1
|
Jin Y, Connors T, Bouyer J, Fischer I. Regulation of Tau Expression in Superior Cervical Ganglion (SCG) Neurons In Vivo and In Vitro. Cells 2023; 12:cells12020226. [PMID: 36672160 PMCID: PMC9856632 DOI: 10.3390/cells12020226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 12/23/2022] [Accepted: 12/29/2022] [Indexed: 01/06/2023] Open
Abstract
The superior cervical ganglion (SCG) is part of the autonomic nervous system providing sympathetic innervation to the head and neck, and has been regularly used to prepare postnatal neuronal cultures for cell biological studies. We found that during development these neurons change tau expression from the low molecular weight (LMW) isoforms to Big tau, with the potential to affect functions associated with tau such as microtubule dynamic and axonal transport. Big tau contains the large 4a exon that transforms tau from LMW isoforms of 45-60 kDa to 110 kDa. We describe tau expression during postnatal development reporting that the transition from LMW tau to Big tau which started at late embryonic stages is completed by about 4-5 weeks postnatally. We confirmed the presence of Big tau in dissociated postnatal SCG neurons making them an ideal system to study the function of Big tau in neurons. We used SCG explants to examine the response of SCG neurons to lesion and found that Big tau expression returned gradually along the regrowing neurites suggesting that it does not drives regeneration, but facilitates the structure/function of mature SCG neurons. The structural/functional roles of Big tau remain unknown, but it is intriguing that neurons that express Big tau appear less vulnerable to tauopathies.
Collapse
|
2
|
Rafiei A, Schriemer DC. A Crosslinking Mass Spectrometry Protocol for the Structural Analysis of Microtubule-Associated Proteins. Methods Mol Biol 2022; 2456:211-222. [PMID: 35612744 DOI: 10.1007/978-1-0716-2124-0_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Microtubule-associated proteins (MAPs) engage microtubules (MTs) to regulate both the MT state and wide variety of cytoskeletal functions. A comprehensive understanding of MAPs function requires the structural characterization of physical contacts MAPs make with other proteins, particularly when engaged with the microtubule (MT) lattice. Most of the interaction between MAPs and MTs evade classical structural determination techniques, as the interactions can be both heterogenous and sub-stoichiometric. Crosslinking mass spectrometry (XL-MS) can aid in MAP-MT structure analysis by providing a wealth of residue-based distance restraints. This protocol provides an XL-MS workflow for accurate and unbiased sampling of an equilibrated MAP-MT interaction, involving modifications to the preparation and validation of a MAP-MT construct suitable for crosslinking with fast-sampling heterobifunctional crosslinkers. The distance restrains obtained by this protocol can be used to generate accurate models assembled with an integrative structural modeling approach.
Collapse
Affiliation(s)
- Atefeh Rafiei
- Department of Chemistry, University of Calgary, Calgary, AB, Canada
| | - David C Schriemer
- Department of Chemistry, University of Calgary, Calgary, AB, Canada.
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
3
|
Cuveillier C, Boulan B, Ravanello C, Denarier E, Deloulme JC, Gory-Fauré S, Delphin C, Bosc C, Arnal I, Andrieux A. Beyond Neuronal Microtubule Stabilization: MAP6 and CRMPS, Two Converging Stories. Front Mol Neurosci 2021; 14:665693. [PMID: 34025352 PMCID: PMC8131560 DOI: 10.3389/fnmol.2021.665693] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 04/09/2021] [Indexed: 12/21/2022] Open
Abstract
The development and function of the central nervous system rely on the microtubule (MT) and actin cytoskeletons and their respective effectors. Although the structural role of the cytoskeleton has long been acknowledged in neuronal morphology and activity, it was recently recognized to play the role of a signaling platform. Following this recognition, research into Microtubule Associated Proteins (MAPs) diversified. Indeed, historically, structural MAPs—including MAP1B, MAP2, Tau, and MAP6 (also known as STOP);—were identified and described as MT-binding and -stabilizing proteins. Extensive data obtained over the last 20 years indicated that these structural MAPs could also contribute to a variety of other molecular roles. Among multi-role MAPs, MAP6 provides a striking example illustrating the diverse molecular and cellular properties of MAPs and showing how their functional versatility contributes to the central nervous system. In this review, in addition to MAP6’s effect on microtubules, we describe its impact on the actin cytoskeleton, on neuroreceptor homeostasis, and its involvement in signaling pathways governing neuron development and maturation. We also discuss its roles in synaptic plasticity, brain connectivity, and cognitive abilities, as well as the potential relationships between the integrated brain functions of MAP6 and its molecular activities. In parallel, the Collapsin Response Mediator Proteins (CRMPs) are presented as examples of how other proteins, not initially identified as MAPs, fall into the broader MAP family. These proteins bind MTs as well as exhibiting molecular and cellular properties very similar to MAP6. Finally, we briefly summarize the multiple similarities between other classical structural MAPs and MAP6 or CRMPs.In summary, this review revisits the molecular properties and the cellular and neuronal roles of the classical MAPs, broadening our definition of what constitutes a MAP.
Collapse
|
4
|
Boumil EF, Vohnoutka RB, Lee S, Shea TB. Tau interferes with axonal neurite stabilization and cytoskeletal composition independently of its ability to associate with microtubules. Biol Open 2020; 9:9/9/bio052530. [PMID: 32978225 PMCID: PMC7522022 DOI: 10.1242/bio.052530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Tau impacts overall axonal transport particularly when overexpressed by interfering with translocation of kinesin along microtubules (MTs) and/or as a cargo of kinesin by outcompeting other kinesin cargo. To discern between which of these mechanisms was more robust during axonal outgrowth, we overexpressed phosphomimetic (E18; which is incapable of MT binding), phospho-null (A18) or wild-type (WT) full-length human tau conjugated to EGFP, the latter two of which bind MTs. Expression of WT and A18 displayed increased acetylated MTs and resistance to colchicine, while expression of E18 did not, indicating that E18 did not contribute to MT stabilization. Expression of all tau constructs reduced overall levels of neurofilaments (NFs) within axonal neurites, and distribution of NFs along neurite lengths. Since NFs are another prominent cargo of kinesin during axonal neurite outgrowth, this finding is consistent with WT, A18 and E18 inhibiting NF transport to the same extent by competing as cargo of kinesin. These findings indicate that tau can impair axonal transport independently of association with MTs in growing axonal neurites.
Collapse
Affiliation(s)
- Edward F Boumil
- Laboratory for Neuroscience, Department of Biological Sciences, UMass Lowell, Lowell, MA 01854, USA
| | - Rishel B Vohnoutka
- Laboratory for Neuroscience, Department of Biological Sciences, UMass Lowell, Lowell, MA 01854, USA
| | - Sangmook Lee
- Laboratory for Neuroscience, Department of Biological Sciences, UMass Lowell, Lowell, MA 01854, USA
| | - Thomas B Shea
- Laboratory for Neuroscience, Department of Biological Sciences, UMass Lowell, Lowell, MA 01854, USA
| |
Collapse
|
5
|
Baas PW, Qiang L. Tau: It's Not What You Think. Trends Cell Biol 2019; 29:452-461. [PMID: 30929793 PMCID: PMC6527491 DOI: 10.1016/j.tcb.2019.02.007] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Revised: 02/12/2019] [Accepted: 02/21/2019] [Indexed: 12/12/2022]
Abstract
Tau is a multifunctional microtubule-associated protein in the neuron. For decades, tau's main function in neurons has been broadly accepted as stabilizing microtubules in the axon; however, this conclusion was reached mainly on the basis of studies performed in vitro and on ectopic expression of tau in non-neuronal cells. The idea has become so prevailing that some disease researchers are even seeking to use microtubule-stabilizing drugs to treat diseases in which tau dissociates from microtubules. Recent work suggests that tau is not a stabilizer of microtubules in the axon, but rather enables axonal microtubules to have long labile domains, in part by outcompeting genuine stabilizers. This new perspective on tau challenges long-standing dogma.
Collapse
Affiliation(s)
- Peter W Baas
- Drexel University College of Medicine, Department of Neurobiology and Anatomy, 2900 Queen Lane, Philadelphia, PA 19129, USA.
| | - Liang Qiang
- Drexel University College of Medicine, Department of Neurobiology and Anatomy, 2900 Queen Lane, Philadelphia, PA 19129, USA
| |
Collapse
|
6
|
Tau Does Not Stabilize Axonal Microtubules but Rather Enables Them to Have Long Labile Domains. Curr Biol 2018; 28:2181-2189.e4. [PMID: 30008334 DOI: 10.1016/j.cub.2018.05.045] [Citation(s) in RCA: 135] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 04/16/2018] [Accepted: 05/16/2018] [Indexed: 11/22/2022]
Abstract
It is widely believed that tau stabilizes microtubules in the axon [1-3] and, hence, that disease-induced loss of tau from axonal microtubules leads to their destabilization [3-5]. An individual microtubule in the axon has a stable domain and a labile domain [6-8]. We found that tau is more abundant on the labile domain, which is inconsistent with tau's proposed role as a microtubule stabilizer. When tau is experimentally depleted from cultured rat neurons, the labile microtubule mass of the axon drops considerably, the remaining labile microtubule mass becomes less labile, and the stable microtubule mass increases. MAP6 (also called stable tubule-only polypeptide), which is normally enriched on the stable domain [9], acquires a broader distribution across the microtubule when tau is depleted, providing a potential explanation for the increase in stable microtubule mass. When MAP6 is depleted, the labile microtubule mass becomes even more labile, indicating that, unlike tau, MAP6 is a genuine stabilizer of axonal microtubules. We conclude that tau is not a stabilizer of axonal microtubules but is enriched on the labile domain of the microtubule to promote its assembly while limiting the binding to it of genuine stabilizers, such as MAP6. This enables the labile domain to achieve great lengths without being stabilized. These conclusions are contrary to tau dogma.
Collapse
|
7
|
Mondal P, Das G, Khan J, Pradhan K, Ghosh S. Crafting of Neuroprotective Octapeptide from Taxol-Binding Pocket of β-Tubulin. ACS Chem Neurosci 2018; 9:615-625. [PMID: 29155559 DOI: 10.1021/acschemneuro.7b00457] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Microtubules play a crucial role in maintaining the shape and function of neurons. During progression of Alzheimer's disease (AD), severe destabilization of microtubules occurs, which leads to the permanent disruption of signal transduction processes and memory loss. Thus, microtubule stabilization is one of the key requirements for the treatment of AD. Taxol, a microtubule stabilizing anticancer drug, has been considered as a potential anti-AD drug but was never tested in AD patients, likely because of its' toxic nature and poor brain exposure. However, other microtubule-targeting agents such as epothilone D (BMS-241027) and TPI-287 (abeotaxane) and NAP peptide (davunetide) have entered in AD clinical programs. Therefore, the taxol binding pocket of tubulin could be a potential site for designing of mild and noncytotoxic microtubule stabilizing molecules. Here, we adopted an innovative strategy for the development of a peptide based microtubule stabilizer, considering the taxol binding pocket of β-tubulin, by using alanine scanning mutagenesis technique. This approach lead us to a potential octapeptide, which strongly binds to the taxol pocket of β-tubulin, serves as an excellent microtubule stabilizer, increases the expression of acetylated tubulin, and acts as an Aβ aggregation inhibitor and neuroprotective agent. Further, results revealed that this peptide is nontoxic against both PC12 derived neurons and primary cortical neurons. We believe that our strategy and discovery of peptide-based microtubule stabilizer will open the door for the development of potential anti-AD therapeutics in near future.
Collapse
Affiliation(s)
- Prasenjit Mondal
- Organic & Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Jadavpur, Kolkata, 700032 West Bengal, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Indian Institute of Chemical Biology Campus, 4 Raja S. C. Mullick Road, Kolkata 700032, India
| | - Gaurav Das
- Organic & Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Jadavpur, Kolkata, 700032 West Bengal, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Indian Institute of Chemical Biology Campus, 4 Raja S. C. Mullick Road, Kolkata 700032, India
| | - Juhee Khan
- Organic & Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Jadavpur, Kolkata, 700032 West Bengal, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Indian Institute of Chemical Biology Campus, 4 Raja S. C. Mullick Road, Kolkata 700032, India
| | - Krishnangsu Pradhan
- Organic & Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Jadavpur, Kolkata, 700032 West Bengal, India
| | - Surajit Ghosh
- Organic & Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Jadavpur, Kolkata, 700032 West Bengal, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Indian Institute of Chemical Biology Campus, 4 Raja S. C. Mullick Road, Kolkata 700032, India
| |
Collapse
|
8
|
Vintilescu CR, Afreen S, Rubino AE, Ferreira A. The Neurotoxic TAU 45-230 Fragment Accumulates in Upper and Lower Motor Neurons in Amyotrophic Lateral Sclerosis Subjects. Mol Med 2016; 22:477-486. [PMID: 27496042 PMCID: PMC5072411 DOI: 10.2119/molmed.2016.00095] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 07/23/2016] [Indexed: 12/12/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive and lethal neurodegenerative disease characterized by the loss of upper and lower motor neurons leading to muscle paralysis in affected individuals. Numerous mechanisms have been implicated in the death of these neurons. However, the pathobiology of this disease has not been completely elucidated. In the present study, we investigated to what extent tau cleavage and the generation of the neurotoxic tau45-230 fragment is associated with ALS. Quantitative Western blot analysis indicated that high levels of tau45-230 accumulated in lumbar and cervical spinal cord specimens obtained from ALS subjects. This neurotoxic tau fragment was also detected in ALS upper motor neurons located in the precentral gyrus. Our results also showed that tau45-230 aggregates were present in the spinal cord of ALS patients. On the other hand, this neurotoxic fragment was not generated in a mouse model of a familial form of this disease. Together, these results suggest a potential role for this neurotoxic tau fragment in the mechanisms leading to the degeneration of motor neurons in the context of sporadic ALS.
Collapse
Affiliation(s)
- Claudia R Vintilescu
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, IL 60611
| | - Sana Afreen
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, IL 60611
| | - Ashlee E Rubino
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, IL 60611
| | - Adriana Ferreira
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, IL 60611
| |
Collapse
|
9
|
Baas PW, Rao AN, Matamoros AJ, Leo L. Stability properties of neuronal microtubules. Cytoskeleton (Hoboken) 2016; 73:442-60. [PMID: 26887570 PMCID: PMC5541393 DOI: 10.1002/cm.21286] [Citation(s) in RCA: 206] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 02/02/2016] [Accepted: 02/12/2016] [Indexed: 01/12/2023]
Abstract
Neurons are terminally differentiated cells that use their microtubule arrays not for cell division but rather as architectural elements required for the elaboration of elongated axons and dendrites. In addition to acting as compression-bearing struts that provide for the shape of the neuron, microtubules also act as directional railways for organelle transport. The stability properties of neuronal microtubules are commonly discussed in the biomedical literature as crucial to the development and maintenance of the nervous system, and have recently gained attention as central to the etiology of neurodegenerative diseases. Drugs that affect microtubule stability are currently under investigation as potential therapies for disease and injury of the nervous system. There is often a lack of consistency, however, in how the issue of microtubule stability is discussed in the literature, and this can affect the design and interpretation of experiments as well as potential therapeutic regimens. Neuronal microtubules are considered to be more stable than microtubules in dividing cells. On average, this is true, but in addition to an abundant stable microtubule fraction in neurons, there is also an abundant labile microtubule fraction. Both are functionally important. Individual microtubules consist of domains that differ in their stability properties, and these domains can also differ markedly in their composition as well as how they interact with various microtubule-related proteins in the neuron. Myriad proteins and pathways have been discussed as potential contributors to microtubule stability in neurons. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Peter W Baas
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA.
| | - Anand N Rao
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | - Andrew J Matamoros
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | - Lanfranco Leo
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|
10
|
Sudo H, Nakajima K. The mitotic tensegrity guardian tau protects mammary epithelia from katanin-like1-induced aneuploidy. Oncotarget 2016; 7:53712-53734. [PMID: 27447563 PMCID: PMC5288216 DOI: 10.18632/oncotarget.10728] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2016] [Accepted: 06/16/2016] [Indexed: 11/25/2022] Open
Abstract
The microtubule associated-protein tau has been identified as an effective positive prognostic indicator in breast cancer. To explore the physiological function of tau in early carcinogenesis, endogenous tau was knocked down in primary cultured human mammary epithelial cells. This resulted in chromosome-bridging during anaphase followed by micronucleation, both of which were suppressed by a further katanin-like1 knockdown. We also detected that the exogenously expressed katanin-like1 induction of cellular transformation is prevented by exogenous tau in rat fibroblasts. The mutant katanin-like1 (L123V) identified in breast cancer showed an increase in this transformation capacity as well as microtubule severing activity resistant to tau. The tau knockdown resulted in a loss of the kinetochore fibers on which tau is normally localized. This physical fragility was also observed in isolated tau-knockdown mitotic spindles, supporting the relevance of microtubule damage to the onset of transformation. The karyotyping of tau-knockdown cells showed increased frequency of loss of one X chromosome, further suggesting the involvement of tau in breast tumorigenesis. We propose that tau may contribute to tumor progression by protecting spindle microtubules from excess severing by katanin-like1. We also present data indicating that the microtubule-binding octapeptide NAP is a candidate modifier against the tau deficiency in tumor cells.
Collapse
Affiliation(s)
- Haruka Sudo
- Department of Biochemistry, The Nippon Dental University School of Life Dentistry at Tokyo, Chiyoda-ku, Tokyo 102-8159, Japan.,Department of Anatomy, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Kazunori Nakajima
- Department of Anatomy, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan
| |
Collapse
|
11
|
Glotfelty LG, Zahs A, Hodges K, Shan K, Alto NM, Hecht GA. Enteropathogenic E. coli effectors EspG1/G2 disrupt microtubules, contribute to tight junction perturbation and inhibit restoration. Cell Microbiol 2014; 16:1767-83. [PMID: 24948117 DOI: 10.1111/cmi.12323] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2013] [Revised: 05/20/2014] [Accepted: 06/05/2014] [Indexed: 12/14/2022]
Abstract
Enteropathogenic Escherichia coli (EPEC) uses a type 3 secretion system to transfer effector proteins into the host intestinal epithelial cell. Several effector molecules contribute to tight junction disruption including EspG1 and its homologue EspG2 via a mechanism thought to involve microtubule destruction. The aim of this study was to investigate the contribution of EspG-mediated microtubule disruption to TJ perturbation. We demonstrate that wild type EPEC infection disassembles microtubules and induces the progressive movement of occludin away from the membrane and into the cytosol. Deletion of espG1/G2 attenuates both of these phenotypes. In addition, EPEC infection impedes barrier recovery from calcium switch, suggesting that inhibition of TJ restoration, not merely disruption, prolongs barrier loss. TJs recover more rapidly following infection with ΔespG1/G2 than with wild type EPEC, demonstrating that EspG1/G2 perpetuate barrier loss. Although EspG regulates ADP-ribosylation factor (ARF) and p21-activated kinase (PAK), these activities are not necessary for microtubule destruction or perturbation of TJ structure and function. These data strongly support a role for EspG1/G2 and its associated effects on microtubules in delaying the recovery of damaged tight junctions caused by EPEC infection.
Collapse
Affiliation(s)
- Lila G Glotfelty
- Department of Microbiology & Immunology, University of Illinois at Chicago, 835 S. Wolcott, (M/C 790), Chicago, IL, 60612, USA
| | | | | | | | | | | |
Collapse
|
12
|
Glotfelty LG, Zahs A, Iancu C, Shen L, Hecht GA. Microtubules are required for efficient epithelial tight junction homeostasis and restoration. Am J Physiol Cell Physiol 2014; 307:C245-54. [PMID: 24920678 DOI: 10.1152/ajpcell.00336.2013] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Epithelial tight junctions are critical for creating a barrier yet allowing paracellular transport. Although it is well established that the actin cytoskeleton is critical for preserving the dynamic organization of the tight junction and maintaining normal tight junction protein recycling, contributions of microtubules to tight junction organization and function remain undefined. The aim of this study is to determine the role of microtubules in tight junction homeostasis and restoration. Our data demonstrate that occludin traffics on microtubules and that microtubule disruption perturbs tight junction structure and function. Microtubules are also shown to be required for restoring barrier function following Ca(2+) chelation and repletion. These processes are mediated by proteins participating in microtubule minus-end-directed trafficking but not plus-end-directed trafficking. These studies show that microtubules participate in the preservation of epithelial tight junction structure and function and play a vital role in tight junction restoration, thus expanding our understanding of the regulation of tight junction physiology.
Collapse
Affiliation(s)
- Lila G Glotfelty
- Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, Illinois
| | - Anita Zahs
- Departments of Medicine and Microbiology and Immunology, Loyola University Chicago, Maywood, Illinois
| | - Catalin Iancu
- Departments of Medicine and Microbiology and Immunology, Loyola University Chicago, Maywood, Illinois
| | - Le Shen
- University of Chicago, Chicago, Illinois
| | - Gail A Hecht
- Departments of Medicine and Microbiology and Immunology, Loyola University Chicago, Maywood, Illinois; Edward Hines Jr. VA Hospital, Hines, Illinois
| |
Collapse
|
13
|
Baxter SL, Allard DE, Crowl C, Sherwood NT. Cold temperature improves mobility and survival in Drosophila models of autosomal-dominant hereditary spastic paraplegia (AD-HSP). Dis Model Mech 2014; 7:1005-12. [PMID: 24906373 PMCID: PMC4107329 DOI: 10.1242/dmm.013987] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Autosomal-dominant hereditary spastic paraplegia (AD-HSP) is a crippling neurodegenerative disease for which effective treatment or cure remains unknown. Victims experience progressive mobility loss due to degeneration of the longest axons in the spinal cord. Over half of AD-HSP cases arise from loss-of-function mutations in spastin, which encodes a microtubule-severing AAA ATPase. In Drosophila models of AD-HSP, larvae lacking Spastin exhibit abnormal motor neuron morphology and function, and most die as pupae. Adult survivors display impaired mobility, reminiscent of the human disease. Here, we show that rearing pupae or adults at reduced temperature (18°C), compared with the standard temperature of 24°C, improves the survival and mobility of adult spastin mutants but leaves wild-type flies unaffected. Flies expressing human spastin with pathogenic mutations are similarly rescued. Additionally, larval cooling partially rescues the larval synaptic phenotype. Cooling thus alleviates known spastin phenotypes for each developmental stage at which it is administered and, notably, is effective even in mature adults. We find further that cold treatment rescues larval synaptic defects in flies with mutations in Flower (a protein with no known relation to Spastin) and mobility defects in flies lacking Kat60-L1, another microtubule-severing protein enriched in the CNS. Together, these data support the hypothesis that the beneficial effects of cold extend beyond specific alleviation of Spastin dysfunction, to at least a subset of cellular and behavioral neuronal defects. Mild hypothermia, a common neuroprotective technique in clinical treatment of acute anoxia, might thus hold additional promise as a therapeutic approach for AD-HSP and, potentially, for other neurodegenerative diseases.
Collapse
Affiliation(s)
- Sally L Baxter
- Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Denise E Allard
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | | | | |
Collapse
|
14
|
Baas PW, Ahmad FJ. Beyond taxol: microtubule-based treatment of disease and injury of the nervous system. ACTA ACUST UNITED AC 2013; 136:2937-51. [PMID: 23811322 DOI: 10.1093/brain/awt153] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Contemporary research has revealed a great deal of information on the behaviours of microtubules that underlie critical events in the lives of neurons. Microtubules in the neuron undergo dynamic assembly and disassembly, bundling and splaying, severing, and rapid transport as well as integration with other cytoskeletal elements such as actin filaments. These various behaviours are regulated by signalling pathways that affect microtubule-related proteins such as molecular motor proteins and microtubule severing enzymes, as well as a variety of proteins that promote the assembly, stabilization and bundling of microtubules. In recent years, translational neuroscientists have earmarked microtubules as a promising target for therapy of injury and disease of the nervous system. Proof-of-principle has come mainly from studies using taxol and related drugs to pharmacologically stabilize microtubules in animal models of nerve injury and disease. However, concerns persist that the negative consequences of abnormal microtubule stabilization may outweigh the positive effects. Other potential approaches include microtubule-active drugs with somewhat different properties, but also expanding the therapeutic toolkit to include intervention at the level of microtubule regulatory proteins.
Collapse
Affiliation(s)
- Peter W Baas
- 1 Drexel University College of Medicine, Philadelphia, PA, USA
| | | |
Collapse
|
15
|
Dacheux D, Landrein N, Thonnus M, Gilbert G, Sahin A, Wodrich H, Robinson DR, Bonhivers M. A MAP6-related protein is present in protozoa and is involved in flagellum motility. PLoS One 2012; 7:e31344. [PMID: 22355359 PMCID: PMC3280300 DOI: 10.1371/journal.pone.0031344] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2011] [Accepted: 01/06/2012] [Indexed: 12/25/2022] Open
Abstract
In vertebrates the microtubule-associated proteins MAP6 and MAP6d1 stabilize cold-resistant microtubules. Cilia and flagella have cold-stable microtubules but MAP6 proteins have not been identified in these organelles. Here, we describe TbSAXO as the first MAP6-related protein to be identified in a protozoan, Trypanosoma brucei. Using a heterologous expression system, we show that TbSAXO is a microtubule stabilizing protein. Furthermore we identify the domains of the protein responsible for microtubule binding and stabilizing and show that they share homologies with the microtubule-stabilizing Mn domains of the MAP6 proteins. We demonstrate, in the flagellated parasite, that TbSAXO is an axonemal protein that plays a role in flagellum motility. Lastly we provide evidence that TbSAXO belongs to a group of MAP6-related proteins (SAXO proteins) present only in ciliated or flagellated organisms ranging from protozoa to mammals. We discuss the potential roles of the SAXO proteins in cilia and flagella function.
Collapse
Affiliation(s)
- Denis Dacheux
- Microbiologie Fondamentale et Pathogénicité, Université de Bordeaux, UMR 5234, Bordeaux, France
- Microbiologie Fondamentale et Pathogénicité, CNRS, UMR 5234, Bordeaux, France
- Microbiologie Fondamentale et Pathogénicité, Institut Polytechnique de Bordeaux, UMR 5234, Bordeaux, France
| | - Nicolas Landrein
- Microbiologie Fondamentale et Pathogénicité, Université de Bordeaux, UMR 5234, Bordeaux, France
- Microbiologie Fondamentale et Pathogénicité, CNRS, UMR 5234, Bordeaux, France
| | - Magali Thonnus
- Microbiologie Fondamentale et Pathogénicité, Université de Bordeaux, UMR 5234, Bordeaux, France
- Microbiologie Fondamentale et Pathogénicité, CNRS, UMR 5234, Bordeaux, France
| | - Guillaume Gilbert
- Microbiologie Fondamentale et Pathogénicité, Université de Bordeaux, UMR 5234, Bordeaux, France
- Microbiologie Fondamentale et Pathogénicité, CNRS, UMR 5234, Bordeaux, France
| | - Annelise Sahin
- Microbiologie Fondamentale et Pathogénicité, Université de Bordeaux, UMR 5234, Bordeaux, France
- Microbiologie Fondamentale et Pathogénicité, CNRS, UMR 5234, Bordeaux, France
| | - Harald Wodrich
- Microbiologie Fondamentale et Pathogénicité, Université de Bordeaux, UMR 5234, Bordeaux, France
- Microbiologie Fondamentale et Pathogénicité, CNRS, UMR 5234, Bordeaux, France
| | - Derrick R. Robinson
- Microbiologie Fondamentale et Pathogénicité, Université de Bordeaux, UMR 5234, Bordeaux, France
- Microbiologie Fondamentale et Pathogénicité, CNRS, UMR 5234, Bordeaux, France
| | - Mélanie Bonhivers
- Microbiologie Fondamentale et Pathogénicité, Université de Bordeaux, UMR 5234, Bordeaux, France
- Microbiologie Fondamentale et Pathogénicité, CNRS, UMR 5234, Bordeaux, France
- * E-mail:
| |
Collapse
|
16
|
Chen Q, Zhou Z, Zhang L, Wang Y, Zhang YW, Zhong M, Xu SC, Chen CH, Li L, Yu ZP. Tau protein is involved in morphological plasticity in hippocampal neurons in response to BDNF. Neurochem Int 2011; 60:233-42. [PMID: 22226842 DOI: 10.1016/j.neuint.2011.12.013] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2011] [Revised: 12/05/2011] [Accepted: 12/22/2011] [Indexed: 01/24/2023]
Abstract
Tau protein, a microtubule-associated protein involved in a number of neurological disorders such as Alzheimer's disease (AD), may undergo modifications under both physiological and pathological conditions. However, the signaling pathways that couple tau protein to neuronal physiology such as synaptic plasticity have not yet been elucidated. Here we report that tau protein is involved in morphological plasticity in response to brain derived neurotrophic factor (BDNF). Stimulation of the cultured rat hippocampal neurons with BDNF resulted in increased tau protein expression, as detected by Western blotting. Furthermore, tau protein accumulated in the distal region of the neurite when treated with taxol or taxol plus BDNF. The increased tau protein also protected neurons against nocodazole-induced dendrite loss. Moreover, BDNF promoted spine growth as well as tau protein over-expression. Knockdown of tau protein using specific short-hairpin RNA (shRNA) significantly decreased the spine density. And BDNF could not increase the spine density of tau-knockdown neurons. These results highlight a possible role for tau protein in the dynamic rearrangement of cytoskeletal fibers vital for BDNF-induced synaptic plasticity.
Collapse
Affiliation(s)
- Qian Chen
- Key Laboratory of Medical Protection for Electromagnetic Radiation Ministry of Education, Department of Occupational Health, Third Military Medical University, Chongqing 400038, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Hanaya R, Koning E, Ferrandon A, Schweitzer A, Andrieux A, Nehlig A. Deletion of the STOP gene, a microtubule stabilizing factor, leads only to discrete cerebral metabolic changes in mice. J Neurosci Res 2008; 86:813-20. [PMID: 17969102 DOI: 10.1002/jnr.21550] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
In mice, deletion of the STOP protein leads to subtle anatomic changes and induces depleted synaptic vesicle pools, impaired synaptic plasticity, hyperdopaminergy, and major behavioral disorders alleviated by neuroleptics, hence leading to a schizophrenic-like phenotype. In this study, we applied the quantitative autoradiographic [(14)C]2-deoxyglucose technique to study to what extent the basal rate of cerebral glucose utilization in STOP-knockout (STOP-KO) mice occurs in regions where metabolic changes have been reported in schizophrenic patients. Studies were performed on wild-type, heterozygous, and homozygous STOP-KO mice (7-8 per group). Mice were implanted with femoral artery and vein catheters, and cerebral glucose utilization was quantified over 45 min. Compared with that in wild-type mice, glucose utilization in STOP-KO mice was significantly increased in the olfactory cortex, ventromedial and anterolateral hypothalamus, ventral tegmental area, and substantia nigra pars compacta. Nonsignificant increases, ranging between 9% and 19%, were recorded in the whole auditory system, CA1 pyramidal cell layer, and dorsal raphe. Glucose utilization was also significantly increased in heterozygous mice compared with that in wild-type mice in olfactory cortex. These data might reflect hyperdopaminergic activity, olfactory deficits, and sleep disturbances in STOP-KO mice that have also been reported in schizophrenic patients.
Collapse
|
18
|
Wang JZ, Liu F. Microtubule-associated protein tau in development, degeneration and protection of neurons. Prog Neurobiol 2008; 85:148-75. [PMID: 18448228 DOI: 10.1016/j.pneurobio.2008.03.002] [Citation(s) in RCA: 286] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2007] [Revised: 12/29/2007] [Accepted: 03/13/2008] [Indexed: 12/11/2022]
Abstract
As a principal neuronal microtubule-associated protein, tau has been recognized to play major roles in promoting microtubule assembly and stabilizing the microtubules and to maintain the normal morphology of the neurons. Recent studies suggest that tau, upon alternative mRNA splicing and multiple posttranslational modifications, may participate in the regulations of intracellular signal transduction, development and viability of the neurons. Furthermore, tau gene mutations, aberrant mRNA splicing and abnormal posttranslational modifications, such as hyperphosphorylation, have also been found in a number of neurodegenerative disorders, collectively known as tauopathies. Therefore, changes in expression of the tau gene, alternative splicing of its mRNA and its posttranslational modification can modulate the normal architecture and functions of neurons as well as in a situation of tauopathies, such as Alzheimer's disease. The primary aim of this review is to summarize the latest developments and perspectives in our understanding about the roles of tau, especially hyperphosphorylation, in the development, degeneration and protection of neurons.
Collapse
Affiliation(s)
- Jian-Zhi Wang
- Pathophysiology Department, Hubei Provincial Key Laboratory of Neurological Diseases, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China.
| | | |
Collapse
|
19
|
Jaramillo AM, Weil TT, Goodhouse J, Gavis ER, Schupbach T. The dynamics of fluorescently labeled endogenous gurken mRNA in Drosophila. J Cell Sci 2008; 121:887-94. [PMID: 18303053 PMCID: PMC2327291 DOI: 10.1242/jcs.019091] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
During Drosophila oogenesis, the targeted localization of gurken (grk) mRNA leads to the establishment of the axis polarity of the egg. In early stages of oogenesis, grk mRNA is found at the posterior of the oocyte, whereas in the later stages grk mRNA is positioned at the dorsal anterior corner of the oocyte. In order to visualize the real-time localization and anchorage of endogenous grk mRNA in living oocytes, we have utilized the MS2-MCP system. We show that MCP-GFP-tagged endogenous grk mRNA localizes properly within wild-type oocytes and behaves aberrantly in mutant backgrounds. Fluorescence recovery after photobleaching (FRAP) experiments of localized grk mRNA in egg chambers reveal a difference in the dynamics of grk mRNA between young and older egg chambers. grk mRNA particles, as a population, are highly dynamic molecules that steadily lose their dynamic nature as oogenesis progresses. This difference in dynamics is attenuated in K10 and sqd(1) mutants such that mislocalized grk mRNA in older stages is much more dynamic compared with that in wild-type controls. By contrast, in flies with compromised dynein activity, properly localized grk mRNA is much more static. Taken together, we have observed the nature of localized grk mRNA in live oocytes and propose that its maintenance changes from a dynamic to a static process as oogenesis progresses.
Collapse
|
20
|
Hou Z, Li Q, He L, Lim HY, Fu X, Cheung NS, Qi DX, Qi RZ. Microtubule association of the neuronal p35 activator of Cdk5. J Biol Chem 2007; 282:18666-70. [PMID: 17491008 DOI: 10.1074/jbc.c700052200] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cdk5 and its neuronal activator p35 play an important role in neuronal migration and proper development of the brain cortex. We show that p35 binds directly to alpha/beta-tubulin and microtubules. Microtubule polymers but not the alpha/beta-tubulin heterodimer block p35 interaction with Cdk5 and therefore inhibit Cdk5-p35 activity. p25, a neurotoxin-induced and truncated form of p35, does not have tubulin and microtubule binding activities, and Cdk5-p25 is inert to the inhibitory effect of microtubules. p35 displays strong activity in promoting microtubule assembly and inducing formation of microtubule bundles. Furthermore, microtubules stabilized by p35 are resistant to cold-induced disassembly. In cultured cortical neurons, a significant proportion of p35 localizes to microtubules. When microtubules were isolated from rat brain extracts, p35 co-assembled with microtubules, including cold-stable microtubules. Together, these findings suggest that p35 is a microtubule-associated protein that modulates microtubule dynamics. Also, microtubules play an important role in the control of Cdk5 activation.
Collapse
Affiliation(s)
- Zhibo Hou
- Department of Biochemistry, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Drabek K, van Ham M, Stepanova T, Draegestein K, van Horssen R, Sayas CL, Akhmanova A, Ten Hagen T, Smits R, Fodde R, Grosveld F, Galjart N. Role of CLASP2 in microtubule stabilization and the regulation of persistent motility. Curr Biol 2007; 16:2259-64. [PMID: 17113391 DOI: 10.1016/j.cub.2006.09.065] [Citation(s) in RCA: 126] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2006] [Revised: 09/19/2006] [Accepted: 09/21/2006] [Indexed: 10/23/2022]
Abstract
In motile fibroblasts, stable microtubules (MTs) are oriented toward the leading edge of cells. How these polarized MT arrays are established and maintained, and the cellular processes they control, have been the subject of many investigations. Several MT "plus-end-tracking proteins," or +TIPs, have been proposed to regulate selective MT stabilization, including the CLASPs, a complex of CLIP-170, IQGAP1, activated Cdc42 or Rac1, a complex of APC, EB1, and mDia1, and the actin-MT crosslinking factor ACF7. By using mouse embryonic fibroblasts (MEFs) in a wound-healing assay, we show here that CLASP2 is required for the formation of a stable, polarized MT array but that CLIP-170 and an APC-EB1 interaction are not essential. Persistent motility is also hampered in CLASP2-deficient MEFs. We find that ACF7 regulates cortical CLASP localization in HeLa cells, indicating it acts upstream of CLASP2. Fluorescence-based approaches show that GFP-CLASP2 is immobilized in a bimodal manner in regions near cell edges. Our results suggest that the regional immobilization of CLASP2 allows MT stabilization and promotes directionally persistent motility in fibroblasts.
Collapse
Affiliation(s)
- Ksenija Drabek
- Department of Cell Biology and Genetics, Erasmus MC, P.O. Box 1738, 3000 DR Rotterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Ferralli J, Ashby J, Fasler M, Boyko V, Heinlein M. Disruption of microtubule organization and centrosome function by expression of tobacco mosaic virus movement protein. J Virol 2006; 80:5807-21. [PMID: 16731920 PMCID: PMC1472598 DOI: 10.1128/jvi.00254-06] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The movement protein (MP) of Tobacco mosaic virus mediates the cell-to-cell transport of viral RNA through plasmodesmata, cytoplasmic cell wall channels for direct cell-to-cell communication between adjacent cells. Previous in vivo studies demonstrated that the RNA transport function of the protein correlates with its association with microtubules, although the exact role of microtubules in the movement process remains unknown. Since the binding of MP to microtubules is conserved in transfected mammalian cells, we took advantage of available mammalian cell biology reagents and tools to further address the interaction in flat-growing and transparent COS-7 cells. We demonstrate that neither actin, nor endoplasmic reticulum (ER), nor dynein motor complexes are involved in the apparent alignment of MP with microtubules. Together with results of in vitro coprecipitation experiments, these findings indicate that MP binds microtubules directly. Unlike microtubules associated with neuronal MAP2c, MP-associated microtubules are resistant to disruption by microtubule-disrupting agents or cold, suggesting that MP is a specialized microtubule binding protein that forms unusually stable complexes with microtubules. MP-associated microtubules accumulate ER membranes, which is consistent with a proposed role for MP in the recruitment of membranes in infected plant cells and may suggest that microtubules are involved in this process. The ability of MP to interfere with centrosomal gamma-tubulin is independent of microtubule association with MP, does not involve the removal of other tested centrosomal markers, and correlates with inhibition of centrosomal microtubule nucleation activity. These observations suggest that the function of MP in viral movement may involve interaction with the microtubule-nucleating machinery.
Collapse
|
23
|
Cappelletti G, Maggioni MG, Ronchi C, Maci R, Tedeschi G. Protein tyrosine nitration is associated with cold- and drug-resistant microtubules in neuronal-like PC12 cells. Neurosci Lett 2006; 401:159-64. [PMID: 16567039 DOI: 10.1016/j.neulet.2006.03.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2006] [Revised: 03/06/2006] [Accepted: 03/06/2006] [Indexed: 10/24/2022]
Abstract
Among the myriad of cellular functions played by nitric oxide in the brain, there is increasing evidence that nitric oxide might be a primary player in the program of neurogenesis and neuronal differentiation. We have recently reported that tyrosine nitration of proteins is implicated in the signaling pathway triggered by nitric oxide during NGF-induced neuronal differentiation in PC12 cells. The cytoskeleton becomes the main cellular fraction containing nitrotyrosinated proteins, and the cytoskeletal proteins alpha-tubulin and tau are two of the targets. Here, we have studied the association of nitrated proteins with the cytoskeletal fraction in differentiating PC12 cells following exposure to microtubule depolymerising treatments and found that nitration of the cytoskeleton correlates with the increased microtubule stability underlying the progression of neuronal differentiation. These results suggest a novel functional role for nitrated cytoskeletal proteins in the stabilisation of neurites occurring in differentiated neuronal cells.
Collapse
|
24
|
Dougherty GW, Adler HJ, Rzadzinska A, Gimona M, Tomita Y, Lattig MC, Merritt RC, Kachar B. CLAMP, a novel microtubule-associated protein with EB-type calponin homology. CELL MOTILITY AND THE CYTOSKELETON 2005; 62:141-56. [PMID: 16206169 DOI: 10.1002/cm.20093] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Microtubules (MTs) are polymers of alpha and beta tubulin dimers that mediate many cellular functions, including the establishment and maintenance of cell shape. The dynamic properties of MTs may be influenced by tubulin isotype, posttranslational modifications of tubulin, and interaction with microtubule-associated proteins (MAPs). End-binding (EB) family proteins affect MT dynamics by stabilizing MTs, and are the only MAPs reported that bind MTs via a calponin-homology (CH) domain (J Biol Chem 278 (2003) 49721-49731; J Cell Biol 149 (2000) 761-766). Here, we describe a novel 27 kDa protein identified from an inner ear organ of Corti library. Structural homology modeling demonstrates a CH domain in this protein similar to EB proteins. Northern and Western blottings confirmed expression of this gene in other tissues, including brain, lung, and testis. In the organ of Corti, this protein localized throughout distinctively large and well-ordered MT bundles that support the elongated body of mechanically stiff pillar cells of the auditory sensory epithelium. When ectopically expressed in Cos-7 cells, this protein localized along cytoplasmic MTs, promoted MT bundling, and efficiently stabilized MTs against depolymerization in response to high concentration of nocodazole and cold temperature. We propose that this protein, designated CLAMP, is a novel MAP and represents a new member of the CH domain protein family.
Collapse
Affiliation(s)
- Gerard W Dougherty
- Section on Structural Cell Biology, NIDCD, NIH, Bethesda, Maryland 20892-8027, USA
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Tint I, Fischer I, Black M. Acute inactivation of MAP1b in growing sympathetic neurons destabilizes axonal microtubules. ACTA ACUST UNITED AC 2005; 60:48-65. [PMID: 15573412 DOI: 10.1002/cm.20045] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Microtubule-associated-protein 1b (MAP1b) is abundant in neurons actively extending axons. MAP1b is present on microtubules throughout growing axons, but is preferentially concentrated on microtubule polymer in the distal axon and growth cone. Although MAP1b has been implicated in axon growth and pathfinding, its specific functions are not well understood. Biochemical and transfection studies suggest that MAP1b has microtubule-stabilizing activity, but recent studies with neurons genetically deficient in MAP1b have not confirmed this. We have explored MAP1b functions in growing sympathetic neurons using an acute inactivation approach. Neurons without axons were injected with polyclonal MAP1b antibodies and then stimulated to extend axons. Injected cells were compared to controls in terms of axon growth behavior and several properties of axonal microtubules. The injected antibodies rapidly and quantitatively sequestered MAP1b in the cell body, making it unavailable to perform its normal functions. This immunodepletion of MAP1b had no statistically significant effect on axon growth, the amount of microtubule polymer in the axon, and the relative tyrosinated tubulin content of this polymer, and this was true in sympathetic neurons from rat, wild type mice, and tau knockout mice. Thus, robust axon growth can occur in the absence of MAP1b alone or both MAP1b and tau. However, immunodepletion of MAP1b significantly increased the sensitivity of microtubules in the distal axon and growth cone to nocodazole-induced depolymerization. These results indicate that MAP1b has microtubule-stabilizing activity in growing axons. This stabilizing activity may be required for some axonal functions, but it is not necessary for axon growth.
Collapse
Affiliation(s)
- Irina Tint
- Department of Anatomy and Cell Biology, Temple University School of Medicine, Philadelphia, PA 19140, USA.
| | | | | |
Collapse
|
26
|
Liu L, Vo A, McKeehan WL. Specificity of the methylation-suppressed A isoform of candidate tumor suppressor RASSF1 for microtubule hyperstabilization is determined by cell death inducer C19ORF5. Cancer Res 2005; 65:1830-8. [PMID: 15753381 DOI: 10.1158/0008-5472.can-04-3896] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Isoform-specific epigenetic silencing of RASSF1A (3p21.3) by promoter-specific CpG island hypermethylation occurs at high frequency in human tumors, whereas the closely related product of the same gene, RASSF1C, continues to be expressed. Both isoforms in isolation exhibit tumor suppressor properties and we show here similar cellular locations on mitochondria and microtubules, paclitaxel-like microtubule hyperstabilization, disruption of mitosis, and interaction with C19ORF5. We show both have identical but distinct sequence domains for microtubule association and hyperstabilization. C19ORF5 is a hyperstabilized microtubule-specific binding protein of which accumulation causes mitochondrial aggregation and cell death. We report herein that when A or C isoforms of RASSF1 are coexpressed with C19ORF5, the unique N-terminal sequence of RASSF1C prevents it from hyperstabilizing microtubules. This confers specificity on RASSF1A in microtubule hyperstabilization and accumulation of C19ORF5 on microtubules and could underlie a specific effect of hypermethylation-suppressed RASSF1A in tumor suppression.
Collapse
Affiliation(s)
- Leyuan Liu
- Center for Cancer Biology and Nutrition, Institute of Biosciences and Technology, Texas A&M University System Health Science Center, Houston, Texas 77030, USA
| | | | | |
Collapse
|
27
|
Brandt R, Hundelt M, Shahani N. Tau alteration and neuronal degeneration in tauopathies: mechanisms and models. Biochim Biophys Acta Mol Basis Dis 2005; 1739:331-54. [PMID: 15615650 DOI: 10.1016/j.bbadis.2004.06.018] [Citation(s) in RCA: 157] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2004] [Accepted: 06/15/2004] [Indexed: 12/19/2022]
Abstract
Tau becomes characteristically altered both functionally and structurally in several neurodegenerative diseases now collectively called tauopathies. Although increasing evidence supports that alterations of tau may directly cause neuronal degeneration and cell death, the mechanisms, which render tau to become a toxic agent are still unclear. In addition, it is obscure, whether neurodegeneration in tauopathies occurs via a common mechanism or specific differences exist. The aim of this review is to provide an overview about the different experimental models that currently exist, how they are used to determine the role of tau during degeneration and what has been learnt from them concerning the mechanistic role of tau in the disease process. The review begins with a discussion about similarities and differences in tau alteration in paradigmatic tauopathies such as frontotemporal dementia and parkinsonism linked to chromosome 17 (FTDP-17) and Alzheimer's disease (AD). The second part concentrates on major experimental models that have been used to address the mechanistic role of tau during degeneration. This will include a discussion of cell-free assays, culture models using cell lines or dissociated neurons, and animal models. How these models aid to understand (i) alterations in the function of tau as a microtubule-associated protein (MAP), (ii) direct cytotoxicity of altered tau protein, and (iii) the potential role of tau aggregation in neurodegenerative processes will be the central theme of this part. The review ends with concluding remarks about a general mechanistic model of the role of tau alteration and neuronal degeneration in tauopathies and future perspectives.
Collapse
Affiliation(s)
- Roland Brandt
- Department of Neurobiology, University of Osnabrück, Barbarastrasse 11, D-49076 Osnabrück, Germany.
| | | | | |
Collapse
|
28
|
Gómez-Ramos A, Abad X, López Fanarraga M, Bhat R, Zabala JC, Avila J. Expression of an altered form of tau in Sf9 insect cells results in the assembly of polymers resembling Alzheimer's paired helical filaments. Brain Res 2004; 1007:57-64. [PMID: 15064135 DOI: 10.1016/j.brainres.2004.01.071] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/30/2004] [Indexed: 11/19/2022]
Abstract
Tau is the main component of the paired helical filaments (PHFs), aberrant structures that develop in the brain of Alzheimer's disease (AD) patients and other tauopathies like frontotemporal dementia and parkinsonism associated to chromosome 17 (FTDP-17). Previous work has shown that tau overexpression in Sf9 insect cells results in the formation of long cytoplasmatic extensions as a consequence of microtubule stabilization and bundling. Throughout this work, we have taken studies in this system further by overexpression of an altered form of tau characteristic of FTDP-17, which includes three mutations (G272V, P301L and R406W) and biochemically behaves as a hyperphosphorylated form of the protein, with the aim of developing an in vitro model which would favour the formation of tau aggregates. Our results indicate that filaments resembling PHFs assemble when Sf9 cells overexpress FTDP-17 tau. The amount of these polymers is reduced in lithium treated cells which suggests that phosphorylation of FTDP-17 tau by GSK3 induces a conformational change favouring the formation of fibrillar polymers.
Collapse
Affiliation(s)
- Alberto Gómez-Ramos
- Centro de Biología Molecular (CSIC/UAM), Facultad de Ciencias, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| | | | | | | | | | | |
Collapse
|
29
|
Avila J, Lucas JJ, Perez M, Hernandez F. Role of tau protein in both physiological and pathological conditions. Physiol Rev 2004; 84:361-84. [PMID: 15044677 DOI: 10.1152/physrev.00024.2003] [Citation(s) in RCA: 668] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The morphology of a neuron is determined by its cytoskeletal scaffolding. Thus proteins that associate with the principal cytoskeletal components such as the microtubules have a strong influence on both the morphology and physiology of neurons. Tau is a microtubule-associated protein that stabilizes neuronal microtubules under normal physiological conditions. However, in certain pathological situations, tau protein may undergo modifications, mainly through phosphorylation, that can result in the generation of aberrant aggregates that are toxic to neurons. This process occurs in a number of neurological disorders collectively known as tauopathies, the most commonly recognized of which is Alzheimer's disease. The purpose of this review is to define the role of tau protein under normal physiological conditions and to highlight the role of the protein in different tauopathies.
Collapse
Affiliation(s)
- Jesus Avila
- Centro de Biología Molecular "Severo Ochoa", Facultad de Ciencias, Campus de Cantoblanco, Universidad Autónoma de Madrid, 28049 Madrid, Spain.
| | | | | | | |
Collapse
|
30
|
Lim ACB, Tiu SY, Li Q, Qi RZ. Direct Regulation of Microtubule Dynamics by Protein Kinase CK2. J Biol Chem 2004; 279:4433-9. [PMID: 14634006 DOI: 10.1074/jbc.m310563200] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Microtubule dynamics is essential for many vital cellular processes such as morphogenesis and motility. Protein kinase CK2 is a ubiquitous protein kinase that is involved in diverse cellular functions. CK2 holoenzyme is composed of two catalytic alpha or alpha' subunits and two regulatory beta subunits. We show that the alpha subunit of CK2 binds directly to both microtubules and tubulin heterodimers. CK2 holoenzyme but neither of its individual subunits exhibited a potent effect of inducing microtubule assembly and bundling. Moreover, the polymerized microtubules were strongly stabilized by CK2 against cold-induced depolymerization. Interestingly, the kinase activity of CK2 is not required for its microtubule-assembling and stabilizing function because a kinase-inactive mutant of CK2 displayed the same microtubule-assembling activity as the wild-type protein. Knockdown of CK2alpha/alpha' in cultured cells by RNA interference dramatically destabilized their microtubule networks, and the destabilized microtubules were readily destructed by colchicine at a very low concentration. Further, over-expression of chicken CK2alpha or its kinaseinactive mutant in the endogenous CK2alpha/alpha'-depleted cells fully restored the microtubule resistance to the low dose of colchicine. Taken together, CK2 is a microtubule-associated protein that confers microtubule stability in a phosphorylation-independent manner.
Collapse
Affiliation(s)
- Anthony C B Lim
- Institute of Molecular and Cell Biology, 30 Medical Drive, Singapore 117609
| | | | | | | |
Collapse
|
31
|
|
32
|
Andrieux A, Salin PA, Vernet M, Kujala P, Baratier J, Gory-Fauré S, Bosc C, Pointu H, Proietto D, Schweitzer A, Denarier E, Klumperman J, Job D. The suppression of brain cold-stable microtubules in mice induces synaptic defects associated with neuroleptic-sensitive behavioral disorders. Genes Dev 2002; 16:2350-64. [PMID: 12231625 PMCID: PMC187434 DOI: 10.1101/gad.223302] [Citation(s) in RCA: 138] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Neurons contain abundant subsets of highly stable microtubules that resist depolymerizing conditions such as exposure to the cold. Stable microtubules are thought to be essential for neuronal development, maintenance, and function. Previous work has indicated an important role of the microtubule-associated protein STOP in the induction of microtubule cold stability. Here, we developed STOP null mice. These mice were devoid of cold-stable microtubules. In contrast to our expectations, STOP-/- mice had no detectable defects in brain anatomy but showed synaptic defects, with depleted synaptic vesicle pools and impaired synaptic plasticity, associated with severe behavioral disorders. A survey of the effects of psychotropic drugs on STOP-/- mice behavior showed a remarkable and specific effect of long-term administration of neuroleptics in alleviating these disorders. This study demonstrates that STOP is a major factor responsible for the intriguing stability properties of neuronal microtubules and is important for synaptic plasticity. Additionally, STOP-/- mice may yield a pertinent model for study of neuroleptics in illnesses such as schizophrenia, currently thought to result from synaptic defects.
Collapse
Affiliation(s)
- Annie Andrieux
- Laboratoire du Cytosquelette, INSERM U366, Département Réponse et Dynamique Cellulaire, CEA-Grenoble, 38054 Grenoble, France
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Bosc C, Frank R, Denarier E, Ronjat M, Schweitzer A, Wehland J, Job D. Identification of novel bifunctional calmodulin-binding and microtubule-stabilizing motifs in STOP proteins. J Biol Chem 2001; 276:30904-13. [PMID: 11413126 DOI: 10.1074/jbc.m011614200] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Although microtubules are intrinsically labile tubulin assemblies, many cell types contain stable polymers, resisting depolymerizing conditions such as exposure to the cold or the drug nocodazole. This microtubule stabilization is largely due to polymer association with STOP proteins. There are several STOP variants, some with capacity to induce microtubule resistance to both the cold and nocodazole, others with microtubule cold stabilizing activity only. These microtubule-stabilizing effects of STOP proteins are inhibited by calmodulin and we now demonstrate that they are determined by two distinct kinds of repeated modular sequences (Mn and Mc), both containing a calmodulin-binding peptide, but displaying different microtubule stabilizing activities. Mn modules induce microtubule resistance to both the cold and nocodazole when expressed in cells. Mc modules, which correspond to the STOP central repeats, have microtubule cold stabilizing activity only. Mouse neuronal STOPs, which induce both cold and drug resistance in cellular microtubules, contain three Mn modules and four Mc modules. Compared with neuronal STOPs, the non-neuronal F-STOP lacks multiple Mn modules and this corresponds with an inability to induce nocodazole resistance. STOP modules represent novel bifunctional calmodulin-binding and microtubule-stabilizing sequences that may be essential for the generation of the different patterns of microtubule stabilization observed in cells.
Collapse
Affiliation(s)
- C Bosc
- Commissariat à l'Energie Atomique-Laboratoire du Cytosquelette, INSERM Unité 366, Département de Biologie Moléculaire et Structurale/Cytosquelette, Commissariat à l'Energie Atomique-Grenoble, F-38054 Grenoble cedex 9, France.
| | | | | | | | | | | | | |
Collapse
|
34
|
Krylova O, Messenger MJ, Salinas PC. Dishevelled-1 regulates microtubule stability: a new function mediated by glycogen synthase kinase-3beta. J Cell Biol 2000; 151:83-94. [PMID: 11018055 PMCID: PMC2189803 DOI: 10.1083/jcb.151.1.83] [Citation(s) in RCA: 105] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Dishevelled has been implicated in the regulation of cell fate decisions, cell polarity, and neuronal function. However, the mechanism of Dishevelled action remains poorly understood. Here we examine the cellular localization and function of the mouse Dishevelled protein, DVL-1. Endogenous DVL-1 colocalizes with axonal microtubules and sediments with brain microtubules. Expression of DVL-1 protects stable microtubules from depolymerization by nocodazole in both dividing cells and differentiated neuroblastoma cells. Deletion analyses reveal that the PDZ domain, but not the DEP domain, of DVL-1 is required for microtubule stabilization. The microtubule stabilizing function of DVL-1 is mimicked by lithium-mediated inhibition of glycogen synthase kinase-3beta (GSK-3beta) and blocked by expression of GSK-3beta. These findings suggest that DVL-1, through GSK-3beta, can regulate microtubule dynamics. This new function of DVL-1 in controlling microtubule stability may have important implications for Dishevelled proteins in regulating cell polarity.
Collapse
Affiliation(s)
- O Krylova
- The Randall Institute, King's College London, London, United Kingdom
| | | | | |
Collapse
|
35
|
MAP2c confers drug stability to microtubulesin vivo. CHINESE SCIENCE BULLETIN-CHINESE 1999. [DOI: 10.1007/bf03182701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
36
|
Yang Y, Bauer C, Strasser G, Wollman R, Julien JP, Fuchs E. Integrators of the cytoskeleton that stabilize microtubules. Cell 1999; 98:229-38. [PMID: 10428034 DOI: 10.1016/s0092-8674(00)81017-x] [Citation(s) in RCA: 150] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Sensory neurodegeneration occurs in mice defective in BPAG1, a gene encoding cytoskeletal linker proteins capable of anchoring neuronal intermediate filaments to actin cytoskeleton. While BPAG1 null mice fail to anchor neurofilaments (NFs), BPAG1/NF null mice still degenerate in the absence of NFs. We report a novel neural splice form that lacks the actin-binding domain and instead binds and stabilizes microtubules. This interaction is functionally important; in mice and in vitro, neurons lacking BPAG1 display short, disorganized, and unstable microtubules defective in axonal transport. Ironically, BPAG1 neural isoforms represent microtubule-associated proteins that when absent lead to devastating consequences. Moreover, BPAG1 can functionally account for the extraordinary stability of axonal microtubules necessary for transport over long distances. Its isoforms interconnect all three cytoskeletal networks, a feature apparently central to neuronal survival.
Collapse
Affiliation(s)
- Y Yang
- Howard Hughes Medical Institute, Department of Molecular Genetics and Cell Biology, Chicago, Illinois 60637, USA
| | | | | | | | | | | |
Collapse
|
37
|
Francis F, Koulakoff A, Boucher D, Chafey P, Schaar B, Vinet MC, Friocourt G, McDonnell N, Reiner O, Kahn A, McConnell SK, Berwald-Netter Y, Denoulet P, Chelly J. Doublecortin is a developmentally regulated, microtubule-associated protein expressed in migrating and differentiating neurons. Neuron 1999; 23:247-56. [PMID: 10399932 DOI: 10.1016/s0896-6273(00)80777-1] [Citation(s) in RCA: 790] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Recently, we and others reported that the doublecortin gene is responsible for X-linked lissencephaly and subcortical laminar heterotopia. Here, we show that Doublecortin is expressed in the brain throughout the period of corticogenesis in migrating and differentiating neurons. Immunohistochemical studies show its localization in the soma and leading processes of tangentially migrating neurons, and a strong axonal labeling is observed in differentiating neurons. In cultured neurons, Doublecortin expression is highest in the distal parts of developing processes. We demonstrate by sedimentation and microscopy studies that Doublecortin is associated with microtubules (MTs) and postulate that it is a novel MAP. Our data suggest that the cortical dysgeneses associated with the loss of Doublecortin function might result from abnormal cytoskeletal dynamics in neuronal cell development.
Collapse
Affiliation(s)
- F Francis
- U129 de l'INSERM, Institut Cochin de Génétique Moléculaire, Paris.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Shea TB, Ekinci FJ. Influence of phospholipids and sequential kinase activities on tau in vitro. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1999; 446:181-201. [PMID: 10079844 DOI: 10.1007/978-1-4615-4869-0_11] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- T B Shea
- Department of Biological Sciences, University of Massachusetts at Lowell 01854, USA
| | | |
Collapse
|
39
|
Biernat J, Mandelkow EM. The development of cell processes induced by tau protein requires phosphorylation of serine 262 and 356 in the repeat domain and is inhibited by phosphorylation in the proline-rich domains. Mol Biol Cell 1999; 10:727-40. [PMID: 10069814 PMCID: PMC25198 DOI: 10.1091/mbc.10.3.727] [Citation(s) in RCA: 107] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/1998] [Accepted: 01/04/1999] [Indexed: 11/11/2022] Open
Abstract
The differentiation of neurons and the outgrowth of neurites depends on microtubule-associated proteins such as tau protein. To study this process, we have used the model of Sf9 cells, which allows efficient transfection with microtubule-associated proteins (via baculovirus vectors) and observation of the resulting neurite-like extensions. We compared the phosphorylation of tau23 (the embryonic form of human tau) with mutants in which critical phosphorylation sites were deleted by mutating Ser or Thr residues into Ala. One can broadly distinguish two types of sites, the KXGS motifs in the repeats (which regulate the affinity of tau to microtubules) and the SP or TP motifs in the domains flanking the repeats (which contain epitopes for antibodies diagnostic of Alzheimer's disease). Here we report that both types of sites can be phosphorylated by endogenous kinases of Sf9 cells, and that the phosphorylation pattern of the transfected tau is very similar to that of neurons, showing that Sf9 cells can be regarded as an approximate model for the neuronal balance between kinases and phosphatases. We show that mutations in the repeat domain and in the flanking domains have opposite effects. Mutations of KXGS motifs in the repeats (Ser262, 324, and 356) strongly inhibit the outgrowth of cell extensions induced by tau, even though this type of phosphorylation accounts for only a minor fraction of the total phosphate. This argues that the temporary detachment of tau from microtubules (by phosphorylation at KXGS motifs) is a necessary condition for establishing cell polarity at a critical point in space or time. Conversely, the phosphorylation at SP or TP motifs represents the majority of phosphate (>80%); mutations in these motifs cause an increase in cell extensions, indicating that this type of phosphorylation retards the differentiation of the cells.
Collapse
Affiliation(s)
- J Biernat
- Max-Planck-Unit for Structural Molecular Biology, D-22603 Hamburg, Germany
| | | |
Collapse
|
40
|
Abstract
Microtubules assembled from pure tubulin in vitro are labile, rapidly depolymerized upon exposure to the cold. In contrast, in a number of cell types, cytoplasmic microtubules are stable, resistant to prolonged cold exposure. During the past years, the molecular basis of this microtubule stabilization in cells has been elucidated. Cold stability is due to polymer association with different variants of a calmodulin-regulated protein, STOP protein. The dynamic and hence the physiological consequences of STOP association with microtubules vary in different tissues. In neurons, STOP seems almost permanently associated with microtubules. STOP is apparently a major determinant of microtubule turnover in such cells and is required for normal neuronal differentiation. In cycling cells, only minor amounts of STOP are associated with interphase microtubules and STOP does not measurably affects microtubule dynamics. However, STOP is associated with mitotic microtubules in the spindle. Recent results indicate that such an association could be vital for meiosis and for the long-term fidelity of the mitotic process.
Collapse
Affiliation(s)
- C Bosc
- Institut National de la Santé Et de la Recherche Médicale, INSERM Unité 366, Département de Biologie Moléculaire et Structurale, Laboratoire du Cytosquelette, Commissariat à l'Energie Atomique de Grenoble, Grenoble , France
| | | | | | | |
Collapse
|
41
|
Affiliation(s)
- P W Baas
- Department of Anatomy, The University of Wisconsin Medical School, Madison 53706, USA.
| |
Collapse
|
42
|
Guillaud L, Bosc C, Fourest-Lieuvin A, Denarier E, Pirollet F, Lafanechère L, Job D. STOP proteins are responsible for the high degree of microtubule stabilization observed in neuronal cells. J Cell Biol 1998; 142:167-79. [PMID: 9660871 PMCID: PMC2133033 DOI: 10.1083/jcb.142.1.167] [Citation(s) in RCA: 101] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Neuronal differentiation and function require extensive stabilization of the microtubule cytoskeleton. Neurons contain a large proportion of microtubules that resist the cold and depolymerizing drugs and exhibit slow subunit turnover. The origin of this stabilization is unclear. Here we have examined the role of STOP, a calmodulin-regulated protein previously isolated from cold-stable brain microtubules. We find that neuronal cells express increasing levels of STOP and of STOP variants during differentiation. These STOP proteins are associated with a large proportion of microtubules in neuronal cells, and are concentrated on cold-stable, drug-resistant, and long-lived polymers. STOP inhibition abolishes microtubule cold and drug stability in established neurites and impairs neurite formation. Thus, STOP proteins are responsible for microtubule stabilization in neurons, and are apparently required for normal neurite formation.
Collapse
Affiliation(s)
- L Guillaud
- CEA-Laboratoire du Cytosquelette, INSERM Unité 366, DBMS/CS, CEA-Grenoble, 38054 Grenoble Cedex 9, France
| | | | | | | | | | | | | |
Collapse
|
43
|
Denarier E, Fourest-Lieuvin A, Bosc C, Pirollet F, Chapel A, Margolis RL, Job D. Nonneuronal isoforms of STOP protein are responsible for microtubule cold stability in mammalian fibroblasts. Proc Natl Acad Sci U S A 1998; 95:6055-60. [PMID: 9600916 PMCID: PMC27584 DOI: 10.1073/pnas.95.11.6055] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/1998] [Accepted: 03/23/1998] [Indexed: 02/07/2023] Open
Abstract
A number of cycling mammalian cells, such as NIH 3T3, contain abundant subsets of cold-stable microtubules. The origin of such microtubule stabilization in nonneuronal cells is unknown. We have previously described a neuronal protein, stable tubule-only polypeptide (STOP), that binds to microtubules and induces cold stability. We find that NIH 3T3 fibroblasts contain a major 42-kDa isoform of STOP (fibroblastic STOP, F-STOP). F-STOP contains the central repeats characteristic of brain STOP but shows extensive deletions of N- and C-terminal protein domains that are present in brain STOP. These deletions arise from differences in STOP RNA splicing. Despite such deletions, F-STOP has full microtubule stabilizing activity. F-STOP accumulates on cold-stable microtubules of interphase arrays and is present on stable microtubules within the mitotic spindle of NIH 3T3 cells. STOP inhibition by microinjection of affinity-purified STOP central repeat antibodies into NIH 3T3 cells abolishes both interphase and spindle microtubule cold stability. Similar results were obtained with Rat2 cells. These results show that STOP proteins have nonneuronal isoforms that are responsible for the microtubule cold stability observed in mammalian fibroblasts.
Collapse
Affiliation(s)
- E Denarier
- Commissariat à l'Energie Atomique, Laboratoire du Cytosquelette, Institut National de la Santé et de la Recherche Médicale Unité 366, 17 rue des Martyrs, 38054 Grenoble cedex 9, France.
| | | | | | | | | | | | | |
Collapse
|
44
|
Nabi IR, Guay G, Simard D. AMF-R tubules concentrate in a pericentriolar microtubule domain after MSV transformation of epithelial MDCK cells. J Histochem Cytochem 1997; 45:1351-63. [PMID: 9313797 DOI: 10.1177/002215549704501004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Autocrine motility factor receptor (AMF-R) is localized to an intracellular microtubule-associated membranous organelle, the AMF-R tubule. In well-spread untransformed MDCK epithelial cells, the microtubules originate from a broad perinuclear region and AMF-R tubules extend throughout the cytoplasm of the cells. In Moloney sarcoma virus (mos)-transformed MDCK (MSV-MDCK) cells, microtubules accumulate around the centrosome, forming a microtubule domain rich in stabilized detyrosinated microtubules. AMF-R tubules are quantitatively associated with this pericentriolar microtubule domain and the rough endoplasmic reticulum and lysosomes also co-distribute with the pericentriolar mass of microtubules. The Golgi apparatus is closely associated with the microtubule organizing center (MTOC) within the juxtanuclear mass of AMF-R tubules, and no co-localization of AMF-R tubules with the Golgi marker beta-COP could be detected by confocal microscopy. After nocodazole treatment and washout, microtubule nucleation occurs exclusively at the centrosome of MSV-MDCK cells, and only after microtubule extension to the cell periphery does the microtubule cytoskeleton reorganize to generate the pericentriolar microtubule domain after 30-60 min. AMF-R tubules dispersed by nocodazole treatment concentrate in the pericentriolar region in parallel with the reorganization of the microtubule cytoskeleton. MSV transformation of epithelial MDCK cells results in the stabilization of a pericentriolar microtubule domain responsible for the concentration and polarized distribution of AMF-R tubules.
Collapse
Affiliation(s)
- I R Nabi
- Département d'Anatomie, Université de Montréal, Québec, Canada
| | | | | |
Collapse
|
45
|
Maxwell WL, Graham DI. Loss of axonal microtubules and neurofilaments after stretch-injury to guinea pig optic nerve fibers. J Neurotrauma 1997; 14:603-14. [PMID: 9337123 DOI: 10.1089/neu.1997.14.603] [Citation(s) in RCA: 101] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Axonal swellings, characterized by focal accumulations of membranous organelles at presumed sites of interrupted axonal transport, occur in diffuse axonal injury (DAI) in human, blunt head injury and in animal models of nondisruptive axonal injury. Membranous organelles are transported by fast axonal transport in association with microtubules. Although loss of microtubules has been documented at levels of injury severe enough to result in permeabilization of the axolemma to tracers such as horseradish peroxidase, there has been no detailed analysis of responses by microtubules in less severe or milder forms of nondisruptive axonal injury. To test the hypothesis that in less severe forms of axonal injury there is a rapid response by axonal microtubules that might provide an explanation for loss of fast axonal transport, we have carried out a morphometric analysis of microtubules in CNS axons after stretch-injury. There is loss of microtubules at nodes of Ranvier with nodal blebs within 15 min of injury, and in internodal axonal swellings between 2 and 4 h. There is a return to control values at nodes of Ranvier by 4 h, and at the internode by 24 h. There is no loss of microtubules at paranodes, although there is a reduction in their density in the first 2 h after injury. The greatest loss of microtubules occurs at sites of axolemma infolding. Hypothetical mechanisms that might lead to this loss resulting in focal disruption of fast axonal transport and the formation of axonal swellings are discussed.
Collapse
Affiliation(s)
- W L Maxwell
- Laboratory of Human Anatomy, Institute of Biomedical and Life Sciences, University of Glasgow, U.K
| | | |
Collapse
|
46
|
Maxwell WL, Povlishock JT, Graham DL. A mechanistic analysis of nondisruptive axonal injury: a review. J Neurotrauma 1997; 14:419-40. [PMID: 9257661 DOI: 10.1089/neu.1997.14.419] [Citation(s) in RCA: 390] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Axons are particularly at risk in human diffuse head injury. Use of immunocytochemical labeling techniques has recently demonstrated that axonal injury (AI) and the ensuing reactive axonal change is, probably, more widespread and occurs over a longer posttraumatic time in the injured brain than had previously been appreciated. But the characterization of morphologic or reactive changes occurring after nondisruptive AI has largely been defined from animal models. The comparability of AI in animal models to human diffuse AI (DAI) is discussed and the conclusion drawn that, although animal models allow the analysis of morphologic changes, the spatial distribution within the brain and the time course of reactive axonal change differs to some extent both between species and with the mode of brain injury. Thus, the majority of animal models do not reproduce exactly the extent and time course of AI that occurs in human DAI. Nonetheless, these studies provide good insight into reactive axonal change. In addition, there is developing in the literature considerable variance in the terminology applied to injured axons or nerve fibers. We explain our current understanding of a number of terms now present in the literature and suggest the adoption of a common terminology. Recent work has provided a consensus that reactive axonal change is linked to pertubation of the axolemma resulting in disruption of ionic homeostatic mechanisms within injured nerve fibers. But quantitative data for changes for different ion species is lacking and is required before a better definition of this homeostatic disruption may be provided. Recent studies of responses by the axonal cytoskeleton after nondisruptive AI have demonstrated loss of axonal microtubules over a period up to 24 h after injury. The biochemical mechanisms resulting in loss of microtubules are, hypothetically, mediated both by posttraumatic influx of calcium and activation of calmodulin. This loss results in focal accumulation of membranous organelles in parts of the length of damaged axons where the axonal diameter is greater than normal to form axonal swellings. We distinguish, on morphologic grounds, between axonal swellings and axonal bulbs. There is also a growing consensus regarding responses by neurofilaments after nondisruptive AI. Initially, and rapidly after injury, there is reduced spacing or compaction of neurofilaments. This compaction is stable over at least 6 h and results from the loss or collapse of neurofilament sidearms but retention of the filamentous form of the neurofilaments. We posit that sidearm loss may be mediated either through proteolysis of sidearms via activation of microM calpain or sidearm dephosphorylation via posttraumatic, altered interaction between protein phosphatases and kinase(s), or a combination of these two, after calcium influx, which occurs, at least in part, as a result of changes in the structure and functional state of the axolemma. Evidence for proteolysis of neurofilaments has been obtained recently in the optic nerve stretch injury model and is correlated with disruption of the axolemma. But the earliest posttraumatic interval at which this was obtained was 4 h. Clearly, therefore, no evidence has been obtained to support the hypothesis that there is rapid, posttraumatic proteolysis of the whole axonal cytoskeleton mediated by calpains. Rather, we hypothesize that such proteolysis occurs only when intra-axonal calcium levels allow activation of mM calpain and suggest that such proteolysis, resulting in the loss of the filamentous structure of neurofilaments occurs either when the amount of deformation of the axolemma is so great at the time of injury to result in primary axotomy or, more commonly, is a terminal degenerative change that results in secondary axotomy or disconnection some hours after injury.
Collapse
Affiliation(s)
- W L Maxwell
- Laboratory of Human Anatomy, Institute of Biomedical and Life Sciences, University of Glasgow, United Kingdom
| | | | | |
Collapse
|
47
|
Preuss U, Biernat J, Mandelkow EM, Mandelkow E. The ‘jaws’ model of tau-microtubule interaction examined in CHO cells. J Cell Sci 1997; 110 ( Pt 6):789-800. [PMID: 9099953 DOI: 10.1242/jcs.110.6.789] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Tau is a neuronal microtubule-associated protein which promotes microtubule assembly. The C-terminal half of the protein contains three or four tandem repeats that are often considered to be the microtubule binding domain. This view is in conflict with in vitro data showing that the repeat domain binds only weakly to microtubules while the domains flanking the repeats bind strongly, even in the absence of the repeats. This has lead us to propose a ‘jaws’ model of tau whereby the regions flanking the repeats are considered as targetting domains, responsible for positioning tau on the microtubule surface, and the repeats which act as catalytic domains for microtubule assembly. To examine whether this model is appropriate in vivo we generated recombinant tau isoforms and microinjected them into CHO cells. Immunofluorescence microscopy of microtubules and tau shows that binding to microtubules, stabilization of microtubules and formation of bundles is not achieved by tau constructs comprising individual domains, but requires the combination of the flanking regions and the repeat domain. The results show that the jaws model describes the interactions between tau and microtubules in living cells. Since the targetting and catalytic domains are affected differently by phosphorylation the model provides a basis for studying the regulation of the interaction between microtubules and tau or other microtubule-associated proteins.
Collapse
Affiliation(s)
- U Preuss
- Max-Planck-Unit for Structural Molecular Biology, Hamburg, Germany.
| | | | | | | |
Collapse
|
48
|
Hoffman PN, Luduena RF. Changes in the isotype composition of beta-tubulin delivered to regenerating sensory axons by slow axonal transport. Brain Res 1996; 742:329-33. [PMID: 9117412 DOI: 10.1016/s0006-8993(96)00980-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
beta-Tubulin is encoded by a family of genes that produces at least five distinct polypeptide isotypes in neurons. Two of these isotypes (i.e., classes II and III) preferentially accumulate in axons, and the expression of one of them (i.e., class II) correlates closely with axonal outgrowth during development and regeneration. In dorsal root ganglion (DRG) neurons, expression of the class II isotype declines to relatively low levels during early postnatal development, and increases dramatically in mature neurons during axon regeneration (i.e., to a level comparable to that in developing neurons). In contrast, expression of the class III isotype, which rises slightly during postnatal development, increases much less than the class II isotype during regeneration. We now document that these changes in gene expression are associated with an increase in the relative amount of class II as compared to class III beta-tubulin delivered to regenerating sensory axons of rat sciatic nerve by slow axonal transport. In this study, the tubulin transported in sensory axons was labeled by injecting [35S]methionine into the L5 DRG either 7 or 14 days after crushing the sciatic nerve; pulse-labeled class II and class III beta-tubulin were identified using immunoprecipitation. This change in the isotype composition of beta-tubulin transported in regenerating axons may influence outgrowth by altering the assembly and dynamic properties of axonal microtubules.
Collapse
Affiliation(s)
- P N Hoffman
- Department of Ophthalmology, The Johns Hopkins School of Medicine, Baltimore, MD 21287-6953, USA
| | | |
Collapse
|
49
|
Lovestone S, Hartley CL, Pearce J, Anderton BH. Phosphorylation of tau by glycogen synthase kinase-3 beta in intact mammalian cells: the effects on the organization and stability of microtubules. Neuroscience 1996; 73:1145-57. [PMID: 8809831 DOI: 10.1016/0306-4522(96)00126-1] [Citation(s) in RCA: 155] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The phosphorylation state of tau changes during neurodevelopment and highly phosphorylated tau accumulates in the paired helical filaments found in Alzheimer's disease. In non-neuronal mammalian cells transiently expressed tau is predominantly not phosphorylated at sites known to be phosphorylated in paired helical filaments. However this pattern of phosphorylation is induced by both glycogen synthase kinase-3 alpha and -3 beta and here we show that this results in a change in the intracellular properties of tau. Within cells tau is bound to cytoskeletal structures and causes changes in cellular cytoarchitecture with the induction of thick and stable microtubule bundles. This morphology is lost when tau is co-expressed with glycogen synthase kinase-3 beta; microtubules become less stable and are not bound by tau. Independently of any direct or indirect effects on tau, glycogen synthase kinase-3 beta induces some but relatively slight changes in microtubule organization with the loss of a prominent centrosomal microtubular origin. The cytoskeleton is critical to cell function and within post-mitotic neurons has a highly specialized structure induced, in part, by the neuronal-specific microtubule-associated proteins such as tau. In vitro studies have suggested that the properties of tau are regulated by phosphorylation as highly phosphorylated tau does not promote tubulin polymer assembly. We have demonstrated, in intact cells, that tau highly phosphorylated in the presence of glycogen synthase kinase-3 beta loses the properties of microtubule binding and stabilization, suggesting that regulation of tau phosphorylation by this enzyme might be an important mechanism whereby cytoskeletal function is modulated during neurodevelopment and lost in neurodegeneration.
Collapse
|
50
|
Haendel MA, Bollinger KE, Baas PW. Cytoskeletal changes during neurogenesis in cultures of avain neural crest cells. JOURNAL OF NEUROCYTOLOGY 1996; 25:289-301. [PMID: 8793733 DOI: 10.1007/bf02284803] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Neural crest cells are motile and mitotic, whereas their neuronal derivatives are terminally post-mitotic and consist of stationary cell body from which processes grow. The present study documents changes in the cytoskeleton that occur during neurogenesis in cultures of avain neural crest cells. The undifferentiated neural crest cells contain dense bundles of actin filaments throughout their cytoplasm, and a splayed array of microtubules attached to the centrosome. In newly differentiating neurons, the actin bundles are disrupted and most of the remaining actin filaments are reorganized into a cortical layer underlying the plasma membrane of the cell body and processes. Microtubules are more abundant in newly-differentiating neurons than in the undifferentiated cells, and individual microtubules can be seen dissociated from the centrosome. Neuron-specific beta-III tubulin appears in some crest cells prior to cessation of motility and cell division, and expression increases with total microtubule levels during neurogenesis. To investigate how these early cytoskeletal changes might contribute to alterations in morphology during neurogenesis, we have disrupted the cytoskeleton with pharmacologic agents. Microfilament disruption by cytochalasin immediately arrests the movement of neural crest cells and causes them to round-up, but does not significantly change the morphology of the immature neurons. Microtubule depolymerization by nocodazole slows the movement of undifferentiated cells and causes retraction of processes extended by the immature neurons. These results suggest that changes in the actin and microtubule arrays within neural crest cells govern distinct aspects of their morphogenesis into neurons.
Collapse
Affiliation(s)
- M A Haendel
- Department of Anatomy, University of Wisconsin Medical School, Madison 53706, USA
| | | | | |
Collapse
|