1
|
Maksoud S, El Hokayem J. The cytokine/chemokine response in Leishmania/HIV infection and co-infection. Heliyon 2023; 9:e15055. [PMID: 37082641 PMCID: PMC10112040 DOI: 10.1016/j.heliyon.2023.e15055] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 03/24/2023] [Accepted: 03/24/2023] [Indexed: 04/04/2023] Open
Abstract
HIV infection progressively weakens the immune system by infecting and destroying cells involved in host defense. Viral infection symptoms are generated and aggravated as immunosuppression progresses, triggered by the presence of opportunistic infections: among these is leishmaniasis, a disease caused by the intracellular parasite Leishmania. The incidence of this co-infection is growing progressively due to the geographic distribution overlap. Both pathogens infect monocytes/macrophages and dendritic cells, although they can also modulate the activity of other cells without co-infecting, such as T and B lymphocytes. Leishmania/HIV co-infection could be described as a system comprising modulations of cell surface molecule expression, production of soluble factors, and intracellular death activities, leading ultimately to the potentiation of infectivity, replication, and spread of both pathogens. This review describes the cytokine/chemokine response in Leishmania/HIV infection and co-infection, discussing how these molecules modulate the course of the disease and analyzing the therapeutic potential of targeting this network.
Collapse
|
2
|
Packard TA, Schwarzer R, Herzig E, Rao D, Luo X, Egedal JH, Hsiao F, Widera M, Hultquist JF, Grimmett ZW, Messer RJ, Krogan NJ, Deeks SG, Roan NR, Dittmer U, Hasenkrug KJ, Greene WC. CCL2: a Chemokine Potentially Promoting Early Seeding of the Latent HIV Reservoir. mBio 2022; 13:e0189122. [PMID: 36073812 PMCID: PMC9600577 DOI: 10.1128/mbio.01891-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 08/16/2022] [Indexed: 11/20/2022] Open
Abstract
HIV infects long-lived CD4 memory T cells, establishing a latent viral reservoir that necessitates lifelong antiretroviral therapy (ART). How this reservoir is formed so quickly after infection remains unclear. We now show the innate inflammatory response to HIV infection results in CCL2 chemokine release, leading to recruitment of cells expressing the CCR2 receptor, including a subset of central memory CD4 T cells. Supporting a role for the CCL2/CCR2 axis in rapid reservoir formation, we find (i) treatment of humanized mice with anti-CCL2 antibodies during early HIV infection decreases reservoir seeding and preserves CCR2/5+ cells and (ii) CCR2/5+ cells from the blood of HIV-infected individuals on long-term ART contain significantly more integrated provirus than CCR2/5-negative memory or naive cells. Together, these studies support a model where the host's innate inflammatory response to HIV infection, including CCL2 production, leads to the recruitment of CCR2/5+ central memory CD4 T cells to zones of virus-associated inflammation, likely contributing to rapid formation of the latent HIV reservoir. IMPORTANCE There are currently over 35 million people living with HIV worldwide, and we still have no vaccine or scalable cure. One of the difficulties with HIV is its ability to rapidly establish a viral reservoir in lymphoid tissues that allows it to elude antivirals and the immune system. Thus, it is important to understand how HIV accomplishes this so we can develop preventive strategies. Our current results show that an early inflammatory response to HIV infection includes production of the chemokine CCL2, which recruits a unique subset of CCR2/5+ CD4+ T cells that become infected and form a significant reservoir for latent infection. Furthermore, we show that blockade of CCL2 in humanized mice significantly reduces persistent HIV infection. This information is relevant to the development of therapeutics to prevent and/or treat chronic HIV infections.
Collapse
Affiliation(s)
| | - Roland Schwarzer
- J. David Gladstone Institutes, San Francisco, California, USA
- Institute for Translational HIV Research, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Eytan Herzig
- J. David Gladstone Institutes, San Francisco, California, USA
| | - Deepashri Rao
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Xiaoyu Luo
- J. David Gladstone Institutes, San Francisco, California, USA
| | | | - Feng Hsiao
- J. David Gladstone Institutes, San Francisco, California, USA
| | - Marek Widera
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Judd F. Hultquist
- J. David Gladstone Institutes, San Francisco, California, USA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, California, USA
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, California, USA
| | | | - Ronald J. Messer
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Nevan J. Krogan
- J. David Gladstone Institutes, San Francisco, California, USA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, California, USA
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, California, USA
| | - Steven G. Deeks
- Department of Medicine, University of California San Francisco, San Francisco, California, USA
| | - Nadia R. Roan
- J. David Gladstone Institutes, San Francisco, California, USA
- Department of Urology, University of California San Francisco, San Francisco, California, USA
| | - Ulf Dittmer
- Institute for Translational HIV Research, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Kim J. Hasenkrug
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Warner C. Greene
- J. David Gladstone Institutes, San Francisco, California, USA
- Department of Medicine, University of California San Francisco, San Francisco, California, USA
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, California, USA
| |
Collapse
|
3
|
Altered expression of fractalkine in HIV-1-infected astrocytes and consequences for the virus-related neurotoxicity. J Neurovirol 2021; 27:279-301. [PMID: 33646495 DOI: 10.1007/s13365-021-00955-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 03/27/2020] [Accepted: 01/21/2021] [Indexed: 10/22/2022]
Abstract
HIV-1 infection in the central nervous system (CNS) causes the release of neurotoxic products from infected cells which trigger extensive neuronal loss. Clinically, this results in HIV-1-associated neurocognitive disorders (HAND). However, the effects on neuroprotective factors in the brain remain poorly understood and understudied in this situation. HAND is a multifactorial process involving several players, and the complex cellular mechanisms have not been fully elucidated yet. In this study, we reported that HIV-1 infection of astrocytes limits their potential to express the protective chemokine fractalkine in response to an inflammatory environment. We next confirmed that this effect was not due to a default in its shedding from the cell surface. We then investigated the biological mechanism responsible for this reduced fractalkine expression and found that HIV-1 infection specifically blocks the interaction of transcription factor NF-κB on its promoter with no effect on other cytokines. Moreover, we demonstrated that fractalkine production in astrocytes is regulated in response to immune factors secreted by infected/activated microglia and macrophages. In contrast, we observed that conditioned media from these infected cells also trigger neuronal apoptosis. At last, we demonstrated a strong neuroprotective action of fractalkine on human neurons by reducing neuronal damages. Taken together, our results indicate new relevant interactions between HIV-1 and fractalkine signaling in the CNS. This study provides new information to broaden the understanding of HAND and possibly foresee new therapeutic strategies. Considering its neuro-protective functions, reducing its production from astrocytes could have important outcomes in chronic neuroinflammation and in HIV-1 neuropathogenesis.
Collapse
|
4
|
Chompre G, Martinez-Orengo N, Cruz M, Porter JT, Noel RJ. TGFβRI antagonist inhibits HIV-1 Nef-induced CC chemokine family ligand 2 (CCL2) in the brain and prevents spatial learning impairment. J Neuroinflammation 2019; 16:262. [PMID: 31829243 PMCID: PMC6905066 DOI: 10.1186/s12974-019-1664-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 11/27/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND HIV-1-associated neurocognitive disorders (HAND) progression is related to continued inflammation despite undetectable viral loads and may be caused by early viral proteins expressed by latently infected cells. Astrocytes represent an HIV reservoir in the brain where the early viral neurotoxin negative factor (Nef) is produced. We previously demonstrated that astrocytic expression of Nef in the hippocampus of rats causes inflammation, macrophage infiltration, and memory impairment. Since these processes are affected by TGFβ signaling pathways, and TGFβ-1 is found at higher levels in the central nervous system of HIV-1+ individuals and is released by astrocytes, we hypothesized a role for TGFβ-1 in our model of Nef neurotoxicity. METHODS To test this hypothesis, we compared cytokine gene expression by cultured astrocytes expressing Nef or green fluorescent protein. To determine the role of Nef and a TGFβRI inhibitor on memory and learning, we infused astrocytes expressing Nef into the hippocampus of rats and then treated them daily with an oral dose of SD208 (10 mg/kg) or placebo for 7 days. During this time, locomotor activity was recorded in an open field and spatial learning tested in the novel location recognition paradigm. Postmortem tissue analyses of inflammatory and signaling molecules were conducted using immunohistochemistry and immunofluorescence. RESULTS TGFβ-1 was induced in cultures expressing Nef at 24 h followed by CCL2 induction which was prevented by blocking TGFβRI with SD208 (competitive inhibitor). Interestingly, Nef seems to change the TGFβRI localization as suggested by the distribution of the immunoreactivity. Nef caused a deficit in spatial learning that was recovered upon co-administration of SD208. Brain tissue from Nef-treated rats given SD208 showed reduced CCL2, phospho-SMAD2, cluster of differentiation 163 (CD163), and GFAP immunoreactivity compared to the placebo group. CONCLUSIONS Consistent with our previous findings, rats treated with Nef showed deficits in spatial learning and memory in the novel location recognition task. In contrast, rats treated with Nef + SD208 showed better spatial learning suggesting that Nef disrupts memory formation in a TGFβ-1-dependent manner. The TGFβRI inhibitor further reduced the induction of inflammation by Nef which was concomitant with decreased TGFβ signaling. Our findings suggest that TGFβ-1 signaling is an intriguing target to reduce neuroHIV.
Collapse
Affiliation(s)
- Gladys Chompre
- Biology Department, Pontifical Catholic University of Puerto Rico, Ponce, Puerto Rico
| | - Neysha Martinez-Orengo
- Department of Basic Sciences, Ponce Health Sciences University-Ponce Medical School, Ponce Research Institute, P.O. Box 7004, Ponce, PR, 00731, USA
| | - Myrella Cruz
- Department of Basic Sciences, Ponce Health Sciences University-Ponce Medical School, Ponce Research Institute, P.O. Box 7004, Ponce, PR, 00731, USA
| | - James T Porter
- Department of Basic Sciences, Ponce Health Sciences University-Ponce Medical School, Ponce Research Institute, P.O. Box 7004, Ponce, PR, 00731, USA
| | - Richard J Noel
- Department of Basic Sciences, Ponce Health Sciences University-Ponce Medical School, Ponce Research Institute, P.O. Box 7004, Ponce, PR, 00731, USA.
| |
Collapse
|
5
|
Lehmann MH, Lehmann JM, Erfle V. Nef-induced CCL2 Expression Contributes to HIV/SIV Brain Invasion and Neuronal Dysfunction. Front Immunol 2019; 10:2447. [PMID: 31681324 PMCID: PMC6803470 DOI: 10.3389/fimmu.2019.02447] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 10/01/2019] [Indexed: 12/26/2022] Open
Abstract
C-C motif chemokine ligand 2 (CCL2) is a chemoattractant for leukocytes including monocytes, T cells, and natural killer cells and it plays an important role in maintaining the integrity and function of the brain. However, there is accumulating evidence that many neurological diseases are attributable to a dysregulation of CCL2 expression. Acquired immune deficiency syndrome (AIDS) encephalopathy is a severe and frequent complication in individuals infected with the human immunodeficiency virus (HIV) or the simian immunodeficiency virus (SIV). The HIV and SIV Nef protein, a progression factor in AIDS pathology, can be transferred by microvesicles including exosomes and tunneling nanotubes (TNT) within the host even to uninfected cells, and Nef can induce CCL2 expression. This review focuses on findings which collectively add new insights on how Nef-induced CCL2 expression contributes to neurotropism and neurovirulence of HIV and SIV and elucidates why adjuvant targeting of CCL2 could be a therapeutic option for HIV-infected persons.
Collapse
Affiliation(s)
- Michael H Lehmann
- Institute of Virology, Technische Universität München, Munich, Germany.,Institute for Infectious Diseases and Zoonoses, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Jonas M Lehmann
- Department of Informatics, Technische Universität München, Munich, Germany
| | - Volker Erfle
- Institute of Virology, Technische Universität München, Munich, Germany
| |
Collapse
|
6
|
Leite Pereira A, Tchitchek N, Lambotte O, Le Grand R, Cosma A. Characterization of Leukocytes From HIV-ART Patients Using Combined Cytometric Profiles of 72 Cell Markers. Front Immunol 2019; 10:1777. [PMID: 31447833 PMCID: PMC6691046 DOI: 10.3389/fimmu.2019.01777] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 07/15/2019] [Indexed: 12/14/2022] Open
Abstract
Motivation: Mass cytometry is a technique used to measure the intensity levels of proteins expressed by cells, at a single cell resolution. This technique is essential to characterize the phenotypes and functions of immune cell populations, but is currently limited to the measurement of 40 cell markers that restricts the characterization of complex diseases. However, algorithms and multi-tube cytometry techniques have been designed for combining phenotypic information obtained from different cytometric panels. The characterization of chronic HIV infection represents a good study case for multi-tube mass cytometry as this disease triggers a complex interactions network of more than 70 cell markers. Method: We collected whole blood from non-viremic HIV-infected patients on combined antiretroviral therapies and healthy donors. Leukocytes from each individual were stained using three different mass cytometry panels, which consisted of 35, 32, and 33 cell markers. For each patient and using the CytoBackBone algorithm, we combined phenotypic information from three different antibody panels into a single cytometric profile, reaching a phenotypic resolution of 72 markers. These high-resolution cytometric profiles were analyzed using SPADE and viSNE algorithms to decipher the immune response to HIV. Results: We detected an upregulation of several proteins in HIV-infected patients relative to healthy donors using our profiling of 72 cell markers. Among them, CD11a and CD11b were upregulated in PMNs, monocytes, mDCs, NK cells, and T cells. CD11b was also upregulated on pDCs. Other upregulated proteins included: CD38 on PMNs, monocytes, NK cells, basophils, B cells, and T cells; CD83 on monocytes, mDCs, B cells, and T cells; and TLR2, CD32, and CD64 on PMNs and monocytes. These results were validated using a mass cytometry panel of 25 cells markers. Impacts: We demonstrate here that multi-tube cytometry can be applied to mass cytometry for exploring, at an unprecedented level of details, cell populations impacted by complex diseases. We showed that the monocyte and PMN populations were strongly affected by the HIV infection, as CD11a, CD11b, CD32, CD38, CD64, CD83, CD86, and TLR2 were upregulated in these populations. Overall, these results demonstrate that HIV induced a specific environment that similarly affected multiple immune cells.
Collapse
Affiliation(s)
- Adrien Leite Pereira
- CEA-Université Paris Sud 11-INSERM U1184, Immunology of Viral Infections and Autoimmune Diseases, IDMIT Infrastructure, Fontenay-aux-Roses, France
| | - Nicolas Tchitchek
- CEA-Université Paris Sud 11-INSERM U1184, Immunology of Viral Infections and Autoimmune Diseases, IDMIT Infrastructure, Fontenay-aux-Roses, France
| | - Olivier Lambotte
- CEA-Université Paris Sud 11-INSERM U1184, Immunology of Viral Infections and Autoimmune Diseases, IDMIT Infrastructure, Fontenay-aux-Roses, France.,APHP, Service de Médecine Interne-Immunologie Clinique, Hôpitaux Universitaires Paris Sud, Le Kremlin-Bicêtre, France.,Université Paris Sud, Le Kremlin-Bicêtre, France
| | - Roger Le Grand
- CEA-Université Paris Sud 11-INSERM U1184, Immunology of Viral Infections and Autoimmune Diseases, IDMIT Infrastructure, Fontenay-aux-Roses, France
| | - Antonio Cosma
- CEA-Université Paris Sud 11-INSERM U1184, Immunology of Viral Infections and Autoimmune Diseases, IDMIT Infrastructure, Fontenay-aux-Roses, France
| |
Collapse
|
7
|
Pandey HS, Seth P. Friends Turn Foe-Astrocytes Contribute to Neuronal Damage in NeuroAIDS. J Mol Neurosci 2019; 69:286-297. [PMID: 31236774 DOI: 10.1007/s12031-019-01357-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 06/12/2019] [Indexed: 02/07/2023]
Abstract
Astrocytes play a wide variety of roles in the central nervous system (CNS). Various facets of astrocyte-neuron interplay, investigated for the past few decades, have placed these most abundant and important glial cell types to be of supreme importance for the maintenance of the healthy CNS. Interestingly, glial dysfunctions have proven to be the major contributor to neuronal loss in several CNS disorders and pathologies. Specifically, in the field of neuroAIDS, glial dysfunction-mediated neuronal stress is a major factor contributing to the HIV-1 neuropathogenesis. As there is increasing evidence that astrocytes harbor HIV-1 and serve as "safe haven" for the dormant virus in the brain, the indirect pathway of neuronal damage has taken over the direct neuronal damage in its contribution to HIV-1 neuropathogenesis. In this review, we provide a brief insight into the astrocyte functions and dysfunctions in different CNS conditions with an elaborated insight into neuroAIDS. Detailed understanding of the role of astrocytes in neuroAIDS will help in the better therapeutic management of the neurological problems associated with HIV-1 patients.
Collapse
Affiliation(s)
- Hriday Shanker Pandey
- Department of Cellular and Molecular Neuroscience, Neurovirology Section, National Brain Research Centre (NBRC), Nainwal Road, NH-8, Manesar, Gurgaon, Haryana, 122052, India
| | - Pankaj Seth
- Department of Cellular and Molecular Neuroscience, Neurovirology Section, National Brain Research Centre (NBRC), Nainwal Road, NH-8, Manesar, Gurgaon, Haryana, 122052, India.
| |
Collapse
|
8
|
Pužar Dominkuš P, Ferdin J, Plemenitaš A, Peterlin BM, Lenassi M. Nef is secreted in exosomes from Nef.GFP-expressing and HIV-1-infected human astrocytes. J Neurovirol 2017; 23:713-724. [PMID: 28762184 DOI: 10.1007/s13365-017-0552-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 06/16/2017] [Accepted: 07/10/2017] [Indexed: 12/16/2022]
Abstract
HIV-1 infection of the central nervous system causes HIV-associated neurocognitive disorders, even in aviremic patients. Although astrocyte malfunction was associated to these disorders, their implication is overshadowed by contributions of microglia and macrophages. Astrocytes are infected with HIV-1 in vivo and express a relevant amount of viral protein Nef. Nef was shown to stimulate its own release in exosomes from diverse cell types, which in turn have damaging effects on neighboring cells. Using immunoblotting and electron microscopy, we showed that human astrocytes expressing Nef.GFP similarly release Nef in exosomes. Importantly, Nef.GFP expression increases the secretion of exosomes from human astrocytes up to 5.5-fold, as determined by total protein content and nanoparticle tracking analysis. Protein analysis of exosomes and viruses separated on iodixanol gradient further showed that native or pseudotyped HIV-1-infected human astrocytes release exosomes, which contain Nef. Our results provide the basis for future studies of the damaging role of Nef-exosomes produced by HIV-infected astrocytes on the central nervous system.
Collapse
Affiliation(s)
- Pia Pužar Dominkuš
- Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Jana Ferdin
- Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Ana Plemenitaš
- Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Boris Matija Peterlin
- Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia.,Departments of Medicine, Microbiology and Immunology, University of California, San Francisco, San Francisco, California, USA
| | - Metka Lenassi
- Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia.
| |
Collapse
|
9
|
Nookala AR, Mitra J, Chaudhari NS, Hegde ML, Kumar A. An Overview of Human Immunodeficiency Virus Type 1-Associated Common Neurological Complications: Does Aging Pose a Challenge? J Alzheimers Dis 2017; 60:S169-S193. [PMID: 28800335 PMCID: PMC6152920 DOI: 10.3233/jad-170473] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
With increasing survival of patients infected with human immunodeficiency virus type 1 (HIV-1), the manifestation of heterogeneous neurological complications is also increasing alarmingly in these patients. Currently, more than 30% of about 40 million HIV-1 infected people worldwide develop central nervous system (CNS)-associated dysfunction, including dementia, sensory, and motor neuropathy. Furthermore, the highly effective antiretroviral therapy has been shown to increase the prevalence of mild cognitive functions while reducing other HIV-1-associated neurological complications. On the contrary, the presence of neurological disorder frequently affects the outcome of conventional HIV-1 therapy. Although, both the children and adults suffer from the post-HIV treatment-associated cognitive impairment, adults, especially depending on the age of disease onset, are more prone to CNS dysfunction. Thus, addressing neurological complications in an HIV-1-infected patient is a delicate balance of several factors and requires characterization of the molecular signature of associated CNS disorders involving intricate cross-talk with HIV-1-derived neurotoxins and other cellular factors. In this review, we summarize some of the current data supporting both the direct and indirect mechanisms, including neuro-inflammation and genome instability in association with aging, leading to CNS dysfunction after HIV-1 infection, and discuss the potential strategies addressing the treatment or prevention of HIV-1-mediated neurotoxicity.
Collapse
Affiliation(s)
- Anantha Ram Nookala
- Division of Pharmacology and Toxicology, School of Pharmacy, University of Missouri-Kansas City, Kansas City, MO, USA
| | - Joy Mitra
- Department of Radiation Oncology, Houston Methodist Research Institute, Houston, TX, USA
| | - Nitish S. Chaudhari
- Division of Pharmacology and Toxicology, School of Pharmacy, University of Missouri-Kansas City, Kansas City, MO, USA
| | - Muralidhar L. Hegde
- Department of Radiation Oncology, Houston Methodist Research Institute, Houston, TX, USA
- Weill Cornell Medical College of Cornell University, NY, USA
| | - Anil Kumar
- Division of Pharmacology and Toxicology, School of Pharmacy, University of Missouri-Kansas City, Kansas City, MO, USA
| |
Collapse
|
10
|
Nunnari G, Fagone P, Condorelli F, Nicoletti F, Malaguarnera L, Di Rosa M. CD4+ T-cell gene expression of healthy donors, HIV-1 and elite controllers: Immunological chaos. Cytokine 2016; 83:127-135. [PMID: 27108398 DOI: 10.1016/j.cyto.2016.04.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 03/18/2016] [Accepted: 04/15/2016] [Indexed: 01/20/2023]
Abstract
OBJECTIVES T-cell repertoire dysfunction characterizes human immunodeficiency virus type 1 (HIV-1) infection, but the pathogenic mechanisms remain unclear. Disease progression is probably due to a profound dysregulation of Th1, Th2, Th17 and Treg patterns. The aim of this study was to analyze the features of CD4+ T cells in HIV-positive patients with different viroimmunological profile. METHODS we used a gene expression dataset of CD4+ T cells from healthy donors, HIV+ naive patients and Elite Controllers (EC), obtained from the NCBI Gene Expression Omnibus (GEO, http://www.ncbi.nlm.nih.gov/geo/, accession number GSE18233). RESULTS Principal Component Analysis (PCA) showed an almost complete overlap between the HIV-infected and EC patients, which cannot easily explain the different responses to HIV infection of these two group of patients. We have found that HIV patients and the EC showed an upregulation of the Th1 pro-inflammatory cytokines and chemokines, compared to the controls. Also, we have surprisingly identified IL28B, which resulted downregulated in HIV and EC compared to healthy controls. We focused attention also on genes involved in the constitution of the immunological synapse and we showed that HLA class I and II genes resulted significantly upregulated in HIV and in EC compared to the control. In addition to it, we have found the upregulation of others syncytial molecules, including LAG3, CTLA4, CD28 and CD3, assisting the formation of syncytia with APC cells. CONCLUSIONS Understanding the mechanisms of HIV-associated immunological chaos is critical to strategically plan focused interventions.
Collapse
Affiliation(s)
- G Nunnari
- Unit of Infectious Diseases, Department of Clinical and Molecular Biomedicine, University of Catania, Italy
| | - P Fagone
- Department of Biomedical and Biotechnological Sciences, University of Catania, Italy
| | - F Condorelli
- DiSCAFF & DFB Center, University of Piemonte Orientale A. Avogadro, Novara, Italy
| | - F Nicoletti
- Department of Biomedical and Biotechnological Sciences, University of Catania, Italy
| | - L Malaguarnera
- Department of Biomedical and Biotechnological Sciences, University of Catania, Italy
| | - M Di Rosa
- Department of Biomedical and Biotechnological Sciences, University of Catania, Italy.
| |
Collapse
|
11
|
Lehmann MH, Torres-Domínguez LE, Price PJR, Brandmüller C, Kirschning CJ, Sutter G. CCL2 expression is mediated by type I IFN receptor and recruits NK and T cells to the lung during MVA infection. J Leukoc Biol 2016; 99:1057-64. [DOI: 10.1189/jlb.4ma0815-376rr] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 03/01/2016] [Indexed: 12/16/2022] Open
|
12
|
Levine AJ, Soontornniyomkij V, Achim CL, Masliah E, Gelman BB, Sinsheimer JS, Singer EJ, Moore DJ. Multilevel analysis of neuropathogenesis of neurocognitive impairment in HIV. J Neurovirol 2015; 22:431-41. [PMID: 26637429 DOI: 10.1007/s13365-015-0410-7] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 11/13/2015] [Accepted: 11/19/2015] [Indexed: 12/31/2022]
Abstract
The neuropathogenesis of HIV-associated neurocognitive disorders (HAND) remains puzzling. We interrogated several levels of data (host genetic, histopathology, brain viral load, and neurocognitive) to identify histopathological changes most relevant to HAND. The design of the study is a clinicopathological study employing genetic association analyses. Data and brain tissue from 80 HIV-infected adults were used. Markers in monocyte chemoattractant protein-1 (MCP-1), interleukin 1-alpha (IL1-α), macrophage inflammatory protein 1-alpha (MIP1-α), DRD3, DRD2, and apolipoprotein E (ApoE) were genotyped. Microtubule associated protein 2 (MAP2), synaptophysin (SYP), human leukocyte antigen-DR (HLA-DR), glial fibrillary acidic protein (GFAP), amyloid beta (A-Beta), and ionized calcium-binding adaptor molecule-1 (Iba-1) immunoreactivity were quantified in the frontal cortex, putamen, and hippocampus. A composite score for each marker (mean of the three brain regions) was used. Neurocognitive functioning and other clinical variables were determined within 1 year of death. Brain HIV RNA viral load was available for a subset of cases. MAP2 and SYP proved most relevant to neurocognitive functioning. Immunoreactivity of these markers, as well as A-Beta and Iba-1, was correlated with brain HIV RNA viral load. Several genetic markers in combination with other factors predicted histopathology: HIV blood viral load, MIP1-α genotype, and DRD3 genotype predicted Iba-1 immunoreactivity; the duration of infection and IL1-α genotype predicted GFAP immunoreactivity; ApoE genotype and age at death predicted A-Beta immunoreactivity. These data indicate that HIV replication in the brain is the primary driving force leading to neuroinflammation and dysfunctional protein clearance, as reflected by A-Beta and Iba-1. Downstream to these changes are synaptodendritic degeneration, which is the immediate histopathological substrate of the neurocognitive impairment characteristic of HAND. These intermediate histopathological phenotypes are influenced by host genetic polymorphisms in genes encoding cytokines/chemokines, neuronal protein clearance pathways, and dopaminergic factors.
Collapse
Affiliation(s)
- Andrew J Levine
- Department of Neurology, David Geffen School of Medicine at the University of California, Los Angeles, Los Angeles, CA, USA.
| | | | - Cristian L Achim
- Departments of Psychiatry and Pathology, University of California San Diego School of Medicine, La Jolla, CA, USA
| | - Eliezer Masliah
- Departments of Neurosciences and Pathology, University of California San Diego School of Medicine, La Jolla, CA, USA
| | - Benjamin B Gelman
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA
| | - Janet S Sinsheimer
- Departments of Human Genetics and Biomathematics, David Geffen School of Medicine at the University of California, Los Angeles, Los Angeles, CA, USA
| | - Elyse J Singer
- Department of Neurology, David Geffen School of Medicine at the University of California, Los Angeles, Los Angeles, CA, USA
| | - David J Moore
- Department of Psychiatry, University of California San Diego School of Medicine, La Jolla, CA, USA
| |
Collapse
|
13
|
Nef exosomes isolated from the plasma of individuals with HIV-associated dementia (HAD) can induce Aβ(1-42) secretion in SH-SY5Y neural cells. J Neurovirol 2015; 22:179-90. [PMID: 26407718 DOI: 10.1007/s13365-015-0383-6] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Revised: 09/03/2015] [Accepted: 09/07/2015] [Indexed: 01/24/2023]
Abstract
In the era of combined antiretroviral therapy (CART), many of the complications due to HIV-1 infection have diminished. One exception is HIV-associated neurocognitive disorder (HAND). HAND is a spectrum of disorders in cognitive function that ranges from asymptomatic disease to severe dementia (HAD). The milder form of HAND has actually remained the same or slightly increased in prevalence in the CART era. Even in individuals who have maintained undetectable HIV RNA loads, viral proteins such as Nef and Tat can continue to be expressed. In this report, we show that Nef protein and nef messenger RNA (mRNA) are packaged into exosomes that remain in circulation in patients with HAD. Plasma-derived Nef exosomes from patients with HAD have the ability to interact with the neuroblastoma cell line SH-SY5Y and deliver nef mRNA. The mRNA can induce expression of Nef in target cells and subsequently increase expression and secretion of beta-amyloid (Aβ) and Aβ peptides. Increase secretion of amyloid peptide could contribute to cognitive impairment seen in HAND.
Collapse
|
14
|
The role of chemokine C-C motif ligand 2 genotype and cerebrospinal fluid chemokine C-C motif ligand 2 in neurocognition among HIV-infected patients. AIDS 2015; 29:1483-91. [PMID: 26244388 DOI: 10.1097/qad.0000000000000706] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
OBJECTIVES We examined interrelationships between chemokine C-C motif ligand 2 (CCL2) genotype and expression of inflammatory markers in the cerebrospinal fluid (CSF), plasma viral load, CD4 cell count and neurocognitive functioning among HIV-infected adults. We hypothesized that HIV-positive carriers of the 'risk' CCL2 -2578G allele, caused by a single nucleotide polymorphism (SNP) at rs1024611, would have a higher concentration of CCL2 in CSF, and that CSF CCL2 would be associated with both higher concentrations of other proinflammatory markers in CSF and worse neurocognitive functioning. DESIGN A cross-sectional study of 145 HIV-infected individuals enrolled in the National NeuroAIDS Tissue Consortium cohort for whom genotyping, CSF and neurocognitive data were available. METHODS Genomic DNA was extracted from peripheral blood mononuclear cells and/or frozen tissue specimens. CSF levels of CCL2, interleukin (IL)-2, IL-6, tumour necrosis factor-alpha (TNF-α), interferon-gamma (IFN-γ), soluble tumor necrosis factor receptor 2, sIL-6Rα, sIL-2, sCD14 and B-cell activating factor were quantified. Neurocognitive functioning was measured using a comprehensive battery of neuropsychological tests. RESULTS Carriers of the CCL2 -2578G allele had a significantly higher concentration of CCL2 in CSF. CSF CCL2 level was positively and significantly associated with other CSF neuroinflammatory markers and worse cognitive functioning. There was a significant association between genotype and plasma viral load, such that carriers of the CCL2 -2578G allele with high viral load expressed greater levels of CCL2 and had higher neurocognitive deficit scores than other genotype/viral load groups. CONCLUSION Individuals with the CCL2 -2578G allele had higher levels of CCL2 in CSF, which was associated with increased pro-inflammatory markers in CSF and worse neurocognitive functioning. The results highlight the potential role of intermediate phenotypes in studies of genotype and cognition.
Collapse
|
15
|
Liu X, Kumar A. Differential signaling mechanism for HIV-1 Nef-mediated production of IL-6 and IL-8 in human astrocytes. Sci Rep 2015; 5:9867. [PMID: 26075907 PMCID: PMC4467202 DOI: 10.1038/srep09867] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Accepted: 03/05/2015] [Indexed: 01/01/2023] Open
Abstract
Variety of HIV-1 viral proteins including HIV-1 Nef are known to activate astrocytes and microglia in the brain and cause the release of pro-inflammatory cytokines, which is thought to be one of the mechanisms leading to HIV-1- mediated neurotoxicity. IL-6 and IL-8 have been found in the CSF of patients with HIV-1 associated dementia (HAD), suggesting that they might play important roles in HIV-1 neuropathology. In the present study we examined the effects of HIV-1 Nef on IL-6 and IL-8 induction in astrocytes. The results demonstrate that both IL-6 and IL-8 are significantly induced in HIV-1 Nef-transfected SVGA astrocytes and HIV-1 Nef-treated primary fetal astrocytes. We also determined the molecular mechanisms responsible for the HIV-1 Nef-induced increased IL-6 and IL-8 by using chemical inhibitors and siRNAs against PI3K/Akt/PKC, p38 MAPK, NF-κB, CEBP and AP-1. Our results clearly demonstrate that the PI3K/PKC, p38 MAPK, NF-κB and AP-1 pathways are involved in HIV-1 Nef-induced IL-6 production in astrocytes, while PI3K/PKC and NF-κB pathways are involved in HIV-1 Nef-induced IL-8 production. These results offer new potential targets to develop therapeutic strategy for treatment of HIV-1 associated neurological disorders, prevalent in > 40% of individuals infected with HIV-1.
Collapse
Affiliation(s)
- Xun Liu
- Division of Pharmacology and Toxicology, School of Pharmacy, University of Missouri, Kansas City, MO 64108
| | - Anil Kumar
- Division of Pharmacology and Toxicology, School of Pharmacy, University of Missouri, Kansas City, MO 64108
| |
Collapse
|
16
|
Modified Vaccinia virus Ankara but not vaccinia virus induces chemokine expression in cells of the monocyte/macrophage lineage. Virol J 2015; 12:21. [PMID: 25889495 PMCID: PMC4349667 DOI: 10.1186/s12985-015-0252-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Accepted: 01/29/2015] [Indexed: 12/27/2022] Open
Abstract
Background The orthopoxvirus strain Modified Vaccinia virus Ankara (MVA) rapidly induces innate immune responses. Previously, we demonstrated that CCL2 and CCR1 are important players in MVA induced recruitment of leukocytes to the lung. Alveolar macrophages are sentinel cells in the lung, which are likely amongst the first cells of the immune system to encounter and respond to virus during respiratory infection. Therefore we examined the potential of the murine alveolar macrophage MH-S cell line as a model to study chemokine expression during infection with MVA and vaccinia virus (VACV) strain Western Reserve (WR). Findings MVA but not VACV infected MH-S cells increased the expression of the CXCR2 acting chemokine CXCL2. MH-S cells constitutively produced CCL2 and CCR1 acting chemokines CCL3, CCL5 and CCL9. Consequently, supernatants of mock treated and virus infected MH-S cells induced chemotaxis of murine promyelocyte MPRO cells and human monocytic THP-1 cells at the same level. However, supernatants of MVA infected MH-S cells significantly increased chemotaxis of the CCR2 deficient human monocytic cell line U-937. Chemotaxis of all three cell types was inhibited by J 113863, a CCR1 antagonist. Additionally, we show that MVA but not VACV WR infection of THP-1 cells induces expression of C-C motif and C-X-C motif chemokines and generates a chemotactic activity for monocytes, which was J 113863 sensitive. Conclusions These results extend our previous findings, demonstrating that MVA but not VACV WR induces chemokine production in alveolar macrophages and monocytes, which can induce recruitment of monocytes in a CCR1 dependent manner. Electronic supplementary material The online version of this article (doi:10.1186/s12985-015-0252-1) contains supplementary material, which is available to authorized users.
Collapse
|
17
|
Sabbatucci M, Covino DA, Purificato C, Mallano A, Federico M, Lu J, Rinaldi AO, Pellegrini M, Bona R, Michelini Z, Cara A, Vella S, Gessani S, Andreotti M, Fantuzzi L. Endogenous CCL2 neutralization restricts HIV-1 replication in primary human macrophages by inhibiting viral DNA accumulation. Retrovirology 2015; 12:4. [PMID: 25608886 PMCID: PMC4314729 DOI: 10.1186/s12977-014-0132-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Accepted: 12/19/2014] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Macrophages are key targets of HIV-1 infection. We have previously described that the expression of CC chemokine ligand 2 (CCL2) increases during monocyte differentiation to macrophages and it is further up-modulated by HIV-1 exposure. Moreover, CCL2 acts as an autocrine factor that promotes viral replication in infected macrophages. In this study, we dissected the molecular mechanisms by which CCL2 neutralization inhibits HIV-1 replication in monocyte-derived macrophages (MDM), and the potential involvement of the innate restriction factors protein sterile alpha motif (SAM) histidine/aspartic acid (HD) domain containing 1 (SAMHD1) and apolipoprotein B mRNA-editing, enzyme-catalytic, polypeptide-like 3 (APOBEC3) family members. RESULTS CCL2 neutralization potently reduced the number of p24 Gag+ cells during the course of either productive or single cycle infection with HIV-1. In contrast, CCL2 blocking did not modify entry of HIV-1 based Virus Like Particles, thus demonstrating that the restriction involves post-entry steps of the viral life cycle. Notably, the accumulation of viral DNA, both total, integrated and 2-LTR circles, was strongly impaired by neutralization of CCL2. Looking for correlates of HIV-1 DNA accumulation inhibition, we found that the antiviral effect of CCL2 neutralization was independent of the modulation of SAMHD1 expression or function. Conversely, a strong and selective induction of APOBEC3A expression, to levels comparable to those of freshly isolated monocytes, was associated with the inhibition of HIV-1 replication mediated by CCL2 blocking. Interestingly, the CCL2 neutralization mediated increase of APOBEC3A expression was type I IFN independent. Moreover, the transcriptome analysis of the effect of CCL2 blocking on global gene expression revealed that the neutralization of this chemokine resulted in the upmodulation of additional genes involved in the defence response to viruses. CONCLUSIONS Neutralization of endogenous CCL2 determines a profound restriction of HIV-1 replication in primary MDM affecting post-entry steps of the viral life cycle with a mechanism independent of SAMHD1. In addition, CCL2 blocking is associated with induction of APOBEC3A expression, thus unravelling a novel mechanism which might contribute to regulate the expression of innate intracellular viral antagonists in vivo. Thus, our study may potentially lead to the development of new therapeutic strategies for enhancing innate cellular defences against HIV-1 and protecting macrophages from infection.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | - Laura Fantuzzi
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy.
| |
Collapse
|
18
|
Chiappelli F, Bakhordarian A, Thames AD, Du AM, Jan AL, Nahcivan M, Nguyen MT, Sama N, Manfrini E, Piva F, Rocha RM, Maida CA. Ebola: translational science considerations. J Transl Med 2015; 13:11. [PMID: 25592846 PMCID: PMC4320629 DOI: 10.1186/s12967-014-0362-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Accepted: 12/11/2014] [Indexed: 12/13/2022] Open
Abstract
We are currently in the midst of the most aggressive and fulminating outbreak of Ebola-related disease, commonly referred to as "Ebola", ever recorded. In less than a year, the Ebola virus (EBOV, Zaire ebolavirus species) has infected over 10,000 people, indiscriminately of gender or age, with a fatality rate of about 50%. Whereas at its onset this Ebola outbreak was limited to three countries in West Africa (Guinea, where it was first reported in late March 2014, Liberia, where it has been most rampant in its capital city, Monrovia and other metropolitan cities, and Sierra Leone), cases were later reported in Nigeria, Mali and Senegal, as well as in Western Europe (i.e., Madrid, Spain) and the US (i.e., Dallas, Texas; New York City) by late October 2014. World and US health agencies declared that the current Ebola virus disease (EVD) outbreak has a strong likelihood of growing exponentially across the world before an effective vaccine, treatment or cure can be developed, tested, validated and distributed widely. In the meantime, the spread of the disease may rapidly evolve from an epidemics to a full-blown pandemic. The scientific and healthcare communities actively research and define an emerging kaleidoscope of knowledge about critical translational research parameters, including the virology of EBOV, the molecular biomarkers of the pathological manifestations of EVD, putative central nervous system involvement in EVD, and the cellular immune surveillance to EBOV, patient-centered anthropological and societal parameters of EVD, as well as translational effectiveness about novel putative patient-targeted vaccine and pharmaceutical interventions, which hold strong promise, if not hope, to curb this and future Ebola outbreaks. This work reviews and discusses the principal known facts about EBOV and EVD, and certain among the most interesting ongoing or future avenues of research in the field, including vaccination programs for the wild animal vectors of the virus and the disease from global translational science perspective.
Collapse
Affiliation(s)
- Francesco Chiappelli
- UCLA School of Dentistry (Oral Biology & Medicine), Los Angeles, USA.
- Evidence-Based Decision Practice-Based Research Network, Los Angeles, USA.
- UCLA Center for the Health Sciences 63-090, 10833 Le Conte Avenue, Los Angeles, CA, 90095-1668, USA.
| | - Andre Bakhordarian
- UCLA School of Dentistry (Oral Biology & Medicine), Los Angeles, USA.
- Evidence-Based Decision Practice-Based Research Network, Los Angeles, USA.
| | - April D Thames
- UCLA David Geffen School of Medicine (Psychiatry), Los Angeles, USA.
| | - Angela M Du
- UCLA School of Dentistry (Oral Biology & Medicine), Los Angeles, USA.
| | - Allison L Jan
- UCLA School of Dentistry (Oral Biology & Medicine), Los Angeles, USA.
| | - Melissa Nahcivan
- UCLA School of Dentistry (Oral Biology & Medicine), Los Angeles, USA.
| | - Mia T Nguyen
- UCLA School of Dentistry (Oral Biology & Medicine), Los Angeles, USA.
| | - Nateli Sama
- UCLA School of Dentistry (Oral Biology & Medicine), Los Angeles, USA.
| | | | - Francesco Piva
- Polytechnic University of the Marche Region (Odontostomatological Sciences), Ancona, Italy.
| | | | - Carl A Maida
- UCLA School of Dentistry (Oral Biology & Medicine), Los Angeles, USA.
- UCLA School of Dentistry (Public Health Dentistry), UCLA Institute of the Environment and Sustainability, UCLA Center for Tropical Research, Los Angeles, USA.
| |
Collapse
|
19
|
Acharjee S, Branton WG, Vivithanaporn P, Maingat F, Paul AM, Dickie P, Baker GB, Power C. HIV-1 Nef expression in microglia disrupts dopaminergic and immune functions with associated mania-like behaviors. Brain Behav Immun 2014; 40:74-84. [PMID: 24607605 DOI: 10.1016/j.bbi.2014.02.016] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Revised: 02/21/2014] [Accepted: 02/25/2014] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Neuropsychiatric disorders during HIV/AIDS are common although the contribution of HIV-1 infection within the brain, and in particular individual HIV-1 proteins, to the development of these brain disorders is unknown. Herein, an in vivo transgenic mouse model was generated in which the HIV-1 Nef protein was expressed in microglia cells, permitting investigation of neurobehavioral phenotypes and associated cellular and molecular properties. METHODS Transgenic (Tg) mice that expressed full length HIV-1 nef under the control of the c-fms promoter and wildtype (Wt) littermates were investigated using different measures of neurobehavioral performance including locomotory, forced swim (FST), elevated plus maze (EPM) and T-maze tests. Host gene and transgene expression were assessed by RT-PCR, immunoblotting, enzymatic activity and immunohistochemistry. Biogenic amine levels were measured by HPLC with electrochemical detection. RESULTS Tg animals exhibited Nef expression in brain microglia and cultured macrophages. Tg males displayed hyperactive behaviors including augmented locomotor activity, decreased immobility in the FST and increased open-arm EPM exploration compared to Wt littermates (p<0.05). Tg animals showed increased CCL2 expression with concurrent IFN-α suppression in striatum compared with Wt littermates (p<0.05). Dopamine levels, MAO activity and the dopamine transporter (DAT) expression were reduced in the striatum of Tg animals (p<0.05). CONCLUSIONS HIV-1 Nef expression in microglia induced CCL2 expression together with disrupting striatal dopaminergic transmission, resulting in hyperactive behaviors which are observed in mania and other psychiatric comorbidities among HIV-infected persons. These findings emphasize the selective effects of individual viral proteins in the brain and their participation in neuropathogenesis.
Collapse
Affiliation(s)
- Shaona Acharjee
- Department of Medicine, University of Alberta, Edmonton, Canada; Department of Physiology and Pharmacology and Hotchkiss Brain Institute, University of Calgary, Bangkok, Thailand
| | | | - Pornpun Vivithanaporn
- Department of Medicine, University of Alberta, Edmonton, Canada; Department of Pharmacology, Mahidol University, Bangkok, Thailand
| | | | - Amber M Paul
- Department of Medicine, University of Alberta, Edmonton, Canada
| | - Peter Dickie
- Department of Medical Microbiology & Immunology, University of Alberta, Edmonton, Canada
| | - Glen B Baker
- Department of Psychiatry, University of Alberta, Edmonton, Canada
| | - Christopher Power
- Department of Medicine, University of Alberta, Edmonton, Canada; Department of Medical Microbiology & Immunology, University of Alberta, Edmonton, Canada; Department of Psychiatry, University of Alberta, Edmonton, Canada.
| |
Collapse
|
20
|
Chemokine (C-C Motif) receptor 1 is required for efficient recruitment of neutrophils during respiratory infection with modified vaccinia virus Ankara. J Virol 2014; 88:10840-50. [PMID: 25008920 DOI: 10.1128/jvi.01524-14] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
UNLABELLED Modified vaccinia virus Ankara (MVA) serves as a versatile platform in vaccine development. This highly attenuated orthopoxvirus, which cannot replicate in mammalian cells, triggers strong innate immune responses, including cell migration. Previously, we have shown that induction of chemokine (C-C motif) ligand 2 (CCL2) by MVA is necessary for the recruitment of monocytes and T cells, but not neutrophils, to the lung. Here, we identified neutrophil-attracting chemokines produced by MVA-infected primary murine lung fibroblasts and murine bone marrow-derived macrophages. We demonstrate that MVA, but not vaccinia virus (VACV) strain WR, induces chemokine expression, which is independent of Toll-like receptor 2 (TLR2) signaling. Additionally, we show that both chemokine (C-C motif) receptor 1 (CCR1) and chemokine (C-X-C motif) receptor 2 (CXCR2) are involved in MVA-induced neutrophil chemotaxis in vitro. Finally, intranasal infection of Ccr1(-/-) mice with MVA, as well as application of the CCR1 antagonist J-113863, revealed a role for CCR1 in leukocyte recruitment, including neutrophils, into the lung. IMPORTANCE Rapid attraction of leukocytes to the site of inoculation is unique to MVA in comparison to other VACV strains. The findings here extend current knowledge about the regulation of MVA-induced leukocyte migration, particularly regarding neutrophils, which could potentially be exploited to improve other VACV strains currently in development as oncolytic viruses and viral vectors. Additionally, the data presented here indicate that the inflammatory response may vary depending on the cell type infected by MVA, highlighting the importance of the site of vaccine application. Moreover, the rapid recruitment of neutrophils and other leukocytes can directly contribute to the induction of adaptive immune responses elicited by MVA inoculation. Thus, a better understanding of leukocyte migration upon MVA infection is particularly relevant for further development and use of MVA-based vaccines and vectors.
Collapse
|
21
|
Genetic, transcriptomic, and epigenetic studies of HIV-associated neurocognitive disorder. J Acquir Immune Defic Syndr 2014; 65:481-503. [PMID: 24583618 DOI: 10.1097/qai.0000000000000069] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The Human Genome Project, coupled with rapidly evolving high-throughput technologies, has opened the possibility of identifying heretofore unknown biological processes underlying human disease. Because of the opaque nature of HIV-associated neurocognitive disorder (HAND) neuropathogenesis, the utility of such methods has gained notice among NeuroAIDS researchers. Furthermore, the merging of genetics with other research areas has also allowed for application of relatively nascent fields, such as neuroimaging genomics, and pharmacogenetics, to the context of HAND. In this review, we detail the development of genetic, transcriptomic, and epigenetic studies of HAND, beginning with early candidate gene association studies and culminating in current "omics" approaches that incorporate methods from systems biology to interpret data from multiple levels of biological functioning. Challenges with this line of investigation are discussed, including the difficulty of defining a valid phenotype for HAND. We propose that leveraging known associations between biology and pathology across multiple levels will lead to a more reliable and valid phenotype. We also discuss the difficulties of interpreting the massive and multitiered mountains of data produced by current high-throughput omics assays and explore the utility of systems biology approaches in this regard.
Collapse
|
22
|
Lamers SL, Fogel GB, Nolan DJ, McGrath MS, Salemi M. HIV-associated neuropathogenesis: a systems biology perspective for modeling and therapy. Biosystems 2014; 119:53-61. [PMID: 24732754 DOI: 10.1016/j.biosystems.2014.04.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2014] [Revised: 04/03/2014] [Accepted: 04/04/2014] [Indexed: 12/19/2022]
Abstract
Despite the development of powerful antiretroviral drugs, HIV-1 associated neurological disorders (HAND) will affect approximately half of those infected with HIV-1. Combined anti-retroviral therapy (cART) targets viral replication and increases T-cell counts, but it does not always control macrophage polarization, brain infection or inflammation. Moreover, it remains difficult to identify those at risk for HAND. New therapies that focus on modulating host immune response by making use of biological pathways could prove to be more effective than cART for the treatment of neuroAIDS. Additionally, while numerous HAND biomarkers have been suggested, they are of little use without methods for appropriate data integration and a systems-level interpretation. Machine learning, could be used to develop multifactorial computational models that provide clinicians and researchers with the ability to identify which factors (in what combination and relative importance) are considered important to outcome.
Collapse
Affiliation(s)
| | - Gary B Fogel
- Natural Selection, Inc., 5910 Pacific Center Blvd Suite 315, San Diego, CA 92121, USA.
| | - David J Nolan
- University of Florida, 2055 Mowry Road, Department of Pathology and Laboratory Medicine, Gainesville, FL 32610, USA.
| | - Michael S McGrath
- University of California, 1001 Potrero Avenue, Building 20, 4(th) Floor, Room 2407, San Francisco, CA 94110-3518, USA.
| | - Marco Salemi
- University of Florida, 2055 Mowry Road, Department of Pathology and Laboratory Medicine, Gainesville, FL 32610, USA.
| |
Collapse
|
23
|
HIV-1 Nef induces CCL5 production in astrocytes through p38-MAPK and PI3K/Akt pathway and utilizes NF-kB, CEBP and AP-1 transcription factors. Sci Rep 2014; 4:4450. [PMID: 24658403 PMCID: PMC3963078 DOI: 10.1038/srep04450] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Accepted: 03/07/2014] [Indexed: 12/18/2022] Open
Abstract
The prevalence of HIV-associated neurocognitive disorders (HAND) remains high in patients infected with HIV-1. The production of pro-inflammatory cytokines by astrocytes/microglia exposed to viral proteins is thought to be one of the mechanisms leading to HIV-1- mediated neurotoxicity. In the present study we examined the effects of Nef on CCL5 induction in astrocytes. The results demonstrate that CCL5 is significantly induced in Nef-transfected SVGA astrocytes. To determine the mechanisms responsible for the increased CCL5 caused by Nef, we employed siRNA and chemical antagonists. Antagonists of NF-κB, PI3K, and p38 significantly reduced the expression levels of CCL5 induced by Nef transfection. Furthermore, specific siRNAs demonstrated that the Akt, p38MAPK, NF-κB, CEBP, and AP-1 pathways play a role in Nef-mediated CCL5 expression. The results demonstrated that the PI3K/Akt and p38 MAPK pathways, along with the transcription factors NF-κB, CEBP, and AP-1, are involved in Nef-induced CCL5 production in astrocytes.
Collapse
|
24
|
Lamers SL, Fogel GB, Singer EJ, Salemi M, Nolan DJ, Huysentruyt LC, McGrath MS. HIV-1 Nef in macrophage-mediated disease pathogenesis. Int Rev Immunol 2013; 31:432-50. [PMID: 23215766 DOI: 10.3109/08830185.2012.737073] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Combined anti-retroviral therapy (cART) has significantly reduced the number of AIDS-associated illnesses and changed the course of HIV-1 disease in developed countries. Despite the ability of cART to maintain high CD4+ T-cell counts, a number of macrophage-mediated diseases can still occur in HIV-infected subjects. These diseases include lymphoma, metabolic diseases, and HIV-associated neurological disorders. Within macrophages, the HIV-1 regulatory protein "Nef" can modulate surface receptors, interact with signaling pathways, and promote specific environments that contribute to each of these pathologies. Moreover, genetic variation in Nef may also guide the macrophage response. Herein, we review findings relating to the Nef-macrophage interaction and how this relationship contributes to disease pathogenesis.
Collapse
|
25
|
Yuan L, Qiao L, Wei F, Yin J, Liu L, Ji Y, Smith D, Li N, Chen D. Cytokines in CSF correlate with HIV-associated neurocognitive disorders in the post-HAART era in China. J Neurovirol 2013; 19:144-9. [PMID: 23389619 DOI: 10.1007/s13365-013-0150-5] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Revised: 01/07/2013] [Accepted: 01/21/2013] [Indexed: 11/26/2022]
Abstract
In the current era of highly active antiretroviral therapy (HAART), the incidence of HIV dementia has declined, but the prevalence of HIV-associated neurocognitive disorder (HAND) remains high. HIV-induced systemic and localized inflammation is considered to be one of the mechanisms of HAND. Changes in cytokine levels in the cerebrospinal fluid (CSF) during HIV infection might help to identify HAND. To investigate whether the cytokine profile of the CSF during HIV infection could be used as a biomarker of HAND, we compared cytokine levels in the CSF of HIV-infected cases with and without neurocognitive impairment. Cytokine concentrations in the CSF were measured by quantification bioassays (Luminex xMAP). HIV-infected cases with neurocognitive impairment demonstrated higher levels of interleukin (IL)-8, monocyte chemotactic protein (MCP)-1, induced protein (IP)-10, and granulocyte colony-stimulating factor (G-CSF) in the CSF than those without neurocognitive impairment (G-CSF (p = 0.0003), IL-8 (p = 0.0046), IP-10 (p < 0.0001), and MCP-1 (p < 0.0001)). There was no significant impact of HAART on cytokine levels in the CSF, except for IP-10, which was higher in HAART-treated patients with impaired cognition (p = 0.0182). Findings from this preliminary study suggest that elevated levels of the cytokines IL-8, MCP-1, G-CSF, and IP-10 in the CSF are associated with neurocognitive impairment in HIV infection, and these cytokines likely represent a biomarker profile for HAND.
Collapse
Affiliation(s)
- Lin Yuan
- Department of Medicine, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Tang X, Asano M, O'Reilly A, Farquhar A, Yang Y, Amar S. p53 is an important regulator of CCL2 gene expression. Curr Mol Med 2013; 12:929-43. [PMID: 22804246 DOI: 10.2174/156652412802480844] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Revised: 02/20/2012] [Accepted: 02/21/2012] [Indexed: 12/11/2022]
Abstract
The p53 protein is a sequence-specific DNA-binding factor that regulates inflammatory genes such as CCL2/MCP-1 that may play a role in various diseases. A recent study has indicated that the knockdown of human p53 leads to a strong negative regulation of CCL2 induction. We are therefore interested in how p53 regulates CCL2 gene expression. In the following study, our findings indicate that UV-induced p53 accumulation in mouse macrophages significantly decreases LPS-induced CCL2 production, and that p53 binds to CCL2 5'UTR in the region (16-35). We also found that a p53 domain (p53pep170) mimics full length p53 to down-regulate CCL2 promoter activity. Treatment of p53-deficient mouse primary macrophages with synthetic p53pep170 was found to decrease LPS-induced production of CCL2 without association with cellular endogenous p53. CCL2 production induced by lentiCLG in human monocytes or mouse primary macrophages was blocked in the presence of p53pep170. Overall, these results demonstrate that p53 or its derived peptide (p53pep170) is an important regulator of CCL2 gene expression via its binding activity, and acts as a novel model for future studies linking p53 and its short peptide to pave the way to possible pharmaceutical intervention of CCL2-mediated inflammatory and cancer diseases.
Collapse
Affiliation(s)
- X Tang
- Center for Anti- Inflammatory Therapeutics, Boston University, 650 Albany Street, X- 343, Boston, MA 02118, USA.
| | | | | | | | | | | |
Collapse
|
27
|
Chompre G, Cruz E, Maldonado L, Rivera-Amill V, Porter JT, Noel RJ. Astrocytic expression of HIV-1 Nef impairs spatial and recognition memory. Neurobiol Dis 2012; 49:128-36. [PMID: 22926191 DOI: 10.1016/j.nbd.2012.08.007] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2012] [Revised: 08/02/2012] [Accepted: 08/16/2012] [Indexed: 02/08/2023] Open
Abstract
Despite the widespread use of antiretroviral therapy that effectively limits viral replication, memory impairment remains a dilemma for HIV infected people. In the CNS, HIV infection of astrocytes leads to the production of the HIV-1 Nef protein without viral replication. Post mortem studies have found Nef expression in hippocampal astrocytes of people with HIV associated dementia suggesting that astrocytic Nef may contribute to HIV associated cognitive impairment even when viral replication is suppressed. To test whether astrocytic expression of Nef is sufficient to induce cognitive deficits, we examined the effect of implanting primary rat astrocytes expressing Nef into the hippocampus on spatial and recognition memory. Rats implanted unilaterally with astrocytes expressing Nef showed impaired novel location and novel object recognition in comparison with controls implanted with astrocytes expressing green fluorescent protein (GFP). This impairment was correlated with an increase in chemokine ligand 2 (CCL2) expression and the infiltration of peripheral macrophages into the hippocampus at the site of injection. Furthermore, the Nef exposed rats exhibited a bilateral loss of CA3 neurons. These results suggest that Nef protein expressed by the implanted astrocytes activates the immune system leading to neuronal damage and spatial and recognition memory deficits. Therefore, the continued expression of Nef by astrocytes in the absence of viral replication has the potential to contribute to HIV associated cognitive impairment.
Collapse
Affiliation(s)
- Gladys Chompre
- Department of Biochemistry, Ponce School of Medicine and Health Sciences, Ponce, PR, USA
| | - Emmanuel Cruz
- Department of Physiology & Pharmacology, Ponce School of Medicine and Health Sciences, Ponce, PR, USA
| | - Lucianette Maldonado
- Department of Biochemistry, Ponce School of Medicine and Health Sciences, Ponce, PR, USA
| | - Vanessa Rivera-Amill
- Department of Microbiology, Ponce School of Medicine and Health Sciences, Ponce, PR, USA
| | - James T Porter
- Department of Physiology & Pharmacology, Ponce School of Medicine and Health Sciences, Ponce, PR, USA
| | - Richard J Noel
- Department of Biochemistry, Ponce School of Medicine and Health Sciences, Ponce, PR, USA.
| |
Collapse
|
28
|
Ansari AW, Heiken H, Meyer-Olson D, Schmidt RE. CCL2: A potential prognostic marker and target of anti-inflammatory strategy in HIV/AIDS pathogenesis. Eur J Immunol 2011; 41:3412-8. [DOI: 10.1002/eji.201141676] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2011] [Revised: 08/15/2011] [Accepted: 10/05/2011] [Indexed: 12/29/2022]
|
29
|
Mamik MK, Banerjee S, Walseth TF, Hirte R, Tang L, Borgmann K, Ghorpade A. HIV-1 and IL-1β regulate astrocytic CD38 through mitogen-activated protein kinases and nuclear factor-κB signaling mechanisms. J Neuroinflammation 2011; 8:145. [PMID: 22027397 PMCID: PMC3247131 DOI: 10.1186/1742-2094-8-145] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2011] [Accepted: 10/25/2011] [Indexed: 01/06/2023] Open
Abstract
Background Infection with human immunodeficiency virus type-1 (HIV)-1 leads to some form of HIV-1-associated neurocognitive disorders (HAND) in approximately half of the cases. The mechanisms by which astrocytes contribute to HIV-1-associated dementia (HAD), the most severe form of HAND, still remain unresolved. HIV-1-encephalitis (HIVE), a pathological correlate of HAD, affects an estimated 9-11% of the HIV-1-infected population. Our laboratory has previously demonstrated that HIVE brain tissues show significant upregulation of CD38, an enzyme involved in calcium signaling, in astrocytes. We also reported an increase in CD38 expression in interleukin (IL)-1β-activated astrocytes. In the present investigation, we studied regulatory mechanisms of CD38 gene expression in astrocytes activated with HIV-1-relevant stimuli. We also investigated the role of mitogen-activated protein kinases (MAPKs) and nuclear factor (NF)-κB in astrocyte CD38 regulation. Methods Cultured human astrocytes were transfected with HIV-1YU-2 proviral clone and levels of CD38 mRNA and protein were measured by real-time PCR gene expression assay, western blot analysis and immunostaining. Astrocyte activation by viral transfection was determined by analyzing proinflammatory chemokine levels using ELISA. To evaluate the roles of MAPKs and NF-κB in CD38 regulation, astrocytes were treated with MAPK inhibitors (SB203580, SP600125, U0126), NF-κB interfering peptide (SN50) or transfected with dominant negative IκBα mutant (IκBαM) prior to IL-1β activation. CD38 gene expression and CD38 ADP-ribosyl cyclase activity assays were performed to analyze alterations in CD38 levels and function, respectively. Results HIV-1YU-2-transfection significantly increased CD38 mRNA and protein expression in astrocytes (p < 0.01) in a dose-dependent manner and induced astrocyte activation. IL-β-activation of HIV-1YU-2-transfected astrocytes significantly increased HIV-1 gene expression (p < 0.001). Treatment with MAPK inhibitors or NF-κB inhibitor SN50 abrogated IL-1β-induced CD38 expression and activity in astrocytes without altering basal CD38 levels (p < 0.001). IκBαM transfection also significantly inhibited IL-1β-mediated increases in CD38 expression and activity in astrocytes (p < 0.001). Conclusion The present findings demonstrate a direct involvement of HIV-1 and virus-induced proinflammatory stimuli in regulating astrocyte-CD38 levels. HIV-1YU-2-transfection effectively induced HIV-1p24 protein expression and activated astrocytes to upregulate CCL2, CXCL8 and CD38. In astrocytes, IL-1β-induced increases in CD38 levels were regulated through the MAPK signaling pathway and by the transcription factor NF-κB. Future studies may be directed towards understanding the role of CD38 in response to infection and thus its role in HAND.
Collapse
Affiliation(s)
- Manmeet K Mamik
- Department of Cell Biology and Anatomy, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | | | | | | | | | | | | |
Collapse
|
30
|
Cross SA, Cook DR, Chi AWS, Vance PJ, Kolson LL, Wong BJ, Jordan-Sciutto KL, Kolson DL. Dimethyl fumarate, an immune modulator and inducer of the antioxidant response, suppresses HIV replication and macrophage-mediated neurotoxicity: a novel candidate for HIV neuroprotection. THE JOURNAL OF IMMUNOLOGY 2011; 187:5015-25. [PMID: 21976775 DOI: 10.4049/jimmunol.1101868] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Despite antiretroviral therapy (ART), HIV infection promotes cognitive dysfunction and neurodegeneration through persistent inflammation and neurotoxin release from infected and/or activated macrophages/microglia. Furthermore, inflammation and immune activation within both the CNS and periphery correlate with disease progression and morbidity in ART-treated individuals. Accordingly, drugs targeting these pathological processes in the CNS and systemic compartments are needed for effective, adjunctive therapy. Using our in vitro model of HIV-mediated neurotoxicity, in which HIV-infected monocyte-derived macrophages release excitatory neurotoxins, we show that HIV infection dysregulates the macrophage antioxidant response and reduces levels of heme oxygenase-1 (HO-1). Furthermore, restoration of HO-1 expression in HIV-infected monocyte-derived macrophages reduces neurotoxin release without altering HIV replication. Given these novel observations, we have identified dimethyl fumarate (DMF), used to treat psoriasis and showing promising results in clinical trials for multiple sclerosis, as a potential neuroprotectant and HIV disease-modifying agent. DMF, an immune modulator and inducer of the antioxidant response, suppresses HIV replication and neurotoxin release. Two distinct mechanisms are proposed: inhibition of NF-κB nuclear translocation and signaling, which could contribute to the suppression of HIV replication, and induction of HO-1, which is associated with decreased neurotoxin release. Finally, we found that DMF attenuates CCL2-induced monocyte chemotaxis, suggesting that DMF could decrease recruitment of activated monocytes to the CNS in response to inflammatory mediators. We propose that dysregulation of the antioxidant response during HIV infection drives macrophage-mediated neurotoxicity and that DMF could serve as an adjunctive neuroprotectant and HIV disease modifier in ART-treated individuals.
Collapse
Affiliation(s)
- Stephanie A Cross
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Strazza M, Pirrone V, Wigdahl B, Nonnemacher MR. Breaking down the barrier: the effects of HIV-1 on the blood-brain barrier. Brain Res 2011; 1399:96-115. [PMID: 21641584 DOI: 10.1016/j.brainres.2011.05.015] [Citation(s) in RCA: 150] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2010] [Revised: 05/06/2011] [Accepted: 05/07/2011] [Indexed: 01/13/2023]
Abstract
Human immunodeficiency virus type 1 (HIV-1) primarily infects CD4(+) T cells and cells of the monocyte-macrophage lineage, resulting in immunodeficiency in an infected patient. Along with this immune deficiency, HIV-1 has been linked to a number of neurological symptoms in the absence of opportunistic infections or other co-morbidities, suggesting that HIV-1 is able to cross the blood-brain barrier (BBB), enter the central nervous system (CNS), and cause neurocognitive impairment. HIV-1-infected monocyte-macrophages traverse the BBB and enter the CNS throughout the course of HIV-1 disease. Once in the brain, both free virus and virus-infected cells are able to infect neighboring resident microglia and astrocytes and possibly other cell types. HIV-1-infected cells in both the periphery and the CNS give rise to elevated levels of viral proteins, including gp120, Tat, and Nef, and of host inflammatory mediators such as cytokines and chemokines. It has been shown that the viral proteins may act alone or in concert with host cytokines and chemokines, affecting the integrity of the BBB. The pathological end point of these interactions may facilitate a positive feedback loop resulting in increased penetration of HIV into the CNS. It is proposed in this review that the dysregulation of the BBB during and after neuroinvasion is a critical component of the neuropathogenic process and that dysregulation of this protective barrier is caused by a combination of viral and host factors including secreted viral proteins, components of the inflammatory process, the aging process, therapeutics, and drug or alcohol abuse.
Collapse
Affiliation(s)
- Marianne Strazza
- Department of Microbiology and Immunology, and Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA 19102, USA
| | | | | | | |
Collapse
|
32
|
Masanetz S, Lehmann MH. HIV-1 Nef increases astrocyte sensitivity towards exogenous hydrogen peroxide. Virol J 2011; 8:35. [PMID: 21255447 PMCID: PMC3038946 DOI: 10.1186/1743-422x-8-35] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2010] [Accepted: 01/22/2011] [Indexed: 01/20/2023] Open
Abstract
Background HIV-1 infected individuals are under chronic exposure to reactive oxygen species (ROS) considered to be instrumental in the progression of AIDS and the development of HIV-1 associated dementia (HAD). Astrocytes support neuronal function and protect them against cytotoxic substances including ROS. The protein HIV-1 Nef, a progression factor in AIDS pathology is abundantly expressed in astrocytes in patients with HAD, and thus may influence its functions. Results Endogenous expressed HIV-1 Nef leads to increased sensitivity of human astrocytes towards exogenous hydrogen peroxide but not towards TNF-alpha. Cell death of nef-expressing astrocytes exposed to 10 μM hydrogen peroxide for 30 min occurred within 4 h. Conclusion HIV-1 Nef may contribute to neuronal dysfunction and the development of HAD by causing death of astrocytes through decreasing their tolerance for hydrogen peroxide.
Collapse
Affiliation(s)
- Sabine Masanetz
- Institute of Virology, Technical University of Munich/Helmholtz Zentrum München, 81675 Munich, Germany
| | | |
Collapse
|
33
|
Muratori C, Mangino G, Affabris E, Federico M. Astrocytes contacting HIV-1-infected macrophages increase the release of CCL2 in response to the HIV-1-dependent enhancement of membrane-associated TNFα in macrophages. Glia 2011; 58:1893-904. [PMID: 20737475 DOI: 10.1002/glia.21059] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The presence of human immunodeficiency virus (HIV)-infected macrophages in the parenchyma of central nervous system is an hallmark of acquired immunodeficiency syndrome-related neuroinflammation. Once penetrated the blood-brain barrier (BBB), macrophages closely interact with astrocytes, beginning with those lying beneath the BBB endothelium. By investigating the consequences of the cell-cell interaction between HIV-infected macrophages and astrocytes, we observed that the HIV-1 expression in macrophagic cells correlated with increased chemotactic activity in supernatants of astroglial cells. Gene array analysis revealed an impressive increase in the transcription of the gene for the CCL2/MCP-1 chemokine in astroglial cells isolated from HIV-1-infected co-cultures compared with cells from uninfected co-cultures. This phenomenon coupled with the increase in CCL2 release and depended on the cell-cell contact. In addition, it was a consequence of the HIV-1-induced enhancement of membrane-associated tumor necrosis factor-α in macrophagic cells, and correlated with increased levels of nuclear factor kappaB activation in astroglial cells. These observations could mirror a mechanism of recruitment of leukocytes through the BBB, likely contributing to the increase in both viral load and inflammation in central nervous system of HIV-infected patients.
Collapse
|
34
|
Hahn YK, Vo P, Fitting S, Block ML, Hauser KF, Knapp PE. beta-Chemokine production by neural and glial progenitor cells is enhanced by HIV-1 Tat: effects on microglial migration. J Neurochem 2010; 114:97-109. [PMID: 20403075 PMCID: PMC2992981 DOI: 10.1111/j.1471-4159.2010.06744.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Human immunodeficiency virus (HIV)-1 neuropathology results from collective effects of viral proteins and inflammatory mediators on several cell types. Significant damage is mediated indirectly through inflammatory conditions promulgated by glial cells, including microglia that are productively infected by HIV-1, and astroglia. Neural and glial progenitors exist in both developing and adult brains. To determine whether progenitors are targets of HIV-1, a multi-plex assay was performed to assess chemokine/cytokine expression after treatment with viral proteins transactivator of transcription (Tat) or glycoprotein 120 (gp120). In the initial screen, ten analytes were basally released by murine striatal progenitors. The beta-chemokines CCL5/regulated upon activation, normal T cell expressed and secreted, CCL3/macrophage inflammatory protein-1alpha, and CCL4/macrophage inflammatory protein-1beta were increased by 12-h exposure to HIV-1 Tat. Secreted factors from Tat-treated progenitors were chemoattractive towards microglia, an effect blocked by 2D7 anti-CCR5 antibody pre-treatment. Tat and opiates have interactive effects on astroglial chemokine secretion, but this interaction did not occur in progenitors. gp120 did not affect chemokine/cytokine release, although both CCR5 and CXCR4, which serve as gp120 co-receptors, were detected in progenitors. We postulate that chemokine production by progenitors may be a normal, adaptive process that encourages immune inspection of newly generated cells. Pathogens such as HIV might usurp this function to create a maladaptive state, especially during development or regeneration, when progenitors are numerous.
Collapse
Affiliation(s)
- Yun Kyung Hahn
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, VA 23298 USA
| | - Phu Vo
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA 23298 USA
| | - Sylvia Fitting
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA 23298 USA
| | - Michelle L. Block
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, VA 23298 USA
| | - Kurt F. Hauser
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA 23298 USA
- Institute for Drug and Alcohol Studies, Virginia Commonwealth University, Richmond, VA 23298 USA
| | - Pamela E. Knapp
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, VA 23298 USA
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA 23298 USA
- Institute for Drug and Alcohol Studies, Virginia Commonwealth University, Richmond, VA 23298 USA
| |
Collapse
|
35
|
Ragin AB, Wu Y, Ochs R, Scheidegger R, Cohen BA, Edelman RR, Epstein LG, McArthur J. Biomarkers of neurological status in HIV infection: a 3-year study. Proteomics Clin Appl 2010; 4:295-303. [PMID: 21137050 DOI: 10.1002/prca.200900083] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2009] [Revised: 07/24/2009] [Accepted: 10/08/2009] [Indexed: 01/12/2023]
Abstract
PURPOSE To evaluate circulating cytokines and chemokines as correlates of the degree of brain injury in individuals with advanced human immunodeficiency virus (HIV) infection. EXPERIMENTAL DESIGN Study participants included ten well-characterized subjects in advanced stage HIV infection. High-throughput multiplexed analysis was used to quantify markers of interest at baseline and 3 years later in the clinical course. Objective measurements of the brain were derived in vivo with quantitative magnetic resonance segmentation algorithms and with diffusion tensor imaging. RESULTS Of the markers examined, monocyte chemoattractant protein-1 (MCP-1 or CCL-2) was the most prominent correlate of brain injury. Elevated MCP-1 levels correlated with brain white matter alterations at the initial assessment. The relationship to injury was more extensive 3 years later; elevated MCP-1 was significantly correlated with measures of brain microstructural alterations and of abject atrophy. CONCLUSIONS AND CLINICAL RELEVANCE The findings build on our prior observations that elevated MCP-1 levels may be a useful predictive marker for HIV-associated neurocognitive disorder. As a potent chemoattractant, MCP-1 may mediate injury through participation in self-reinforcing cycles of chronic immune activation and cytokine/chemokine-mediated neurotoxicity.
Collapse
Affiliation(s)
- Ann B Ragin
- Department of Radiology, Northwestern University, Chicago, IL 60611, USA.
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Yadav A, Collman RG. CNS inflammation and macrophage/microglial biology associated with HIV-1 infection. J Neuroimmune Pharmacol 2009; 4:430-47. [PMID: 19768553 PMCID: PMC5935112 DOI: 10.1007/s11481-009-9174-2] [Citation(s) in RCA: 151] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2009] [Accepted: 09/03/2009] [Indexed: 10/20/2022]
Abstract
Human immunodeficiency virus type 1 (HIV-1) infection of the central nervous system (CNS) can result in neurological dysfunction with devastating consequences in a significant proportion of individuals with acquired immune deficiency syndrome. HIV-1 does not infect neurons directly but induces damage indirectly through the accumulation of activated macrophage/microglia (M/M) cells, some of which are infected, that release neurotoxic mediators including both cellular activation products and viral proteins. One mechanism for the accumulation of activated M/M involves the development in infected individuals of an activated peripheral blood monocyte population that traffics through the blood-brain barrier, a process that also serves to carry virus into CNS and establish local infection. A second mechanism involves the release by infected and activated M/M in the CNS of chemotactic mediators that recruit additional monocytes from the periphery. These activated M/M, some of which are infected, release a number of cytokines and small molecule mediators as well as viral proteins that act on bystander cells and in turn activate them, thus amplifying the cascade. These viral proteins and cellular products have neurotoxic properties as well, both directly and through induction of astrocyte dysfunction, which ultimately lead to neuronal injury and death. In patients effectively treated with antiretroviral therapy, frank dementia is now uncommon and has been replaced by milder forms of neurocognitive impairment, with less frequent and more focal neuropathology. This review summarizes key findings that support the critical role and mechanisms of monocyte/macrophage activation and inflammation as a major component for HIV-1 encephalitis or HIV-1 associated dementia.
Collapse
Affiliation(s)
- Anjana Yadav
- Department of Medicine and Center for AIDS Research, University of Pennsylvania School of Medicine, 522 Johnson Pavilion, 36th & Hamilton Walk, Philadelphia, PA 19104, USA
| | | |
Collapse
|
37
|
Abstract
OBJECTIVE HIV infection induces a progressive depletion of CD4 T cells. We showed that NKp44L, a cellular ligand for an activating natural killer (NK) receptor, is expressed on CD4 T cells during HIV infection and is correlated with both CD4 cell depletion and increase in viral load. NKp44LCD4 T cells are highly sensitive to the NK lysis activity. In contrast, HIV-infected CD4 T cells are resistant to NK killing, suggesting that HIV-1 developed strategies to avoid detection by the host cell immunity. DESIGN To assess whether viral protein can affect NKp44L expression, using Nef-deficient virus as well as a panel of recombinant vaccinia viruses expressing all HIV-1 viral proteins was tested. The involvement of Nef in the downmodulation of NKp44L was determined using defined mutants of Nef. Functional consequences of Nef on NK-cell recognition were evaluated by either 51Cr-release assays and degranulation assays in presence of anti-NKp44L mAb. RESULTS We observed that during HIV-1 infection, noninfected CD4 T cells exclusively expressed NKp44L, and demonstrate that Nef mediates NKp44L intracellular retention in HIV-infected cells. This has functional consequences on HIV-infected CD4 T cells recognition by NK cells, causing a decreased susceptibility to NK cytotoxicity. Furthermore, experiments in presence of neutralizing NKp44L mAb revealed that Nef inhibitory effect on NK cytotoxicity mainly depends on the NKp44L pathway. CONCLUSION This novel escape mechanism could explain the resistance of HIV-infected cells to NK lysis and as a result play a key role in maintaining the HIV reservoir by avoiding recognition by NK cells.
Collapse
|
38
|
Pulliam L. HIV regulation of amyloid beta production. J Neuroimmune Pharmacol 2009; 4:213-7. [PMID: 19288202 DOI: 10.1007/s11481-009-9151-9] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2008] [Accepted: 02/25/2009] [Indexed: 11/29/2022]
Abstract
The use of antiretroviral therapy for HIV infection has extended the survival of individuals living with HIV. However, the effects of chronic HIV infection and aging are introducing another facet of HIV complications. HIV therapy can calm the immune system and lower viral replication to undetectable but the virus is still present. In the brain, amyloid beta (Abeta) increases during normal aging but Abeta accumulation appears to accelerate in HIV infection. HIV Tat protein inhibits the major Abeta-degrading enzyme neprilysin with the cysteine-rich domain of Tat being essential for this inhibition. In this minireview, we also include new data that the beta chemokine, CCL2/MCP-1, associated with HIV migration to the brain, also causes an increase in Abeta. These findings may explain the continued cognitive dysfunction found in HIV-infected individuals controlled on antiviral therapy.
Collapse
Affiliation(s)
- Lynn Pulliam
- Veterans Affair Medical Center, San Francisco, University of California, San Francisco, CA 94121, USA.
| |
Collapse
|
39
|
Modified vaccinia virus ankara triggers chemotaxis of monocytes and early respiratory immigration of leukocytes by induction of CCL2 expression. J Virol 2009; 83:2540-52. [PMID: 19129447 DOI: 10.1128/jvi.01884-08] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Orthopoxviruses commonly enter into humans and animals via the respiratory tract. Herein, we show that immigration of leukocytes into the lung is triggered via intranasal infection of mice with modified vaccinia virus Ankara (MVA) and not with the vaccinia virus (VACV) Elstree, Wyeth, or Western Reserve (WR) strain. Immigrating cells were identified as monocytes, neutrophils, and CD4(+) lymphocytes by flow cytometry and could be detected 24 h and 48 h postinfection. Using an in vitro chemotaxis assay, we confirmed that infection with MVA induces the expression of a soluble chemotactic factor for monocytes, identified as CCL2 (monocyte chemotactic protein-1 [MCP-1]). In contrast to infection with several other VACV strains, MVA induced the expression of CCL2, CCL3, CCL4, and CXCL10 in the human monocytic cell line THP-1 as well as in primary human monocytes. Thus, MVA, and not the VACV Elstree, Wyeth, or WR strain, consistently triggered the expression of a panel of chemokines, including CCL2, in the murine lung, correlating considerably with the immigration of leukocytes. Using CCL2-deficient mice, we demonstrate that CCL2 plays a key role in MVA-triggered respiratory immigration of leukocytes. Moreover, UV irradiation of MVA prevented CCL2 expression in vitro and in vivo as well as respiratory immigration of leukocytes, demonstrating the requirement for an activated molecular viral life cycle. We propose that MVA-triggered chemokine expression causes early immigration of leukocytes to the site of infection, a feature that is important for rapid immunization and its safety and efficiency as a viral vector.
Collapse
|
40
|
Ma W, Mishra S, Gajanayaka N, Angel JB, Kumar A. HIV-1 Nef inhibits lipopolysaccharide-induced IL-12p40 expression by inhibiting JNK-activated NFkappaB in human monocytic cells. J Biol Chem 2008; 284:7578-87. [PMID: 19019824 DOI: 10.1074/jbc.m710013200] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Impaired cellular immunity caused by decreased production of Th1-type cytokines, including interleukin-12 (IL-12) is a major feature of HIV-1-associated immunodeficiency and acquired immunodeficiency syndrome. IL-12p40, an inducible subunit shared between IL-12 and IL-23, plays a critical role in the development of cellular immunity, and its production is significantly decreased during HIV infection. The mechanism by which HIV induces loss of IL-12p40 production remains poorly understood. We have previously shown that lipopolysaccharide (LPS)-induced IL-12p40 production in monocytic cells is regulated by NFkappaB and AP-1 transcription factors through the activation of two distinct upstream signaling pathways, namely the c-Jun-N-terminal kinase (JNK) and the calmodulin-dependent protein kinase-II-activated pathways. Herein, we show that intracellular nef expressed through transduction of primary monocytes and promonocytic THP-1 cells with retroviral-mediated nef gene inhibited LPS-induced IL-12p40 transcription by inhibiting the JNK mitogen-activated protein kinases without affecting the calmodulin-dependent protein kinase-II-activated pathway. In addition, nef inhibited JNK-activated NFkappaB without affecting the AP-1 activity. Overall, our results suggest for the first time that intracellular nef inhibited LPS-activated JNK, which may cause inhibition of IL-12p40 expression in human monocytic cells by selectively inhibiting NFkappaB activity.
Collapse
Affiliation(s)
- Wei Ma
- Department of Pathology , Research Institute, Children's Hospital of Eastern Ontario, Ottawa, Ontario K1H 8L1, Canada
| | | | | | | | | |
Collapse
|
41
|
Wang T, Gong N, Liu J, Kadiu I, Kraft-Terry SD, Schlautman JD, Ciborowski P, Volsky DJ, Gendelman HE. HIV-1-infected astrocytes and the microglial proteome. J Neuroimmune Pharmacol 2008; 3:173-86. [PMID: 18587649 PMCID: PMC2579774 DOI: 10.1007/s11481-008-9110-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2008] [Accepted: 05/07/2008] [Indexed: 12/22/2022]
Abstract
The human immunodeficiency virus (HIV) invades the central nervous system early after viral exposure but causes progressive cognitive, behavior, and motor impairments years later with the onset of immune deficiency. Although in the brain, HIV preferentially replicates productively in cells of mononuclear phagocyte (MP; blood borne macrophage and microglia), astrocytes also can be infected, at low and variable frequency, particularly in patients with encephalitis. Among their many functions, astrocytes network with microglia to provide the first line of defense against microbial infection; however, very little is known about astrocytes' consequences on MP. Here, we addressed this question using co-culture systems of HIV-infected mouse astrocytes and microglia. Pseudotyped vesicular stomatis virus/HIV was used to circumvent the absence of viral receptors and ensure cell genotypic uniformity for studies of intercellular communication. The study demonstrated that infected astrocytes show modest changes in protein elements compared to uninfected cells. In contrast, infected astrocytes induce robust changes in the proteome of HIV-1-infected microglia. Accelerated cell death and redox proteins, among others, were produced in abundance. The observations confirmed the potential of astrocytes to influence the neuropathogenesis of HIV-1 infection by specifically altering the neurotoxic potential of infected microglia and regulating viral maturation.
Collapse
Affiliation(s)
- Tong Wang
- Center for Neurovirology and Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, NE 68198-5880
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880
- Institute for Tissue Transplantation and Immunology, Jinan University, Guangzhou, Guangdong, China 510630
| | - Nan Gong
- Center for Neurovirology and Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, NE 68198-5880
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880
| | - Jianuo Liu
- Center for Neurovirology and Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, NE 68198-5880
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880
| | - Irena Kadiu
- Center for Neurovirology and Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, NE 68198-5880
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880
| | - Stephanie D Kraft-Terry
- Center for Neurovirology and Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, NE 68198-5880
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880
| | - Joshua D Schlautman
- Center for Neurovirology and Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, NE 68198-5880
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880
| | - Pawel Ciborowski
- Center for Neurovirology and Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, NE 68198-5880
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880
| | - David J Volsky
- Molecular Virology Division, Columbia University Medical Center, New York, NY 10063
| | - Howard E Gendelman
- Center for Neurovirology and Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, NE 68198-5880
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880
- Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198-5880
| |
Collapse
|
42
|
Hoffmann D, Seebach J, Cosma A, Goebel FD, Strimmer K, Schätzl HM, Erfle V. Therapeutic vaccination reduces HIV sequence variability. FASEB J 2007; 22:437-44. [PMID: 17932027 DOI: 10.1096/fj.06-7975com] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
With HIV persisting lifelong in infected persons, therapeutic vaccination is a novel alternative concept to control virus replication. Even though CD8 and CD4 cell responses to such immunizations have been demonstrated, their effects on virus replication are still unclear. In view of this fact, we studied the impact of a therapeutic vaccination with HIV nef delivered by a recombinant modified vaccinia Ankara vector on viral diversity. We investigated HIV sequences derived from chronically infected persons before and after therapeutic vaccination. Before immunization the mean +/- se pairwise variability of patient-derived Nef protein sequences was 0.1527 +/- 0.0041. After vaccination the respective value was 0.1249 +/- 0.0042, resulting in a significant (P<0.0001) difference between the two time points. The genes vif and 5'gag tested in parallel and nef sequences in control persons yielded a constant amino acid sequence variation. The data presented suggest that Nef immunization induced a selective pressure, limiting HIV sequence variability. To our knowledge this is the first report directly linking therapeutic HIV vaccination to decreasing diversity in patient-derived virus isolates.
Collapse
Affiliation(s)
- Dieter Hoffmann
- Institute of Virology, Technical University of Munich, Munich, Germany.
| | | | | | | | | | | | | |
Collapse
|