1
|
Outer Hair Cell Function is Normal in βV Spectrin Knockout Mice. Hear Res 2022; 423:108564. [DOI: 10.1016/j.heares.2022.108564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 05/31/2022] [Accepted: 06/15/2022] [Indexed: 11/17/2022]
|
2
|
Sun Y, Zhang Y, Zhang D, Wang G, Song L, Liu Z. In vivo CRISPR-Cas9-mediated DNA chop identifies a cochlear outer hair cell-specific enhancer. FASEB J 2022; 36:e22233. [PMID: 35225354 DOI: 10.1096/fj.202100421rr] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 02/06/2022] [Accepted: 02/14/2022] [Indexed: 01/18/2023]
Abstract
Cochlear outer hair cells (OHCs) are essential for hearing. A short, OHC-specific enhancer is necessary but not yet available for gene therapeutic applications in OHC damage. Such damage is a major cause of deafness. Prestin is a motor protein exclusively expressed in OHCs. We hypothesized that the cis-regulatory DNA fragment deletion of Slc26a5 would affect its expression. We tested this hypothesis by conducting CRISPR/Cas9-mediated large DNA fragment deletion of mouse Slc26a5 intron regions. First, starting from a ~13 kbp fragment, step-by-step, we narrowed down the sequence to a 1.4 kbp segment. By deleting either a 13 kbp or 1.4 kbp fragment, we observed delayed Prestin expression. Second, we showed that 1.4 kbp was an OHC-specific enhancer because enhanced green fluorescent protein (EGFP) was highly and specifically expressed in OHCs in a transgenic mouse where EGFP was driven by the 1.4 kbp segment. More importantly, specific EGFP was also driven by its homologous 398 bp fragment in human Slc26a5. This suggests that the enhancer is likely to be evolutionarily conserved across different species.
Collapse
Affiliation(s)
- Yuwei Sun
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yu Zhang
- Department of Otolaryngology-Head and Neck Surgery, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Di Zhang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Guangqin Wang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Lei Song
- Department of Otolaryngology-Head and Neck Surgery, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhiyong Liu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China.,Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai, China
| |
Collapse
|
3
|
Progress in understanding the structural mechanism underlying prestin's electromotile activity. Hear Res 2021; 423:108423. [PMID: 34987017 DOI: 10.1016/j.heares.2021.108423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 11/17/2021] [Accepted: 12/22/2021] [Indexed: 11/21/2022]
Abstract
Prestin (SLC26A5), a member of the SLC26 transporter family, is the molecular actuator that drives OHC electromotility (eM). A wealth of biophysical data indicates that eM is mediated by an area motor mechanism, in which prestin molecules act as elementary actuators by changing their area in the membrane in response to changes in membrane potential. The area changes of a large and densely packed population of prestin molecules sum up, resulting in macroscopic cellular movement. At the single protein level, this model implies major voltage-driven conformational rearrangements. However, the nature of these structural dynamics remained unknown. A main obstacle in elucidating the eM mechanism has been the lack of structural information about SLC26 transporters. The recent emergence of several high-resolution cryo-EM structures of prestin as well as other SLC26 transporter family members now provides a reliable picture of prestin's molecular architecture. Thus, SLC26 transporters including prestin generally are dimers, and each protomer is folded according to a 7+7 transmembrane domain inverted repeat (7TMIR) architecture. Here, we review these structural findings and discuss insights into a potential molecular mechanism. Most important, distinct conformations were observed when purifying and imaging prestin bound to either its physiological ligand, chloride, or to competitively inhibitory anions, sulfate or salicylate. Despite differences in detail, these structural snapshots indicate that the conformational landscape of prestin includes rearrangements between the two major domains of prestin's transmembrane region (TMD), core and scaffold ('gate') domains. Notably, distinct conformations differ in the area the TMD occupies in the membrane and in their impact on the immediate lipid environment. Both effects can contribute to generate membrane deformation and thus may underly electromotility. Further functional studies will be necessary to determine whether these or similar structural rearrangements are driven by membrane potential to mediate piezoelectric activity. This article is part of the Special Issue Outer hair cell Edited by Joseph Santos-Sacchi and Kumar Navaratnam.
Collapse
|
4
|
Raphael RM. Outer Hair Cell Electromechanics as a Problem in Soft Matter Physics: Prestin, the Membrane and the Cytoskeleton. Hear Res 2021; 423:108426. [DOI: 10.1016/j.heares.2021.108426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 12/17/2021] [Accepted: 12/23/2021] [Indexed: 11/28/2022]
|
5
|
Essential Role of Sptan1 in Cochlear Hair Cell Morphology and Function Via Focal Adhesion Signaling. Mol Neurobiol 2021; 59:386-404. [PMID: 34708331 PMCID: PMC8786805 DOI: 10.1007/s12035-021-02551-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 08/31/2021] [Indexed: 12/05/2022]
Abstract
Hearing loss is the most common human sensory deficit. Hearing relies on stereocilia, inserted into the cuticular plate of hair cells (HCs), where they play an important role in the perception of sound and its transmission. Although numerous genes have been associated with hearing loss, the function of many hair cell genes has yet to be elucidated. Herein, we focused on nonerythroid spectrin αII (SPTAN1), abundant in the cuticular plate, surrounding the rootlets of stereocilia and along the plasma membrane. Interestingly, mice with HC-specific Sptan1 knockout exhibited rapid deafness, abnormal formation of stereocilia and cuticular plates, and loss of HCs from middle and apical turns of the cochlea during early postnatal stages. Additionally, Sptan1 deficiency led to the decreased spreading of House Ear Institute-Organ of Corti 1 cells, and induced abnormal formation of focal adhesions and integrin signaling in mouse HCs. Altogether, our findings highlight SPTAN1 as a critical molecule for HC stereocilia morphology and auditory function via regulation of focal adhesion signaling.
Collapse
|
6
|
Farrell B, Skidmore BL, Rajasekharan V, Brownell WE. A novel theoretical framework reveals more than one voltage-sensing pathway in the lateral membrane of outer hair cells. J Gen Physiol 2021; 152:151746. [PMID: 32384538 PMCID: PMC7335013 DOI: 10.1085/jgp.201912447] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 03/18/2020] [Indexed: 11/20/2022] Open
Abstract
Outer hair cell (OHC) electromotility amplifies acoustic vibrations throughout the frequency range of hearing. Electromotility requires that the lateral membrane protein prestin undergo a conformational change upon changes in the membrane potential to produce an associated displacement charge. The magnitude of the charge displaced and the mid-reaction potential (when one half of the charge is displaced) reflects whether the cells will produce sufficient gain at the resting membrane potential to boost sound in vivo. Voltage clamp measurements performed under near-identical conditions ex vivo show the charge density and mid-reaction potential are not always the same, confounding interpretation of the results. We compare the displacement charge measurements in OHCs from rodents with a theory shown to exhibit good agreement with in silico simulations of voltage-sensing reactions in membranes. This model equates the charge density to the potential difference between two pseudo-equilibrium states of the sensors when they are in a stable conformation and not contributing to the displacement current. The model predicts this potential difference to be one half of its value midway into the reaction, when one equilibrium conformation transforms to the other pseudo-state. In agreement with the model, we find the measured mid-reaction potential to increase as the charge density decreases to exhibit a negative slope of ∼1/2. This relationship suggests that the prestin sensors exhibit more than one stable hyperpolarized state and that voltage sensing occurs by more than one pathway. We determine the electric parameters for prestin sensors and use the analytical expressions of the theory to estimate the energy barriers for the two voltage-dependent pathways. This analysis explains the experimental results, supports the theoretical approach, and suggests that voltage sensing occurs by more than one pathway to enable amplification throughout the frequency range of hearing.
Collapse
Affiliation(s)
- Brenda Farrell
- Bobby R. Alford Department of Otolaryngology and Head & Neck Surgery, Baylor College of Medicine, Houston, TX
| | - Benjamin L Skidmore
- Bobby R. Alford Department of Otolaryngology and Head & Neck Surgery, Baylor College of Medicine, Houston, TX
| | - Vivek Rajasekharan
- Bobby R. Alford Department of Otolaryngology and Head & Neck Surgery, Baylor College of Medicine, Houston, TX
| | - William E Brownell
- Bobby R. Alford Department of Otolaryngology and Head & Neck Surgery, Baylor College of Medicine, Houston, TX
| |
Collapse
|
7
|
Fujitani M, Otani Y, Miyajima H. Pathophysiological Roles of Abnormal Axon Initial Segments in Neurodevelopmental Disorders. Cells 2021; 10:2110. [PMID: 34440880 PMCID: PMC8392614 DOI: 10.3390/cells10082110] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/13/2021] [Accepted: 08/15/2021] [Indexed: 11/17/2022] Open
Abstract
The 20-60 μm axon initial segment (AIS) is proximally located at the interface between the axon and cell body. AIS has characteristic molecular and structural properties regulated by the crucial protein, ankyrin-G. The AIS contains a high density of Na+ channels relative to the cell body, which allows low thresholds for the initiation of action potential (AP). Molecular and physiological studies have shown that the AIS is also a key domain for the control of neuronal excitability by homeostatic mechanisms. The AIS has high plasticity in normal developmental processes and pathological activities, such as injury, neurodegeneration, and neurodevelopmental disorders (NDDs). In the first half of this review, we provide an overview of the molecular, structural, and ion-channel characteristics of AIS, AIS regulation through axo-axonic synapses, and axo-glial interactions. In the second half, to understand the relationship between NDDs and AIS, we discuss the activity-dependent plasticity of AIS, the human mutation of AIS regulatory genes, and the pathophysiological role of an abnormal AIS in NDD model animals and patients. We propose that the AIS may provide a potentially valuable structural biomarker in response to abnormal network activity in vivo as well as a new treatment concept at the neural circuit level.
Collapse
Affiliation(s)
- Masashi Fujitani
- Department of Anatomy and Neuroscience, Faculty of Medicine, Shimane University, 89-1 Enya-cho, Izumo-shi 693-8501, Shimane, Japan; (Y.O.); (H.M.)
| | | | | |
Collapse
|
8
|
Ding D, Jiang H, Manohar S, Liu X, Li L, Chen GD, Salvi R. Spatiotemporal Developmental Upregulation of Prestin Correlates With the Severity and Location of Cyclodextrin-Induced Outer Hair Cell Loss and Hearing Loss. Front Cell Dev Biol 2021; 9:643709. [PMID: 34109172 PMCID: PMC8181405 DOI: 10.3389/fcell.2021.643709] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 03/08/2021] [Indexed: 11/24/2022] Open
Abstract
2-Hyroxypropyl-beta-cyclodextrin (HPβCD) is being used to treat Niemann-Pick C1, a fatal neurodegenerative disease caused by abnormal cholesterol metabolism. HPβCD slows disease progression, but unfortunately causes severe, rapid onset hearing loss by destroying the outer hair cells (OHC). HPβCD-induced damage is believed to be related to the expression of prestin in OHCs. Because prestin is postnatally upregulated from the cochlear base toward the apex, we hypothesized that HPβCD ototoxicity would spread from the high-frequency base toward the low-frequency apex of the cochlea. Consistent with this hypothesis, cochlear hearing impairments and OHC loss rapidly spread from the high-frequency base toward the low-frequency apex of the cochlea when HPβCD administration shifted from postnatal day 3 (P3) to P28. HPβCD-induced histopathologies were initially confined to the OHCs, but between 4- and 6-weeks post-treatment, there was an unexpected, rapid and massive expansion of the lesion to include most inner hair cells (IHC), pillar cells (PC), peripheral auditory nerve fibers, and spiral ganglion neurons at location where OHCs were missing. The magnitude and spatial extent of HPβCD-induced OHC death was tightly correlated with the postnatal day when HPβCD was administered which coincided with the spatiotemporal upregulation of prestin in OHCs. A second, massive wave of degeneration involving IHCs, PC, auditory nerve fibers and spiral ganglion neurons abruptly emerged 4–6 weeks post-HPβCD treatment. This secondary wave of degeneration combined with the initial OHC loss results in a profound, irreversible hearing loss.
Collapse
Affiliation(s)
- Dalian Ding
- Center for Hearing and Deafness, University at Buffalo, Buffalo, NY, United States
| | - Haiyan Jiang
- Center for Hearing and Deafness, University at Buffalo, Buffalo, NY, United States
| | - Senthilvelan Manohar
- Center for Hearing and Deafness, University at Buffalo, Buffalo, NY, United States
| | - Xiaopeng Liu
- Center for Hearing and Deafness, University at Buffalo, Buffalo, NY, United States
| | - Li Li
- Center for Hearing and Deafness, University at Buffalo, Buffalo, NY, United States
| | - Guang-Di Chen
- Center for Hearing and Deafness, University at Buffalo, Buffalo, NY, United States
| | - Richard Salvi
- Center for Hearing and Deafness, University at Buffalo, Buffalo, NY, United States
| |
Collapse
|
9
|
Effertz T, Moser T, Oliver D. Recent advances in cochlear hair cell nanophysiology: subcellular compartmentalization of electrical signaling in compact sensory cells. Fac Rev 2021; 9:24. [PMID: 33659956 PMCID: PMC7886071 DOI: 10.12703/r/9-24] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
In recent years, genetics, physiology, and structural biology have advanced into the molecular details of the sensory physiology of auditory hair cells. Inner hair cells (IHCs) and outer hair cells (OHCs) mediate two key functions: active amplification and non-linear compression of cochlear vibrations by OHCs and sound encoding by IHCs at their afferent synapses with the spiral ganglion neurons. OHCs and IHCs share some molecular physiology, e.g. mechanotransduction at the apical hair bundles, ribbon-type presynaptic active zones, and ionic conductances in the basolateral membrane. Unique features enabling their specific function include prestin-based electromotility of OHCs and indefatigable transmitter release at the highest known rates by ribbon-type IHC active zones. Despite their compact morphology, the molecular machineries that either generate electrical signals or are driven by these signals are essentially all segregated into local subcellular structures. This review provides a brief account on recent insights into the molecular physiology of cochlear hair cells with a specific focus on organization into membrane domains.
Collapse
Affiliation(s)
- Thomas Effertz
- InnerEarLab, Department of Otorhinolaryngology, University Medical Center Göttingen, 37099 Göttingen, Germany
| | - Tobias Moser
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, 37099 Göttingen, Germany
- Auditory Neuroscience Group, Max Planck Institute for Experimental Medicine, 37075 Göttingen, Germany
- Synaptic Nanophysiology Group, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
- Multiscale Bioimaging Cluster of Excellence (MBExC), University of Göttingen, 37075 Göttingen, Germany
| | - Dominik Oliver
- Institute for Physiology and Pathophysiology, Philipps University, Deutschhausstraße 2, 35037 Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), Universities of Marburg and Giessen, Germany
- DFG Research Training Group, Membrane Plasticity in Tissue Development and Remodelling, GRK 2213, Philipps University, Marburg, Germany
| |
Collapse
|
10
|
The Notch Ligand Jagged1 Is Required for the Formation, Maintenance, and Survival of Hensen's Cells in the Mouse Cochlea. J Neurosci 2020; 40:9401-9413. [PMID: 33127852 DOI: 10.1523/jneurosci.1192-20.2020] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 10/16/2020] [Accepted: 10/23/2020] [Indexed: 01/09/2023] Open
Abstract
During cochlear development, the Notch ligand JAGGED 1 (JAG1) plays an important role in the specification of the prosensory region, which gives rise to sound-sensing hair cells and neighboring supporting cells (SCs). While JAG1's expression is maintained in SCs through adulthood, the function of JAG1 in SC development is unknown. Here, we demonstrate that JAG1 is essential for the formation and maintenance of Hensen's cells, a highly specialized SC subtype located at the edge of the auditory epithelium. Using Sox2 CreERT2/+::Jag1loxP/loxP mice of both genders, we show that Jag1 deletion at the onset of differentiation, at embryonic day 14.5, disrupted Hensen's cell formation. Similar loss of Hensen's cells was observed when Jag1 was deleted after Hensen's cell formation at postnatal day (P) 0/P1 and fate-mapping analysis revealed that in the absence of Jag1, some Hensen's cells die, but others convert into neighboring Claudius cells. In support of a role for JAG1 in cell survival, genes involved in mitochondrial function and protein synthesis were downregulated in the sensory epithelium of P0 cochlea lacking Jag1 Finally, using Fgfr3-iCreERT2 ::Jag1loxP/loxP mice to delete Jag1 at P0, we observed a similar loss of Hensen's cells and found that adult Jag1 mutant mice have hearing deficits at the low-frequency range.SIGNIFICANCE STATEMENT Hensen's cells play an essential role in the development and homeostasis of the cochlea. Defects in the biophysical or functional properties of Hensen's cells have been linked to auditory dysfunction and hearing loss. Despite their importance, surprisingly little is known about the molecular mechanisms that guide their development. Morphologic and fate-mapping analyses in our study revealed that, in the absence of the Notch ligand JAGGED1, Hensen's cells died or converted into Claudius cells, which are specialized epithelium-like cells outside the sensory epithelium. Confirming a link between JAGGED1 and cell survival, transcriptional profiling showed that JAGGED1 maintains genes critical for mitochondrial function and tissue homeostasis. Finally, auditory phenotyping revealed that JAGGED1's function in supporting cells is necessary for low-frequency hearing.
Collapse
|
11
|
LIN28B/ let-7 control the ability of neonatal murine auditory supporting cells to generate hair cells through mTOR signaling. Proc Natl Acad Sci U S A 2020; 117:22225-22236. [PMID: 32826333 DOI: 10.1073/pnas.2000417117] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Mechano-sensory hair cells within the inner ear cochlea are essential for the detection of sound. In mammals, cochlear hair cells are only produced during development and their loss, due to disease or trauma, is a leading cause of deafness. In the immature cochlea, prior to the onset of hearing, hair cell loss stimulates neighboring supporting cells to act as hair cell progenitors and produce new hair cells. However, for reasons unknown, such regenerative capacity (plasticity) is lost once supporting cells undergo maturation. Here, we demonstrate that the RNA binding protein LIN28B plays an important role in the production of hair cells by supporting cells and provide evidence that the developmental drop in supporting cell plasticity in the mammalian cochlea is, at least in part, a product of declining LIN28B-mammalian target of rapamycin (mTOR) activity. Employing murine cochlear organoid and explant cultures to model mitotic and nonmitotic mechanisms of hair cell generation, we show that loss of LIN28B function, due to its conditional deletion, or due to overexpression of the antagonistic miRNA let-7g, suppressed Akt-mTOR complex 1 (mTORC1) activity and renders young, immature supporting cells incapable of generating hair cells. Conversely, we found that LIN28B overexpression increased Akt-mTORC1 activity and allowed supporting cells that were undergoing maturation to de-differentiate into progenitor-like cells and to produce hair cells via mitotic and nonmitotic mechanisms. Finally, using the mTORC1 inhibitor rapamycin, we demonstrate that LIN28B promotes supporting cell plasticity in an mTORC1-dependent manner.
Collapse
|
12
|
Lorenzo DN. Cargo hold and delivery: Ankyrins, spectrins, and their functional patterning of neurons. Cytoskeleton (Hoboken) 2020; 77:129-148. [PMID: 32034889 DOI: 10.1002/cm.21602] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 02/01/2020] [Accepted: 02/03/2020] [Indexed: 01/12/2023]
Abstract
The highly polarized, typically very long, and nonmitotic nature of neurons present them with unique challenges in the maintenance of their homeostasis. This architectural complexity serves a rich and tightly controlled set of functions that enables their fast communication with neighboring cells and endows them with exquisite plasticity. The submembrane neuronal cytoskeleton occupies a pivotal position in orchestrating the structural patterning that determines local and long-range subcellular specialization, membrane dynamics, and a wide range of signaling events. At its center is the partnership between ankyrins and spectrins, which self-assemble with both remarkable long-range regularity and micro- and nanoscale specificity to precisely position and stabilize cell adhesion molecules, membrane transporters, ion channels, and other cytoskeletal proteins. To accomplish these generally conserved, but often functionally divergent and spatially diverse, roles these partners use a combinatorial program of a couple of dozens interacting family members, whose code is not fully unraveled. In a departure from their scaffolding roles, ankyrins and spectrins also enable the delivery of material to the plasma membrane by facilitating intracellular transport. Thus, it is unsurprising that deficits in ankyrins and spectrins underlie several neurodevelopmental, neurodegenerative, and psychiatric disorders. Here, I summarize key aspects of the biology of spectrins and ankyrins in the mammalian neuron and provide a snapshot of the latest advances in decoding their roles in the nervous system.
Collapse
Affiliation(s)
- Damaris N Lorenzo
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
13
|
Pisciottano F, Cinalli AR, Stopiello JM, Castagna VC, Elgoyhen AB, Rubinstein M, Gómez-Casati ME, Franchini LF. Inner Ear Genes Underwent Positive Selection and Adaptation in the Mammalian Lineage. Mol Biol Evol 2020; 36:1653-1670. [PMID: 31137036 DOI: 10.1093/molbev/msz077] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The mammalian inner ear possesses functional and morphological innovations that contribute to its unique hearing capacities. The genetic bases underlying the evolution of this mammalian landmark are poorly understood. We propose that the emergence of morphological and functional innovations in the mammalian inner ear could have been driven by adaptive molecular evolution. In this work, we performed a meta-analysis of available inner ear gene expression data sets in order to identify genes that show signatures of adaptive evolution in the mammalian lineage. We analyzed ∼1,300 inner ear expressed genes and found that 13% show signatures of positive selection in the mammalian lineage. Several of these genes are known to play an important function in the inner ear. In addition, we identified that a significant proportion of genes showing signatures of adaptive evolution in mammals have not been previously reported to participate in inner ear development and/or physiology. We focused our analysis in two of these genes: STRIP2 and ABLIM2 by generating null mutant mice and analyzed their auditory function. We found that mice lacking Strip2 displayed a decrease in neural response amplitudes. In addition, we observed a reduction in the number of afferent synapses, suggesting a potential cochlear neuropathy. Thus, this study shows the usefulness of pursuing a high-throughput evolutionary approach followed by functional studies to track down genes that are important for inner ear function. Moreover, this approach sheds light on the genetic bases underlying the evolution of the mammalian inner ear.
Collapse
Affiliation(s)
- Francisco Pisciottano
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular (INGEBI), Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Alejandro R Cinalli
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular (INGEBI), Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Juan Matías Stopiello
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular (INGEBI), Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Valeria C Castagna
- Instituto de Farmacología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires,Argentina
| | - Ana Belén Elgoyhen
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular (INGEBI), Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Marcelo Rubinstein
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular (INGEBI), Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.,Facultad de Ciencias Exactas y Naturales (FCEN), Universidad de Buenos Aires, Buenos Aires,Argentina
| | - María Eugenia Gómez-Casati
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular (INGEBI), Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.,Instituto de Farmacología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires,Argentina
| | - Lucía F Franchini
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular (INGEBI), Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| |
Collapse
|
14
|
Nagtegaal AP, Broer L, Zilhao NR, Jakobsdottir J, Bishop CE, Brumat M, Christiansen MW, Cocca M, Gao Y, Heard-Costa NL, Evans DS, Pankratz N, Pratt SR, Price TR, Spankovich C, Stimson MR, Valle K, Vuckovic D, Wells H, Eiriksdottir G, Fransen E, Ikram MA, Li CM, Longstreth WT, Steves C, Van Camp G, Correa A, Cruickshanks KJ, Gasparini P, Girotto G, Kaplan RC, Nalls M, Schweinfurth JM, Seshadri S, Sotoodehnia N, Tranah GJ, Uitterlinden AG, Wilson JG, Gudnason V, Hoffman HJ, Williams FMK, Goedegebure A. Genome-wide association meta-analysis identifies five novel loci for age-related hearing impairment. Sci Rep 2019; 9:15192. [PMID: 31645637 PMCID: PMC6811684 DOI: 10.1038/s41598-019-51630-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 10/04/2019] [Indexed: 12/23/2022] Open
Abstract
Previous research has shown that genes play a substantial role in determining a person's susceptibility to age-related hearing impairment. The existing studies on this subject have different results, which may be caused by difficulties in determining the phenotype or the limited number of participants involved. Here, we have gathered the largest sample to date (discovery n = 9,675; replication n = 10,963; validation n = 356,141), and examined phenotypes that represented low/mid and high frequency hearing loss on the pure tone audiogram. We identified 7 loci that were either replicated and/or validated, of which 5 loci are novel in hearing. Especially the ILDR1 gene is a high profile candidate, as it contains our top SNP, is a known hearing loss gene, has been linked to age-related hearing impairment before, and in addition is preferentially expressed within hair cells of the inner ear. By verifying all previously published SNPs, we can present a paper that combines all new and existing findings to date, giving a complete overview of the genetic architecture of age-related hearing impairment. This is of importance as age-related hearing impairment is highly prevalent in our ageing society and represents a large socio-economic burden.
Collapse
Affiliation(s)
- Andries Paul Nagtegaal
- Department of Otorhinolaryngology, Erasmus Medical Center, 3015 CE, Rotterdam, The Netherlands.
| | - Linda Broer
- Department of Internal Medicine, Erasm us Medical Center, 3015 CE, Rotterdam, The Netherlands
| | - Nuno R Zilhao
- Icelandic Heart Association, Holtasmari 1, Kopavogur, IS-201, Iceland
| | | | - Charles E Bishop
- Department of Otolaryngology and Communicative Sciences, The University of Mississippi Medical Center, 2500 North State Street, Jackson, MS, 39216, USA
| | - Marco Brumat
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, Italy
| | - Mark W Christiansen
- Cardiovascular Health Research Unit, University of Washington, Seattle, WA, 98195, USA
| | - Massimiliano Cocca
- Medical Genetics, Institute for Maternal and Child Health, IRCCS "Burlo Garofolo", Trieste, Italy
| | - Yan Gao
- Department of Physiology and Biophysics, The University of Mississippi Medical Center, 2500 North State Street, Jackson, MS, 39216, USA
| | | | - Daniel S Evans
- Department of Epidemiology and Biostatistics, University of California, San Francisco, CA, 94158, USA
| | - Nathan Pankratz
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Sheila R Pratt
- Department of Communication Science & Disorders, University of Pittsburgh, 6035 Forbes Tower, Pittsburgh, PA, 15260, USA
| | - T Ryan Price
- Laboratory of Neurogenetics, National Institute on Aging, Bethesda, MD, 20892, USA
| | - Christopher Spankovich
- Department of Otolaryngology and Communicative Sciences, The University of Mississippi Medical Center, 2500 North State Street, Jackson, MS, 39216, USA
| | - Mary R Stimson
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Karen Valle
- Jackson Heart Study, 350 W. Woodrow Wilson Blvd, Suite 701, Jackson, MS, 39213, USA
| | - Dragana Vuckovic
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, Italy
| | - Helena Wells
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
| | | | - Erik Fransen
- Center for Medical Genetics, University of Antwerp, Prins Boudewijnlaan 43/6, BE-2650, Edegem, Antwerp, Belgium
| | - Mohammad Arfan Ikram
- Department of Epidemiology, Erasmus Medical Center, 3015 CE, Rotterdam, The Netherlands
| | - Chuang-Ming Li
- Epidemiology and Statistics Program, Division of Scientific Programs, National Institute on Deafness and Other Communication Disorders (NIDCD) National Institutes of Health (NIH), Neuroscience Center Building, Suite 8300, 6001 Executive Blvd, Bethesda, MD, 20892, USA
| | - W T Longstreth
- Departments of Neurology and Epidemiology, University of Washington, Seattle, WA, 98195, USA
| | - Claire Steves
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
| | - Guy Van Camp
- Center for Medical Genetics, University of Antwerp, Prins Boudewijnlaan 43/6, BE-2650, Edegem, Antwerp, Belgium
| | - Adolfo Correa
- Jackson Heart Study, 350 W. Woodrow Wilson Blvd, Suite 701, Jackson, MS, 39213, USA
| | - Karen J Cruickshanks
- Departments of Ophthalmology and Visual Sciences and Population Health Sciences, University of Wisconsin, Madison, WI, 53726, USA
| | - Paolo Gasparini
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, Italy
| | - Giorgia Girotto
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, Italy
| | - Robert C Kaplan
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Michael Nalls
- Data Tecnica International, Glen Echo, MD, 20812, USA
| | - John M Schweinfurth
- Department of Otolaryngology and Communicative Sciences, The University of Mississippi Medical Center, 2500 North State Street, Jackson, MS, 39216, USA
| | - Sudha Seshadri
- Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases, UT Health, San Antonio, 78229, TX, USA
| | - Nona Sotoodehnia
- Cardiovascular Health Research Unit, University of Washington, Seattle, WA, 98195, USA
| | - Gregory J Tranah
- Department of Epidemiology and Biostatistics, University of California, San Francisco, CA, 94158, USA
| | - André G Uitterlinden
- Department of Internal Medicine, Erasm us Medical Center, 3015 CE, Rotterdam, The Netherlands
| | - James G Wilson
- Department of Physiology and Biophysics, The University of Mississippi Medical Center, 2500 North State Street, Jackson, MS, 39216, USA
| | | | - Howard J Hoffman
- Epidemiology and Statistics Program, Division of Scientific Programs, National Institute on Deafness and Other Communication Disorders (NIDCD) National Institutes of Health (NIH), Neuroscience Center Building, Suite 8300, 6001 Executive Blvd, Bethesda, MD, 20892, USA
| | - Frances M K Williams
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
| | - André Goedegebure
- Department of Otorhinolaryngology, Erasmus Medical Center, 3015 CE, Rotterdam, The Netherlands
| |
Collapse
|
15
|
Abstract
Outer hair cells (OHCs) of the mammalian cochlea behave like actuators: they feed energy into the cochlear partition and determine the overall mechanics of hearing. They do this by generating voltage-dependent axial forces. The resulting change in the cell length, observed by microscopy, has been termed "electromotility." The mechanism of force generation OHCs can be traced to a specific protein, prestin, a member of a superfamily SLC26 of transporters. This short review will identify some of the more recent findings on prestin. Although the tertiary structure of prestin has yet to be determined, results from the presence of its homologs in nonmammalian species suggest a possible conformation in mammalian OHCs, how it can act like a transport protein, and how it may have evolved.
Collapse
Affiliation(s)
- Jonathan Ashmore
- University College London Ear Institute, London WC1X8EE, United Kingdom
| |
Collapse
|
16
|
Liu CH, Rasband MN. Axonal Spectrins: Nanoscale Organization, Functional Domains and Spectrinopathies. Front Cell Neurosci 2019; 13:234. [PMID: 31191255 PMCID: PMC6546920 DOI: 10.3389/fncel.2019.00234] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 05/09/2019] [Indexed: 11/13/2022] Open
Abstract
Spectrin cytoskeletons are found in all metazoan cells, and their physical interactions between actin and ankyrins establish a meshwork that provides cellular structural integrity. With advanced super-resolution microscopy, the intricate spatial organization and associated functional properties of these cytoskeletons can now be analyzed with unprecedented clarity. Long neuronal processes like peripheral sensory and motor axons may be subject to intense mechanical forces including bending, stretching, and torsion. The spectrin-based cytoskeleton is essential to protect axons against these mechanical stresses. Additionally, spectrins are critical for the assembly and maintenance of axonal excitable domains including the axon initial segment and the nodes of Ranvier (NoR). These sites facilitate rapid and efficient action potential initiation and propagation in the nervous system. Recent studies revealed that pathogenic spectrin variants and diseases that protealyze and breakdown spectrins are associated with congenital neurological disorders and nervous system injury. Here, we review recent studies of spectrins in the nervous system and focus on their functions in axonal health and disease.
Collapse
Affiliation(s)
- Cheng-Hsin Liu
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX, United States
| | - Matthew Neil Rasband
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX, United States.,Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
17
|
Takahashi S, Yamashita T, Homma K, Zhou Y, Zuo J, Zheng J, Cheatham MA. Deletion of exons 17 and 18 in prestin's STAS domain results in loss of function. Sci Rep 2019; 9:6874. [PMID: 31053797 PMCID: PMC6499820 DOI: 10.1038/s41598-019-43343-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 04/23/2019] [Indexed: 12/03/2022] Open
Abstract
Cochlear outer hair cells (OHC) express the motor protein, prestin, which is required for sensitivity and frequency selectivity. Because our previous work showed that a calmodulin binding site (CBS) was located in prestin's C-terminal, specifically within the intrinsically disordered region, we sought to delete the IDR to study the functional significance of calcium-dependent, calmodulin binding on OHC function. Although the construct lacking the IDR (∆IDR prestin) demonstrated wildtype-like nonlinear capacitance (NLC) in HEK293T cells, the phenotype in ∆IDR prestin knockins (KI) was similar to that in prestin knockouts: thresholds were elevated, NLC was absent and OHCs were missing from basal regions of the cochlea. Although ∆IDR prestin mRNA was measured, no prestin protein was detected. At the mRNA level, both of prestin's exons 17 and 18 were entirely removed, rather than the smaller region encoding the IDR. Our hybrid exon that contained the targeted deletion (17-18 ∆IDR) failed to splice in vitro and prestin protein lacking exons 17 and 18 aggregated and failed to target the cell membrane. Hence, the absence of prestin protein in ∆IDR KI OHCs may be due to the unexpected splicing of the hybrid 17-18 ∆IDR exon followed by rapid degradation of nonfunctional prestin protein.
Collapse
Affiliation(s)
- Satoe Takahashi
- Department of Otolaryngology - Head and Neck Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Tetsuji Yamashita
- St. Jude Children's Research Hospital, Department of Developmental Neurobiology, Memphis, TN, USA
| | - Kazuaki Homma
- Department of Otolaryngology - Head and Neck Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Knowles Hearing Center, Northwestern University, Evanston, IL, USA
| | - Yingjie Zhou
- Roxelyn and Richard Pepper Department of Communication Sciences and Disorders, Northwestern University, Evanston, IL, USA
| | - Jian Zuo
- Department of Biomedical Sciences, Creighton University School of Medicine, Omaha, NE, USA
| | - Jing Zheng
- Department of Otolaryngology - Head and Neck Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Knowles Hearing Center, Northwestern University, Evanston, IL, USA
| | - Mary Ann Cheatham
- Knowles Hearing Center, Northwestern University, Evanston, IL, USA.
- Roxelyn and Richard Pepper Department of Communication Sciences and Disorders, Northwestern University, Evanston, IL, USA.
| |
Collapse
|
18
|
Liu Y, Qi J, Chen X, Tang M, Chu C, Zhu W, Li H, Tian C, Yang G, Zhong C, Zhang Y, Ni G, He S, Chai R, Zhong G. Critical role of spectrin in hearing development and deafness. SCIENCE ADVANCES 2019; 5:eaav7803. [PMID: 31001589 PMCID: PMC6469942 DOI: 10.1126/sciadv.aav7803] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 03/01/2019] [Indexed: 06/09/2023]
Abstract
Inner ear hair cells (HCs) detect sound through the deflection of mechanosensory stereocilia. Stereocilia are inserted into the cuticular plate of HCs by parallel actin rootlets, where they convert sound-induced mechanical vibrations into electrical signals. The molecules that support these rootlets and enable them to withstand constant mechanical stresses underpin our ability to hear. However, the structures of these molecules have remained unknown. We hypothesized that αII- and βII-spectrin subunits fulfill this role, and investigated their structural organization in rodent HCs. Using super-resolution fluorescence imaging, we found that spectrin formed ring-like structures around the base of stereocilia rootlets. These spectrin rings were associated with the hearing ability of mice. Further, HC-specific, βII-spectrin knockout mice displayed profound deafness. Overall, our work has identified and characterized structures of spectrin that play a crucial role in mammalian hearing development.
Collapse
Affiliation(s)
- Yan Liu
- iHuman Institute, ShanghaiTech University, Shanghai, China
| | - Jieyu Qi
- iHuman Institute, ShanghaiTech University, Shanghai, China
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, China
- Co-innovation Center of Neuroregeneration, Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Nantong, China
| | - Xin Chen
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Mingliang Tang
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, China
- Co-innovation Center of Neuroregeneration, Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Nantong, China
| | - Cenfeng Chu
- iHuman Institute, ShanghaiTech University, Shanghai, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Weijie Zhu
- iHuman Institute, ShanghaiTech University, Shanghai, China
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, China
- Co-innovation Center of Neuroregeneration, Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Nantong, China
| | - Hui Li
- iHuman Institute, ShanghaiTech University, Shanghai, China
| | - Cuiping Tian
- iHuman Institute, ShanghaiTech University, Shanghai, China
| | - Guang Yang
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, China
| | - Chao Zhong
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, China
| | - Ying Zhang
- Department of Medical Neuroscience, Faculty of Medicine, Dalhousie University, 5850 College Street, Halifax, Canada
| | - Guangjian Ni
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
- Laboratory of Neural Engineering and Rehabilitation, Department of Biomedical Engineering, College of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin, China
| | - Shuijin He
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Renjie Chai
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, China
- Co-innovation Center of Neuroregeneration, Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Nantong, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- Research Institute of Otolaryngology, No.321 Zhongshan Road, Nanjing, China
- Beijing Key Laboratory of Neural Regeneration and Repair, Capital Medical University, Beijing, 100069, China
| | - Guisheng Zhong
- iHuman Institute, ShanghaiTech University, Shanghai, China
- Co-innovation Center of Neuroregeneration, Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Nantong, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
- Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| |
Collapse
|
19
|
McGovern MM, Randle MR, Cuppini CL, Graves KA, Cox BC. Multiple supporting cell subtypes are capable of spontaneous hair cell regeneration in the neonatal mouse cochlea. Development 2019; 146:146/4/dev171009. [PMID: 30770379 DOI: 10.1242/dev.171009] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 01/09/2019] [Indexed: 12/20/2022]
Abstract
Supporting cells (SCs) are known to spontaneously regenerate hair cells (HCs) in the neonatal mouse cochlea, yet little is known about the relative contribution of distinct SC subtypes which differ in morphology and function. We have previously shown that HC regeneration is linked to Notch signaling, and some SC subtypes, but not others, lose expression of the Notch effector Hes5 Other work has demonstrated that Lgr5-positive SCs have an increased capacity to regenerate HCs; however, several SC subtypes express Lgr5. To further investigate the source for spontaneous HC regeneration, we used three CreER lines to fate-map distinct groups of SCs during regeneration. Fate-mapping either alone or combined with a mitotic tracer showed that pillar and Deiters' cells contributed more regenerated HCs overall. However, when normalized to the total fate-mapped population, pillar, Deiters', inner phalangeal and border cells had equal capacity to regenerate HCs, and all SC subtypes could divide after HC damage. Investigating the mechanisms that allow individual SC subtypes to regenerate HCs and the postnatal changes that occur in each group during maturation could lead to therapies for hearing loss.
Collapse
Affiliation(s)
- Melissa M McGovern
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL 62711, USA
| | - Michelle R Randle
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL 62711, USA
| | - Candice L Cuppini
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL 62711, USA
| | - Kaley A Graves
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL 62711, USA
| | - Brandon C Cox
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL 62711, USA .,Department of Surgery, Division of Otolaryngology, Southern Illinois University School of Medicine, Springfield, IL 62711, USA
| |
Collapse
|
20
|
Zhou Y, Takahashi S, Homma K, Duan C, Zheng J, Cheatham MA, Zheng J. The susceptibility of cochlear outer hair cells to cyclodextrin is not related to their electromotile activity. Acta Neuropathol Commun 2018; 6:98. [PMID: 30249300 PMCID: PMC6151916 DOI: 10.1186/s40478-018-0599-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 09/13/2018] [Indexed: 11/26/2022] Open
Abstract
Niemann-Pick Type C1 (NPC1) disease is a fatal neurovisceral disorder caused by dysfunction of NPC1 protein, which plays a role in intracellular cholesterol trafficking. The cholesterol-chelating agent, 2-hydroxypropyl-β-cyclodextrin (HPβCD), is currently undergoing clinical trials for treatment of this disease. Though promising in alleviating neurological symptoms, HPβCD causes irreversible hearing loss in NPC1 patients and outer hair cell (OHC) death in animal models. We recently found that HPβCD-induced OHC death can be significantly alleviated in a mouse model lacking prestin, an OHC-specific motor protein required for the high sensitivity and sharp frequency selectivity of mammalian hearing. Since cholesterol status is known to influence prestin’s electromotility, we examined how prestin contributes to HPβCD-induced OHC death in the disease context using the NPC1 knockout (KO) mouse model (NPC1-KO). We found normal expression and localization of prestin in NPC1-KO OHCs. Whole-cell patch-clamp recordings revealed a significant depolarization of the voltage-operating point of prestin in NPC1-KO mice, suggesting reduced levels of cholesterol in the lateral membrane of OHCs that lack NPC1. OHC loss and elevated thresholds were found for high frequency regions in NPC1-KO mice, whose OHCs retained their sensitivity to HPβCD. To investigate whether prestin’s electromotile function contributes to HPβCD-induced OHC death, the prestin inhibitor salicylate was co-administered with HPβCD to WT and NPC1-KO mice. Neither oral nor intraperitoneal administration of salicylate mitigated HPβCD-induced OHC loss. To further determine the contribution of prestin’s electromotile function, a mouse model expressing a virtually nonelectromotile prestin protein (499-prestin) was subjected to HPβCD treatment. 499-prestin knockin mice showed no resistance to HPβCD-induced OHC loss. As 499-prestin maintains its ability to bind cholesterol, our data imply that HPβCD-induced OHC death is ascribed to the structural role of prestin in maintaining the OHC’s lateral membrane, rather than its motor function.
Collapse
|
21
|
Takahashi S, Sun W, Zhou Y, Homma K, Kachar B, Cheatham MA, Zheng J. Prestin Contributes to Membrane Compartmentalization and Is Required for Normal Innervation of Outer Hair Cells. Front Cell Neurosci 2018; 12:211. [PMID: 30079013 PMCID: PMC6062617 DOI: 10.3389/fncel.2018.00211] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 06/27/2018] [Indexed: 12/16/2022] Open
Abstract
Outer hair cells (OHC) act as amplifiers and their function is modified by medial olivocochlear (MOC) efferents. The unique OHC motor protein, prestin, provides the molecular basis for somatic electromotility, which is required for sensitivity and frequency selectivity, the hallmarks of mammalian hearing. Prestin proteins are the major component of the lateral membrane of mature OHCs, which separates apical and basal domains. To investigate the contribution of prestin to this unique arrangement, we compared the distribution of membrane proteins in OHCs of wildtype (WT) and prestin-knockout (KO) mice. In WT, the apical protein PMCA2 was exclusively localized to the hair bundles, while it was also found at the lateral membrane in KOs. Similarly, a basal protein KCNQ4 did not coalesce at the base of OHCs but was widely dispersed in mice lacking prestin. Since the expression levels of PMCA2 and KCNQ4 remained unchanged in KOs, the data indicate that prestin is required for the normal distribution of apical and basal membrane proteins in OHCs. Since OHC synapses predominate in the basal subnuclear region, we also examined the synaptic architecture in prestin-KO mice. Although neurite densities were not affected, MOC efferent terminals in prestin-KO mice were no longer constrained to the basal pole as in WT. This trend was evident as early as at postnatal day 12. Furthermore, terminals were often enlarged and frequently appeared as singlets when compared to the multiple clusters of individual terminals in WT. This abnormality in MOC synaptic morphology in prestin-KO mice is similar to defects in mice lacking MOC pathway proteins such as α9/α10 nicotinic acetylcholine receptors and BK channels, indicating a role for prestin in the proper establishment of MOC synapses. To investigate the contribution of prestin’s electromotility, we also examined OHCs from a mouse model that expresses non-functional prestin (499-prestin). We found no changes in PMCA2 localization and MOC synaptic morphology in OHCs from 499-prestin mice. Taken together, these results indicate that prestin, independent of its motile function, plays an important structural role in membrane compartmentalization, which is required for the formation of normal efferent-OHC synapses in mature OHCs.
Collapse
Affiliation(s)
- Satoe Takahashi
- Department of Otolaryngology - Head and Neck Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Willy Sun
- Section on Structural Cell Biology, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, United States
| | - Yingjie Zhou
- Department of Communication Sciences and Disorders, Northwestern University, Evanston, IL, United States
| | - Kazuaki Homma
- Department of Otolaryngology - Head and Neck Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States.,The Knowles Hearing Center, Northwestern University, Evanston, IL, United States
| | - Bechara Kachar
- Section on Structural Cell Biology, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, United States
| | - Mary Ann Cheatham
- Department of Communication Sciences and Disorders, Northwestern University, Evanston, IL, United States.,The Knowles Hearing Center, Northwestern University, Evanston, IL, United States
| | - Jing Zheng
- Department of Otolaryngology - Head and Neck Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States.,Department of Communication Sciences and Disorders, Northwestern University, Evanston, IL, United States.,The Knowles Hearing Center, Northwestern University, Evanston, IL, United States
| |
Collapse
|
22
|
Michel V, Booth KT, Patni P, Cortese M, Azaiez H, Bahloul A, Kahrizi K, Labbé M, Emptoz A, Lelli A, Dégardin J, Dupont T, Aghaie A, Oficjalska-Pham D, Picaud S, Najmabadi H, Smith RJ, Bowl MR, Brown SD, Avan P, Petit C, El-Amraoui A. CIB2, defective in isolated deafness, is key for auditory hair cell mechanotransduction and survival. EMBO Mol Med 2018; 9:1711-1731. [PMID: 29084757 PMCID: PMC5709726 DOI: 10.15252/emmm.201708087] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Defects of CIB2, calcium‐ and integrin‐binding protein 2, have been reported to cause isolated deafness, DFNB48 and Usher syndrome type‐IJ, characterized by congenital profound deafness, balance defects and blindness. We report here two new nonsense mutations (pGln12* and pTyr110*) in CIB2 patients displaying nonsyndromic profound hearing loss, with no evidence of vestibular or retinal dysfunction. Also, the generated CIB2−/− mice display an early onset profound deafness and have normal balance and retinal functions. In these mice, the mechanoelectrical transduction currents are totally abolished in the auditory hair cells, whilst they remain unchanged in the vestibular hair cells. The hair bundle morphological abnormalities of CIB2−/− mice, unlike those of mice defective for the other five known USH1 proteins, begin only after birth and lead to regression of the stereocilia and rapid hair‐cell death. This essential role of CIB2 in mechanotransduction and cell survival that, we show, is restricted to the cochlea, probably accounts for the presence in CIB2−/− mice and CIB2 patients, unlike in Usher syndrome, of isolated hearing loss without balance and vision deficits.
Collapse
Affiliation(s)
- Vincent Michel
- Génétique et Physiologie de l'Audition, Institut Pasteur, Paris, France.,Unité Mixte de Recherche- UMRS 1120, Institut National de la Santé et de la Recherche Médicale, Paris, France.,Sorbonne Universités, UPMC Univ Paris06, Paris, France
| | - Kevin T Booth
- Molecular Otolaryngology and Renal Research Laboratories, Department of Otolaryngology- Head and Neck Surgery, University of Iowa, Iowa City, Iowa.,Department of Molecular Medicine, Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Pranav Patni
- Génétique et Physiologie de l'Audition, Institut Pasteur, Paris, France.,Unité Mixte de Recherche- UMRS 1120, Institut National de la Santé et de la Recherche Médicale, Paris, France.,Sorbonne Universités, UPMC Univ Paris06, Paris, France
| | - Matteo Cortese
- Génétique et Physiologie de l'Audition, Institut Pasteur, Paris, France.,Unité Mixte de Recherche- UMRS 1120, Institut National de la Santé et de la Recherche Médicale, Paris, France.,Sorbonne Universités, UPMC Univ Paris06, Paris, France
| | - Hela Azaiez
- Molecular Otolaryngology and Renal Research Laboratories, Department of Otolaryngology- Head and Neck Surgery, University of Iowa, Iowa City, Iowa
| | - Amel Bahloul
- Génétique et Physiologie de l'Audition, Institut Pasteur, Paris, France.,Unité Mixte de Recherche- UMRS 1120, Institut National de la Santé et de la Recherche Médicale, Paris, France.,Sorbonne Universités, UPMC Univ Paris06, Paris, France
| | - Kimia Kahrizi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Ménélik Labbé
- Génétique et Physiologie de l'Audition, Institut Pasteur, Paris, France.,Unité Mixte de Recherche- UMRS 1120, Institut National de la Santé et de la Recherche Médicale, Paris, France.,Sorbonne Universités, UPMC Univ Paris06, Paris, France
| | - Alice Emptoz
- Génétique et Physiologie de l'Audition, Institut Pasteur, Paris, France.,Unité Mixte de Recherche- UMRS 1120, Institut National de la Santé et de la Recherche Médicale, Paris, France.,Sorbonne Universités, UPMC Univ Paris06, Paris, France
| | - Andrea Lelli
- Génétique et Physiologie de l'Audition, Institut Pasteur, Paris, France.,Unité Mixte de Recherche- UMRS 1120, Institut National de la Santé et de la Recherche Médicale, Paris, France.,Sorbonne Universités, UPMC Univ Paris06, Paris, France
| | - Julie Dégardin
- Sorbonne Universités, UPMC Univ Paris06, Paris, France.,Retinal information processing - Pharmacology and Pathology, Institut de la Vision, Paris, France
| | - Typhaine Dupont
- Génétique et Physiologie de l'Audition, Institut Pasteur, Paris, France.,Unité Mixte de Recherche- UMRS 1120, Institut National de la Santé et de la Recherche Médicale, Paris, France.,Sorbonne Universités, UPMC Univ Paris06, Paris, France
| | - Asadollah Aghaie
- Génétique et Physiologie de l'Audition, Institut Pasteur, Paris, France.,Unité Mixte de Recherche- UMRS 1120, Institut National de la Santé et de la Recherche Médicale, Paris, France.,Sorbonne Universités, UPMC Univ Paris06, Paris, France.,Syndrome de Usher et Autres Atteintes Rétino-Cochléaires, Institut de la Vision, Paris, France
| | - Danuta Oficjalska-Pham
- Génétique et Physiologie de l'Audition, Institut Pasteur, Paris, France.,Unité Mixte de Recherche- UMRS 1120, Institut National de la Santé et de la Recherche Médicale, Paris, France.,Sorbonne Universités, UPMC Univ Paris06, Paris, France
| | - Serge Picaud
- Sorbonne Universités, UPMC Univ Paris06, Paris, France.,Retinal information processing - Pharmacology and Pathology, Institut de la Vision, Paris, France
| | - Hossein Najmabadi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Richard J Smith
- Molecular Otolaryngology and Renal Research Laboratories, Department of Otolaryngology- Head and Neck Surgery, University of Iowa, Iowa City, Iowa
| | - Michael R Bowl
- Mammalian Genetics Unit, MRC Harwell Institute, Oxford, UK
| | | | - Paul Avan
- Laboratoire de Biophysique Sensorielle, Faculté de Médecine, Biophysique Médicale, Centre Jean Perrin, Université d'Auvergne, Clermont-Ferrand, France
| | - Christine Petit
- Génétique et Physiologie de l'Audition, Institut Pasteur, Paris, France.,Unité Mixte de Recherche- UMRS 1120, Institut National de la Santé et de la Recherche Médicale, Paris, France.,Sorbonne Universités, UPMC Univ Paris06, Paris, France.,Collège de France, Paris, France
| | - Aziz El-Amraoui
- Génétique et Physiologie de l'Audition, Institut Pasteur, Paris, France .,Unité Mixte de Recherche- UMRS 1120, Institut National de la Santé et de la Recherche Médicale, Paris, France.,Sorbonne Universités, UPMC Univ Paris06, Paris, France
| |
Collapse
|
23
|
Dulon D, Papal S, Patni P, Cortese M, Vincent PF, Tertrais M, Emptoz A, Tlili A, Bouleau Y, Michel V, Delmaghani S, Aghaie A, Pepermans E, Alegria-Prevot O, Akil O, Lustig L, Avan P, Safieddine S, Petit C, El-Amraoui A. Clarin-1 gene transfer rescues auditory synaptopathy in model of Usher syndrome. J Clin Invest 2018; 128:3382-3401. [PMID: 29985171 DOI: 10.1172/jci94351] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 05/17/2018] [Indexed: 11/17/2022] Open
Abstract
Clarin-1, a tetraspan-like membrane protein defective in Usher syndrome type IIIA (USH3A), is essential for hair bundle morphogenesis in auditory hair cells. We report a new synaptic role for clarin-1 in mouse auditory hair cells elucidated by characterization of Clrn1 total (Clrn1ex4-/-) and postnatal hair cell-specific conditional (Clrn1ex4fl/fl Myo15-Cre+/-) knockout mice. Clrn1ex4-/- mice were profoundly deaf, whereas Clrn1ex4fl/fl Myo15-Cre+/- mice displayed progressive increases in hearing thresholds, with, initially, normal otoacoustic emissions and hair bundle morphology. Inner hair cell (IHC) patch-clamp recordings for the 2 mutant mice revealed defective exocytosis and a disorganization of synaptic F-actin and CaV1.3 Ca2+ channels, indicative of a synaptopathy. Postsynaptic defects were also observed, with an abnormally broad distribution of AMPA receptors associated with a loss of afferent dendrites and defective electrically evoked auditory brainstem responses. Protein-protein interaction assays revealed interactions between clarin-1 and the synaptic CaV1.3 Ca2+ channel complex via the Cavβ2 auxiliary subunit and the PDZ domain-containing protein harmonin (defective in Usher syndrome type IC). Cochlear gene therapy in vivo, through adeno-associated virus-mediated Clrn1 transfer into hair cells, prevented the synaptic defects and durably improved hearing in Clrn1ex4fl/fl Myo15-Cre+/- mice. Our results identify clarin-1 as a key organizer of IHC ribbon synapses, and suggest new treatment possibilities for USH3A patients.
Collapse
Affiliation(s)
- Didier Dulon
- UMRS 1120, Institut National de la Santé et de la Recherche Médicale (INSERM), Paris, France.,Université de Bordeaux, Laboratoire de Neurophysiologie de la Synapse Auditive, Bordeaux Neurocampus, Bordeaux, France
| | - Samantha Papal
- UMRS 1120, Institut National de la Santé et de la Recherche Médicale (INSERM), Paris, France.,Unité de Génétique et Physiologie de l'Audition, Institut Pasteur, Paris, France.,Sorbonne Universités, Complexité du Vivant, Paris, France
| | - Pranav Patni
- UMRS 1120, Institut National de la Santé et de la Recherche Médicale (INSERM), Paris, France.,Unité de Génétique et Physiologie de l'Audition, Institut Pasteur, Paris, France.,Sorbonne Universités, Complexité du Vivant, Paris, France
| | - Matteo Cortese
- UMRS 1120, Institut National de la Santé et de la Recherche Médicale (INSERM), Paris, France.,Unité de Génétique et Physiologie de l'Audition, Institut Pasteur, Paris, France.,Sorbonne Universités, Complexité du Vivant, Paris, France
| | - Philippe Fy Vincent
- UMRS 1120, Institut National de la Santé et de la Recherche Médicale (INSERM), Paris, France.,Université de Bordeaux, Laboratoire de Neurophysiologie de la Synapse Auditive, Bordeaux Neurocampus, Bordeaux, France
| | - Margot Tertrais
- UMRS 1120, Institut National de la Santé et de la Recherche Médicale (INSERM), Paris, France.,Université de Bordeaux, Laboratoire de Neurophysiologie de la Synapse Auditive, Bordeaux Neurocampus, Bordeaux, France
| | - Alice Emptoz
- UMRS 1120, Institut National de la Santé et de la Recherche Médicale (INSERM), Paris, France.,Unité de Génétique et Physiologie de l'Audition, Institut Pasteur, Paris, France.,Sorbonne Universités, Complexité du Vivant, Paris, France
| | - Abdelaziz Tlili
- UMRS 1120, Institut National de la Santé et de la Recherche Médicale (INSERM), Paris, France.,Unité de Génétique et Physiologie de l'Audition, Institut Pasteur, Paris, France.,Sorbonne Universités, Complexité du Vivant, Paris, France
| | - Yohan Bouleau
- UMRS 1120, Institut National de la Santé et de la Recherche Médicale (INSERM), Paris, France.,Université de Bordeaux, Laboratoire de Neurophysiologie de la Synapse Auditive, Bordeaux Neurocampus, Bordeaux, France
| | - Vincent Michel
- UMRS 1120, Institut National de la Santé et de la Recherche Médicale (INSERM), Paris, France.,Unité de Génétique et Physiologie de l'Audition, Institut Pasteur, Paris, France.,Sorbonne Universités, Complexité du Vivant, Paris, France
| | - Sedigheh Delmaghani
- UMRS 1120, Institut National de la Santé et de la Recherche Médicale (INSERM), Paris, France.,Unité de Génétique et Physiologie de l'Audition, Institut Pasteur, Paris, France.,Sorbonne Universités, Complexité du Vivant, Paris, France
| | - Alain Aghaie
- UMRS 1120, Institut National de la Santé et de la Recherche Médicale (INSERM), Paris, France.,Unité de Génétique et Physiologie de l'Audition, Institut Pasteur, Paris, France.,Sorbonne Universités, Complexité du Vivant, Paris, France
| | - Elise Pepermans
- UMRS 1120, Institut National de la Santé et de la Recherche Médicale (INSERM), Paris, France.,Unité de Génétique et Physiologie de l'Audition, Institut Pasteur, Paris, France.,Sorbonne Universités, Complexité du Vivant, Paris, France
| | - Olinda Alegria-Prevot
- UMRS 1120, Institut National de la Santé et de la Recherche Médicale (INSERM), Paris, France.,Unité de Génétique et Physiologie de l'Audition, Institut Pasteur, Paris, France.,Sorbonne Universités, Complexité du Vivant, Paris, France
| | - Omar Akil
- Department of Otolaryngology-Head and Neck Surgery, UCSF, San Francisco, California, USA
| | - Lawrence Lustig
- Department of Otolaryngology-Head and Neck Surgery, Columbia University Medical Center, New York, New York, USA
| | - Paul Avan
- Laboratoire de Biophysique Sensorielle, Faculté de Médecine, Université d'Auvergne; Biophysique Médicale, Centre Jean Perrin, Clermont-Ferrand, France
| | - Saaid Safieddine
- UMRS 1120, Institut National de la Santé et de la Recherche Médicale (INSERM), Paris, France.,Unité de Génétique et Physiologie de l'Audition, Institut Pasteur, Paris, France.,Sorbonne Universités, Complexité du Vivant, Paris, France.,Centre National de la Recherche Scientifique, Paris, France
| | - Christine Petit
- UMRS 1120, Institut National de la Santé et de la Recherche Médicale (INSERM), Paris, France.,Unité de Génétique et Physiologie de l'Audition, Institut Pasteur, Paris, France.,Sorbonne Universités, Complexité du Vivant, Paris, France.,Collège de France, Paris, France
| | - Aziz El-Amraoui
- UMRS 1120, Institut National de la Santé et de la Recherche Médicale (INSERM), Paris, France.,Unité de Génétique et Physiologie de l'Audition, Institut Pasteur, Paris, France.,Sorbonne Universités, Complexité du Vivant, Paris, France
| |
Collapse
|
24
|
αII Spectrin Forms a Periodic Cytoskeleton at the Axon Initial Segment and Is Required for Nervous System Function. J Neurosci 2017; 37:11311-11322. [PMID: 29038240 DOI: 10.1523/jneurosci.2112-17.2017] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 09/11/2017] [Accepted: 10/04/2017] [Indexed: 01/02/2023] Open
Abstract
Spectrins form a submembranous cytoskeleton proposed to confer strength and flexibility to neurons and to participate in ion channel clustering at axon initial segments (AIS) and nodes of Ranvier. Neuronal spectrin cytoskeletons consist of diverse β subunits and αII spectrin. Although αII spectrin is found in neurons in both axonal and somatodendritic domains, using proteomics, biochemistry, and superresolution microscopy, we show that αII and βIV spectrin interact and form a periodic AIS cytoskeleton. To determine the role of spectrins in the nervous system, we generated Sptan1f/f mice for deletion of CNS αII spectrin. We analyzed αII spectrin-deficient mice of both sexes and found that loss of αII spectrin causes profound reductions in all β spectrins. αII spectrin-deficient mice die before 1 month of age and have disrupted AIS and many other neurological impairments including seizures, disrupted cortical lamination, and widespread neurodegeneration. These results demonstrate the importance of the spectrin cytoskeleton both at the AIS and throughout the nervous system.SIGNIFICANCE STATEMENT Spectrin cytoskeletons play diverse roles in neurons, including assembly of excitable domains such as the axon initial segment (AIS) and nodes of Ranvier. However, the molecular composition and structure of these cytoskeletons remain poorly understood. Here, we show that αII spectrin partners with βIV spectrin to form a periodic cytoskeleton at the AIS. Using a new αII spectrin conditional knock-out mouse, we show that αII spectrin is required for AIS assembly, neuronal excitability, cortical lamination, and to protect against neurodegeneration. These results demonstrate the broad importance of spectrin cytoskeletons for nervous system function and development and have important implications for nervous system injuries and diseases because disruption of the spectrin cytoskeleton is a common molecular pathology.
Collapse
|
25
|
Spectrin βV adaptive mutations and changes in subcellular location correlate with emergence of hair cell electromotility in mammalians. Proc Natl Acad Sci U S A 2017; 114:2054-2059. [PMID: 28179572 DOI: 10.1073/pnas.1618778114] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The remarkable hearing capacities of mammals arise from various evolutionary innovations. These include the cochlear outer hair cells and their singular feature, somatic electromotility, i.e., the ability of their cylindrical cell body to shorten and elongate upon cell depolarization and hyperpolarization, respectively. To shed light on the processes underlying the emergence of electromotility, we focused on the βV giant spectrin, a major component of the outer hair cells' cortical cytoskeleton. We identified strong signatures of adaptive evolution at multiple sites along the spectrin-βV amino acid sequence in the lineage leading to mammals, together with substantial differences in the subcellular location of this protein between the frog and the mouse inner ear hair cells. In frog hair cells, spectrin βV was invariably detected near the apical junctional complex and above the cuticular plate, a dense F-actin meshwork located underneath the apical plasma membrane. In the mouse, the protein had a broad punctate cytoplasmic distribution in the vestibular hair cells, whereas it was detected in the entire lateral wall of cochlear outer hair cells and had an intermediary distribution (both cytoplasmic and cortical, but restricted to the cell apical region) in cochlear inner hair cells. Our results support a scenario where the singular organization of the outer hair cells' cortical cytoskeleton may have emerged from molecular networks initially involved in membrane trafficking, which were present near the apical junctional complex in the hair cells of mammalian ancestors and would have subsequently expanded to the entire lateral wall in outer hair cells.
Collapse
|
26
|
Cavero I, Holzgrefe H. 15 th Annual Meeting of the Safety Pharmacology Society: Focus on traditional sensory systems. J Pharmacol Toxicol Methods 2016; 83:55-71. [PMID: 27659846 DOI: 10.1016/j.vascn.2016.09.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 08/30/2016] [Accepted: 09/14/2016] [Indexed: 12/12/2022]
Abstract
INTRODUCTION This report summarizes and comments key talks on the five traditional senses (ear, vestibular system, vision, taste, olfaction, and touch) which were delivered during the 2015 Annual Meeting of the Safety Pharmacology (SP) Society. AREAS COVERED The functional observational battery (FOB) can detect major candidate drug liabilities only on ear, touch and vision. Anatomy, physiology, pharmacology, and pathology notions on each sensory system introduce speaker talks. Techniques for evaluating drug effects on hearing functions are reviewed. Nonclinical approaches to assess vestibular toxicity leading to balance deficits are presented. Retinal explants studied with multielectrode arrays allow the identification of drug liability sites on the retina. Routinely performed Safety Pharmacology assays are not powered to address candidate drug-induced disturbances on taste and smell. This weakness needs correction since unintended pharmacological impairment of these sensorial functions may have serious health consequences. Neuropathy produced by chemotherapeutic agents may cause multiple sensorial perception distortions. CONCLUSIONS Safety Pharmacology studies should ensure the safety of any candidate drug on the five sensorial systems.
Collapse
|
27
|
Wright GD, Horn HF. Three-dimensional image analysis of the mouse cochlea. Differentiation 2016; 91:104-8. [PMID: 26786803 DOI: 10.1016/j.diff.2016.01.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 01/06/2016] [Indexed: 12/31/2022]
Abstract
The mouse has proven to be an essential model system for studying hearing loss. A key advantage of the mouse is the ability to image the sensory cells in the cochlea. Many different protocols exist for the dissection and imaging of the cochlea. Here we describe a method that utilizes confocal imaging of whole-mount preparations followed by 3D analysis using the Imaris software. The 3D analysis of confocal stacks has been successfully used for investigating a number of mouse tissues and developmental processes. We propose that this method is also a valuable tool to analyze the cellular and tissue organization of the sensory hair cells in the cochlea.
Collapse
Affiliation(s)
- Graham D Wright
- Institute of Medical Biology, A(⁎)STAR, #06-06 Immunos, Singapore 138648, Singapore
| | - Henning F Horn
- Institute of Medical Biology, A(⁎)STAR, #06-06 Immunos, Singapore 138648, Singapore.
| |
Collapse
|
28
|
Yamashita T, Hakizimana P, Wu S, Hassan A, Jacob S, Temirov J, Fang J, Mellado-Lagarde M, Gursky R, Horner L, Leibiger B, Leijon S, Centonze VE, Berggren PO, Frase S, Auer M, Brownell WE, Fridberger A, Zuo J. Outer Hair Cell Lateral Wall Structure Constrains the Mobility of Plasma Membrane Proteins. PLoS Genet 2015; 11:e1005500. [PMID: 26352669 PMCID: PMC4564264 DOI: 10.1371/journal.pgen.1005500] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 08/14/2015] [Indexed: 12/02/2022] Open
Abstract
Nature’s fastest motors are the cochlear outer hair cells (OHCs). These sensory cells use a membrane protein, Slc26a5 (prestin), to generate mechanical force at high frequencies, which is essential for explaining the exquisite hearing sensitivity of mammalian ears. Previous studies suggest that Slc26a5 continuously diffuses within the membrane, but how can a freely moving motor protein effectively convey forces critical for hearing? To provide direct evidence in OHCs for freely moving Slc26a5 molecules, we created a knockin mouse where Slc26a5 is fused with YFP. These mice and four other strains expressing fluorescently labeled membrane proteins were used to examine their lateral diffusion in the OHC lateral wall. All five proteins showed minimal diffusion, but did move after pharmacological disruption of membrane-associated structures with a cholesterol-depleting agent and salicylate. Thus, our results demonstrate that OHC lateral wall structure constrains the mobility of plasma membrane proteins and that the integrity of such membrane-associated structures are critical for Slc26a5’s active and structural roles. The structural constraint of membrane proteins may exemplify convergent evolution of cellular motors across species. Our findings also suggest a possible mechanism for disorders of cholesterol metabolism with hearing loss such as Niemann-Pick Type C diseases. Nature’s fastest motor is the cochlear outer hair cell (OHC) in the mammalian inner ear. These cells can contract and elongate thousands of times per second. Slc26a5 (prestin) is the essential protein in the fast motor and resides in the plasma membrane of OHC lateral wall. Slc26a5 undergoes voltage-dependent conformational changes associated with the rapid changes in cell length to increase mammalian hearing sensitivity. However, it remains unclear how Slc26a5 transfers the force created to the entire cell. In this study, we show the importance of association between Slc26a5 and specialized membrane structures of the OHC lateral wall. Mobility of Slc26a5 was normally constrained in membrane-associated structures and disruption of these structures by a cholesterol depleting reagent and salicylate liberated Slc26a5 and four other heterologously expressed membrane proteins. These observations provide evidence that OHC lateral wall structure constrains the mobility of plasma membrane proteins and such membrane-associated structures are critical for Slc26a5’s functional roles. Our findings also shed light on other cellular motors across species and suggest a mechanism for cholesterol metabolic disorders in humans.
Collapse
Affiliation(s)
- Tetsuji Yamashita
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Pierre Hakizimana
- Department of Clinical and Experimental Medicine, Neuroscience, Linköping University, Linköping, Sweden
- Karolinska Institutet, Center for Hearing and Communication Research, Department of Clinical Science, Intervention, and Technology, M1, Karolinska University Hospital, Stockholm, Sweden
| | - Siva Wu
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Ahmed Hassan
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Stefan Jacob
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, Stockholm, Sweden
| | - Jamshid Temirov
- Cell and Tissue Imaging Facility, St Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Jie Fang
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Marcia Mellado-Lagarde
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
- School of Pharmacy and Biomolecular Sciences, University of Brighton, Brighton, United Kingdom
| | - Richard Gursky
- Cell and Tissue Imaging Facility, St Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Linda Horner
- Cell and Tissue Imaging Facility, St Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Barbara Leibiger
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, Stockholm, Sweden
| | - Sara Leijon
- Karolinska Institutet, Center for Hearing and Communication Research, Department of Clinical Science, Intervention, and Technology, M1, Karolinska University Hospital, Stockholm, Sweden
| | - Victoria E. Centonze
- Cell and Tissue Imaging Facility, St Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Per-Olof Berggren
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, Stockholm, Sweden
| | - Sharon Frase
- Cell and Tissue Imaging Facility, St Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Manfred Auer
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - William E. Brownell
- Bobby R. Alford Department of Otolaryngology, Head & Neck Surgery, and Department of Neuroscience, Baylor College of Medicine, Houston, Texas, United States of America
| | - Anders Fridberger
- Department of Clinical and Experimental Medicine, Neuroscience, Linköping University, Linköping, Sweden
- Karolinska Institutet, Center for Hearing and Communication Research, Department of Clinical Science, Intervention, and Technology, M1, Karolinska University Hospital, Stockholm, Sweden
| | - Jian Zuo
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
- * E-mail:
| |
Collapse
|
29
|
Richardson RT, Atkinson PJ. Atoh1 gene therapy in the cochlea for hair cell regeneration. Expert Opin Biol Ther 2015; 15:417-30. [DOI: 10.1517/14712598.2015.1009889] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
30
|
Generation of Atoh1-rtTA transgenic mice: a tool for inducible gene expression in hair cells of the inner ear. Sci Rep 2014; 4:6885. [PMID: 25363458 PMCID: PMC4217099 DOI: 10.1038/srep06885] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Accepted: 10/13/2014] [Indexed: 11/09/2022] Open
Abstract
Atoh1 is a basic helix-loop-helix transcription factor that controls differentiation of hair cells (HCs) in the inner ear and its enhancer region has been used to create several HC-specific mouse lines. We generated a transgenic tetracycline-inducible mouse line (called Atoh1-rtTA) using the Atoh1 enhancer to drive expression of the reverse tetracycline transactivator (rtTA) protein and human placental alkaline phosphatase. Presence of the transgene was confirmed by alkaline phosphatase staining and rtTA activity was measured using two tetracycline operator (TetO) reporter alleles with doxycycline administered between postnatal days 0–3. This characterization of five founder lines demonstrated that Atoh1-rtTA is expressed in the majority of cochlear and utricular HCs. Although the tetracycline-inducible system is thought to produce transient changes in gene expression, reporter positive HCs were still observed at 6 weeks of age. To confirm that Atoh1-rtTA activity was specific to Atoh1-expressing cells, we also analyzed the cerebellum and found rtTA-driven reporter expression in cerebellar granule neuron precursor cells. The Atoh1-rtTA mouse line provides a powerful tool for the field and can be used in combination with other existing Cre recombinase mouse lines to manipulate expression of multiple genes at different times in the same animal.
Collapse
|
31
|
Maeda E, Tsutsumi T, Kitamura N, Kurokawa T, Ping Gong J, Yasuda K, Ohashi T. Significant increase in Young's modulus of ATDC5 cells during chondrogenic differentiation induced by PAMPS/PDMAAm double-network gel: comparison with induction by insulin. J Biomech 2014; 47:3408-14. [PMID: 25110167 DOI: 10.1016/j.jbiomech.2014.07.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Revised: 07/08/2014] [Accepted: 07/16/2014] [Indexed: 12/31/2022]
Abstract
A double-network (DN) gel, which was composed of poly(2-acrylamido-2-methylpropanesulfonic acid) and poly(N,N'-dimethyl acrylamide) (PAMPS/PDMAAm), has the potential to induce chondrogenesis both in vitro and in vivo. The present study investigated the biomechanical and biological responses of chondrogenic progenitor ATDC5 cells cultured on the DN gel. ATDC5 cells were cultured on a polystyrene surface without insulin (Culture 1) and with insulin (Culture 2), and on the DN gel without insulin (Culture 3). The cultured cells were evaluated using micropipette aspiration for cell Young's modulus and qPCR for gene expression of chondrogenic and actin organization markers on days 3, 7 and 14. On day 3, the cells in Culture 3 formed nodules, in which the cells exhibited an actin cortical layer inside them, and gene expression of type-II collagen, aggrecan, and SOX9 was significantly higher in Culture 3 than Cultures 1 and 2 (p<0.05). Young's modulus in Culture 3 was significantly higher than that in Culture 1 throughout the testing period (p<0.05) and that in Culture 2 on day 14 (p<0.01). There was continuous expression of actin organization markers in Culture 3. This study highlights that the cells on the DN gel increased the modulus and mRNA expression of chondrogenic markers at an earlier time point with a greater magnitude compared to those on the polystyrene surface with insulin. This study also demonstrates a possible strong interrelation among alteration of cell mechanical properties, changes in actin organization and the induction of chondrogenic differentiation.
Collapse
Affiliation(s)
- Eijiro Maeda
- Laboratory of Micro and Nanomechanics, Division of Human Mechanical Systems and Design, Graduate School of Engineering, Hokkaido University, N13 W8, Kita-ku, Sapporo, Hokkaido 060-8628, Japan.
| | - Takehiro Tsutsumi
- Laboratory of Micro and Nanomechanics, Division of Human Mechanical Systems and Design, Graduate School of Engineering, Hokkaido University, N13 W8, Kita-ku, Sapporo, Hokkaido 060-8628, Japan
| | - Nobuto Kitamura
- Department of Sports Medicine and Joint Surgery, Graduate School of Medicine, Hokkaido University, N15 W7, Kita-ku, Sapporo, Hokkaido 060-8638, Japan
| | - Takayuki Kurokawa
- Laboratory of Soft and Wet Matter, Department of Advanced Transdisciplinary Sciences, Faculty of Advanced Life Science, Hokkaido University, N10, W8, Kita-ku, Sapporo, Hokkaido 060-0810, Japan
| | - Jian Ping Gong
- Laboratory of Soft and Wet Matter, Department of Advanced Transdisciplinary Sciences, Faculty of Advanced Life Science, Hokkaido University, N10, W8, Kita-ku, Sapporo, Hokkaido 060-0810, Japan
| | - Kazunori Yasuda
- Department of Sports Medicine and Joint Surgery, Graduate School of Medicine, Hokkaido University, N15 W7, Kita-ku, Sapporo, Hokkaido 060-8638, Japan
| | - Toshiro Ohashi
- Laboratory of Micro and Nanomechanics, Division of Human Mechanical Systems and Design, Graduate School of Engineering, Hokkaido University, N13 W8, Kita-ku, Sapporo, Hokkaido 060-8628, Japan
| |
Collapse
|
32
|
Cox BC, Chai R, Lenoir A, Liu Z, Zhang L, Nguyen DH, Chalasani K, Steigelman KA, Fang J, Rubel EW, Cheng AG, Zuo J. Spontaneous hair cell regeneration in the neonatal mouse cochlea in vivo. Development 2014; 141:816-29. [PMID: 24496619 DOI: 10.1242/dev.103036] [Citation(s) in RCA: 231] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Loss of cochlear hair cells in mammals is currently believed to be permanent, resulting in hearing impairment that affects more than 10% of the population. Here, we developed two genetic strategies to ablate neonatal mouse cochlear hair cells in vivo. Both Pou4f3(DTR/+) and Atoh1-CreER™; ROSA26(DTA/+) alleles allowed selective and inducible hair cell ablation. After hair cell loss was induced at birth, we observed spontaneous regeneration of hair cells. Fate-mapping experiments demonstrated that neighboring supporting cells acquired a hair cell fate, which increased in a basal to apical gradient, averaging over 120 regenerated hair cells per cochlea. The normally mitotically quiescent supporting cells proliferated after hair cell ablation. Concurrent fate mapping and labeling with mitotic tracers showed that regenerated hair cells were derived by both mitotic regeneration and direct transdifferentiation. Over time, regenerated hair cells followed a similar pattern of maturation to normal hair cell development, including the expression of prestin, a terminal differentiation marker of outer hair cells, although many new hair cells eventually died. Hair cell regeneration did not occur when ablation was induced at one week of age. Our findings demonstrate that the neonatal mouse cochlea is capable of spontaneous hair cell regeneration after damage in vivo. Thus, future studies on the neonatal cochlea might shed light on the competence of supporting cells to regenerate hair cells and on the factors that promote the survival of newly regenerated hair cells.
Collapse
Affiliation(s)
- Brandon C Cox
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
The retinal phenotype of Usher syndrome: pathophysiological insights from animal models. C R Biol 2014; 337:167-77. [PMID: 24702843 DOI: 10.1016/j.crvi.2013.12.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Accepted: 12/03/2013] [Indexed: 01/26/2023]
Abstract
The Usher syndrome (USH) is the most prevalent cause of inherited deaf-blindness. Three clinical subtypes, USH1-3, have been defined, and ten USH genes identified. The hearing impairment due to USH gene defects has been shown to result from improper organisation of the hair bundle, the sound receptive structure of sensory hair cells. In contrast, the cellular basis of the visual defect is less well understood as this phenotype is absent in almost all the USH mouse models that faithfully mimic the human hearing impairment. Structural and molecular interspecies discrepancies regarding photoreceptor calyceal processes and the association with the distribution of USH1 proteins have recently been unravelled, and have led to the conclusion that a defect in the USH1 protein complex-mediated connection between the photoreceptor outer segment and the surrounding calyceal processes (in both rods and cones), and the inner segment (in rods only), probably causes the USH1 retinal dystrophy in humans.
Collapse
|
34
|
Papal S, Cortese M, Legendre K, Sorusch N, Dragavon J, Sahly I, Shorte S, Wolfrum U, Petit C, El-Amraoui A. The giant spectrin βV couples the molecular motors to phototransduction and Usher syndrome type I proteins along their trafficking route. Hum Mol Genet 2013; 22:3773-88. [PMID: 23704327 DOI: 10.1093/hmg/ddt228] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Mutations in the myosin VIIa gene cause Usher syndrome type IB (USH1B), characterized by deaf-blindness. A delay of opsin trafficking has been observed in the retinal photoreceptor cells of myosin VIIa-deficient mice. We identified spectrin βV, the mammalian β-heavy spectrin, as a myosin VIIa- and rhodopsin-interacting partner in photoreceptor cells. Spectrin βV displays a polarized distribution from the Golgi apparatus to the base of the outer segment, which, unlike that of other β spectrins, matches the trafficking route of opsin and other phototransduction proteins. Formation of spectrin βV-rhodopsin complex could be detected in the differentiating photoreceptors as soon as their outer segment emerges. A failure of the spectrin βV-mediated coupling between myosin VIIa and opsin molecules thus probably accounts for the opsin transport delay in myosin VIIa-deficient mice. We showed that spectrin βV also associates with two USH1 proteins, sans (USH1G) and harmonin (USH1C). Spectrins are supposed to function as heteromers of α and β subunits, but fluorescence resonance energy transfer and in vitro binding experiments indicated that spectrin βV can also form homodimers, which likely supports its αII-independent βV functions. Finally, consistent with its distribution along the connecting cilia axonemes, spectrin βV binds to several subunits of the microtubule-based motor proteins, kinesin II and the dynein complex. We therefore suggest that spectrin βV homomers couple some USH1 proteins, opsin and other phototransduction proteins to both actin- and microtubule-based motors, thereby contributing to their transport towards the photoreceptor outer disks.
Collapse
Affiliation(s)
- Samantha Papal
- Institut Pasteur, Unité de génétique et physiologie de l'audition, Paris, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Cimerman J, Waldhaus J, Harasztosi C, Duncker SV, Dettling J, Heidrych P, Bress A, Gampe-Braig C, Frank G, Gummer AW, Oliver D, Knipper M, Zimmermann U. Generation of somatic electromechanical force by outer hair cells may be influenced by prestin-CASK interaction at the basal junction with the Deiter's cell. Histochem Cell Biol 2013; 140:119-35. [PMID: 23542924 DOI: 10.1007/s00418-013-1085-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/08/2013] [Indexed: 01/06/2023]
Abstract
The motor protein, prestin, situated in the basolateral plasma membrane of cochlear outer hair cells (OHCs), underlies the generation of somatic, voltage-driven mechanical force, the basis for the exquisite sensitivity, frequency selectivity and dynamic range of mammalian hearing. The molecular and structural basis of the ontogenetic development of this electromechanical force has remained elusive. The present study demonstrates that this force is significantly reduced when the immature subcellular distribution of prestin found along the entire plasma membrane persists into maturity, as has been described in previous studies under hypothyroidism. This observation suggests that cochlear amplification is critically dependent on the surface expression and distribution of prestin. Searching for proteins involved in organizing the subcellular localization of prestin to the basolateral plasma membrane, we identified cochlear expression of a novel truncated prestin splice isoform named prestin 9b (Slc26A5d) that contains a putative PDZ domain-binding motif. Using prestin 9b as the bait in a yeast two-hybrid assay, we identified a calcium/calmodulin-dependent serine protein kinase (CASK) as an interaction partner of prestin. Co-immunoprecipitation assays showed that CASK and prestin 9b can interact with full-length prestin. CASK was co-localized with prestin in a membrane domain where prestin-expressing OHC membrane abuts prestin-free OHC membrane, but was absent from this area for thyroid hormone deficiency. These findings suggest that CASK and the truncated prestin splice isoform contribute to confinement of prestin to the basolateral region of the plasma membrane. By means of such an interaction, the basal junction region between the OHC and its Deiter's cell may contribute to efficient generation of somatic electromechanical force.
Collapse
MESH Headings
- Animals
- Anion Transport Proteins/analysis
- Anion Transport Proteins/genetics
- Anion Transport Proteins/metabolism
- Cells, Cultured
- Electricity
- Female
- Guanylate Kinases/analysis
- Guanylate Kinases/genetics
- Guanylate Kinases/metabolism
- HEK293 Cells
- Hair Cells, Auditory, Outer/chemistry
- Hair Cells, Auditory, Outer/cytology
- Hair Cells, Auditory, Outer/physiology
- Humans
- Immunohistochemistry
- Mechanical Phenomena
- Mice
- Mice, Inbred Strains
- Molecular Motor Proteins/analysis
- Molecular Motor Proteins/genetics
- Molecular Motor Proteins/metabolism
- Rats
- Rats, Wistar
- Sulfate Transporters
- Vestibular Nucleus, Lateral/chemistry
- Vestibular Nucleus, Lateral/cytology
- Vestibular Nucleus, Lateral/metabolism
Collapse
Affiliation(s)
- Jelka Cimerman
- Department of Otolaryngology, Tübingen Hearing Research Centre (THRC), Molecular Physiology of Hearing, University of Tübingen, Tübingen, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Cao H, Yin X, Cao Y, Jin Y, Wang S, Kong Y, Chen Y, Gao J, Heller S, Xu Z. FCHSD1 and FCHSD2 are expressed in hair cell stereocilia and cuticular plate and regulate actin polymerization in vitro. PLoS One 2013; 8:e56516. [PMID: 23437151 PMCID: PMC3577914 DOI: 10.1371/journal.pone.0056516] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Accepted: 01/10/2013] [Indexed: 12/03/2022] Open
Abstract
Mammalian FCHSD1 and FCHSD2 are homologous proteins containing an amino-terminal F-BAR domain and two SH3 domains near their carboxyl-termini. We report here that FCHSD1 and FCHSD2 are expressed in mouse cochlear sensory hair cells. FCHSD1 mainly localizes to the cuticular plate, whereas FCHSD2 mainly localizes along the stereocilia in a punctuate pattern. Nervous Wreck (Nwk), the Drosophila ortholog of FCHSD1 and FCHSD2, has been shown to bind Wsp and play an important role in F-actin assembly. We show that, like its Drosophila counterpart, FCHSD2 interacts with WASP and N-WASP, the mammalian orthologs of Drosophila Wsp, and stimulates F-actin assembly in vitro. In contrast, FCHSD1 doesn’t bind WASP or N-WASP, and can’t stimulate F-actin assembly when tested in vitro. We found, however, that FCHSD1 binds via its F-BAR domain to the SH3 domain of Sorting Nexin 9 (SNX9), a well characterized BAR protein that has been shown to promote WASP-Arp2/3-dependent F-actin polymerization. FCHSD1 greatly enhances SNX9’s WASP-Arp2/3-dependent F-actin polymerization activity. In hair cells, SNX9 was detected in the cuticular plate, where it colocalizes with FCHSD1. Our results suggest that FCHSD1 and FCHSD2 could modulate F-actin assembly or maintenance in hair cell stereocilia and cuticular plate.
Collapse
Affiliation(s)
- Huiren Cao
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, Institute of Developmental Biology, School of Life Sciences, Shandong University, Jinan, Shandong, People’s Republic of China
| | - Xiaolei Yin
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, Institute of Developmental Biology, School of Life Sciences, Shandong University, Jinan, Shandong, People’s Republic of China
| | - Yujie Cao
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, Institute of Developmental Biology, School of Life Sciences, Shandong University, Jinan, Shandong, People’s Republic of China
| | - Yecheng Jin
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, Institute of Developmental Biology, School of Life Sciences, Shandong University, Jinan, Shandong, People’s Republic of China
| | - Shan Wang
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, Institute of Developmental Biology, School of Life Sciences, Shandong University, Jinan, Shandong, People’s Republic of China
| | - Yanhui Kong
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, Institute of Developmental Biology, School of Life Sciences, Shandong University, Jinan, Shandong, People’s Republic of China
| | - Yuexing Chen
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, Institute of Developmental Biology, School of Life Sciences, Shandong University, Jinan, Shandong, People’s Republic of China
| | - Jiangang Gao
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, Institute of Developmental Biology, School of Life Sciences, Shandong University, Jinan, Shandong, People’s Republic of China
| | - Stefan Heller
- Departments of Otolaryngology – Head & Neck Surgery and Molecular & Cellular Physiology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Zhigang Xu
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, Institute of Developmental Biology, School of Life Sciences, Shandong University, Jinan, Shandong, People’s Republic of China
- * E-mail:
| |
Collapse
|
37
|
Sahly I, Dufour E, Schietroma C, Michel V, Bahloul A, Perfettini I, Pepermans E, Estivalet A, Carette D, Aghaie A, Ebermann I, Lelli A, Iribarne M, Hardelin JP, Weil D, Sahel JA, El-Amraoui A, Petit C. Localization of Usher 1 proteins to the photoreceptor calyceal processes, which are absent from mice. ACTA ACUST UNITED AC 2012; 199:381-99. [PMID: 23045546 PMCID: PMC3471240 DOI: 10.1083/jcb.201202012] [Citation(s) in RCA: 134] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The mechanisms underlying retinal dystrophy in Usher syndrome type I (USH1) remain unknown because mutant mice lacking any of the USH1 proteins-myosin VIIa, harmonin, cadherin-23, protocadherin-15, sans-do not display retinal degeneration. We found here that, in macaque photoreceptor cells, all USH1 proteins colocalized at membrane interfaces (i) between the inner and outer segments in rods and (ii) between the microvillus-like calyceal processes and the outer segment basolateral region in rods and cones. This pattern, conserved in humans and frogs, was mediated by the formation of an USH1 protein network, which was associated with the calyceal processes from the early embryonic stages of outer segment growth onwards. By contrast, mouse photoreceptors lacked calyceal processes and had no USH1 proteins at the inner-outer segment interface. We suggest that USH1 proteins form an adhesion belt around the basolateral region of the photoreceptor outer segment in humans, and that defects in this structure cause the retinal degeneration in USH1 patients.
Collapse
Affiliation(s)
- Iman Sahly
- Institut de la vision, Syndrome de Usher et autres Atteintes Rétino-Cochléaires, 75012 Paris, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Yamashita T, Fang J, Gao J, Yu Y, Lagarde MM, Zuo J. Normal hearing sensitivity at low-to-middle frequencies with 34% prestin-charge density. PLoS One 2012; 7:e45453. [PMID: 23029017 PMCID: PMC3448665 DOI: 10.1371/journal.pone.0045453] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Accepted: 08/22/2012] [Indexed: 11/24/2022] Open
Abstract
The mammalian outer hair cells (OHCs) provide a positive mechanical feedback to enhance the cochlea's hearing sensitivity and frequency selectivity. Although the OHC-specific, somatic motor protein prestin is required for cochlear amplification, it remains unclear whether prestin can provide sufficient cycle-by-cycle feedback. In cochlear mechanical modeling, varying amounts of OHC motor activity should provide varying degrees of feedback efficiency to adjust the gain of cochlear amplifier at resonant frequencies. Here we created and characterized two new prestin-hypomorphic mouse models with reduced levels of wild-type prestin. OHCs from these mice exhibited length, total elementary charge movement (Qmax), charge density, and electromotility intermediate between those of wild-type and prestin-null mice. Remarkably, measurements of auditory brainstem responses and distortion product otoacoustic emissions from these mice displayed wild-type like hearing sensitivities at 4–22 kHz. These results indicate that as low as 26.7% Qmax, 34.0% charge density and 44.0% electromotility in OHCs were sufficient for wild-type-like hearing sensitivity in mice at 4–22 kHz, and that these in vitro parameters of OHCs did not correlate linearly with the feedback efficiency for in vivo gain of the cochlear amplifier. Our results thus provide valuable data for modeling cochlear mechanics and will stimulate further mechanistic analysis of the cochlear amplifier.
Collapse
Affiliation(s)
- Tetsuji Yamashita
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, Tennessee, United States of America
| | - Jie Fang
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, Tennessee, United States of America
| | - Jiangang Gao
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, Tennessee, United States of America
| | - Yiling Yu
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, Tennessee, United States of America
| | - Marcia Mellado Lagarde
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, Tennessee, United States of America
| | - Jian Zuo
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, Tennessee, United States of America
- * E-mail:
| |
Collapse
|
39
|
Age-dependent in vivo conversion of mouse cochlear pillar and Deiters' cells to immature hair cells by Atoh1 ectopic expression. J Neurosci 2012; 32:6600-10. [PMID: 22573682 DOI: 10.1523/jneurosci.0818-12.2012] [Citation(s) in RCA: 156] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Unlike nonmammalian vertebrates, mammals cannot convert inner ear cochlear supporting cells (SCs) into sensory hair cells (HCs) after damage, thus causing permanent deafness. Here, we achieved in vivo conversion of two SC subtypes, pillar cells (PCs) and Deiters' cells (DCs), into HCs by inducing targeted expression of Atoh1 at neonatal and juvenile ages using novel mouse models. The conversion only occurred in ∼10% of PCs and DCs with ectopic Atoh1 expression and started with reactivation of endogenous Atoh1 followed by expression of 11 HC and synaptic markers, a process that took approximately 3 weeks in vivo. These new HCs resided in the outer HC region, formed stereocilia, contained mechanoelectrical transduction channels, and survived for >2 months in vivo; however, they surprisingly lacked prestin and oncomodulin expression and mature HC morphology. In contrast, adult PCs and DCs no longer responded to ectopic Atoh1 expression, even after outer HC damage. Finally, permanent Atoh1 expression in endogenous HCs did not affect prestin expression but caused cell loss of mature HCs. Together, our results demonstrate that in vivo conversion of PCs and DCs into immature HCs by Atoh1 is age dependent and resembles normal HC development. Therefore, combined expression of Atoh1 with additional factors holds therapeutic promise to convert PCs and DCs into functional HCs in vivo for regenerative purposes.
Collapse
|
40
|
Liu Z, Owen T, Fang J, Srinivasan RS, Zuo J. In vivo Notch reactivation in differentiating cochlear hair cells induces Sox2 and Prox1 expression but does not disrupt hair cell maturation. Dev Dyn 2012; 241:684-96. [PMID: 22354878 DOI: 10.1002/dvdy.23754] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/27/2012] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Notch signaling is active in mouse cochlear prosensory progenitors but declines in differentiating sensory hair cells (HCs). Overactivation of the Notch1 intracellular domain (NICD) in progenitors blocks HC fate commitment and/or differentiation. However, it is not known whether reactivation of NICD in differentiating HCs also interrupts their developmental program and reactivates its downstream targets. RESULTS By analyzing Atoh1(CreER+) ; Rosa26-NICD(loxp/+) or Atoh1(CreER+) ; Rosa26-NICD(loxp/+) ; RBP-J(loxp/loxp) mice, we demonstrated that ectopic NICD in differentiating HCs caused reactivation of Sox2 and Prox1 in an RBP-J-dependent manner. Interestingly, Prox1 reactivation was exclusive to outer HCs (OHCs). In addition, lineage tracing analysis of Prox1(CreER/+) ; Rosa26-EYFP(loxp/+) and Prox1(CreEGFP/+) ; Rosa26-EYFP(loxp/+) mice showed that nearly all HCs experiencing Prox1 expression were OHCs. Surprisingly, these HCs still matured normally with expression of prestin, wild-type-like morphology, and uptake of FM4-64FX dye at adult ages. CONCLUSIONS Our results suggest that the developmental program of cochlear differentiating HCs is refractory to Notch reactivation and that Notch is an upstream regulator of Sox2 and Prox1 in cochlear development. In addition, our results support that Sox2 and Prox1 should not be the main blockers for terminal differentiation of HCs newly regenerated from postnatal cochlear SCs that still maintain Sox2 and Prox1 expression.
Collapse
Affiliation(s)
- Zhiyong Liu
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | | | | | | | | |
Collapse
|
41
|
Zallocchi M, Meehan DT, Delimont D, Rutledge J, Gratton MA, Flannery J, Cosgrove D. Role for a novel Usher protein complex in hair cell synaptic maturation. PLoS One 2012; 7:e30573. [PMID: 22363448 PMCID: PMC3281840 DOI: 10.1371/journal.pone.0030573] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2011] [Accepted: 12/22/2011] [Indexed: 12/22/2022] Open
Abstract
The molecular mechanisms underlying hair cell synaptic maturation are not well understood. Cadherin-23 (CDH23), protocadherin-15 (PCDH15) and the very large G-protein coupled receptor 1 (VLGR1) have been implicated in the development of cochlear hair cell stereocilia, while clarin-1 has been suggested to also play a role in synaptogenesis. Mutations in CDH23, PCDH15, VLGR1 and clarin-1 cause Usher syndrome, characterized by congenital deafness, vestibular dysfunction and retinitis pigmentosa. Here we show developmental expression of these Usher proteins in afferent spiral ganglion neurons and hair cell synapses. We identify a novel synaptic Usher complex comprised of clarin-1 and specific isoforms of CDH23, PCDH15 and VLGR1. To establish the in vivo relevance of this complex, we performed morphological and quantitative analysis of the neuronal fibers and their synapses in the Clrn1−/− mouse, which was generated by incomplete deletion of the gene. These mice showed a delay in neuronal/synaptic maturation by both immunostaining and electron microscopy. Analysis of the ribbon synapses in Ames waltzerav3J mice also suggests a delay in hair cell synaptogenesis. Collectively, these results show that, in addition to the well documented role for Usher proteins in stereocilia development, Usher protein complexes comprised of specific protein isoforms likely function in synaptic maturation as well.
Collapse
Affiliation(s)
- Marisa Zallocchi
- Boys Town National Research Hospital, Omaha, Nebraska, United States of America
| | - Daniel T. Meehan
- Boys Town National Research Hospital, Omaha, Nebraska, United States of America
| | - Duane Delimont
- Boys Town National Research Hospital, Omaha, Nebraska, United States of America
| | - Joseph Rutledge
- Otolaryngology-Head, Neck Surgery, St Louis University, St Louis, Missouri, United States of America
| | - Michael Anne Gratton
- Otolaryngology-Head, Neck Surgery, St Louis University, St Louis, Missouri, United States of America
| | - John Flannery
- Helen Wills Neuroscience Institute, University of California, Berkeley, California, United States of America
| | - Dominic Cosgrove
- Boys Town National Research Hospital, Omaha, Nebraska, United States of America
- University of Nebraska Medical Center, Omaha, Nebraska, United States of America
- * E-mail:
| |
Collapse
|
42
|
Fang J, Zhang WC, Yamashita T, Gao J, Zhu MS, Zuo J. Outer hair cell-specific prestin-CreERT2 knockin mouse lines. Genesis 2012; 50:124-31. [PMID: 21954035 DOI: 10.1002/dvg.20810] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Revised: 09/14/2011] [Accepted: 09/21/2011] [Indexed: 11/06/2022]
Abstract
Outer hair cells (OHCs) in the cochlea are crucial for the remarkable hearing sensitivity and frequency tuning. To understand OHC physiology and pathology, it is imperative to use mouse genetic tools to manipulate gene expression specifically in OHCs. Here, we generated two prestin knockin mouse lines: (1) the prestin-CreERT2 line, with an internal ribosome entry site-CreERT2-FRT-Neo-FRT cassette inserted into the prestin locus after the stop codon, and (2) the prestin-CreERT2-NN line, with the FRT-Neo-FRT removed subsequently. We characterized the inducible Cre activity of both lines by crossing them with the reporter lines CAG-eGFP and Ai6. Cre activity was induced with tamoxifen at various postnatal ages and only detected in OHCs, resembling the endogenous prestin expression pattern. Moreover, prestin-CreERT2+/-(heterozygotes) and +/+(homozygotes) as well as prestin-CreERT2-NN+/-mice displayed normal hearing. These two prestin-CreERT2 mouse lines are therefore useful tools to analyze gene function in OHCs in vivo.
Collapse
Affiliation(s)
- Jie Fang
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | | | | | | | | | | |
Collapse
|
43
|
Sharma AK, Rigby AC, Alper SL. STAS domain structure and function. Cell Physiol Biochem 2011; 28:407-22. [PMID: 22116355 PMCID: PMC3709189 DOI: 10.1159/000335104] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/28/2011] [Indexed: 12/23/2022] Open
Abstract
Pendrin shares with nearly all SLC26/SulP anion transporters a carboxy-terminal cytoplasmic segment organized around a Sulfate Transporter and Anti-Sigma factor antagonist (STAS) domain. STAS domains of divergent amino acid sequence exhibit a conserved fold of 4 β strands interspersed among 5 α helices. The first STAS domain proteins studied were single-domain anti-sigma factor antagonists (anti-anti-σ). These anti-anti-σ indirectly stimulate bacterial RNA polymerase by inactivating inhibitory anti-σ kinases, liberating σ factors to direct specific transcription of target genes or operons. Some STAS domains are nucleotide-binding phosphoproteins or nucleotidases. Others are interaction/transduction modules within multidomain sensors of light, oxygen and other gasotransmitters, cyclic nucleotides, inositol phosphates, and G proteins. Additional multidomain STAS protein sequences suggest functions in sensing, metabolism, or transport of nutrients such as sugars, amino acids, lipids, anions, vitamins, or hydrocarbons. Still other multidomain STAS polypeptides include histidine and serine/threonine kinase domains and ligand-activated transcription factor domains. SulP/SLC26 STAS domains and adjacent sequences interact with other transporters, cytoskeletal scaffolds, and with enzymes metabolizing transported anion substrates, forming putative metabolons. STAS domains are central to membrane targeting of many SulP/SLC26 anion transporters, and STAS domain mutations are associated with at least three human recessive diseases. This review summarizes STAS domain structure and function.
Collapse
Affiliation(s)
- Alok K Sharma
- Molecular and Vascular Medicine Division, Beth Israel Deaconess Medical Center, Department of Medicine, Harvard Medical School, Boston, MA 02215, USA.
| | | | | |
Collapse
|
44
|
Machnicka B, Grochowalska R, Bogusławska DM, Sikorski AF, Lecomte MC. Spectrin-based skeleton as an actor in cell signaling. Cell Mol Life Sci 2011; 69:191-201. [PMID: 21877118 PMCID: PMC3249148 DOI: 10.1007/s00018-011-0804-5] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2011] [Revised: 08/08/2011] [Accepted: 08/10/2011] [Indexed: 01/12/2023]
Abstract
This review focuses on the recent advances in functions of spectrins in non-erythroid cells. We discuss new data concerning the commonly known role of the spectrin-based skeleton in control of membrane organization, stability and shape, and tethering protein mosaics to the cellular motors and to all major filament systems. Particular effort has been undertaken to highlight recent advances linking spectrin to cell signaling phenomena and its participation in signal transduction pathways in many cell types.
Collapse
Affiliation(s)
- B Machnicka
- University of Zielona Góra, Zielona Góra, Poland
| | | | | | | | | |
Collapse
|
45
|
Song Y, Antoniou C, Memic A, Kay BK, Fung LWM. Apparent structural differences at the tetramerization region of erythroid and nonerythroid beta spectrin as discriminated by phage displayed scFvs. Protein Sci 2011; 20:867-79. [PMID: 21412925 DOI: 10.1002/pro.617] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2010] [Revised: 01/25/2011] [Accepted: 02/28/2011] [Indexed: 01/26/2023]
Abstract
We have screened a human immunoglobulin single-chain variable fragment (scFv) phage library against the C-terminal tetramerization regions of erythroid and nonerythroid beta spectrin (βI-C1 and βII-C1, respectively) to explore the structural uniqueness of erythroid and nonerythroid β-spectrin isoforms. We have identified interacting scFvs, with clones "G5" and "A2" binding only to βI-C1, and clone "F11" binding only to βII-C1. The K(d) values, estimated by competitive enzyme-linked immunosorbent assay, of these scFvs with their target spectrin proteins were 0.1-0.3 μM. A more quantitative K(d) value from isothermal titration calorimetry experiments with the recombinant G5 and βI-C1 was 0.15 μM. The α-spectrin fragments (model proteins), αI-N1 and αII-N1, competed with the βI-C1, or βII-C1, binding scFvs, with inhibitory concentration (IC(50) ) values of ∼50 μM for αI-N1, and ∼0.5 μM for αII-N1. Our predicted structures of βI-C1 and βII-C1 suggest that the Helix B' of the C-terminal partial domain of βI differs from that of βII. Consequently, an unstructured region downstream of Helix B' in βI may interact specifically with the unstructured, complementarity determining region H1 of G5 or A2 scFv. The corresponding region in βII was helical, and βII did not bind G5 scFv. Our results suggest that it is possible for cellular proteins to differentially associate with the C-termini of different β-spectrin isoforms to regulate α- and β-spectrin association to form functional spectrin tetramers, and may sort β-spectrin isoforms to their specific cellular localizations.
Collapse
Affiliation(s)
- Yuanli Song
- Department of Chemistry, University of Illinois at Chicago, Chicago, Illinois 60607, USA
| | | | | | | | | |
Collapse
|
46
|
Mahendrasingam S, Beurg M, Fettiplace R, Hackney CM. The ultrastructural distribution of prestin in outer hair cells: a post-embedding immunogold investigation of low-frequency and high-frequency regions of the rat cochlea. Eur J Neurosci 2010; 31:1595-605. [PMID: 20525072 DOI: 10.1111/j.1460-9568.2010.07182.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Outer hair cells (OHCs) of the mammalian cochlea besides being sensory receptors also generate force to amplify sound-induced displacements of the basilar membrane thus enhancing auditory sensitivity and frequency selectivity. This force generation is attributable to the voltage-dependent contractility of the OHCs underpinned by the motile protein, prestin. Prestin is located in the basolateral wall of OHCs and is thought to alter its conformation in response to changes in membrane potential. The precise ultrastructural distribution of prestin was determined using post-embedding immunogold labelling and the density of the labelling was compared in low-frequency and high-frequency regions of the cochlea. The labelling was confined to the basolateral plasma membrane in hearing rats but declined towards the base of the cells below the nucleus. In pre-hearing animals, prestin labelling was lower in the membrane and also occurred in the cytoplasm, presumably reflecting its production during development. The densities of labelling in low-frequency and high-frequency regions of the cochlea were similar. Non-linear capacitance, thought to reflect charge movements during conformational changes in prestin, was measured in OHCs in isolated cochlear coils of hearing animals. The OHC non-linear capacitance in the same regions assayed in the immunolabelling was also similar in both the apex and base, with charge densities of 10,000/microm(2) expressed relative to the lateral membrane area. The results suggest that prestin density, and by implication force production, is similar in low-frequency and high-frequency OHCs.
Collapse
|
47
|
Gilden J, Krummel MF. Control of cortical rigidity by the cytoskeleton: emerging roles for septins. Cytoskeleton (Hoboken) 2010; 67:477-86. [PMID: 20540086 PMCID: PMC2906656 DOI: 10.1002/cm.20461] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2010] [Accepted: 05/21/2010] [Indexed: 12/13/2022]
Abstract
The cortex is the outermost region of the cell, comprising all of the elements from the plasma membrane to the cortical actin cytoskeleton that cooperate to maintain the cell's shape and topology. In eukaryotes without cell walls, this cortex governs the contact between their plasma membranes and the environment and thereby influences cell shape, motility, and signaling. It is therefore of considerable interest to understand how cells control their cortices, both globally and with respect to small subdomains. Here we review the current understanding of this control, including the regulation of cell shape by balances of outward hydrostatic pressure and cortical tension. The actomyosin cytoskeleton is the canonical regulator of cortical rigidity and indeed many would consider the cortex to comprise the actin cortex nearly exclusively. However, this actomyosin array is intimately linked to the membrane, for example via ERM and PIP2 proteins. Additionally, the lipid membrane likely undergoes rigidification by other players, such as Bin-Amphiphysin-Rvs proteins. Recent data also indicates that the septin cytoskeleton may play a formidable and more direct role in stabilization of membranes, particularly in contexts where cells receive limited external stabilization from their environments. Here, we review how septins may play this role, drawing on their physical form, their ability to directly bind and modify membranes and actomyosin, and their interactions with vesicular machinery. Deficiencies and alterations in the nature of the septin cytoskeleton may thus be relevant in multiple disease settings.
Collapse
Affiliation(s)
- Julia Gilden
- Department of Pathology, University of California at San Francisco, San Francisco, California 94143-0511, USA
| | | |
Collapse
|
48
|
Baines AJ. The spectrin-ankyrin-4.1-adducin membrane skeleton: adapting eukaryotic cells to the demands of animal life. PROTOPLASMA 2010; 244:99-131. [PMID: 20668894 DOI: 10.1007/s00709-010-0181-1] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2010] [Accepted: 07/05/2010] [Indexed: 05/29/2023]
Abstract
The cells in animals face unique demands beyond those encountered by their unicellular eukaryotic ancestors. For example, the forces engendered by the movement of animals places stresses on membranes of a different nature than those confronting free-living cells. The integration of cells into tissues, as well as the integration of tissue function into whole animal physiology, requires specialisation of membrane domains and the formation of signalling complexes. With the evolution of mammals, the specialisation of cell types has been taken to an extreme with the advent of the non-nucleated mammalian red blood cell. These and other adaptations to animal life seem to require four proteins--spectrin, ankyrin, 4.1 and adducin--which emerged during eumetazoan evolution. Spectrin, an actin cross-linking protein, was probably the earliest of these, with ankyrin, adducin and 4.1 only appearing as tissues evolved. The interaction of spectrin with ankyrin is probably a prerequisite for the formation of tissues; only with the advent of vertebrates did 4.1 acquires the ability to bind spectrin and actin. The latter activity seems to allow the spectrin complex to regulate the cell surface accumulation of a wide variety of proteins. Functionally, the spectrin-ankyrin-4.1-adducin complex is implicated in the formation of apical and basolateral domains, in aspects of membrane trafficking, in assembly of certain signalling and cell adhesion complexes and in providing stability to otherwise mechanically fragile cell membranes. Defects in this complex are manifest in a variety of hereditary diseases, including deafness, cardiac arrhythmia, spinocerebellar ataxia, as well as hereditary haemolytic anaemias. Some of these proteins also function as tumor suppressors. The spectrin-ankyrin-4.1-adducin complex represents a remarkable system that underpins animal life; it has been adapted to many different functions at different times during animal evolution.
Collapse
Affiliation(s)
- Anthony J Baines
- School of Biosciences and Centre for Biomedical Informatics, University of Kent, Canterbury, CT2 7NJ, UK.
| |
Collapse
|
49
|
Pasqualetto E, Aiello R, Gesiot L, Bonetto G, Bellanda M, Battistutta R. Structure of the cytosolic portion of the motor protein prestin and functional role of the STAS domain in SLC26/SulP anion transporters. J Mol Biol 2010; 400:448-62. [PMID: 20471983 DOI: 10.1016/j.jmb.2010.05.013] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2010] [Revised: 05/04/2010] [Accepted: 05/07/2010] [Indexed: 12/22/2022]
Abstract
Prestin is the motor protein responsible for the somatic electromotility of cochlear outer hair cells and is essential for normal hearing sensitivity and frequency selectivity of mammals. Prestin is a member of mammalian solute-linked carrier 26 (SLC26) anion exchangers, a family of membrane proteins capable of transporting a wide variety of monovalent and divalent anions. SLC26 transporters play important roles in normal human physiology in different tissues, and many of them are involved in genetic diseases. SLC26 and related SulP transporters carry a hydrophobic membrane core and a C-terminal cytosolic portion that is essential in plasma membrane targeting and protein function. This C-terminal portion is mainly composed of a STAS (sulfate transporters and anti-sigma factor antagonist) domain, whose name is due to a remote but significant sequence similarity with bacterial ASA (anti-sigma factor antagonist) proteins. Here we present the crystal structure at 1.57 A resolution of the cytosolic portion of prestin, the first structure of a SulP transporter STAS domain, and its characterization in solution by heteronuclear multidimensional NMR spectroscopy. Prestin STAS significantly deviates from the related bacterial ASA proteins, especially in the N-terminal region, which-although previously considered merely as a generic linker between the domain and the last transmembrane helix-is indeed fully part of the domain. Hence, unexpectedly, our data reveal that the STAS domain starts immediately after the last transmembrane segment and lies beneath the lipid bilayer. A structure-function analysis suggests that this model can be a general template for most SLC26 and SulP anion transporters and supports the notion that STAS domains are involved in functionally important intramolecular and intermolecular interactions. Mapping of disease-associated or functionally harmful mutations on STAS structure indicates that they can be divided into two categories: those causing significant misfolding of the domain and those altering its interaction properties.
Collapse
Affiliation(s)
- Elisa Pasqualetto
- Department of Chemical Sciences, University of Padua, via Marzolo 1, 35131 Padua, Italy
| | | | | | | | | | | |
Collapse
|
50
|
Pirodda A, Brandolini C, Raimondi MC, Ferri GG, Modugno GC, Borghi C. Meniere's disease: update of etiopathogenetic theories and proposal of a possible model of explanation. Acta Clin Belg 2010; 65:170-5. [PMID: 20669784 DOI: 10.1179/acb.2010.036] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Meniere's Disease (MD) is an affection consisting of an association of sensorineural hearing loss, tinnitus and vertigo initially presenting by crises. A review of the most considered possible causative factors and pathophysiologic interpretations allows us to underline the uncertainties which still exist about the genesis of this illness. We propose a mechanistic model based on the effect of a haemodynamic imbalance leading to transient ischaemia which could have an effect on the pH of the inner ear as well as on the work of the inner ear proton pumps. It is hypothesized that under ischaemic conditions and consequent metabolic acidity a preserved proton pump activity can generate an overload of anions in the endolymphatic partition, which is a closed system, thus resulting in an enhancement of osmolarity and consequently in the formation of a hydrops resulting in the development of fluctuating hearing loss, tinnitus and vertigo which characterize Meniere's Disease.
Collapse
Affiliation(s)
- A Pirodda
- Department of Specialistic Surgical & Anaesthesiological Sciences, ENT Section, S. Orsola Malpighi University Hospital, Bologna, Italy.
| | | | | | | | | | | |
Collapse
|