1
|
Lehr S, Merrin J, Kulig M, Minchington TG, Kicheva A. Protocol for fabricating elastomeric stencils for patterned stem cell differentiation. STAR Protoc 2024; 5:103187. [PMID: 39602310 PMCID: PMC11626805 DOI: 10.1016/j.xpro.2024.103187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/15/2024] [Accepted: 06/20/2024] [Indexed: 11/29/2024] Open
Abstract
Geometrically controlled stem cell differentiation promotes reproducible pattern formation. Here, we present a protocol to fabricate elastomeric stencils for patterned stem cell differentiation. We describe procedures for using photolithography to produce molds, followed by molding polydimethylsiloxane (PDMS) to obtain stencils with through holes. We then provide instructions for culturing cells on stencils and, finally, removing stencils to allow colony growth and cell migration. This approach yields reproducible two-dimensional organoids tailored for quantitative studies of growth and pattern formation. For complete details on the use and execution of this protocol, please refer to Lehr et al.1.
Collapse
Affiliation(s)
- Stefanie Lehr
- Institute of Science and Technology Austria, Am Campus 1, 3400 Klosterneuburg, Austria
| | - Jack Merrin
- Institute of Science and Technology Austria, Am Campus 1, 3400 Klosterneuburg, Austria
| | - Monika Kulig
- Institute of Science and Technology Austria, Am Campus 1, 3400 Klosterneuburg, Austria
| | | | - Anna Kicheva
- Institute of Science and Technology Austria, Am Campus 1, 3400 Klosterneuburg, Austria.
| |
Collapse
|
2
|
Kheiri S, Yakavets I, Cruickshank J, Ahmadi F, Berman HK, Cescon DW, Young EWK, Kumacheva E. Microfluidic Platform for Generating and Releasing Patient-Derived Cancer Organoids with Diverse Shapes: Insight into Shape-Dependent Tumor Growth. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2410547. [PMID: 39276011 DOI: 10.1002/adma.202410547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 08/15/2024] [Indexed: 09/16/2024]
Abstract
Multicellular spheroids and patient-derived organoids find many applications in fundamental research, drug discovery, and regenerative medicine. Advances in the understanding and recapitulation of organ functionality and disease development require the generation of complex organoid models, including organoids with diverse morphologies. Microfluidics-based cell culture platforms enable time-efficient confined organoid generation. However, the ability to form organoids with different shapes with a subsequent transfer from microfluidic devices to unconstrained environments for studies of morphology-dependent organoid growth is yet to be demonstrated. Here, a microfluidic platform is introduced that enables high-fidelity formation and addressable release of breast cancer organoids with diverse shapes. Using this platform, the impact of organoid morphology on their growth in unconstrained biomimetic hydrogel is explored. It is shown that proliferative cancer cells tend to localize in high positive curvature organoid regions, causing their faster growth, while the overall growth pattern of organoids with diverse shapes tends to reduce interfacial tension at the organoid-hydrogel interface. In addition to the formation of organoids with diverse morphologies, this platform can be integrated into multi-tissue micro-physiological systems.
Collapse
Affiliation(s)
- Sina Kheiri
- Department of Mechanical & Industrial Engineering, University of Toronto, 5 King's College Road, Toronto, ON, M5S 3G8, Canada
| | - Ilya Yakavets
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON, M5S 3H6, Canada
| | - Jennifer Cruickshank
- Princess Margaret Cancer Centre, University Health Network, 610 University Avenue, Toronto, ON, M5G 2C1, Canada
| | - Fatemeh Ahmadi
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON, M5S 3H6, Canada
| | - Hal K Berman
- Princess Margaret Cancer Centre, University Health Network, 610 University Avenue, Toronto, ON, M5G 2C1, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada
| | - David W Cescon
- Princess Margaret Cancer Centre, University Health Network, 610 University Avenue, Toronto, ON, M5G 2C1, Canada
- Department of Medicine, University of Toronto, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada
| | - Edmond W K Young
- Department of Mechanical & Industrial Engineering, University of Toronto, 5 King's College Road, Toronto, ON, M5S 3G8, Canada
- Institute of Biomedical Engineering, University of Toronto, 164 College Street, Toronto, ON, M5S 3G9, Canada
| | - Eugenia Kumacheva
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON, M5S 3H6, Canada
- Institute of Biomedical Engineering, University of Toronto, 164 College Street, Toronto, ON, M5S 3G9, Canada
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, ON, M5S 3E5, Canada
| |
Collapse
|
3
|
Lan BQ, Wang YJ, Yu SX, Liu W, Liu YJ. Physical effects of 3-D microenvironments on confined cell behaviors. Am J Physiol Cell Physiol 2024; 327:C1192-C1201. [PMID: 39246142 DOI: 10.1152/ajpcell.00288.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 08/16/2024] [Accepted: 09/04/2024] [Indexed: 09/10/2024]
Abstract
Cell migration is a fundamental and functional cellular process, influenced by a complex microenvironment consisting of different cells and extracellular matrix. Recent research has highlighted that, besides biochemical cues from the microenvironment, physical cues can also greatly alter cellular behavior. However, due to the complexity of the microenvironment, little is known about how the physical interactions between migrating cells and surrounding microenvironment instructs cell movement. Here, we explore various examples of three-dimensional microenvironment reconstruction models in vitro and describe how the physical interplay between migrating cells and the neighboring microenvironment controls cell behavior. Understanding this mechanical cooperation will provide key insights into organ development, regeneration, and tumor metastasis.
Collapse
Affiliation(s)
- Bao-Qiong Lan
- Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai, the People's Republic of China
| | - Ya-Jun Wang
- Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai, the People's Republic of China
| | - Sai-Xi Yu
- Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai, the People's Republic of China
| | - Wei Liu
- Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai, the People's Republic of China
| | - Yan-Jun Liu
- Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai, the People's Republic of China
| |
Collapse
|
4
|
Al Sayed ZR, Jouve C, Seguret M, Ruiz-Velasco A, Pereira C, Trégouët DA, Hulot JS. Rod-shaped micropatterning enhances the electrophysiological maturation of cardiomyocytes derived from human induced pluripotent stem cells. Stem Cell Reports 2024; 19:1417-1431. [PMID: 39303707 PMCID: PMC11561463 DOI: 10.1016/j.stemcr.2024.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 08/20/2024] [Accepted: 08/20/2024] [Indexed: 09/22/2024] Open
Abstract
Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) offer great potential for drug screening and disease modeling. However, hiPSC-CMs remain immature compared to the adult cardiac cells. Cardiomyocytes isolated from adult human hearts have a typical rod-shaped morphology. Here, we sought to develop a simple method to improve the architectural maturity of hiPSC-CMs by using a rod-shaped cell micropatterned substrate consisting of repeated rectangles (120 μm long × 30 μm wide) surrounded by a chemical cell repellent. The generated hiPSC-CMs exhibit numerous characteristics similar to adult human cardiomyocytes, including elongated cell shape, well-organized sarcomeres, and increased myofibril density. The improvement in structural properties correlates with the enrichment of late ventricular action potentials characterized by a more hyperpolarized resting membrane potential and an enhanced depolarization consistent with an increased sodium current density. The more mature hiPSC-CMs generated by this method may serve as a useful in vitro platform for characterizing cardiovascular disease.
Collapse
Affiliation(s)
| | - Charlène Jouve
- Université de Paris Cité, PARCC, INSERM, 75006 Paris, France
| | - Magali Seguret
- Université de Paris Cité, PARCC, INSERM, 75006 Paris, France
| | | | - Céline Pereira
- Université de Paris Cité, PARCC, INSERM, 75006 Paris, France
| | - David-Alexandre Trégouët
- INSERM UMR_S 1219, Bordeaux Population Health Research Center, University of Bordeaux, Bordeaux, France
| | - Jean-Sébastien Hulot
- Université de Paris Cité, PARCC, INSERM, 75006 Paris, France; CIC1418 and DMU CARTE, AP-HP, Hôpital Européen Georges-Pompidou, 75015 Paris, France.
| |
Collapse
|
5
|
Mao Y, Wickström SA. Mechanical state transitions in the regulation of tissue form and function. Nat Rev Mol Cell Biol 2024; 25:654-670. [PMID: 38600372 DOI: 10.1038/s41580-024-00719-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/26/2024] [Indexed: 04/12/2024]
Abstract
From embryonic development, postnatal growth and adult homeostasis to reparative and disease states, cells and tissues undergo constant changes in genome activity, cell fate, proliferation, movement, metabolism and growth. Importantly, these biological state transitions are coupled to changes in the mechanical and material properties of cells and tissues, termed mechanical state transitions. These mechanical states share features with physical states of matter, liquids and solids. Tissues can switch between mechanical states by changing behavioural dynamics or connectivity between cells. Conversely, these changes in tissue mechanical properties are known to control cell and tissue function, most importantly the ability of cells to move or tissues to deform. Thus, tissue mechanical state transitions are implicated in transmitting information across biological length and time scales, especially during processes of early development, wound healing and diseases such as cancer. This Review will focus on the biological basis of tissue-scale mechanical state transitions, how they emerge from molecular and cellular interactions, and their roles in organismal development, homeostasis, regeneration and disease.
Collapse
Affiliation(s)
- Yanlan Mao
- Laboratory for Molecular Cell Biology, University College London, London, UK.
- Institute for the Physics of Living Systems, University College London, London, UK.
| | - Sara A Wickström
- Department of Cell and Tissue Dynamics, Max Planck Institute for Molecular Biomedicine, Münster, Germany.
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
- Helsinki Institute of Life Science, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
6
|
Kowalczewski A, Sun S, Mai NY, Song Y, Hoang P, Liu X, Yang H, Ma Z. Design optimization of geometrically confined cardiac organoids enabled by machine learning techniques. CELL REPORTS METHODS 2024; 4:100798. [PMID: 38889687 PMCID: PMC11228370 DOI: 10.1016/j.crmeth.2024.100798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 04/20/2024] [Accepted: 05/21/2024] [Indexed: 06/20/2024]
Abstract
Stem cell organoids are powerful models for studying organ development, disease modeling, drug screening, and regenerative medicine applications. The convergence of organoid technology, tissue engineering, and artificial intelligence (AI) could potentially enhance our understanding of the design principles for organoid engineering. In this study, we utilized micropatterning techniques to create a designer library of 230 cardiac organoids with 7 geometric designs. We employed manifold learning techniques to analyze single organoid heterogeneity based on 10 physiological parameters. We clustered and refined the cardiac organoids based on their functional similarity using unsupervised machine learning approaches, thus elucidating unique functionalities associated with geometric designs. We also highlighted the critical role of calcium transient rising time in distinguishing organoids based on geometric patterns and clustering results. This integration of organoid engineering and machine learning enhances our understanding of structure-function relationships in cardiac organoids, paving the way for more controlled and optimized organoid design.
Collapse
Affiliation(s)
- Andrew Kowalczewski
- Department of Biomedical & Chemical Engineering, Syracuse University, Syracuse, NY, USA; BioInspired Syracuse Institute for Material and Living Systems, Syracuse University, Syracuse, NY, USA
| | - Shiyang Sun
- Department of Biomedical & Chemical Engineering, Syracuse University, Syracuse, NY, USA; BioInspired Syracuse Institute for Material and Living Systems, Syracuse University, Syracuse, NY, USA
| | - Nhu Y Mai
- Department of Biomedical & Chemical Engineering, Syracuse University, Syracuse, NY, USA; BioInspired Syracuse Institute for Material and Living Systems, Syracuse University, Syracuse, NY, USA
| | - Yuanhui Song
- Department of Biomedical & Chemical Engineering, Syracuse University, Syracuse, NY, USA; BioInspired Syracuse Institute for Material and Living Systems, Syracuse University, Syracuse, NY, USA
| | - Plansky Hoang
- Department of Biomedical & Chemical Engineering, Syracuse University, Syracuse, NY, USA; BioInspired Syracuse Institute for Material and Living Systems, Syracuse University, Syracuse, NY, USA
| | - Xiyuan Liu
- Department of Mechanical & Aerospace Engineering, Syracuse University, Syracuse, NY, USA
| | - Huaxiao Yang
- Department of Biomedical Engineering, University of North Texas, Denton, TX, USA
| | - Zhen Ma
- Department of Biomedical & Chemical Engineering, Syracuse University, Syracuse, NY, USA; BioInspired Syracuse Institute for Material and Living Systems, Syracuse University, Syracuse, NY, USA.
| |
Collapse
|
7
|
Toscano E, Cimmino E, Pennacchio FA, Riccio P, Poli A, Liu YJ, Maiuri P, Sepe L, Paolella G. Methods and computational tools to study eukaryotic cell migration in vitro. Front Cell Dev Biol 2024; 12:1385991. [PMID: 38887515 PMCID: PMC11180820 DOI: 10.3389/fcell.2024.1385991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 05/13/2024] [Indexed: 06/20/2024] Open
Abstract
Cellular movement is essential for many vital biological functions where it plays a pivotal role both at the single cell level, such as during division or differentiation, and at the macroscopic level within tissues, where coordinated migration is crucial for proper morphogenesis. It also has an impact on various pathological processes, one for all, cancer spreading. Cell migration is a complex phenomenon and diverse experimental methods have been developed aimed at dissecting and analysing its distinct facets independently. In parallel, corresponding analytical procedures and tools have been devised to gain deep insight and interpret experimental results. Here we review established experimental techniques designed to investigate specific aspects of cell migration and present a broad collection of historical as well as cutting-edge computational tools used in quantitative analysis of cell motion.
Collapse
Affiliation(s)
- Elvira Toscano
- Department of Molecular Medicine and Medical Biotechnology, Università Degli Studi di Napoli “Federico II”, Naples, Italy
- CEINGE Biotecnologie Avanzate Franco Salvatore, Naples, Italy
| | - Elena Cimmino
- Department of Molecular Medicine and Medical Biotechnology, Università Degli Studi di Napoli “Federico II”, Naples, Italy
| | - Fabrizio A. Pennacchio
- Laboratory of Applied Mechanobiology, Department of Health Sciences and Technology, Zurich, Switzerland
| | - Patrizia Riccio
- Department of Molecular Medicine and Medical Biotechnology, Università Degli Studi di Napoli “Federico II”, Naples, Italy
| | | | - Yan-Jun Liu
- Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Paolo Maiuri
- Department of Molecular Medicine and Medical Biotechnology, Università Degli Studi di Napoli “Federico II”, Naples, Italy
| | - Leandra Sepe
- Department of Molecular Medicine and Medical Biotechnology, Università Degli Studi di Napoli “Federico II”, Naples, Italy
| | - Giovanni Paolella
- Department of Molecular Medicine and Medical Biotechnology, Università Degli Studi di Napoli “Federico II”, Naples, Italy
- CEINGE Biotecnologie Avanzate Franco Salvatore, Naples, Italy
| |
Collapse
|
8
|
Dibus M, Joshi O, Ivaska J. Novel tools to study cell-ECM interactions, cell adhesion dynamics and migration. Curr Opin Cell Biol 2024; 88:102355. [PMID: 38631101 DOI: 10.1016/j.ceb.2024.102355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 03/15/2024] [Accepted: 03/15/2024] [Indexed: 04/19/2024]
Abstract
Integrin-mediated cell adhesion is essential for cell migration, mechanotransduction and tissue integrity. In vivo, these processes are regulated by complex physicochemical signals from the extracellular matrix (ECM). These nuanced cues, including molecular composition, rigidity and topology, call for sophisticated systems to faithfully explore cell behaviour. Here, we discuss recent methodological advances in cell-ECM adhesion research and compile a toolbox of techniques that we expect to shape this field in future. We outline methodological breakthroughs facilitating the transition from rigid 2D substrates to more complex and dynamic 3D systems, as well as advances in super-resolution imaging for an in-depth understanding of adhesion nanostructure. Selected methods are exemplified with relevant biological findings to underscore their applicability in cell adhesion research. We expect this new "toolbox" of methods will allow for a closer approximation of in vitro experimental setups to in vivo conditions, providing deeper insights into physiological and pathophysiological processes associated with cell-ECM adhesion.
Collapse
Affiliation(s)
- Michal Dibus
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, FI-20520 Turku, Finland; InFLAMES Research Flagship Center, University of Turku, Turku, Finland
| | - Omkar Joshi
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, FI-20520 Turku, Finland; InFLAMES Research Flagship Center, University of Turku, Turku, Finland
| | - Johanna Ivaska
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, FI-20520 Turku, Finland; InFLAMES Research Flagship Center, University of Turku, Turku, Finland; Department of Life Technologies, University of Turku, FI-20520 Turku, Finland; Western Finnish Cancer Center (FICAN West), University of Turku, FI-20520 Turku, Finland; Foundation for the Finnish Cancer Institute, Tukholmankatu 8, FI-00014 Helsinki, Finland.
| |
Collapse
|
9
|
Perez Ipiña E, d’Alessandro J, Ladoux B, Camley BA. Deposited footprints let cells switch between confined, oscillatory, and exploratory migration. Proc Natl Acad Sci U S A 2024; 121:e2318248121. [PMID: 38787878 PMCID: PMC11145245 DOI: 10.1073/pnas.2318248121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 04/08/2024] [Indexed: 05/26/2024] Open
Abstract
For eukaryotic cells to heal wounds, respond to immune signals, or metastasize, they must migrate, often by adhering to extracellular matrix (ECM). Cells may also deposit ECM components, leaving behind a footprint that influences their crawling. Recent experiments showed that some epithelial cell lines on micropatterned adhesive stripes move persistently in regions they have previously crawled over, where footprints have been formed, but barely advance into unexplored regions, creating an oscillatory migration of increasing amplitude. Here, we explore through mathematical modeling how footprint deposition and cell responses to footprint combine to allow cells to develop oscillation and other complex migratory motions. We simulate cell crawling with a phase field model coupled to a biochemical model of cell polarity, assuming local contact with the deposited footprint activates Rac1, a protein that establishes the cell's front. Depending on footprint deposition rate and response to the footprint, cells on micropatterned lines can display many types of motility, including confined, oscillatory, and persistent motion. On two-dimensional (2D) substrates, we predict a transition between cells undergoing circular motion and cells developing an exploratory phenotype. Small quantitative changes in a cell's interaction with its footprint can completely alter exploration, allowing cells to tightly regulate their motion, leading to different motility phenotypes (confined vs. exploratory) in different cells when deposition or sensing is variable from cell to cell. Consistent with our computational predictions, we find in earlier experimental data evidence of cells undergoing both circular and exploratory motion.
Collapse
Affiliation(s)
- Emiliano Perez Ipiña
- William H. Miller III Department of Physics & Astronomy, Johns Hopkins University, Baltimore, MD21218
| | | | - Benoît Ladoux
- Université Paris Cité, CNRS, Institut Jacques Monod, F-75013Paris, France
| | - Brian A. Camley
- William H. Miller III Department of Physics & Astronomy, Johns Hopkins University, Baltimore, MD21218
- Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, MD21218
| |
Collapse
|
10
|
Perez Ipiña E, D'Alessandro J, Ladoux B, Camley BA. Deposited footprints let cells switch between confined, oscillatory, and exploratory migration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.09.14.557437. [PMID: 37745526 PMCID: PMC10515912 DOI: 10.1101/2023.09.14.557437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
For eukaryotic cells to heal wounds, respond to immune signals, or metastasize, they must migrate, often by adhering to extracellular matrix. Cells may also deposit extracellular matrix components, leaving behind a footprint that influences their crawling. Recent experiments showed that some epithelial cells on micropatterned adhesive stripes move persistently in regions they have previously crawled over, where footprints have been formed, but barely advance into unexplored regions, creating an oscillatory migration of increasing amplitude. Here, we explore through mathematical modeling how footprint deposition and cell responses to footprint combine to allow cells to develop oscillation and other complex migratory motions. We simulate cell crawling with a phase field model coupled to a biochemical model of cell polarity, assuming local contact with the deposited footprint activates Rac1, a protein that establishes the cell's front. Depending on footprint deposition rate and response to the footprint, cells on micropatterned lines can display many types of motility, including confined, oscillatory, and persistent motion. On two-dimensional substrates, we predict a transition between cells undergoing circular motion and cells developing an exploratory phenotype. Small quantitative changes in a cell's interaction with its footprint can completely alter exploration, allowing cells to tightly regulate their motion, leading to different motility phenotypes (confined vs exploratory) in different cells when deposition or sensing is variable from cell to cell. Consistent with our computational predictions, we find in earlier experimental data evidence of cells undergoing both circular and exploratory motion.
Collapse
|
11
|
Ramos R, Karaiskou A, Botuha C, Amhaz S, Trichet M, Dingli F, Forté J, Lam F, Canette A, Chaumeton C, Salome M, Chenuel T, Bergonzi C, Meyer P, Bohic S, Loew D, Salmain M, Sobczak-Thépot J. Identification of Cellular Protein Targets of a Half-Sandwich Iridium(III) Complex Reveals Its Dual Mechanism of Action via Both Electrophilic and Oxidative Stresses. J Med Chem 2024; 67:6189-6206. [PMID: 38577779 DOI: 10.1021/acs.jmedchem.3c02000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2024]
Abstract
Identification of intracellular targets of anticancer drug candidates provides key information on their mechanism of action. Exploiting the ability of the anticancer (C∧N)-chelated half-sandwich iridium(III) complexes to covalently bind proteins, click chemistry with a bioorthogonal azido probe was used to localize a phenyloxazoline-chelated iridium complex within cells and profile its interactome at the proteome-wide scale. Proteins involved in protein folding and actin cytoskeleton regulation were identified as high-affinity targets. Upon iridium complex treatment, the folding activity of Heat Shock Protein HSP90 was inhibited in vitro and major cytoskeleton disorganization was observed. A wide array of imaging and biochemical methods validated selected targets and provided a multiscale overview of the effects of this complex on live human cells. We demonstrate that it behaves as a dual agent, inducing both electrophilic and oxidative stresses in cells that account for its cytotoxicity. The proposed methodological workflow can open innovative avenues in metallodrug discovery.
Collapse
Affiliation(s)
- Robin Ramos
- Sorbonne Université, INSERM, Centre de Recherche Saint Antoine, 184 rue du Faubourg Saint Antoine, F-75012 Paris, France
| | - Anthi Karaiskou
- Sorbonne Université, INSERM, Centre de Recherche Saint Antoine, 184 rue du Faubourg Saint Antoine, F-75012 Paris, France
| | - Candice Botuha
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, 4 place Jussieu, F-75005 Paris, France
| | - Sadek Amhaz
- Sorbonne Université, INSERM, Centre de Recherche Saint Antoine, 184 rue du Faubourg Saint Antoine, F-75012 Paris, France
| | - Michaël Trichet
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine, Service d'imagerie cellulaire, F-75005 Paris, France
| | - Florent Dingli
- Institut Curie, PSL Research University, CurieCoreTech Mass Spectrometry Proteomics, F-75248 Paris, France
| | - Jérémy Forté
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, 4 place Jussieu, F-75005 Paris, France
| | - France Lam
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine, Service d'imagerie cellulaire, F-75005 Paris, France
| | - Alexis Canette
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine, Service d'imagerie cellulaire, F-75005 Paris, France
| | - Chloé Chaumeton
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine, Service d'imagerie cellulaire, F-75005 Paris, France
| | - Murielle Salome
- ESRF, The European Synchrotron Research Facility, F-38043 Grenoble cedex 9, France
| | - Thomas Chenuel
- Sorbonne Université, PSL, CNRS, UMR8226, Institut de Biologie Physico-Chimique, Laboratoire de Biologie Moléculaire et Cellulaire des Eucaryotes, F-75005 Paris, France
| | - Céline Bergonzi
- Sorbonne Université, PSL, CNRS, UMR8226, Institut de Biologie Physico-Chimique, Laboratoire de Biologie Moléculaire et Cellulaire des Eucaryotes, F-75005 Paris, France
| | - Philippe Meyer
- Sorbonne Université, PSL, CNRS, UMR8226, Institut de Biologie Physico-Chimique, Laboratoire de Biologie Moléculaire et Cellulaire des Eucaryotes, F-75005 Paris, France
| | - Sylvain Bohic
- Université Grenoble Alpes, INSERM, UA7 STROBE, Synchrotron Radiation for Biomedicine, F-38400 Saint Martin d'Hères, France
| | - Damarys Loew
- Institut Curie, PSL Research University, CurieCoreTech Mass Spectrometry Proteomics, F-75248 Paris, France
| | - Michèle Salmain
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, 4 place Jussieu, F-75005 Paris, France
| | - Joëlle Sobczak-Thépot
- Sorbonne Université, INSERM, Centre de Recherche Saint Antoine, 184 rue du Faubourg Saint Antoine, F-75012 Paris, France
| |
Collapse
|
12
|
Cheng Y, Pang SW. Biointerfaces with ultrathin patterns for directional control of cell migration. J Nanobiotechnology 2024; 22:158. [PMID: 38589901 PMCID: PMC11000378 DOI: 10.1186/s12951-024-02418-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 03/18/2024] [Indexed: 04/10/2024] Open
Abstract
In the context of wound healing and tissue regeneration, precise control of cell migration direction is deemed crucial. To address this challenge, polydimethylsiloxane (PDMS) platforms with patterned 10 nm thick TiOx in arrowhead shape were designed and fabricated. Remarkably, without tall sidewall constraints, MC3T3-E1 cells seeded on these platforms were constrained to migrate along the tips of the arrowheads, as the cells were guided by the asymmetrical arrowhead tips which provided large contact areas. To the best of our knowledge, this is the first study demonstrating the use of thin TiOx arrowhead pattern in combination with a cell-repellent PDMS surface to provide guided cell migration unidirectionally without tall sidewall constraints. Additionally, high-resolution fluorescence imaging revealed that the asymmetrical distribution of focal adhesions, triggered by the patterned TiOx arrowheads with arm lengths of 10, 20, and 35 μm, promoted cell adhesion and protrusion along the arrowhead tip direction, resulting in unidirectional cell migration. These findings have important implications for the design of biointerfaces with ultrathin patterns to precisely control cell migration. Furthermore, microelectrodes were integrated with the patterned TiOx arrowheads to enable dynamic monitoring of cell migration using impedance measurement. This microfluidic device integrated with thin layer of guiding pattern and microelectrodes allows simultaneous control of directional cell migration and characterization of the cell movement of individual MC3T3-E1 cells, offering great potential for the development of biosensors for single-cell monitoring.
Collapse
Grants
- CityU11207620, CityU11207821, CityU11205423 Research Grants Council of the Hong Kong Special Administrative Region, China
- CityU11207620, CityU11207821, CityU11205423 Research Grants Council of the Hong Kong Special Administrative Region, China
- 9360148, 9380062 Center for Biosystems, Neuroscience, and Nanotechnology (CBNN) of City University of Hong Kong
- 9360148, 9380062 Center for Biosystems, Neuroscience, and Nanotechnology (CBNN) of City University of Hong Kong
Collapse
Affiliation(s)
- Yijun Cheng
- Department of Electrical Engineering, City University of Hong Kong, Kowloon, Hong Kong, China
- Centre for Biosystems, Neuroscience, and Nanotechnology, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Stella W Pang
- Department of Electrical Engineering, City University of Hong Kong, Kowloon, Hong Kong, China.
- Centre for Biosystems, Neuroscience, and Nanotechnology, City University of Hong Kong, Kowloon, Hong Kong, China.
| |
Collapse
|
13
|
Brückner DB, Broedersz CP. Learning dynamical models of single and collective cell migration: a review. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2024; 87:056601. [PMID: 38518358 DOI: 10.1088/1361-6633/ad36d2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 03/22/2024] [Indexed: 03/24/2024]
Abstract
Single and collective cell migration are fundamental processes critical for physiological phenomena ranging from embryonic development and immune response to wound healing and cancer metastasis. To understand cell migration from a physical perspective, a broad variety of models for the underlying physical mechanisms that govern cell motility have been developed. A key challenge in the development of such models is how to connect them to experimental observations, which often exhibit complex stochastic behaviours. In this review, we discuss recent advances in data-driven theoretical approaches that directly connect with experimental data to infer dynamical models of stochastic cell migration. Leveraging advances in nanofabrication, image analysis, and tracking technology, experimental studies now provide unprecedented large datasets on cellular dynamics. In parallel, theoretical efforts have been directed towards integrating such datasets into physical models from the single cell to the tissue scale with the aim of conceptualising the emergent behaviour of cells. We first review how this inference problem has been addressed in both freely migrating and confined cells. Next, we discuss why these dynamics typically take the form of underdamped stochastic equations of motion, and how such equations can be inferred from data. We then review applications of data-driven inference and machine learning approaches to heterogeneity in cell behaviour, subcellular degrees of freedom, and to the collective dynamics of multicellular systems. Across these applications, we emphasise how data-driven methods can be integrated with physical active matter models of migrating cells, and help reveal how underlying molecular mechanisms control cell behaviour. Together, these data-driven approaches are a promising avenue for building physical models of cell migration directly from experimental data, and for providing conceptual links between different length-scales of description.
Collapse
Affiliation(s)
- David B Brückner
- Institute of Science and Technology Austria, Am Campus 1, 3400 Klosterneuburg, Austria
| | - Chase P Broedersz
- Department of Physics and Astronomy, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
- Arnold Sommerfeld Center for Theoretical Physics and Center for NanoScience, Department of Physics, Ludwig-Maximilian-University Munich, Theresienstr. 37, D-80333 Munich, Germany
| |
Collapse
|
14
|
Zhang D, Wu W, Zhang W, Feng Q, Zhang Q, Liang H. Nuclear deformation and cell division of single cell on elongated micropatterned substrates fabricated by DMD lithography. Biofabrication 2024; 16:035001. [PMID: 38471164 DOI: 10.1088/1758-5090/ad3319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 03/12/2024] [Indexed: 03/14/2024]
Abstract
Cells sense mechanical signals from the surrounding environment and transmit them to the nucleus through mechanotransduction to regulate cellular behavior. Microcontact printing, which utilizes elastomer stamps, is an effective method for simulating the cellular microenvironment and manipulating cell morphology. However, the conventional fabrication process of silicon masters and elastomer stamps requires complex procedures and specialized equipment, which restricts the widespread application of micropatterning in cell biology and hinders the investigation of the role of cell geometry in regulating cell behavior. In this study, we present an innovative method for convenient resin stamp microfabrication based on digital micromirror device planar lithography. Using this method, we generated a series of patterns ranging from millimeter to micrometer scales and validated their effectiveness in controlling adhesion at both collective and individual cell levels. Additionally, we investigated mechanotransduction and cell behavior on elongated micropatterned substrates. We then examined the effects of cell elongation on cytoskeleton organization, nuclear deformation, focal adhesion formation, traction force generation, nuclear mechanics, and the growth of HeLa cells. Our findings reveal a positive correlation between cell length and mechanotransduction. Interestingly, HeLa cells with moderate length exhibit the highest cell division and proliferation rates. These results highlight the regulatory role of cell elongation in mechanotransduction and its significant impact on cancer cell growth. Furthermore, our methodology for controlling cell adhesion holds the potential for addressing fundamental questions in both cell biology and biomedical engineering.
Collapse
Affiliation(s)
- Duo Zhang
- CAS Key Laboratory of Mechanical Behavior and Design of Material, Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui 230000, People's Republic of China
| | - Wenjie Wu
- CAS Key Laboratory of Mechanical Behavior and Design of Material, Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui 230000, People's Republic of China
| | - Wanying Zhang
- Cancer Research Center, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230000, People's Republic of China
| | - Qiyu Feng
- Cancer Research Center, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230000, People's Republic of China
| | - Qingchuan Zhang
- CAS Key Laboratory of Mechanical Behavior and Design of Material, Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui 230000, People's Republic of China
| | - Haiyi Liang
- CAS Key Laboratory of Mechanical Behavior and Design of Material, Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui 230000, People's Republic of China
- School of Civil Engineering, Anhui Jianzhu University, Hefei, Anhui 230601, People's Republic of China
- IAT-Chungu Joint Laboratory for Additive Manufacturing, Anhui Chungu 3D Printing Institute of Intelligent Equipment and Industrial Technology, Wuhu, Anhui 241000, People's Republic of China
| |
Collapse
|
15
|
Hannaford MR, Rusan NM. Positioning centrioles and centrosomes. J Cell Biol 2024; 223:e202311140. [PMID: 38512059 PMCID: PMC10959756 DOI: 10.1083/jcb.202311140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/23/2024] [Accepted: 02/26/2024] [Indexed: 03/22/2024] Open
Abstract
Centrosomes are the primary microtubule organizer in eukaryotic cells. In addition to shaping the intracellular microtubule network and the mitotic spindle, centrosomes are responsible for positioning cilia and flagella. To fulfill these diverse functions, centrosomes must be properly located within cells, which requires that they undergo intracellular transport. Importantly, centrosome mispositioning has been linked to ciliopathies, cancer, and infertility. The mechanisms by which centrosomes migrate are diverse and context dependent. In many cells, centrosomes move via indirect motor transport, whereby centrosomal microtubules engage anchored motor proteins that exert forces on those microtubules, resulting in centrosome movement. However, in some cases, centrosomes move via direct motor transport, whereby the centrosome or centriole functions as cargo that directly binds molecular motors which then walk on stationary microtubules. In this review, we summarize the mechanisms of centrosome motility and the consequences of centrosome mispositioning and identify key questions that remain to be addressed.
Collapse
Affiliation(s)
- Matthew R. Hannaford
- Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Nasser M. Rusan
- Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
16
|
Loewe B, Kozhukhov T, Shendruk TN. Anisotropic run-and-tumble-turn dynamics. SOFT MATTER 2024; 20:1133-1150. [PMID: 38226730 PMCID: PMC10828927 DOI: 10.1039/d3sm00589e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 12/12/2023] [Indexed: 01/17/2024]
Abstract
Run-and-tumble processes successfully model several living systems. While studies have typically focused on particles with isotropic tumbles, recent examples exhibit "tumble-turns", in which particles undergo 90° tumbles and so possess explicitly anisotropic dynamics. We study the consequences of such tumble-turn anisotropicity at both short and long-time scales. We model run-and-tumble-turn particles as self-propelled particles subjected to an angular potential that favors directions of movement parallel to Cartesian axes. Using agent-based simulations, we study the effects of the interplay between rotational diffusion and an aligning potential on the particles' trajectories, which leads to the right-angled turns. We demonstrate that the long-time effect is to alter the tumble-turn time, which governs the long-time dynamics. In particular, when normalized by this timescale, trajectories become independent of the underlying details of the potential. As such, we develop a simplified continuum theory, which quantitatively agrees with agent-based simulations. We find that the purely diffusive hydrodynamic limit still exhibits anisotropic features at intermediate times and conclude that the transition to diffusive dynamics precedes the transition to isotropic dynamics. By considering short-range repulsive and alignment particle-particle interactions, we show how the anisotropic features of a single particle are inherited by the global order of the system. We hope this work will shed light on how active systems can extend local anisotropic properties to macroscopic scales, which might be important in biological processes occurring in anisotropic environments.
Collapse
Affiliation(s)
- Benjamin Loewe
- SUPA, School of Physics and Astronomy, University of Edinburgh, Peter Guthrie Tait Road, Edinburgh EH9 3FD, UK.
| | - Timofey Kozhukhov
- SUPA, School of Physics and Astronomy, University of Edinburgh, Peter Guthrie Tait Road, Edinburgh EH9 3FD, UK.
| | - Tyler N Shendruk
- SUPA, School of Physics and Astronomy, University of Edinburgh, Peter Guthrie Tait Road, Edinburgh EH9 3FD, UK.
| |
Collapse
|
17
|
Jühlen R, Grauer L, Martinelli V, Rencurel C, Fahrenkrog B. Alteration of actin cytoskeletal organisation in fetal akinesia deformation sequence. Sci Rep 2024; 14:1742. [PMID: 38242956 PMCID: PMC10799014 DOI: 10.1038/s41598-023-50615-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 12/22/2023] [Indexed: 01/21/2024] Open
Abstract
Fetal akinesia deformation sequence (FADS) represents the severest form of congenital myasthenic syndrome (CMS), a diverse group of inherited disorders characterised by impaired neuromuscular transmission. Most CMS originate from defects in the muscle nicotinic acetylcholine receptor, but the underlying molecular pathogenesis is only poorly understood. Here we show that RNAi-mediated silencing of FADS-related proteins rapsyn and NUP88 in foetal fibroblasts alters organisation of the actin cytoskeleton. We show that fibroblasts from two independent FADS individuals have enhanced and shorter actin stress fibre bundles, alongside with an increased number and size of focal adhesions, with an otherwise normal overall connectivity and integrity of the actin-myosin cytoskeleton network. By proximity ligation assays and bimolecular fluorescence complementation, we show that rapsyn and NUP88 localise nearby adhesion plaques and that they interact with the focal adhesion protein paxillin. Based on these findings we propose that a respective deficiency in rapsyn and NUP88 in FADS alters the regulation of actin dynamics at focal adhesions, and thereby may also plausibly dictate myofibril contraction in skeletal muscle of FADS individuals.
Collapse
Affiliation(s)
- Ramona Jühlen
- Laboratory Biology of the Cell Nucleus, Institute of Molecular Biology and Medicine, Université Libre de Bruxelles, 6041, Gosselies, Belgium.
- Institute of Biochemistry and Molecular Cell Biology, Medical School, RWTH Aachen University, 52074, Aachen, Germany.
| | - Lukas Grauer
- Institute of Biochemistry and Molecular Cell Biology, Medical School, RWTH Aachen University, 52074, Aachen, Germany
| | - Valérie Martinelli
- Laboratory Biology of the Cell Nucleus, Institute of Molecular Biology and Medicine, Université Libre de Bruxelles, 6041, Gosselies, Belgium
- Laboratory of Neurovascular Signaling, Institute of Molecular Biology and Medicine, Université Libre de Bruxelles, 6041, Gosselies, Belgium
| | | | - Birthe Fahrenkrog
- Laboratory Biology of the Cell Nucleus, Institute of Molecular Biology and Medicine, Université Libre de Bruxelles, 6041, Gosselies, Belgium.
- Biozentrum, University of Basel, 4056, Basel, Switzerland.
| |
Collapse
|
18
|
Jiang H, Chan YW. Chromatin bridges: stochastic breakage or regulated resolution? Trends Genet 2024; 40:69-82. [PMID: 37891096 DOI: 10.1016/j.tig.2023.10.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/25/2023] [Accepted: 10/03/2023] [Indexed: 10/29/2023]
Abstract
Genetic material is organized in the form of chromosomes, which need to be segregated accurately into two daughter cells in each cell cycle. However, chromosome fusion or the presence of unresolved interchromosomal linkages lead to the formation of chromatin bridges, which can induce DNA lesions and genome instability. Persistent chromatin bridges are trapped in the cleavage furrow and are broken at or after abscission, the final step of cytokinesis. In this review, we focus on recent progress in understanding the mechanism of bridge breakage and resolution. We discuss the molecular machinery and enzymes that have been implicated in the breakage and processing of bridge DNA. In addition, we outline both the immediate outcomes and genomic consequences induced by bridge breakage.
Collapse
Affiliation(s)
- Huadong Jiang
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region of China
| | - Ying Wai Chan
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region of China.
| |
Collapse
|
19
|
Aazmi A, Zhang D, Mazzaglia C, Yu M, Wang Z, Yang H, Huang YYS, Ma L. Biofabrication methods for reconstructing extracellular matrix mimetics. Bioact Mater 2024; 31:475-496. [PMID: 37719085 PMCID: PMC10500422 DOI: 10.1016/j.bioactmat.2023.08.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 08/23/2023] [Accepted: 08/24/2023] [Indexed: 09/19/2023] Open
Abstract
In the human body, almost all cells interact with extracellular matrices (ECMs), which have tissue and organ-specific compositions and architectures. These ECMs not only function as cellular scaffolds, providing structural support, but also play a crucial role in dynamically regulating various cellular functions. This comprehensive review delves into the examination of biofabrication strategies used to develop bioactive materials that accurately mimic one or more biophysical and biochemical properties of ECMs. We discuss the potential integration of these ECM-mimics into a range of physiological and pathological in vitro models, enhancing our understanding of cellular behavior and tissue organization. Lastly, we propose future research directions for ECM-mimics in the context of tissue engineering and organ-on-a-chip applications, offering potential advancements in therapeutic approaches and improved patient outcomes.
Collapse
Affiliation(s)
- Abdellah Aazmi
- State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou, 310058, China
- School of Mechanical Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Duo Zhang
- Department of Engineering, University of Cambridge, Cambridge, United Kingdom
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, 51817, China
| | - Corrado Mazzaglia
- Department of Engineering, University of Cambridge, Cambridge, United Kingdom
| | - Mengfei Yu
- The Affiliated Stomatologic Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Zhen Wang
- Center for Laboratory Medicine, Allergy Center, Department of Transfusion Medicine, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
| | - Huayong Yang
- State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou, 310058, China
- School of Mechanical Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Yan Yan Shery Huang
- Department of Engineering, University of Cambridge, Cambridge, United Kingdom
| | - Liang Ma
- State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou, 310058, China
- School of Mechanical Engineering, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
20
|
Isomursu A, Alanko J, Hernández-Pérez S, Saukkonen K, Saari M, Mattila PK, Ivaska J. Dynamic Micropatterning Reveals Substrate-Dependent Differences in the Geometric Control of Cell Polarization and Migration. SMALL METHODS 2024; 8:e2300719. [PMID: 37926786 DOI: 10.1002/smtd.202300719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 10/03/2023] [Indexed: 11/07/2023]
Abstract
Cells are highly dynamic and adopt variable shapes and sizes. These variations are biologically important but challenging to investigate in a spatiotemporally controlled manner. Micropatterning, confining cells on microfabricated substrates with defined geometries and molecular compositions, is a powerful tool for controlling cell shape and interactions. However, conventional binary micropatterns are static and fail to address dynamic changes in cell polarity, spreading, and migration. Here, a method for dynamic micropatterning is reported, where the non-adhesive surface surrounding adhesive micropatterns is rapidly converted to support specific cell-matrix interactions while allowing simultaneous imaging of the cells. The technique is based on ultraviolet photopatterning of biotinylated polyethylene glycol-grafted poly-L-lysine, and it is simple, inexpensive, and compatible with a wide range of streptavidin-conjugated ligands. Experiments using biotinylation-based dynamic micropatterns reveal that distinct extracellular matrix ligands and bivalent integrin-clustering antibodies support different degrees of front-rear polarity in human glioblastoma cells, which correlates to altered directionality and persistence upon release and migration on fibronectin. Unexpectedly, however, neither an asymmetric cell shape nor centrosome orientation can fully predict the future direction of migration. Taken together, biotinylation-based dynamic micropatterns allow easily accessible and highly customizable control over cell morphology and motility.
Collapse
Affiliation(s)
- Aleksi Isomursu
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, 20520, Finland
| | - Jonna Alanko
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, 20520, Finland
| | - Sara Hernández-Pérez
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, 20520, Finland
- Institute of Biomedicine and MediCity Research Laboratories, University of Turku, Turku, 20014, Finland
- Department of Life Technologies, University of Turku, Turku, 20520, Finland
| | - Karla Saukkonen
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, 20520, Finland
| | - Markku Saari
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, 20520, Finland
| | - Pieta K Mattila
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, 20520, Finland
- Institute of Biomedicine and MediCity Research Laboratories, University of Turku, Turku, 20014, Finland
- Department of Life Technologies, University of Turku, Turku, 20520, Finland
| | - Johanna Ivaska
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, 20520, Finland
- Department of Life Technologies, University of Turku, Turku, 20520, Finland
- InFLAMES Research Flagship Center, University of Turku, Turku, 20520, Finland
- Western Finnish Cancer Center (FICAN West), University of Turku, Turku, 20520, Finland
- Foundation for the Finnish Cancer Institute, Helsinki, 00014, Finland
| |
Collapse
|
21
|
Bastianello G, Porcella G, Beznoussenko GV, Kidiyoor G, Ascione F, Li Q, Cattaneo A, Matafora V, Disanza A, Quarto M, Mironov AA, Oldani A, Barozzi S, Bachi A, Costanzo V, Scita G, Foiani M. Cell stretching activates an ATM mechano-transduction pathway that remodels cytoskeleton and chromatin. Cell Rep 2023; 42:113555. [PMID: 38088930 DOI: 10.1016/j.celrep.2023.113555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 11/01/2023] [Accepted: 11/20/2023] [Indexed: 12/30/2023] Open
Abstract
Ataxia telangiectasia mutated (ATM) and ataxia telangiectasia and Rad3-related (ATR) DNA damage response (DDR) kinases contain elastic domains. ATM also responds to reactive oxygen species (ROS) and ATR to nuclear mechanical stress. Mre11 mediates ATM activation following DNA damage; ATM mutations cause ataxia telangiectasia (A-T). Here, using in vivo imaging, electron microscopy, proteomic, and mechano-biology approaches, we study how ATM responds to mechanical stress. We report that cytoskeleton and ROS, but not Mre11, mediate ATM activation following cell deformation. ATM deficiency causes hyper-stiffness, stress fiber accumulation, Yes-associated protein (YAP) nuclear enrichment, plasma and nuclear membrane alterations during interstitial migration, and H3 hyper-methylation. ATM locates to the actin cytoskeleton and, following cytoskeleton stress, promotes phosphorylation of key cytoskeleton and chromatin regulators. Our data contribute to explain some clinical features of patients with A-T and pinpoint the existence of an integrated mechano-response in which ATM and ATR have distinct roles unrelated to their canonical DDR functions.
Collapse
Affiliation(s)
- Giulia Bastianello
- IFOM, the FIRC Institute of Molecular Oncology, 20139 Milan, Italy; Oncology and Haemato-Oncology Department, University of Milan, 20122 Milan, Italy.
| | | | | | - Gururaj Kidiyoor
- IFOM, the FIRC Institute of Molecular Oncology, 20139 Milan, Italy
| | - Flora Ascione
- IFOM, the FIRC Institute of Molecular Oncology, 20139 Milan, Italy
| | - Qingsen Li
- IFOM, the FIRC Institute of Molecular Oncology, 20139 Milan, Italy
| | | | | | - Andrea Disanza
- IFOM, the FIRC Institute of Molecular Oncology, 20139 Milan, Italy
| | - Micaela Quarto
- IFOM, the FIRC Institute of Molecular Oncology, 20139 Milan, Italy
| | | | - Amanda Oldani
- IFOM, the FIRC Institute of Molecular Oncology, 20139 Milan, Italy
| | - Sara Barozzi
- IFOM, the FIRC Institute of Molecular Oncology, 20139 Milan, Italy
| | - Angela Bachi
- IFOM, the FIRC Institute of Molecular Oncology, 20139 Milan, Italy
| | - Vincenzo Costanzo
- IFOM, the FIRC Institute of Molecular Oncology, 20139 Milan, Italy; Oncology and Haemato-Oncology Department, University of Milan, 20122 Milan, Italy
| | - Giorgio Scita
- IFOM, the FIRC Institute of Molecular Oncology, 20139 Milan, Italy; Oncology and Haemato-Oncology Department, University of Milan, 20122 Milan, Italy
| | - Marco Foiani
- IFOM, the FIRC Institute of Molecular Oncology, 20139 Milan, Italy; Oncology and Haemato-Oncology Department, University of Milan, 20122 Milan, Italy.
| |
Collapse
|
22
|
Amiri S, Muresan C, Shang X, Huet-Calderwood C, Schwartz MA, Calderwood DA, Murrell M. Intracellular tension sensor reveals mechanical anisotropy of the actin cytoskeleton. Nat Commun 2023; 14:8011. [PMID: 38049429 PMCID: PMC10695988 DOI: 10.1038/s41467-023-43612-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 11/15/2023] [Indexed: 12/06/2023] Open
Abstract
The filamentous actin (F-actin) cytoskeleton is a composite material consisting of cortical actin and bundled F-actin stress fibers, which together mediate the mechanical behaviors of the cell, from cell division to cell migration. However, as mechanical forces are typically measured upon transmission to the extracellular matrix, the internal distribution of forces within the cytoskeleton is unknown. Likewise, how distinct F-actin architectures contribute to the generation and transmission of mechanical forces is unclear. Therefore, we have developed a molecular tension sensor that embeds into the F-actin cytoskeleton. Using this sensor, we measure tension within stress fibers and cortical actin, as the cell is subject to uniaxial stretch. We find that the mechanical response, as measured by FRET, depends on the direction of applied stretch relative to the cell's axis of alignment. When the cell is aligned parallel to the direction of the stretch, stress fibers and cortical actin both accumulate tension. By contrast, when aligned perpendicular to the direction of stretch, stress fibers relax tension while the cortex accumulates tension, indicating mechanical anisotropy within the cytoskeleton. We further show that myosin inhibition regulates this anisotropy. Thus, the mechanical anisotropy of the cell and the coordination between distinct F-actin architectures vary and depend upon applied load.
Collapse
Affiliation(s)
- Sorosh Amiri
- Systems Biology Institute, 850 West Campus Drive, Yale University, West Haven, CT, 06516, USA
- Department of Mechanical Engineering and Material Science, 17 Hillhouse Ave, Yale University, New Haven, CT, 06511, USA
| | - Camelia Muresan
- Systems Biology Institute, 850 West Campus Drive, Yale University, West Haven, CT, 06516, USA
- Department of Biomedical Engineering, 17 Hillhouse Ave, Yale University, New Haven, CT, 06511, USA
| | - Xingbo Shang
- Systems Biology Institute, 850 West Campus Drive, Yale University, West Haven, CT, 06516, USA
- Department of Biomedical Engineering, 17 Hillhouse Ave, Yale University, New Haven, CT, 06511, USA
| | | | - Martin A Schwartz
- Department of Biomedical Engineering, 17 Hillhouse Ave, Yale University, New Haven, CT, 06511, USA
- Department of Cell Biology, 333 Cedar St, Yale University, New Haven, CT, 06510, USA
- Yale Cardiovascular Research Center, 300 George St, New Haven, CT, 06511, USA
| | - David A Calderwood
- Department of Pharmacology, 333 Cedar St, Yale University, New Haven, CT, 06510, USA
- Department of Cell Biology, 333 Cedar St, Yale University, New Haven, CT, 06510, USA
| | - Michael Murrell
- Systems Biology Institute, 850 West Campus Drive, Yale University, West Haven, CT, 06516, USA.
- Department of Biomedical Engineering, 17 Hillhouse Ave, Yale University, New Haven, CT, 06511, USA.
- Department of Physics, 217 Prospect Street, Yale University, New Haven, CT, 06511, USA.
| |
Collapse
|
23
|
Zhou Y, Sun M, Xuanyuan T, Zhang J, Liu X, Liu W. Straightforward Cell Patterning with Ultra-Low Background Using Polydimethylsiloxane Through-Hole Membranes. Macromol Biosci 2023; 23:e2300267. [PMID: 37580176 DOI: 10.1002/mabi.202300267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 07/25/2023] [Indexed: 08/16/2023]
Abstract
Micropatterning is becoming an increasingly popular tool to realize microscale cell positioning and decipher cell activities and functions under specific microenvironments. However, a facile methodology for building a highly precise cell pattern still remains challenging. In this study, A simple and straightforward method for stable and efficient cell patterning with ultra-low background using polydimethylsiloxane through-hole membranes is developed. The patterning process is conveniently on the basis of membrane peeling and routine pipetting. Cell patterning in high quality involving over 97% patterning coincidence and zero residue on the background is achieved. The high repeatability and stability of the established method for multiple types of cell arrangements with different spatial profiles is demonstrated. The customizable cell patterning with ultra-low background and high diversity is confirmed to be quite feasible and reliable. Furthermore, the applicability of the patterning method for investigating the fundamental cell activities is also verified experimentally. The authors believe this microengineering advancement has valuable applications in many microscale cell manipulation-associated research fields including cell biology, cell engineering, cell imaging, and cell sensing.
Collapse
Affiliation(s)
- Yujie Zhou
- School of Basic Medical Science, Central South University, Changsha, Hunan, 410013, China
| | - Meilin Sun
- School of Basic Medical Science, Central South University, Changsha, Hunan, 410013, China
| | - Tingting Xuanyuan
- School of Basic Medical Science, Central South University, Changsha, Hunan, 410013, China
| | - Jinwei Zhang
- School of Basic Medical Science, Central South University, Changsha, Hunan, 410013, China
| | - Xufang Liu
- School of Basic Medical Science, Central South University, Changsha, Hunan, 410013, China
| | - Wenming Liu
- School of Basic Medical Science, Central South University, Changsha, Hunan, 410013, China
| |
Collapse
|
24
|
Grespin DB, Niven TG, Babson RO, Kushner EJ. Lipidure-based micropattern fabrication for stereotyping cell geometry. Sci Rep 2023; 13:20451. [PMID: 37993505 PMCID: PMC10665372 DOI: 10.1038/s41598-023-47516-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 11/14/2023] [Indexed: 11/24/2023] Open
Abstract
Cell autonomous behaviors such as migration and orchestration of cell polarity programs are required for physiological tissue formation. Micropatterns are cell-adhesive shapes that confine cell(s) to a user defined geometry. This biophysical confinement allows researchers to standardize the cell shape, and in doing so, stereotype organelle and cytoskeletal systems that can have an arbitrary organization. Thus, micropatterning can be a powerful tool in interrogation of polarity programs by enforcing a homogenous cell shape and cytoskeletal organization. A major drawback of this approach is the equipment and reagent costs associated with fabrication. Here, we provide a characterization of a compound called Lipidure (2-Methacryloyloxy ethyl phosphorylcholine) that is up to 40X less expensive than other cell repulsive coating agents. We found that Lipidure is an effective cell-repulsive agent for photolithography-based micropattern fabrication. Our results demonstrate that Lipidure is sensitive to deep UV irradiation for photolithography masking, stable in both benchtop and aqueous environments, non-toxic in prolonged culture, and effective at constraining cell geometry for quantification of cytoskeletal systems.
Collapse
Affiliation(s)
- Drew B Grespin
- Department of Biological Sciences, University of Denver, Denver, CO, 80210, USA
| | - Talen G Niven
- Department of Biological Sciences, University of Denver, Denver, CO, 80210, USA
| | - Riley O Babson
- Department of Biological Sciences, University of Denver, Denver, CO, 80210, USA
| | - Erich J Kushner
- Department of Biological Sciences, University of Denver, Denver, CO, 80210, USA.
| |
Collapse
|
25
|
Savulescu AF, Peton N, Oosthuizen D, Hazra R, Rousseau RP, Mhlanga MM, Coussens AK. Quantifying spatial dynamics of Mycobacterium tuberculosis infection of human macrophages using microfabricated patterns. CELL REPORTS METHODS 2023; 3:100640. [PMID: 37963461 PMCID: PMC10694489 DOI: 10.1016/j.crmeth.2023.100640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 05/03/2023] [Accepted: 10/19/2023] [Indexed: 11/16/2023]
Abstract
Macrophages provide a first line of defense against invading pathogens, including the leading cause of bacterial mortality, Mycobacterium tuberculosis (Mtb). A challenge for quantitative characterization of host-pathogen processes in differentially polarized primary human monocyte-derived macrophages (MDMs) is their heterogeneous morphology. Here, we describe the use of microfabricated patterns that constrain the size and shape of cells, mimicking the physiological spatial confinement cells experience in tissues, to quantitatively characterize interactions during and after phagocytosis at the single-cell level at high resolution. Comparing pro-inflammatory (M1) and anti-inflammatory (M2) MDMs, we find interferon-γ stimulation increases the phagocytic contraction, while contraction and bacterial uptake decrease following silencing of phagocytosis regulator NHLRC2 or bacterial surface lipid removal. We identify host organelle position alterations within infected MDMs and differences in Mtb subcellular localization in line with M1 and M2 cellular polarity. Our approach can be adapted to study other host-pathogen interactions and coupled with downstream automated analytical approaches.
Collapse
Affiliation(s)
- Anca F Savulescu
- Division of Chemical, Systems, & Synthetic Biology, Institute for Infectious Disease & Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Observatory 7925, South Africa.
| | - Nashied Peton
- Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory 7925, South Africa; Infectious Diseases and Immune Defence Division, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Department of Pathology, University of Cape Town, Observatory 7925, South Africa
| | - Delia Oosthuizen
- Division of Chemical, Systems, & Synthetic Biology, Institute for Infectious Disease & Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Observatory 7925, South Africa
| | - Rudranil Hazra
- Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory 7925, South Africa
| | - Robert P Rousseau
- Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory 7925, South Africa
| | - Musa M Mhlanga
- Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands; Epigenomics & Single Cell Biophysics Group, Department of Cell Biology, FNWI, Radboud University, 6525 GA Nijmegen, the Netherlands; Department of Human Genetics, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands.
| | - Anna K Coussens
- Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory 7925, South Africa; Infectious Diseases and Immune Defence Division, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Department of Pathology, University of Cape Town, Observatory 7925, South Africa; Department of Medical Biology, University of Melbourne, Parkville, VIC 3052, Australia.
| |
Collapse
|
26
|
Ergaz B, Goren S, Lesman A. Micropatterning the organization of multicellular structures in 3D biological hydrogels; insights into collective cellular mechanical interactions. Biofabrication 2023; 16:015012. [PMID: 37906963 DOI: 10.1088/1758-5090/ad0849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 10/31/2023] [Indexed: 11/02/2023]
Abstract
Control over the organization of cells at the microscale level within supporting biomaterials can push forward the construction of complex tissue architectures for tissue engineering applications and enable fundamental studies of how tissue structure relates to its function. While cells patterning on 2D substrates is a relatively established and available procedure, micropatterning cells in biomimetic 3D hydrogels has been more challenging, especially with micro-scale resolution, and currently relies on sophisticated tools and protocols. We present a robust and accessible 'peel-off' method to micropattern large arrays of individual cells or cell-clusters of precise sizes in biological 3D hydrogels, such as fibrin and collagen gels, with control over cell-cell separation distance and neighboring cells position. We further demonstrate partial control over cell position in thez-dimension by stacking two layers in varying distances between the layers. To demonstrate the potential of the micropatterning gel platform, we study the matrix-mediated mechanical interaction between array of cells that are accurately separated in defined distances. A collective process of intense cell-generated densified bands emerging in the gel between near neighbors was identified, along which cells preferentially migrate, a process relevant to tissue morphogenesis. The presented 3D gel micropatterning method can be used to reveal fundamental morphogenetic processes, and to reconstruct any tissue geometry with micrometer resolution in 3D biomimetic gel environments, leveraging the engineering of tissues in complex architectures.
Collapse
Affiliation(s)
- Bar Ergaz
- School of Mechanical Engineering, The Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel-Aviv, Israel
| | - Shahar Goren
- School of Chemistry, Raymond & Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel-Aviv, Israel
- Center for Chemistry and Physics of Living Systems, Tel Aviv University, Tel-Aviv, Israel
| | - Ayelet Lesman
- School of Mechanical Engineering, The Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel-Aviv, Israel
- Center for Chemistry and Physics of Living Systems, Tel Aviv University, Tel-Aviv, Israel
| |
Collapse
|
27
|
Wistner SC, Rashad L, Slaughter G. Advances in tissue engineering and biofabrication for in vitro skin modeling. BIOPRINTING (AMSTERDAM, NETHERLANDS) 2023; 35:e00306. [PMID: 38645432 PMCID: PMC11031264 DOI: 10.1016/j.bprint.2023.e00306] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
The global prevalence of skin disease and injury is continually increasing, yet conventional cell-based models used to study these conditions do not accurately reflect the complexity of human skin. The lack of inadequate in vitro modeling has resulted in reliance on animal-based models to test pharmaceuticals, biomedical devices, and industrial and environmental toxins to address clinical needs. These in vivo models are monetarily and morally expensive and are poor predictors of human tissue responses and clinical trial outcomes. The onset of three-dimensional (3D) culture techniques, such as cell-embedded and decellularized approaches, has offered accessible in vitro alternatives, using innovative scaffolds to improve cell-based models' structural and histological authenticity. However, these models lack adequate organizational control and complexity, resulting in variations between structures and the exclusion of physiologically relevant vascular and immunological features. Recently, biofabrication strategies, which combine biology, engineering, and manufacturing capabilities, have emerged as instrumental tools to recreate the heterogeneity of human skin precisely. Bioprinting uses computer-aided design (CAD) to yield robust and reproducible skin prototypes with unprecedented control over tissue design and assembly. As the interdisciplinary nature of biofabrication grows, we look to the promise of next-generation biofabrication technologies, such as organ-on-a-chip (OOAC) and 4D modeling, to simulate human tissue behaviors more reliably for research, pharmaceutical, and regenerative medicine purposes. This review aims to discuss the barriers to developing clinically relevant skin models, describe the evolution of skin-inspired in vitro structures, analyze the current approaches to biofabricating 3D human skin mimetics, and define the opportunities and challenges in biofabricating skin tissue for preclinical and clinical uses.
Collapse
Affiliation(s)
- Sarah C. Wistner
- Center for Bioelectronics, Old Dominion University, Norfolk, VA, 23508, USA
| | - Layla Rashad
- Center for Bioelectronics, Old Dominion University, Norfolk, VA, 23508, USA
| | - Gymama Slaughter
- Center for Bioelectronics, Old Dominion University, Norfolk, VA, 23508, USA
- Department of Electrical and Computer Engineering, Old Dominion University, Norfolk, VA, 23508, USA
| |
Collapse
|
28
|
Ahn JC, Coyle SM. Comparative profiling of cellular gait on adhesive micropatterns defines statistical patterns of activity that underlie native and cancerous cell dynamics. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.27.564389. [PMID: 37961146 PMCID: PMC10634873 DOI: 10.1101/2023.10.27.564389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Cell dynamics are powered by patterns of activity, but it is not straightforward to quantify these patterns or compare them across different environmental conditions or cell-types. Here we digitize the long-term shape fluctuations of metazoan cells grown on micropatterned fibronectin islands to define and extract statistical features of cell dynamics without the need for genetic modification or fluorescence imaging. These shape fluctuations generate single-cell morphological signals that can be decomposed into two major components: a continuous, slow-timescale meandering of morphology about an average steady-state shape; and short-lived "events" of rapid morphology change that sporadically occur throughout the timecourse. By developing statistical metrics for each of these components, we used thousands of hours of single-cell data to quantitatively define how each axis of cell dynamics was impacted by environmental conditions or cell-type. We found the size and spatial complexity of the micropattern island modulated the statistics of morphological events-lifetime, frequency, and orientation-but not its baseline shape fluctuations. Extending this approach to profile a panel of triple negative breast cancer cell-lines, we found that different cell-types could be distinguished from one another along specific and unique statistical axes of their behavior. Our results suggest that micropatterned substrates provide a generalizable method to build statistical profiles of cell dynamics to classify and compare emergent cell behaviors.
Collapse
Affiliation(s)
- John C. Ahn
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
- Integrated Program in Biochemistry Graduate Program, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Scott M. Coyle
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| |
Collapse
|
29
|
Liu Y, Yao X, Fan C, Zhang G, Luo X, Qian Y. Microfabrication and lab-on-a-chip devices promote in vitromodeling of neural interfaces for neuroscience researches and preclinical applications. Biofabrication 2023; 16:012002. [PMID: 37832555 DOI: 10.1088/1758-5090/ad032a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 10/13/2023] [Indexed: 10/15/2023]
Abstract
Neural tissues react to injuries through the orchestration of cellular reprogramming, generating specialized cells and activating gene expression that helps with tissue remodeling and homeostasis. Simplified biomimetic models are encouraged to amplify the physiological and morphological changes during neural regeneration at cellular and molecular levels. Recent years have witnessed growing interest in lab-on-a-chip technologies for the fabrication of neural interfaces. Neural system-on-a-chip devices are promisingin vitromicrophysiological platforms that replicate the key structural and functional characteristics of neural tissues. Microfluidics and microelectrode arrays are two fundamental techniques that are leveraged to address the need for microfabricated neural devices. In this review, we explore the innovative fabrication, mechano-physiological parameters, spatiotemporal control of neural cell cultures and chip-based neurogenesis. Although the high variability in different constructs, and the restriction in experimental and analytical access limit the real-life applications of microphysiological models, neural system-on-a-chip devices have gained considerable translatability for modeling neuropathies, drug screening and personalized therapy.
Collapse
Affiliation(s)
- Yang Liu
- Department of Orthopedics, Shanghai Sixth People's Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, People's Republic of China
- Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai 200233, People's Republic of China
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Xiangyun Yao
- Department of Orthopedics, Shanghai Sixth People's Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, People's Republic of China
- Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai 200233, People's Republic of China
| | - Cunyi Fan
- Department of Orthopedics, Shanghai Sixth People's Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, People's Republic of China
- Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai 200233, People's Republic of China
| | - Guifeng Zhang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Xi Luo
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Yun Qian
- Department of Orthopedics, Shanghai Sixth People's Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, People's Republic of China
- Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai 200233, People's Republic of China
| |
Collapse
|
30
|
Fang K, Müller S, Ueda M, Nakagawa Y, S Furukawa K, Ushida T, Ikoma T, Ito Y. Cyclic stretch modulates the cell morphology transition under geometrical confinement by covalently immobilized gelatin. J Mater Chem B 2023; 11:9155-9162. [PMID: 37455606 DOI: 10.1039/d3tb00421j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
Fibroblasts geometrically confined by photo-immobilized gelatin micropatterns were subjected to cyclic stretch on the silicone elastomer. By using covalently micropatterned surfaces, the cell morphologies such as cell area and length were quantitatively investigated under a cyclic stretch for 20 hours. The mechanical forces did not affect the cell growth but significantly altered the cellular morphology on both non-patterned and micropatterned surfaces. It was found that cells on non-patterns showed increasing cell length and decreasing cell area under the stretch. The width of the strip micropatterns provided a different extent of contact guidance for fibroblasts. The highly extended cells on the 10 μm pattern under static conditions would perform a contraction behavior once treated by cyclic stretch. In contrast, cells with a low extension on the 2 μm pattern kept elongating according to the micropattern under the cyclic stretch. The vertical stretch induced an increase in cell area and length more than the parallel stretch in both the 10 μm and 2 μm patterns. These results provided new insights into cell behaviors under geometrical confinement in a dynamic biomechanical environment and may guide biomaterial design for tissue engineering in the future.
Collapse
Affiliation(s)
- Kun Fang
- Nano Medical Engineering Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.
- Graduate School of Material Science and Engineering, Tokyo Institute of Technology, Meguro, 2-12-1 Ookayama, Tokyo 152-8550, Japan
| | - Stefan Müller
- Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo, 113-0033, Japan
- Emergent Bioengineering Materials Research Team, RIKEN Center for Emergent Matter Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Motoki Ueda
- Nano Medical Engineering Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.
- Emergent Bioengineering Materials Research Team, RIKEN Center for Emergent Matter Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Yasuhiro Nakagawa
- Graduate School of Material Science and Engineering, Tokyo Institute of Technology, Meguro, 2-12-1 Ookayama, Tokyo 152-8550, Japan
| | - Katsuko S Furukawa
- Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo, 113-8656, Japan
| | - Takashi Ushida
- Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo, 113-0033, Japan
- Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo, 113-8656, Japan
| | - Toshiyuki Ikoma
- Graduate School of Material Science and Engineering, Tokyo Institute of Technology, Meguro, 2-12-1 Ookayama, Tokyo 152-8550, Japan
| | - Yoshihiro Ito
- Nano Medical Engineering Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.
- Graduate School of Material Science and Engineering, Tokyo Institute of Technology, Meguro, 2-12-1 Ookayama, Tokyo 152-8550, Japan
- Emergent Bioengineering Materials Research Team, RIKEN Center for Emergent Matter Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| |
Collapse
|
31
|
Cho Y, Kim J, Park J, Doh J. Surface nanotopography and cell shape modulate tumor cell susceptibility to NK cell cytotoxicity. MATERIALS HORIZONS 2023; 10:4532-4540. [PMID: 37559559 DOI: 10.1039/d3mh00367a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/11/2023]
Abstract
Natural killer (NK) cells are innate cytotoxic lymphocytes exerting cytotoxicity against virally infected cells and tumor cells. NK cell cytotoxicity is primarily determined by biochemical signals received from ligands expressed on target cell surfaces, but it is also possible that biophysical environments of tumor cells, such as nanoscale surface topography typically existing on extracellular matrixes (ECMs) or cell morphology determined by ECM spaces or cell density, regulate NK cell cytotoxicity. In this study, micro/nanofabrication technology was applied to examine this possibility. Tumor cells were plated on flat or nanogrooved surfaces, or micropatterned into circular or elliptical geometries, and the effects of surface topography and tumor cell morphology on NK cell cytotoxicity were investigated. NK cells exhibited significantly higher cytotoxicity against tumor cells on nanogrooved surfaces or tumor cells in elliptical patterns than tumor cells on flat surfaces or tumor cells in circular patterns, respectively. The amounts of stress fiber formation in tumor cells positively correlated with NK cell cytotoxicity, indicating that increased cellular tension of tumor cells, either mediated by nanogrooved surfaces or elongated morphologies, was a key factor regulating NK cell cytotoxicity. These results may provide insight into the design of NK cell-based cancer immunotherapy.
Collapse
Affiliation(s)
- Yongbum Cho
- School of Interdisciplinary Bioscience and Bioengineering (I-Bio), Pohang University of Science and Technology, 77, Cheongam-ro, Pohang, Gyeongbuk, 37673, Republic of Korea
| | - JangHyuk Kim
- Department of Materials Science and Engineering, Seoul National University, Seoul, South Korea.
| | - Jeehun Park
- SOFT Foundry Institute, Seoul National University, Seoul, South Korea.
| | - Junsang Doh
- Department of Materials Science and Engineering, Seoul National University, Seoul, South Korea.
- SOFT Foundry Institute, Seoul National University, Seoul, South Korea.
- Institute of Engineering Research, BioMAX, Seoul National University, Seoul, South Korea
| |
Collapse
|
32
|
Damstra HGJ, Passmore JB, Serweta AK, Koutlas I, Burute M, Meye FJ, Akhmanova A, Kapitein LC. GelMap: intrinsic calibration and deformation mapping for expansion microscopy. Nat Methods 2023; 20:1573-1580. [PMID: 37723243 PMCID: PMC10555834 DOI: 10.1038/s41592-023-02001-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 08/04/2023] [Indexed: 09/20/2023]
Abstract
Expansion microscopy (ExM) is a powerful technique to overcome the diffraction limit of light microscopy by physically expanding biological specimen in three dimensions. Nonetheless, using ExM for quantitative or diagnostic applications requires robust quality control methods to precisely determine expansion factors and to map deformations due to anisotropic expansion. Here we present GelMap, a flexible workflow to introduce a fluorescent grid into pre-expanded hydrogels that scales with expansion and reports deformations. We demonstrate that GelMap can be used to precisely determine the local expansion factor and to correct for deformations without the use of cellular reference structures or pre-expansion ground-truth images. Moreover, we show that GelMap aids sample navigation for correlative uses of expansion microscopy. Finally, we show that GelMap is compatible with expansion of tissue and can be readily implemented as a quality control step into existing ExM workflows.
Collapse
Affiliation(s)
- Hugo G J Damstra
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Josiah B Passmore
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands
- Centre for Living Technologies, Alliance TU/e, WUR, UU, UMC Utrecht, Utrecht, The Netherlands
| | - Albert K Serweta
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Ioannis Koutlas
- Department of Translational Neuroscience, Brain Center, UMC Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Mithila Burute
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Frank J Meye
- Department of Translational Neuroscience, Brain Center, UMC Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Anna Akhmanova
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Lukas C Kapitein
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands.
- Centre for Living Technologies, Alliance TU/e, WUR, UU, UMC Utrecht, Utrecht, The Netherlands.
| |
Collapse
|
33
|
Sun F, Li H, Hu Y, Zhang M, Wang W, Chen W, Liu Z. Exploring Mechanical Responses of Cells to Geometric Information Using Micropatterned DNA-Based Molecular Tension Probes. ACS NANO 2023; 17:18584-18595. [PMID: 37713214 DOI: 10.1021/acsnano.3c07088] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/16/2023]
Abstract
The geometric shape of a cell is strongly influenced by the cytoskeleton, which, in turn, is regulated by integrin-mediated cell-extracellular matrix (ECM) interactions. To investigate the mechanical role of integrin in the geometrical interplay between cells and the ECM, we proposed a single-cell micropatterning technique combined with molecular tension fluorescence microscopy (MTFM), which allows us to characterize the mechanical properties of cells with prescribed geometries. Our results show that the curvature is a key geometric cue for cells to differentiate shapes in a membrane-tension- and actomyosin-dependent manner. Specifically, curvatures affect the size of focal adhesions (FAs) and induce a curvature-dependent density and spatial distribution of strong integrins. In addition, we found that the integrin subunit β1 plays a critical role in the detection of geometric information. Overall, the integration of MTFM and single-cell micropatterning offers a robust approach for investigating the nexus between mechanical cues and cellular responses, holding potential for advancing our understanding of mechanobiology.
Collapse
Affiliation(s)
- Feng Sun
- TaiKang Center for Life and Medical Sciences, the Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
| | - Hongyun Li
- TaiKang Center for Life and Medical Sciences, the Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
| | - Yuru Hu
- TaiKang Center for Life and Medical Sciences, the Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
| | - Mengsheng Zhang
- TaiKang Center for Life and Medical Sciences, the Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
| | - Wenxu Wang
- TaiKang Center for Life and Medical Sciences, the Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
| | - Wei Chen
- TaiKang Center for Life and Medical Sciences, the Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
| | - Zheng Liu
- TaiKang Center for Life and Medical Sciences, the Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
| |
Collapse
|
34
|
Joshi A, Singh N. Generation of Patterned Cocultures in 2D and 3D: State of the Art. ACS OMEGA 2023; 8:34249-34261. [PMID: 37780002 PMCID: PMC10536108 DOI: 10.1021/acsomega.3c02713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 08/30/2023] [Indexed: 10/03/2023]
Abstract
Cells inside the body are embedded into a highly structured microenvironment that consists of cells that lie in direct or close contact with other cell types that regulate the overall tissue function. Therefore, coculture models are versatile tools that can generate tissue engineering constructs with improved mimicking of in vivo conditions. While there are many reviews that have focused on pattering a single cell type, very few reviews have been focused on techniques for coculturing multiple cell types on a single substrate with precise control. In this regard, this Review covers various technologies that have been utilized for the development of these patterned coculture models while mentioning the limitations associated with each of them. Further, the application of these models to various tissue engineering applications has been discussed.
Collapse
Affiliation(s)
- Akshay Joshi
- Centre
for Biomedical Engineering, Indian Institute
of Technology Delhi, Hauz Khas, New Delhi, Delhi 110016, India
| | - Neetu Singh
- Centre
for Biomedical Engineering, Indian Institute
of Technology Delhi, Hauz Khas, New Delhi, Delhi 110016, India
- Biomedical
Engineering Unit, All India Institute of
Medical Sciences, Ansari
Nagar, New Delhi, Delhi 110029, India
| |
Collapse
|
35
|
Baena-Montes JM, Kraśny MJ, O’Halloran M, Dunne E, Quinlan LR. In Vitro Models for Improved Therapeutic Interventions in Atrial Fibrillation. J Pers Med 2023; 13:1237. [PMID: 37623487 PMCID: PMC10455620 DOI: 10.3390/jpm13081237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/28/2023] [Accepted: 08/01/2023] [Indexed: 08/26/2023] Open
Abstract
Atrial fibrillation is the most common type of cardiac arrhythmias in humans, mostly caused by hyper excitation of specific areas in the atrium resulting in dyssynchronous atrial contractions, leading to severe consequences such as heart failure and stroke. Current therapeutics aim to target this condition through both pharmacological and non-pharmacological approaches. To test and validate any of these treatments, an appropriate preclinical model must be carefully chosen to refine and optimise the therapy features to correctly reverse this condition. A broad range of preclinical models have been developed over the years, with specific features and advantages to closely mimic the pathophysiology of atrial fibrillation. In this review, currently available models are described, from traditional animal models and in vitro cell cultures to state-of-the-art organoids and organs-on-a-chip. The advantages, applications and limitations of each model are discussed, providing the information to select the appropriate model for each research application.
Collapse
Affiliation(s)
- Jara M. Baena-Montes
- Physiology and Cellular Physiology Research Laboratory, School of Medicine, Human Biology Building, University of Galway, H91 TK33 Galway, Ireland
| | - Marcin J. Kraśny
- Smart Sensors Lab, Lambe Institute for Translational Research, School of Medicine, University of Galway, H91 TK33 Galway, Ireland
- Translational Medical Device Lab (TMDLab), Lambe Institute for Translational Research, School of Medicine, University of Galway, H91 TK33 Galway, Ireland
| | - Martin O’Halloran
- Translational Medical Device Lab (TMDLab), Lambe Institute for Translational Research, School of Medicine, University of Galway, H91 TK33 Galway, Ireland
- Electrical & Electronic Engineering, School of Engineering, University of Galway, H91 TK33 Galway, Ireland
| | - Eoghan Dunne
- Translational Medical Device Lab (TMDLab), Lambe Institute for Translational Research, School of Medicine, University of Galway, H91 TK33 Galway, Ireland
| | - Leo R. Quinlan
- Physiology and Cellular Physiology Research Laboratory, School of Medicine, Human Biology Building, University of Galway, H91 TK33 Galway, Ireland
- CÚRAM SFI Centre for Research in Medical Devices, University of Galway, H91 TK33 Galway, Ireland
| |
Collapse
|
36
|
Patnaik R, Jannati S, Sivani BM, Rizzo M, Naidoo N, Banerjee Y. Efficient Generation of Chondrocytes From Bone Marrow-Derived Mesenchymal Stem Cells in a 3D Culture System: Protocol for a Practical Model for Assessing Anti-Inflammatory Therapies. JMIR Res Protoc 2023; 12:e42964. [PMID: 37505889 PMCID: PMC10437129 DOI: 10.2196/42964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 04/17/2023] [Accepted: 05/05/2023] [Indexed: 07/29/2023] Open
Abstract
BACKGROUND Chondrocytes are the primary cells responsible for maintaining cartilage integrity and function. Their role in cartilage homeostasis and response to inflammation is crucial for understanding the progression and potential therapeutic interventions for various cartilage-related disorders. Developing an accessible and cost-effective model to generate viable chondrocytes and to assess their response to different bioactive compounds can significantly advance our knowledge of cartilage biology and contribute to the discovery of novel therapeutic approaches. OBJECTIVE We developed a novel, streamlined protocol for generating chondrocytes from bone marrow-derived mesenchymal stem cells (BMSCs) in a 3D culture system that offers significant implications for the study of cartilage biology and the discovery of potential therapeutic interventions for cartilage-related and associated disorders. METHODS We developed a streamlined protocol for generating chondrocytes from BMSCs in a 3D culture system using an "in-tube" culture approach. This simple pellet-based 3D culture system allows for cell aggregation and spheroid formation, facilitating cell-cell and cell-extracellular matrix interactions that better mimic the in vivo cellular environment compared with 2D monolayer cultures. A proinflammatory chondrocyte model was created by treating the chondrocytes with lipopolysaccharide and was subsequently used to evaluate the anti-inflammatory effects of vitamin D, curcumin, and resveratrol. RESULTS The established protocol successfully generated a large quantity of viable chondrocytes, characterized by alcian blue and toluidine blue staining, and demonstrated versatility in assessing the anti-inflammatory effects of various bioactive compounds. The chondrocytes exhibited reduced inflammation, as evidenced by the decreased tumor necrosis factor-α levels, in response to vitamin D, curcumin, and resveratrol treatment. CONCLUSIONS Our novel protocol offers an accessible and cost-effective approach for generating chondrocytes from BMSCs and for evaluating potential therapeutic leads in the context of inflammatory chondrocyte-related diseases. Although our approach has several advantages, further investigation is required to address its limitations, such as the potential differences between chondrocytes generated using our protocol and those derived from other established methods, and to refine the model for broader applicability and clinical translation.
Collapse
Affiliation(s)
- Rajashree Patnaik
- Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| | - Shirin Jannati
- Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| | - Bala Mohan Sivani
- Department of Molecular Biology, Lund University, Lund, Lund, Sweden
| | - Manfredi Rizzo
- Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| | - Nerissa Naidoo
- Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| | - Yajnavalka Banerjee
- Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| |
Collapse
|
37
|
Engrácia DM, Pinto CIG, Mendes F. Cancer 3D Models for Metallodrug Preclinical Testing. Int J Mol Sci 2023; 24:11915. [PMID: 37569291 PMCID: PMC10418685 DOI: 10.3390/ijms241511915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 07/20/2023] [Accepted: 07/22/2023] [Indexed: 08/13/2023] Open
Abstract
Despite being standard tools in research, the application of cellular and animal models in drug development is hindered by several limitations, such as limited translational significance, animal ethics, and inter-species physiological differences. In this regard, 3D cellular models can be presented as a step forward in biomedical research, allowing for mimicking tissue complexity more accurately than traditional 2D models, while also contributing to reducing the use of animal models. In cancer research, 3D models have the potential to replicate the tumor microenvironment, which is a key modulator of cancer cell behavior and drug response. These features make cancer 3D models prime tools for the preclinical study of anti-tumoral drugs, especially considering that there is still a need to develop effective anti-cancer drugs with high selectivity, minimal toxicity, and reduced side effects. Metallodrugs, especially transition-metal-based complexes, have been extensively studied for their therapeutic potential in cancer therapy due to their distinctive properties; however, despite the benefits of 3D models, their application in metallodrug testing is currently limited. Thus, this article reviews some of the most common types of 3D models in cancer research, as well as the application of 3D models in metallodrug preclinical studies.
Collapse
Affiliation(s)
- Diogo M. Engrácia
- Center for Nuclear Sciences and Technologies, Instituto Superior Técnico, Universidade de Lisboa, 2695-066 Bobadela LRS, Portugal; (D.M.E.); (C.I.G.P.)
| | - Catarina I. G. Pinto
- Center for Nuclear Sciences and Technologies, Instituto Superior Técnico, Universidade de Lisboa, 2695-066 Bobadela LRS, Portugal; (D.M.E.); (C.I.G.P.)
| | - Filipa Mendes
- Center for Nuclear Sciences and Technologies, Instituto Superior Técnico, Universidade de Lisboa, 2695-066 Bobadela LRS, Portugal; (D.M.E.); (C.I.G.P.)
- Department of Nuclear Sciences and Engineering, Instituto Superior Técnico, Universidade de Lisboa, 2695-066 Bobadela LRS, Portugal
| |
Collapse
|
38
|
Luo Y, Gu M, Park M, Fang X, Kwon Y, Urueña JM, Read de Alaniz J, Helgeson ME, Marchetti CM, Valentine MT. Molecular-scale substrate anisotropy, crowding and division drive collective behaviours in cell monolayers. J R Soc Interface 2023; 20:20230160. [PMID: 37403487 PMCID: PMC10320338 DOI: 10.1098/rsif.2023.0160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 06/13/2023] [Indexed: 07/06/2023] Open
Abstract
The ability of cells to reorganize in response to external stimuli is important in areas ranging from morphogenesis to tissue engineering. While nematic order is common in biological tissues, it typically only extends to small regions of cells interacting via steric repulsion. On isotropic substrates, elongated cells can co-align due to steric effects, forming ordered but randomly oriented finite-size domains. However, we have discovered that flat substrates with nematic order can induce global nematic alignment of dense, spindle-like cells, thereby influencing cell organization and collective motion and driving alignment on the scale of the entire tissue. Remarkably, single cells are not sensitive to the substrate's anisotropy. Rather, the emergence of global nematic order is a collective phenomenon that requires both steric effects and molecular-scale anisotropy of the substrate. To quantify the rich set of behaviours afforded by this system, we analyse velocity, positional and orientational correlations for several thousand cells over days. The establishment of global order is facilitated by enhanced cell division along the substrate's nematic axis, and associated extensile stresses that restructure the cells' actomyosin networks. Our work provides a new understanding of the dynamics of cellular remodelling and organization among weakly interacting cells.
Collapse
Affiliation(s)
- Yimin Luo
- Department of Mechanical Engineering, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
- Department of Chemical Engineering, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Mengyang Gu
- Department of Statistics and Applied Probability, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Minwook Park
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Xinyi Fang
- Department of Statistics and Applied Probability, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Younghoon Kwon
- Department of Mechanical Engineering, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Juan Manuel Urueña
- BioPACIFIC MIP, California NanoSystems Institute, Santa Barbara, CA 93106, USA
| | - Javier Read de Alaniz
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Matthew E. Helgeson
- Department of Chemical Engineering, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Cristina M. Marchetti
- Department of Physics, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Megan T. Valentine
- Department of Mechanical Engineering, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| |
Collapse
|
39
|
Becher JE, Lautenschläger F, Thalla DG. A low-cost alternative method of generating fibronectin micropatterned lines for cellular applications. MethodsX 2023; 10:102240. [PMID: 37305805 PMCID: PMC10251141 DOI: 10.1016/j.mex.2023.102240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 05/31/2023] [Indexed: 06/13/2023] Open
Abstract
The cellular microenvironment contributes to the architecture, differentiation, polarity, mechanics and functions of the cell [1]. Spatial confinement of cells using micropatterning techniques allows to alter and regulate the cellular microenvironment for a better understanding of cellular mechanisms [2]. However, commercially available micropatterned consumables such as coverslips, dishes, plates etc. are expensive. These methods are complex and based on deep UV patterning [3,4]. In this study, we establish a low-cost method for effective micropatterning using Polydimethylsiloxane (PDMS) chips.•We demonstrate this method by generating fibronectin-coated micropatterned lines (width, 5 µm) on a glass bottom dish.•As a proof of concept, we culture macrophages on these lines. We additionally show that this method allows to determine the cellular polarity by measuring the position of the nucleus within a cell on a micropatterned line.
Collapse
Affiliation(s)
| | - Franziska Lautenschläger
- Experimental Physics, Saarland University, 66123 Saarbrücken, Germany
- Centre for Biophysics, Saarland University, 66123 Saarbrücken, Germany
| | | |
Collapse
|
40
|
Liu H, Hu Y, Wu X, Hu R, Liu Y. Optimization of Surface-Engineered Micropatterns on Bacterial Cellulose for Guided Scar-Free Skin Wound Healing. Biomolecules 2023; 13:biom13050793. [PMID: 37238663 DOI: 10.3390/biom13050793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/19/2023] [Accepted: 04/27/2023] [Indexed: 05/28/2023] Open
Abstract
Bacterial cellulose (BC) has been widely used in tissue engineering due to its unique spatial structure and suitable biological properties. In this study, a small biologically active Arginine-Glycine-Aspartic acid-Serine (RGDS) tetrapeptide was incorporated on the porous BC surface followed by a low-energy CO2 laser etching operation. As a result, different micropatterns were established on the BC surface with RGDS only anchored on the raised platform surface of the micropatterned BC (MPBC). Material characterization showed that all micropatterned structures exhibited platforms with a width of ~150 μm and grooves with a width of ~100 μm and a depth of ~300 μm, which displayed distinct hydrophilic and hydrophobic properties. The resulting RGDS-MPBC could hold the material integrity, as well as the microstructure morphology under a humid environment. In-vitro and in-vivo assays on cell migration, collagen deposition, and histological analysis revealed that micropatterns led to significant impacts on wound healing progress compared to the BC without surface-engineered micropatterns. Specifically, the basket-woven micropattern etched on the BC surface exhibited the optimal wound healing outcome with the presence of fewer macrophages and the least scar formation. This study further addresses the potential of adopting surface micropatterning strategies to promote skin wounds towards scar-free outcomes.
Collapse
Affiliation(s)
- Haiyan Liu
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, Taiyuan 030001, China
| | - Yang Hu
- Center for Human Tissue and Organs Degeneration and Shenzhen Key Laboratory of Marine Biomedical Materials, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Xiuping Wu
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, Taiyuan 030001, China
| | - Rong Hu
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, Taiyuan 030001, China
| | - Yingyu Liu
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, Taiyuan 030001, China
| |
Collapse
|
41
|
Abuarqoub D, Theeb LS, Omari MB, Hamadneh YI, Alrawabdeh JA, Aslam N, Jafar H, Awidi A. The Osteogenic Role of Biomaterials Combined with Human-Derived Dental Stem Cells in Bone Tissue Regeneration. Tissue Eng Regen Med 2023; 20:251-270. [PMID: 36808303 PMCID: PMC10070593 DOI: 10.1007/s13770-022-00514-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/18/2022] [Accepted: 12/19/2022] [Indexed: 02/23/2023] Open
Abstract
The use of stem cells in regenerative medicine had great potential for clinical applications. However, cell delivery strategies have critical importance in stimulating the differentiation of stem cells and enhancing their potential to regenerate damaged tissues. Different strategies have been used to investigate the osteogenic potential of dental stem cells in conjunction with biomaterials through in vitro and in vivo studies. Osteogenesis has a broad implication in regenerative medicine, particularly for maxillofacial defects. This review summarizes some of the most recent developments in the field of tissue engineering using dental stem cells.
Collapse
Affiliation(s)
- Duaa Abuarqoub
- Department of Pharmacology and Biomedical Sciences, Faculty of Pharmacy and Medical Sciences, University of Petra, Amman, Jordan.
- Cell Therapy Center, The University of Jordan, Amman, Jordan.
| | - Laith S Theeb
- School of Medicine, The University of Jordan, Amman, 11942, Jordan
| | - Mohammad B Omari
- School of Medicine, The University of Jordan, Amman, 11942, Jordan
| | - Yazan I Hamadneh
- School of Medicine, The University of Jordan, Amman, 11942, Jordan
| | | | - Nazneen Aslam
- Cell Therapy Center, The University of Jordan, Amman, Jordan
| | - Hanan Jafar
- Cell Therapy Center, The University of Jordan, Amman, Jordan
- School of Medicine, The University of Jordan, Amman, 11942, Jordan
| | - Abdalla Awidi
- Cell Therapy Center, The University of Jordan, Amman, Jordan.
- School of Medicine, The University of Jordan, Amman, 11942, Jordan.
| |
Collapse
|
42
|
Schwietzer MF, Thölmann S, Greune L, Ebnet K. A micropattern-based assay to study contact inhibition of locomotion and entosis of adherent human and canine cells in vitro. STAR Protoc 2023; 4:102186. [PMID: 36952336 DOI: 10.1016/j.xpro.2023.102186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/07/2023] [Accepted: 02/27/2023] [Indexed: 03/24/2023] Open
Abstract
We present a protocol for using micropatterns to study post-collision locomotion and entosis of human and canine cells in vitro. We describe steps for lentiviral transduction and the preparation of micropatterned slides consisting of narrow matrix-coated stripes separated by cytophobic spacers. We then detail cell seeding, chamber assembly, and live cell analysis. We provide steps for analysis by live cell imaging using fluorescence microscopy as well as fixing for subsequent analysis by confocal microscopy or correlative light and electron microscopy. For complete details on the use and execution of this protocol, please refer to Kummer et al. (2022)1 and Schwietzer et al. (2022).2.
Collapse
Affiliation(s)
- Mariel Flavia Schwietzer
- Institute-associated Research Group "Cell Adhesion and Cell Polarity", Institute of Medical Biochemistry, ZMBE, University of Münster, 48149 Münster, Germany.
| | - Sonja Thölmann
- Institute-associated Research Group "Cell Adhesion and Cell Polarity", Institute of Medical Biochemistry, ZMBE, University of Münster, 48149 Münster, Germany
| | - Lilo Greune
- Institute of Infectiology, ZMBE, University of Münster, 48149 Münster, Germany
| | - Klaus Ebnet
- Institute-associated Research Group "Cell Adhesion and Cell Polarity", Institute of Medical Biochemistry, ZMBE, University of Münster, 48149 Münster, Germany.
| |
Collapse
|
43
|
Ermanoska B, Asselbergh B, Morant L, Petrovic-Erfurth ML, Hosseinibarkooie S, Leitão-Gonçalves R, Almeida-Souza L, Bervoets S, Sun L, Lee L, Atkinson D, Khanghahi A, Tournev I, Callaerts P, Verstreken P, Yang XL, Wirth B, Rodal AA, Timmerman V, Goode BL, Godenschwege TA, Jordanova A. Tyrosyl-tRNA synthetase has a noncanonical function in actin bundling. Nat Commun 2023; 14:999. [PMID: 36890170 PMCID: PMC9995517 DOI: 10.1038/s41467-023-35908-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 01/06/2023] [Indexed: 03/10/2023] Open
Abstract
Dominant mutations in tyrosyl-tRNA synthetase (YARS1) and six other tRNA ligases cause Charcot-Marie-Tooth peripheral neuropathy (CMT). Loss of aminoacylation is not required for their pathogenicity, suggesting a gain-of-function disease mechanism. By an unbiased genetic screen in Drosophila, we link YARS1 dysfunction to actin cytoskeleton organization. Biochemical studies uncover yet unknown actin-bundling property of YARS1 to be enhanced by a CMT mutation, leading to actin disorganization in the Drosophila nervous system, human SH-SY5Y neuroblastoma cells, and patient-derived fibroblasts. Genetic modulation of F-actin organization improves hallmark electrophysiological and morphological features in neurons of flies expressing CMT-causing YARS1 mutations. Similar beneficial effects are observed in flies expressing a neuropathy-causing glycyl-tRNA synthetase. Hence, in this work, we show that YARS1 is an evolutionary-conserved F-actin organizer which links the actin cytoskeleton to tRNA-synthetase-induced neurodegeneration.
Collapse
Affiliation(s)
- Biljana Ermanoska
- Center for Molecular Neurology, VIB, University of Antwerp, 2610, Antwerpen, Belgium
- Department of Biomedical Sciences, University of Antwerp, 2610, Antwerpen, Belgium
- Department of Biology, Brandeis University, Waltham, MA, 02453, USA
| | - Bob Asselbergh
- Neuromics Support Facility, VIB Center for Molecular Neurology, VIB, 2610, Antwerp, Belgium
- Neuromics Support Facility, Department of Biomedical Sciences, University of Antwerp, 2610, Antwerp, Belgium
| | - Laura Morant
- Center for Molecular Neurology, VIB, University of Antwerp, 2610, Antwerpen, Belgium
- Department of Biomedical Sciences, University of Antwerp, 2610, Antwerpen, Belgium
| | - Maria-Luise Petrovic-Erfurth
- Center for Molecular Neurology, VIB, University of Antwerp, 2610, Antwerpen, Belgium
- Department of Biomedical Sciences, University of Antwerp, 2610, Antwerpen, Belgium
| | - Seyyedmohsen Hosseinibarkooie
- Institute of Human Genetics; Center for Molecular Medicine Cologne; Center for Rare Diseases Cologne, University Hospital of Cologne; University of Cologne, 50931, Cologne, Germany
- Division of Endocrinology and Metabolism and Department of Neuroscience, University of Virginia, Charlottesville, VA, USA
| | - Ricardo Leitão-Gonçalves
- Center for Molecular Neurology, VIB, University of Antwerp, 2610, Antwerpen, Belgium
- Department of Biomedical Sciences, University of Antwerp, 2610, Antwerpen, Belgium
- Frontiers Media SA, Lausanne, Switzerland
| | - Leonardo Almeida-Souza
- Center for Molecular Neurology, VIB, University of Antwerp, 2610, Antwerpen, Belgium
- Department of Biomedical Sciences, University of Antwerp, 2610, Antwerpen, Belgium
- Helsinki Institute of Life Science, Institute of Biotechnology & Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Sven Bervoets
- Center for Molecular Neurology, VIB, University of Antwerp, 2610, Antwerpen, Belgium
- Department of Biomedical Sciences, University of Antwerp, 2610, Antwerpen, Belgium
- Department of Neurobiology, University of Utah, Salt Lake City, UT, USA
| | - Litao Sun
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, 92037, USA
- School of Public Health (Shenzhen), Sun Yat-Sen University, Guangdong, China
| | - LaTasha Lee
- Department of Biological Sciences, Florida Atlantic University, Jupiter, FL, 33458, USA
- Center for Social and Clinical Research, National Minority Quality Forum, Washington, DC, USA
| | - Derek Atkinson
- Center for Molecular Neurology, VIB, University of Antwerp, 2610, Antwerpen, Belgium
- Department of Biomedical Sciences, University of Antwerp, 2610, Antwerpen, Belgium
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Akram Khanghahi
- Center for Molecular Neurology, VIB, University of Antwerp, 2610, Antwerpen, Belgium
- Department of Biomedical Sciences, University of Antwerp, 2610, Antwerpen, Belgium
| | - Ivaylo Tournev
- Department of Neurology, Medical University-Sofia, 1431, Sofia, Bulgaria
- Department of Cognitive Science and Psychology, New Bulgarian University, 1618, Sofia, Bulgaria
| | | | - Patrik Verstreken
- VIB-KU Leuven Center for Brain & Disease Research, 3000, Leuven, Belgium
- KU Leuven, Department of Neurosciences, Leuven Brain Institute, Mission Lucidity, 3000, Leuven, Belgium
| | - Xiang-Lei Yang
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Brunhilde Wirth
- Institute of Human Genetics; Center for Molecular Medicine Cologne; Center for Rare Diseases Cologne, University Hospital of Cologne; University of Cologne, 50931, Cologne, Germany
| | - Avital A Rodal
- Department of Biology, Brandeis University, Waltham, MA, 02453, USA
| | - Vincent Timmerman
- Department of Biomedical Sciences, University of Antwerp, 2610, Antwerpen, Belgium
| | - Bruce L Goode
- Department of Biology, Brandeis University, Waltham, MA, 02453, USA
| | - Tanja A Godenschwege
- Department of Biological Sciences, Florida Atlantic University, Jupiter, FL, 33458, USA
| | - Albena Jordanova
- Center for Molecular Neurology, VIB, University of Antwerp, 2610, Antwerpen, Belgium.
- Department of Biomedical Sciences, University of Antwerp, 2610, Antwerpen, Belgium.
- Department of Medical Chemistry and Biochemistry, Medical University-Sofia, 1431, Sofia, Bulgaria.
| |
Collapse
|
44
|
Schamberger B, Ziege R, Anselme K, Ben Amar M, Bykowski M, Castro APG, Cipitria A, Coles RA, Dimova R, Eder M, Ehrig S, Escudero LM, Evans ME, Fernandes PR, Fratzl P, Geris L, Gierlinger N, Hannezo E, Iglič A, Kirkensgaard JJK, Kollmannsberger P, Kowalewska Ł, Kurniawan NA, Papantoniou I, Pieuchot L, Pires THV, Renner LD, Sageman-Furnas AO, Schröder-Turk GE, Sengupta A, Sharma VR, Tagua A, Tomba C, Trepat X, Waters SL, Yeo EF, Roschger A, Bidan CM, Dunlop JWC. Curvature in Biological Systems: Its Quantification, Emergence, and Implications across the Scales. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2206110. [PMID: 36461812 DOI: 10.1002/adma.202206110] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 11/22/2022] [Indexed: 06/17/2023]
Abstract
Surface curvature both emerges from, and influences the behavior of, living objects at length scales ranging from cell membranes to single cells to tissues and organs. The relevance of surface curvature in biology is supported by numerous experimental and theoretical investigations in recent years. In this review, first, a brief introduction to the key ideas of surface curvature in the context of biological systems is given and the challenges that arise when measuring surface curvature are discussed. Giving an overview of the emergence of curvature in biological systems, its significance at different length scales becomes apparent. On the other hand, summarizing current findings also shows that both single cells and entire cell sheets, tissues or organisms respond to curvature by modulating their shape and their migration behavior. Finally, the interplay between the distribution of morphogens or micro-organisms and the emergence of curvature across length scales is addressed with examples demonstrating these key mechanistic principles of morphogenesis. Overall, this review highlights that curved interfaces are not merely a passive by-product of the chemical, biological, and mechanical processes but that curvature acts also as a signal that co-determines these processes.
Collapse
Affiliation(s)
- Barbara Schamberger
- Department of the Chemistry and Physics of Materials, Paris-Lodron University of Salzburg, 5020, Salzburg, Austria
| | - Ricardo Ziege
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, 14476, Potsdam, Germany
| | - Karine Anselme
- IS2M (CNRS - UMR 7361), Université de Haute-Alsace, F-68100, Mulhouse, France
- Université de Strasbourg, F-67081, Strasbourg, France
| | - Martine Ben Amar
- Department of Physics, Laboratoire de Physique de l'Ecole Normale Supérieure, 24 rue Lhomond, 75005, Paris, France
| | - Michał Bykowski
- Department of Plant Anatomy and Cytology, Faculty of Biology, University of Warsaw, 02-096, Warsaw, Poland
| | - André P G Castro
- IDMEC, Instituto Superior Técnico, Universidade de Lisboa, 1049-001, Lisboa, Portugal
- ESTS, Instituto Politécnico de Setúbal, 2914-761, Setúbal, Portugal
| | - Amaia Cipitria
- IS2M (CNRS - UMR 7361), Université de Haute-Alsace, F-68100, Mulhouse, France
- Group of Bioengineering in Regeneration and Cancer, Biodonostia Health Research Institute, 20014, San Sebastian, Spain
- IKERBASQUE, Basque Foundation for Science, 48009, Bilbao, Spain
| | - Rhoslyn A Coles
- Cluster of Excellence, Matters of Activity, Humboldt-Universität zu Berlin, 10178, Berlin, Germany
| | - Rumiana Dimova
- Department of Theory and Bio-Systems, Max Planck Institute of Colloids and Interfaces, 14476, Potsdam, Germany
| | - Michaela Eder
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, 14476, Potsdam, Germany
| | - Sebastian Ehrig
- Max Delbrück Center for Molecular Medicine, 13125, Berlin, Germany
- Berlin Institute for Medical Systems Biology, 10115, Berlin, Germany
| | - Luis M Escudero
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla and Departamento de Biología Celular, Universidad de Sevilla, 41013, Seville, Spain
- Biomedical Network Research Centre on Neurodegenerative Diseases (CIBERNED), 28031, Madrid, Spain
| | - Myfanwy E Evans
- Institute for Mathematics, University of Potsdam, 14476, Potsdam, Germany
| | - Paulo R Fernandes
- IDMEC, Instituto Superior Técnico, Universidade de Lisboa, 1049-001, Lisboa, Portugal
| | - Peter Fratzl
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, 14476, Potsdam, Germany
| | - Liesbet Geris
- Biomechanics Research Unit, GIGA In Silico Medicine, University of Liège, 4000, Liège, Belgium
| | - Notburga Gierlinger
- Institute of Biophysics, Department of Nanobiotechnology, University of Natural Resources and Life Sciences Vienna (Boku), 1190, Vienna, Austria
| | - Edouard Hannezo
- Institute of Science and Technology Austria, 3400, Klosterneuburg, Austria
| | - Aleš Iglič
- Laboratory of Physics, Faculty of Electrical engineering, University of Ljubljana, Tržaška 25, SI-1000, Ljubljana, Slovenia
| | - Jacob J K Kirkensgaard
- Condensed Matter Physics, Niels Bohr Institute, University of Copenhagen, Universitetsparken 5, 2100, København Ø, Denmark
- Ingredients and Dairy Technology, Department of Food Science, University of Copenhagen, Rolighedsvej 26, 1958, Frederiksberg, Denmark
| | - Philip Kollmannsberger
- Center for Computational and Theoretical Biology, University of Würzburg, 97074, Würzburg, Germany
| | - Łucja Kowalewska
- Department of Plant Anatomy and Cytology, Faculty of Biology, University of Warsaw, 02-096, Warsaw, Poland
| | - Nicholas A Kurniawan
- Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, 5600 MB, Eindhoven, The Netherlands
| | - Ioannis Papantoniou
- Prometheus Division of Skeletal Tissue Engineering, KU Leuven, O&N1, Herestraat 49, PB 813, 3000, Leuven, Belgium
- Skeletal Biology and Engineering Research Center, Department of Development and Regeneration, KU Leuven, O&N1, Herestraat 49, PB 813, 3000, Leuven, Belgium
- Institute of Chemical Engineering Sciences, Foundation for Research and Technology (FORTH), Stadiou Str., 26504, Patras, Greece
| | - Laurent Pieuchot
- IS2M (CNRS - UMR 7361), Université de Haute-Alsace, F-68100, Mulhouse, France
- Université de Strasbourg, F-67081, Strasbourg, France
| | - Tiago H V Pires
- IDMEC, Instituto Superior Técnico, Universidade de Lisboa, 1049-001, Lisboa, Portugal
| | - Lars D Renner
- Leibniz Institute of Polymer Research and the Max Bergmann Center of Biomaterials, 01069, Dresden, Germany
| | | | - Gerd E Schröder-Turk
- School of Physics, Chemistry and Mathematics, Murdoch University, 90 South St, Murdoch, WA, 6150, Australia
- Department of Materials Physics, Research School of Physics, The Australian National University, Canberra, ACT, 2600, Australia
| | - Anupam Sengupta
- Physics of Living Matter, Department of Physics and Materials Science, University of Luxembourg, L-1511, Luxembourg City, Grand Duchy of Luxembourg
| | - Vikas R Sharma
- Department of the Chemistry and Physics of Materials, Paris-Lodron University of Salzburg, 5020, Salzburg, Austria
| | - Antonio Tagua
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla and Departamento de Biología Celular, Universidad de Sevilla, 41013, Seville, Spain
- Biomedical Network Research Centre on Neurodegenerative Diseases (CIBERNED), 28031, Madrid, Spain
| | - Caterina Tomba
- Univ Lyon, CNRS, INSA Lyon, Ecole Centrale de Lyon, Université Claude Bernard Lyon 1, CPE Lyon, INL, UMR5270, 69622, Villeurbanne, France
| | - Xavier Trepat
- ICREA at the Institute for Bioengineering of Catalonia, The Barcelona Institute for Science and Technology, 08028, Barcelona, Spain
- Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 08028, Barcelona, Spain
| | - Sarah L Waters
- Mathematical Institute, University of Oxford, OX2 6GG, Oxford, UK
| | - Edwina F Yeo
- Mathematical Institute, University of Oxford, OX2 6GG, Oxford, UK
| | - Andreas Roschger
- Department of the Chemistry and Physics of Materials, Paris-Lodron University of Salzburg, 5020, Salzburg, Austria
| | - Cécile M Bidan
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, 14476, Potsdam, Germany
| | - John W C Dunlop
- Department of the Chemistry and Physics of Materials, Paris-Lodron University of Salzburg, 5020, Salzburg, Austria
| |
Collapse
|
45
|
Grandy C, Port F, Pfeil J, Oliva MAG, Vassalli M, Gottschalk KE. Cell shape and tension alter focal adhesion structure. BIOMATERIALS ADVANCES 2023; 145:213277. [PMID: 36621197 DOI: 10.1016/j.bioadv.2022.213277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 11/25/2022] [Accepted: 12/29/2022] [Indexed: 01/05/2023]
Abstract
Cells are not only anchored to the extracellular matrix via the focal adhesion complex, the focal adhesion complex also serves as a sensor for force transduction. How tension influences the structure of focal adhesions is not well understood. Here, we analyse the effect of tension on the location of key focal adhesion proteins, namely vinculin, paxillin and actin. We use micropatterning on gold surfaces to manipulate the cell shape, to create focal adhesions at specific cell areas, and to perform metal-induced energy transfer (MIET) measurements on the patterned cells. MIET resolves the different protein locations with respect to the gold surface with nanometer accuracy. Further, we use drugs influencing the cellular motor protein myosin or mechanosensitive ion channels to get deeper insight into focal adhesions at different tension states. We show here that in particular actin is affected by the rationally tuned force balance. Blocking mechanosensitive ion channels has a particularly high influence on the actin and focal adhesion architecture, resulting in larger focal adhesions with elevated paxillin and vinculin and strongly lowered actin stress fibres. Our results can be explained by a balance of adhesion tension with cellular tension together with ion channel-controlled focal adhesion homeostasis, where high cellular tension leads to an elevation of vinculin and actin, while high adhesion tension lowers these proteins.
Collapse
Affiliation(s)
- Carolin Grandy
- University Ulm, Institute of Experimental Physics, Ulm, Baden-Württemberg, 89081, Germany
| | - Fabian Port
- University Ulm, Institute of Experimental Physics, Ulm, Baden-Württemberg, 89081, Germany
| | - Jonas Pfeil
- University Ulm, Institute of Experimental Physics, Ulm, Baden-Württemberg, 89081, Germany
| | | | - Massimo Vassalli
- University of Glasgow, James Watt School of Engineering, Glasgow G12 8QQ, United Kingdom
| | | |
Collapse
|
46
|
Rose N, Estrada Chavez B, Sonam S, Nguyen T, Grenci G, Bigot A, Muchir A, Ladoux B, Cadot B, Le Grand F, Trichet L. Bioengineering a miniaturized in vitro 3D myotube contraction monitoring chip to model muscular dystrophies. Biomaterials 2023; 293:121935. [PMID: 36584444 DOI: 10.1016/j.biomaterials.2022.121935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/17/2022] [Accepted: 11/27/2022] [Indexed: 12/15/2022]
Abstract
Quantification of skeletal muscle functional contraction is essential to assess the outcomes of therapeutic procedures for neuromuscular disorders. Muscle three-dimensional "Organ-on-chip" models usually require a substantial amount of biological material, which rarely can be obtained from patient biopsies. Here, we developed a miniaturized 3D myotube culture chip with contraction monitoring capacity at the single cell level. Optimized micropatterned substrate design enabled to obtain high culture yields in tightly controlled microenvironments, with myotubes derived from primary human myoblasts displaying spontaneous contractions. Analysis of nuclear morphology confirmed similar myonuclei structure between obtained myotubes and in vivo myofibers, as compared to 2D monolayers. LMNA-related Congenital Muscular Dystrophy (L-CMD) was modeled with successful development of diseased 3D myotubes displaying reduced contraction. The miniaturized myotube technology can thus be used to study contraction characteristics and evaluate how diseases affect muscle organization and force generation. Importantly, it requires significantly fewer starting materials than current systems, which should substantially improve drug screening capability.
Collapse
Affiliation(s)
- Nicolas Rose
- Sorbonne Université, Inserm UMRS 974, Centre de Recherche en Myologie, 75013, Paris, France.
| | - Berenice Estrada Chavez
- Sorbonne Université, Inserm UMRS 974, Centre de Recherche en Myologie, 75013, Paris, France.
| | - Surabhi Sonam
- Université Paris Cité, CNRS, Institut Jacques Monod, F-75013, Paris, France.
| | - Thao Nguyen
- Université Paris Cité, CNRS, Institut Jacques Monod, F-75013, Paris, France.
| | - Gianluca Grenci
- Mechanobiology Institute, National University of Singapore, 117411, Singapore.
| | - Anne Bigot
- Sorbonne Université, Inserm UMRS 974, Centre de Recherche en Myologie, 75013, Paris, France.
| | - Antoine Muchir
- Sorbonne Université, Inserm UMRS 974, Centre de Recherche en Myologie, 75013, Paris, France.
| | - Benoît Ladoux
- Université Paris Cité, CNRS, Institut Jacques Monod, F-75013, Paris, France.
| | - Bruno Cadot
- Sorbonne Université, Inserm UMRS 974, Centre de Recherche en Myologie, 75013, Paris, France.
| | - Fabien Le Grand
- Institut NeuroMyoGène, Université Claude Bernard Lyon 1, CNRS UMR 5310, INSERM U1217, 69008, Lyon, France.
| | - Léa Trichet
- Sorbonne Université, CNRS UMR 7574, Laboratoire de Chimie de La Matière Condensée de Paris, 75005, Paris, France.
| |
Collapse
|
47
|
Fu W, Sun M, Zhang J, Xuanyuan T, Liu X, Zhou Y, Liu W. Combinatorial Drug Screening Based on Massive 3D Tumor Cultures Using Micropatterned Array Chips. Anal Chem 2023; 95:2504-2512. [PMID: 36651128 DOI: 10.1021/acs.analchem.2c04816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The establishment and application of a generalizable three-dimensional (3D) tumor device for high-throughput screening plays an important role in drug discovery and cancer therapeutics. In this study, we introduce a facile microplatform for considerable 3D tumor generation and combinatorial drug screening evaluation. High fidelity of chip fabrication was achieved depending on the simple and well-improved microcontact printing. We demonstrated the high stability and repeatability of the established tumor-on-a-chip system for controllable and massive production of 3D tumors with high size uniformity. Importantly, we accomplished the screening-like chemotherapy investigation involving individual and combinatorial drugs and validated the high accessibility and applicability of the system in 3D tumor-based manipulation and analysis on a large scale. This achievement in tumor-on-a-chip has potential applications in plenty of biomedical fields such as tumor biology, pharmacology, and tissue microengineering. It offers an insight into the development of the popularized microplatform with easy-to-fabricate and easy-to-operate properties for cancer exploration and therapy.
Collapse
Affiliation(s)
- Wenzhu Fu
- Departments of Biomedical Engineering and Pathology, School of Basic Medical Science, Central South University, Changsha, Hunan 410013, China
| | - Meilin Sun
- Departments of Biomedical Engineering and Pathology, School of Basic Medical Science, Central South University, Changsha, Hunan 410013, China
| | - Jinwei Zhang
- Departments of Biomedical Engineering and Pathology, School of Basic Medical Science, Central South University, Changsha, Hunan 410013, China
| | - Tingting Xuanyuan
- Departments of Biomedical Engineering and Pathology, School of Basic Medical Science, Central South University, Changsha, Hunan 410013, China
| | - Xufang Liu
- Departments of Biomedical Engineering and Pathology, School of Basic Medical Science, Central South University, Changsha, Hunan 410013, China
| | - Yujie Zhou
- Departments of Biomedical Engineering and Pathology, School of Basic Medical Science, Central South University, Changsha, Hunan 410013, China
| | - Wenming Liu
- Departments of Biomedical Engineering and Pathology, School of Basic Medical Science, Central South University, Changsha, Hunan 410013, China
| |
Collapse
|
48
|
Fink A, Doll CR, Yagüe Relimpio A, Dreher Y, Spatz JP, Göpfrich K, Cavalcanti-Adam EA. Extracellular Cues Govern Shape and Cytoskeletal Organization in Giant Unilamellar Lipid Vesicles. ACS Synth Biol 2023; 12:369-374. [PMID: 36652603 PMCID: PMC9942188 DOI: 10.1021/acssynbio.2c00516] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Spontaneous and induced front-rear polarization and a subsequent asymmetric actin cytoskeleton is a crucial event leading to cell migration, a key process involved in a variety of physiological and pathological conditions such as tissue development, wound healing, and cancer. Migration of adherent cells relies on the balance between adhesion to the underlying matrix and cytoskeleton-driven front protrusion and rear retraction. A current challenge is to uncouple the effect of adhesion and shape from the contribution of the cytoskeleton in regulating the onset of front-rear polarization. Here, we present a minimal model system that introduces an asymmetric actin cytoskeleton in synthetic cells, which are resembled by giant unilamellar lipid vesicles (GUVs) adhering onto symmetric and asymmetric micropatterned surfaces. Surface micropatterning of streptavidin-coated regions with varying adhesion shape and area was achieved by maskless UV photopatterning. To further study the effects of GUV shape on the cytoskeletal organization, actin filaments were polymerized together with bundling proteins inside the GUVs. The micropatterns induce synthetic cell deformation upon adhesion to the surface, with the cell shape adapting to the pattern shape and size. As expected, asymmetric patterns induce an asymmetric deformation in adherent synthetic cells. Actin filaments orient along the long axis of the deformed GUV, when having a length similar to the size of the major axis, whereas short filaments exhibit random orientation. With this bottom-up approach we have laid the first steps to identify the relationship between cell front-rear polarization and cytoskeleton organization in the future. Such a minimal system will allow us to further study the major components needed to create a polarized cytoskeleton at the onset of migration.
Collapse
Affiliation(s)
- Andreas Fink
- Department
of Cellular Biophysics, Max Planck Institute
for Medical Research, Jahnstraße 29, 69120 Heidelberg, Germany
| | - Charlotte R. Doll
- Department
of Cellular Biophysics, Max Planck Institute
for Medical Research, Jahnstraße 29, 69120 Heidelberg, Germany
| | - Ana Yagüe Relimpio
- Department
of Cellular Biophysics, Max Planck Institute
for Medical Research, Jahnstraße 29, 69120 Heidelberg, Germany,Institute
for Molecular Systems Engineering, University
of Heidelberg, Im Neuenheimer
Feld 253, 69120 Heidelberg, Germany
| | - Yannik Dreher
- Biophysical
Engineering Group, Max Planck Institute
for Medical Research, Jahnstraße 29, 69120 Heidelberg, Germany,Department
of Physics and Astronomy, Heidelberg University, 69120 Heidelberg, Germany
| | - Joachim P. Spatz
- Department
of Cellular Biophysics, Max Planck Institute
for Medical Research, Jahnstraße 29, 69120 Heidelberg, Germany
| | - Kerstin Göpfrich
- Biophysical
Engineering Group, Max Planck Institute
for Medical Research, Jahnstraße 29, 69120 Heidelberg, Germany,Department
of Physics and Astronomy, Heidelberg University, 69120 Heidelberg, Germany
| | - Elisabetta Ada Cavalcanti-Adam
- Department
of Cellular Biophysics, Max Planck Institute
for Medical Research, Jahnstraße 29, 69120 Heidelberg, Germany,E-mail:
| |
Collapse
|
49
|
Yu X, Wang Y, Zhang M, Ma H, Feng C, Zhang B, Wang X, Ma B, Yao Q, Wu C. 3D printing of gear-inspired biomaterials: Immunomodulation and bone regeneration. Acta Biomater 2023; 156:222-233. [PMID: 36100177 DOI: 10.1016/j.actbio.2022.09.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 09/01/2022] [Accepted: 09/05/2022] [Indexed: 01/18/2023]
Abstract
It is of significance to construct the immunomodulatory and osteogenic microenvironment for three dimension (3D) regeneration of bone tissues. 3D scaffolds, with various chemical composition, macroporous structure and surface characteristics offer a beneficial microenvironment for bone tissue regeneration. However, there is a gap between the well-ordered surface microstructure of bioceramic scaffolds and immune microenvironment for bone regeneration. In this study, a gear-inspired 3D scaffold with well-ordered surface microstructure was successfully prepared through a modified extrusion-based 3D printing strategy for immunomodulation and bone regeneration. The prepared gear-inspired scaffolds could induce M2 phenotype polarization of macrophages and further promoted osteogenic differentiation of bone mesenchymal stem cells in vitro. The subsequent in vivo study demonstrated that the gear-inspired scaffolds were able to attenuate inflammation and further promote new bone formation. The study develops a facile strategy to construct well-ordered surface microstructure which plays a key role in 3D immunomodulatory and osteogenic microenvironment for bone tissue engineering and regenerative medicine. STATEMENT OF SIGNIFICANCE.
Collapse
Affiliation(s)
- Xiaopeng Yu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, PR China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Yufeng Wang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, PR China; Department of Orthopaedic Surgery, Institute of Digital Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, PR China
| | - Meng Zhang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, PR China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Hongshi Ma
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, PR China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Chun Feng
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, PR China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Bingjun Zhang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, PR China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Xin Wang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, PR China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Bing Ma
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, PR China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Qingqiang Yao
- Department of Orthopaedic Surgery, Institute of Digital Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, PR China
| | - Chengtie Wu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, PR China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, PR China.
| |
Collapse
|
50
|
Tang H, Wang X, Zheng J, Long YZ, Xu T, Li D, Guo X, Zhang Y. Formation of low-density electrospun fibrous network integrated mesenchymal stem cell sheet. J Mater Chem B 2023; 11:389-402. [PMID: 36511477 DOI: 10.1039/d2tb02029g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Cell sheets combined with electrospun fibrous mats represent an attractive approach for the repair and regeneration of injured tissues. However, the conventional dense electrospun mats as supportive substrates in forming "cell sheet on fiber mat" complexes suffer from problems of limiting the cellular function and eliciting a host response upon implantation. To give full play to the role of electrospun biomimicking fibers in forming quality cell sheets, this study proposed to develop a cell-fiber integrated sheet (CFIS) featuring a spatially homogeneous distribution of cells within the fiber structure by using a low-density fibrous network for cell sheet formation. A low-density electrospun polycaprolactone (PCL) fibrous network at a density of 103.8 ± 16.3 μg cm-2 was produced by controlling the fiber deposition for a short period of 1 min and subsequently transferred onto polydimethylsiloxane rings for facilitating cell sheet formation, in which rat bone marrow-derived mesenchymal cells were used. Using a dense electrospun PCL fibrous mat (481.5 ± 7.5 μg cm-2) as the control, it was found that cells on the low-density fibrous network (L-G) exhibited improved capacities in spreading, proliferation, stemness maintenance and matrix-remodeling during the process of CFIS formation. Structurally, the CFIS constructs revealed strong integration between the cells and the fibrous network, thus providing excellent cohesion and physical integrity to enable strengthening of the formed cell sheet. By contrast, the cell sheet formed on the dense fibrous mat (D-G) showed a two-layer (biphasic) structure due to the limitation of cellular invasion. Moreover, such engineered CFIS was identified with enhanced immunomodulatory effects by promoting LPS-stimulated macrophages towards an M2 phenotype in vitro. Our results suggest that the CFIS may be used as a native tissue equivalent "cell sheet" for improving the efficacy of the tissue engineering approach for the repair and regeneration of impaired tissues.
Collapse
Affiliation(s)
- Han Tang
- College of Biological Science and Medical Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China. .,Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, Donghua University, Shanghai 201620, China
| | - Xiaoli Wang
- College of Biological Science and Medical Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China. .,Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, Donghua University, Shanghai 201620, China
| | - Jie Zheng
- Industrial Research Institute of Nonwovens & Technical Textiles, College of Textiles & Clothing, Shandong Center for Engineered Nonwovens, Qingdao University, Qingdao 266071, China
| | - Yun-Ze Long
- College of Physics, Qingdao University, Qingdao 266071, China
| | - Tingting Xu
- College of Biological Science and Medical Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China. .,Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, Donghua University, Shanghai 201620, China
| | - Donghong Li
- College of Biological Science and Medical Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China. .,Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, Donghua University, Shanghai 201620, China
| | - Xuran Guo
- College of Biological Science and Medical Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China. .,Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, Donghua University, Shanghai 201620, China
| | - Yanzhong Zhang
- College of Biological Science and Medical Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China. .,Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, Donghua University, Shanghai 201620, China.,Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China.,China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou 310058, China
| |
Collapse
|