1
|
Kukulage DSK, Yapa Abeywardana M, Matarage Don NNJ, Hu RM, Shishikura K, Matthews ML, Ahn YH. Chemoproteomic strategy identified p120-catenin glutathionylation regulates E-cadherin degradation and cell migration. Cell Chem Biol 2023; 30:1542-1556.e9. [PMID: 37714153 PMCID: PMC10840712 DOI: 10.1016/j.chembiol.2023.08.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 05/30/2023] [Accepted: 08/15/2023] [Indexed: 09/17/2023]
Abstract
Identification of cysteines with high oxidation susceptibility is important for understanding redox-mediated biological processes. In this report, we report a chemical proteomic strategy that finds cysteines with high susceptibility to S-glutathionylation. Our proteomic strategy, named clickable glutathione-based isotope-coded affinity tag (G-ICAT), identified 1,518 glutathionylated cysteines while determining their relative levels of glutathionylated and reduced forms upon adding hydrogen peroxide. Among identified cysteines, we demonstrated that CTNND1 (p120) C692 has high susceptibility to glutathionylation. Also, p120 wild type (WT), compared to C692S, induces its dissociation from E-cadherin under oxidative stress, such as glucose depletion. p120 and E-cadherin dissociation correlated with E-cadherin destabilization via its proteasomal degradation. Lastly, we showed that p120 WT, compared to C692S, increases migration and invasion of MCF7 cells under glucose depletion, supporting a model that p120 C692 glutathionylation increases cell migration and invasion by destabilization of E-cadherin, a core player in cell-cell adhesion.
Collapse
Affiliation(s)
| | | | | | - Ren-Ming Hu
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kyosuke Shishikura
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Megan L Matthews
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Young-Hoon Ahn
- Department of Chemistry, Drexel University, Philadelphia, PA 19104, USA.
| |
Collapse
|
2
|
Lange C, Brüggemann J, Thüner T, Jauckus J, Strowitzki T, Germeyer A. Changes in the expression of cancer- and metastasis-related genes and proteins after metformin treatment under different metabolic conditions in endometrial cancer cells. Heliyon 2023; 9:e16678. [PMID: 37313172 PMCID: PMC10258389 DOI: 10.1016/j.heliyon.2023.e16678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 05/20/2023] [Accepted: 05/24/2023] [Indexed: 06/15/2023] Open
Abstract
Research question Hyperinsulinemia and elevated estrogen levels are known risk factors for endometrial cancer (EC) development and are associated with obesity, type 2 diabetes mellitus (T2DM), insulin resistance, among others. Metformin, an insulin-sensitizing drug, displays anti-tumor effects in cancer patients, including EC, but the mechanism of action is still not completely understood. In the present study, the effects of metformin on gene and protein expression were investigated in pre- and postmenopausal EC in vitro models in order to identify candidates that are potentially involved in the drug's anti-cancer mechanism. Design After treating the cells with metformin (0.1 and 1.0 mmol/L), changes in the expression of >160 cancer- and metastasis-related gene transcripts were evaluated with RNA arrays. A total of 19 genes and 7 proteins were selected for a follow-up expression analysis, including further treatment conditions, in order to evaluate the influence of hyperinsulinemia and hyperglycemia on metformin-induced effects. Results Changes in the expression of BCL2L11, CDH1, CDKN1A, COL1A1, PTEN, MMP9 and TIMP2 were analyzed on gene and protein level. The consequences resulting from the detected expression changes as well as the influence of varying environmental influences are discussed in detail. With the presented data, we contribute to a better understanding of the direct anti-cancer activity of metformin as well as its underlying mechanism of action in EC cells. Conclusions Although further research will be necessary to confirm the data, the influence of different environmental settings on metformin-induced effects could be highlighted with the presented data. Additionally, gene and protein regulation were not similar in the pre- and postmenopausal in vitro models.
Collapse
|
3
|
Salkin H, Acar MB, Gonen ZB, Basaran KE, Ozcan S. Comparative proteomics analysis of transforming growth factor-beta1-overexpressed human dental pulp stem cell-derived secretome on CD44-mediated fibroblast activation via canonical smad signal pathway. Connect Tissue Res 2023; 64:205-218. [PMID: 36421034 DOI: 10.1080/03008207.2022.2144733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE The aim of this study investigates whether the secretome collected from human dental pulp stem cells (hDPSCs) transfected with transforming growth factor-beta1 (TGF-β1) is related to CD44 expression of fibroblasts and canonical smad signaling pathway via proteomic analyzes. MATERIALS AND METHODS In order to obtain secretome, hDPSCs were conditioned with serum-free alpha-MEM in an incubator containing 37°C, 5% CO2, and humidity for 18-24 h. Proteins in control and TGF-β1 secretome were analyzed by tandem mass spectrometry-based shotgun proteomic method. Bioinformatic evaluations were completed via Ingenuity Pathway Analysis (IPA, QIAGEN) software. CD44 expressions in fibroblasts were evaluated by real time-PCR, western blot, and immunofluorescent staining. The relationship of canonical smad pathway and CD44 was analyzed by western blot and LC-MS/MS. Cell cycle, proliferation and wound healing tests were performed in the secretome groups. RESULTS Venn diagram was showed 174 common proteins were identified from each group. In the control secretome 140 unique proteins were identified and 66 entries were exclusive for TGF-β1 secretome. CD44 gene and protein expressions were increased in fibroblasts treated with TGF-β1 secretome. Relationship between targeted protein data showed that activation of the canonical TGF-β1/Smad pathway was up-regulated CD44 expression in fibroblasts. The canonical smad pathway-mediated upregulation of CD44 may increase the mitotic activity, proliferation, and wound healing potential in fibroblasts. CONCLUSION While TGF-β1-transfected hDPSC secretome may be a potential therapeutic candidate in regenerative connective tissue therapies as it induces fibroblast activation, anti-TGF-β1-based therapies would be considered in histopathological conditions such as pulmonary fibrosis or hepatic fibrosis.
Collapse
Affiliation(s)
- H Salkin
- Vocational School, Department of Medical Services and Techniques, Program of Pathology Laboratory Techniques, Beykent University, Istanbul, Turkey
| | - M B Acar
- Genome and Stem Cell Center, Erciyes University, Kayseri, Turkey
| | - Z B Gonen
- Genome and Stem Cell Center, Erciyes University, Kayseri, Turkey
| | - K E Basaran
- Department of Physiology, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - S Ozcan
- Department of Biology, Faculty of Science, Erciyes University, Kayseri, Turkey
| |
Collapse
|
4
|
PTEN Dual Lipid- and Protein-Phosphatase Function in Tumor Progression. Cancers (Basel) 2022; 14:cancers14153666. [PMID: 35954330 PMCID: PMC9367293 DOI: 10.3390/cancers14153666] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/17/2022] [Accepted: 07/22/2022] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Phosphatase and tensin homolog deleted on chromosome ten (PTEN) is a multifunctional tumor suppressor with protein- and lipid-phosphatase activities. The inactivation of PTEN is commonly found in all human cancers and is correlated with tumor progression. PTEN-lipid-phosphatase activity has been well documented to dephosphorylate phosphatidylinositol-3, 4, 5-phosphate (PIP3), which hinders cell growth and survival by dampening the PI3K and AKT signaling activity. PTEN-protein-phosphatase activity is less well studied and understood. Recent studies have reported that PTEN-protein-phosphatase activity dephosphorylates the different proteins and acts in various cell functions. We here review the PTEN mutations and protein-phosphatase substrates in tumor progression. We aim to address the gap in our understanding as to how PTEN protein phosphatase contributes to its tumor-suppression functions. Abstract PTEN is the second most highly mutated tumor suppressor in cancer, following only p53. The PTEN protein functions as a phosphatase with lipid- and protein-phosphatase activity. PTEN-lipid-phosphatase activity dephosphorylates PIP3 to form PIP2, and it then antagonizes PI3K and blocks the activation of AKT, while its protein-phosphatase activity dephosphorylates different protein substrates and plays various roles in tumorigenesis. Here, we review the PTEN mutations and protein-phosphatase substrates in tumorigenesis and metastasis. Our purpose is to clarify how PTEN protein phosphatase contributes to its tumor-suppressive functions through PI3K-independent activities.
Collapse
|
5
|
Transforming growth factor β1-enriched secretome up-regulate osteogenic differentiation of dental pulp stem cells, and a potential therapeutic for gingival wound healing: A comparative proteomics study. J Dent 2022; 124:104224. [PMID: 35843478 DOI: 10.1016/j.jdent.2022.104224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 07/05/2022] [Accepted: 07/11/2022] [Indexed: 11/20/2022] Open
Abstract
OBJECTIVES Current study aimed at comparing the human dental pulp-derived stem cell (hDPSC) secretome (Control secretome) and transforming growth factor beta1 (TGF-β1)-transfected hDPSC secretome (TGF-β1 Secretome), which have the potential to be therapeutic in terms of regenerative dentistry, in terms of osteogenesis, adipogenesis and gingival wound healing with proteomic analyses. MATERIALS AND METHODS pCMV-TGF-β1 plasmid was transfected into hDPSCs by electroporation. hDPSC and TGF-β1 transfected hDPSC secretomes were collected for LC-MS/MS. Protein contents in control secretome and TGF-β1 secretome were analyzed by tandem mass spectrometry-based shotgun proteomic method. Bioinformatic evaluations for canonical pathways, upstream regulators and networks were completed via Ingenuity Pathway Analysis (IPA, QIAGEN) software. Surface marker expressions between groups, treated secretome were measured by flow cytometry. To support the proteomic data morphologically, we performed osteogenic-adipogenic differentiation in hDPSCs treated with control secretome and TGF-β1 secretome, and scratch wound healing assay in gingival fibroblasts. Statistical analyses were performed by GraphPad Prism 8.02. RESULTS Venn diagram classification showed us 174 common proteins were identified from each group. In the control secretome 140 unique proteins were identified and 66 entries were exclusive for TGF-β1 secretome. TGF-β1 secretome was found to have therapeutic effect on MSC-specific immunophenotypes. TGF-β1 secretome was determined to up-regulate osteogenesis-related molecules and pathways while down-regulating adipogenesis-related pathways. Analysis of canonical pathways showed that TGF-β1 secretome is associated with the wound healing pathway. CONCLUSION Our study provided the first evidence that proteins identified in TGF-β1-transfected hDPSC secretomes are potential regulators of osteogenic/adipogenic differentiation and fibroblast wound healing. CLINICAL SIGNIFICANCE Based on these results, TGF-β1 secretome may have a therapeutic effect in repairing osteoporosis-related bone injuries, wound healing of oral mucosa and gingival tissue. TGF-β1 secretome may be a potential cell-free therapeutic in orthopedics and regenerative dentistry.
Collapse
|
6
|
Kang YH, Wang JH, Lee JS, Lee NH, Son CG. Coptidis Rhizoma Suppresses Metastatic Behavior by Inhibiting TGF-β-Mediated Epithelial-Mesenchymal Transition in 5-FU-Resistant HCT116 Cells. Front Pharmacol 2022; 13:909331. [PMID: 35770076 PMCID: PMC9234293 DOI: 10.3389/fphar.2022.909331] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 05/31/2022] [Indexed: 12/16/2022] Open
Abstract
Colorectal cancer (CRC) is the second most lethal malignancy worldwide. The high mortality rate of CRC is largely due to cancer metastasis. Recently, suppressing epithelial-to-mesenchymal transition (EMT) has been considered a promising strategy for treating metastatic cancer, especially drug-resistant metastatic cancer. The present study aimed to evaluate the antimetastatic effect of Coptidis Rhizoma, as well as the potential underlying mechanisms, using a 5-fluorouracil-resistant colon tumor cell model (HCT116/R). Coptidis Rhizoma 30% ethanol extract (CRE) significantly inhibited HCT116/R cells migration and invasion. CRE effectively inhibited EMT in HCT116/R cells by upregulating the expression of an epithelial marker (E-cadherin) and downregulating the expression of mesenchymal markers (vimentin, Snail, and ZEB2) at both the protein and gene levels. Immunofluorescence assays also confirmed consistent patterns in the levels of E-cadherin and vimentin. In addition, the anti-EMT activity of CRE and its related effects were associated with the CRE-mediated suppression of the TGF-β pathway, as shown by changes in the levels of downstream molecules (phosphorylated Akt and p38), and inhibition of migration, invasion, and protein expression of TGF-β after treatment/cotreatment with a TGF-β inhibitor (SB431542). In conclusion, Coptidis Rhizoma exerts an antimetastatic effect, especially in the treatment of drug-resistant cancer, and the possible mechanisms are associated with inhibiting EMT via TGF-β signaling. Thus, Coptidis Rhizoma will likely become a potential therapeutic candidate for simultaneously mitigating drug resistance and metastasis in CRC.
Collapse
Affiliation(s)
- Yong-Hwi Kang
- Institute of Bioscience and Integrative Medicine, Daejeon Oriental Hospital of Daejeon University, Daejeon, South Korea
| | - Jing-Hua Wang
- Institute of Bioscience and Integrative Medicine, Daejeon Oriental Hospital of Daejeon University, Daejeon, South Korea
| | - Jin-Seok Lee
- Institute of Bioscience and Integrative Medicine, Daejeon Oriental Hospital of Daejeon University, Daejeon, South Korea
| | - Nam-Hun Lee
- Institute of Bioscience and Integrative Medicine, Daejeon Oriental Hospital of Daejeon University, Daejeon, South Korea
- Department of Clinical Oncology, Cheonan Oriental Hospital of Daejeon University, Cheonan-si, South Korea
- *Correspondence: Nam-Hun Lee, ; Chang-Gue Son,
| | - Chang-Gue Son
- Institute of Bioscience and Integrative Medicine, Daejeon Oriental Hospital of Daejeon University, Daejeon, South Korea
- *Correspondence: Nam-Hun Lee, ; Chang-Gue Son,
| |
Collapse
|
7
|
Characterization of Accessible Chromatin Regions in Cattle Rumen Epithelial Tissue during Weaning. Genes (Basel) 2022; 13:genes13030535. [PMID: 35328088 PMCID: PMC8949786 DOI: 10.3390/genes13030535] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/11/2022] [Accepted: 03/14/2022] [Indexed: 12/17/2022] Open
Abstract
Weaning in ruminants is characterized by the transition from a milk-based diet to a solid diet, which drives a critical gastrointestinal tract transformation. Understanding the regulatory control of this transformation during weaning can help to identify strategies to improve rumen health. This study aimed to identify regions of accessible chromatin in rumen epithelial tissue in pre- and post-weaning calves and investigate differentially accessible regions (DARs) to uncover regulatory elements in cattle rumen development using the ATAC-seq approach. A total of 126,071 peaks were identified, covering 1.15% of the cattle genome. From these accessible regions, 2766 DARs were discovered. Gene ontology enrichment resulted in GO terms related to the cell adhesion, anchoring junction, growth, cell migration, motility, and morphogenesis. In addition, putative regulatory canonical pathways were identified (TGFβ, integrin-linked kinase, integrin signaling, and regulation of the epithelial–mesenchymal transition). Canonical pathways integrated with co-expression results showed that TGFβ and ILK signaling pathways play essential roles in rumen development through the regulation of cellular adhesions. In this study, DARs during weaning were identified, revealing enhancers, transcription factors, and candidate target genes that represent potential biomarkers for the bovine rumen development, which will serve as a molecular tool for rumen development studies.
Collapse
|
8
|
Wang Y, Xu X, Marshall JE, Gong M, Zhao Y, Dua K, Hansbro PM, Xu J, Liu G. Loss of Hyaluronan and Proteoglycan Link Protein-1 Induces Tumorigenesis in Colorectal Cancer. Front Oncol 2021; 11:754240. [PMID: 34966673 PMCID: PMC8710468 DOI: 10.3389/fonc.2021.754240] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 11/08/2021] [Indexed: 01/10/2023] Open
Abstract
Colorectal cancer (CRC) is the third most common diagnosed cancer worldwide, but there are no effective cures for it. Hyaluronan and proteoglycan link protein-1 (HAPLN1) is a component of the extracellular matrix (ECM) proteins and involved in the tumor environment in the colon. Transforming growth factor (TGF)-β is a key cytokine that regulates the deposition of ECM proteins in CRC. However, the role of HAPLN1 in TGF-β contributions to CRC remains unknown. We found that the mRNA expression of HAPLN1 was decreased in tumors from CRC patients compared with healthy controls and normal tissue adjacent to the tumor using two existing microarray datasets. This was validated at the protein level by tissue array from CRC patients (n = 59). HAPLN1 protein levels were also reduced in human CRC epithelial cells after 24 h of TGF-β stimulation, and its protein expression correlated with type I collagen alpha-1 (COL1A1) in CRC. Transfection of HAPLN1 overexpression plasmids into these cells increased protein levels but reduced COL1A1 protein, tumor growth, and cancer cell migration. TGF-β stimulation increased Smad2/3, p-Smad2/3, Smad4, and E-adhesion proteins; however, HAPLN1 overexpression restored these proteins to baseline levels in CRC epithelial cells after TGF-β stimulation. These findings suggest that HAPLN1 regulates the TGF-β signaling pathway to control collagen deposition via the TGF-β signaling pathway and mediates E-adhesion to control tumor growth. Thus, treatments that increase HAPLN1 levels may be a novel therapeutic option for CRC.
Collapse
Affiliation(s)
- Yao Wang
- College of Biology and Food Engineering, Anyang Institute of Technology, Anyang, China.,Hangzhou Xunyao Biotechnology Pty. Ltd., Hangzhou, China
| | - Xiaoyue Xu
- School of Population Health, University of New South Wales, Sydney, NSW, Australia
| | - Jacqueline E Marshall
- Centre for Inflammation, Centenary Institute, Sydney, NSW, Australia.,School of Life Sciences, Faculty of Science, University of Technology, Sydney, NSW, Australia
| | - Muxue Gong
- School of Clinical Medicine, Bengbu Medicine College, Bengbu, China
| | - Yang Zhao
- Department of Biochemistry and Molecular Biology, School of Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Kamal Dua
- Centre for Inflammation, Centenary Institute, Sydney, NSW, Australia.,Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, NSW, Australia
| | - Philip M Hansbro
- Centre for Inflammation, Centenary Institute, Sydney, NSW, Australia.,School of Life Sciences, Faculty of Science, University of Technology, Sydney, NSW, Australia
| | - Jincheng Xu
- Stomatology Department, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China.,School of Dental Medicine, Bengbu Medical College, Bengbu, China
| | - Gang Liu
- Centre for Inflammation, Centenary Institute, Sydney, NSW, Australia.,School of Life Sciences, Faculty of Science, University of Technology, Sydney, NSW, Australia
| |
Collapse
|
9
|
Li Z, Chiang YP, He M, Worgall TS, Zhou H, Jiang XC. Liver sphingomyelin synthase 1 deficiency causes steatosis, steatohepatitis, fibrosis, and tumorigenesis: An effect of glucosylceramide accumulation. iScience 2021; 24:103449. [PMID: 34927020 PMCID: PMC8649732 DOI: 10.1016/j.isci.2021.103449] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 10/21/2021] [Accepted: 11/11/2021] [Indexed: 11/30/2022] Open
Abstract
Glucosylceramide (GluCer) was accumulated in sphingomyelin synthase 1 (SMS1) but not SMS2 deficient mouse tissues. In current study, we studied GluCer accumulation-mediated metabolic consequences. Livers from liver-specific Sms1/global Sms2 double-knockout (dKO) exhibited severe steatosis under a high-fat diet. Moreover, chow diet-fed ≥6-month-old dKO mice had liver impairment, inflammation, and fibrosis, compared with wild type and Sms2 KO mice. RNA sequencing showed 3- to 12-fold increases in various genes which are involved in lipogenesis, inflammation, and fibrosis. Further, we found that direct GluCer treatment (in vitro and in vivo) promoted hepatocyte to secrete more activated TGFβ1, which stimulated more collagen 1α1 production in hepatic stellate cells. Additionally, GluCer promoted more β-catenin translocation into the nucleus, thus promoting tumorigenesis. Importantly, human NASH patients had higher liver GluCer synthase and higher plasma GluCer. These findings implicated that GluCer accumulation is one of triggers promoting the development of NAFLD into NASH, then, fibrosis, and tumorigenesis.
Collapse
Affiliation(s)
- Zhiqiang Li
- Department of Cell Biology, SUNY Downstate Health Sciences University, Brooklyn, NY, USA
| | - Yeun-po Chiang
- Department of Cell Biology, SUNY Downstate Health Sciences University, Brooklyn, NY, USA
| | - Mulin He
- Department of Cell Biology, SUNY Downstate Health Sciences University, Brooklyn, NY, USA
| | | | | | - Xian-Cheng Jiang
- Department of Cell Biology, SUNY Downstate Health Sciences University, Brooklyn, NY, USA
- Molecular and Cellular Cardiology Program, VA New York Harbor Healthcare System, New York, USA
| |
Collapse
|
10
|
Molecular Activation of the Kv11.1 Channel Reprograms EMT in Colon Cancer by Inhibiting TGFβ Signaling via Activation of Calcineurin. Cancers (Basel) 2021; 13:cancers13236025. [PMID: 34885136 PMCID: PMC8656647 DOI: 10.3390/cancers13236025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 11/22/2021] [Accepted: 11/24/2021] [Indexed: 12/25/2022] Open
Abstract
Control of ionic gradients is critical to maintain cellular homeostasis in both physiological and pathological conditions, but the role of ion channels in cancer cells has not been studied thoroughly. In this work we demonstrated that activity of the Kv11.1 potassium channel plays a vital role in controlling the migration of colon cancer cells by reversing the epithelial-to-mesenchymal transition (EMT) into the mesenchymal-to-epithelial transition (MET). We discovered that pharmacological stimulation of the Kv11.1 channel with the activator molecule NS1643 produces a strong inhibition of colon cancer cell motility. In agreement with the reversal of EMT, NS1643 treatment leads to a depletion of mesenchymal markers such as SNAIL1, SLUG, TWIST, ZEB, N-cadherin, and c-Myc, while the epithelial marker E-cadherin was strongly upregulated. Investigating the mechanism linking Kv11.1 activity to reversal of EMT into MET revealed that stimulation of Kv11.1 produced a strong and fast inhibition of the TGFβ signaling. Application of NS1643 resulted in de-phosphorylation of the TGFβ downstream effectors R-SMADs by activation of the serine/threonine phosphatase PP2B (calcineurin). Consistent with the role of TGFβ in controlling cancer stemness, NS1643 also produced a strong inhibition of NANOG, SOX2, and OCT4 while arresting the cell cycle in G0/G1. Our data demonstrate that activation of the Kv11.1 channel reprograms EMT into MET by inhibiting TGFβ signaling, which results in inhibition of motility in colon cancer cells.
Collapse
|
11
|
Istiaq A, Ohta K. Ribosome-Induced Cellular Multipotency, an Emerging Avenue in Cell Fate Reversal. Cells 2021; 10:cells10092276. [PMID: 34571922 PMCID: PMC8469204 DOI: 10.3390/cells10092276] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 08/25/2021] [Accepted: 08/30/2021] [Indexed: 01/23/2023] Open
Abstract
The ribosome, which is present in all three domains of life, plays a well-established, critical role in the translation process by decoding messenger RNA into protein. Ribosomal proteins, in contrast, appear to play non-translational roles in growth, differentiation, and disease. We recently discovered that ribosomes are involved in reverting cellular potency to a multipotent state. Ribosomal incorporation (the uptake of free ribosome by living cells) can direct the fate of both somatic and cancer cells into multipotency, allowing them to switch cell lineage. During this process, both types of cells experienced cell-cycle arrest and cellular stress while remaining multipotent. This review provides a molecular perspective on current insights into ribosome-induced multipotency and sheds light on how a common stress-associated mechanism may be involved. We also discuss the impact of this phenomenon on cancer cell reprogramming and its potential in cancer therapy.
Collapse
Affiliation(s)
- Arif Istiaq
- Department of Stem Cell Biology, Faculty of Arts and Science, Kyushu University, Fukuoka 819-0395, Japan;
- Department of Brain Morphogenesis, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto 860-8555, Japan
- HIGO Program, Kumamoto University, Kumamoto 860-8555, Japan
| | - Kunimasa Ohta
- Department of Stem Cell Biology, Faculty of Arts and Science, Kyushu University, Fukuoka 819-0395, Japan;
- Correspondence: ; Tel.: +81-92-802-6014
| |
Collapse
|
12
|
Chen X, Wang Z, Huang Y, Deng W, Zhou Y, Chu M. Identification of novel biomarkers for arthrofibrosis after total knee arthroplasty in animal models and clinical patients. EBioMedicine 2021; 70:103486. [PMID: 34311327 PMCID: PMC8325099 DOI: 10.1016/j.ebiom.2021.103486] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 06/25/2021] [Accepted: 06/28/2021] [Indexed: 01/24/2023] Open
Abstract
Background Arthrofibrosis is a debilitating complication after total knee arthroplasty (TKA) which becomes a considerable burden for both patients and clinical practitioners. Our study aimed to identify novel biomarkers and therapeutic targets for drug discovery. Methods Potential biomarker genes were identified based on bioinformatic analysis. Twelve male New Zealand white rabbits underwent surgical fixation of unilateral knees to mimics the joint immobilization of the clinical scenario after TKA surgery. Macroscopic assessment, hydroxyproline content determination, and histological analysis of tissue were performed separately after 3-days, 1-week, 2-weeks, and 4-weeks of fixation. We also enrolled 46 arthrofibrosis patients and 92 controls to test the biomarkers. Clinical information such as sex, age, range of motion (ROM), and visual analogue scale (VAS) was collected by experienced surgeons Findings Base on bioinformatic analysis, transforming growth factor-beta receptor 1 (TGFBR1) was identified as the potential biomarkers. The level of TGFBR1 was significantly raised in the rabbit synovial tissue after 4-weeks of fixation (p<0.05). TGFBR1 also displayed a highly positive correlation with ROM loss and hydroxyproline contents in the animal model. TGFBR1 showed a significantly higher expression level in arthrofibrosis patients with a receiver operating characteristic (ROC) area under curve (AUC) of 0.838. TGFBR1 also performed positive correlations with VAS baseline (0.83) and VAS after 1 year (0.76) while negatively correlated with ROM baseline (-0.76) in clinical patients. Interpretation Our findings provided novel biomarkers for arthrofibrosis diagnosis and uncovered the role of TGFBR1. This may contribute to arthrofibrosis prevention and therapeutic drug discovery.
Collapse
Affiliation(s)
- Xi Chen
- Department of Adult Joint Reconstructive Surgery, Beijing Jishuitan Hospital, Fourth Clinical College of Peking University, Jishuitan Orthopaedic College of Tsinghua University, 31 East Xinjiekou Street, Beijing 100035, China; Department of Immunology, School of Basic Medical Sciences, Peking University. NHC Key Laboratory of Medical Immunology (Peking University). Beijing, China
| | - Zhaolun Wang
- Department of Adult Joint Reconstructive Surgery, Beijing Jishuitan Hospital, Fourth Clinical College of Peking University, Jishuitan Orthopaedic College of Tsinghua University, 31 East Xinjiekou Street, Beijing 100035, China
| | - Yong Huang
- Department of Adult Joint Reconstructive Surgery, Beijing Jishuitan Hospital, Fourth Clinical College of Peking University, Jishuitan Orthopaedic College of Tsinghua University, 31 East Xinjiekou Street, Beijing 100035, China
| | - Wang Deng
- Department of Adult Joint Reconstructive Surgery, Beijing Jishuitan Hospital, Fourth Clinical College of Peking University, Jishuitan Orthopaedic College of Tsinghua University, 31 East Xinjiekou Street, Beijing 100035, China
| | - Yixin Zhou
- Department of Adult Joint Reconstructive Surgery, Beijing Jishuitan Hospital, Fourth Clinical College of Peking University, Jishuitan Orthopaedic College of Tsinghua University, 31 East Xinjiekou Street, Beijing 100035, China.
| | - Ming Chu
- Department of Immunology, School of Basic Medical Sciences, Peking University. NHC Key Laboratory of Medical Immunology (Peking University). Beijing, China.
| |
Collapse
|
13
|
A direct thrombin inhibitor, dabigatran etexilate protects from renal fibrosis by inhibiting protease activated receptor-1. Eur J Pharmacol 2020; 893:173838. [PMID: 33359646 DOI: 10.1016/j.ejphar.2020.173838] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/16/2020] [Accepted: 12/22/2020] [Indexed: 11/23/2022]
Abstract
Chronic kidney disease (CKD) involves interstitial fibrosis as an influential underlying pathological process associated with compromised renal function regardless of etiological cause of the injury. The tubulointerstitial fibrosis is found to be well correlated with declining renal function and its subsequent culmination into renal failure. Given the prominent role of thrombin in multiple diseases, it was tempting for us to investigate the outcome of a direct thrombin inhibitor in renal injury. We investigated the involvement of thrombin in renal injury and fibrosis by using an FDA approved orally active, direct thrombin inhibitor, dabigatran etexilate (DB). We used a robust experimental model of unilateral ureteral obstruction (UUO)-induced renal injury which shows progressive tubulointerstitial fibrosis (TIF) along with tubular injury and inflammation. The obstructed kidney showed severe TIF as compared to control kidneys. The administration of DB significantly inhibited UUO-induced collagen-1 and TIF by inhibition of thrombin activated protease activated receptor (PAR)-1 expression in fibrotic kidney. In addition, DB administration improved histoarchitecture of obstructed kidney, inhibited TGF-β and SNAI2-induced epithelial-mesenchymal transition (EMT) program. Our study highlights the importance of thrombin signalling in TIF and provides strong evidences to support the notion that a direct thrombin inhibitor ameliorates TIF by PAR-1 mediated mechanism.
Collapse
|
14
|
Proietti S, Cucina A, Pensotti A, Fuso A, Marchese C, Nicolini A, Bizzarri M. Tumor reversion and embryo morphogenetic factors. Semin Cancer Biol 2020; 79:83-90. [DOI: 10.1016/j.semcancer.2020.09.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 07/09/2020] [Accepted: 09/01/2020] [Indexed: 12/20/2022]
|
15
|
Abstract
Mesenchymal stem cells (MSCs) represent a promising source of cell-based therapies for treatment of a wide variety of injuries and diseases. Their tropism and migration to the damaged sites, which are elicited by cytokines secreted from tissues around pathology, are the prerequisite for tissue repair and regeneration. Better understanding of the elicited-migration of MSCs and discovering conditions that elevate their migration ability, will help to increase their homing to pathologies and improve therapeutic efficacy. It is increasingly recognized that microRNAs are important regulators of cell migration. Here we summarize current understanding of the microRNA-regulated migration of MSCs.
Collapse
|
16
|
Dong C, Liu S, Cui Y, Guo Q. 12-Lipoxygenase as a key pharmacological target in the pathogenesis of diabetic nephropathy. Eur J Pharmacol 2020; 879:173122. [DOI: 10.1016/j.ejphar.2020.173122] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 04/07/2020] [Accepted: 04/17/2020] [Indexed: 12/18/2022]
|
17
|
Malinda RR, Zeeberg K, Sharku PC, Ludwig MQ, Pedersen LB, Christensen ST, Pedersen SF. TGFβ Signaling Increases Net Acid Extrusion, Proliferation and Invasion in Panc-1 Pancreatic Cancer Cells: SMAD4 Dependence and Link to Merlin/NF2 Signaling. Front Oncol 2020; 10:687. [PMID: 32457840 PMCID: PMC7221161 DOI: 10.3389/fonc.2020.00687] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Accepted: 04/14/2020] [Indexed: 12/14/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a major cause of cancer-related death, with a 5-year survival of <10% and severely limited treatment options. PDAC hallmarks include profound metabolic acid production and aggressive local proliferation and invasiveness. This phenotype is supported by upregulated net acid extrusion and epithelial-to-mesenchymal transition (EMT), the latter typically induced by aberrant transforming growth factor-β (TGFβ) signaling. It is, however, unknown whether TGFβ-induced EMT and upregulation of acid extrusion are causally related. Here, we show that mRNA and protein expression of the net acid extruding transporters Na+/H+ exchanger 1 (NHE1, SLC9A1) and Na+, HCO3- cotransporter 1 (NBCn1, SLC4A7) are increased in a panel of human PDAC cell lines compared to immortalized human pancreatic ductal epithelial (HPDE) cells. Treatment of Panc-1 cells (which express SMAD4, required for canonical TGFβ signaling) with TGFβ-1 for 48 h elicited classical EMT with down- and upregulation of epithelial and mesenchymal markers, respectively, in a manner inhibited by SMAD4 knockdown. Accordingly, less pronounced EMT was induced in BxPC-3 cells, which do not express SMAD4. TGFβ-1 treatment elicited a SMAD4-dependent increase in NHE1 expression, and a smaller, SMAD4-independent increase in NBCn1 in Panc-1 cells. Consistent with this, TGFβ-1 treatment led to elevated intracellular pH and increased net acid extrusion capacity in Panc-1 cells, but not in BxPC-3 cells, in an NHE1-dependent manner. Proliferation was increased in Panc-1 cells and decreased in BxPC-3 cells, upon TGFβ-1 treatment, and this, as well as EMT per se, was unaffected by NHE1- or NBCn1 inhibition. TGFβ-1-induced EMT was associated with a 4-fold increase in Panc-1 cell invasiveness, which further increased ~10-fold upon knockdown of the tumor suppressor Merlin (Neurofibromatosis type 2). Knockdown of NHE1 or NBCn1 abolished Merlin-induced invasiveness, but not that induced by TGFβ-1 alone. In conclusion, NHE1 and NBCn1 expression and NHE-dependent acid extrusion are upregulated during TGFβ-1-induced EMT of Panc-1 cells. NHE1 upregulation is SMAD4-dependent, and SMAD4-deficient BxPC-3 cells show no change in pHi regulation. NHE1 and NBCn1 are not required for EMT per se or EMT-associated proliferation changes, but are essential for the potentiation of invasiveness induced by Merlin knockdown.
Collapse
Affiliation(s)
- Raj R Malinda
- Section for Cell Biology and Physiology, Department of Biology, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Katrine Zeeberg
- Section for Cell Biology and Physiology, Department of Biology, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Patricia C Sharku
- Section for Cell Biology and Physiology, Department of Biology, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Mette Q Ludwig
- Section for Cell Biology and Physiology, Department of Biology, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Lotte B Pedersen
- Section for Cell Biology and Physiology, Department of Biology, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Søren T Christensen
- Section for Cell Biology and Physiology, Department of Biology, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Stine F Pedersen
- Section for Cell Biology and Physiology, Department of Biology, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
18
|
Dhawan U, Wang WL, Gautam B, Aerathupalathu Janardhanan J, Hsiao PC, Tu HL, Yu HH. Mechanotactic Activation of TGF-β by PEDOT Artificial Microenvironments Triggers Epithelial to Mesenchymal Transition. ACTA ACUST UNITED AC 2020; 4:e1900165. [PMID: 32293138 DOI: 10.1002/adbi.201900165] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 11/13/2019] [Indexed: 11/11/2022]
Abstract
Epithelial to mesenchymal transition (EMT) is integral for cells to acquire metastatic properties, and ample evidence links it to bioorganic framework of the tumor microenvironment (TME). Hydroxymethyl-functionalized 3,4-ethylenedioxythiophene polymer (PEDOT-OH) enables construction of diverse nanotopography size and morphologies and is therefore exploited to engineer organic artificial microenvironments bearing nanodots from 300 to 1000 nm in diameter to understand spatiotemporal EMT regulation by biophysical components of the TME. MCF-7 breast cancer cells are cultured on these artificial microenvironments, and temporal regulation of cellular morphology and EMT markers is investigated. The results show that upon physical stimulation, cells on 300 nm artificial microenvironments advance to EMT and display a decreased extracellular matrix (ECM) protein secretion. In contrast, cells on 500 nm artificial microenvironments are trapped in EMT-imbalance. Interestingly, cells on 1000 nm artificial microenvironments resemble those on control surfaces. Upon further investigation, it is found that EMT induction is triggered via transforming growth factor β (TGF-β) and ECM cleaving protein, matrix metalloproteinease-9. Immunostaining EMT proteins highlighted that EMT induction is achieved through attenuation of cell-cell and cell-microenvironment adhesions. The physical stimulation-induced TGF-β perturbation can have a profound impact on the understanding of tumor-promoting signaling cascades originated by cellular microenvironment.
Collapse
Affiliation(s)
- Udesh Dhawan
- Smart Organic Materials Laboratory, Institute of Chemistry, Academia Sinica, Academia Road, Nankang, Taipei, 11529, Taiwan, ROC
| | - Wei-Li Wang
- Smart Organic Materials Laboratory, Institute of Chemistry, Academia Sinica, Academia Road, Nankang, Taipei, 11529, Taiwan, ROC
| | - Bhaskarchand Gautam
- Smart Organic Materials Laboratory, Institute of Chemistry, Academia Sinica, Academia Road, Nankang, Taipei, 11529, Taiwan, ROC.,Taiwan International graduate Program (TIGP), Sustainable Chemical Science and technology (SCST), Academia Sinica, Academia Road, Nankang, Taipei, 11529, Taiwan, ROC.,Department of Applied Chemistry, National Chiao Tung University, Hsinchu, 1001 University Road, Hsinchu, Taiwan, 300, ROC
| | - Jayakrishnan Aerathupalathu Janardhanan
- Smart Organic Materials Laboratory, Institute of Chemistry, Academia Sinica, Academia Road, Nankang, Taipei, 11529, Taiwan, ROC.,Taiwan International graduate Program (TIGP), Sustainable Chemical Science and technology (SCST), Academia Sinica, Academia Road, Nankang, Taipei, 11529, Taiwan, ROC.,Department of Applied Chemistry, National Chiao Tung University, Hsinchu, 1001 University Road, Hsinchu, Taiwan, 300, ROC
| | - Po-Chiang Hsiao
- Institute of Chemistry, Academia Sinica, Nankang, Taipei, 11529, Taiwan, ROC
| | - Hsiung-Lin Tu
- Institute of Chemistry, Academia Sinica, Nankang, Taipei, 11529, Taiwan, ROC
| | - Hsiao-Hua Yu
- Smart Organic Materials Laboratory, Institute of Chemistry, Academia Sinica, Academia Road, Nankang, Taipei, 11529, Taiwan, ROC
| |
Collapse
|
19
|
Cochetti G, Rossi de Vermandois JA, Maulà V, Giulietti M, Cecati M, Del Zingaro M, Cagnani R, Suvieri C, Paladini A, Mearini E. Role of miRNAs in prostate cancer: Do we really know everything? Urol Oncol 2020; 38:623-635. [PMID: 32284256 DOI: 10.1016/j.urolonc.2020.03.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 03/12/2020] [Accepted: 03/14/2020] [Indexed: 12/16/2022]
Abstract
Many different genetic alterations, as well as complex epigenetic interactions, are the basis of the genesis and progression of prostate cancer (CaP). This is the reason why until now the molecular pathways related to development of this cancer were only partly known, and even less those that determine aggressive or indolent tumour behaviour. MicroRNAs (miRNAs) represent a class of about 22 nucleotides long, small non-coding RNAs, which are involved in gene expression regulation at the post-transcriptional level. MiRNAs play a crucial role in regulating several biological functions and preserving homeostasis, as they carry out a wide modulatory activity on various molecular signalling pathways. MiRNA genes are placed in cancer-related genomic regions or in fragile sites, and they have been proven to be involved in the main steps of carcinogenesis as oncogenes or oncosuppressors in many types of cancer, including CaP. We performed a narrative review to describe the relationship between miRNAs and the crucial steps of development and progression of CaP. The aims of this study were to improve the knowledge regarding the mechanisms underlying miRNA expression and their target genes, and to contribute to understanding the relationship between miRNA expression profiles and CaP.
Collapse
Affiliation(s)
- Giovanni Cochetti
- Division of Urology Clinic, Department of Surgical and Biomedical Sciences, University of Perugia, Perugia, Italy
| | | | - Vincenza Maulà
- Biotechnology Laboratory in Urology, Division of Urology Clinic, Department of Surgical and Biomedical Sciences, University of Perugia, Perugia, Italy
| | - Matteo Giulietti
- Department of Specialistic Clinical and Odontostomatological Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Monia Cecati
- Department of Specialistic Clinical and Odontostomatological Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Michele Del Zingaro
- Division of Urology Clinic, Department of Surgical and Biomedical Sciences, University of Perugia, Perugia, Italy
| | - Rosy Cagnani
- Biotechnology Laboratory in Urology, Division of Urology Clinic, Department of Surgical and Biomedical Sciences, University of Perugia, Perugia, Italy
| | - Chiara Suvieri
- Biotechnology Laboratory in Urology, Division of Urology Clinic, Department of Surgical and Biomedical Sciences, University of Perugia, Perugia, Italy
| | - Alessio Paladini
- Division of Urology Clinic, Department of Surgical and Biomedical Sciences, University of Perugia, Perugia, Italy.
| | - Ettore Mearini
- Division of Urology Clinic, Department of Surgical and Biomedical Sciences, University of Perugia, Perugia, Italy
| |
Collapse
|
20
|
Giannelli G, Santoro A, Kelley RK, Gane E, Paradis V, Cleverly A, Smith C, Estrem ST, Man M, Wang S, Lahn MM, Raymond E, Benhadji KA, Faivre S. Biomarkers and overall survival in patients with advanced hepatocellular carcinoma treated with TGF-βRI inhibitor galunisertib. PLoS One 2020; 15:e0222259. [PMID: 32210440 PMCID: PMC7094874 DOI: 10.1371/journal.pone.0222259] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 08/25/2019] [Indexed: 12/15/2022] Open
Abstract
Background Transforming growth factor beta (TGF-β) signalling is involved in the development of hepatocellular carcinoma (HCC). We followed changes in biomarkers during treatment of patients with HCC with the TGF-βRI/ALK5 inhibitor galunisertib. Methods This phase 2 study (NCT01246986) enrolled second-line patients with advanced HCC into one of two cohorts of baseline serum alpha-fetoprotein (AFP): Part A (AFP ≥1.5x ULN) or Part B (AFP <1.5x ULN). Baseline and postbaseline levels of AFP, TGF-β1, E-cadherin, selected miRNAs, and other plasma proteins were monitored. Results The study enrolled 149 patients (Part A, 109; Part B, 40). Median OS was 7.3 months in Part A and 16.8 months in Part B. Baseline AFP, TGF-β1, E-cadherin, and an additional 16 plasma proteins (such as M-CSF, IL-6, ErbB3, ANG-2, neuropilin-1, MIP-3 alpha, KIM-1, uPA, IL-8, TIMP-1, ICAM-1, Apo A-1, CA-125, osteopontin, tetranectin, and IGFBP-1) were found to correlate with OS. In addition, a range of miRs were found to be associated with OS. In AFP responders (21% of patients in Part A with decrease of >20% from baseline) versus non-responders, median OS was 21.5 months versus 6.8 months (p = 0.0015). In TGF-β1 responders (51% of all patients) versus non-responders, median OS was 11.2 months versus 5.3 months (p = 0.0036). Conclusions Consistent with previous findings, both baseline levels and changes from baseline of circulating AFP and TGF-β1 function as prognostic indicators of survival. Future trials are needed to confirm and extend these results.
Collapse
Affiliation(s)
- Gianluigi Giannelli
- National Institute of Gastroenterology, “s. De Bellis” Research Hospital, Castellana Grotte, Bari, Italy
- * E-mail:
| | | | - Robin K. Kelley
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, California, United States of America
| | - Ed Gane
- Auckland City Hospital, Auckland, New Zealand
| | | | - Ann Cleverly
- Eli Lilly and Company, Windlesham, Surrey, United Kingdom
| | - Claire Smith
- Eli Lilly and Company, Windlesham, Surrey, United Kingdom
| | - Shawn T. Estrem
- Eli Lilly and Company, Indianapolis, Indiana, United States of America
| | - Michael Man
- Eli Lilly and Company, Indianapolis, Indiana, United States of America
| | - Shuaicheng Wang
- BioStat Solutions, Inc., Frederick, Maryland, United States of America
| | - Michael M. Lahn
- Eli Lilly and Company, Indianapolis, Indiana, United States of America
| | - Eric Raymond
- Paris Saint-Joseph Hospital Center, Paris, France
| | - Karim A. Benhadji
- Eli Lilly and Company, Indianapolis, Indiana, United States of America
| | | |
Collapse
|
21
|
Flinck M, Hagelund S, Gorbatenko A, Severin M, Pedraz-Cuesta E, Novak I, Stock C, Pedersen SF. The Vacuolar H + ATPase α3 Subunit Negatively Regulates Migration and Invasion of Human Pancreatic Ductal Adenocarcinoma Cells. Cells 2020; 9:E465. [PMID: 32085585 PMCID: PMC7072798 DOI: 10.3390/cells9020465] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 02/10/2020] [Accepted: 02/13/2020] [Indexed: 12/12/2022] Open
Abstract
Increased metabolic acid production and upregulation of net acid extrusion render pH homeostasis profoundly dysregulated in many cancers. Plasma membrane activity of vacuolar H+ ATPases (V-ATPases) has been implicated in acid extrusion and invasiveness of some cancers, yet often on the basis of unspecific inhibitors. Serving as a membrane anchor directing V-ATPase localization, the a subunit of the V0 domain of the V-ATPase (ATP6V0a1-4) is particularly interesting in this regard. Here, we map the regulation and roles of ATP6V0a3 in migration, invasion, and growth in pancreatic ductal adenocarcinoma (PDAC) cells. a3 mRNA and protein levels were upregulated in PDAC cell lines compared to non-cancer pancreatic epithelial cells. Under control conditions, a3 localization was mainly endo-/lysosomal, and its knockdown had no detectable effect on pHi regulation after acid loading. V-ATPase inhibition, but not a3 knockdown, increased HIF-1 expression and decreased proliferation and autophagic flux under both starved and non-starved conditions, and spheroid growth of PDAC cells was also unaffected by a3 knockdown. Strikingly, a3 knockdown increased migration and transwell invasion of Panc-1 and BxPC-3 PDAC cells, and increased gelatin degradation in BxPC-3 cells yet decreased it in Panc-1 cells. We conclude that in these PDAC cells, a3 is upregulated and negatively regulates migration and invasion, likely in part via effects on extracellular matrix degradation.
Collapse
Affiliation(s)
- Mette Flinck
- Section for Cell Biology and Physiology, Department of Biology, Faculty of Science, University of Copenhagen, DK-2100 Copenhagen, Denmark; (M.F.); (S.H.); (M.S.); (E.P.-C.); (I.N.)
| | - Sofie Hagelund
- Section for Cell Biology and Physiology, Department of Biology, Faculty of Science, University of Copenhagen, DK-2100 Copenhagen, Denmark; (M.F.); (S.H.); (M.S.); (E.P.-C.); (I.N.)
| | - Andrej Gorbatenko
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;
| | - Marc Severin
- Section for Cell Biology and Physiology, Department of Biology, Faculty of Science, University of Copenhagen, DK-2100 Copenhagen, Denmark; (M.F.); (S.H.); (M.S.); (E.P.-C.); (I.N.)
| | - Elena Pedraz-Cuesta
- Section for Cell Biology and Physiology, Department of Biology, Faculty of Science, University of Copenhagen, DK-2100 Copenhagen, Denmark; (M.F.); (S.H.); (M.S.); (E.P.-C.); (I.N.)
| | - Ivana Novak
- Section for Cell Biology and Physiology, Department of Biology, Faculty of Science, University of Copenhagen, DK-2100 Copenhagen, Denmark; (M.F.); (S.H.); (M.S.); (E.P.-C.); (I.N.)
| | - Christian Stock
- Department of Gastroentero-, Hepato- and Endocrinology, Hannover Medical School, D-30625 Hannover, Germany;
| | - Stine Falsig Pedersen
- Section for Cell Biology and Physiology, Department of Biology, Faculty of Science, University of Copenhagen, DK-2100 Copenhagen, Denmark; (M.F.); (S.H.); (M.S.); (E.P.-C.); (I.N.)
| |
Collapse
|
22
|
Richter AM, Woods ML, Küster MM, Walesch SK, Braun T, Boettger T, Dammann RH. RASSF10 is frequently epigenetically inactivated in kidney cancer and its knockout promotes neoplasia in cancer prone mice. Oncogene 2020; 39:3114-3127. [PMID: 32047266 PMCID: PMC7142015 DOI: 10.1038/s41388-020-1195-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 01/21/2020] [Accepted: 01/27/2020] [Indexed: 12/22/2022]
Abstract
Kidney cancer incidences are rising globally, thereby fueling the demand for targeted therapies and precision medicine. In our previous work, we have identified and characterized the Ras-Association Domain Family encoding ten members that are often aberrantly expressed in human cancers. In this study, we created and analyzed the Rassf10 knockout mice. Here we show that Rassf10 haploinsufficiency promotes neoplasia formation in two established mouse cancer models (Rassf1A-/- and p53-/-). Haploinsufficient Rassf10 knockout mice were significantly prone to various diseases including lymphoma (Rassf1A-/- background) and thymoma (p53-/- background). Especially Rassf10-/- and p53-deficient mice exhibited threefold increased rates of kidney cysts compared with p53-/- controls. Moreover, we observed that in human kidney cancer, RASSF10 is frequently epigenetically inactivated by its CpG island promoter hypermethylation. Primary tumors of renal clear cell and papillary cell carcinoma confirmed that RASSF10 methylation is associated with decreased expression in comparison to normal kidney tissue. In independent data sets, we could validate that RASSF10 inactivation clinically correlated with decreased survival and with progressed disease state of kidney cancer patients and polycystic kidney size. Functionally, we revealed that the loss of Rassf10 was significantly associated with upregulation of KRAS signaling and MYC expression. In summary, we could show that Rassf10 functions as a haploinsufficient tumor suppressor. In combination with other markers, RASSF10 silencing can serve as diagnostic and prognostic cancer biomarker in kidney diseases.
Collapse
Affiliation(s)
- Antje M Richter
- Institute for Genetics, University of Giessen, 35392, Giessen, Germany. .,Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany.
| | - Michelle L Woods
- Institute for Genetics, University of Giessen, 35392, Giessen, Germany
| | - Miriam M Küster
- Institute for Genetics, University of Giessen, 35392, Giessen, Germany
| | - Sara K Walesch
- Institute for Genetics, University of Giessen, 35392, Giessen, Germany
| | - Thomas Braun
- Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany.,German Center for Lung Research (DZL), Universities of Giessen and Marburg Lung Center, 35392, Giessen, Germany
| | - Thomas Boettger
- Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Reinhard H Dammann
- Institute for Genetics, University of Giessen, 35392, Giessen, Germany. .,German Center for Lung Research (DZL), Universities of Giessen and Marburg Lung Center, 35392, Giessen, Germany.
| |
Collapse
|
23
|
Jiménez-Segovia A, Mota A, Rojo-Sebastián A, Barrocal B, Rynne-Vidal A, García-Bermejo ML, Gómez-Bris R, Hawinkels LJAC, Sandoval P, Garcia-Escudero R, López-Cabrera M, Moreno-Bueno G, Fresno M, Stamatakis K. Prostaglandin F 2α-induced Prostate Transmembrane Protein, Androgen Induced 1 mediates ovarian cancer progression increasing epithelial plasticity. Neoplasia 2019; 21:1073-1084. [PMID: 31734628 PMCID: PMC6888713 DOI: 10.1016/j.neo.2019.10.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 10/01/2019] [Accepted: 10/14/2019] [Indexed: 10/29/2022] Open
Abstract
The role of prostaglandin (PG) F2α has been scarcely studied in cancer. We have identified a new function for PGF2α in ovarian cancer, stimulating the production of Prostate Transmembrane Protein, Androgen Induced 1 (PMEPA1). We show that this induction increases cell plasticity and proliferation, enhancing tumor growth through PMEPA1. Thus, PMEPA1 overexpression in ovarian carcinoma cells, significantly increased cell proliferation rates, whereas PMEPA1 silencing decreased proliferation. In addition, PMEPA1 overexpression buffered TGFβ signaling, via reduction of SMAD-dependent signaling. PMEPA1 overexpressing cells acquired an epithelial morphology, associated with higher E-cadherin expression levels while β-catenin nuclear translocation was inhibited. Notwithstanding, high PMEPA1 levels also correlated with epithelial to mesenchymal transition markers, such as vimentin and ZEB1, allowing the cells to take advantage of both epithelial and mesenchymal characteristics, gaining in cell plasticity and adaptability. Interestingly, in mouse xenografts, PMEPA1 overexpressing ovarian cells had a clear survival and proliferative advantage, resulting in higher metastatic capacity, while PMEPA1 silencing had the opposite effect. Furthermore, high PMEPA1 expression in a cohort of advanced ovarian cancer patients was observed, correlating with E-cadherin expression. Most importantly, high PMEPA1 mRNA levels were associated with lower patient survival.
Collapse
Affiliation(s)
- Alba Jiménez-Segovia
- Centro de Biología Molecular "Severo Ochoa" (Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid), c/ Nicolás Cabrera, 1, Campus Cantoblanco, Universidad Autónoma de Madrid, Madrid 28049, Spain
| | - Alba Mota
- Departamento de Bioquímica, Universidad Autónoma de Madrid (UAM), Instituto de Investigaciones Biomédicas 'Alberto Sols' (CSIC-UAM), IdiPaz, Madrid, Spain; MD Anderson Cancer Center Madrid & Fundación MD Anderson Internacional, Madrid, Spain
| | - Alejandro Rojo-Sebastián
- MD Anderson Cancer Center Madrid & Fundación MD Anderson Internacional, Madrid, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Spain
| | - Beatriz Barrocal
- Centro de Biología Molecular "Severo Ochoa" (Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid), c/ Nicolás Cabrera, 1, Campus Cantoblanco, Universidad Autónoma de Madrid, Madrid 28049, Spain
| | - Angela Rynne-Vidal
- Centro de Biología Molecular "Severo Ochoa" (Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid), c/ Nicolás Cabrera, 1, Campus Cantoblanco, Universidad Autónoma de Madrid, Madrid 28049, Spain
| | - María-Laura García-Bermejo
- Biomarkers and Therapeutic Targets Lab, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Raquel Gómez-Bris
- Centro de Biología Molecular "Severo Ochoa" (Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid), c/ Nicolás Cabrera, 1, Campus Cantoblanco, Universidad Autónoma de Madrid, Madrid 28049, Spain
| | - Lukas J A C Hawinkels
- Department of Gastroenterology and Hepatology, Leiden University Medical Centre, Leiden, the Netherlands
| | - Pilar Sandoval
- Centro de Biología Molecular "Severo Ochoa" (Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid), c/ Nicolás Cabrera, 1, Campus Cantoblanco, Universidad Autónoma de Madrid, Madrid 28049, Spain
| | - Ramon Garcia-Escudero
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Spain; Molecular Oncology Unit, CIEMAT, Madrid, Spain; Biomedical Research Institute I+12, University Hospital 12 de Octubre, Madrid 28041, Spain
| | - Manuel López-Cabrera
- Centro de Biología Molecular "Severo Ochoa" (Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid), c/ Nicolás Cabrera, 1, Campus Cantoblanco, Universidad Autónoma de Madrid, Madrid 28049, Spain
| | - Gema Moreno-Bueno
- Departamento de Bioquímica, Universidad Autónoma de Madrid (UAM), Instituto de Investigaciones Biomédicas 'Alberto Sols' (CSIC-UAM), IdiPaz, Madrid, Spain; MD Anderson Cancer Center Madrid & Fundación MD Anderson Internacional, Madrid, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Spain
| | - Manuel Fresno
- Centro de Biología Molecular "Severo Ochoa" (Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid), c/ Nicolás Cabrera, 1, Campus Cantoblanco, Universidad Autónoma de Madrid, Madrid 28049, Spain; Instituto de Investigación Sanitaria Hospital Universitario de la Princesa (IIS-P), Madrid, Spain.
| | - Konstantinos Stamatakis
- Centro de Biología Molecular "Severo Ochoa" (Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid), c/ Nicolás Cabrera, 1, Campus Cantoblanco, Universidad Autónoma de Madrid, Madrid 28049, Spain; Instituto de Investigación Sanitaria Hospital Universitario de la Princesa (IIS-P), Madrid, Spain.
| |
Collapse
|
24
|
Zhang L, Ye Y, Dhar R, Deng J, Tang H. Estimating Dynamic Cellular Morphological Properties via the Combination of the RTCA System and a Hough-Transform-Based Algorithm. Cells 2019; 8:cells8101287. [PMID: 31640200 PMCID: PMC6829879 DOI: 10.3390/cells8101287] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 10/16/2019] [Accepted: 10/19/2019] [Indexed: 12/17/2022] Open
Abstract
The xCELLigence real-time cell analysis (RTCA) system has the potential to detect cellular proliferation, migration, cytotoxicity, adherence, and remodeling. Although the RTCA system is widely recognized as a noninvasive and efficient tool for real-time monitoring of cellular fate, it cannot describe detailed cell morphological parameters, such as length and intensity. Transforming growth factor beta(TGF-β) induced the epithelial–mesenchymal transition (EMT), which produces significant changes in cellular morphology, so we used TGF-β to treat A549 epithelial cells in this study. We compared it with lipopolysaccharide (LPS) and cigarette smoke extract (CSE) as stimulators. We developed an efficient algorithm to quantify the morphological cell changes. This algorithm is comprised of three major parts: image preprocessing, Hough transform (HT), and post-processing. We used the RTCA system to record the A549 cell index. Western blot was used to confirm the EMT. The RTCA system showed that different stimulators produce different cell index curves. The algorithm determined the lengths of the detected lines of cells, and the results were similar to the RTCA system in the TGF-β group. The Western blot results show that TGF-β changed the EMT markers, but the other stimulator remained unchanged. Optics-based computer vision techniques can supply the requisite information for the RTCA system based on good correspondence between the results.
Collapse
Affiliation(s)
- Lejun Zhang
- Department of Pharmacology, School of Basic Medical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| | - Yang Ye
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| | - Rana Dhar
- Department of Pharmacology, School of Basic Medical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| | - Jinsong Deng
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| | - Huifang Tang
- Department of Pharmacology, School of Basic Medical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| |
Collapse
|
25
|
Alvarez MA, Freitas JP, Mazher Hussain S, Glazer ES. TGF-β Inhibitors in Metastatic Pancreatic Ductal Adenocarcinoma. J Gastrointest Cancer 2019; 50:207-213. [PMID: 30891677 DOI: 10.1007/s12029-018-00195-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDAC) is the fourth leading cause of cancerrelated mortality in the USA, and the overall incidence of the disease is increasing such that it is expected to be the third leading cause of cancer-related deaths in the next decade. Minimal improvements in therapy have not changed the overall mortality rate over the past decade for patients with PDAC. The purpose of this review is to identify new data regardign the role of Transforming growth factor beta (TGF-β) based therapeuics in patients with PDAC. METHODS The literature was searched for peer reviewed manuscripts regarding the use of TGF-β inhibitors in PDAC therapy and the mechanism in which TGF-β intracellular signaling effects patient survival. RESULTS TGF-β plays a vital, context-dependent role as both a tumor suppressor and promoter of PDAC. The downstream effects of this duality play a significant role in the immunologic response of the tumor microenvironment (TME), epithelial-mesenchymal transformation (EMT), and the development of metastatic disease. Immunologic pathways have been shown to be successful targets in the treatment of other diseases, though they have not been shown efficacious in PDAC. TGF-β-mediated EMT does play a critical role in PDAC progression in the development of metastases. The use of anti-TGF-β-based therapies in phase I and II clinical trials for metastatic PDAC demonstrate the importance of understanding the role of TGF-β in PDAC progression. CONCLUSION This review clarifies the recent literature investigating the role of anti-TGF-β-based therapy in PDAC and areas ripe for targeted investigations and therapies.
Collapse
Affiliation(s)
- Marcus A Alvarez
- Department of Surgery, University of Tennessee Health Science Center, 910 Madison Ave., Suite 300, Memphis, TN, 38163, USA
| | - Júlia Pedó Freitas
- Department of Surgery, University of Tennessee Health Science Center, 910 Madison Ave., Suite 300, Memphis, TN, 38163, USA
| | - S Mazher Hussain
- Department of Surgery, University of Tennessee Health Science Center, 910 Madison Ave., Suite 300, Memphis, TN, 38163, USA
| | - Evan S Glazer
- Department of Surgery, University of Tennessee Health Science Center, 910 Madison Ave., Suite 300, Memphis, TN, 38163, USA.
| |
Collapse
|
26
|
Ko JH, Yang MH, Baek SH, Nam D, Jung SH, Ahn KS. Theacrine attenuates epithelial mesenchymal transition in human breast cancer MDA-MB-231 cells. Phytother Res 2019; 33:1934-1942. [PMID: 31172618 DOI: 10.1002/ptr.6389] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 10/22/2018] [Accepted: 04/23/2019] [Indexed: 12/21/2022]
Abstract
Theacrine, a purine alkaloid structurally similar to caffeine, has recently become of interest as a potential therapeutic compound. Here, we investigated the antimetastatic potential of theacrine on human breast cancer MDA-MB-231 cells. We observed that theacrine can reverse epithelial-to-mesenchymal transition (EMT), which resulted in a decrease in the levels of mesenchymal markers (Fibronectin, Vimentin, N-cadherin, Twist, and Snail) and an increase in the levels of epithelial markers (Occludin and E-cadherin) in the cells. Additionally, theacrine attenuates TGF-β-induced EMT, cell adhesion, migration, and invasion in MDA-MB-231 cells. Overall, our results suggest that theacrine may inhibit the breast cancer cell metastasis by reversing the EMT process.
Collapse
Affiliation(s)
- Jeong-Hyeon Ko
- College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Min Hee Yang
- KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul, Republic of Korea
| | - Seung Ho Baek
- College of Korean Medicine, Woosuk University, Wanju, Republic of Korea
| | - Dongwoo Nam
- College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Sang Hoon Jung
- KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul, Republic of Korea
| | - Kwang Seok Ahn
- College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea.,KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|
27
|
Single Nucleotide Polymorphism in SMAD7 and CHI3L1 and Colorectal Cancer Risk. Mediators Inflamm 2018; 2018:9853192. [PMID: 30498395 PMCID: PMC6222239 DOI: 10.1155/2018/9853192] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 08/01/2018] [Accepted: 08/16/2018] [Indexed: 02/08/2023] Open
Abstract
Colorectal cancer (CRC) is one of the leading cancers throughout the world. It represents the third most common cancer and the fourth in mortality. Most of CRC are sporadic, arise with no known high-penetrant genetic variation and with no previous family history. The etiology of sporadic CRC is considered to be multifactorial and arises from the interaction of genetic variants of low-penetrant genes and environmental risk factors. The most common well-studied genetic variation is single nucleotide polymorphisms (SNPs). SNP arises as a point mutation. If the frequency of the sequence variation reaches 1% or more in the population, it is referred to as polymorphism, but if it is lower than 1%, the allele is typically considered as a mutation. Lots of SNPs have been associated with CRC development and progression, for example, genes of TGF-β1 and CHI3L1 pathways. TGF-β1 is a pleiotropic cytokine with a dual role in cancer development and progression. TGF-β1 mediates its actions through canonical and noncanonical pathways. The most important negative regulatory protein for TGF-β1 activity is termed SMAD7. The production of TGF-β can be controlled by another protein called YKL-40. YKL-40 is a glycoprotein with an important role in cancer initiation and metastasis. YKL-40 is encoded by the CHI3L1 gene. The aim of the present review is to give a brief introduction of CRC, SNP, and examples of some SNPs that have been documented to be associated with CRC. We also discuss two important signaling pathways TGF-β1 and CHI3L1 that influence the incidence and progression of CRC.
Collapse
|
28
|
Cascione M, De Matteis V, Toma CC, Leporatti S. Morphomechanical Alterations Induced by Transforming Growth Factor-β1 in Epithelial Breast Cancer Cells. Cancers (Basel) 2018; 10:cancers10070234. [PMID: 30012949 PMCID: PMC6071091 DOI: 10.3390/cancers10070234] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 07/11/2018] [Accepted: 07/13/2018] [Indexed: 12/11/2022] Open
Abstract
The Epithelial to mesenchymal transition (EMT) is the process that drives epithelial tumor cells to acquire an invasive phenotype. The role of transforming growth factor-β1 (TGF-β1) in EMT is still debated. We used confocal laser scanning microscopy and scanning force spectroscopy to perform a morphomechanical analysis on epithelial breast cancer cells (MCF-7), comparing them before and after TGF-β1 exogenous stimulation (5 ng/mL for 48 h). After TGF-β1 treatment, loss of cell⁻cell adherence (mainly due to the reduction of E-cadherin expression of about 24%) and disaggregation of actin cortical fibers were observed in treated MCF-7. In addition, TGF-β1 induced an alteration of MCF-7 nuclei morphology as well as a decrease in the Young's modulus, owing to a rearrangement that involved the cytoskeletal networks and the nuclear region. These relevant variations in morphological features and mechanical properties, elicited by TGF-β1, suggested an increased capacity of MCF-7 to migrate, which was confirmed by a wound healing assay. By means of our biophysical approach, we highlighted the malignant progression of breast cancer cells induced by TGF-β1 exposure. We are confirming TGF-β1's role in EMT by means of morphomechanical evidence that could represent a turning point in understanding the molecular mechanisms involved in cancer progression.
Collapse
Affiliation(s)
- Mariafrancesca Cascione
- Dipartimento di Scienze Biomediche e Oncologia Umana, Università degli Studi di Bari "Aldo Moro", p.zza G. Cesare, c/o Policlinico, 70124 Bari, Italy.
| | - Valeria De Matteis
- Dipartimento di Matematica e Fisica "E. De Giorgi", Università del Salento, Via Monteroni, 73100 Lecce, Italy.
| | - Chiara C Toma
- Dipartimento di Matematica e Fisica "E. De Giorgi", Università del Salento, Via Monteroni, 73100 Lecce, Italy.
| | - Stefano Leporatti
- CNR Nanotec-Istituto di Nanotecnologia, Via Monteroni, c/o Campus Ecotekne, 73100 Lecce, Italy.
| |
Collapse
|
29
|
Islam MS, Kaji N, Mikawa S, Yang Q, Kusabe M, Hori M, Ozaki H. Induction of myosin light chain kinase and CPI-17 by TGF-β accelerates contractile activity in intestinal epithelial cells. J Vet Med Sci 2018; 80:977-984. [PMID: 29695674 PMCID: PMC6021892 DOI: 10.1292/jvms.17-0684] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Epithelial-mesenchymal transition (EMT) is an orchestral and functional change in epithelial cells. Many signaling pathways are involved in EMT, and transforming growth factor-beta (TGF-β) is considered to be one of the most important factors in induction of EMT. In this study, we treated the rat intestinal epithelial cell line (IEC-6) with TGF-β1 as a signaling stimulant. Gross analysis of IEC-6 cells showed typical characteristics of epithelial cells such as cuboidal morphology and cell-cell contact, whereas treatment with TGF-β1 (10 ng/ml-1) for 7 days produced robust, spindle-shaped morphology. Immunocytochemistry analysis showed distinct E-cadherin staining in IEC-6 cells, but weak and faint in EMT cells. EMT cells showed positive expression of α-SMA and tenascin-C but IEC-6 cells did not. Quantitative real-time PCR analysis showed that myosin light chain kinase and C-kinase potentiated protein phosphatase-1 inhibitor (CPI-17) mRNAs were significantly upregulated in EMT cells. Immunocytochemistry analysis also showed that EMT cells strongly expressed CPI-17 but IEC-6 cells did not. A collagen gel contraction assay revealed that EMT cells had greatly increased contraction compared with control cells. These results suggest that the increased contractile activity induced by TGF-β in EMT cells may be attributable to the upregulation of molecules responsible for myosin phosphorylation/de-phosphorylation.
Collapse
Affiliation(s)
- Md Shafiqul Islam
- Department of Veterinary Pharmacology, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Noriyuki Kaji
- Department of Veterinary Pharmacology, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Shoma Mikawa
- Department of Veterinary Pharmacology, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Qunhui Yang
- Department of Veterinary Pharmacology, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Moriaki Kusabe
- Development of Advanced Technology Laboratory Research Center for Food Safety, The University of Tokyo, Tokyo 113-8657, Japan
| | - Masatoshi Hori
- Department of Veterinary Pharmacology, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Hiroshi Ozaki
- Department of Veterinary Pharmacology, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| |
Collapse
|
30
|
Xiong S, Cheng JC, Klausen C, Zhao J, Leung PCK. TGF-β1 stimulates migration of type II endometrial cancer cells by down-regulating PTEN via activation of SMAD and ERK1/2 signaling pathways. Oncotarget 2018; 7:61262-61272. [PMID: 27542208 PMCID: PMC5308649 DOI: 10.18632/oncotarget.11311] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 08/10/2016] [Indexed: 11/25/2022] Open
Abstract
PTEN acts as a tumor suppressor primarily by antagonizing the PI3K/AKT signaling pathway. PTEN is frequently mutated in human cancers; however, in type II endometrial cancers its mutation rate is very low. Overexpression of TGF-β1 and its receptors has been reported to correlate with metastasis of human cancers and reduced survival rates. Although TGF-β1 has been shown to regulate PTEN expression through various mechanisms, it is not yet known if the same is true in type II endometrial cancer. In the present study, we show that treatment with TGF-β1 stimulates the migration of two type II endometrial cancer cell lines, KLE and HEC-50. In addition, TGF-β1 treatment down-regulates both mRNA and protein levels of PTEN. Overexpression of PTEN or inhibition of PI3K abolishes TGF-β1-stimulated cell migration. TGF-β1 induces SMAD2/3 phosphorylation and knockdown of common SMAD4 inhibits the suppressive effects of TGF-β1 on PTEN mRNA and protein. Interestingly, TGF-β1 induces ERK1/2 phosphorylation and pre-treatment with a MEK inhibitor attenuates the suppression of PTEN protein, but not mRNA, by TGF-β1. This study provides important insights into the molecular mechanisms mediating TGF-β1-induced down-regulation of PTEN and demonstrates an important role of PTEN in the regulation of type II endometrial cancer cell migration.
Collapse
Affiliation(s)
- Siyuan Xiong
- Department of Obstetrics and Gynaecology, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia, Canada V5Z 4H4
| | - Jung-Chien Cheng
- Department of Obstetrics and Gynaecology, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia, Canada V5Z 4H4
| | - Christian Klausen
- Department of Obstetrics and Gynaecology, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia, Canada V5Z 4H4
| | - Jianfang Zhao
- Department of Obstetrics and Gynaecology, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia, Canada V5Z 4H4
| | - Peter C K Leung
- Department of Obstetrics and Gynaecology, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia, Canada V5Z 4H4
| |
Collapse
|
31
|
Pulido R. PTEN Inhibition in Human Disease Therapy. Molecules 2018; 23:molecules23020285. [PMID: 29385737 PMCID: PMC6017825 DOI: 10.3390/molecules23020285] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 01/26/2018] [Accepted: 01/28/2018] [Indexed: 12/19/2022] Open
Abstract
The tumor suppressor PTEN is a major homeostatic regulator, by virtue of its lipid phosphatase activity against phosphatidylinositol 3,4,5-trisphosphate [PI(3,4,5)P3], which downregulates the PI3K/AKT/mTOR prosurvival signaling, as well as by its protein phosphatase activity towards specific protein targets. PTEN catalytic activity is crucial to control cell growth under physiologic and pathologic situations, and it impacts not only in preventing tumor cell survival and proliferation, but also in restraining several cellular regeneration processes, such as those associated with nerve injury recovery, cardiac ischemia, or wound healing. In these conditions, inhibition of PTEN catalysis is being explored as a potentially beneficial therapeutic intervention. Here, an overview of human diseases and conditions in which PTEN inhibition could be beneficial is presented, together with an update on the current status of specific small molecule inhibitors of PTEN enzymatic activity, their use in experimental models, and their limitations as research or therapeutic drugs.
Collapse
Affiliation(s)
- Rafael Pulido
- Biomarkers in Cancer Unit, Biocruces Health Research Institute, 48903 Barakaldo, Spain.
- IKERBASQUE, Basque Foundation for Science, 48013 Bilbao, Spain.
| |
Collapse
|
32
|
Liu L, Aleksandrowicz E, Schönsiegel F, Gröner D, Bauer N, Nwaeburu CC, Zhao Z, Gladkich J, Hoppe-Tichy T, Yefenof E, Hackert T, Strobel O, Herr I. Dexamethasone mediates pancreatic cancer progression by glucocorticoid receptor, TGFβ and JNK/AP-1. Cell Death Dis 2017; 8:e3064. [PMID: 28981109 PMCID: PMC5680577 DOI: 10.1038/cddis.2017.455] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 08/04/2017] [Accepted: 08/09/2017] [Indexed: 01/08/2023]
Abstract
Glucocorticoids such as dexamethasone are widely co-prescribed with cytotoxic therapy because of their proapoptotic effects in lymphoid cancer, reduction of inflammation and edema and additional benefits. Concerns about glucocorticoid-induced therapy resistance, enhanced metastasis and reduced survival of patients are largely not considered. We analyzed dexamethasone-induced tumor progression in three established and one primary human pancreatic ductal adenocarcinoma (PDA) cell lines and in PDA tissue from patients and xenografts by FACS and western blot analysis, immunohistochemistry, MTT and wound assay, colony and spheroid formation, EMSA and in vivo tumor growth and metastasis of tumor xenografts on chicken eggs and mice. Dexamethasone in concentrations observed in plasma of patients favored epithelial–mesenchymal transition, self-renewal potential and cancer progression. Ras/JNK signaling, enhanced expression of TGFβ, vimentin, Notch-1 and SOX-2 and the inhibition of E-cadherin occurred. This was confirmed in patient and xenograft tissue, where dexamethasone induced tumor proliferation, gemcitabine resistance and metastasis. Inhibition of each TGFβ receptor-I, glucocorticoid receptor or JNK signaling partially reversed the dexamethasone-mediated effects, suggesting a complex signaling network. These data reveal that dexamethasone mediates progression by membrane effects and binding to glucocorticoid receptor.
Collapse
Affiliation(s)
- Li Liu
- Section Surgical Research, Molecular OncoSurgery, University of Heidelberg, Heidelberg, Germany.,Department of General Surgery, University of Heidelberg, Heidelberg, Germany
| | - Ewa Aleksandrowicz
- Section Surgical Research, Molecular OncoSurgery, University of Heidelberg, Heidelberg, Germany.,Department of General Surgery, University of Heidelberg, Heidelberg, Germany
| | - Frank Schönsiegel
- Section Surgical Research, Molecular OncoSurgery, University of Heidelberg, Heidelberg, Germany.,Department of General Surgery, University of Heidelberg, Heidelberg, Germany
| | - Daniel Gröner
- Section Surgical Research, Molecular OncoSurgery, University of Heidelberg, Heidelberg, Germany.,Department of General Surgery, University of Heidelberg, Heidelberg, Germany
| | - Nathalie Bauer
- Section Surgical Research, Molecular OncoSurgery, University of Heidelberg, Heidelberg, Germany.,Department of General Surgery, University of Heidelberg, Heidelberg, Germany
| | - Clifford C Nwaeburu
- Section Surgical Research, Molecular OncoSurgery, University of Heidelberg, Heidelberg, Germany.,Department of General Surgery, University of Heidelberg, Heidelberg, Germany
| | - Zhefu Zhao
- Section Surgical Research, Molecular OncoSurgery, University of Heidelberg, Heidelberg, Germany.,Department of General Surgery, University of Heidelberg, Heidelberg, Germany
| | - Jury Gladkich
- Section Surgical Research, Molecular OncoSurgery, University of Heidelberg, Heidelberg, Germany.,Department of General Surgery, University of Heidelberg, Heidelberg, Germany
| | | | - Eitan Yefenof
- The Lautenberg Center for Immunology and Cancer Research, IMRIC, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Thilo Hackert
- Department of General Surgery, University of Heidelberg, Heidelberg, Germany
| | - Oliver Strobel
- Department of General Surgery, University of Heidelberg, Heidelberg, Germany
| | - Ingrid Herr
- Section Surgical Research, Molecular OncoSurgery, University of Heidelberg, Heidelberg, Germany.,Department of General Surgery, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
33
|
Kim DH, Suh J, Surh YJ, Na HK. Regulation of the tumor suppressor PTEN by natural anticancer compounds. Ann N Y Acad Sci 2017; 1401:136-149. [PMID: 28891094 DOI: 10.1111/nyas.13422] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 05/31/2017] [Accepted: 06/05/2017] [Indexed: 12/20/2022]
Abstract
The tumor suppressor phosphatase and tensin homologue (PTEN) has phosphatase activity, with phosphatidylinositol (3,4,5)-trisphosphate (PIP3), a product of phosphatidylinositol 3-kinase (PI3K), as one of the principal substrates. PTEN is a negative regulator of the Akt pathway, which plays a fundamental role in controlling cell growth, survival, and proliferation. Loss of PTEN function has been observed in many different types of cancer. Functional inactivation of PTEN as a consequence of germ-line mutations or promoter hypermethylation predisposes individuals to malignancies. PTEN undergoes posttranslational modifications, such as oxidation, acetylation, phosphorylation, SUMOylation, and ubiquitination, which influence its catalytic activity, interactions with other proteins, and subcellular localization. Cellular redox status is crucial for posttranslational modification of PTEN and its functional consequences. Oxidative stress and inflammation are major causes of loss of PTEN function. Pharmacologic or nutritional restoration of PTEN function is considered a reliable strategy in the management of PTEN-defective cancer. In this review, we highlight natural compounds, such as curcumin, indol-3 carbinol, and omega-3 fatty acids, that have the potential to restore or potentiate PTEN expression/activity, thereby suppressing cancer cell proliferation, survival, and resistance to chemotherapeutic agents.
Collapse
Affiliation(s)
- Do-Hee Kim
- Tumor Microenvironment Global Core Research Center, College of Pharmacy, Seoul National University, Seoul, South Korea
| | - Jinyoung Suh
- Tumor Microenvironment Global Core Research Center, College of Pharmacy, Seoul National University, Seoul, South Korea
| | - Young-Joon Surh
- Tumor Microenvironment Global Core Research Center, College of Pharmacy, Seoul National University, Seoul, South Korea.,Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science, Seoul National University, Seoul, South Korea.,Cancer Research Institute, Seoul National University, Seoul, South Korea
| | - Hye-Kyung Na
- Department of Food Science and Biotechnology, College of Knowledge-Based Services Engineering, Sungshin Women's University, Seoul, South Korea
| |
Collapse
|
34
|
Lo UG, Lee CF, Lee MS, Hsieh JT. The Role and Mechanism of Epithelial-to-Mesenchymal Transition in Prostate Cancer Progression. Int J Mol Sci 2017; 18:ijms18102079. [PMID: 28973968 PMCID: PMC5666761 DOI: 10.3390/ijms18102079] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 09/21/2017] [Accepted: 09/27/2017] [Indexed: 12/12/2022] Open
Abstract
In prostate cancer (PCa), similar to many other cancers, distant organ metastasis symbolizes the beginning of the end disease, which eventually leads to cancer death. Many mechanisms have been identified in this process that can be rationalized into targeted therapy. Among them, epithelial-to-mesenchymal transition (EMT) is originally characterized as a critical step for cell trans-differentiation during embryo development and now recognized in promoting cancer cells invasiveness because of high mobility and migratory abilities of mesenchymal cells once converted from carcinoma cells. Nevertheless, the underlying pathways leading to EMT appear to be very diverse in different cancer types, which certainly represent a challenge for developing effective intervention. In this article, we have carefully reviewed the key factors involved in EMT of PCa with clinical correlation in hope to facilitate the development of new therapeutic strategy that is expected to reduce the disease mortality.
Collapse
Affiliation(s)
- U-Ging Lo
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| | - Cheng-Fan Lee
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
- Department of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei 10617, Taiwan.
| | - Ming-Shyue Lee
- Department of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei 10617, Taiwan.
| | - Jer-Tsong Hsieh
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
35
|
Mazzocchi LC, Vohwinkel CU, Mayer K, Herold S, Morty RE, Seeger W, Vadász I. TGF-β inhibits alveolar protein transport by promoting shedding, regulated intramembrane proteolysis, and transcriptional downregulation of megalin. Am J Physiol Lung Cell Mol Physiol 2017; 313:L807-L824. [PMID: 28705909 DOI: 10.1152/ajplung.00569.2016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 07/06/2017] [Accepted: 07/10/2017] [Indexed: 01/11/2023] Open
Abstract
Disruption of the alveolar-capillary barrier is a hallmark of acute respiratory distress syndrome (ARDS) that leads to the accumulation of protein-rich edema in the alveolar space, often resulting in comparable protein concentrations in alveolar edema and plasma and causing deleterious remodeling. Patients who survive ARDS have approximately three times lower protein concentrations in the alveolar edema than nonsurvivors; thus the ability to remove excess protein from the alveolar space may be critical for a positive outcome. We have recently shown that clearance of albumin from the alveolar space is mediated by megalin, a 600-kDa transmembrane endocytic receptor and member of the low-density lipoprotein receptor superfamily. In the currents study, we investigate the molecular mechanisms by which transforming growth factor-β (TGF-β), a key molecule of ARDS pathogenesis, drives downregulation of megalin expression and function. TGF-β treatment led to shedding and regulated intramembrane proteolysis of megalin at the cell surface and to a subsequent increase in intracellular megalin COOH-terminal fragment abundance resulting in transcriptional downregulation of megalin. Activity of classical protein kinase C enzymes and γ-secretase was required for the TGF-β-induced megalin downregulation. Furthermore, TGF-β-induced shedding of megalin was mediated by matrix metalloproteinases (MMPs)-2, -9, and -14. Silencing of either of these MMPs stabilized megalin at the cell surface after TGF-β treatment and restored normal albumin transport. Moreover, a direct interaction of megalin with MMP-2 and -14 was demonstrated, suggesting that these MMPs may function as novel sheddases of megalin. Further understanding of these mechanisms may lead to novel therapeutic approaches for the treatment of ARDS.
Collapse
Affiliation(s)
- Luciana C Mazzocchi
- Department of Internal Medicine, Justus Liebig University, Universities of Giessen and Marburg Lung Center, Giessen, Germany
| | - Christine U Vohwinkel
- Department of Internal Medicine, Justus Liebig University, Universities of Giessen and Marburg Lung Center, Giessen, Germany.,Department of Pediatrics, University of Colorado at Denver, Aurora, Colorado; and
| | - Konstantin Mayer
- Department of Internal Medicine, Justus Liebig University, Universities of Giessen and Marburg Lung Center, Giessen, Germany
| | - Susanne Herold
- Department of Internal Medicine, Justus Liebig University, Universities of Giessen and Marburg Lung Center, Giessen, Germany
| | - Rory E Morty
- Department of Internal Medicine, Justus Liebig University, Universities of Giessen and Marburg Lung Center, Giessen, Germany.,Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Werner Seeger
- Department of Internal Medicine, Justus Liebig University, Universities of Giessen and Marburg Lung Center, Giessen, Germany.,Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - István Vadász
- Department of Internal Medicine, Justus Liebig University, Universities of Giessen and Marburg Lung Center, Giessen, Germany;
| |
Collapse
|
36
|
Prostate cancer, PI3K, PTEN and prognosis. Clin Sci (Lond) 2017; 131:197-210. [PMID: 28057891 DOI: 10.1042/cs20160026] [Citation(s) in RCA: 125] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 11/12/2016] [Accepted: 11/21/2016] [Indexed: 12/22/2022]
Abstract
Loss of function of the PTEN tumour suppressor, resulting in dysregulated activation of the phosphoinositide 3-kinase (PI3K) signalling network, is recognized as one of the most common driving events in prostate cancer development. The observed mechanisms of PTEN loss are diverse, but both homozygous and heterozygous genomic deletions including PTEN are frequent, and often accompanied by loss of detectable protein as assessed by immunohistochemistry (IHC). The occurrence of PTEN loss is highest in aggressive metastatic disease and this has driven the development of PTEN as a prognostic biomarker, either alone or in combination with other factors, to distinguish indolent tumours from those likely to progress. Here, we discuss these factors and the consequences of PTEN loss, in the context of its role as a lipid phosphatase, as well as current efforts to use available inhibitors of specific components of the PI3K/PTEN/TOR signalling network in prostate cancer treatment.
Collapse
|
37
|
Zhu L, Zhao Q. Hypoxia-inducible factor 1α participates in hypoxia-induced epithelial-mesenchymal transition via response gene to complement 32. Exp Ther Med 2017; 14:1825-1831. [PMID: 28810656 DOI: 10.3892/etm.2017.4665] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2016] [Accepted: 04/10/2017] [Indexed: 12/11/2022] Open
Abstract
The aim of the present study was to explore the function of response gene to complement 32 (RGC-32) in hypoxia-induced epithelial-mesenchymal transition (EMT) in pancreatic cancer. Three kinds of hypoxia-inducible factor 1α (HIF-1α) small interfering (si)RNA were synthesized and the different effects on the expression of HIF-1α were detected by western blotting. In human pancreatic cancer BxPC-3 cells, HIF-1α levels were diminished using siRNA transfection or HIF-1α inhibitor pretreatment, and the expression levels of RGC-32 and EMT-associated proteins were analyzed using reverse transcription-quantitative polymerase chain reaction and western blotting. Subsequently, the protein levels of epithelial marker, E-cadherin, and mesenchymal marker, vimentin, were determined by western blotting. Results demonstrated that HIF-1α-Homo-488 siRNA and HIF-1α-Homo-1216 siRNA diminished the protein level of HIF-1α. Compared with normoxia, hypoxia induced the levels of HIF-1α, RGC-32, N-cadherin and vimentin, but suppressed the expression of E-cadherin and cytokeratins. The inhibition of HIF-1α by HIF-1α-Homo-1216 siRNA transfection or HIF-1α inhibitor repressed hypoxia-induced HIF-1α, RGC-32, N-cadherin and vimentin, but increased the expression of E-cadherin and cytokeratins. When RGC-32 was knocked down, hypoxia-induced vimentin was suppressed; however, hypoxia-suppressed N-cadherin was released. In conclusion, the present results demonstrated that hypoxia induced the expression of HIF-1α to activate the levels of RGC-32, in turn to regulate the expression EMT-associated proteins for EMT. These findings revealed the function of RGC-32 in hypoxia-induced EMT and may have identified a novel link between HIF-1α and EMT for pancreatic cancer therapy.
Collapse
Affiliation(s)
- Liang Zhu
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Qiu Zhao
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| |
Collapse
|
38
|
De Souza LM, Robertson BM, Robertson GP. Future of circulating tumor cells in the melanoma clinical and research laboratory settings. Cancer Lett 2017; 392:60-70. [PMID: 28163189 DOI: 10.1016/j.canlet.2017.01.023] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 01/12/2017] [Accepted: 01/13/2017] [Indexed: 12/24/2022]
Abstract
Circulating tumor cells (CTC) have become a field of interest for oncologists based on the premise that they constitute the underpinning for metastatic dissemination. The lethal nature of cancer is no longer attributed to solid tumor formation, but rather to the process of metastasis; shifting the focus of current studies towards the isolation and identification of metastatic progenitors, such as CTCs. CTCs originate from primary tumor masses that undergo morphologic and genetic alterations, which involve the release of mesenchymal-like cancer cells into the bloodstream, capable of invading nearby tissues for secondary tumor development. Cancerous cells contained in the primary tumor mass acquire the motile mesenchymal phenotype as a result of the Epithelial-to-Mesenchymal Transition, where substantial variations in protein expression and signaling pathways take place. CTCs that migrate from the primary tumor, intravasate into the systemic vasculature, are transported through the bloodstream, and invade tissues and organs suitable for secondary tumor development. While only a limited number of CTCs are viable in the bloodstream, their ability to elude the immune system, evade apoptosis and successfully metastasize at secondary tumor sites, makes CTCs promising candidates for unraveling the triggers that initiates the metastatic process. In this article, these subjects are explored in greater depth to elucidate the potential use of CTCs in the detection, disease staging and management of metastatic melanoma.
Collapse
Affiliation(s)
- Luisa M De Souza
- The Pennsylvania State University College of Medicine, Departments of Pharmacology, 500 University Drive, Hershey, PA 17033, USA.
| | - Bailey M Robertson
- The Pennsylvania State University College of Medicine, Departments of Pharmacology, 500 University Drive, Hershey, PA 17033, USA
| | - Gavin P Robertson
- The Pennsylvania State University College of Medicine, Departments of Pharmacology, 500 University Drive, Hershey, PA 17033, USA; Pathology, 500 University Drive, Hershey, PA 17033, USA; Dermatology, 500 University Drive, Hershey, PA 17033, USA; Surgery, 500 University Drive, Hershey, PA 17033, USA; The Melanoma and Skin Cancer Center, 500 University Drive, Hershey, PA 17033, USA; The Melanoma Therapeutics Program, 500 University Drive, Hershey, PA 17033, USA.
| |
Collapse
|
39
|
Kim W, Kim E, Lee S, Kim D, Chun J, Park KH, Youn H, Youn B. TFAP2C-mediated upregulation of TGFBR1 promotes lung tumorigenesis and epithelial-mesenchymal transition. Exp Mol Med 2016; 48:e273. [PMID: 27885255 PMCID: PMC5133372 DOI: 10.1038/emm.2016.125] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 08/10/2016] [Accepted: 08/22/2016] [Indexed: 12/13/2022] Open
Abstract
TFAP2C (transcription factor-activating enhancer-binding protein 2C) expression has been positively correlated with poor prognosis in patients with certain types of cancer, but the mechanisms underlying TFAP2C-mediated tumorigenesis in non-small-cell lung cancer (NSCLC) are still unknown. We previously performed a microarray analysis to identify TFAP2C regulation genes, and TGFBR1 (transforming growth factor-β receptor type 1) was found to be upregulated by TFAP2C. We observed that TFAP2C or TGFBR1 overexpression led to oncogenic properties, such as cell viability, proliferation and cell cycle progression. TGFBR1 upregulation induced by TFAP2C also promoted cell motility and migration, leading to malignant development. We also found that PAK1 (p21 protein (Cdc42/Rac)-activated kinase 1) signaling was involved in TFAP2C/TGFBR1-induced tumorigenesis. These results were confirmed by an in vivo xenograft model and patient tissue samples. This study shows that TFAP2C promoted tumor progression by upregulation of TGFBR1 and consequent activation of PAK1 signaling.
Collapse
Affiliation(s)
- Wanyeon Kim
- Department of Biological Sciences, Pusan National University, Busan, Republic of Korea.,Integrative Graduate Program of Ship and Offshore Plant Technology for Ocean Energy Resource, Pusan National University, Busan, Republic of Korea
| | - EunGi Kim
- Department of Integrated Biological Science, Pusan National University, Busan, Republic of Korea
| | - Sungmin Lee
- Department of Integrated Biological Science, Pusan National University, Busan, Republic of Korea
| | - Daehoon Kim
- Department of Integrated Biological Science, Pusan National University, Busan, Republic of Korea
| | - Jahyun Chun
- Department of Integrated Biological Science, Pusan National University, Busan, Republic of Korea
| | - Kang Hyun Park
- Department of Chemistry, Pusan National University, Busan, Republic of Korea
| | - HyeSook Youn
- Department of Integrative Bioscience and Biotechnology, Sejong University, Seoul, Republic of Korea
| | - BuHyun Youn
- Department of Biological Sciences, Pusan National University, Busan, Republic of Korea.,Department of Integrated Biological Science, Pusan National University, Busan, Republic of Korea
| |
Collapse
|
40
|
Flodby P, Liebler JM, Sunohara M, Castillo DR, McConnell AM, Krishnaveni MS, Banfalvi A, Li M, Stripp B, Zhou B, Crandall ED, Minoo P, Borok Z. Region-specific role for Pten in maintenance of epithelial phenotype and integrity. Am J Physiol Lung Cell Mol Physiol 2016; 312:L131-L142. [PMID: 27864284 PMCID: PMC5283927 DOI: 10.1152/ajplung.00005.2015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Revised: 11/14/2016] [Accepted: 11/14/2016] [Indexed: 01/12/2023] Open
Abstract
Previous studies have demonstrated resistance to naphthalene-induced injury in proximal airways of mice with lung epithelial-specific deletion of the tumor-suppressor gene Pten, attributed to increased proliferation of airway progenitors. We tested effects of Pten loss following bleomycin injury, a model typically used to study distal lung epithelial injury, in conditional PtenSFTPC-cre knockout mice. Pten-deficient airway epithelium exhibited marked hyperplasia, particularly in small bronchioles and at bronchoalveolar duct junctions, with reduced E-cadherin and β-catenin expression between cells toward the luminal aspect of the hyperplastic epithelium. Bronchiolar epithelial and alveolar epithelial type II (AT2) cells in PtenSFTPC-cre mice showed decreased expression of epithelial markers and increased expression of mesenchymal markers, suggesting at least partial epithelial-mesenchymal transition at baseline. Surprisingly, and in contrast to previous studies, mutant mice were exquisitely sensitive to bleomycin, manifesting rapid weight loss, respiratory distress, increased early mortality (by day 5), and reduced dynamic lung compliance. This was accompanied by sloughing of the hyperplastic airway epithelium with occlusion of small bronchioles by cellular debris, without evidence of increased parenchymal lung injury. Increased airway epithelial cell apoptosis due to loss of antioxidant defenses, reflected by decreased expression of superoxide dismutase 3, in combination with deficient intercellular adhesion, likely predisposed to airway sloughing in knockout mice. These findings demonstrate an important role for Pten in maintenance of airway epithelial phenotype integrity and indicate that responses to Pten deletion in respiratory epithelium following acute lung injury are highly context-dependent and region-specific.
Collapse
Affiliation(s)
- Per Flodby
- Will Rogers Institute Pulmonary Research Center, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Janice M Liebler
- Will Rogers Institute Pulmonary Research Center, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Mitsuhiro Sunohara
- Will Rogers Institute Pulmonary Research Center, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Dan R Castillo
- Will Rogers Institute Pulmonary Research Center, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Alicia M McConnell
- Departments of Medicine and Biomedical Sciences, Lung and Regenerative Medicine Institutes, Cedars-Sinai Medical Center, Los Angeles, California
| | - Manda S Krishnaveni
- Will Rogers Institute Pulmonary Research Center, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Agnes Banfalvi
- Will Rogers Institute Pulmonary Research Center, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Min Li
- Division of Neonatalogy, Department of Pediatrics, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Barry Stripp
- Departments of Medicine and Biomedical Sciences, Lung and Regenerative Medicine Institutes, Cedars-Sinai Medical Center, Los Angeles, California
| | - Beiyun Zhou
- Will Rogers Institute Pulmonary Research Center, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Edward D Crandall
- Will Rogers Institute Pulmonary Research Center, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California.,Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, California.,Mork Family Department of Chemical Engineering and Materials Science, Viterbi School of Engineering, University of Southern California, Los Angeles, California; and
| | - Parviz Minoo
- Division of Neonatalogy, Department of Pediatrics, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Zea Borok
- Will Rogers Institute Pulmonary Research Center, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California; .,Department of Biochemistry and Molecular Biology, Keck School of Medicine, University of Southern California, Los Angeles, California.,Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California
| |
Collapse
|
41
|
Birtolo C, Pham H, Morvaridi S, Chheda C, Go VLW, Ptasznik A, Edderkaoui M, Weisman MH, Noss E, Brenner MB, Larson B, Guindi M, Wang Q, Pandol SJ. Cadherin-11 Is a Cell Surface Marker Up-Regulated in Activated Pancreatic Stellate Cells and Is Involved in Pancreatic Cancer Cell Migration. THE AMERICAN JOURNAL OF PATHOLOGY 2016; 187:146-155. [PMID: 27855278 DOI: 10.1016/j.ajpath.2016.09.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 09/05/2016] [Accepted: 09/12/2016] [Indexed: 12/31/2022]
Abstract
Chronic pancreatitis is a prominent risk factor for the development of pancreatic ductal adenocarcinoma. In both conditions, the activation of myofibroblast-like pancreatic stellate cells (PSCs) plays a predominant role in the formation of desmoplastic reaction through the synthesis of connective tissue and extracellular matrix, inducing local pancreatic fibrosis and an inflammatory response. Yet the signaling events involved in chronic pancreatitis and pancreatic cancer progression and metastasis remain poorly defined. Cadherin-11 (Cad-11, also known as OB cadherin or CDH11) is a cell-to-cell adhesion molecule implicated in many biological functions, including tissue morphogenesis and architecture, extracellular matrix-mediated tissue remodeling, cytoskeletal organization, epithelial-to-mesenchymal transition, and cellular migration. In this study, we show that, in human chronic pancreatitis and pancreatic cancer tissues, Cad-11 expression was significantly increased in PSCs and pancreatic cancer cells. In particular, an increased expression of Cad-11 can be detected on the plasma membrane of activated PSCs isolated from chronic pancreatitis tissues and in pancreatic cancer cells metastasized to the liver. Moreover, knockdown of Cad-11 in cancer cells reduced pancreatic cancer cell migration. Taken together, our data underline the potential role of Cad-11 in PSC activation and pancreatic cancer metastasis.
Collapse
Affiliation(s)
- Chiara Birtolo
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California; Department of Internal Medicine, S. Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy
| | - Hung Pham
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California
| | - Susan Morvaridi
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California
| | - Chintan Chheda
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California
| | - Vay Liang W Go
- Department of Medicine, David Geffen School of Medicine at the University of California, Los Angeles, Los Angeles, California
| | - Andrzej Ptasznik
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California
| | - Mouad Edderkaoui
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California
| | - Michael H Weisman
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California
| | - Erika Noss
- Division of Rheumatology, Immunology, and Allergy, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Michael B Brenner
- Division of Rheumatology, Immunology, and Allergy, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Brent Larson
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, California
| | - Maha Guindi
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, California
| | - Qiang Wang
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California.
| | - Stephen J Pandol
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California; Department of Medicine, David Geffen School of Medicine at the University of California, Los Angeles, Los Angeles, California; Department of Veterans Affairs, VA Greater Los Angeles Health Care System, Los Angeles, California.
| |
Collapse
|
42
|
Lamora A, Talbot J, Mullard M, Brounais-Le Royer B, Redini F, Verrecchia F. TGF-β Signaling in Bone Remodeling and Osteosarcoma Progression. J Clin Med 2016; 5:E96. [PMID: 27827889 PMCID: PMC5126793 DOI: 10.3390/jcm5110096] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 10/27/2016] [Accepted: 10/28/2016] [Indexed: 12/17/2022] Open
Abstract
Osteosarcomas are the most prevalent malignant primary bone tumors in children. Despite intensive efforts to improve both chemotherapeutics and surgical management, 40% of all osteosarcoma patients succumb to the disease. Specifically, the clinical outcome for metastatic osteosarcoma remains poor; less than 30% of patients who present metastases will survive five years after initial diagnosis. Treating metastatic osteosarcoma thus remains a challenge. One of the main characteristics of osteosarcomas is their ability to deregulate bone remodelling. The invasion of bone tissue by tumor cells indeed affects the balance between bone resorption and bone formation. This deregulation induces the release of cytokines or growth factors initially trapped in the bone matrix, such as transforming growth factor-β (TGF-β), which in turn promote tumor progression. Over the past years, there has been considerable interest in the TGF-β pathway within the cancer research community. This review discusses the involvement of the TGF-β signalling pathway in osteosarcoma development and in their metastatic progression.
Collapse
Affiliation(s)
- Audrey Lamora
- INSERM, UMR 957, Equipe Labellisée Ligue contre le Cancer 2012, Faculté de Médecine, 1 rue Gaston Veil, 44035 Nantes cedex, France.
- Laboratoire de Physiopathologie de la Résorption Osseuse et Thérapie des Tumeurs Osseuses Primitives, Université de Nantes, 44000 Nantes, France.
- INSERM Liliane Bettencourt School, 75014 Paris, France.
| | - Julie Talbot
- INSERM, UMR 957, Equipe Labellisée Ligue contre le Cancer 2012, Faculté de Médecine, 1 rue Gaston Veil, 44035 Nantes cedex, France.
- Laboratoire de Physiopathologie de la Résorption Osseuse et Thérapie des Tumeurs Osseuses Primitives, Université de Nantes, 44000 Nantes, France.
| | - Mathilde Mullard
- INSERM, UMR 957, Equipe Labellisée Ligue contre le Cancer 2012, Faculté de Médecine, 1 rue Gaston Veil, 44035 Nantes cedex, France.
- Laboratoire de Physiopathologie de la Résorption Osseuse et Thérapie des Tumeurs Osseuses Primitives, Université de Nantes, 44000 Nantes, France.
| | - Benedicte Brounais-Le Royer
- INSERM, UMR 957, Equipe Labellisée Ligue contre le Cancer 2012, Faculté de Médecine, 1 rue Gaston Veil, 44035 Nantes cedex, France.
- Laboratoire de Physiopathologie de la Résorption Osseuse et Thérapie des Tumeurs Osseuses Primitives, Université de Nantes, 44000 Nantes, France.
| | - Françoise Redini
- INSERM, UMR 957, Equipe Labellisée Ligue contre le Cancer 2012, Faculté de Médecine, 1 rue Gaston Veil, 44035 Nantes cedex, France.
- Laboratoire de Physiopathologie de la Résorption Osseuse et Thérapie des Tumeurs Osseuses Primitives, Université de Nantes, 44000 Nantes, France.
| | - Franck Verrecchia
- INSERM, UMR 957, Equipe Labellisée Ligue contre le Cancer 2012, Faculté de Médecine, 1 rue Gaston Veil, 44035 Nantes cedex, France.
- Laboratoire de Physiopathologie de la Résorption Osseuse et Thérapie des Tumeurs Osseuses Primitives, Université de Nantes, 44000 Nantes, France.
| |
Collapse
|
43
|
Przybyla L, Muncie JM, Weaver VM. Mechanical Control of Epithelial-to-Mesenchymal Transitions in Development and Cancer. Annu Rev Cell Dev Biol 2016; 32:527-554. [DOI: 10.1146/annurev-cellbio-111315-125150] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Laralynne Przybyla
- Center for Bioengineering and Tissue Regeneration, Department of Surgery, University of California, San Francisco, California 94143;
| | - Jonathon M. Muncie
- Center for Bioengineering and Tissue Regeneration, Department of Surgery, University of California, San Francisco, California 94143;
- Joint Graduate Group in Bioengineering (University of California, San Francisco, and University of California, Berkeley), San Francisco, California 94143
| | - Valerie M. Weaver
- Center for Bioengineering and Tissue Regeneration, Department of Surgery, University of California, San Francisco, California 94143;
- Departments of Anatomy, Bioengineering, and Therapeutic Sciences, Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, The Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, California 94143
| |
Collapse
|
44
|
Odenthal J, Takes R, Friedl P. Plasticity of tumor cell invasion: governance by growth factors and cytokines. Carcinogenesis 2016; 37:1117-1128. [PMID: 27664164 DOI: 10.1093/carcin/bgw098] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 08/15/2016] [Accepted: 09/22/2016] [Indexed: 01/01/2023] Open
Abstract
Tumor cell migration, the basis for metastatic dissemination, is an adaptive process which depends upon coordinated cell interaction with the environment, influencing cell-matrix and cell-cell adhesion, cytoskeletal dynamics and extracellular matrix remodeling. Growth factors and cytokines, released within the reactive tumor microenvironment and their intracellular effector signals strongly impact mechanocoupling functions in tumor cells and thereby control the mode and extent of tumor invasion, including collective and single-cell migration and their interconversions. Besides their role in controlling tumor cell growth and survival, cytokines and growth factors thus provide complex orchestration of the metastatic cascade and tumor cell adaptation to environmental challenge. We here review the mechanisms by which growth factors and cytokines control the reciprocal interactions between tumor cells and their microenvironment, and the consequences for the efficacy and plasticity of invasion programs and metastasis.
Collapse
Affiliation(s)
- Julia Odenthal
- Department of Otorhinolaryngology and Head and Neck Surgery, Radboud University Medical Center, 6525 EX Nijmegen, The Netherlands.,Department of Cell Biology, Radboud Institute for Molecular Life Sciences, 6525 GA Nijmegen, The Netherlands
| | - Robert Takes
- Department of Otorhinolaryngology and Head and Neck Surgery, Radboud University Medical Center, 6525 EX Nijmegen, The Netherlands
| | - Peter Friedl
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences, 6525 GA Nijmegen, The Netherlands, .,Department of Genitourinary Medical Oncology - Research, Houston, TX 77030, USA and.,Cancer Genomics Center, 3584 CG Utrecht, The Netherlands
| |
Collapse
|
45
|
Pulido R. PTEN: a yin-yang master regulator protein in health and disease. Methods 2016; 77-78:3-10. [PMID: 25843297 DOI: 10.1016/j.ymeth.2015.02.009] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Accepted: 02/19/2015] [Indexed: 01/16/2023] Open
Abstract
The PTEN gene is a tumor suppressor gene frequently mutated in human tumors, which encodes a ubiquitous protein whose major activity is to act as a lipid phosphatase that counteracts the action of the oncogenic PI3K. In addition, PTEN displays protein phosphatase- and catalytically-independent activities. The physiologic control of PTEN function, and its inactivation in cancer and other human diseases, including some neurodevelopmental disorders, is upon the action of multiple regulatory mechanisms. This provides a wide spectrum of potential therapeutic approaches to reconstitute PTEN activity. By contrast, inhibition of PTEN function may be beneficial in a different group of human diseases, such as type 2 diabetes or neuroregeneration-related pathologies. This makes PTEN a functionally dual yin-yang protein with high potential in the clinics. Here, a brief overview on PTEN and its relation with human disease is presented.
Collapse
Affiliation(s)
- Rafael Pulido
- BioCruces Health Research Institute, Barakaldo, Spain; IKERBASQUE, Basque Foundation for Science, Bilbao, Spain.
| |
Collapse
|
46
|
TGF-β signaling links E-cadherin loss to suppression of nucleotide excision repair. Oncogene 2015; 35:3293-302. [PMID: 26477308 PMCID: PMC4837109 DOI: 10.1038/onc.2015.390] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Revised: 08/05/2015] [Accepted: 08/26/2015] [Indexed: 01/04/2023]
Abstract
E-cadherin is a cell adhesion molecule best known for its function in suppressing tumor progression and metastasis. Here we show that E-cadherin promotes nucleotide excision repair through positively regulating the expression of xeroderma pigmentosum complementation group C (XPC) and DNA damage-binding protein 1 (DDB1). Loss of E-cadherin activates the E2F4 and p130/107 transcription repressor complexes to suppress the transcription of both XPC and DDB1 through activating the TGF-β pathway. Adding XPC or DDB1, or inhibiting the TGF-β pathway, increases the repair of UV-induced DNA damage in E-cadherin-inhibited cells. In mouse skin and skin tumors UVB radiation down-regulates E-cadherin. In sun-associated premalignant and malignant skin neoplasia, E-cadherin is down-regulated in association with reduced XPC and DDB1 levels. These findings demonstrate a crucial role of E-cadherin in efficient DNA repair of UV-induced DNA damage, identify a new link between epithelial adhesion and DNA repair, and suggest a mechanistic link of early E-cadherin loss in tumor initiation.
Collapse
|
47
|
He SY, Jiang RF, Jiang J, Xiang YS, Wang L. Investigation of methylation and protein expression of the Runx3 gene in colon carcinogenesis. Biomed Rep 2015; 3:687-690. [PMID: 26405546 DOI: 10.3892/br.2015.479] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 05/28/2015] [Indexed: 01/15/2023] Open
Abstract
In the present study, the methylation and protein expression of the runt-related transcription factor 3 (Runx3) gene was detected in sporadic colorectal cancer, colonic adenoma and normal colon tissue to evaluate their clinical significance in colorectal carcinogenesis. A total of 34 colonic cancer specimens, 34 colonic adenoma specimens and 34 normal colonic tissue specimens were used in the study. The CpG island methylation status of the Runx3 gene was detected by methylation-specific polymerase chain reaction and the protein expression of Runx3 was detected by immunohistochemistry. The results showed that the rates of methylation of the Runx3 gene in colonic cancer and colonic adenomas were significantly higher than that in the normal colonic tissue (23.5, 20.6 vs. 0.0%; P<0.05). There was no significant difference in the percentage of methylation of the Runx3 gene between colonic adenoma and colonic cancer (P>0.05). The positive percentage of Runx3 protein expression was significantly lower in colonic cancer compared with colonic adenoma and normal tissue (17.7 vs. 61.8, 76.5%; P<0.05). Methylation of the promoter CpG islands of the Runx3 gene is an important genetic event of colon carcinogenesis and may be associated with an altered protein level of Runx3.
Collapse
Affiliation(s)
- Shao-Ya He
- Department of Gastroenterology, Anyue People's Hospital, Ziyang, Sichuan 642350, P.R. China
| | - Ren-Fa Jiang
- Department of Gastroenterology, Anyue People's Hospital, Ziyang, Sichuan 642350, P.R. China
| | - Jie Jiang
- Department of Respiration, Chongqing Sixth People's Hospital, Chongqing 404100, P.R. China
| | - Yang-Sheng Xiang
- Department of Gastroenterology, Anyue People's Hospital, Ziyang, Sichuan 642350, P.R. China
| | - Ling Wang
- Department of Gastroenterology, Anyue People's Hospital, Ziyang, Sichuan 642350, P.R. China
| |
Collapse
|
48
|
Zanetti A, Affatato R, Centritto F, Fratelli M, Kurosaki M, Barzago MM, Bolis M, Terao M, Garattini E, Paroni G. All-trans-retinoic Acid Modulates the Plasticity and Inhibits the Motility of Breast Cancer Cells: ROLE OF NOTCH1 AND TRANSFORMING GROWTH FACTOR (TGFβ). J Biol Chem 2015; 290:17690-17709. [PMID: 26018078 DOI: 10.1074/jbc.m115.638510] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Indexed: 01/06/2023] Open
Abstract
All-trans-retinoic acid (ATRA) is a natural compound proposed for the treatment/chemoprevention of breast cancer. Increasing evidence indicates that aberrant regulation of epithelial-to-mesenchymal transition (EMT) is a determinant of the cancer cell invasive and metastatic behavior. The effects of ATRA on EMT are largely unknown. In HER2-positive SKBR3 and UACC812 cells, showing co-amplification of the ERBB2 and RARA genes, ATRA activates a RARα-dependent epithelial differentiation program. In SKBR3 cells, this causes the formation/reorganization of adherens and tight junctions. Epithelial differentiation and augmented cell-cell contacts underlie the anti-migratory action exerted by the retinoid in cells exposed to the EMT-inducing factors EGF and heregulin-β1. Down-regulation of NOTCH1, an emerging EMT modulator, is involved in the inhibition of motility by ATRA. Indeed, the retinoid blocks NOTCH1 up-regulation by EGF and/or heregulin-β1. Pharmacological inhibition of γ-secretase and NOTCH1 processing also abrogates SKBR3 cell migration. Stimulation of TGFβ contributes to the anti-migratory effect of ATRA. The retinoid switches TGFβ from an EMT-inducing and pro-migratory determinant to an anti-migratory mediator. Inhibition of the NOTCH1 pathway not only plays a role in the anti-migratory action of ATRA; it is relevant also for the anti-proliferative activity of the retinoid in HCC1599 breast cancer cells, which are addicted to NOTCH1 for growth/viability. This effect is enhanced by the combination of ATRA and the γ-secretase inhibitor N-(N-(3,5-difluorophenacetyl)-l-alanyl)-S-phenylglycine t-butyl ester, supporting the concept that the two compounds act at the transcriptional and post-translational levels along the NOTCH1 pathway.
Collapse
Affiliation(s)
- Adriana Zanetti
- Laboratory of Molecular Biology, Istituto di Ricerche Farmacologiche Mario Negri, Via La Masa 19, 20156 Milano, Italy
| | - Roberta Affatato
- Laboratory of Molecular Biology, Istituto di Ricerche Farmacologiche Mario Negri, Via La Masa 19, 20156 Milano, Italy
| | - Floriana Centritto
- Laboratory of Molecular Biology, Istituto di Ricerche Farmacologiche Mario Negri, Via La Masa 19, 20156 Milano, Italy
| | - Maddalena Fratelli
- Laboratory of Molecular Biology, Istituto di Ricerche Farmacologiche Mario Negri, Via La Masa 19, 20156 Milano, Italy
| | - Mami Kurosaki
- Laboratory of Molecular Biology, Istituto di Ricerche Farmacologiche Mario Negri, Via La Masa 19, 20156 Milano, Italy
| | - Maria Monica Barzago
- Laboratory of Molecular Biology, Istituto di Ricerche Farmacologiche Mario Negri, Via La Masa 19, 20156 Milano, Italy
| | - Marco Bolis
- Laboratory of Molecular Biology, Istituto di Ricerche Farmacologiche Mario Negri, Via La Masa 19, 20156 Milano, Italy
| | - Mineko Terao
- Laboratory of Molecular Biology, Istituto di Ricerche Farmacologiche Mario Negri, Via La Masa 19, 20156 Milano, Italy
| | - Enrico Garattini
- Laboratory of Molecular Biology, Istituto di Ricerche Farmacologiche Mario Negri, Via La Masa 19, 20156 Milano, Italy
| | - Gabriela Paroni
- Laboratory of Molecular Biology, Istituto di Ricerche Farmacologiche Mario Negri, Via La Masa 19, 20156 Milano, Italy.
| |
Collapse
|
49
|
Abstract
OBJECTIVE The purpose of this study was to evaluate the prognostic relevance of SMAD4 expression in pancreatic cancer. METHODS We analyzed the correlations between SMAD4 expression and clinicopathological parameters and outcome in 174 patients with pancreatic cancer. Specimens were also classified into subtypes reflecting epithelial-to-mesenchymal transition, based on E-cadherin and vimentin. RESULTS We found that 59.8% (104/174) of patients were SMAD4 and 40.2% (70/174) were SMAD4. Disease-specific survival in patients with SMAD4 was significantly better than that in SMAD4. SMAD4 status was significantly correlated with portal vein invasion, lymph vessel invasion, and perineural invasion and was an independent prognostic factor. SMAD4 was significantly associated with mesenchymal phenotype. The loss of SMAD4 expression was found in 49.4% of patients with no vascular invasion, 61.9% with portal vein invasion, 76.5% with common hepatic artery invasion, and 80.8% with superior mesenteric artery invasion. In addition, the specimens from 59.0% of patients with local recurrence, 66.7% of those with both local and distant recurrence, and 73.7% of those with distant recurrence were SMAD4. CONCLUSIONS The loss of SMAD4 expression is an independent prognostic factor and seems to be associated with tumor progression, pattern of failure, and epithelial-to-mesenchymal transition status. Preoperative stratification based on SMAD4 could lead to appropriate treatment strategy.
Collapse
|
50
|
Sumagin R, Parkos CA. Epithelial adhesion molecules and the regulation of intestinal homeostasis during neutrophil transepithelial migration. Tissue Barriers 2015; 3:e969100. [PMID: 25838976 DOI: 10.4161/21688362.2014.969100] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Accepted: 08/14/2014] [Indexed: 12/19/2022] Open
Abstract
Epithelial adhesion molecules play essential roles in regulating cellular function and maintaining mucosal tissue homeostasis. Some form epithelial junctional complexes to provide structural support for epithelial monolayers and act as a selectively permeable barrier separating luminal contents from the surrounding tissue. Others serve as docking structures for invading viruses and bacteria, while also regulating the immune response. They can either obstruct or serve as footholds for the immune cells recruited to mucosal surfaces. Currently, it is well appreciated that adhesion molecules collectively serve as environmental cue sensors and trigger signaling events to regulate epithelial function through their association with the cell cytoskeleton and various intracellular adapter proteins. Immune cells, particularly neutrophils (PMN) during transepithelial migration (TEM), can modulate adhesion molecule expression, conformation, and distribution, significantly impacting epithelial function and tissue homeostasis. This review discusses the roles of key intestinal epithelial adhesion molecules in regulating PMN trafficking and outlines the potential consequences on epithelial function.
Collapse
Key Words
- AJs, adherens junctions
- CAR, coxsackie and adenovirus receptor
- CLMP, CAR-like protein
- CTLs, cytotoxic T lymphocytes
- CTX, thymocyte Xenopus
- DMs, Desmosomes
- Dsc-2, desmocollin-2
- Dsg-2, desmoglein-2
- E-cadherin, epithelial cadherin
- EGFR, Epithelial growth factor receptor
- EMT, epithelial-mesenchymal transition
- EpCAM, epithelial cell adhesion molecule
- IBD, inflammatory bowel diseases
- ICAM-1, intercellular adhesion molecule-1
- IECs, intestinal epithelial cells
- JAM, junctional adhesion molecules
- LAD, leukocyte adhesion deficiency
- LTB-4, lipid leukotriene B4
- MIP1 α, macrophage inflammatory protein 1 alpha
- MLCK, myosin light chain kinase
- MMPs, matrix metalloproteases
- NF-κB, nuclear factor kappa B
- NO, nitric oxide
- PARS, protease-activated receptors
- PI3K, phosphatidylinositol 3-kinase
- PMN, polymorphonuclear cells
- SGD, specific granule deficiency
- SIRPa, signal regulatory protein alpha
- TEM, transepithelial migration
- TGF-β, transforming growth factor beta
- TIAM1, metastasis-inducing protein 1
- TJs, tight junctions
- TSP-1, thrombospondin-1
- adhesion molecules
- barrier
- cell migration
- epithelial cells
- neutrophils
- sLea, sialyl Lewis A
Collapse
Affiliation(s)
- Ronen Sumagin
- Department of Pathology and Laboratory Medicine; Epithelial Pathobiology and Mucosal Inflammation Unit; Emory University ; Atlanta, GA USA
| | - Charles A Parkos
- Department of Pathology and Laboratory Medicine; Epithelial Pathobiology and Mucosal Inflammation Unit; Emory University ; Atlanta, GA USA
| |
Collapse
|