also be explored.
Collapse
Affiliation(s)
- Elena Vecino
- Department of Cell Biology and Histology, University of the Basque Country UPV/EHU, Leioa 48940, Vizcaya, Spain
| | - F David Rodriguez
- Department of Biochemistry and Molecular Biology, E-37007, University of Salamanca, Salamanca, Spain
| | - Noelia Ruzafa
- Department of Cell Biology and Histology, University of the Basque Country UPV/EHU, Leioa 48940, Vizcaya, Spain
| | - Xandra Pereiro
- Department of Cell Biology and Histology, University of the Basque Country UPV/EHU, Leioa 48940, Vizcaya, Spain
| | - Sansar C Sharma
- Department of Ophthalmology, Cell Biology and Anatomy, New York Medical College, Valhalla, NY 10595, USA; IKERBASQUE, Basque Foundation for Science at Dept. Cell Biology and Histology, UPV/EHU, Spain
| |
Collapse
|
42
|
Phatak NR, Stankowska DL, Krishnamoorthy RR. Transcription Factor Brn-3b Overexpression Enhances Neurite Outgrowth in PC12 Cells Under Condition of Hypoxia. Cell Mol Neurobiol 2015; 35:769-83. [PMID: 25786379 DOI: 10.1007/s10571-015-0171-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Accepted: 03/06/2015] [Indexed: 10/23/2022]
Abstract
Transcription factor Brn-3b plays a key role in retinal ganglion cell differentiation, survival, and axon outgrowth during development. However, the precise role of Brn-3b in the normal adult retina as well as during neurodegeneration is unclear. In the current study, the effect of overexpression of Brn-3b was assessed in vitro, in PC12 cells under conditions of normoxia and hypoxia. Immunoblot analysis showed that overexpression of Brn-3b in PC12 cells as well as 661W cells produced significant increase in the growth cone marker, growth-associated protein-43 (GAP-43), and acetylated-tubulin (ac-TUBA). In addition, an increased immunostaining for GAP-43 and ac-TUBA was observed in PC12 cells overexpressing Brn-3b, which was accompanied by a marked increase in neurite outgrowth, compared to PC12 cells overexpressing the empty vector. In separate experiments, one set of PC12 cells transfected either with a Brn-3b expression vector or an empty vector was subjected to conditions of hypoxia for 2 h, while another set of similarly transfected PC12 cells was maintained in normoxic conditions. It was found that the upregulation of GAP-43 and ac-TUBA in PC12 cells overexpressing Brn-3b under conditions of normoxia was sustained under conditions of hypoxia. Immunocytochemical analysis revealed not only an upregulation of GAP-43 and ac-TUBA, but also increased neurite outgrowth in PC12 cells transfected with Brn-3b as compared to PC12 cells transfected with empty vector in both normoxia and hypoxia. The findings have implications for a potential role of Brn-3b in neurodegenerative diseases in which hypoxia/ischemia contribute to pathophysiology of the disease.
Collapse
Affiliation(s)
- Nitasha R Phatak
- Department of Cell Biology and Immunology, North Texas Eye Research Institute, University of North Texas Health Science Center, 3500 Camp Bowie Boulevard, Fort Worth, TX, 76107, USA
| | | | | |
Collapse
|
43
|
|
44
|
Glial fibrillary acidic protein (GFAP) and the astrocyte intermediate filament system in diseases of the central nervous system. Curr Opin Cell Biol 2015; 32:121-30. [PMID: 25726916 DOI: 10.1016/j.ceb.2015.02.004] [Citation(s) in RCA: 577] [Impact Index Per Article: 57.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Revised: 02/04/2015] [Accepted: 02/09/2015] [Indexed: 01/14/2023]
Abstract
Glial fibrillary acidic protein (GFAP) is the hallmark intermediate filament (IF; also known as nanofilament) protein in astrocytes, a main type of glial cells in the central nervous system (CNS). Astrocytes have a range of control and homeostatic functions in health and disease. Astrocytes assume a reactive phenotype in acute CNS trauma, ischemia, and in neurodegenerative diseases. This coincides with an upregulation and rearrangement of the IFs, which form a highly complex system composed of GFAP (10 isoforms), vimentin, synemin, and nestin. We begin to unravel the function of the IF system of astrocytes and in this review we discuss its role as an important crisis-command center coordinating cell responses in situations connected to cellular stress, which is a central component of many neurological diseases.
Collapse
|
45
|
Pekny M, Pekna M. Astrocyte reactivity and reactive astrogliosis: costs and benefits. Physiol Rev 2014; 94:1077-98. [PMID: 25287860 DOI: 10.1152/physrev.00041.2013] [Citation(s) in RCA: 639] [Impact Index Per Article: 58.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Astrocytes are the most abundant cells in the central nervous system (CNS) that provide nutrients, recycle neurotransmitters, as well as fulfill a wide range of other homeostasis maintaining functions. During the past two decades, astrocytes emerged also as increasingly important regulators of neuronal functions including the generation of new nerve cells and structural as well as functional synapse remodeling. Reactive gliosis or reactive astrogliosis is a term coined for the morphological and functional changes seen in astroglial cells/astrocytes responding to CNS injury and other neurological diseases. Whereas this defensive reaction of astrocytes is conceivably aimed at handling the acute stress, limiting tissue damage, and restoring homeostasis, it may also inhibit adaptive neural plasticity mechanisms underlying recovery of function. Understanding the multifaceted roles of astrocytes in the healthy and diseased CNS will undoubtedly contribute to the development of treatment strategies that will, in a context-dependent manner and at appropriate time points, modulate reactive astrogliosis to promote brain repair and reduce the neurological impairment.
Collapse
Affiliation(s)
- Milos Pekny
- Center for Brain Repair and Rehabilitation, Department of Clinical Neuroscience and Rehabilitation, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden; and Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia
| | - Marcela Pekna
- Center for Brain Repair and Rehabilitation, Department of Clinical Neuroscience and Rehabilitation, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden; and Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia
| |
Collapse
|
46
|
Yang XT, Huang GH, Feng DF, Chen K. Insight into astrocyte activation after optic nerve injury. J Neurosci Res 2014; 93:539-48. [PMID: 25257183 DOI: 10.1002/jnr.23487] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Revised: 08/25/2014] [Accepted: 08/29/2014] [Indexed: 12/21/2022]
Affiliation(s)
- Xi-Tao Yang
- Department of Neurosurgery, No. 3 People's Hospital; Shanghai Jiaotong University School of Medicine; Shanghai China
| | - Guo-Hui Huang
- Department of Neurosurgery, No. 3 People's Hospital; Shanghai Jiaotong University School of Medicine; Shanghai China
| | - Dong-Fu Feng
- Department of Neurosurgery, No. 3 People's Hospital; Shanghai Jiaotong University School of Medicine; Shanghai China
- Institute of Traumatic Medicine; Shanghai Jiaotong University School of Medicine; Shanghai China
| | - Kui Chen
- Department of Neurosurgery, No. 3 People's Hospital; Shanghai Jiaotong University School of Medicine; Shanghai China
| |
Collapse
|
47
|
Liu Z, Li Y, Cui Y, Roberts C, Lu M, Wilhelmsson U, Pekny M, Chopp M. Beneficial effects of gfap/vimentin reactive astrocytes for axonal remodeling and motor behavioral recovery in mice after stroke. Glia 2014; 62:2022-33. [PMID: 25043249 DOI: 10.1002/glia.22723] [Citation(s) in RCA: 155] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Revised: 06/25/2014] [Accepted: 07/03/2014] [Indexed: 12/12/2022]
Abstract
The functional role of reactive astrocytes after stroke is controversial. To elucidate whether reactive astrocytes contribute to neurological recovery, we compared behavioral outcome, axonal remodeling of the corticospinal tract (CST), and the spatio-temporal change of chondroitin sulfate proteoglycan (CSPG) expression between wild-type (WT) and glial fibrillary acidic protein/vimentin double knockout (GFAP(-/-) Vim(-/-) ) mice subjected to Rose Bengal induced cerebral cortical photothrombotic stroke in the right forelimb motor area. A foot-fault test and a single pellet reaching test were performed prior to and on day 3 after stroke, and weekly thereafter to monitor functional deficit and recovery. Biotinylated dextran amine (BDA) was injected into the left motor cortex to anterogradely label the CST axons. Compared with WT mice, the motor functional recovery and BDA-positive CST axonal length in the denervated side of the cervical gray matter were significantly reduced in GFAP(-/-) Vim(-/-) mice (n = 10/group, P < 0.01). Immunohistological data showed that in GFAP(-/-) Vim(-/-) mice, in which astrocytic reactivity is attenuated, CSPG expression was significantly increased in the lesion remote areas in both hemispheres, but decreased in the ischemic lesion boundary zone, compared with WT mice (n = 12/group, P < 0.001). Our data suggest that attenuated astrocytic reactivity impairs or delays neurological recovery by reducing CST axonal remodeling in the denervated spinal cord. Thus, manipulation of astrocytic reactivity post stroke may represent a therapeutic target for neurorestorative strategies.
Collapse
Affiliation(s)
- Zhongwu Liu
- Department of Neurology, Henry Ford Hospital, Detroit, Michigan
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Prokosch V, Chiwitt C, Rose K, Thanos S. Deciphering proteins and their functions in the regenerating retina. Expert Rev Proteomics 2014; 7:775-95. [DOI: 10.1586/epr.10.47] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
49
|
Pekny M, Wilhelmsson U, Pekna M. The dual role of astrocyte activation and reactive gliosis. Neurosci Lett 2014; 565:30-8. [PMID: 24406153 DOI: 10.1016/j.neulet.2013.12.071] [Citation(s) in RCA: 493] [Impact Index Per Article: 44.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Revised: 12/21/2013] [Accepted: 12/29/2013] [Indexed: 11/16/2022]
Abstract
Astrocyte activation and reactive gliosis accompany most of the pathologies in the brain, spinal cord, and retina. Reactive gliosis has been described as constitutive, graded, multi-stage, and evolutionary conserved defensive astroglial reaction [Verkhratsky and Butt (2013) In: Glial Physiology and Pathophysiology]. A well- known feature of astrocyte activation and reactive gliosis are the increased production of intermediate filament proteins (also known as nanofilament proteins) and remodeling of the intermediate filament system of astrocytes. Activation of astrocytes is associated with changes in the expression of many genes and characteristic morphological hallmarks, and has important functional consequences in situations such as stroke, trauma, epilepsy, Alzheimer's disease (AD), and other neurodegenerative diseases. The impact of astrocyte activation and reactive gliosis on the pathogenesis of different neurological disorders is not yet fully understood but the available experimental evidence points to many beneficial aspects of astrocyte activation and reactive gliosis that range from isolation and sequestration of the affected region of the central nervous system (CNS) from the neighboring tissue that limits the lesion size to active neuroprotection and regulation of the CNS homeostasis in times of acute ischemic, osmotic, or other kinds of stress. The available experimental data from selected CNS pathologies suggest that if not resolved in time, reactive gliosis can exert inhibitory effects on several aspects of neuroplasticity and CNS regeneration and thus might become a target for future therapeutic interventions.
Collapse
Affiliation(s)
- Milos Pekny
- Center for Brain Repair and Rehabilitation, Department of Clinical Neuroscience and Rehabilitation, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Gothenburg SE-405 30, Sweden; Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia.
| | - Ulrika Wilhelmsson
- Center for Brain Repair and Rehabilitation, Department of Clinical Neuroscience and Rehabilitation, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Gothenburg SE-405 30, Sweden
| | - Marcela Pekna
- Center for Brain Repair and Rehabilitation, Department of Clinical Neuroscience and Rehabilitation, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Gothenburg SE-405 30, Sweden; Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia
| |
Collapse
|
50
|
Abstract
Axon regeneration is crucial for recovery of function after nervous system injury. Over many years, research has uncovered numerous factors which prevent damaged axons from regrowing and reforming functional connections after damage. These factors are both extrinsic, relating to the central nervous system environment, and intrinsic, relating to the growth capacity of the neurons themselves. In this short review, I summarize these elements with a view to illustrating how they may be overcome to promote nervous system repair.
Collapse
Affiliation(s)
- Andrew J Murray
- Department of Biochemistry and Molecular Biophysics, Columbia University, 701 W 168th Street, New York, NY, 10032, USA,
| |
Collapse
|