1
|
Ahn J, Jang SH, Jang S, Yoon JH, Lee MG, Chi SG. XAF1 is secreted from stressed tumor cells to activate T cell-mediated tumor surveillance via Lck-ERK signaling. Neoplasia 2025; 59:101094. [PMID: 39615106 DOI: 10.1016/j.neo.2024.101094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 11/20/2024] [Indexed: 12/20/2024]
Abstract
X-linked inhibitor of apoptosis-associated factor 1 (XAF1) is a stress-inducible tumor suppressor that is commonly inactivated in multiple types of human malignancies. Nevertheless, the molecular basis for the XAF1-mediated tumor suppression remains largely undefined. Here, we report that XAF1 is secreted from cells under various cytotoxic stress conditions and activates T cell-mediated tumor surveillance. In cancer cells exposed to interferon -γ, tumor necrosis factor -α, and etoposide, XAF1 is elevated and actively secreted through the unconventional endo-lysosomal trafficking pathway and the zinc finger 4 domain of XAF1 plays an essential for this secretion. Secreted XAF1 is internalized into nearby T cells through clathrin-mediated endocytosis and stimulates proliferation, migration, and tumor infiltration of T cells. Internalized XAF1 activates RAF-MEK-ERK signaling through the direct interaction with and phosphorylation of lymphocyte-specific protein tyrosine kinase. In response to interferon -γ injection, Xaf1+/+ tumors display significantly higher regression rate and T cell infiltration compared to Xaf1-/- tumors while Xaf1-/- tumors are markedly reduced by injection of recombinant Xaf1. XAF1 expression is associated with overall survival in T cell-enriched cancer patients and also correlates with prognosis in T cell-based immunotherapies. Together, our study identifies XAF1 as a novel secretory immune-modulatory tumor suppressor, illuminating the mechanistic consequence of its inactivation in tumorigenesis.
Collapse
Affiliation(s)
- Jieun Ahn
- Department of Life Sciences, Korea University, Seoul 02841, Republic of Korea
| | - Seung-Hun Jang
- Department of Life Sciences, Korea University, Seoul 02841, Republic of Korea
| | - Sungchan Jang
- Department of Life Sciences, Korea University, Seoul 02841, Republic of Korea
| | - Ji-Hye Yoon
- Department of Life Sciences, Korea University, Seoul 02841, Republic of Korea
| | - Min-Goo Lee
- Department of Life Sciences, Korea University, Seoul 02841, Republic of Korea
| | - Sung-Gil Chi
- Department of Life Sciences, Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|
2
|
Qiu L, Ma Z, Wu X. Mutant p53-Mediated Tumor Secretome: Bridging Tumor Cells and Stromal Cells. Genes (Basel) 2024; 15:1615. [PMID: 39766882 PMCID: PMC11675497 DOI: 10.3390/genes15121615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 12/06/2024] [Accepted: 12/16/2024] [Indexed: 01/11/2025] Open
Abstract
The tumor secretome comprises the totality of protein factors secreted by various cell components within the tumor microenvironment, serving as the primary medium for signal transduction between tumor cells and between tumor cells and stromal cells. The deletion or mutation of the p53 gene leads to alterations in cellular secretion characteristics, contributing to the construction of the tumor microenvironment in a cell non-autonomous manner. This review discusses the critical roles of mutant p53 in regulating the tumor secretome to remodel the tumor microenvironment, drive tumor progression, and influence the plasticity of cancer-associated fibroblasts (CAFs) as well as the dynamics of tumor immunity by focusing on both secreted protein expression and secretion pathways. The aim is to provide new insights for targeted cancer therapies.
Collapse
Affiliation(s)
| | | | - Xiaoming Wu
- Laboratory of Molecular Genetics of Aging & Tumor, Medical School, Kunming University of Science and Technology, Chenggong Campus, 727 South Jingming Road, Kunming 650500, China; (L.Q.); (Z.M.)
| |
Collapse
|
3
|
Zhuang J, Zhang YD, Sun WX, Zong J, Li JJ, Dai XF, Klosterman SJ, Chen JY, Tian L, Subbarao KV, Zhang DD. The acyl-CoA-binding protein VdAcb1 is essential for carbon starvation response and contributes to virulence in Verticillium dahliae. ABIOTECH 2024; 5:431-448. [PMID: 39650135 PMCID: PMC11624172 DOI: 10.1007/s42994-024-00175-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 06/22/2024] [Indexed: 12/11/2024]
Abstract
In the face of carbon, nitrogen, and phosphorus starvation, microorganisms have evolved adaptive mechanisms to maintain growth. In a previous study, we identified a protein predicted to contain acyl-CoA-binding domains in the plant pathogenic fungus Verticillium dahliae. The predicted protein, designated VdAcb1, possesses an atypical signal peptide. However, the functions of this acyl-CoA-binding protein in V. dahliae are not clear. In this research, in vivo or in vitro assays confirmed that VdAcb1 is secreted extracellularly from V. dahliae, although it does not have the typical signal peptide. Furthermore, the unconventional secretion of VdAcb1 was dependent on VdGRASP, a member of the compartment for unconventional protein secretion (CUPS). The deletion mutant strain of VdAcb1 (ΔVdAcb1) exhibited significant sensitivity to carbon starvation. RNA-seq revealed that the expression of genes related to filamentous growth (MSB2 pathway) and sugar transport were regulated by VdAcb1 under conditions of carbon starvation. Yeast one-hybrid experiments further showed that the expression of VdAcb1 was positively regulated by the transcription factor VdMsn4. The ΔVdAcb1 strain showed significantly reduced virulence on Gossypium hirsutum and Nicotiana benthamiana. We hypothesize that under conditions of carbon starvation, the expression of VdAcb1 is activated by VdMsn4 and VdAcb1 is secreted into the extracellular space. In turn, this activates the downstream MAPK pathway to enhance filamentous growth and virulence of V. dahliae. Supplementary Information The online version contains supplementary material available at 10.1007/s42994-024-00175-3.
Collapse
Affiliation(s)
- Jing Zhuang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193 China
- School of Life Science, Qufu Normal University, Qufu, 273165 China
| | - Ya-Duo Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193 China
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120 China
| | - Wei-Xia Sun
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193 China
| | - Juan Zong
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193 China
| | - Jun-Jiao Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193 China
| | - Xiao-Feng Dai
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193 China
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, 831100 China
| | - Steven J. Klosterman
- United States Department of Agriculture, Agricultural Research Service, Salinas, CA 93905 USA
| | - Jie-Yin Chen
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193 China
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, 831100 China
| | - Li Tian
- School of Life Science, Qufu Normal University, Qufu, 273165 China
| | - Krishna V. Subbarao
- Department of Plant Pathology, University of California, Davis, c/o United States Agricultural Research Station, Salinas, CA 93905 USA
| | - Dan-Dan Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193 China
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, 831100 China
| |
Collapse
|
4
|
Cheng S, Long Y, Zhang X, Liu B, Song S, Li G, Hu Y, Du L, Wang Q, Jiang J, Xiong G. The Sorting and Transport of the Cargo Protein CcSnc1 by the Retromer Complex Regulate the Growth, Development, and Pathogenicity of Corynespora cassiicola. J Fungi (Basel) 2024; 10:714. [PMID: 39452666 PMCID: PMC11508248 DOI: 10.3390/jof10100714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/27/2024] [Accepted: 10/12/2024] [Indexed: 10/26/2024] Open
Abstract
In eukaryotes, the retromer complex is critical for the transport of cargo proteins from endosomes to the trans-Golgi network (TGN). Despite its importance, there is a lack of research on the retromer-mediated transport of cargo proteins regulating the growth, development, and pathogenicity of filamentous fungi. In the present study, transcriptome analysis showed that the expression levels of the retromer complex (CcVPS35, CcVPS29 and CcVPS26) were significantly elevated during the early stages of Corynespora cassiicola invasion. Gene knockout and complementation analyses further highlighted the critical role of the retromer complex in C. cassiicola infection. Subcellular localization analysis showed that the retromer complex was mainly localized to the vacuolar membrane and partially to endosomes and the TGN. Further research found that the retromer core subunit CcVps35 can interact with the cargo protein CcSnc1. Subcellular localization showed that CcSnc1 is mainly located at the hyphal tip and partially in endosomes and the Golgi apparatus. Deletion of CcVPS35 resulted in the missorting of CcSnc1 into the vacuolar degradation pathway, indicating that the retromer can sort CcSnc1 from endosomes and transport it to the TGN. Additionally, gene knockout and complementation analyses demonstrated that CcSnc1 is critical for the growth, development, and pathogenicity of C. cassiicola. In summary, the vesicular transport pathway involving the retromer complex regulates the sorting and transport of the cargo protein CcSnc1, which is important for the growth, development and pathogenicity of C. cassiicola.
Collapse
Affiliation(s)
- Shuyuan Cheng
- College of Agronomy, Jiangxi Agricultural University, Nanchang 330045, China; (S.C.); (B.L.); (S.S.); (G.L.); (Y.H.); (L.D.); (Q.W.)
- Jiangxi Province Key Laboratory of Vegetable Cultivation and Utilization, Jiangxi Agricultural University, Nanchang 330045, China
| | - Yunfei Long
- College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
| | - Xiaoyang Zhang
- Jiujiang Agricultural Technology Extension Center, Jiujiang 332000, China;
| | - Bing Liu
- College of Agronomy, Jiangxi Agricultural University, Nanchang 330045, China; (S.C.); (B.L.); (S.S.); (G.L.); (Y.H.); (L.D.); (Q.W.)
- Jiangxi Province Key Laboratory of Vegetable Cultivation and Utilization, Jiangxi Agricultural University, Nanchang 330045, China
| | - Shuilin Song
- College of Agronomy, Jiangxi Agricultural University, Nanchang 330045, China; (S.C.); (B.L.); (S.S.); (G.L.); (Y.H.); (L.D.); (Q.W.)
| | - Genghua Li
- College of Agronomy, Jiangxi Agricultural University, Nanchang 330045, China; (S.C.); (B.L.); (S.S.); (G.L.); (Y.H.); (L.D.); (Q.W.)
| | - Yuzhuan Hu
- College of Agronomy, Jiangxi Agricultural University, Nanchang 330045, China; (S.C.); (B.L.); (S.S.); (G.L.); (Y.H.); (L.D.); (Q.W.)
| | - Lei Du
- College of Agronomy, Jiangxi Agricultural University, Nanchang 330045, China; (S.C.); (B.L.); (S.S.); (G.L.); (Y.H.); (L.D.); (Q.W.)
| | - Quanxing Wang
- College of Agronomy, Jiangxi Agricultural University, Nanchang 330045, China; (S.C.); (B.L.); (S.S.); (G.L.); (Y.H.); (L.D.); (Q.W.)
| | - Junxi Jiang
- College of Agronomy, Jiangxi Agricultural University, Nanchang 330045, China; (S.C.); (B.L.); (S.S.); (G.L.); (Y.H.); (L.D.); (Q.W.)
- Jiangxi Province Key Laboratory of Vegetable Cultivation and Utilization, Jiangxi Agricultural University, Nanchang 330045, China
| | - Guihong Xiong
- College of Agronomy, Jiangxi Agricultural University, Nanchang 330045, China; (S.C.); (B.L.); (S.S.); (G.L.); (Y.H.); (L.D.); (Q.W.)
- Jiangxi Province Key Laboratory of Vegetable Cultivation and Utilization, Jiangxi Agricultural University, Nanchang 330045, China
| |
Collapse
|
5
|
Néel E, Chiritoiu-Butnaru M, Fargues W, Denus M, Colladant M, Filaquier A, Stewart SE, Lehmann S, Zurzolo C, Rubinsztein DC, Marin P, Parmentier ML, Villeneuve J. The endolysosomal system in conventional and unconventional protein secretion. J Cell Biol 2024; 223:e202404152. [PMID: 39133205 PMCID: PMC11318669 DOI: 10.1083/jcb.202404152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 07/12/2024] [Accepted: 07/26/2024] [Indexed: 08/13/2024] Open
Abstract
Most secreted proteins are transported through the "conventional" endoplasmic reticulum-Golgi apparatus exocytic route for their delivery to the cell surface and release into the extracellular space. Nonetheless, formative discoveries have underscored the existence of alternative or "unconventional" secretory routes, which play a crucial role in exporting a diverse array of cytosolic proteins outside the cell in response to intrinsic demands, external cues, and environmental changes. In this context, lysosomes emerge as dynamic organelles positioned at the crossroads of multiple intracellular trafficking pathways, endowed with the capacity to fuse with the plasma membrane and recognized for their key role in both conventional and unconventional protein secretion. The recent recognition of lysosomal transport and exocytosis in the unconventional secretion of cargo proteins provides new and promising insights into our understanding of numerous physiological processes.
Collapse
Affiliation(s)
- Eloïse Néel
- Institute of Functional Genomics, University of Montpellier, CNRS, INSERM , Montpellier, France
| | | | - William Fargues
- Institute of Functional Genomics, University of Montpellier, CNRS, INSERM , Montpellier, France
| | - Morgane Denus
- Institute of Functional Genomics, University of Montpellier, CNRS, INSERM , Montpellier, France
| | - Maëlle Colladant
- Institute of Functional Genomics, University of Montpellier, CNRS, INSERM , Montpellier, France
| | - Aurore Filaquier
- Institute of Functional Genomics, University of Montpellier, CNRS, INSERM , Montpellier, France
| | - Sarah E Stewart
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Australia
| | - Sylvain Lehmann
- Laboratoire de Biochimie-Protéomique Clinique-Plateforme de Protéomique Clinique, Université de Montpellier, Institute for Regenerative Medicine and Biotherapy Centre Hospitalier Universitaire de Montpellier, Institute for Neurosciences of Montpellier INSERM , Montpellier, France
| | - Chiara Zurzolo
- Unité de Trafic Membranaire et Pathogenèse, Institut Pasteur, UMR3691 CNRS , Paris, France
| | - David C Rubinsztein
- Department of Medical Genetics, Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK
- UK Dementia Research Institute , Cambridge, UK
| | - Philippe Marin
- Institute of Functional Genomics, University of Montpellier, CNRS, INSERM , Montpellier, France
| | - Marie-Laure Parmentier
- Institute of Functional Genomics, University of Montpellier, CNRS, INSERM , Montpellier, France
| | - Julien Villeneuve
- Institute of Functional Genomics, University of Montpellier, CNRS, INSERM , Montpellier, France
| |
Collapse
|
6
|
Song Y, Liu P, Qi X, Shi XL, Wang YS, Guo D, Luo H, Du ZJ, Wang MY. Helicobacter pylori infection delays neutrophil apoptosis and exacerbates inflammatory response. Future Microbiol 2024; 19:1145-1156. [PMID: 39056165 PMCID: PMC11529197 DOI: 10.1080/17460913.2024.2360798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 05/24/2024] [Indexed: 07/28/2024] Open
Abstract
Aim: Understanding molecular mechanisms of Helicobacter pylori (H. pylori)-induced inflammation is important for developing new therapeutic strategies for gastrointestinal diseases.Materials & methods: We designed an H. pylori-neutrophil infection model and explored the effects of H. pylori infection on neutrophils.Results: H. pylori infected neutrophils showed a low level of apoptosis. H. pylori stimulation activated the NACHT/LRR/PYD domain-containing protein 3 (NLRP3)-gasdermin-D (GSDMD) pathway for interleukin (IL)-1β secretion. However, IL-1β secretion was not completely dependent on GSDMD, as inhibition of autophagy significantly reduced IL-1β release, and autophagy-related molecules were significantly upregulated in H. pylori-infected neutrophils.Conclusion: Therefore, H. pylori infection inhibits neutrophils apoptosis and induces IL-1β secretion through autophagy. These findings may be utilized to formulate therapeutic strategies against H. pylori mediated chronic gastritis.
Collapse
Affiliation(s)
- Yu Song
- Marine College, Shandong University, Weihai, Shandong, 264209, PR China
- Department of Central Lab, Weihai Municipal Hospital, Shandong University, Weihai, Shandong, 264200, PR China
| | - Peng Liu
- Department of Central Lab, Weihai Municipal Hospital, Shandong University, Weihai, Shandong, 264200, PR China
| | - Xi Qi
- Department of Central Lab, Weihai Municipal Hospital, Shandong University, Weihai, Shandong, 264200, PR China
- School of Laboratory Medicine, Dalian Medical University, Dalian, Liaoning, 116044, PR China
| | - Xiao-Lin Shi
- Department of Central Lab, Weihai Municipal Hospital, Shandong University, Weihai, Shandong, 264200, PR China
- School of Laboratory Medicine, Dalian Medical University, Dalian, Liaoning, 116044, PR China
| | - Yu-Shan Wang
- Department of Central Lab, Weihai Municipal Hospital, Shandong University, Weihai, Shandong, 264200, PR China
- School of Laboratory Medicine, Dalian Medical University, Dalian, Liaoning, 116044, PR China
| | - Dong Guo
- Department of Central Lab, Weihai Municipal Hospital, Shandong University, Weihai, Shandong, 264200, PR China
| | - Hong Luo
- School of Laboratory Medicine, Dalian Medical University, Dalian, Liaoning, 116044, PR China
| | - Zong-Jun Du
- Marine College, Shandong University, Weihai, Shandong, 264209, PR China
| | - Ming-Yi Wang
- Marine College, Shandong University, Weihai, Shandong, 264209, PR China
- Department of Central Lab, Weihai Municipal Hospital, Shandong University, Weihai, Shandong, 264200, PR China
| |
Collapse
|
7
|
Ma J, Lin Z, Zhang Y, Ding Y, Tang Q, Qian Y, Jin B, Luo RY, Liao WL, Thyparambil S, Han Z, Chou CJ, Schilling J, Li Q, Zhang M, Lin Y, Ma Y, Sylvester KG, Nagpal S, McElhinney DB, Ling XB, Chen B. Targeted multiplex validation of CSF proteomic biomarkers: implications for differentiation of PCNSL from tumor-free controls and other brain tumors. Front Immunol 2024; 15:1343109. [PMID: 39144147 PMCID: PMC11322575 DOI: 10.3389/fimmu.2024.1343109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 07/17/2024] [Indexed: 08/16/2024] Open
Abstract
Introduction Primary central nervous system lymphoma (PCNSL) is a rare type of non-Hodgkin's lymphoma that affects brain parenchyma, eyes, cerebrospinal fluid, and spinal cord. Diagnosing PCNSL can be challenging because imaging studies often show similar patterns as other brain tumors, and stereotactic brain lesion biopsy conformation is invasive and not always possible. This study aimed to validate a previous proteomic profiling (PMID: 32610669) of cerebrospinal fluid (CSF) and develop a CSF-based proteomic panel for accurate PCNSL diagnosis and differentiation. Methods CSF samples were collected from patients of 30 PCNSL, 30 other brain tumors, and 31 tumor-free/benign controls. Liquid chromatography tandem-mass spectrometry targeted proteomics analysis was used to establish CSF-based proteomic panels. Results Final proteomic panels were selected and optimized to diagnose PCNSL from tumor-free controls or other brain tumor lesions with an area under the curve (AUC) of 0.873 (95%CI: 0.723-0.948) and 0.937 (95%CI: 0.807- 0.985), respectively. Pathways analysis showed diagnosis panel features were significantly enriched in pathways related to extracellular matrices-receptor interaction, focal adhesion, and PI3K-Akt signaling, while prion disease, mineral absorption and HIF-1 signaling were significantly enriched with differentiation panel features. Discussion This study suggests an accurate clinical test panel for PCNSL diagnosis and differentiation with CSF-based proteomic signatures, which may help overcome the challenges of current diagnostic methods and improve patient outcomes.
Collapse
Affiliation(s)
- Jingjing Ma
- Department of Hematology, Huashan Hospital, Fudan University, Shanghai, China
| | - Zhiguang Lin
- Department of Hematology, Huashan Hospital, Fudan University, Shanghai, China
| | - Yaqi Zhang
- College of Automation, Guangdong Polytechnic Normal University, Guangzhou, China
| | - Yun Ding
- Research and Development, mProbe Inc.Palo Alto, CA, United States
| | - Qiming Tang
- Research and Development, mProbe Inc.Palo Alto, CA, United States
| | - Yufeng Qian
- Research and Development, mProbe Inc.Palo Alto, CA, United States
| | - Bo Jin
- Research and Development, mProbe Inc.Palo Alto, CA, United States
| | - Ruben Y. Luo
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, United States
| | - Wei-Li Liao
- Research and Development, mProbe Inc.Palo Alto, CA, United States
| | | | - Zhi Han
- Department of Biomedical Data Science, Stanford University School of Medicine, Stanford, CA, United States
| | - C. James Chou
- Department of Surgery, Stanford University School of Medicine, Stanford, CA, United States
| | - James Schilling
- Research and Development, mProbe Inc.Palo Alto, CA, United States
| | - Qing Li
- Department of Hematology, Huashan Hospital, Fudan University, Shanghai, China
| | - Mengxue Zhang
- Department of Hematology, Huashan Hospital, Fudan University, Shanghai, China
| | - Yunan Lin
- Department of Hematology, Huashan Hospital, Fudan University, Shanghai, China
| | - Yan Ma
- Department of Hematology, Huashan Hospital, Fudan University, Shanghai, China
| | - Karl G. Sylvester
- Department of Surgery, Stanford University School of Medicine, Stanford, CA, United States
| | - Seema Nagpal
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, United States
| | - Doff B. McElhinney
- Departments of Cardiothoracic Surgery and Pediatrics (Cardiology), Stanford University School of Medicine, Stanford, CA, United States
| | - Xuefeng B. Ling
- Department of Surgery, Stanford University School of Medicine, Stanford, CA, United States
| | - Bobin Chen
- Department of Hematology, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
8
|
Sun W, Zhao L, Zhou J, Feng H, Zhang Y, Feng Z, Zhu H, Wei F. VdP5CDH is involved in melanin formation, stress resistance and play a regulatory role in virulence of Verticillium dahliae. Front Microbiol 2024; 15:1429755. [PMID: 39113834 PMCID: PMC11303183 DOI: 10.3389/fmicb.2024.1429755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 07/09/2024] [Indexed: 08/10/2024] Open
Abstract
Introduction Verticillium dahliae, a soil-borne fungal pathogen, can cause cotton Verticillium wilt. In this study, VdP5CDH, the member of the ALDH_F4-17 family of carboxylate dehydrogenases, was identified in the genome of V. dahliae and investigated function in regulating virulence by generating gene deletion mutants and complementary mutants. Methods Homologous recombination method was used to construct mutants, transcriptome sequencing revealed gene-related metabolic pathways, and disease degree of cotton was observed through pathogen infection experiments. Results The conidial surface of VdP5CDH deletion strains was dented and shriveled, and the number of conidial spores increased. Compared with the wild-type (WT), the mycelial diameter of deletion mutants increased by 10.59%-11.16%, the mycelial growth showed irregular branching patterns, and misaligned arrangement. Although capable of penetrating cellophane, deletion mutants were unable to produce melanin. VdP5CDH was mainly associated with glucose metabolism, nitrogen metabolism, ABC transporter activity as well as various amino acid metabolic processes. After gene knockout, raffinose and pectin were used as the main carbon sources to promote the growth of strains and the growth rate of deletion strains in the medium containing raffinose was higher than that of WT. Consequently, the deletion mutant strains decreased utilization efficiency with which they utilized various nitrogen sources. The deletion mutants maintain responsiveness to osmotic stress and oxidative stress stimuli. Additionally, compared to WT strains, the deletion mutant strains exhibited differences in culture temperature tolerance, UV exposure response, and fungicide sensitivity. After cotton was infected with deletion strains conidial suspension, its disease index increased dramatically, while it gradually decreased after spraying with 2 mM glutamate in batches. With the increase of spraying times, the effect was more significant, and the disease index decreased by 18.95%-19.66% at 26 dpi. Discussion These results indicated that VdP5CDH regulates the pathogenicity of fungi and controls mycelia growth, melanin formation, conidia morphology, abiotic stress resistance, and the expression of infecting structure-related genes.
Collapse
Affiliation(s)
- Wanqing Sun
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Lihong Zhao
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan, China
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, Xinjiang, China
| | - Jinglong Zhou
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan, China
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, Xinjiang, China
| | - Hongjie Feng
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan, China
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, Xinjiang, China
| | - Yalin Zhang
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan, China
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, Xinjiang, China
| | - Zili Feng
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan, China
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, Xinjiang, China
| | - Heqin Zhu
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan, China
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, Xinjiang, China
| | - Feng Wei
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan, China
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, Xinjiang, China
| |
Collapse
|
9
|
Sun Y, Tao X, Han Y, Lin X, Tian R, Wang H, Chang P, Sun Q, Ge L, Zhang M. A dual role of ERGIC-localized Rabs in TMED10-mediated unconventional protein secretion. Nat Cell Biol 2024; 26:1077-1092. [PMID: 38926505 DOI: 10.1038/s41556-024-01445-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 05/23/2024] [Indexed: 06/28/2024]
Abstract
Cargo translocation across membranes is a crucial aspect of secretion. In conventional secretion signal peptide-equipped proteins enter the endoplasmic reticulum (ER), whereas a subset of cargo lacking signal peptides translocate into the ER-Golgi intermediate compartment (ERGIC) in a process called unconventional protein secretion (UcPS). The regulatory events at the ERGIC in UcPS are unclear. Here we reveal the involvement of ERGIC-localized small GTPases, Rab1 (Rab1A and Rab1B) and Rab2A, in regulating UcPS cargo transport via TMED10 on the ERGIC. Rab1 enhances TMED10 translocator activity, promoting cargo translocation into the ERGIC, whereas Rab2A, in collaboration with KIF5B, regulates ERGIC compartmentalization, establishing a UcPS-specific compartment. This study highlights the pivotal role of ERGIC-localized Rabs in governing cargo translocation and specifying the ERGIC's function in UcPS.
Collapse
Affiliation(s)
- Yuxin Sun
- State Key Laboratory of Membrane Biology, Tsinghua University-Peking University Joint Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing, China
| | - Xuan Tao
- State Key Laboratory of Membrane Biology, School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
| | - Yaping Han
- State Key Laboratory of Membrane Biology, Tsinghua University-Peking University Joint Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing, China
| | - Xubo Lin
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Engineering Medicine, Beihang University, Beijing, China
| | - Rui Tian
- Department of Biochemistry and Department of Cardiology of Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Haodong Wang
- State Key Laboratory of Membrane Biology, Tsinghua University-Peking University Joint Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing, China
| | - Pei Chang
- State Key Laboratory of Membrane Biology, School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
| | - Qiming Sun
- Department of Biochemistry and Department of Cardiology of Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Liang Ge
- State Key Laboratory of Membrane Biology, Tsinghua University-Peking University Joint Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing, China.
| | - Min Zhang
- State Key Laboratory of Membrane Biology, School of Pharmaceutical Sciences, Tsinghua University, Beijing, China.
| |
Collapse
|
10
|
Lin PW, Chu ML, Liu YW, Chen YC, Shih YH, Lan SH, Wu SY, Kuo IY, Chang HY, Liu HS, Lee YR. Revealing potential Rab proteins participate in regulation of secretory autophagy machinery. Kaohsiung J Med Sci 2024; 40:642-649. [PMID: 38804615 DOI: 10.1002/kjm2.12848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/11/2024] [Accepted: 05/02/2024] [Indexed: 05/29/2024] Open
Abstract
Autophagy can be classified as degradative and secretory based on distinct functions. The small GTPase proteins Rab8a and Rab37 are responsible for secretory autophagy-mediated exocytosis of IL-1β, insulin, and TIMP1 (tissue inhibitor of 54 metalloproteinase 1). Other Rab family members participating in secretory autophagy are poorly understood. Herein, we identified 26 overlapped Rab proteins in purified autophagosomes of mouse pancreatic β-cell "Min-6" and human lung cancer cell "CL1-5-Q89L" with high secretory autophagy tendency by LC-MS/MS proteomics analysis. Six Rab proteins (Rab8a, Rab11b, Rab27a, Rab35, Rab37, and Rab7a) were detected in autophagosomes of four cell lines, associating them with autophagy-related vesicle trafficking. We used CL1-5-Q89L cell line model to evaluate the levels of Rab proteins colocalization with autophagy LC3 proteins and presence in purified autophagosomes. We found five Rab proteins (Rab8a, Rab11b, Rab27a, Rab35, and Rab37) are highly expressed in the autophagosome compared to the normal control by immunoblotting under active secretion conditions. However, only Rab8a, Rab35, and Rab37 showing high colocalization with LC3 protein by cofocal microscopy. Despite the discrepancy between the image and immunoblotting analysis, our data sustains the speculation that Rab8a, Rab11b, Rab27a, Rab35, and Rab37 are possibly associated with the secretory autophagy machinery. In contrast, Rab7a shows low colocalization with LC3 puncta and low level in the autophagosome, suggesting it regulates different vesicle trafficking machineries. Our findings open a new direction toward exploring the role of Rab proteins in secretory autophagy-related cargo exocytosis and identifying the cargoes and effectors regulated by specific Rab proteins.
Collapse
Affiliation(s)
- Pei-Wen Lin
- Master of Science Program in Tropical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Man-Ling Chu
- Master of Science Program in Tropical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yu-Wen Liu
- Master of Science Program in Tropical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yu-Cing Chen
- Master of Science Program in Tropical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yao-Hsiang Shih
- Department of Anatomy, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Sheng-Hui Lan
- Department of Life Sciences and Institute of Genome Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Shang-Ying Wu
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - I-Ying Kuo
- Department of Biotechnology, College of Life Science, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Hong-Yi Chang
- Department of Anatomy, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Hsiao-Sheng Liu
- Master of Science Program in Tropical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung, Taiwan
- Teaching and Research Center, Kaohsiung Municipal Hsiao-Kang Hospital, Kaohsiung, Taiwan
| | - Ying-Ray Lee
- Master of Science Program in Tropical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Microbiology and Immunology, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Faculty of Post-Baccalaureate Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Center for Tropical Medicine and Infectious Disease, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
11
|
Cucinotta L, Mannino D, Filippone A, Romano A, Esposito E, Paterniti I. The role of autophagy in Parkinson's disease: a gender difference overview. Front Pharmacol 2024; 15:1408152. [PMID: 38933683 PMCID: PMC11199695 DOI: 10.3389/fphar.2024.1408152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 05/21/2024] [Indexed: 06/28/2024] Open
Abstract
Recent studies have demonstrated dysregulation of the autophagy pathway in patients with Parkinson's disease (PD) and in animal models of PD, highlighting its emerging role in disease. In particular, several studies indicate that autophagy, which is an essential degradative process for the damaged protein homeostasis and the management of cell balance, can manifest significant variations according to gender. While some evidence suggests increased autophagic activation in men with PD, women may have distinct regulatory patterns. In this review, we examined the existing literature on gender differences in PD-associated autophagic processes, focusing on the autophagy related proteins (ATGs) and leucine rich repeat kinase 2 (LRRK2) genes. Also, this review would suggest that an in-depth understanding of these gender differences in autophagic processes could open new perspectives for personalized therapeutic strategies, promoting more effective and targeted management of PD.
Collapse
Affiliation(s)
- Laura Cucinotta
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Deborah Mannino
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Alessia Filippone
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Adele Romano
- Department of Physiology and Pharmacology “V. Erspamer”, Sapienza University of Rome, Rome, Italy
| | - Emanuela Esposito
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Irene Paterniti
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| |
Collapse
|
12
|
Zoltek M, Vázquez Maldonado AL, Zhang X, Dadina N, Lesiak L, Schepartz A. HOPS-Dependent Endosomal Escape Demands Protein Unfolding. ACS CENTRAL SCIENCE 2024; 10:860-870. [PMID: 38680556 PMCID: PMC11046473 DOI: 10.1021/acscentsci.4c00016] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/05/2024] [Accepted: 03/05/2024] [Indexed: 05/01/2024]
Abstract
The inefficient translocation of proteins across biological membranes limits their application as potential therapeutics and research tools. In many cases, the translocation of a protein involves two discrete steps: uptake into the endocytic pathway and endosomal escape. Certain charged or amphiphilic molecules can achieve high protein uptake, but few are capable of efficient endosomal escape. One exception to this rule is ZF5.3, a mini-protein that exploits elements of the natural endosomal maturation machinery to translocate across endosomal membranes. Although some ZF5.3-protein conjugates are delivered efficiently to the cytosol or nucleus, overall delivery efficiency varies widely for different cargoes with no obvious design rules. Here we show that delivery efficiency depends on the ability of the cargo to unfold. Using fluorescence correlation spectroscopy, a single-molecule technique that precisely measures intracytosolic protein concentration, we show that regardless of size and pI, low-Tm cargoes of ZF5.3 (including intrinsically disordered domains) bias endosomal escape toward a high-efficiency pathway that requires the homotypic fusion and protein sorting (HOPS) complex. Small protein domains are delivered with moderate efficiency through the same HOPS portal, even if the Tm is high. These findings imply a novel pathway out of endosomes that is exploited by ZF5.3 and provide clear guidance for the selection or design of optimally deliverable therapeutic cargo.
Collapse
Affiliation(s)
- Madeline Zoltek
- Department
of Molecular and Cell Biology, University
of California, Berkeley, California 94720, United States
| | | | - Xizi Zhang
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
| | - Neville Dadina
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
| | - Lauren Lesiak
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
| | - Alanna Schepartz
- Department
of Molecular and Cell Biology, University
of California, Berkeley, California 94720, United States
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
- California
Institute for Quantitative Biosciences, University of California, Berkeley, California 94720, United States
- Chan
Zuckerberg Biohub, San Francisco, California 94158, United States
| |
Collapse
|
13
|
Fan SH, Li N, Huang KF, Chang YT, Wu CC, Chen SL. MyoD Over-Expression Rescues GST-bFGF Repressed Myogenesis. Int J Mol Sci 2024; 25:4308. [PMID: 38673893 PMCID: PMC11050597 DOI: 10.3390/ijms25084308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/10/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
During embryogenesis, basic fibroblast growth factor (bFGF) is released from neural tube and myotome to promote myogenic fate in the somite, and is routinely used for the culture of adult skeletal muscle (SKM) stem cells (MuSC, called satellite cells). However, the mechanism employed by bFGF to promote SKM lineage and MuSC proliferation has not been analyzed in detail. Furthermore, the question of if the post-translational modification (PTM) of bFGF is important to its stemness-promoting effect has not been answered. In this study, GST-bFGF was expressed and purified from E.coli, which lacks the PTM system in eukaryotes. We found that both GST-bFGF and commercially available bFGF activated the Akt-Erk pathway and had strong cell proliferation effect on C2C12 myoblasts and MuSC. GST-bFGF reversibly compromised the myogenesis of C2C12 myoblasts and MuSC, and it increased the expression of Myf5, Pax3/7, and Cyclin D1 but strongly repressed that of MyoD, suggesting the maintenance of myogenic stemness amid repressed MyoD expression. The proliferation effect of GST-bFGF was conserved in C2C12 over-expressed with MyoD (C2C12-tTA-MyoD), implying its independence of the down-regulation of MyoD. In addition, the repressive effect of GST-bFGF on myogenic differentiation was almost totally rescued by the over-expression of MyoD. Together, these evidences suggest that (1) GST-bFGF and bFGF have similar effects on myogenic cell proliferation and differentiation, and (2) GST-bFGF can promote MuSC stemness and proliferation by differentially regulating MRFs and Pax3/7, (3) MyoD repression by GST-bFGF is reversible and independent of the proliferation effect, and (4) GST-bFGF can be a good substitute for bFGF in sustaining MuSC stemness and proliferation.
Collapse
Affiliation(s)
| | | | | | | | | | - Shen-Liang Chen
- Department of Life Sciences, National Central University, Jhongli 32001, Taiwan; (S.-H.F.); (N.L.); (K.-F.H.); (Y.-T.C.); (C.-C.W.)
| |
Collapse
|
14
|
Kidder E, Gangopadhyay S, Francis S, Alfaidi M. "How to Release or Not Release, That Is the Question." A Review of Interleukin-1 Cellular Release Mechanisms in Vascular Inflammation. J Am Heart Assoc 2024; 13:e032987. [PMID: 38390810 PMCID: PMC10944040 DOI: 10.1161/jaha.123.032987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 01/26/2024] [Indexed: 02/24/2024]
Abstract
Cardiovascular disease remains the leading cause of death worldwide, characterized by atherosclerotic activity within large and medium-sized arteries. Inflammation has been shown to be a primary driver of atherosclerotic plaque formation, with interleukin-1 (IL-1) having a principal role. This review focuses on the current state of knowledge of molecular mechanisms of IL-1 release from cells in atherosclerotic plaques. A more in-depth understanding of the process of IL-1's release into the vascular environment is necessary for the treatment of inflammatory disease processes, as the current selection of medicines being used primarily target IL-1 after it has been released. IL-1 is secreted by several heterogenous mechanisms, some of which are cell type-specific and could provide further specialized targets for therapeutic intervention. A major unmet challenge is to understand the mechanism before and leading to IL-1 release, especially by cells in atherosclerotic plaques, including endothelial cells, vascular smooth muscle cells, and macrophages. Data so far indicate a heterogeneity of IL-1 release mechanisms that vary according to cell type and are stimulus-dependent. Unraveling this complexity may reveal new targets to block excess vascular inflammation.
Collapse
Affiliation(s)
- Evan Kidder
- Division of Cardiology, Department of Internal MedicineLouisiana State University Health Sciences CentreShreveportLAUSA
| | - Siddhartha Gangopadhyay
- Division of Cardiology, Department of Internal MedicineLouisiana State University Health Sciences CentreShreveportLAUSA
| | - Sheila Francis
- School of Medicine and Population HealthUniversity of SheffieldSheffieldUK
| | - Mabruka Alfaidi
- Division of Cardiology, Department of Internal MedicineLouisiana State University Health Sciences CentreShreveportLAUSA
| |
Collapse
|
15
|
Zheng N, Liu S, Chen J, Xu Y, Cao W, Lin J, Lu G, Zhang G. SARS-CoV-2 NSP2 as a Potential Delivery Vehicle for Proteins. Mol Pharm 2024; 21:1149-1159. [PMID: 38288708 DOI: 10.1021/acs.molpharmaceut.3c00680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2024]
Abstract
The development of biomolecule delivery systems is essential for the treatment of various diseases such as cancer, immunological diseases, and metabolic disorders. For the first time, we found that SARS-CoV-2-encoded nonstructural protein 2 (NSP2) can be secreted from the cells, where it is synthesized. Brefeldin A and H89, inhibitors of ER/Golgi secretion pathways, did not inhibit NSP2 secretion. NSP2 is likely secreted via an unconventional secretory pathway. Moreover, both secreted and purified NSP2 proteins were able to traverse the plasma membrane barrier and enter both immortalized human umbilical vein endothelial cells and tumor cell lines. After entry, the NSP2 protein was localized in only the cytoplasm. Cytochalasin D, a potent inhibitor of actin polymerization, inhibited the entry of NSP2. NSP2 can carry other molecules into cells. Burkholderia lethal factor 1, a monomeric toxin from the intracellular pathogen Burkholderia pseudomallei, has demonstrated antitumor activity by targeting host eukaryotic initiation translation factor 4A. An NSP2-BLF1 fusion protein was translocated across the cellular membranes of Huh7 cells and mediated cell killing. By using different approaches, including protein purification, chemical inhibition, and cell imaging, we confirm that NSP2 is able to deliver heterologous proteins into cells. NSP2 can act as a potential delivery vehicle for proteins.
Collapse
Affiliation(s)
- Ningze Zheng
- Institute of Human Virology, Department of Pathogen Biology and Biosecurity, and Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Shurui Liu
- Institute of Human Virology, Department of Pathogen Biology and Biosecurity, and Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Jianheng Chen
- Institute of Human Virology, Department of Pathogen Biology and Biosecurity, and Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Yue Xu
- Institute of Human Virology, Department of Pathogen Biology and Biosecurity, and Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Wenyin Cao
- Institute of Human Virology, Department of Pathogen Biology and Biosecurity, and Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Jinyi Lin
- Department of Physiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Guang Lu
- Department of Physiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Guigen Zhang
- Institute of Human Virology, Department of Pathogen Biology and Biosecurity, and Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| |
Collapse
|
16
|
Zhang J, Wang Y. Emerging roles of O-GlcNAcylation in protein trafficking and secretion. J Biol Chem 2024; 300:105677. [PMID: 38272225 PMCID: PMC10907171 DOI: 10.1016/j.jbc.2024.105677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 01/04/2024] [Accepted: 01/05/2024] [Indexed: 01/27/2024] Open
Abstract
The emerging roles of O-GlcNAcylation, a distinctive post-translational modification, are increasingly recognized for their involvement in the intricate processes of protein trafficking and secretion. This modification exerts its influence on both conventional and unconventional secretory pathways. Under healthy and stress conditions, such as during diseases, it orchestrates the transport of proteins within cells, ensuring timely delivery to their intended destinations. O-GlcNAcylation occurs on key factors, like coat protein complexes (COPI and COPII), clathrin, SNAREs (soluble N-ethylmaleimide-sensitive factor attachment protein receptors), and GRASP55 (Golgi reassembly stacking protein of 55 kDa) that control vesicle budding and fusion in anterograde and retrograde trafficking and unconventional secretion. The understanding of O-GlcNAcylation offers valuable insights into its critical functions in cellular physiology and the progression of diseases, including neurodegeneration, cancer, and metabolic disorders. In this review, we summarize and discuss the latest findings elucidating the involvement of O-GlcNAc in protein trafficking and its significance in various human disorders.
Collapse
Affiliation(s)
- Jianchao Zhang
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Yanzhuang Wang
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA; Department of Neurology, University of Michigan School of Medicine, Ann Arbor, Michigan, USA.
| |
Collapse
|
17
|
Pang A, Wang H, Luo Y, Zhang F, Wu F, Zhou Z, Lu Z, Lin F. Investigating the cellular functions of β-Glucosidases for synthesis of lignocellulose-degrading enzymes in Trichoderma reesei. ENGINEERING MICROBIOLOGY 2023; 3:100105. [PMID: 39628917 PMCID: PMC11610954 DOI: 10.1016/j.engmic.2023.100105] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/03/2023] [Accepted: 07/03/2023] [Indexed: 12/06/2024]
Abstract
β-glucosidases play an important role in the synthesis of cellulase in fungi, but their molecular functions and mechanisms remain unknown. We found that the 10 putative β-glucosidases investigated in Trichoderma reesei facilitate cellulase production, with cel3j being the most crucial. Transcriptional analysis revealed that the most affected biological processes in △cel3j strain were cellulase synthesis, ribosome biogenesis, and RNA polymerases. Moreover, CEL3J was unconventionally transported through the endoplasmic reticulum, bypassing the Golgi apparatus, whereas cel3j overexpression altered cellulase secretion from conventional to unconventional, likely owing to the activated unconventional protein secretion pathway (UPS), as indicated by the upregulation of genes related to UPS. The mTORC1-GRASP55 signaling axis may modulate the unconventional secretion of CEL3J and cellulase. The transcriptional levels of genes associated with DNA replication, the cell cycle, and meiosis were noticeably affected by overexpressing cel3j. These data give new clues for exploring the roles of β-glucosidases and the molecular mechanisms of their unconventional secretion in fungi.
Collapse
Affiliation(s)
- Ai–Ping Pang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Haiyan Wang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Yongsheng Luo
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Funing Zhang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Fu–Gen Wu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Zhihua Zhou
- Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Zuhong Lu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Fengming Lin
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| |
Collapse
|
18
|
Balmer EA, Wirdnam CD, Faso C. A core UPS molecular complement implicates unique endocytic compartments at the parasite-host interface in Giardia lamblia. Virulence 2023; 14:2174288. [PMID: 36730629 PMCID: PMC9928461 DOI: 10.1080/21505594.2023.2174288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Unconventional protein secretion (UPS) plays important roles in cell physiology. In contrast to canonical secretory routes, UPS does not generally require secretory signal sequences and often bypasses secretory compartments such as the ER and the Golgi apparatus. Giardia lamblia is a protist parasite with reduced subcellular complexity which releases several proteins, some of them virulence factors, without canonical secretory signals. This implicates UPS at the parasite-host interface. No dedicated machinery nor mechanism(s) for UPS in Giardia are currently known, although speculations on the involvement of endocytic organelles called PV/PECs, have been put forth. To begin to address the question of whether PV/PECs are implicated in virulence-associated UPS and to define the composition of molecular machinery involved in protein release, we employed affinity purification and mass spectrometry, coupled to microscopy-based subcellular localization and signal correlation quantification to investigate the interactomes of 11 reported unconventionally secreted proteins, all predicted to be cytosolic. A subset of these are associated with PV/PECs. Extended and validated interactomes point to a core PV/PECs-associated UPS machinery, which includes uncharacterized and Giardia-specific coiled-coil proteins and NEK kinases. Finally, a subset of the alpha-giardin protein family was enriched in all PV/PECs-associated protein interactomes, highlighting a previously unappreciated role for these proteins at PV/PECs and in UPS. Taken together, our results provide the first characterization of a virulence-associated UPS protein complex in Giardia lamblia at PV/PECs, suggesting a novel link between these primarily endocytic and feeding organelles and UPS at the parasite-host interface.
Collapse
Affiliation(s)
- Erina A. Balmer
- Institute of Cell Biology, University of Bern, Bern, Switzerland,Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | | | - Carmen Faso
- Institute of Cell Biology, University of Bern, Bern, Switzerland,Multidisciplinary Center for Infectious Diseases, University of Bern, Bern, Switzerland,CONTACT Carmen Faso
| |
Collapse
|
19
|
Zoltek M, Vázquez A, Zhang X, Dadina N, Lesiak L, Schepartz A. Design rules for efficient endosomal escape. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.03.565388. [PMID: 37961597 PMCID: PMC10635116 DOI: 10.1101/2023.11.03.565388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
The inefficient translocation of proteins across biological membranes limits their application as therapeutic compounds and research tools. In most cases, translocation involves two steps: uptake into the endocytic pathway and endosomal escape. Certain charged or amphiphilic molecules promote protein uptake but few enable efficient endosomal escape. One exception is ZF5.3, a mini-protein that exploits natural endosomal maturation machinery to translocate across endosomal membranes. Although certain ZF5.3-protein conjugates are delivered efficiently into the cytosol or nucleus, overall delivery efficiency varies widely with no obvious design rules. Here we evaluate the role of protein size and thermal stability in the ability to efficiently escape endosomes when attached to ZF5.3. Using fluorescence correlation spectroscopy, a single-molecule technique that provides a precise measure of intra-cytosolic protein concentration, we demonstrate that delivery efficiency depends on both size and the ease with which a protein unfolds. Regardless of size and pI, low-Tm cargos of ZF5.3 (including intrinsically disordered domains) bias its endosomal escape route toward a high-efficiency pathway that requires the homotypic fusion and protein sorting (HOPS) complex. Small protein domains are delivered with moderate efficiency through the same HOPS portal even if the Tm is high. These findings imply a novel protein- and/or lipid-dependent pathway out of endosomes that is exploited by ZF5.3 and provide clear guidance for the selection or design of optimally deliverable therapeutic cargo.
Collapse
Affiliation(s)
- Madeline Zoltek
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
- Department of Chemistry, University of California, Berkeley, CA 94720, USA
| | - Angel Vázquez
- Department of Chemistry, University of California, Berkeley, CA 94720, USA
| | - Xizi Zhang
- Department of Chemistry, University of California, Berkeley, CA 94720, USA
| | - Neville Dadina
- Department of Chemistry, University of California, Berkeley, CA 94720, USA
| | - Lauren Lesiak
- Department of Chemistry, University of California, Berkeley, CA 94720, USA
| | - Alanna Schepartz
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
- Department of Chemistry, University of California, Berkeley, CA 94720, USA
- California Institute for Quantitative Biosciences, University of California, Berkeley, CA 94720, USA
- Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
| |
Collapse
|
20
|
Polenghi M, Taverna E. Intracellular traffic and polarity in brain development. Front Neurosci 2023; 17:1172016. [PMID: 37859764 PMCID: PMC10583573 DOI: 10.3389/fnins.2023.1172016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 07/31/2023] [Indexed: 10/21/2023] Open
Abstract
Neurons forming the human brain are generated during embryonic development by neural stem and progenitor cells via a process called neurogenesis. A crucial feature contributing to neural stem cell morphological and functional heterogeneity is cell polarity, defined as asymmetric distribution of cellular components. Cell polarity is built and maintained thanks to the interplay between polarity proteins and polarity-generating organelles, such as the endoplasmic reticulum (ER) and the Golgi apparatus (GA). ER and GA affect the distribution of membrane components and work as a hub where glycans are added to nascent proteins and lipids. In the last decades our knowledge on the role of polarity in neural stem and progenitor cells have increased tremendously. However, the role of traffic and associated glycosylation in neural stem and progenitor cells is still relatively underexplored. In this review, we discuss the link between cell polarity, architecture, identity and intracellular traffic, and highlight how studies on neurons have shaped our knowledge and conceptual framework on traffic and polarity. We will then conclude by discussing how a group of rare diseases, called congenital disorders of glycosylation (CDG) offers the unique opportunity to study the contribution of traffic and glycosylation in the context of neurodevelopment.
Collapse
|
21
|
Padmanabhan S, Manjithaya R. Leaderless secretory proteins of the neurodegenerative diseases via TNTs: a structure-function perspective. Front Mol Neurosci 2023; 16:983108. [PMID: 37396786 PMCID: PMC10308029 DOI: 10.3389/fnmol.2023.983108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 05/26/2023] [Indexed: 07/04/2023] Open
Abstract
Neurodegenerative disease-causing proteins such as alpha-synuclein, tau, and huntingtin are known to traverse across cells via exosomes, extracellular vesicles and tunneling nanotubes (TNTs). There seems to be good synergy between exosomes and TNTs in intercellular communication. Interestingly, many of the known major neurodegenerative proteins/proteolytic products are leaderless and are also reported to be secreted out of the cell via unconventional protein secretion. Such classes contain intrinsically disordered proteins and regions (IDRs) within them. The dynamic behavior of these proteins is due to their heterogenic conformations that is exhibited owing to various factors that occur inside the cells. The amino acid sequence along with the chemical modifications has implications on the functional roles of IDRs inside the cells. Proteins that form aggregates resulting in neurodegeneration become resistant to degradation by the processes of autophagy and proteasome system thus leading to Tunneling nanotubes, TNT formation. The proteins that traverse across TNTs may or may not be dependent on the autophagy machinery. It is not yet clear whether the conformation of the protein plays a crucial role in its transport from one cell to another without getting degraded. Although there is some experimental data, there are many grey areas which need to be revisited. This review provides a different perspective on the structural and functional aspects of these leaderless proteins that get secreted outside the cell. In this review, attention has been focused on the characteristic features that lead to aggregation of leaderless secretory proteins (from structural-functional aspect) with special emphasis on TNTs.
Collapse
|
22
|
Wagh AR, Sulakshane P, Glickman MH. Alzheimer's disease-associated mutant ubiquitin (UBB +1) is secreted through an autophagosome-like vesicle-mediated unconventional pathway. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2023; 1866:194936. [PMID: 37075976 DOI: 10.1016/j.bbagrm.2023.194936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/28/2023] [Accepted: 04/13/2023] [Indexed: 04/21/2023]
Abstract
Misfolded protein aggregation at both intracellular and extracellular milieus is thought to be the major etiology of Alzheimer's disease (AD). UBB+1, a frameshift variant of the ubiquitin B gene (UBB) results in a folded ubiquitin domain fused to a flexible unstructured extension. Accumulation of UBB+1 in extracellular plaques in the brains of AD patients undoubtedly suggests a role of the ubiquitin-proteasome system in AD. However, the exact mechanism of extracellular secretion of UBB+1 remains unknown. In an attempt to understand the molecular mechanism of UBB+1 secretion, we performed a survey of secretory pathways and identified the involvement of unconventional autophagosome-mediated UBB+1 secretion. Expression of UBB+1 was sufficient to stimulate LC3B/Atg8 conversion from LC3B-I to LC3B-II, which indicates initiation of the autophagy pathway. Furthermore, deficiency of ATG5 - a key player in autophagosome formation - inhibited UBB+1 secretion. Based on immunofluorescence 3D structured illumination (SIM) microscopy and co-immunoprecipitation, we provide evidence that UBB+1 is associated with the secretory autophagosome marker, SEC22B, while HSP90 possibly acts as a carrier. Using LC-MS/MS and mutagenesis we found that in cells, UBB+1 is ubiquitinated on lysine 11, 29, and 48, however, this ubiquitination does not contribute to its secretion. By contrast, proteasome or lysosome inhibition slightly enhanced secretion. Taken together, this study suggests that by ridding cells of UBB+1, secretory autophagosomes may alleviate the cellular stress associated with UBB+1, yet simultaneously mediate the spreading of a mutant specie with disordered characteristics to the extracellular milieu.
Collapse
Affiliation(s)
- Ajay R Wagh
- The Faculty of Biology, Technion Israel Institute of Technology, Haifa 32000, Israel
| | - Prasad Sulakshane
- The Faculty of Biology, Technion Israel Institute of Technology, Haifa 32000, Israel
| | - Michael H Glickman
- The Faculty of Biology, Technion Israel Institute of Technology, Haifa 32000, Israel.
| |
Collapse
|
23
|
Yamada K, Yoshida K. Cancer-Related Unconventional Protein Secretion: A New Role of the Endoplasmic Reticulum. DNA Cell Biol 2023; 42:225-228. [PMID: 36930842 DOI: 10.1089/dna.2023.0044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023] Open
Abstract
Unconventional protein secretion (UPS) is a crucial mechanism controlling the localization of cytosolic proteins lacking signal peptides and is implicated in inflammation, neurodegenerative diseases, and cancer. Several previous studies on immune cells have demonstrated the mechanisms of UPS. In cancer, the active secretion of several cytosolic proteins, including PKCδ and nucleolin, has been described. Moreover, we have recently demonstrated that extended synaptotagmin 1, one of the membrane proteins of the endoplasmic reticulum, plays a critical role in UPS in liver cancer cells. Importantly, UPS in cancer cells shows characteristics that are markedly different from those of the previously known UPS, and therefore, we categorize them as cancer-related UPS (CUPS). In this article, we provide an overview of UPS mechanisms and discuss the process that leads to the naming of cancer-specific UPS as CUPS.
Collapse
Affiliation(s)
- Kohji Yamada
- Department of Biochemistry, Jikei University School of Medicine, Minato-ku, Japan
| | - Kiyotsugu Yoshida
- Department of Biochemistry, Jikei University School of Medicine, Minato-ku, Japan
| |
Collapse
|
24
|
Sun L, Wu X, Diao J, Zhang J. Pathogenesis mechanisms of phytopathogen effectors. WIREs Mech Dis 2023; 15:e1592. [PMID: 36593734 DOI: 10.1002/wsbm.1592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/02/2022] [Accepted: 12/04/2022] [Indexed: 01/04/2023]
Abstract
Plants commonly face the threat of invasion by a wide variety of pathogens and have developed sophisticated immune mechanisms to defend against infectious diseases. However, successful pathogens have evolved diverse mechanisms to overcome host immunity and cause diseases. Different cell structures and unique cellular organelles carried by plant cells endow plant-specific defense mechanisms, in addition to the common framework of innate immune system shared by both plants and animals. Effectors serve as crucial virulence weapons employed by phytopathogens to disarm the plant immune system and promote infection. Here we summarized the many diverse strategies by which phytopathogen effectors overcome plant defense and prospected future perspectives. This article is categorized under: Infectious Diseases > Molecular and Cellular Physiology.
Collapse
Affiliation(s)
- Lifan Sun
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Xiaoyun Wu
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Jian Diao
- Northeast Forestry University, College of Forestry, Harbin, China
| | - Jie Zhang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
25
|
Enrich C, Lu A, Tebar F, Rentero C, Grewal T. Ca 2+ and Annexins - Emerging Players for Sensing and Transferring Cholesterol and Phosphoinositides via Membrane Contact Sites. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1422:393-438. [PMID: 36988890 DOI: 10.1007/978-3-031-21547-6_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
Maintaining lipid composition diversity in membranes from different organelles is critical for numerous cellular processes. However, many lipids are synthesized in the endoplasmic reticulum (ER) and require delivery to other organelles. In this scenario, formation of membrane contact sites (MCS) between neighbouring organelles has emerged as a novel non-vesicular lipid transport mechanism. Dissecting the molecular composition of MCS identified phosphoinositides (PIs), cholesterol, scaffolding/tethering proteins as well as Ca2+ and Ca2+-binding proteins contributing to MCS functioning. Compelling evidence now exists for the shuttling of PIs and cholesterol across MCS, affecting their concentrations in distinct membrane domains and diverse roles in membrane trafficking. Phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) at the plasma membrane (PM) not only controls endo-/exocytic membrane dynamics but is also critical in autophagy. Cholesterol is highly concentrated at the PM and enriched in recycling endosomes and Golgi membranes. MCS-mediated cholesterol transfer is intensely researched, identifying MCS dysfunction or altered MCS partnerships to correlate with de-regulated cellular cholesterol homeostasis and pathologies. Annexins, a conserved family of Ca2+-dependent phospholipid binding proteins, contribute to tethering and untethering events at MCS. In this chapter, we will discuss how Ca2+ homeostasis and annexins in the endocytic compartment affect the sensing and transfer of cholesterol and PIs across MCS.
Collapse
Affiliation(s)
- Carlos Enrich
- Departament de Biomedicina, Unitat de Biologia Cel⋅lular, Centre de Recerca Biomèdica CELLEX, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.
- Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain.
| | - Albert Lu
- Departament de Biomedicina, Unitat de Biologia Cel⋅lular, Centre de Recerca Biomèdica CELLEX, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain
| | - Francesc Tebar
- Departament de Biomedicina, Unitat de Biologia Cel⋅lular, Centre de Recerca Biomèdica CELLEX, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain
| | - Carles Rentero
- Departament de Biomedicina, Unitat de Biologia Cel⋅lular, Centre de Recerca Biomèdica CELLEX, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain
| | - Thomas Grewal
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
26
|
Di Filippo M, Hennig P, Karakaya T, Slaufova M, Beer HD. NLRP1 in Cutaneous SCCs: An Example of the Complex Roles of Inflammasomes in Cancer Development. Int J Mol Sci 2022; 23:12308. [PMID: 36293159 PMCID: PMC9603439 DOI: 10.3390/ijms232012308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/28/2022] [Accepted: 10/12/2022] [Indexed: 11/05/2022] Open
Abstract
Protein complexes termed inflammasomes ensure tissue protection from pathogenic and sterile stressors by induction of inflammation. This is mediated by different caspase-1-induced downstream pathways, including activation of the pro-inflammatory cytokines proIL-1β and -18, induction of a lytic type of cell death, and regulation of the release of other pro-inflammatory molecules. Aberrant inflammasome activation underlies the pathology of numerous (auto)inflammatory diseases. Furthermore, inflammasomes support or suppress tumor development in a complex cell-type- and stage-dependent manner. In human keratinocytes and skin, NLRP1 is the central inflammasome sensor activated by cellular perturbation induced, for example, by UVB radiation. UVB represents the main inducer of skin cancer, which is the most common type of malignancy in humans. Recent evidence demonstrates that activation of NLRP1 in human skin supports the development of cutaneous squamous cell carcinomas (cSCCs) by inducing skin inflammation. In contrast, the NLRP1 inflammasome pathway is restrained in established cSCCs, suggesting that, at this stage, the protein complex has a tumor suppressor role. A better understanding of the complex functions of NLRP1 in the development of cSCCs and in general of inflammasomes in cancer might pave the way for novel strategies for cancer prevention and therapy. These strategies might include stage-specific modulation of inflammasome activation or its downstream pathways by mono- or combination therapy.
Collapse
Affiliation(s)
- Michela Di Filippo
- Department of Dermatology, University Hospital of Zurich, 8091 Zurich, Switzerland
| | - Paulina Hennig
- Department of Dermatology, University Hospital of Zurich, 8091 Zurich, Switzerland
| | - Tugay Karakaya
- Department of Dermatology, University Hospital of Zurich, 8091 Zurich, Switzerland
| | - Marta Slaufova
- Department of Dermatology, University Hospital of Zurich, 8091 Zurich, Switzerland
| | - Hans-Dietmar Beer
- Department of Dermatology, University Hospital of Zurich, 8091 Zurich, Switzerland
- Faculty of Medicine, University of Zurich, 8032 Zurich, Switzerland
| |
Collapse
|
27
|
Jahangiri B, Saei AK, Obi PO, Asghari N, Lorzadeh S, Hekmatirad S, Rahmati M, Velayatipour F, Asghari MH, Saleem A, Moosavi MA. Exosomes, autophagy and ER stress pathways in human diseases: Cross-regulation and therapeutic approaches. Biochim Biophys Acta Mol Basis Dis 2022; 1868:166484. [PMID: 35811032 DOI: 10.1016/j.bbadis.2022.166484] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 06/01/2022] [Accepted: 07/03/2022] [Indexed: 02/08/2023]
Abstract
Exosomal release pathway and autophagy together maintain homeostasis and survival of cells under stressful conditions. Autophagy is a catabolic process through which cell entities, such as malformed biomacromolecules and damaged organelles, are degraded and recycled via the lysosomal-dependent pathway. Exosomes, a sub-type of extracellular vesicles (EVs) formed by the inward budding of multivesicular bodies (MVBs), are mostly involved in mediating communication between cells. The unfolded protein response (UPR) is an adaptive response that is activated to sustain survival in the cells faced with the endoplasmic reticulum (ER) stress through a complex network that involves protein synthesis, exosomes secretion and autophagy. Disruption of the critical crosstalk between EVs, UPR and autophagy may be implicated in various human diseases, including cancers and neurodegenerative diseases, yet the molecular mechanism(s) behind the coordination of these communication pathways remains obscure. Here, we review the available information on the mechanisms that control autophagy, ER stress and EV pathways, with the view that a better understanding of their crosstalk and balance may improve our knowledge on the pathogenesis and treatment of human diseases, where these pathways are dysregulated.
Collapse
Affiliation(s)
- Babak Jahangiri
- Department of Molecular Medicine, Institute of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, P.O Box 14965/161, Iran
| | - Ali Kian Saei
- Department of Molecular Medicine, Institute of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, P.O Box 14965/161, Iran
| | - Patience O Obi
- Applied Health Sciences, University of Manitoba, Winnipeg R3T 2N2, Canada; Faculty of Kinesiology and Recreation Management, University of Manitoba, Winnipeg R3T 2N2, Canada; Children's Hospital Research Institute of Manitoba, Winnipeg R3E 3P4, Canada
| | - Narjes Asghari
- Department of Molecular Medicine, Institute of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, P.O Box 14965/161, Iran
| | - Shahrokh Lorzadeh
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Shirin Hekmatirad
- Department of Pharmacology and Toxicology, School of Medicine, Student Research Committee, Babol University of Medical Sciences, Babol, Iran
| | - Marveh Rahmati
- Cancer Biology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Velayatipour
- Department of Molecular Medicine, Institute of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, P.O Box 14965/161, Iran
| | - Mohammad Hosseni Asghari
- Department of Pharmacology and Toxicology, School of Medicine, Student Research Committee, Babol University of Medical Sciences, Babol, Iran
| | - Ayesha Saleem
- Applied Health Sciences, University of Manitoba, Winnipeg R3T 2N2, Canada; Faculty of Kinesiology and Recreation Management, University of Manitoba, Winnipeg R3T 2N2, Canada; Children's Hospital Research Institute of Manitoba, Winnipeg R3E 3P4, Canada.
| | - Mohammad Amin Moosavi
- Department of Molecular Medicine, Institute of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, P.O Box 14965/161, Iran.
| |
Collapse
|
28
|
Fernández-Lainez C, de la Mora-de la Mora I, Enríquez-Flores S, García-Torres I, Flores-López LA, Gutiérrez-Castrellón P, de Vos P, López-Velázquez G. The Giardial Arginine Deiminase Participates in Giardia-Host Immunomodulation in a Structure-Dependent Fashion via Toll-like Receptors. Int J Mol Sci 2022; 23:ijms231911552. [PMID: 36232855 PMCID: PMC9569872 DOI: 10.3390/ijms231911552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/13/2022] [Accepted: 09/19/2022] [Indexed: 11/30/2022] Open
Abstract
Beyond the problem in public health that protist-generated diseases represent, understanding the variety of mechanisms used by these parasites to interact with the human immune system is of biological and medical relevance. Giardia lamblia is an early divergent eukaryotic microorganism showing remarkable pathogenic strategies for evading the immune system of vertebrates. Among various multifunctional proteins in Giardia, arginine deiminase is considered an enzyme that plays multiple regulatory roles during the life cycle of this parasite. One of its most important roles is the crosstalk between the parasite and host. Such a molecular "chat" is mediated in human cells by membrane receptors called Toll-like receptors (TLRs). Here, we studied the importance of the 3D structure of giardial arginine deiminase (GlADI) to immunomodulate the human immune response through TLRs. We demonstrated the direct effect of GlADI on human TLR signaling. We predicted its mode of interaction with TLRs two and four by using the AlphaFold-predicted structure of GlADI and molecular docking. Furthermore, we showed that the immunomodulatory capacity of this virulent factor of Giardia depends on the maintenance of its 3D structure. Finally, we also showed the influence of this enzyme to exert specific responses on infant-like dendritic cells.
Collapse
Affiliation(s)
- Cynthia Fernández-Lainez
- Laboratorio de Errores Innatos del Metabolismo y Tamiz, Instituto Nacional de Pediatria, Ciudad de México 04530, Mexico
- Immunoendocrinology, Division of Medical Biology, Department of Pathology and Medical Biology, University of Groningen and University Medical Center Groningen, 9700 Groningen, The Netherlands
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | | | - Sergio Enríquez-Flores
- Laboratorio de Biomoleculas y Salud Infantil, Instituto Nacional de Pediatria, Ciudad de México 04530, Mexico
| | - Itzhel García-Torres
- Laboratorio de Biomoleculas y Salud Infantil, Instituto Nacional de Pediatria, Ciudad de México 04530, Mexico
| | - Luis A. Flores-López
- Laboratorio de Biomoleculas y Salud Infantil, Instituto Nacional de Pediatria, Ciudad de México 04530, Mexico
- CONACYT-Instituto Nacional de Pediatria, Secretaria de Salud, Ciudad de México 04530, Mexico
| | | | - Paul de Vos
- Immunoendocrinology, Division of Medical Biology, Department of Pathology and Medical Biology, University of Groningen and University Medical Center Groningen, 9700 Groningen, The Netherlands
| | - Gabriel López-Velázquez
- Laboratorio de Biomoleculas y Salud Infantil, Instituto Nacional de Pediatria, Ciudad de México 04530, Mexico
- Correspondence: ; Tel.: +52-5510840900 (ext. 1726)
| |
Collapse
|
29
|
Post-Transcriptional Control of mRNA Metabolism and Protein Secretion: The Third Level of Regulation within the NF-κB System. Biomedicines 2022; 10:biomedicines10092108. [PMID: 36140209 PMCID: PMC9495616 DOI: 10.3390/biomedicines10092108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/12/2022] [Accepted: 08/21/2022] [Indexed: 11/17/2022] Open
Abstract
The NF-κB system is a key transcriptional pathway that regulates innate and adaptive immunity because it triggers the activation and differentiation processes of lymphocytes and myeloid cells during immune responses. In most instances, binding to cytoplasmic inhibitory IκB proteins sequesters NF-κB into an inactive state, while a plethora of external triggers activate three complex signaling cascades that mediate the release and nuclear translocation of the NF-κB DNA-binding subunits. In addition to these cytosolic steps (level 1 of NF-κB regulation), NF-κB activity is also controlled in the nucleus by signaling events, cofactors and the chromatin environment to precisely determine chromatin recruitment and the specificity and timing of target gene transcription (level 2 of NF-κB regulation). Here, we discuss an additional layer of the NF-κB system that manifests in various steps of post-transcriptional gene expression and protein secretion. This less-studied regulatory level allows reduction of (transcriptional) noise and signal integration and endows time-shifted control of the secretion of inflammatory mediators. Detailed knowledge of these steps is important, as dysregulated post-transcriptional NF-κB signaling circuits are likely to foster chronic inflammation and contribute to the formation and maintenance of a tumor-promoting microenvironment.
Collapse
|
30
|
Wang S, Moreau F, Chadee K. Gasdermins in Innate Host Defense Against Entamoeba histolytica and Other Protozoan Parasites. Front Immunol 2022; 13:900553. [PMID: 35795683 PMCID: PMC9251357 DOI: 10.3389/fimmu.2022.900553] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 05/23/2022] [Indexed: 11/16/2022] Open
Abstract
Gasdermins (GSDMs) are a group of proteins that are cleaved by inflammatory caspases to induce pore formation in the plasma membrane to cause membrane permeabilization and lytic cell death or pyroptosis. All GSDMs share a conserved structure, containing a cytotoxic N-terminal (NT) pore-forming domain and a C-terminal (CT) repressor domain. Entamoeba histolytica (Eh) in contact with macrophages, triggers outside-in signaling to activate inflammatory caspase-4/1 via the noncanonical and canonical pathway to promote cleavage of gasdermin D (GSDMD). Cleavage of GSDMD removes the auto-inhibition that masks the active pore-forming NT domain in the full-length protein by interactions with GSDM-CT. The cleaved NT-GSDMD monomers then oligomerize to form pores in the plasma membrane to facilitate the release of IL-1β and IL-18 with a measured amount of pyroptosis. Pyroptosis is an effective way to counteract intracellular parasites, which exploit replicative niche to avoid killing. To date, most GSDMs have been verified to perform pore-forming activity and GSDMD-induced pyroptosis is rapidly emerging as a mechanism of anti-microbial host defence. Here, we review our comprehensive and current knowledge on the expression, activation, biological functions, and regulation of GSDMD cleavage with emphases on physiological scenario and related dysfunctions of each GSDM member as executioner of cell death, cytokine secretion and inflammation against Eh and other protozoan parasitic infections.
Collapse
Affiliation(s)
| | | | - Kris Chadee
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
31
|
Iglesia RP, Prado MB, Alves RN, Escobar MIM, Fernandes CFDL, Fortes ACDS, Souza MCDS, Boccacino JM, Cangiano G, Soares SR, de Araújo JPA, Tiek DM, Goenka A, Song X, Keady JR, Hu B, Cheng SY, Lopes MH. Unconventional Protein Secretion in Brain Tumors Biology: Enlightening the Mechanisms for Tumor Survival and Progression. Front Cell Dev Biol 2022; 10:907423. [PMID: 35784465 PMCID: PMC9242006 DOI: 10.3389/fcell.2022.907423] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 05/26/2022] [Indexed: 11/28/2022] Open
Abstract
Non-canonical secretion pathways, collectively known as unconventional protein secretion (UPS), are alternative secretory mechanisms usually associated with stress-inducing conditions. UPS allows proteins that lack a signal peptide to be secreted, avoiding the conventional endoplasmic reticulum-Golgi complex secretory pathway. Molecules that generally rely on the canonical pathway to be secreted may also use the Golgi bypass, one of the unconventional routes, to reach the extracellular space. UPS studies have been increasingly growing in the literature, including its implication in the biology of several diseases. Intercellular communication between brain tumor cells and the tumor microenvironment is orchestrated by various molecules, including canonical and non-canonical secreted proteins that modulate tumor growth, proliferation, and invasion. Adult brain tumors such as gliomas, which are aggressive and fatal cancers with a dismal prognosis, could exploit UPS mechanisms to communicate with their microenvironment. Herein, we provide functional insights into the UPS machinery in the context of tumor biology, with a particular focus on the secreted proteins by alternative routes as key regulators in the maintenance of brain tumors.
Collapse
Affiliation(s)
- Rebeca Piatniczka Iglesia
- Laboratory of Neurobiology and Stem Cells, Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil,The Robert H. Lurie Comprehensive Cancer Center, The Ken and Ruth Davee Department of Neurology, Lou and Jean Malnati Brain Tumor Institute at Northwestern Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Mariana Brandão Prado
- Laboratory of Neurobiology and Stem Cells, Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Rodrigo Nunes Alves
- Laboratory of Neurobiology and Stem Cells, Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Maria Isabel Melo Escobar
- Laboratory of Neurobiology and Stem Cells, Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Camila Felix de Lima Fernandes
- Laboratory of Neurobiology and Stem Cells, Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Ailine Cibele dos Santos Fortes
- Laboratory of Neurobiology and Stem Cells, Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Maria Clara da Silva Souza
- Laboratory of Neurobiology and Stem Cells, Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Jacqueline Marcia Boccacino
- Laboratory of Neurobiology and Stem Cells, Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Giovanni Cangiano
- Laboratory of Neurobiology and Stem Cells, Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Samuel Ribeiro Soares
- Laboratory of Neurobiology and Stem Cells, Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - João Pedro Alves de Araújo
- Laboratory of Neurobiology and Stem Cells, Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Deanna Marie Tiek
- The Robert H. Lurie Comprehensive Cancer Center, The Ken and Ruth Davee Department of Neurology, Lou and Jean Malnati Brain Tumor Institute at Northwestern Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Anshika Goenka
- The Robert H. Lurie Comprehensive Cancer Center, The Ken and Ruth Davee Department of Neurology, Lou and Jean Malnati Brain Tumor Institute at Northwestern Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Xiao Song
- The Robert H. Lurie Comprehensive Cancer Center, The Ken and Ruth Davee Department of Neurology, Lou and Jean Malnati Brain Tumor Institute at Northwestern Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Jack Ryan Keady
- The Robert H. Lurie Comprehensive Cancer Center, The Ken and Ruth Davee Department of Neurology, Lou and Jean Malnati Brain Tumor Institute at Northwestern Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Bo Hu
- The Robert H. Lurie Comprehensive Cancer Center, The Ken and Ruth Davee Department of Neurology, Lou and Jean Malnati Brain Tumor Institute at Northwestern Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Shi Yuan Cheng
- The Robert H. Lurie Comprehensive Cancer Center, The Ken and Ruth Davee Department of Neurology, Lou and Jean Malnati Brain Tumor Institute at Northwestern Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Marilene Hohmuth Lopes
- Laboratory of Neurobiology and Stem Cells, Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil,*Correspondence: Marilene Hohmuth Lopes,
| |
Collapse
|
32
|
Noh SH, Kim YJ, Lee MG. Autophagy-Related Pathways in Vesicular Unconventional Protein Secretion. Front Cell Dev Biol 2022; 10:892450. [PMID: 35774225 PMCID: PMC9237382 DOI: 10.3389/fcell.2022.892450] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 05/26/2022] [Indexed: 12/14/2022] Open
Abstract
Cellular proteins directed to the plasma membrane or released into the extracellular space can undergo a number of different pathways. Whereas the molecular mechanisms that underlie conventional ER-to-Golgi trafficking are well established, those associated with the unconventional protein secretion (UPS) pathways remain largely elusive. A pathway with an emerging role in UPS is autophagy. Although originally known as a degradative process for maintaining intracellular homeostasis, recent studies suggest that autophagy has diverse biological roles besides its disposal function and that it is mechanistically involved in the UPS of various secretory cargos including both leaderless soluble and Golgi-bypassing transmembrane proteins. Here, we summarize current knowledge of the autophagy-related UPS pathways, describing and comparing diverse features in the autophagy-related UPS cargos and autophagy machineries utilized in UPS. Additionally, we also suggest potential directions that further research in this field can take.
Collapse
Affiliation(s)
- Shin Hye Noh
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, South Korea
| | - Ye Jin Kim
- Department of Pharmacology, Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Min Goo Lee
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, South Korea
- Department of Pharmacology, Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| |
Collapse
|
33
|
Pei D, Dalbey RE. Membrane Translocation of Folded Proteins. J Biol Chem 2022; 298:102107. [PMID: 35671825 PMCID: PMC9251779 DOI: 10.1016/j.jbc.2022.102107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 05/31/2022] [Accepted: 06/01/2022] [Indexed: 12/01/2022] Open
Abstract
An ever-increasing number of proteins have been shown to translocate across various membranes of bacterial as well as eukaryotic cells in their folded states as a part of physiological and/or pathophysiological processes. Herein we provide an overview of the systems/processes that are established or likely to involve the membrane translocation of folded proteins, such as protein export by the twin-arginine translocation (TAT) system in bacteria and chloroplasts, unconventional protein secretion (UPS) and protein import into the peroxisome in eukaryotes, and the cytosolic entry of proteins (e.g., bacterial toxins) and viruses into eukaryotes. We also discuss the various mechanistic models that have previously been proposed for the membrane translocation of folded proteins including pore/channel formation, local membrane disruption, membrane thinning, and transport by membrane vesicles. Finally, we introduce a newly discovered vesicular transport mechanism, vesicle budding and collapse (VBC), and present evidence that VBC may represent a unifying mechanism that drives some (and potentially all) of folded protein translocation processes.
Collapse
Affiliation(s)
- Dehua Pei
- Department of Chemistry and Biochemistry, The Ohio State University, 484 West 12(th) Avenue, Columbus, OH 43210.
| | - Ross E Dalbey
- Department of Chemistry and Biochemistry, The Ohio State University, 484 West 12(th) Avenue, Columbus, OH 43210.
| |
Collapse
|
34
|
Farley JT, Eldahshoury MK, de Marcos Lousa C. Unconventional Secretion of Plant Extracellular Vesicles and Their Benefits to Human Health: A Mini Review. Front Cell Dev Biol 2022; 10:883841. [PMID: 35721490 PMCID: PMC9198543 DOI: 10.3389/fcell.2022.883841] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 05/09/2022] [Indexed: 11/13/2022] Open
Abstract
Mechanisms devoted to the secretion of proteins via extracellular vesicles (EVs) have been found in mammals, yeasts, and plants. Since they transport a number of leader-less proteins to the plasma membrane or the extracellular space, EVs are considered part of Unconventional protein secretion (UPS) routes. UPS involving EVs are a relatively new field in plants. Aside from their role in plant physiology and immunity, plant extracts containing EVs have also been shown to be beneficial for human health. Therefore, exploring the use of plant EVs in biomedicine and their potential as drug delivery tools is an exciting avenue. Here we give a summary of the state of knowledge on plant EVs, their crosstalk with mammalian systems and potential research routes that could lead to practical applications in therapeutic drug delivery.
Collapse
Affiliation(s)
- Joshua T. Farley
- Biomedical Sciences, School of Health, Leeds Beckett University, Leeds, United Kingdom
| | | | - Carine de Marcos Lousa
- Biomedical Sciences, School of Health, Leeds Beckett University, Leeds, United Kingdom
- Centre for Plant Sciences, University of Leeds, Leeds, United Kingdom
- *Correspondence: Carine de Marcos Lousa, ;,
| |
Collapse
|
35
|
Wang X, Li X, Wang J, Wang J, Hu C, Zeng J, Shi A, Lin L. SMGL-1/NBAS acts as a RAB-8 GEF to regulate unconventional protein secretion. J Cell Biol 2022; 221:213235. [PMID: 35604368 PMCID: PMC9129922 DOI: 10.1083/jcb.202111125] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 04/13/2022] [Accepted: 05/04/2022] [Indexed: 01/07/2023] Open
Abstract
Unconventional protein secretion (UPS) pathways are conserved across species. However, the underlying mechanisms that regulate Golgi-bypassing UPS of integral proteins remain elusive. In this study, we show that RAB-8 and SMGL-1/NBAS are required for the UPS of integral proteins in C. elegans intestine. SMGL-1 resides in the ER-Golgi intermediate compartment and adjacent RAB-8-positive structures, and NRZ complex component CZW-1/ZW10 is required for this residency. Notably, SMGL-1 acts as a guanine nucleotide exchange factor for RAB-8, ensuring UPS of integral proteins by driving the activation of RAB-8. Furthermore, we show that Pseudomonas aeruginosa infection elevated the expression of SMGL-1 and RAB-8. Loss of SMGL-1 or RAB-8 compromised resistance to environmental colchicine, arsenite, and pathogenic bacteria. These results suggest that the SMGL-1/RAB-8-mediated UPS could integrate environmental signals to serve as a host defense response. Together, by establishing the C. elegans intestine as a multicellular model, our findings provide insights into RAB-8-dependent Golgi-bypassing UPS, especially in the context of epithelia in vivo.
Collapse
Affiliation(s)
- Xianghong Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xinxin Li
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Junkai Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jiabin Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Can Hu
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jia Zeng
- Department of Biochemistry and Molecular Biology, Guizhou Medical University, Guiyang, Guizhou, China
| | - Anbing Shi
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China,Cell Architecture Research Center, Huazhong University of Science and Technology, Wuhan, Hubei, China,Correspondence to Anbing Shi:
| | - Long Lin
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China,Cell Architecture Research Center, Huazhong University of Science and Technology, Wuhan, Hubei, China,Long Lin:
| |
Collapse
|
36
|
Biswal MR, Padmanabhan S, Manjithaya R, Prakash MK. Early Bioinformatic Implication of Triacidic Amino Acid Motifs in Autophagy-Dependent Unconventional Secretion of Mammalian Proteins. Front Cell Dev Biol 2022; 10:863825. [PMID: 35646924 PMCID: PMC9136135 DOI: 10.3389/fcell.2022.863825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 04/11/2022] [Indexed: 11/22/2022] Open
Abstract
Several proteins are secreted outside the cell, and in many cases, they may be identified by a characteristic signal peptide. However, more and more studies point to the evidence for an “unconventional” secretion, where proteins without a hitherto unknown signal are secreted, possibly in conditions of starvation. In this work, we analyse a set of 202 RNA binding mammalian proteins, whose unconventional secretion has recently been established. Analysis of these proteins secreted by LC3 mediation, the largest unconventionally secreted dataset to our knowledge, identifies the role of KKX motif as well as triacidic amino acid motif in unconventional secretion, the latter being an extension of the recent implicated diacidic amino acid motif. Further data analysis evolves a hypothesis on the sequence or structural proximity of the triacidic or KKX motifs to the LC3 interacting region, and a phosphorylatable amino acid such as serine as a statistically significant feature among these unconventionally secreted proteins. This hypothesis, although needs to be validated in experiments that challenge the specific details of each of these aspects, appears to be one of the early steps in defining what may be a plausible signal for unconventional protein secretion.
Collapse
Affiliation(s)
- Malay Ranjan Biswal
- Computational Biology, Theoretical Sciences Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Bangalore, India
| | - Sreedevi Padmanabhan
- Autophagy Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Bangalore, India
| | - Ravi Manjithaya
- Autophagy Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Bangalore, India
- *Correspondence: Ravi Manjithaya, ; Meher K. Prakash,
| | - Meher K. Prakash
- Computational Biology, Theoretical Sciences Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Bangalore, India
- *Correspondence: Ravi Manjithaya, ; Meher K. Prakash,
| |
Collapse
|
37
|
Bajaj R, Warner AN, Fradette JF, Gibbons DL. Dance of The Golgi: Understanding Golgi Dynamics in Cancer Metastasis. Cells 2022; 11:1484. [PMID: 35563790 PMCID: PMC9102947 DOI: 10.3390/cells11091484] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/22/2022] [Accepted: 04/24/2022] [Indexed: 12/17/2022] Open
Abstract
The Golgi apparatus is at the center of protein processing and trafficking in normal cells. Under pathological conditions, such as in cancer, aberrant Golgi dynamics alter the tumor microenvironment and the immune landscape, which enhances the invasive and metastatic potential of cancer cells. Among these changes in the Golgi in cancer include altered Golgi orientation and morphology that contribute to atypical Golgi function in protein trafficking, post-translational modification, and exocytosis. Golgi-associated gene mutations are ubiquitous across most cancers and are responsible for modifying Golgi function to become pro-metastatic. The pharmacological targeting of the Golgi or its associated genes has been difficult in the clinic; thus, studying the Golgi and its role in cancer is critical to developing novel therapeutic agents that limit cancer progression and metastasis. In this review, we aim to discuss how disrupted Golgi function in cancer cells promotes invasion and metastasis.
Collapse
Affiliation(s)
- Rakhee Bajaj
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA; (R.B.); (A.N.W.); (J.F.F.)
- UTHealth Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA
| | - Amanda N. Warner
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA; (R.B.); (A.N.W.); (J.F.F.)
- UTHealth Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA
| | - Jared F. Fradette
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA; (R.B.); (A.N.W.); (J.F.F.)
| | - Don L. Gibbons
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA; (R.B.); (A.N.W.); (J.F.F.)
- UTHealth Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA
| |
Collapse
|
38
|
Unconventional secretion mediated by direct protein self-translocation across the plasma membranes of mammalian cells. Trends Biochem Sci 2022; 47:699-709. [PMID: 35490075 DOI: 10.1016/j.tibs.2022.04.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 03/22/2022] [Accepted: 04/01/2022] [Indexed: 12/17/2022]
Abstract
In recent years, a surprisingly complex picture emerged about endoplasmic reticulum (ER)/Golgi-independent secretory pathways, and several routes have been discovered that differ with regard to their molecular mechanisms and machineries. Fibroblast growth factor 2 (FGF2) is secreted by a pathway of unconventional protein secretion (UPS) that is based on direct self-translocation across the plasma membrane. Building on previous research, a component of this process has been identified to be glypican-1 (GPC1), a GPI-anchored heparan sulfate proteoglycan located on cell surfaces. These findings not only shed light on the molecular mechanism underlying this process but also reveal an intimate relationship between FGF2 and GPC1 that might be of critical relevance for the prominent roles they both have in tumor progression and metastasis.
Collapse
|
39
|
Proteomic Profiling and Functional Analysis of B Cell-Derived Exosomes upon Pneumocystis Infection. J Immunol Res 2022; 2022:5187166. [PMID: 35465354 PMCID: PMC9023222 DOI: 10.1155/2022/5187166] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 03/30/2022] [Indexed: 12/27/2022] Open
Abstract
Pneumocystis is a life-threatening fungal pathogen that frequently causes fatal pneumonia (PCP) in immunocompromised individuals. Recently, B cells have been reported to play a crucial role in the pathogenesis of PCP through producing antibodies and activating CD4+ T cell response. Exosomes are nanoscale small extracellular vesicles abundant with protein cargo and can mediate immune response during infectious disease. In this study, using tandem mass tag-based quantitative proteomics coupled with bioinformatic analysis, we attempted to characterize exosomes derived from B lymphocytes in response to PCP. Several proteins were verified by parallel reaction monitoring (PRM) analysis. Also, the effects of B cell exosomes on CD4+ T cell response and phagocytic function of macrophages were clarified. Briefly, 1701 proteins were identified from B cell exosomes, and the majority of them were reported in Vesiclepedia. A total of 51 differentially expressed proteins of B cell exosomes were found in response to PCP. They were mainly associated with immune response and transcription regulation. PRM analysis confirmed the significantly changed levels of histone H1.3, vimentin, and tyrosine-protein phosphatase nonreceptor type 6 (PTPN6). Moreover, a functional study revealed the proinflammatory profile of B cell exosomes on CD4+ T cell response in PCP. Taken together, our results suggest the involvement of exosomes derived from B cells in cell-to-cell communication, providing new information on the function of B cells in response to PCP.
Collapse
|
40
|
Baines K, Yoshioka K, Takuwa Y, Lane JD. The ATG5 interactome links clathrin-mediated vesicular trafficking with the autophagosome assembly machinery. AUTOPHAGY REPORTS 2022; 1:88-118. [PMID: 35449600 PMCID: PMC9015699 DOI: 10.1080/27694127.2022.2042054] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Autophagosome formation involves the sequential actions of conserved ATG proteins to coordinate the lipidation of the ubiquitin-like modifier Atg8-family proteins at the nascent phagophore membrane. Although the molecular steps driving this process are well understood, the source of membranes for the expanding phagophore and their mode of delivery are only now beginning to be revealed. Here, we have used quantitative SILAC-based proteomics to identify proteins that associate with the ATG12-ATG5 conjugate, a crucial player during Atg8-family protein lipidation. Our datasets reveal a strong enrichment of regulators of clathrin-mediated vesicular trafficking, including clathrin heavy and light chains, and several clathrin adaptors. Also identified were PIK3C2A (a phosphoinositide 3-kinase involved in clathrin-mediated endocytosis) and HIP1R (a component of clathrin vesicles), and the absence of either of these proteins alters autophagic flux in cell-based starvation assays. To determine whether the ATG12-ATG5 conjugate reciprocally influences trafficking within the endocytic compartment, we captured the cell surface proteomes of autophagy-competent and autophagy-incompetent mouse embryonic fibroblasts under fed and starved conditions. We report changes in the relative proportions of individual cell surface proteins and show that cell surface levels of the SLC7A5-SLC3A2 amino acid transporter are influenced by autophagy capability. Our data provide evidence for direct regulatory coupling between the ATG12-ATG5 conjugate and the clathrin membrane trafficking system and suggest candidate membrane proteins whose trafficking within the cell may be modulated by the autophagy machinery. Abbreviations: ATG, autophagy related; BafA1, bafilomycin A1; GFP, green fluorescent protein; HIP1R, huntingtin interacting protein 1 related; MEF, mouse embryo fibroblast; PIK3C2A, phosphatidylinositol-4-phosphate 3-kinase catalytic subunit type 2 alpha; SILAC, stable isotope labelling with amino acids in culture; SQSTM1, sequestosome 1; STRING, search tool for the retrieval of interacting genes/proteins.
Collapse
Affiliation(s)
- Kiren Baines
- Cell Biology Laboratories, School of Biochemistry, University of Bristol, University Walk, Bristol, BS81TD, UK
| | - Kazuaki Yoshioka
- Department of Physiology, Kanazawa University Graduate School of Medical Sciences, 13-1 Takara-machi, Kanazawa Ishikawa920-8640, Japan
| | - Yoh Takuwa
- Department of Physiology, Kanazawa University Graduate School of Medical Sciences, 13-1 Takara-machi, Kanazawa Ishikawa920-8640, Japan
| | - Jon D. Lane
- Cell Biology Laboratories, School of Biochemistry, University of Bristol, University Walk, Bristol, BS81TD, UK
| |
Collapse
|
41
|
Filaquier A, Marin P, Parmentier ML, Villeneuve J. Roads and hubs of unconventional protein secretion. Curr Opin Cell Biol 2022; 75:102072. [PMID: 35305454 DOI: 10.1016/j.ceb.2022.02.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 02/07/2022] [Accepted: 02/14/2022] [Indexed: 12/11/2022]
Abstract
In eukaryotes, there is now compelling evidence that in addition to the conventional endoplasmic reticulum-Golgi secretory pathway, there are additional routes for the export of cytoplasmic proteins with a critical role in numerous physio-pathological conditions. These alternative secretory pathways or unconventional protein secretion (UPS) start now to be molecularly dissected, and while UPS landscape appears to be governed by a striking diversity and heterogeneity of mechanisms, common principles are emerging. We review here the role of key molecular determinants as well as the role of central hubs for UPS, highlighting the plasticity and dynamic properties of membrane-bound compartments. We also describe recent findings that position UPS as an integral component of adaptive responses to cope with particular cellular needs and stresses.
Collapse
Affiliation(s)
- Aurore Filaquier
- Institute of Functional Genomics, University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Philippe Marin
- Institute of Functional Genomics, University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Marie-Laure Parmentier
- Institute of Functional Genomics, University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Julien Villeneuve
- Institute of Functional Genomics, University of Montpellier, CNRS, INSERM, Montpellier, France.
| |
Collapse
|
42
|
Bänfer S, Kutscher S, Jacob R. Examination of Galectin-3 Recruitment into Multivesicular Bodies for Exosomal Secretion. Methods Mol Biol 2022; 2442:413-424. [PMID: 35320538 DOI: 10.1007/978-1-0716-2055-7_22] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Cells use unconventional secretion to deliver the β-galactoside binding lectin galectin-3 from the cell interior into the extracellular milieu. This process starts with galectin-3 recruitment into intraluminal vesicles (ILVs), which are later released at the plasma membrane as exosomes. Electron microscopy is utilized to determine the location of GFP-tagged galectin-3 in pelleted exosomes. We also describe how these vesicles are harvested from cell culture media to determine their composition. The fluorescent protein GFP was fused with the exosomal sorting motif of galectin-3 to direct GFP into exosomes. Recruitment of this fusion construct into the lumen of exosomes can be assessed by proteinase K accessibility analysis.
Collapse
Affiliation(s)
- Sebastian Bänfer
- Department of Cell Biology and Cell Pathology, Philipps University of Marburg, Marburg, Germany.
| | - Sophie Kutscher
- Department of Cell Biology and Cell Pathology, Philipps University of Marburg, Marburg, Germany
| | - Ralf Jacob
- Department of Cell Biology and Cell Pathology, Philipps University of Marburg, Marburg, Germany.
| |
Collapse
|
43
|
Baghaei K, Mazhari S, Tokhanbigli S, Parsamanesh G, Alavifard H, Schaafsma D, Ghavami S. Therapeutic potential of targeting regulatory mechanisms of hepatic stellate cell activation in liver fibrosis. Drug Discov Today 2021; 27:1044-1061. [PMID: 34952225 DOI: 10.1016/j.drudis.2021.12.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 11/11/2021] [Accepted: 12/17/2021] [Indexed: 11/03/2022]
Abstract
Hepatic fibrosis is a manifestation of different etiologies of liver disease with the involvement of multiple mediators in complex network interactions. Activated hepatic stellate cells (aHSCs) are the central driver of hepatic fibrosis, given their potential to induce connective tissue formation and extracellular matrix (ECM) protein accumulation. Therefore, identifying the cellular and molecular pathways involved in the activation of HSCs is crucial in gaining mechanistic and therapeutic perspectives to more effectively target the disease. In addition to a comprehensive summary of our current understanding of the role of HSCs in liver fibrosis, we also discuss here the proposed therapeutic strategies based on targeting HSCs.
Collapse
Affiliation(s)
- Kaveh Baghaei
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran 1985717413, Iran; Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran 1985717413, Iran
| | - Sogol Mazhari
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran 1985717413, Iran
| | - Samaneh Tokhanbigli
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran 1985717413, Iran
| | - Gilda Parsamanesh
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran 1985717413, Iran
| | - Helia Alavifard
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran 1985717413, Iran
| | | | - Saeid Ghavami
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada.
| |
Collapse
|
44
|
Fontana NA, Rosse AD, Watts A, Coelho PSR, Costa-Filho AJ. In vivo observation of amyloid-like fibrils produced under stress. Int J Biol Macromol 2021; 199:42-50. [PMID: 34942208 DOI: 10.1016/j.ijbiomac.2021.12.065] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 11/26/2021] [Accepted: 12/09/2021] [Indexed: 11/30/2022]
Abstract
The participation of amyloids in neurodegenerative diseases and functional processes has triggered the quest for methods allowing their direct detection in vivo. Despite the plethora of data, those methods are still lacking. The autofluorescence from the extended β-sheets of amyloids is here used to follow fibrillation of S. cerevisiae Golgi Reassembly and Stacking Protein (Grh1). Grh1 has been implicated in starvation-triggered unconventional protein secretion (UPS), and here its participation also in heat shock response (HSR) is suggested. Fluorescence Lifetime Imaging (FLIM) is used to detect fibril autofluorescence in cells (E. coli and yeast) under stress (starvation and higher temperature). The formation of Grh1 large complexes under stress is further supported by size exclusion chromatography and ultracentrifugation. The data show for the first time in vivo detection of amyloids without the use of extrinsic probes as well as bring new perspectives on the participation of Grh1 in UPS and HSR.
Collapse
Affiliation(s)
- Natália A Fontana
- Departamento de Física, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Ariane D Rosse
- Departamento de Física, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Anthony Watts
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Paulo S R Coelho
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Antonio J Costa-Filho
- Departamento de Física, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil.
| |
Collapse
|
45
|
Khajvand T, Huang P, Li L, Zhang M, Zhu F, Xu X, Huang M, Yang C, Lu Y, Zhu Z. Interfacing droplet microfluidics with antibody barcodes for multiplexed single-cell protein secretion profiling. LAB ON A CHIP 2021; 21:4823-4830. [PMID: 34792068 DOI: 10.1039/d1lc00567g] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Multiplexed protein secretion analysis of single cells is important to understand the heterogeneity of cellular functions and processes in healthy and disease states. However, current single-cell platforms, such as microwell-, microchamber-, or droplet-based assays, suffer from low single-cell occupancy, waste of reagents, limited sensitivity, or inability to perform necessary operations, etc. To overcome these drawbacks, we present an integrated droplet microfluidic device that interfaces with spatially patterned antibody barcodes for multiplexed single-cell secretome analysis. The trapping array of 100 picoliter-sized isolation chambers could achieve >80% single-cell capture efficiency with >90% viability. The single-cell analysis microchip was validated by the detection of four-plexed cytokines, including IL-8, MCP-1, MIP-1b, and TNF-a/IL-10, from unstimulated and lipopolysaccharide (LPS)-stimulated individual human macrophages. We also successfully applied the platform to profile protein secretions of human tumor cell lines and primary/metastatic cancer cells dissociated from cancer patients to observe the secretion heterogeneity among cells. This unique microfluidic platform enables multiplexed secretion assays for static droplet microfluidics, provides a reliable and straightforward workflow for protein secretion assays based on a low number of single cells in a short incubation time (∼4 h), and could have widespread applications for studying secretion-mediated cellular heterogeneity.
Collapse
Affiliation(s)
- Tahereh Khajvand
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory for Chemical Biology of Fujian Province, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| | - Peifeng Huang
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory for Chemical Biology of Fujian Province, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| | - Linmei Li
- Department of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China.
| | - Mingxia Zhang
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory for Chemical Biology of Fujian Province, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| | - Fengjiao Zhu
- Department of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China.
| | - Xing Xu
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory for Chemical Biology of Fujian Province, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| | - Mengjiao Huang
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory for Chemical Biology of Fujian Province, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| | - Chaoyong Yang
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory for Chemical Biology of Fujian Province, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
- Institute of Molecular Medicine, Department of Obstetrics and Gynecology, Renji Hospital Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Yao Lu
- Department of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China.
| | - Zhi Zhu
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory for Chemical Biology of Fujian Province, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| |
Collapse
|
46
|
Tariqjaveed M, Mateen A, Wang S, Qiu S, Zheng X, Zhang J, Bhadauria V, Sun W. Versatile effectors of phytopathogenic fungi target host immunity. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2021; 63:1856-1873. [PMID: 34383388 DOI: 10.1111/jipb.13162] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 08/10/2021] [Indexed: 06/13/2023]
Abstract
Phytopathogenic fungi secrete a large arsenal of effector molecules, including proteinaceous effectors, small RNAs, phytohormones and derivatives thereof. The pathogenicity of fungal pathogens is primarily determined by these effectors that are secreted into host cells to undermine innate immunity, as well as to facilitate the acquisition of nutrients for their in planta growth and proliferation. After conventional and non-conventional secretion, fungal effectors are translocated into different subcellular compartments of the host cells to interfere with various biological processes. In extracellular spaces, apoplastic effectors cope with physical and chemical barriers to break the first line of plant defenses. Intracellular effectors target essential immune components on the plasma membrane, in the cytosol, including cytosolic organelles, and in the nucleus to suppress host immunity and reprogram host physiology, favoring pathogen colonization. In this review, we comprehensively summarize the recent advances in fungal effector biology, with a focus on the versatile virulence functions of fungal effectors in promoting pathogen infection and colonization. A perspective of future research on fungal effector biology is also discussed.
Collapse
Affiliation(s)
- Muhammad Tariqjaveed
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, 100193, China
- The Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, China Agricultural University, Beijing, 100193, China
| | - Abdul Mateen
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, 100193, China
- The Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, China Agricultural University, Beijing, 100193, China
| | - Shanzhi Wang
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, 100193, China
- The Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, China Agricultural University, Beijing, 100193, China
| | - Shanshan Qiu
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, 100193, China
- The Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, China Agricultural University, Beijing, 100193, China
| | - Xinhang Zheng
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, 100193, China
- The Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, China Agricultural University, Beijing, 100193, China
| | - Jie Zhang
- Institute of Microbiology, The Chinese Academy of Sciences, Beijing, 100101, China
| | - Vijai Bhadauria
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Wenxian Sun
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, 100193, China
- The Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, China Agricultural University, Beijing, 100193, China
- Department of Plant Pathology, College of Plant Protection, Jilin Agricultural University, Changchun, 130118, China
| |
Collapse
|
47
|
Ren E, Liu C, Lv P, Wang J, Liu G. Genetically Engineered Cellular Membrane Vesicles as Tailorable Shells for Therapeutics. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2100460. [PMID: 34494387 PMCID: PMC8564451 DOI: 10.1002/advs.202100460] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 07/20/2021] [Indexed: 05/04/2023]
Abstract
Benefiting from the blooming interaction of nanotechnology and biotechnology, biosynthetic cellular membrane vesicles (Bio-MVs) have shown superior characteristics for therapeutic transportation because of their hydrophilic cavity and hydrophobic bilayer structure, as well as their inherent biocompatibility and negligible immunogenicity. These excellent cell-like features with specific functional protein expression on the surface can invoke their remarkable ability for Bio-MVs based recombinant protein therapy to facilitate the advanced synergy in poly-therapy. To date, various tactics have been developed for Bio-MVs surface modification with functional proteins through hydrophobic insertion or multivalent electrostatic interactions. While the Bio-MVs grow through genetically engineering strategies can maintain binding specificity, sort orders, and lead to strict information about artificial proteins in a facile and sustainable way. In this progress report, the most current technology of Bio-MVs is discussed, with an emphasis on their multi-functionalities as "tailorable shells" for delivering bio-functional moieties and therapeutic entities. The most notable success and challenges via genetically engineered tactics to achieve the new generation of Bio-MVs are highlighted. Besides, future perspectives of Bio-MVs in novel bio-nanotherapy are provided.
Collapse
Affiliation(s)
- En Ren
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational MedicineSchool of Public HealthXiamen UniversityXiamen361102China
| | - Chao Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational MedicineSchool of Public HealthXiamen UniversityXiamen361102China
| | - Peng Lv
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational MedicineSchool of Public HealthXiamen UniversityXiamen361102China
| | - Junqing Wang
- School of Pharmaceutical Sciences (Shenzhen)Sun Yat‐sen UniversityGuangzhou510275China
| | - Gang Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational MedicineSchool of Public HealthXiamen UniversityXiamen361102China
| |
Collapse
|
48
|
Autophagy Dysregulation in Diabetic Kidney Disease: From Pathophysiology to Pharmacological Interventions. Cells 2021; 10:cells10092497. [PMID: 34572148 PMCID: PMC8469825 DOI: 10.3390/cells10092497] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 09/04/2021] [Accepted: 09/09/2021] [Indexed: 12/18/2022] Open
Abstract
Diabetic kidney disease (DKD) is a frequent, potentially devastating complication of diabetes mellitus. Several factors are involved in its pathophysiology. At a cellular level, diabetic kidney disease is associated with many structural and functional alterations. Autophagy is a cellular mechanism that transports intracytoplasmic components to lysosomes to preserve cellular function and homeostasis. Autophagy integrity is essential for cell homeostasis, its alteration can drive to cell damage or death. Diabetic kidney disease is associated with profound autophagy dysregulation. Autophagy rate and flux alterations were described in several models of diabetic kidney disease. Some of them are closely linked with disease progression and severity. Some antidiabetic agents have shown significant effects on autophagy. A few of them have also demonstrated to modify disease progression and improved outcomes in affected patients. Other drugs also target autophagy and are being explored for clinical use in patients with diabetic kidney disease. The modulation of autophagy could be relevant for the pharmacological treatment and prevention of this disease in the future. Therefore, this is an evolving area that requires further experimental and clinical research. Here we discuss the relationship between autophagy and Diabetic kidney disease and the potential value of autophagy modulation as a target for pharmacological intervention.
Collapse
|
49
|
Pujals M, Resar L, Villanueva J. HMGA1, Moonlighting Protein Function, and Cellular Real Estate: Location, Location, Location! Biomolecules 2021; 11:1334. [PMID: 34572547 PMCID: PMC8468999 DOI: 10.3390/biom11091334] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/27/2021] [Accepted: 09/01/2021] [Indexed: 12/13/2022] Open
Abstract
The gene encoding the High Mobility Group A1 (HMGA1) chromatin remodeling protein is upregulated in diverse cancers where high levels portend adverse clinical outcomes. Until recently, HMGA1 was assumed to be a nuclear protein exerting its role in cancer by transcriptionally modulating gene expression and downstream signaling pathways. However, the discovery of an extracellular HMGA1-RAGE autocrine loop in invasive triple-negative breast cancer (TNBC) cell lines implicates HMGA1 as a "moonlighting protein" with different functions depending upon cellular location. Here, we review the role of HMGA1, not only as a chromatin regulator in cancer and stem cells, but also as a potential secreted factor that drives tumor progression. Prior work found that HMGA1 is secreted from TNBC cell lines where it signals through the receptor for advanced glycation end products (RAGE) to foster phenotypes involved in tumor invasion and metastatic progression. Studies in primary TNBC tumors also suggest that HMGA1 secretion associates with distant metastasis in TNBC. Given the therapeutic potential to target extracellular proteins, further work to confirm this role in other contexts is warranted. Indeed, crosstalk between nuclear and secreted HMGA1 could change our understanding of tumor development and reveal novel therapeutic opportunities relevant to diverse human cancers overexpressing HMGA1.
Collapse
Affiliation(s)
- Mireia Pujals
- Vall d’Hebron Institute of Oncology (VHIO), 08035 Barcelona, Spain;
| | - Linda Resar
- Department of Medicine, Division of Hematology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Departments of Medicine (Hematology), Oncology, Pathology and Institute of Cellular Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Pathobiology, Cellular and Molecular Medicine and Human Genetics Graduate Programs, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Josep Villanueva
- Vall d’Hebron Institute of Oncology (VHIO), 08035 Barcelona, Spain;
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain
| |
Collapse
|
50
|
Lujan P, Campelo F. Should I stay or should I go? Golgi membrane spatial organization for protein sorting and retention. Arch Biochem Biophys 2021; 707:108921. [PMID: 34038703 DOI: 10.1016/j.abb.2021.108921] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 04/12/2021] [Accepted: 05/03/2021] [Indexed: 12/23/2022]
Abstract
The Golgi complex is the membrane-bound organelle that lies at the center of the secretory pathway. Its main functions are to maintain cellular lipid homeostasis, to orchestrate protein processing and maturation, and to mediate protein sorting and export. These functions are not independent of one another, and they all require that the membranes of the Golgi complex have a well-defined biochemical composition. Importantly, a finely-regulated spatiotemporal organization of the Golgi membrane components is essential for the correct performance of the organelle. In here, we review our current mechanistic and molecular understanding of how Golgi membranes are spatially organized in the lateral and axial directions to fulfill their functions. In particular, we highlight the current evidence and proposed models of intra-Golgi transport, as well as the known mechanisms for the retention of Golgi residents and for the sorting and export of transmembrane cargo proteins. Despite the controversies, conflicting evidence, clashes between models, and technical limitations, the field has moved forward and we have gained extensive knowledge in this fascinating topic. However, there are still many important questions that remain to be completely answered. We hope that this review will help boost future investigations on these issues.
Collapse
Affiliation(s)
- Pablo Lujan
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, 08860, Barcelona, Spain.
| | - Felix Campelo
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, 08860, Barcelona, Spain.
| |
Collapse
|