1
|
Bernard A, Eggstein C, Tang L, Keller M, Körner A, Mirakaj V, Rosenberger P. Plexin C1 influences immune response to intracellular LPS and survival in murine sepsis. J Biomed Sci 2024; 31:82. [PMID: 39169397 PMCID: PMC11337750 DOI: 10.1186/s12929-024-01074-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 08/08/2024] [Indexed: 08/23/2024] Open
Abstract
BACKGROUND Intracellular sensing of lipopolysaccharide (LPS) is essential for the immune response against gram-negative bacteria and results in activation of caspase-11 and pyroptotic cell death with fatal consequences in sepsis. We found the neuronal guidance receptor plexin C1 (PLXNC1) influences the intracellular response to LPS. METHODS We employed a murine model of sepsis via cecal ligation and binding (CLP), using PLXNC1-/- mice and littermate controls, and additionally transfected murine bone-marrow-derived macrophages (BMDMs) from both genotypes with LPS to achieve activation of the noncanonical inflammasome ex vivo. Additionally, we transfected the PLXNC1 ligand SL4c-d in vivo and ex vivo to examine its effect on intracellular LPS response. RESULTS We found the neuronal guidance receptor PLXNC1 dampens the intracellular response to LPS by interacting with adenylate cyclase 4 (ADCY4) and protein kinase A activity, which in turn diminishes caspase-11 expression. The absence of PLXNC1 results in excessive inflammation marked by increased cytokine release, increased secondary organ injury and reduced sepsis survival in a murine sepsis model induced by CLP. Notably, administration of SL4c-d-peptide ligand of PLXNC1-reduces the inflammatory response during CLP-induced sepsis and improves survival. CONCLUSIONS These results elucidate a previously unknown mechanism for PLXNC1 suppressing excessive noncanonical inflammasome activity and offer a new potential target for treatment of sepsis with its detrimental effects.
Collapse
Affiliation(s)
- Alice Bernard
- Department of Anaesthesiology and Intensive Care Medicine, Eberhard-Karls University Tübingen, Hoppe-Seyler-Straße 3, 72076, Tübingen, Germany
| | - Claudia Eggstein
- Department of Anaesthesiology and Intensive Care Medicine, Eberhard-Karls University Tübingen, Hoppe-Seyler-Straße 3, 72076, Tübingen, Germany
| | - Linyan Tang
- Department of Anaesthesiology and Intensive Care Medicine, Eberhard-Karls University Tübingen, Hoppe-Seyler-Straße 3, 72076, Tübingen, Germany
| | - Marius Keller
- Department of Anaesthesiology and Intensive Care Medicine, Eberhard-Karls University Tübingen, Hoppe-Seyler-Straße 3, 72076, Tübingen, Germany
| | - Andreas Körner
- Department of Anaesthesiology and Intensive Care Medicine, Eberhard-Karls University Tübingen, Hoppe-Seyler-Straße 3, 72076, Tübingen, Germany
| | - Valbona Mirakaj
- Department of Anaesthesiology and Intensive Care Medicine, Eberhard-Karls University Tübingen, Hoppe-Seyler-Straße 3, 72076, Tübingen, Germany
| | - Peter Rosenberger
- Department of Anaesthesiology and Intensive Care Medicine, Eberhard-Karls University Tübingen, Hoppe-Seyler-Straße 3, 72076, Tübingen, Germany.
| |
Collapse
|
2
|
Qasim H, Rajaei M, Xu Y, Reyes-Alcaraz A, Abdelnasser HY, Stewart MD, Lahiri SK, Wehrens XHT, McConnell BK. AKAP12 Upregulation Associates With PDE8A to Accelerate Cardiac Dysfunction. Circ Res 2024; 134:1006-1022. [PMID: 38506047 DOI: 10.1161/circresaha.123.323655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 03/07/2024] [Indexed: 03/21/2024]
Abstract
BACKGROUND In heart failure, signaling downstream the β2-adrenergic receptor is critical. Sympathetic stimulation of β2-adrenergic receptor alters cAMP (cyclic adenosine 3',5'-monophosphate) and triggers PKA (protein kinase A)-dependent phosphorylation of proteins that regulate cardiac function. cAMP levels are regulated in part by PDEs (phosphodiesterases). Several AKAPs (A kinase anchoring proteins) regulate cardiac function and are proposed as targets for precise pharmacology. AKAP12 is expressed in the heart and has been reported to directly bind β2-adrenergic receptor, PKA, and PDE4D. However, its roles in cardiac function are unclear. METHODS cAMP accumulation in real time downstream of the β2-adrenergic receptor was detected for 60 minutes in live cells using the luciferase-based biosensor (GloSensor) in AC16 human-derived cardiomyocyte cell lines overexpressing AKAP12 versus controls. Cardiomyocyte intracellular calcium and contractility were studied in adult primary cardiomyocytes from male and female mice overexpressing cardiac AKAP12 (AKAP12OX) and wild-type littermates post acute treatment with 100-nM isoproterenol (ISO). Systolic cardiac function was assessed in mice after 14 days of subcutaneous ISO administration (60 mg/kg per day). AKAP12 gene and protein expression levels were evaluated in left ventricular samples from patients with end-stage heart failure. RESULTS AKAP12 upregulation significantly reduced total intracellular cAMP levels in AC16 cells through PDE8. Adult primary cardiomyocytes from AKAP12OX mice had significantly reduced contractility and impaired calcium handling in response to ISO, which was reversed in the presence of the selective PDE8 inhibitor (PF-04957325). AKAP12OX mice had deteriorated systolic cardiac function and enlarged left ventricles. Patients with end-stage heart failure had upregulated gene and protein levels of AKAP12. CONCLUSIONS AKAP12 upregulation in cardiac tissue is associated with accelerated cardiac dysfunction through the AKAP12-PDE8 axis.
Collapse
Affiliation(s)
- Hanan Qasim
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy (H.Q., M.R., Y.X., A.R.-A., H.Y.A., B.K.M.), University of Houston, TX
| | - Mehrdad Rajaei
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy (H.Q., M.R., Y.X., A.R.-A., H.Y.A., B.K.M.), University of Houston, TX
| | - Ying Xu
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy (H.Q., M.R., Y.X., A.R.-A., H.Y.A., B.K.M.), University of Houston, TX
| | - Arfaxad Reyes-Alcaraz
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy (H.Q., M.R., Y.X., A.R.-A., H.Y.A., B.K.M.), University of Houston, TX
| | - Hala Y Abdelnasser
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy (H.Q., M.R., Y.X., A.R.-A., H.Y.A., B.K.M.), University of Houston, TX
| | - M David Stewart
- Department of Biology and Biochemistry (M.D.S.), University of Houston, TX
| | - Satadru K Lahiri
- Cardiovascular Research Institute, Departments of Integrative Physiology, Medicine, Neuroscience, Pediatrics, and Center for Space Medicine, Baylor College of Medicine, Houston, TX (S.K.L., X.H.T.W.)
| | - Xander H T Wehrens
- Cardiovascular Research Institute, Departments of Integrative Physiology, Medicine, Neuroscience, Pediatrics, and Center for Space Medicine, Baylor College of Medicine, Houston, TX (S.K.L., X.H.T.W.)
| | - Bradley K McConnell
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy (H.Q., M.R., Y.X., A.R.-A., H.Y.A., B.K.M.), University of Houston, TX
| |
Collapse
|
3
|
Wagner ER, Gasch AP. Advances in S. cerevisiae Engineering for Xylose Fermentation and Biofuel Production: Balancing Growth, Metabolism, and Defense. J Fungi (Basel) 2023; 9:786. [PMID: 37623557 PMCID: PMC10455348 DOI: 10.3390/jof9080786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/19/2023] [Accepted: 07/24/2023] [Indexed: 08/26/2023] Open
Abstract
Genetically engineering microorganisms to produce chemicals has changed the industrialized world. The budding yeast Saccharomyces cerevisiae is frequently used in industry due to its genetic tractability and unique metabolic capabilities. S. cerevisiae has been engineered to produce novel compounds from diverse sugars found in lignocellulosic biomass, including pentose sugars, like xylose, not recognized by the organism. Engineering high flux toward novel compounds has proved to be more challenging than anticipated since simply introducing pathway components is often not enough. Several studies show that the rewiring of upstream signaling is required to direct products toward pathways of interest, but doing so can diminish stress tolerance, which is important in industrial conditions. As an example of these challenges, we reviewed S. cerevisiae engineering efforts, enabling anaerobic xylose fermentation as a model system and showcasing the regulatory interplay's controlling growth, metabolism, and stress defense. Enabling xylose fermentation in S. cerevisiae requires the introduction of several key metabolic enzymes but also regulatory rewiring of three signaling pathways at the intersection of the growth and stress defense responses: the RAS/PKA, Snf1, and high osmolarity glycerol (HOG) pathways. The current studies reviewed here suggest the modulation of global signaling pathways should be adopted into biorefinery microbial engineering pipelines to increase efficient product yields.
Collapse
Affiliation(s)
- Ellen R. Wagner
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI 53706, USA
- Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI 53706, USA
- Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Audrey P. Gasch
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI 53706, USA
- Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI 53706, USA
- Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
4
|
Wagner ER, Nightingale NM, Jen A, Overmyer KA, McGee M, Coon JJ, Gasch AP. PKA regulatory subunit Bcy1 couples growth, lipid metabolism, and fermentation during anaerobic xylose growth in Saccharomyces cerevisiae. PLoS Genet 2023; 19:e1010593. [PMID: 37410771 DOI: 10.1371/journal.pgen.1010593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 06/22/2023] [Indexed: 07/08/2023] Open
Abstract
Organisms have evolved elaborate physiological pathways that regulate growth, proliferation, metabolism, and stress response. These pathways must be properly coordinated to elicit the appropriate response to an ever-changing environment. While individual pathways have been well studied in a variety of model systems, there remains much to uncover about how pathways are integrated to produce systemic changes in a cell, especially in dynamic conditions. We previously showed that deletion of Protein Kinase A (PKA) regulatory subunit BCY1 can decouple growth and metabolism in Saccharomyces cerevisiae engineered for anaerobic xylose fermentation, allowing for robust fermentation in the absence of division. This provides an opportunity to understand how PKA signaling normally coordinates these processes. Here, we integrated transcriptomic, lipidomic, and phospho-proteomic responses upon a glucose to xylose shift across a series of strains with different genetic mutations promoting either coupled or decoupled xylose-dependent growth and metabolism. Together, results suggested that defects in lipid homeostasis limit growth in the bcy1Δ strain despite robust metabolism. To further understand this mechanism, we performed adaptive laboratory evolutions to re-evolve coupled growth and metabolism in the bcy1Δ parental strain. The evolved strain harbored mutations in PKA subunit TPK1 and lipid regulator OPI1, among other genes, and evolved changes in lipid profiles and gene expression. Deletion of the evolved opi1 gene partially reverted the strain's phenotype to the bcy1Δ parent, with reduced growth and robust xylose fermentation. We suggest several models for how cells coordinate growth, metabolism, and other responses in budding yeast and how restructuring these processes enables anaerobic xylose utilization.
Collapse
Affiliation(s)
- Ellen R Wagner
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Nicole M Nightingale
- Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Annie Jen
- Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Katherine A Overmyer
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Morgridge Institute for Research, Madison, Wisconsin, United States of America
- National Center for Quantitative Biology of Complex Systems, Madison, Wisconsin, United States of America
| | - Mick McGee
- Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Joshua J Coon
- Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Morgridge Institute for Research, Madison, Wisconsin, United States of America
- National Center for Quantitative Biology of Complex Systems, Madison, Wisconsin, United States of America
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Audrey P Gasch
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| |
Collapse
|
5
|
Jia J, Tang S, Yue X, Jing S, Zhu L, Tan C, Gao J, Du Y, Lee I, Qian Y. An A-Kinase Anchoring Protein (ACBD3) Coordinates Traffic-Induced PKA Activation At The Golgi. J Biol Chem 2023; 299:104696. [PMID: 37044218 DOI: 10.1016/j.jbc.2023.104696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 03/23/2023] [Accepted: 03/25/2023] [Indexed: 04/14/2023] Open
Abstract
KDEL receptor (KDELR) is a key protein that recycles escaped ER resident proteins from the Golgi apparatus back to the ER and maintains a dynamic balance between these two organelles in the early secretory pathway. Studies have shown that this retrograde transport pathway is partly regulated by two KDELR-interacting proteins, Acyl-CoA-binding domain-containing 3 (ACBD3), and cyclic AMP-dependent protein kinase A (PKA). However, whether Golgi-localized ACBD3, which was first discovered as a PKA-anchoring protein in mitochondria, directly interacts with PKA at the Golgi and coordinates its signaling in Golgi-to-ER traffic has remained unclear. In this study, we showed that the GOLD domain of ACBD3 directly interacts with the regulatory subunit II (RII) of PKA and effectively recruits PKA holoenzyme to the Golgi. Forward trafficking of proteins from the ER triggers activation of PKA by releasing the catalytic subunit from RII. Furthermore, we determined that depletion of ACBD3 reduces the Golgi fraction of RII, resulting in moderate, but constitutive activation of PKA and KDELR retrograde transport, independent of cargo influx from the ER. Taken together, these data demonstrate that ACBD3 coordinates the protein secretory pathway at the Golgi by facilitating KDELR/PKA-containing protein complex formation.
Collapse
Affiliation(s)
- Jie Jia
- School of Life Science and Technology, ShanghaiTech University, Pudong, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China
| | - Shuocheng Tang
- School of Life Science and Technology, ShanghaiTech University, Pudong, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China
| | - Xihua Yue
- School of Life Science and Technology, ShanghaiTech University, Pudong, Shanghai, China
| | - Shuaiyang Jing
- School of Life Science and Technology, ShanghaiTech University, Pudong, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China
| | - Lianhui Zhu
- School of Life Science and Technology, ShanghaiTech University, Pudong, Shanghai, China
| | - Chuanting Tan
- School of Life Science and Technology, ShanghaiTech University, Pudong, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China
| | - Jingkai Gao
- School of Life Science and Technology, ShanghaiTech University, Pudong, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China
| | - Yulei Du
- School of Life Science and Technology, ShanghaiTech University, Pudong, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China
| | - Intaek Lee
- School of Life Science and Technology, ShanghaiTech University, Pudong, Shanghai, China.
| | - Yi Qian
- School of Life Science and Technology, ShanghaiTech University, Pudong, Shanghai, China.
| |
Collapse
|
6
|
Functional Insights into Protein Kinase A (PKA) Signaling from C. elegans. LIFE (BASEL, SWITZERLAND) 2022; 12:life12111878. [PMID: 36431013 PMCID: PMC9692727 DOI: 10.3390/life12111878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/04/2022] [Accepted: 11/11/2022] [Indexed: 11/16/2022]
Abstract
Protein kinase A (PKA), which regulates a diverse set of biological functions downstream of cyclic AMP (cAMP), is a tetramer consisting of two catalytic subunits (PKA-C) and two regulatory subunits (PKA-R). When cAMP binds the PKA-R subunits, the PKA-C subunits are released and interact with downstream effectors. In Caenorhabditis elegans (C. elegans), PKA-C and PKA-R are encoded by kin-1 and kin-2, respectively. This review focuses on the contributions of work in C. elegans to our understanding of the many roles of PKA, including contractility and oocyte maturation in the reproductive system, lipid metabolism, physiology, mitochondrial function and lifespan, and a wide variety of behaviors. C. elegans provides a powerful genetic platform for understanding how this kinase can regulate an astounding variety of physiological responses.
Collapse
|
7
|
A-Kinase Anchoring Protein 9 Promotes Gastric Cancer Progression as a Downstream Effector of Cadherin 1. JOURNAL OF ONCOLOGY 2022; 2022:2830634. [PMID: 36317124 PMCID: PMC9617730 DOI: 10.1155/2022/2830634] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 10/07/2022] [Indexed: 11/24/2022]
Abstract
Background Genetic studies identified a dozen of frequently mutated genes in gastric cancer, such as cadherin 1 (CDH1) and A-kinase anchoring protein 9 (AKAP9). Of note, genetic alterations including depletion and amplification frameshift mutations of AKAP9 have been observed in 10–15% of gastric cancer patients. However, it is unknown of the expression and role of AKAP9 in gastric cancer. This study is aimed to characterize the expression and function of AKAP9 in gastric cancer. Methods Using qRT-PCR, we analyzed the mRNA levels of AKAP9 in gastric cancer patient samples. We investigated the role of AKAP9 in gastric cancer by performing cell proliferation assay, transwell assay, and mouse xenograft assay. Results AKAP9 was upregulated in gastric cancer patients. Overexpression of AKAP9 promoted cell proliferation, migration, and gastric tumor growth. Loss of CDH1 elevated AKAP9 mRNA and protein levels. Conclusion Our study demonstrates that AKAP9 functions as an oncoprotein to promote gastric cancer cell proliferation, migration, and tumor growth. Moreover, we reveal a possible molecular link showing that AKAP9 is a critical effector downstream of CDH1 in gastric cancer.
Collapse
|
8
|
Vascular Ca V1.2 channels in diabetes. CURRENT TOPICS IN MEMBRANES 2022; 90:65-93. [PMID: 36368875 DOI: 10.1016/bs.ctm.2022.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Diabetic vasculopathy is a significant cause of morbidity and mortality in the diabetic population. Hyperglycemia, one of the central metabolic abnormalities in diabetes, has been associated with vascular dysfunction due to endothelial cell damage. However, studies also point toward vascular smooth muscle as a locus for hyperglycemia-induced vascular dysfunction. Emerging evidence implicates hyperglycemia-induced regulation of vascular L-type Ca2+ channels CaV1.2 as a potential mechanism for vascular dysfunction during diabetes. This chapter summarizes our current understanding of vascular CaV1.2 channels and their regulation during physiological and hyperglycemia/diabetes conditions. We will emphasize the role of CaV1.2 in vascular smooth muscle, the effects of elevated glucose on CaV1.2 function, and the mechanisms underlying its dysregulation in hyperglycemia and diabetes. We conclude by examining future directions and gaps in knowledge regarding CaV1.2 regulation in health and during diabetes.
Collapse
|
9
|
Pereira da Silva EA, Martín-Aragón Baudel M, Navedo MF, Nieves-Cintrón M. Ion channel molecular complexes in vascular smooth muscle. Front Physiol 2022; 13:999369. [PMID: 36091375 PMCID: PMC9459047 DOI: 10.3389/fphys.2022.999369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 08/02/2022] [Indexed: 11/30/2022] Open
Abstract
Ion channels that influence membrane potential and intracellular calcium concentration control vascular smooth muscle excitability. Voltage-gated calcium channels (VGCC), transient receptor potential (TRP) channels, voltage (KV), and Ca2+-activated K+ (BK) channels are key regulators of vascular smooth muscle excitability and contractility. These channels are regulated by various signaling cues, including protein kinases and phosphatases. The effects of these ubiquitous signaling molecules often depend on the formation of macromolecular complexes that provide a platform for targeting and compartmentalizing signaling events to specific substrates. This manuscript summarizes our current understanding of specific molecular complexes involving VGCC, TRP, and KV and BK channels and their contribution to regulating vascular physiology.
Collapse
|
10
|
LaCroix R, Lin B, Kang TY, Levchenko A. Complex effects of kinase localization revealed by compartment-specific regulation of protein kinase A activity. eLife 2022; 11:e66869. [PMID: 35199643 PMCID: PMC8871369 DOI: 10.7554/elife.66869] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 02/10/2022] [Indexed: 12/12/2022] Open
Abstract
Kinase activity in signaling networks frequently depends on regulatory subunits that can both inhibit activity by interacting with the catalytic subunits and target the kinase to distinct molecular partners and subcellular compartments. Here, using a new synthetic molecular interaction system, we show that translocation of a regulatory subunit of the protein kinase A (PKA-R) to the plasma membrane has a paradoxical effect on the membrane kinase activity. It can both enhance it at lower translocation levels, even in the absence of signaling inputs, and inhibit it at higher translocation levels, suggesting its role as a linker that can both couple and decouple signaling processes in a concentration-dependent manner. We further demonstrate that superposition of gradients of PKA-R abundance across single cells can control the directionality of cell migration, reversing it at high enough input levels. Thus, complex in vivo patterns of PKA-R localization can drive complex phenotypes, including cell migration.
Collapse
Affiliation(s)
- Rebecca LaCroix
- Department of Biomedical Engineering, Yale UniversityNew HavenUnited States
- Yale Systems Biology Institute, Yale UniversityWest HavenUnited States
| | - Benjamin Lin
- Department of Biomedical Engineering, Yale UniversityNew HavenUnited States
- Yale Systems Biology Institute, Yale UniversityWest HavenUnited States
- Department of Cell Biology, Skirball Institute of Biomolecular Medicine, NYU Langone HealthNew YorkUnited States
| | - Tae-Yun Kang
- Department of Biomedical Engineering, Yale UniversityNew HavenUnited States
- Yale Systems Biology Institute, Yale UniversityWest HavenUnited States
| | - Andre Levchenko
- Department of Biomedical Engineering, Yale UniversityNew HavenUnited States
- Yale Systems Biology Institute, Yale UniversityWest HavenUnited States
| |
Collapse
|
11
|
Boersma A, Primus J, Wagner B, Broukal V, Andersen L, Pachner B, Dahlhoff M, Rülicke T, Auer KE. Influence of sperm cryopreservation on sperm motility and proAKAP4 concentration in mice. Reprod Med Biol 2022; 21:e12480. [PMID: 35919386 PMCID: PMC9336535 DOI: 10.1002/rmb2.12480] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 06/13/2022] [Accepted: 07/04/2022] [Indexed: 02/06/2023] Open
Abstract
Background The protein proAKAP4 is crucial for sperm motility and has been suggested as an indicator of male fertility. We determined the relationship between proAKAP4 concentration and sperm motility parameters in mice, and investigated the effects of cryopreservation on these variables. Methods Computer-assisted sperm analysis and ELISA were applied to determine sperm motility and proAKAP4 concentration in fresh and frozen-thawed epididymal sperm of SWISS, B6D2F1, C57BL/6N, and BALB/c mice. Results ProAKAP4 levels ranged between 12 and 89 ng/ml and did not differ between fresh and frozen-thawed samples, or between strains. We found a negative relationship between proAKAP4 levels and some sperm motility parameters. Sperm traits differed between strains, and cryopreservation negatively affected sperm velocity but not sperm direction parameters. Conclusion ProAKAP4 levels in epididymal mouse spermatozoa were unaffected by cryopreservation, highlighting the robustness of this parameter as a potentially time-independent marker for sperm motility and fertility. The high individual variation in proAKAP4 levels supports the potential role of proAKAP4 as a marker for sperm quality, though we found no positive, and even negative relationships between proAKAP4 levels and some sperm motility parameters. Future studies have to investigate the significance of proAKAP4 as an indicator for fertility in mice.
Collapse
Affiliation(s)
- Auke Boersma
- Institute of in vivo and in vitro ModelsUniversity of Veterinary Medicine ViennaViennaAustria
| | - Jasmin Primus
- Institute of in vivo and in vitro ModelsUniversity of Veterinary Medicine ViennaViennaAustria
| | - Bettina Wagner
- Institute of in vivo and in vitro ModelsUniversity of Veterinary Medicine ViennaViennaAustria
| | - Veronika Broukal
- Institute of in vivo and in vitro ModelsUniversity of Veterinary Medicine ViennaViennaAustria
- Department of RadiologyCharité – Universitätsmedizin BerlinBerlinGermany
| | - Lill Andersen
- Institute of in vivo and in vitro ModelsUniversity of Veterinary Medicine ViennaViennaAustria
| | - Barbara Pachner
- Institute of in vivo and in vitro ModelsUniversity of Veterinary Medicine ViennaViennaAustria
| | - Maik Dahlhoff
- Institute of in vivo and in vitro ModelsUniversity of Veterinary Medicine ViennaViennaAustria
| | - Thomas Rülicke
- Institute of in vivo and in vitro ModelsUniversity of Veterinary Medicine ViennaViennaAustria
| | - Kerstin E. Auer
- Institute of in vivo and in vitro ModelsUniversity of Veterinary Medicine ViennaViennaAustria
| |
Collapse
|
12
|
Rotoli D, Díaz-Flores L, Gutiérrez R, Morales M, Ávila J, Martín-Vasallo P. AmotL2, IQGAP1, and FKBP51 Scaffold Proteins in Glioblastoma Stem Cell Niches. J Histochem Cytochem 2022; 70:9-16. [PMID: 34165350 PMCID: PMC8721575 DOI: 10.1369/00221554211025480] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Glioma stem cells (GSCs) live in a continuous process of stemness reprogramming to achieve specific cell commitment within the so-called GSC niches, specifically located in periarteriolar regions. In this review, we analyze the expression levels, cellular and subcellular location, and role of three scaffold proteins (IQGAP1, FKBP51, and AmotL2) in GSC niches. Scaffold proteins contribute to cell differentiation, migration, and angiogenesis in glioblastoma. It could be of diagnostic interest for establishing stages, for therapeutic targets, and for improving glioblastoma prognosis, which is still at the experimental level.
Collapse
Affiliation(s)
- Deborah Rotoli
- Department of Bioquímica, Microbiología, Biología Celular y Genética, Universidad de La Laguna, San Cristóbal de La Laguna, Spain,Instituto de Tecnología Biomédicas de Canarias, Universidad de La Laguna, San Cristóbal de La Laguna, Spain,Istituto per l’Endocrinologia e l’Oncologia Gaetano Salvatore, Naples, Italy
| | - Lucio Díaz-Flores
- Department of Basic Medical Sciences and Department of Anatomy, Pathology, Histology and Radiology, Universidad de La Laguna, San Cristóbal de La Laguna, Spain
| | - Ricardo Gutiérrez
- Department of Basic Medical Sciences and Department of Anatomy, Pathology, Histology and Radiology, Universidad de La Laguna, San Cristóbal de La Laguna, Spain
| | - Manuel Morales
- Oncología Médica, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain
| | - Julio Ávila
- Department of Bioquímica, Microbiología, Biología Celular y Genética, Universidad de La Laguna, San Cristóbal de La Laguna, Spain,Instituto de Tecnología Biomédicas de Canarias, Universidad de La Laguna, San Cristóbal de La Laguna, Spain
| | - Pablo Martín-Vasallo
- Pablo Martín-Vasallo, UD Bioquímica y Biología Molecular, Universidad de La Laguna, Av/Astrofísico Sánchez s/n, 38206 San Cristóbal de La Laguna, Tenerife, Spain. E-mail:
| |
Collapse
|
13
|
Wu S, Li L, Wu X, Wong CKC, Sun F, Cheng CY. AKAP9 supports spermatogenesis through its effects on microtubule and actin cytoskeletons in the rat testis. FASEB J 2021; 35:e21925. [PMID: 34569663 DOI: 10.1096/fj.202100960r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 08/16/2021] [Accepted: 08/31/2021] [Indexed: 12/29/2022]
Abstract
In mammalian testes, extensive remodeling of the microtubule (MT) and actin cytoskeletons takes place in Sertoli cells across the seminiferous epithelium to support spermatogenesis. However, the mechanism(s) involving regulatory and signaling proteins remains poorly understood. Herein, A-kinase anchoring protein 9 (AKAP9, a member of the AKAP multivalent scaffold protein family) was shown to be one of these crucial regulatory proteins in the rat testis. Earlier studies have shown that AKAP9 serves as a signaling platform by recruiting multiple signaling and regulatory proteins to create a large protein complex that binds to the Golgi and centrosome to facilitate the assembly of the MT-nucleating γ-tubulin ring complex to initiate MT polymerization. We further expanded our earlier studies based on a Sertoli cell-specific AKAP9 knockout mouse model to probe the function of AKAP9 by using the techniques of immunofluorescence analysis, RNA interference (RNAi), and biochemical assays on an in vitro primary Sertoli cell culture model, and an adjudin-based animal model. AKAP9 robustly expressed across the seminiferous epithelium in adult rat testes, colocalizing with MT-based tracks, and laid perpendicular across the seminiferous epithelium, and prominently expressed at the Sertoli-spermatid cell-cell anchoring junction (called apical ectoplasmic specialization [ES]) and at the Sertoli cell-cell interface (called basal ES, which together with tight junction [TJ] created the blood-testis barrier [BTB]) stage specifically. AKAP9 knockdown in Sertoli cells by RNAi was found to perturb the TJ-permeability barrier through disruptive changes in the distribution of BTB-associated proteins at the Sertoli cell cortical zone, mediated by a considerable loss of ability to induce both MT polymerization and actin filament bundling. A considerable decline in AKAP9 expression and a disruptive distribution of AKAP9 across the seminiferous tubules was also noted during adjudin-induced germ cell (GC) exfoliation in this animal model, illustrating AKAP9 is essential to maintain the homeostasis of cytoskeletons to maintain Sertoli and GC adhesion in the testis.
Collapse
Affiliation(s)
- Siwen Wu
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China.,The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, New York, USA
| | - Linxi Li
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China
| | - Xiaolong Wu
- Institute of Reproductive Medicine, Nantong University School of Medicine, Nantong, China
| | - Chris K C Wong
- Department of Biology, Croucher Institute for Environmental Sciences, Hong Kong Baptist University, Kowloon, China
| | - Fei Sun
- Institute of Reproductive Medicine, Nantong University School of Medicine, Nantong, China
| | - C Yan Cheng
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China.,The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, New York, USA
| |
Collapse
|
14
|
Abstract
Kv7.1-Kv7.5 (KCNQ1-5) K+ channels are voltage-gated K+ channels with major roles in neurons, muscle cells and epithelia where they underlie physiologically important K+ currents, such as neuronal M current and cardiac IKs. Specific biophysical properties of Kv7 channels make them particularly well placed to control the activity of excitable cells. Indeed, these channels often work as 'excitability breaks' and are targeted by various hormones and modulators to regulate cellular activity outputs. Genetic deficiencies in all five KCNQ genes result in human excitability disorders, including epilepsy, arrhythmias, deafness and some others. Not surprisingly, this channel family attracts considerable attention as potential drug targets. Here we will review biophysical properties and tissue expression profile of Kv7 channels, discuss recent advances in the understanding of their structure as well as their role in various neurological, cardiovascular and other diseases and pathologies. We will also consider a scope for therapeutic targeting of Kv7 channels for treatment of the above health conditions.
Collapse
|
15
|
Walden EA, Fong RY, Pham TT, Knill H, Laframboise SJ, Huard S, Harper ME, Baetz K. Phenomic screen identifies a role for the yeast lysine acetyltransferase NuA4 in the control of Bcy1 subcellular localization, glycogen biosynthesis, and mitochondrial morphology. PLoS Genet 2020; 16:e1009220. [PMID: 33253187 PMCID: PMC7728387 DOI: 10.1371/journal.pgen.1009220] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 12/10/2020] [Accepted: 10/22/2020] [Indexed: 11/30/2022] Open
Abstract
Cellular metabolism is tightly regulated by many signaling pathways and processes, including lysine acetylation of proteins. While lysine acetylation of metabolic enzymes can directly influence enzyme activity, there is growing evidence that lysine acetylation can also impact protein localization. As the Saccharomyces cerevisiae lysine acetyltransferase complex NuA4 has been implicated in a variety of metabolic processes, we have explored whether NuA4 controls the localization and/or protein levels of metabolic proteins. We performed a high-throughput microscopy screen of over 360 GFP-tagged metabolic proteins and identified 23 proteins whose localization and/or abundance changed upon deletion of the NuA4 scaffolding subunit, EAF1. Within this, three proteins were required for glycogen synthesis and 14 proteins were associated with the mitochondria. We determined that in eaf1Δ cells the transcription of glycogen biosynthesis genes is upregulated resulting in increased proteins and glycogen production. Further, in the absence of EAF1, mitochondria are highly fused, increasing in volume approximately 3-fold, and are chaotically distributed but remain functional. Both the increased glycogen synthesis and mitochondrial elongation in eaf1Δ cells are dependent on Bcy1, the yeast regulatory subunit of PKA. Surprisingly, in the absence of EAF1, Bcy1 localization changes from being nuclear to cytoplasmic and PKA activity is altered. We found that NuA4-dependent localization of Bcy1 is dependent on a lysine residue at position 313 of Bcy1. However, the glycogen accumulation and mitochondrial elongation phenotypes of eaf1Δ, while dependent on Bcy1, were not fully dependent on Bcy1-K313 acetylation state and subcellular localization of Bcy1. As NuA4 is highly conserved with the human Tip60 complex, our work may inform human disease biology, revealing new avenues to investigate the role of Tip60 in metabolic diseases.
Collapse
Affiliation(s)
- Elizabeth A. Walden
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Canada
- Ottawa Institute of Systems Biology, Ottawa, Canada
| | - Roger Y. Fong
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Canada
- Ottawa Institute of Systems Biology, Ottawa, Canada
| | - Trang T. Pham
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Canada
- Ottawa Institute of Systems Biology, Ottawa, Canada
| | - Hana Knill
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Canada
- Ottawa Institute of Systems Biology, Ottawa, Canada
| | - Sarah Jane Laframboise
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Canada
- Ottawa Institute of Systems Biology, Ottawa, Canada
| | - Sylvain Huard
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Canada
- Ottawa Institute of Systems Biology, Ottawa, Canada
| | - Mary-Ellen Harper
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Canada
- Ottawa Institute of Systems Biology, Ottawa, Canada
| | - Kristin Baetz
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Canada
- Ottawa Institute of Systems Biology, Ottawa, Canada
| |
Collapse
|
16
|
Qasim H, McConnell BK. AKAP12 Signaling Complex: Impacts of Compartmentalizing cAMP-Dependent Signaling Pathways in the Heart and Various Signaling Systems. J Am Heart Assoc 2020; 9:e016615. [PMID: 32573313 PMCID: PMC7670535 DOI: 10.1161/jaha.120.016615] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Heart failure is a complex clinical syndrome, represented as an impairment in ventricular filling and myocardial blood ejection. As such, heart failure is one of the leading causes of death in the United States. With a mortality rate of 1 per 8 individuals and a prevalence of 6.2 million Americans, it has been projected that heart failure prevalence will increase by 46% by 2030. Cardiac remodeling (a general determinant of heart failure) is regulated by an extensive network of intertwined intracellular signaling pathways. The ability of signalosomes (molecular signaling complexes) to compartmentalize several cellular pathways has been recently established. These signalosome signaling complexes provide an additional level of specificity to general signaling pathways by regulating the association of upstream signals with downstream effector molecules. In cardiac myocytes, the AKAP12 (A-kinase anchoring protein 12) scaffolds a large signalosome that orchestrates spatiotemporal signaling through stabilizing pools of phosphatases and kinases. Predominantly upon β-AR (β2-adrenergic-receptor) stimulation, the AKAP12 signalosome is recruited near the plasma membrane and binds tightly to β-AR. Thus, one major function of AKAP12 is compartmentalizing PKA (protein kinase A) signaling near the plasma membrane. In addition, it is involved in regulating desensitization, downregulation, and recycling of β-AR. In this review, the critical roles of AKAP12 as a scaffold protein in mediating signaling downstream GPCRs (G protein-coupled receptor) are discussed with an emphasis on its reported and potential roles in cardiovascular disease initiation and progression.
Collapse
Affiliation(s)
- Hanan Qasim
- Department of Pharmacological and Pharmaceutical SciencesCollege of PharmacyUniversity of HoustonTX
| | - Bradley K. McConnell
- Department of Pharmacological and Pharmaceutical SciencesCollege of PharmacyUniversity of HoustonTX
| |
Collapse
|
17
|
Functional Heterogeneity of Protein Kinase A Activation in Multipotent Stromal Cells. Int J Mol Sci 2020; 21:ijms21124442. [PMID: 32580466 PMCID: PMC7353043 DOI: 10.3390/ijms21124442] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 06/17/2020] [Accepted: 06/17/2020] [Indexed: 02/06/2023] Open
Abstract
Multipotent stromal cells (MSC) demonstrate remarkable functional heterogeneity; however, its molecular mechanisms remain largely obscure. In this study, we explored MSC response to hormones, which activate Gs-protein / cyclic AMP (cAMP) / protein kinase A (PKA) dependent signaling, at the single cell level using genetically encoded biosensor PKA-Spark. For the first time, we demonstrated that about half of cultured MSCs are not able to activate the cAMP/PKA pathway, possibly due to the limited availability of adenylyl cyclases. Using this approach, we showed that MSC subpopulations responding to various hormones largely overlapped, and the share of responding cells did not exceed 40%. Using clonal analysis, we showed that signaling heterogeneity of MSC could be formed de novo within 2 weeks.
Collapse
|
18
|
Li ZH, Cui D, Qiu CJ, Song XJ. Cyclic nucleotide signaling in sensory neuron hyperexcitability and chronic pain after nerve injury. NEUROBIOLOGY OF PAIN 2019; 6:100028. [PMID: 31223142 PMCID: PMC6565612 DOI: 10.1016/j.ynpai.2019.100028] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Revised: 03/06/2019] [Accepted: 03/07/2019] [Indexed: 11/08/2022]
Abstract
Activation of cAMP-PKA and cGMP-PKG pathways contributes to injury-induced sensory neuron hyperexcitability. Activation of cAMP and cGMP contributes to the development of bone cancer pain. PAR2 activation mediates injury-induced cAMP-dependent sensory neuron hyperexcitability.
The cyclic nucleotide signaling, including cAMP-PKA and cGMP-PKG pathways, has been well known to play critical roles in regulating cellular growth, metabolism and many other intracellular processes. In recent years, more and more studies have uncovered the roles of cAMP and cGMP in the nervous system. The cAMP and cGMP signaling mediates chronic pain induced by different forms of injury and stress. Here we summarize the roles of cAMP-PKA and cGMP-PKG signaling pathways in the pathogenesis of chronic pain after nerve injury. In addition, acute dissociation and chronic compression of the dorsal root ganglion (DRG) neurons, respectively, leads to neural hyperexcitability possibly through PAR2 activation-dependent activation of cAMP-PKA pathway. Clinically, radiotherapy can effectively alleviate bone cancer pain at least partly through inhibiting the cancer cell-induced activation of cAMP-PKA pathway. Roles of cyclic nucleotide signaling in neuropathic and inflammatory pain are also seen in many other animal models and are involved in many pro-nociceptive mechanisms including the activation of hyperpolarization-activated cyclic nucleotide (HCN)-modulated ion channels and the exchange proteins directly activated by cAMP (EPAC). Further understanding the roles of cAMP and cGMP signaling in the pathogenesis of chronic pain is theoretically significant and clinically valuable for treatment of chronic pain.
Collapse
Affiliation(s)
- Ze-Hua Li
- Department of Biology, SUSTech Center for Pain Medicine, and Medical School, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China.,Department of Anesthesiology and Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education of China), Peking University School of Oncology, Beijing Cancer Hospital & Institute, Beijing 100142, China
| | - Dong Cui
- Department of Biology, SUSTech Center for Pain Medicine, and Medical School, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China.,Department of Anesthesiology and Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education of China), Peking University School of Oncology, Beijing Cancer Hospital & Institute, Beijing 100142, China
| | - Cheng-Jie Qiu
- Department of Biology, SUSTech Center for Pain Medicine, and Medical School, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Xue-Jun Song
- Department of Biology, SUSTech Center for Pain Medicine, and Medical School, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China.,Department of Anesthesiology and Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education of China), Peking University School of Oncology, Beijing Cancer Hospital & Institute, Beijing 100142, China
| |
Collapse
|
19
|
Holland NA, Francisco JT, Johnson SC, Morgan JS, Dennis TJ, Gadireddy NR, Tulis DA. Cyclic Nucleotide-Directed Protein Kinases in Cardiovascular Inflammation and Growth. J Cardiovasc Dev Dis 2018; 5:E6. [PMID: 29367584 PMCID: PMC5872354 DOI: 10.3390/jcdd5010006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 01/17/2018] [Accepted: 01/19/2018] [Indexed: 02/08/2023] Open
Abstract
Cardiovascular disease (CVD), including myocardial infarction (MI) and peripheral or coronary artery disease (PAD, CAD), remains the number one killer of individuals in the United States and worldwide, accounting for nearly 18 million (>30%) global deaths annually. Despite considerable basic science and clinical investigation aimed at identifying key etiologic components of and potential therapeutic targets for CVD, the number of individuals afflicted with these dreaded diseases continues to rise. Of the many biochemical, molecular, and cellular elements and processes characterized to date that have potential to control foundational facets of CVD, the multifaceted cyclic nucleotide pathways continue to be of primary basic science and clinical interest. Cyclic adenosine monophosphate (cyclic AMP) and cyclic guanosine monophosphate (cyclic GMP) and their plethora of downstream protein kinase effectors serve ubiquitous roles not only in cardiovascular homeostasis but also in the pathogenesis of CVD. Already a major target for clinical pharmacotherapy for CVD as well as other pathologies, novel and potentially clinically appealing actions of cyclic nucleotides and their downstream targets are still being discovered. With this in mind, this review article focuses on our current state of knowledge of the cyclic nucleotide-driven serine (Ser)/threonine (Thr) protein kinases in CVD with particular emphasis on cyclic AMP-dependent protein kinase (PKA) and cyclic GMP-dependent protein kinase (PKG). Attention is given to the regulatory interactions of these kinases with inflammatory components including interleukin 6 signals, with G protein-coupled receptor and growth factor signals, and with growth and synthetic transcriptional platforms underlying CVD pathogenesis. This article concludes with a brief discussion of potential future directions and highlights the importance for continued basic science and clinical study of cyclic nucleotide-directed protein kinases as emerging and crucial controllers of cardiac and vascular disease pathologies.
Collapse
Affiliation(s)
- Nathan A Holland
- Department of Physiology, Brody School of Medicine, East Carolina University, 600 Moye Boulevard, Greenville, NC 27834, USA.
| | - Jake T Francisco
- Department of Physiology, Brody School of Medicine, East Carolina University, 600 Moye Boulevard, Greenville, NC 27834, USA.
| | - Sean C Johnson
- Department of Physiology, Brody School of Medicine, East Carolina University, 600 Moye Boulevard, Greenville, NC 27834, USA.
| | - Joshua S Morgan
- Department of Physiology, Brody School of Medicine, East Carolina University, 600 Moye Boulevard, Greenville, NC 27834, USA.
| | - Troy J Dennis
- Department of Physiology, Brody School of Medicine, East Carolina University, 600 Moye Boulevard, Greenville, NC 27834, USA.
| | - Nishitha R Gadireddy
- Department of Physiology, Brody School of Medicine, East Carolina University, 600 Moye Boulevard, Greenville, NC 27834, USA.
| | - David A Tulis
- Department of Physiology, Brody School of Medicine, East Carolina University, 600 Moye Boulevard, Greenville, NC 27834, USA.
| |
Collapse
|
20
|
Bieluszewska A, Weglewska M, Bieluszewski T, Lesniewicz K, Poreba E. PKA
‐binding domain of
AKAP
8 is essential for direct interaction with
DPY
30 protein. FEBS J 2018; 285:947-964. [DOI: 10.1111/febs.14378] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 12/01/2017] [Accepted: 12/22/2017] [Indexed: 11/27/2022]
Affiliation(s)
- Anna Bieluszewska
- Department of Molecular Virology Institute of Experimental Biology Faculty of Biology Adam Mickiewicz University in Poznan Poland
| | - Martyna Weglewska
- Department of Molecular Virology Institute of Experimental Biology Faculty of Biology Adam Mickiewicz University in Poznan Poland
| | - Tomasz Bieluszewski
- Department of Genome Biology Institute of Molecular Biology and Biotechnology Faculty of Biology Adam Mickiewicz University in Poznan Poland
| | - Krzysztof Lesniewicz
- Department of Molecular and Cellular Biology Institute of Molecular Biology and Biotechnology Faculty of Biology Adam Mickiewicz University in Poznan Poland
| | - Elzbieta Poreba
- Department of Molecular Virology Institute of Experimental Biology Faculty of Biology Adam Mickiewicz University in Poznan Poland
| |
Collapse
|
21
|
Lorenzen-Schmidt I, Clarke SB, Pyle WG. The neglected messengers: Control of cardiac myofilaments by protein phosphatases. J Mol Cell Cardiol 2016; 101:81-89. [PMID: 27721025 DOI: 10.1016/j.yjmcc.2016.10.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 10/03/2016] [Accepted: 10/05/2016] [Indexed: 01/21/2023]
Abstract
Cardiac myofilaments act as the central contractile apparatus of heart muscle cells. Covalent modification of constituent proteins through phosphorylation is a rapid and powerful mechanism to control myofilament function, and is increasingly seen as a mechanism of disease. While the relationship between protein kinases and cardiac myofilaments has been widely examined, the impact of protein dephosphorylation by protein phosphatases is poorly understood. This review outlines the mechanisms by which the mostly widely expressed protein phosphatases in cardiac myocytes regulate myofilament function, and the emerging role of myofilament-associated protein phosphatases in heart failure. The importance of regulatory subunits and subcellular compartmentalization in determining the functional impact of protein phosphatases on myofilament and myocardial function is also discussed, as are discrepancies about the roles of protein phosphatases in regulating myofilament function. The potential for targeting these molecular messengers in the treatment of heart failure is discussed as a key future direction.
Collapse
Affiliation(s)
- Ilka Lorenzen-Schmidt
- Centre for Cardiovascular Investigations, Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Samantha B Clarke
- Centre for Cardiovascular Investigations, Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - W Glen Pyle
- Centre for Cardiovascular Investigations, Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada.
| |
Collapse
|
22
|
Marstad A, Landsverk OJB, Strømme O, Otterlei M, Collas P, Sundan A, Brede G. A-kinase anchoring protein AKAP95 is a novel regulator of ribosomal RNA synthesis. FEBS J 2016; 283:757-70. [PMID: 26683827 DOI: 10.1111/febs.13630] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Revised: 11/23/2015] [Accepted: 12/14/2015] [Indexed: 11/30/2022]
Abstract
The RNA polymerase I transcription apparatus acquires and integrates the combined information from multiple cellular signalling cascades to regulate ribosome production essential for cell growth and proliferation. In the present study, we show that a subpopulation of A-kinase anchoring protein 95 (AKAP95) targets the nucleolus during interphase and is involved in regulating rRNA production. We show that AKAP95 co-localizes with the nucleolar upstream binding factor, an essential rRNA transcription factor. Similar to other members of the C2 H2 -zinc finger family, we show, using systematic selection and evolution of ligands by exponential enrichment and in vitro binding analysis, that AKAP95 has a preference for GC-rich DNA in vitro, whereas fluorescence recovery after photobleaching analysis reveals AKAP95 to be a highly mobile protein that exhibits RNA polymerase I and II dependent nucleolar trafficking. In line with its GC-binding features, chromatin immunoprecipitation analysis revealed AKAP95 to be associated with ribosomal chromatin in vivo. Manipulation of AKAP95-expression in U2OS cells revealed a reciprocal relationship between the expression of AKAP95 and 47S rRNA. Taken together, our data indicate that AKAP95 is a novel nucleolus-associated protein with a regulatory role on rRNA production.
Collapse
Affiliation(s)
- Anne Marstad
- Centre of Molecular Inflammation Research (CEMIR), Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Ole Jørgen B Landsverk
- Department of Pathology, Centre for Immune Regulation, Oslo University Hospital Norway, Norway
| | - Olaf Strømme
- Centre of Molecular Inflammation Research (CEMIR), Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Marit Otterlei
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Philippe Collas
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Norway
| | - Anders Sundan
- Centre of Molecular Inflammation Research (CEMIR), Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway.,KG Jebsen Centre for Myeloma Research, Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Gaute Brede
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| |
Collapse
|
23
|
Flaherty BR, Wang Y, Trope EC, Ho TG, Muralidharan V, Kennedy EJ, Peterson DS. The Stapled AKAP Disruptor Peptide STAD-2 Displays Antimalarial Activity through a PKA-Independent Mechanism. PLoS One 2015; 10:e0129239. [PMID: 26010880 PMCID: PMC4444124 DOI: 10.1371/journal.pone.0129239] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 05/06/2015] [Indexed: 11/19/2022] Open
Abstract
Drug resistance poses a significant threat to ongoing malaria control efforts. Coupled with lack of a malaria vaccine, there is an urgent need for the development of new antimalarials with novel mechanisms of action and low susceptibility to parasite drug resistance. Protein Kinase A (PKA) has been implicated as a critical regulator of pathogenesis in malaria. Therefore, we sought to investigate the effects of disrupted PKA signaling as a possible strategy for inhibition of parasite replication. Host PKA activity is partly regulated by a class of proteins called A Kinase Anchoring Proteins (AKAPs), and interaction between HsPKA and AKAP can be inhibited by the stapled peptide Stapled AKAP Disruptor 2 (STAD-2). STAD-2 was tested for permeability to and activity against Plasmodium falciparum blood stage parasites in vitro. The compound was selectively permeable only to infected red blood cells (iRBC) and demonstrated rapid antiplasmodial activity, possibly via iRBC lysis (IC50 ≈ 1 μM). STAD-2 localized within the parasite almost immediately post-treatment but showed no evidence of direct association with PKA, indicating that STAD-2 acts via a PKA-independent mechanism. Furosemide-insensitive parasite permeability pathways in the iRBC were largely responsible for uptake of STAD-2. Further, peptide import was highly specific to STAD-2 as evidenced by low permeability of control stapled peptides. Selective uptake and antiplasmodial activity of STAD-2 provides important groundwork for the development of stapled peptides as potential antimalarials. Such peptides may also offer an alternative strategy for studying protein-protein interactions critical to parasite development and pathogenesis.
Collapse
Affiliation(s)
- Briana R. Flaherty
- Department of Infectious Diseases, University of Georgia College of Veterinary Medicine, Athens, Georgia, United States of America
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia, United States of America
| | - Yuxiao Wang
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, Georgia, United States of America
| | - Edward C. Trope
- Department of Infectious Diseases, University of Georgia College of Veterinary Medicine, Athens, Georgia, United States of America
| | - Tienhuei G. Ho
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, Georgia, United States of America
| | - Vasant Muralidharan
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia, United States of America
- Department of Cellular Biology, University of Georgia, Athens, Georgia, United States of America
| | - Eileen J. Kennedy
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, Georgia, United States of America
- * E-mail: (EK); David Peterson: (DP)
| | - David S. Peterson
- Department of Infectious Diseases, University of Georgia College of Veterinary Medicine, Athens, Georgia, United States of America
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia, United States of America
- * E-mail: (EK); David Peterson: (DP)
| |
Collapse
|
24
|
Compartmentalization role of A-kinase anchoring proteins (AKAPs) in mediating protein kinase A (PKA) signaling and cardiomyocyte hypertrophy. Int J Mol Sci 2014. [PMID: 25547489 DOI: 10.3390/ijms16010218.] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The Beta-adrenergic receptors (β-ARs) stimulation enhances contractility through protein kinase-A (PKA) substrate phosphorylation. This PKA signaling is conferred in part by PKA binding to A-kinase anchoring proteins (AKAPs). AKAPs coordinate multi-protein signaling networks that are targeted to specific intracellular locations, resulting in the localization of enzyme activity and transmitting intracellular actions of neurotransmitters and hormones to its target substrates. In particular, mAKAP (muscle-selective AKAP) has been shown to be present on the nuclear envelope of cardiomyocytes with various proteins including: PKA-regulatory subunit (RIIα), phosphodiesterase-4D3, protein phosphatase-2A, and ryanodine receptor (RyR2). Therefore, through the coordination of spatial-temporal signaling of proteins and enzymes, mAKAP controls cyclic-adenosine monophosphate (cAMP) levels very tightly and functions as a regulator of PKA-mediated substrate phosphorylation leading to changes in calcium availability and myofilament calcium sensitivity. The goal of this review is to elucidate the critical compartmentalization role of mAKAP in mediating PKA signaling and regulating cardiomyocyte hypertrophy by acting as a scaffolding protein. Based on our literature search and studying the structure-function relationship between AKAP scaffolding protein and its binding partners, we propose possible explanations for the mechanism by which mAKAP promotes cardiac hypertrophy.
Collapse
|
25
|
Rababa'h A, Singh S, Suryavanshi SV, Altarabsheh SE, Deo SV, McConnell BK. Compartmentalization role of A-kinase anchoring proteins (AKAPs) in mediating protein kinase A (PKA) signaling and cardiomyocyte hypertrophy. Int J Mol Sci 2014; 16:218-29. [PMID: 25547489 PMCID: PMC4307244 DOI: 10.3390/ijms16010218] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Accepted: 12/18/2014] [Indexed: 02/07/2023] Open
Abstract
The Beta-adrenergic receptors (β-ARs) stimulation enhances contractility through protein kinase-A (PKA) substrate phosphorylation. This PKA signaling is conferred in part by PKA binding to A-kinase anchoring proteins (AKAPs). AKAPs coordinate multi-protein signaling networks that are targeted to specific intracellular locations, resulting in the localization of enzyme activity and transmitting intracellular actions of neurotransmitters and hormones to its target substrates. In particular, mAKAP (muscle-selective AKAP) has been shown to be present on the nuclear envelope of cardiomyocytes with various proteins including: PKA-regulatory subunit (RIIα), phosphodiesterase-4D3, protein phosphatase-2A, and ryanodine receptor (RyR2). Therefore, through the coordination of spatial-temporal signaling of proteins and enzymes, mAKAP controls cyclic-adenosine monophosphate (cAMP) levels very tightly and functions as a regulator of PKA-mediated substrate phosphorylation leading to changes in calcium availability and myofilament calcium sensitivity. The goal of this review is to elucidate the critical compartmentalization role of mAKAP in mediating PKA signaling and regulating cardiomyocyte hypertrophy by acting as a scaffolding protein. Based on our literature search and studying the structure-function relationship between AKAP scaffolding protein and its binding partners, we propose possible explanations for the mechanism by which mAKAP promotes cardiac hypertrophy.
Collapse
Affiliation(s)
- Abeer Rababa'h
- Department of Clinical Pharmacy, Jordan University of Science and Technology, Irbid 22110, Jordan.
| | - Sonal Singh
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston, Texas Medical Center, Houston, TX 77204, USA.
| | - Santosh V Suryavanshi
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston, Texas Medical Center, Houston, TX 77204, USA.
| | | | - Salil V Deo
- Department of Cardiovascular Surgery, Case Western Reserve University, Cleveland, OH 44106, USA.
| | - Bradley K McConnell
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston, Texas Medical Center, Houston, TX 77204, USA.
| |
Collapse
|
26
|
Onitake A, Yamanaka K, Esaki M, Ogura T. Caenorhabditis elegans fidgetin homolog FIGL-1, a nuclear-localized AAA ATPase, binds to SUMO. J Struct Biol 2012; 179:143-51. [PMID: 22575764 DOI: 10.1016/j.jsb.2012.04.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Revised: 03/27/2012] [Accepted: 04/29/2012] [Indexed: 11/26/2022]
Abstract
Fidgetin is a member of the AAA (ATPases associated with diverse cellular activities) chaperones. It is well-known that the specific function of a given AAA protein primarily depends upon its subcellular localization and interacting partners. FIGL-1, a Caenorhabditis elegans homolog of mammalian fidgetin, is localized in the nucleus. Here, we identified that the N-terminal PKRVK sequence of FIGL-1 functions as a monopartite nuclear localization signal. Nuclear localization of FIGL-1 is required for its function. We also found that FIGL-1 specifically interacted with SMO-1, a C. elegans homolog of small ubiquitin-like modifier (SUMO), using a yeast two-hybrid assay. Furthermore, the direct physical interaction between FIGL-1 and SMO-1 was demonstrated by pull-down assay using purified proteins as well as immunoprecipitation assay using lysates from epitope-tagged SMO-1-expressing worms. Binding of FIGL-1 to SMO-1 is required for its function. The depletion of FIGL-1 and SMO-1 resulted in developmental defects in C. elegans. Taken altogether, our results indicate that FIGL-1 is a nuclear protein and that in concert with SMO-1, FIGL-1 plays an important role in the regulation of C. elegans development.
Collapse
Affiliation(s)
- Akinobu Onitake
- Department of Molecular Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan
| | | | | | | |
Collapse
|
27
|
Abstract
A kinase anchoring proteins (AKAPs) bind multiple signaling proteins and have subcellular targeting domains that allow them to greatly impact cellular signaling. AKAPs localize, specify, amplify, and accelerate signal transduction within the cell by bringing signaling proteins together in space and time. AKAPs also organize higher-order network motifs such as feed forward and feedback loops that may create complex network responses, including adaptation, oscillation, and ultrasensitivity. Computational models have begun to provide an insight into how AKAPs regulate signaling dynamics and cardiovascular pathophysiology. Models of mitogen-activated protein kinase and epidermal growth factor receptor scaffolds have revealed additional design principles and new methods for representing signaling scaffolds mathematically. Coupling computational modeling with quantitative experimental approaches will be increasingly necessary for dissecting the diverse information processing functions performed by AKAP signaling complexes.
Collapse
|
28
|
Mikitova V, Levine TP. Analysis of the key elements of FFAT-like motifs identifies new proteins that potentially bind VAP on the ER, including two AKAPs and FAPP2. PLoS One 2012; 7:e30455. [PMID: 22276202 PMCID: PMC3261905 DOI: 10.1371/journal.pone.0030455] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2011] [Accepted: 12/20/2011] [Indexed: 12/13/2022] Open
Abstract
Background Two phenylalanines (FF) in an acidic tract (FFAT)-motifs were originally described as having seven elements: an acidic flanking region followed by 6 residues (EFFDA–E). Such motifs are found in several lipid transfer protein (LTP) families, and they interact with a protein on the cytosolic face of the ER called vesicle-associated membrane protein-associated protein (VAP). Mutation of which causes ER stress and motor neuron disease, making it important to determine which proteins bind VAP. Among other proteins that bind VAP, some contain FFAT-like motifs that are missing one or more of the seven elements. Defining how much variation is tolerated in FFAT-like motifs is a preliminary step prior to the identification of the full range of VAP interactors. Results We used a quantifiable in vivo system that measured ER targeting in a reporter yeast strain that over-expressed VAP to study the effect of substituting different elements of FFAT-like motifs in turn. By defining FFAT-like motifs more widely than before, we found them in novel proteins the functions of which had not previously been directly linked to the ER, including: two PKA anchoring proteins, AKAP220 and AKAP110; a family of plant LTPs; and the glycolipid LTP phosphatidylinositol-four-phosphate adaptor-protein-2 (FAPP-2). Conclusion All of the seven essential elements of a FFAT motif tolerate variation, and weak targeting to the ER via VAP is still detected if two elements are substituted. In addition to the strong FFAT motifs already known, there are additional proteins with weaker FFAT-like motifs, which might be functionally important VAP interactors.
Collapse
Affiliation(s)
- Veronika Mikitova
- Department of Cell Biology, University College London Institute of Ophthalmology, London, United Kingdom
| | - Timothy P. Levine
- Department of Cell Biology, University College London Institute of Ophthalmology, London, United Kingdom
- * E-mail:
| |
Collapse
|
29
|
Rahmeh AA, Zhou Y, Xie B, Li H, Lee EYC, Lee MYWT. Phosphorylation of the p68 Subunit of Pol δ Acts as a Molecular Switch To Regulate Its Interaction with PCNA. Biochemistry 2011; 51:416-24. [DOI: 10.1021/bi201638e] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Amal A. Rahmeh
- Department
of Biochemistry and Molecular Biology, New York Medical College, Valhalla, New York 10595, United States
| | - Yajing Zhou
- Department
of Biochemistry and Molecular Biology, New York Medical College, Valhalla, New York 10595, United States
| | - Bin Xie
- Department
of Biochemistry and Molecular Biology, New York Medical College, Valhalla, New York 10595, United States
| | - Hao Li
- Department
of Biochemistry and Molecular Biology, New York Medical College, Valhalla, New York 10595, United States
| | - Ernest Y. C. Lee
- Department
of Biochemistry and Molecular Biology, New York Medical College, Valhalla, New York 10595, United States
| | - Marietta Y. W. T. Lee
- Department
of Biochemistry and Molecular Biology, New York Medical College, Valhalla, New York 10595, United States
| |
Collapse
|
30
|
Hou T, Li Y, Wang W. Prediction of peptides binding to the PKA RIIalpha subunit using a hierarchical strategy. ACTA ACUST UNITED AC 2011; 27:1814-21. [PMID: 21586518 DOI: 10.1093/bioinformatics/btr294] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
MOTIVATION Favorable interaction between the regulatory subunit of the cAMP-dependent protein kinase (PKA) and a peptide in A-kinase anchoring proteins (AKAPs) is critical for translocating PKA to the subcellular sites where the enzyme phosphorylates its substrates. It is very hard to identify AKAPs peptides binding to PKA due to the high sequence diversity of AKAPs. RESULTS We propose a hierarchical and efficient approach, which combines molecular dynamics (MD) simulations, free energy calculations, virtual mutagenesis (VM) and bioinformatics analyses, to predict peptides binding to the PKA RIIα regulatory subunit in the human proteome systematically. Our approach successfully retrieved 15 out of 18 documented RIIα-binding peptides. Literature curation supported that many newly predicted peptides might be true AKAPs. Here, we present the first systematic search for AKAP peptides in the human proteome, which is useful to further experimental identification of AKAPs and functional analysis of their biological roles.
Collapse
Affiliation(s)
- Tingjun Hou
- Institute of Functional Nano & Soft Materials (FUNSOM) and Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu 215123, PR China.
| | | | | |
Collapse
|
31
|
Hu Y, Liu E, Bai X, Zhang A. The localization and concentration of the PDE2-encoded high-affinity cAMP phosphodiesterase is regulated by cAMP-dependent protein kinase A in the yeast Saccharomyces cerevisiae. FEMS Yeast Res 2010; 10:177-87. [PMID: 20059552 DOI: 10.1111/j.1567-1364.2009.00598.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The genome of the yeast Saccharomyces cerevisiae encodes two cyclic AMP (cAMP) phosphodiesterases, a low-affinity one, Pde1, and a high-affinity one, Pde2. Pde1 has been ascribed a function for downregulating agonist-induced cAMP accumulation in a protein kinase A (PKA)-governed negative feedback loop, whereas Pde2 controls the basal cAMP level in the cell. Here we show that PKA regulates the localization and protein concentration of Pde2. Pde2 is accumulated in the nucleus in wild-type cells growing on glucose, or in strains with hyperactive PKA. In contrast, in derepressed wild-type cells or cells with attenuated PKA activity, Pde2 is distributed over the nucleus and cytoplasm. We also show evidence indicating that the Pde2 protein level is positively correlated with PKA activity. The increase in the Pde2 protein level in high-PKA strains and in cells growing on glucose was due to its increased half-life. These results suggest that, like its low-affinity counterpart, the high-affinity phosphodiesterase may also play an important role in the PKA-controlled feedback inhibition of intracellular cAMP.
Collapse
Affiliation(s)
- Yun Hu
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China.
| | | | | | | |
Collapse
|
32
|
Yamashita H, Ueda K, Kioka N. WAVE2 forms a complex with PKA and is involved in PKA enhancement of membrane protrusions. J Biol Chem 2010; 286:3907-14. [PMID: 21119216 DOI: 10.1074/jbc.m110.145409] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
PKA contributes to many physiological processes, including glucose homeostasis and cell migration. The substrate specificity of PKA is low compared with other kinases; thus, complex formation with A-kinase-anchoring proteins is important for the localization of PKA in specific subcellular regions and the phosphorylation of specific substrates. Here, we show that PKA forms a complex with WAVE2 (Wiskott-Aldrich syndrome protein family verprolin-homologous protein 2) in MDA-MB-231 breast cancer cells and mouse brain extracts. Two separate regions of WAVE2 are involved in WAVE2-PKA complex formation. This complex localizes to the leading edge of MDA-MB-231 cells. PKA activation results in enlargement of the membrane protrusion. WAVE2 depletion impairs PKA localization at membrane protrusions and the enlargement of membrane protrusion induced by PKA activation. Together, these results suggest that WAVE2 works as an A-kinase-anchoring protein that recruits PKA at membrane protrusions and plays a role in the enlargement of membrane protrusions induced by PKA activation.
Collapse
Affiliation(s)
- Hiroshi Yamashita
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | | | | |
Collapse
|
33
|
Peercy BE, Sherman AS. How pancreatic beta-cells discriminate long and short timescale cAMP signals. Biophys J 2010; 99:398-406. [PMID: 20643057 DOI: 10.1016/j.bpj.2010.04.043] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2009] [Revised: 03/15/2010] [Accepted: 04/14/2010] [Indexed: 11/16/2022] Open
Abstract
The translocation of catalytic protein kinase A (cPKA) in response to cyclic-adenosine mono-phosphate (cAMP) depends on the pattern of stimulus applied to the cell. Experiments with IBMX have shown that 1), sustained cAMP elevation is more effective than oscillations of cAMP at getting cPKA into the nucleus; and 2), cPKA enters the nucleus by diffusion. We constructed mathematical models of cAMP activation of cPKA and their diffusion in order to study nuclear translocation of cPKA, and conclude that hindered diffusion of cPKA through the nuclear membrane by a rapid-binding process, but not globally reduced diffusion, can explain the experimental data. Perturbation analysis suggests that normal physiological oscillations of glucose would not result in nuclear translocation, but chronically high glucose that produces extended calcium plateaus and/or chronic glucagonlike peptide-1 stimulation could result in elevated levels of nuclear cPKA.
Collapse
Affiliation(s)
- Bradford E Peercy
- Department of Mathematics and Statistics, University of Maryland, Baltimore, Maryland, USA
| | | |
Collapse
|
34
|
Penmatsa H, Zhang W, Yarlagadda S, Li C, Conoley VG, Yue J, Bahouth SW, Buddington RK, Zhang G, Nelson DJ, Sonecha MD, Manganiello V, Wine JJ, Naren AP. Compartmentalized cyclic adenosine 3',5'-monophosphate at the plasma membrane clusters PDE3A and cystic fibrosis transmembrane conductance regulator into microdomains. Mol Biol Cell 2010; 21:1097-110. [PMID: 20089840 PMCID: PMC2836961 DOI: 10.1091/mbc.e09-08-0655] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Formation of multiple-protein macromolecular complexes at specialized subcellular microdomains increases the specificity and efficiency of signaling in cells. In this study, we demonstrate that phosphodiesterase type 3A (PDE3A) physically and functionally interacts with cystic fibrosis transmembrane conductance regulator (CFTR) channel. PDE3A inhibition generates compartmentalized cyclic adenosine 3',5'-monophosphate (cAMP), which further clusters PDE3A and CFTR into microdomains at the plasma membrane and potentiates CFTR channel function. Actin skeleton disruption reduces PDE3A-CFTR interaction and segregates PDE3A from its interacting partners, thus compromising the integrity of the CFTR-PDE3A-containing macromolecular complex. Consequently, compartmentalized cAMP signaling is lost. PDE3A inhibition no longer activates CFTR channel function in a compartmentalized manner. The physiological relevance of PDE3A-CFTR interaction was investigated using pig trachea submucosal gland secretion model. Our data show that PDE3A inhibition augments CFTR-dependent submucosal gland secretion and actin skeleton disruption decreases secretion.
Collapse
Affiliation(s)
- Himabindu Penmatsa
- Department of Physiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Liu YR, Ye WL, Zeng XM, Ren WH, Zhang YQ, Mei YA. K+ channels and the cAMP-PKA pathway modulate TGF-beta1-induced migration of rat vascular myofibroblasts. J Cell Physiol 2008; 216:835-43. [PMID: 18551429 DOI: 10.1002/jcp.21464] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Our previous studies have indicated that TGF-beta1 exerts its effect on the expression of A-type potassium channels (I(A)) in rat vascular myofibroblasts by activation of protein kinase C during the phenotypic transformation of vascular fibroblasts to myofibroblasts. In the present study, patch-clamp whole-cell recording and transwell-migration assays were used to examine the effects of TGF-beta1- and phorbol 12-myristate 13-acetate (PMA)-induced expression of I(A) channels on myofibroblast migration and its modulation by the protein kinase A (PKA) pathway. Our results reveal that incubation of fibroblasts with TGF-beta1 or PMA up-regulates the expression of I(A) channels and increases myofibroblast migration. Blocking I(A) channel expression by 4-aminopyridine (4-AP) significantly inhibits TGF-beta1- and PMA-induced myofibroblast migration. Incubation of fibroblasts with forskolin does not result in increased expression of I(A) channels but does cause a slight increase in fibroblast migration at higher concentrations. In addition, forskolin increases the TGF-beta1- and PMA-induced myofibroblast migration but inhibits TGF-beta1- and PMA-induced the expression of I(A) channels. Whole-cell current recordings showed that forskolin augments the delayed rectifier outward K(+) (I(K)) current amplitude of fibroblasts, but not the I(A) of myofibroblasts. Our results also indicate that TGF-beta1- and PMA-induced expression of I(A) channels might be related to increase TGF-beta1- or PMA-induced myofibroblast migration. Promoting fibroblast and myofibroblast migration via the PKA pathway does not seem to involve the expression of I(A) channels, but the modulation of I(K) and I(A) channels might be implicated.
Collapse
Affiliation(s)
- Ya-Rong Liu
- Institute of Brain Science, School of Life Sciences and State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China
| | | | | | | | | | | |
Collapse
|
36
|
Wang WL, Yeh SF, Huang EYK, Lu YL, Wang CF, Huang CYF, Lin WJ. Mitochondrial anchoring of PKCalpha by PICK1 confers resistance to etoposide-induced apoptosis. Apoptosis 2008; 12:1857-71. [PMID: 17610064 DOI: 10.1007/s10495-007-0098-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Various pathways, including regulation of functions of the Bcl-2 family, are implicated in the survival promotion by PKCalpha, however the molecular mechanisms are still obscure. We have previously demonstrated that PKCalpha is selectively anchored to mitochondria by PICK1 in fibroblasts NIH 3T3. In this study, we show that over-expression of PICK1 in leukemia REH confers resistance to etoposide-induced apoptosis, which requires an interaction with PKCalpha as the non-interacting mutant PICK1 loses the pro-survival activity. The PKCalpha selective inhibitor Gö6976 also abolishes the anti-apoptotic effect indicating a requirement for PKC activity. Disruption of PICK1/PKCalpha interactions by inhibitory peptides significantly increases cellular susceptibility to etoposide. Similar effects are also observed in HL60 cells, which exhibit an intrinsic resistance to etoposide. Molecular analysis shows that the wild type PICK1, but not the non-interacting mutant, prevents the loss of mitochondrial membrane potential with a coincident increase in phosphorylation of the anti-apoptotic Bcl-2(Ser70) and a decrease in dimerization of the pro-apoptotic Bax. PICK1 may provide the spatial proximity for phosphorylation of Bcl-2(Ser70) by PKCalpha which then leads to a higher survival. Taken together, our results suggest that PICK1 may mediate the pro-survival activity of PKCalpha by serving as a molecular link between PKCalpha and mitochondria.
Collapse
Affiliation(s)
- Wei-Li Wang
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, and Department of Education and Research, Taipei City Hospital, 112, Taiwan, ROC
| | | | | | | | | | | | | |
Collapse
|
37
|
Frank B, Wiestler M, Kropp S, Hemminki K, Spurdle AB, Sutter C, Wappenschmidt B, Chen X, Beesley J, Hopper JL, Meindl A, Kiechle M, Slanger T, Bugert P, Schmutzler RK, Bartram CR, Flesch-Janys D, Mutschelknauss E, Ashton K, Salazar R, Webb E, Hamann U, Brauch H, Justenhoven C, Ko YD, Brüning T, Silva IDS, Johnson N, Pharoah PPD, Dunning AM, Pooley KA, Chang-Claude J, Easton DF, Peto J, Houlston R, Chenevix-Trench G, Fletcher O, Burwinkel B. Association of a common AKAP9 variant with breast cancer risk: a collaborative analysis. J Natl Cancer Inst 2008; 100:437-42. [PMID: 18334708 DOI: 10.1093/jnci/djn037] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Data from several studies have suggested that polymorphisms in A-kinase anchoring proteins (AKAPs), which are key components of signal transduction, contribute to carcinogenesis. To evaluate the impact of AKAP variants on breast cancer risk, we genotyped six nonsynonymous single-nucleotide polymorphisms that were predicted to be deleterious and found two (M463I, 1389G>T and N2792S, 8375A>G) to be associated with an allele dose-dependent increase in risk of familial breast cancer in a German population. We extended the analysis of AKAP9 M463I, which is in strong linkage disequilibrium with AKAP9 N2792S, to 9523 breast cancer patients and 13770 healthy control subjects from seven independent European and Australian breast cancer studies. All statistical tests were two-sided. The collaborative analysis confirmed the association of M463I with increased breast cancer risk. Among all breast cancer patients, the combined adjusted odds ratio (OR) of breast cancer for individuals homozygous for the rare allele TT (frequency = 0.19) compared with GG homozygotes was 1.17 (95% confidence interval [CI] = 1.08 to 1.27, P = .0003), and the OR for TT homozygotes plus GT heterozygotes compared with GG homozygotes was 1.10 (95% CI = 1.04 to 1.17, P = .001). Among the combined subset of 2795 familial breast cancer patients, the respective ORs were 1.27 (95% CI = 1.12 to 1.45, P = .0003) and 1.16 (95% CI = 1.06 to 1.27, P = .001).
Collapse
Affiliation(s)
- Bernd Frank
- Helmholtz-University Group Molecular Epidemiology, Division of Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 581, 69120 Heidelberg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Ma Y, Taylor SS. A molecular switch for targeting between endoplasmic reticulum (ER) and mitochondria: conversion of a mitochondria-targeting element into an ER-targeting signal in DAKAP1. J Biol Chem 2008; 283:11743-51. [PMID: 18287098 DOI: 10.1074/jbc.m710494200] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
dAKAP1 (AKAP121, S-AKAP84), a dual specificity PKA scaffold protein, exists in several forms designated as a, b, c, and d. Whether dAKAP1 targets to endoplasmic reticulum (ER) or mitochondria depends on the presence of the N-terminal 33 amino acids (N1), and these N-terminal variants are generated by either alternative splicing and/or differential initiation of translation. The mitochondrial targeting motif, which is localized between residues 49 and 63, is comprised of a hydrophobic helix followed by positive charges ( Ma, Y., and Taylor, S. (2002) J. Biol. Chem. 277, 27328-27336 ). dAKAP1 is located on the cytosolic surface of mitochondria outer membrane and both smooth and rough ER membrane. A single residue, Asp(31), within the first 33 residues of dAKAP1b is required for ER targeting. Asp(31), which functions as a separate motif from the mitochondrial targeting signal, converts the mitochondrial-targeting signal into a bipartite ER-targeting signal, without destroying the mitochondria-targeting signal. Therefore dAKAP1 possesses a single targeting element capable of targeting to both mitochondria and ER, with the ER signal overlapping the mitochondria signal. The specificity of ER or mitochondria targeting is determined and switched by the availability of the negatively charged residue, Asp(31).
Collapse
Affiliation(s)
- Yuliang Ma
- Howard Hughes Medical Institute and the Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, USA
| | | |
Collapse
|
39
|
Immunocytochemical analysis of cyclic AMP receptor proteins in the developing rat parotid gland. Arch Oral Biol 2008; 53:429-36. [PMID: 18187105 DOI: 10.1016/j.archoralbio.2007.11.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2007] [Revised: 10/23/2007] [Accepted: 11/26/2007] [Indexed: 11/20/2022]
Abstract
UNLABELLED Previous studies showed that regulatory subunits of type II cyclic AMP-dependent protein kinase (RII) are present in adult rat parotid acinar cells, and are secreted into saliva. If the synthesis and intracellular distribution of RII exhibit developmental specificity, then RII can be an indicator of secretory and regulatory activity of salivary glands. OBJECTIVE To determine the expression and distribution of RII in the rat parotid at specific ages representing defined developmental stages. METHODS Parotid glands of fetal, neonatal and adult rats were prepared for morphologic and immunocytochemical study. The cellular distribution of RII was studied using light microscopic immunogold silver staining with anti-RII, and its intracellular distribution using electron microscopic immunogold labeling. RESULTS In utero, parotid RII levels were low; 5-18 days after birth, labeling of secretory granules and cytoplasm rose to a peak, followed by a rapid decrease in both compartments at 25 days. At 60 days, granule labeling increased to levels near those at 18 days, whereas cytoplasmic labeling remained low. Nuclear labeling was highest during the first 3 weeks after birth, and then declined. CONCLUSIONS The higher nuclear and cytoplasmic labeling during the neonatal period may reflect RII involvement in acinar cell differentiation. The accumulation of RII in secretory granules is similar to the pattern of the major salivary proteins, amylase and PSP. The redistribution of RII in these compartments during development may reflect changing gene expression patterns, and may be useful for identification of genetic or metabolic abnormalities.
Collapse
|
40
|
Cunha L, Kuti M, Bishop DF, Mezei M, Zeng L, Zhou MM, Desnick RJ. Human uroporphyrinogen III synthase: NMR-based mapping of the active site. Proteins 2007; 71:855-73. [DOI: 10.1002/prot.21755] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
41
|
Hlavanda E, Klement E, Kókai E, Kovács J, Vincze O, Tökési N, Orosz F, Medzihradszky KF, Dombrádi V, Ovádi J. Phosphorylation blocks the activity of tubulin polymerization-promoting protein (TPPP): identification of sites targeted by different kinases. J Biol Chem 2007; 282:29531-9. [PMID: 17693641 DOI: 10.1074/jbc.m703466200] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Tubulin polymerization-promoting protein (TPPP), an unfolded brain-specific protein interacts with the tubulin/microtubule system in vitro and in vivo, and is enriched in human pathological brain inclusions. Here we show that TPPP induces tubulin self-assembly into intact frequently bundled microtubules, and that the phosphorylation of specific sites distinctly affects the function of TPPP. In vitro phosphorylation of wild type and the truncated form (Delta3-43TPPP) of human recombinant TPPP was performed by kinases involved in brain-specific processes. A stoichiometry of 2.9 +/- 0.3, 2.2 +/- 0.3, and 0.9 +/- 0.1 mol P/mol protein with ERK2, cyclin-dependent kinase 5 (Cdk5), and cAMP-dependent protein kinase (PKA), respectively, was revealed for the full-length protein, and 0.4-0.5 mol P/mol protein was detected with all three kinases when the N-terminal tail was deleted. The phosphorylation sites Thr(14), Ser(18), Ser(160) for Cdk5; Ser(18), Ser(160) for ERK2, and Ser(32) for PKA were identified by mass spectrometry. These sites were consistent with the bioinformatic predictions. The three N-terminal sites were also found to be phosphorylated in vivo in TPPP isolated from bovine brain. Affinity binding experiments provided evidence for the direct interaction between TPPP and ERK2. The phosphorylation of TPPP by ERK2 or Cdk5, but not by PKA, perturbed the structural alterations induced by the interaction between TPPP and tubulin without affecting the binding affinity (K(d) = 2.5-2.7 microM) or the stoichiometry (1 mol TPPP/mol tubulin) of the complex. The phosphorylation by ERK2 or Cdk5 resulted in the loss of microtubule-assembling activity of TPPP. The combination of our in vitro and in vivo data suggests that ERK2 can regulate TPPP activity via the phosphorylation of Thr(14) and/or Ser(18) in its unfolded N-terminal tail.
Collapse
Affiliation(s)
- Emma Hlavanda
- Institute of Enzymology, Biological Research Center, Hungarian Academy of Sciences, Budapest, H-1113, Hungary
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Lu Y, Lu YS, Shuai Y, Feng C, Tully T, Xie Z, Zhong Y, Zhou HM. The AKAP Yu is required for olfactory long-term memory formation in Drosophila. Proc Natl Acad Sci U S A 2007; 104:13792-7. [PMID: 17690248 PMCID: PMC1959461 DOI: 10.1073/pnas.0700439104] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Extensive neurogenetic analysis has shown that memory formation depends critically on cAMP-protein kinase A (PKA) signaling. Details of how this pathway is involved in memory formation, however, remain to be fully elucidated. From a large-scale behavioral screen in Drosophila, we identified the yu mutant to be defective in one-day memory after spaced training. The yu mutation disrupts a gene encoding an A-kinase anchoring protein (AKAP). AKAPs comprise a family of proteins, which determine the subcellular localization of PKAs and thereby critically restrict cAMP signaling within a cell. Further behavioral characterizations revealed that long-term memory (LTM) was disrupted specifically in the yu mutant, whereas learning, short-term memory and anesthesia-resistant memory all appeared normal. Another independently isolated mutation of the yu gene failed to complement the LTM defect associated with the yu mutation, and this phenotypic defect could be rescued by induced acute expression of a yu(+) transgene, suggesting that yu functions physiologically during memory formation. AKAP Yu is expressed preferentially in the mushroom body (MB) neuroanatomical structure, and expression of a yu(+) transgene to the MB, but not to other brain regions, is sufficient to rescue the LTM defect of the yu mutant. These observations lead us to conclude that proper localization of PKA by Yu AKAP in MB neurons is required for the formation of LTM.
Collapse
Affiliation(s)
- Yubing Lu
- *Department of Biological Sciences and Biotechnology, Tsinghua University, Beijing 100084, China
| | - Yi-Sheng Lu
- *Department of Biological Sciences and Biotechnology, Tsinghua University, Beijing 100084, China
| | - Yichun Shuai
- *Department of Biological Sciences and Biotechnology, Tsinghua University, Beijing 100084, China
| | | | - Tim Tully
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| | - Zuoping Xie
- *Department of Biological Sciences and Biotechnology, Tsinghua University, Beijing 100084, China
| | - Yi Zhong
- *Department of Biological Sciences and Biotechnology, Tsinghua University, Beijing 100084, China
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
- To whom correspondence may be addressed. E-mail: or
| | - Hai-Meng Zhou
- *Department of Biological Sciences and Biotechnology, Tsinghua University, Beijing 100084, China
- To whom correspondence may be addressed. E-mail: or
| |
Collapse
|
43
|
Mucignat-Caretta C, Caretta A. Distribution of insoluble cAMP-dependent kinase type RI and RII in the lizard and turtle central nervous system. Brain Res 2007; 1154:84-94. [PMID: 17482583 DOI: 10.1016/j.brainres.2007.04.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2006] [Revised: 03/16/2007] [Accepted: 04/02/2007] [Indexed: 11/21/2022]
Abstract
cAMP is a universal second messenger. In eucaryotes it acts mainly via protein kinases composed of regulatory (R) and catalytic subunits; their subcellular distribution may differ according to the cell type. In rodent brain, peculiar detergent-insoluble RIalpha aggregates were previously described in neurons of areas related to the limbic system, while RIIbeta is more evenly distributed also in non-nervous cells. It is unclear whether the regional distribution of regulatory subunits is typical of mammalian brain. Western blots and immunohistochemistry showed that in lizard brains a large fraction of the cAMP-dependent protein kinase regulatory isoforms is insoluble, as in mammals. Insoluble RIalpha and RII regulatory isoforms were not evenly distributed but organized in clearly separated aggregates. Numerous RII aggregates were present in almost all brain regions and were found also in non-nervous cells. As shown by immunohistochemistry and equilibrium binding of fluorescently tagged cAMP, RIalpha aggregates were restricted to neurons of some brain regions: telencephalon, particularly medial cortical areas, dorsal ventricular ridge, olfactory pathways, medial hypothalamus and cerebellar granular layer were intensely labelled. A very weak RIalpha labelling was detected in the brainstem reticular formation, in the periaqueductal gray and in the spinal cord dorsal horn. A similar distribution of RIalpha aggregates was also found in turtle brains. Their distribution is reminiscent of that observed in mammals, although with some differences in relative intensity and persistence. The supramolecular organization of the RIalpha isoform may help in establishing homologies and differences between brain areas involved in visceroemotional control.
Collapse
|
44
|
MacDonald JF, Jackson MF, Beazely MA. G protein-coupled receptors control NMDARs and metaplasticity in the hippocampus. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2007; 1768:941-51. [PMID: 17261268 DOI: 10.1016/j.bbamem.2006.12.006] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2006] [Revised: 12/06/2006] [Accepted: 12/09/2006] [Indexed: 11/20/2022]
Abstract
Long-term potentiation (LTP) and long-term depression (LTD) are the major forms of functional synaptic plasticity observed at CA1 synapses of the hippocampus. The balance between LTP and LTD or "metaplasticity" is controlled by G-protein coupled receptors (GPCRs) whose signal pathways target the N-methyl-D-asparate (NMDA) subtype of excitatory glutamate receptor. We discuss the protein kinase signal cascades stimulated by Galphaq and Galphas coupled GPCRs and describe how control of NMDAR activity shifts the threshold for the induction of LTP.
Collapse
Affiliation(s)
- John F MacDonald
- Department of Physiology, University of Toronto, Toronto, ON, Canada.
| | | | | |
Collapse
|
45
|
Tao J, Wang HY, Malbon CC. Src Docks to A-kinase Anchoring Protein Gravin, Regulating β2-Adrenergic Receptor Resensitization and Recycling. J Biol Chem 2007; 282:6597-608. [PMID: 17200117 DOI: 10.1074/jbc.m608927200] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Gravin (AKAP12) is a membrane-associated scaffold that provides docking for protein kinases, phosphatases, and adaptor molecules obligate for resensitization and recycling of beta(2)-adrenergic receptors. Gravin binds to the cell membrane in a Ca(2+)-sensitive manner and to receptors through well characterized protein-protein interactions. Although the interaction of serine/threonine, cyclic AMP-dependent protein kinase with protein kinase A-anchoring proteins is well described and involves a kinase regulatory subunit binding domain in the C terminus of these proteins, far less is known about tyrosine kinase docking to members of this family of scaffolds. The non-receptor tyrosine kinase Src regulates resensitization of beta(2)-adrenergic receptors and docks to gravin. Gravin displays nine proline-rich domains distributed throughout the molecule. One class I ligand for Src homology domain 3 docking, found in the N terminus ((10)RXPXXP(15)) of gravin, is shown to bind Src. Binding of Src to gravin activates the intrinsic tyrosine kinase of Src. Mutagenesis/deletion of the class I ligand (P15A,P16A) on the N terminus of gravin abolishes both the docking of Src to gravin as well as the receptor resensitization and recycling catalyzed by gravin. The Src-binding peptide-(1-51) of gravin behaves as a dominant-negative for AKAP gravin regulation of receptor resensitization/recycling. The tyrosine kinase Src plays an essential role in the AKAP gravin-mediated receptor resensitization and recycling, an essential aspect of receptor biology.
Collapse
Affiliation(s)
- Jiangchuan Tao
- Department of Pharmacology, State University of New York, Stony Brook, New York 11794-8651, USA
| | | | | |
Collapse
|
46
|
Gesellchen F, Bertinetti O, Herberg FW. Analysis of posttranslational modifications exemplified using protein kinase A. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2006; 1764:1788-800. [PMID: 17097931 DOI: 10.1016/j.bbapap.2006.10.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2006] [Revised: 09/18/2006] [Accepted: 10/05/2006] [Indexed: 11/28/2022]
Abstract
With the completion of the major genome projects, one focus in biomedical research has shifted from the analysis of the rather static genome to the highly dynamic proteome. The sequencing of whole genomes did not lead to much anticipated insights into disease mechanisms; however, it paved the way for proteomics by providing the databases for protein identification by peptide mass fingerprints. The relative protein distribution within a cell or tissue is subject to change upon external and internal stimuli. Signal transduction events extend beyond a simple change in protein levels; rather they are governed by posttranslational modifications (PTMs), which provide a quick and efficient way to modulate cellular signals. Because most PTMs change the mass of a protein, they are amenable to analysis by mass spectrometry. Their investigation adds a level of functionality to proteomics, which can be expected to greatly aid in the understanding of the complex cellular machinery involved in signal transduction, metabolism, differentiation or in disease. This review provides an overview on posttranslational modifications exemplified on the model system cAMP-dependent protein kinase. Strategies for detection of selected PTMs are described and discussed in the context of protein kinase function.
Collapse
Affiliation(s)
- Frank Gesellchen
- Universität Kassel, FB 18 Naturwissenschaften, Abt. Biochemie, Heinrich-Plett-Str. 40, 34132 Kassel, Germany
| | | | | |
Collapse
|
47
|
Yong J, Tan I, Lim L, Leung T. Phosphorylation of Myosin Phosphatase Targeting Subunit 3 (MYPT3) and Regulation of Protein Phosphatase 1 by Protein Kinase A. J Biol Chem 2006. [DOI: 10.1016/s0021-9258(19)84033-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
48
|
Yong J, Tan I, Lim L, Leung T. Phosphorylation of myosin phosphatase targeting subunit 3 (MYPT3) and regulation of protein phosphatase 1 by protein kinase A. J Biol Chem 2006; 281:31202-11. [PMID: 16920702 DOI: 10.1074/jbc.m607287200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Myosin phosphatase targeting subunit 3 (MYPT3) and transforming growth factor-beta-inhibited membrane-associated protein (TIMAP) are two closely related myosin-binding targeting subunits of protein phosphatase 1 (PP1c) with a characteristic CAAX (where AA indicates aliphatic amino acid) box at the C termini. Here we show that MYPT3 can be a substrate for protein kinase A (PKA). We first mapped the multiple phosphorylation sites within a central conserved motif. Deletion or mutations of this motif resulted in enhancement of the associated PP1c activity, suggesting that phosphorylation of MYPT3 may play an important role in regulating PP1c catalytic activity. However, unlike the other known MYPTs, which upon phosphorylation inhibit PP1c, PKA phosphorylation of MYPT3 resulted in PP1c activation, indicating a different mode of action. There is a direct interaction between the central conserved phosphorylated site motif with the N-terminal ankyrin repeat region; this interaction was significantly reduced with MYPT3 phosphorylation or acidic phosphorylation site mutations, with concomitant alterations in biochemical and morphological consequences. We therefore propose a novel mechanism for the phosphorylation of MYPT3 by PKA and activation of the catalytic activity through direct interaction of a central region of MYPT3 with its N-terminal region.
Collapse
Affiliation(s)
- Jeffery Yong
- GSK-IMCB Group, Institute of Molecular and Cell Biology, Singapore 138673, Singapore
| | | | | | | |
Collapse
|
49
|
Scholten A, Poh MK, van Veen TAB, van Breukelen B, Vos MA, Heck AJR. Analysis of the cGMP/cAMP interactome using a chemical proteomics approach in mammalian heart tissue validates sphingosine kinase type 1-interacting protein as a genuine and highly abundant AKAP. J Proteome Res 2006; 5:1435-47. [PMID: 16739995 DOI: 10.1021/pr0600529] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The cyclic nucleotide monophosphates cAMP and cGMP play an essential role in many signaling pathways. To analyze which proteins do interact with these second messenger molecules, we developed a chemical proteomics approach using cAMP and cGMP immobilized onto agarose beads, via flexible linkers in the 2- and 8-position of the nucleotide. Optimization of the affinity pull-down procedures in lysates of HEK293 cells revealed that a large variety of proteins could be pulled down specifically. Identification of these proteins by mass spectrometry showed that many of these proteins were indeed genuine cAMP or cGMP binding proteins. However, additionally many of the pulled-down proteins were more abundant AMP/ADP/ATP, GMP/GDP/GTP, or general DNA/RNA binding proteins. Therefore, a sequential elution protocol was developed, eluting proteins from the beads using solutions containing ADP, GDP, cGMP, and/or cAMP, respectively. Using this protocol, we were able to sequentially and selectively elute ADP, GDP, and DNA binding proteins. The fraction left on the beads was further enriched, for cAMP/cGMP binding proteins. Transferring this protocol to the analysis of the cGMP/cAMP "interactome" in rat heart ventricular tissue enabled the specific pull-down of known cAMP/cGMP binding proteins such as cAMP and cGMP dependent protein kinases PKA and PKG, several phosphodiesterases and 6 AKAPs, that interact with PKA. Among the latter class of proteins was the highly abundant sphingosine kinase type1-interating protein (SKIP), recently proposed to be a potential AKAP. Further bioinformatics analysis endorses that SKIP is indeed a genuine PKA interacting protein, which is highly abundant in heart ventricular tissue.
Collapse
Affiliation(s)
- Arjen Scholten
- Department of Biomolecular Mass Spectrometry, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Sorbonnelaan 16, 3584 CA Utrecht, The Netherlands
| | | | | | | | | | | |
Collapse
|
50
|
Tao J, Shumay E, McLaughlin S, Wang HY, Malbon CC. Regulation of AKAP-Membrane Interactions by Calcium. J Biol Chem 2006; 281:23932-44. [PMID: 16762919 DOI: 10.1074/jbc.m601813200] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The AKAP gravin is a scaffold for protein kinases, phosphatases, and adaptor molecules obligate for resensitization and recycling of beta2-adrenergic receptors. Gravin binds to the receptor through well characterized protein-protein interactions. These interactions are facilitated approximately 1000-fold when gravin is anchored to the cytoplasmic leaflet of the plasma membrane. Although the N-terminal region (approximately 550 residues) is highly negatively charged and probably natively unfolded, it could anchor gravin to the inner leaflet through hydrophobic insertion of its N-terminal myristate and electrostatic binding of three short positively charged domains (PCDs). Loss of the site of N-myristoylation was found to affect neither AKAP macroscopic localization nor AKAP function. Synthetic peptides corresponding to PCD1-3 bound in vitro to unilamellar phospholipid vesicles with high affinity, a binding reversed by calmodulin in the presence of Ca2+. In vivo gravin localization is regulated by intracellular Ca2+, a function mapping to the N terminus of the protein harboring PCD1, PCD2, and PCD3. Mutation of any two PCDs eliminates membrane association of the non-myristoylated gravin, the sensitivity to Ca2+/calmodulin, and the ability of this scaffold to catalyze receptor resensitization and recycling.
Collapse
Affiliation(s)
- Jiangchuan Tao
- Department of Pharmacology, School of Medicine, Heath Sciences Center, State University of New York, Stony Brook, New York 11794-8651, USA
| | | | | | | | | |
Collapse
|