1
|
Movrin V, Krajnc M. Initiation of epithelial wound closure by an active instability at the purse string. Biophys J 2024:S0006-3495(24)00717-3. [PMID: 39543877 DOI: 10.1016/j.bpj.2024.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 07/29/2024] [Accepted: 11/08/2024] [Indexed: 11/17/2024] Open
Abstract
The ability of biological systems to withstand and recover from various disruptions, such as spontaneous genetic mutations and environmental damage, largely relies on intricate feedback mechanisms. We theoretically study the mechanical response of an epithelial tissue facing damage in the form of a circular wound. Our model describes a feedback loop between the generation of active forces in the actomyosin and tissue mechanics, described by the vertex model. While the exact dynamics of wound closure may be influenced by several biophysical mechanisms that interplay in a nontrivial way, our findings suggest that the closure may initiate as an active instability, triggered by a reduced myosin turnover rate at the wound's perimeter. We explore the interplay between myosin dynamics and the elastic properties of the tissue, elucidating their collective role in determining a wound's loss of stability, leading to the initiation of the closure process.
Collapse
Affiliation(s)
- Vita Movrin
- Jožef Stefan Institute, Ljubljana, Slovenia; Faculty of Mathematics and Physics, University of Ljubljana, Ljubljana, Slovenia
| | | |
Collapse
|
2
|
Huang X, Su Z, Xie XJ. The Enigmas of Tissue Closure: Inspiration from Drosophila. Curr Issues Mol Biol 2024; 46:8710-8725. [PMID: 39194731 DOI: 10.3390/cimb46080514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/26/2024] [Accepted: 08/07/2024] [Indexed: 08/29/2024] Open
Abstract
Hollow structures are essential for development and physiological activity. The construction and maintenance of hollow structures never cease throughout the lives of multicellular animals. Epithelial tissue closure is the main strategy used by living organisms to build hollow structures. The high diversity of hollow structures and the simplicity of their development in Drosophila make it an excellent model for the study of hollow structure morphogenesis. In this review, we summarize the tissue closure processes in Drosophila that give rise to or maintain hollow structures and highlight the molecular mechanisms and distinct cell biology involved in these processes.
Collapse
Affiliation(s)
- Xiaoying Huang
- Department of Histology and Embryology, Shantou University Medical College, Shantou 515041, China
- Cancer Research Center, Shantou University Medical College, Shantou 515041, China
| | - Zhongjing Su
- Department of Histology and Embryology, Shantou University Medical College, Shantou 515041, China
- Cancer Research Center, Shantou University Medical College, Shantou 515041, China
| | - Xiao-Jun Xie
- Department of Histology and Embryology, Shantou University Medical College, Shantou 515041, China
- Cancer Research Center, Shantou University Medical College, Shantou 515041, China
| |
Collapse
|
3
|
Mao Y, Wickström SA. Mechanical state transitions in the regulation of tissue form and function. Nat Rev Mol Cell Biol 2024; 25:654-670. [PMID: 38600372 DOI: 10.1038/s41580-024-00719-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/26/2024] [Indexed: 04/12/2024]
Abstract
From embryonic development, postnatal growth and adult homeostasis to reparative and disease states, cells and tissues undergo constant changes in genome activity, cell fate, proliferation, movement, metabolism and growth. Importantly, these biological state transitions are coupled to changes in the mechanical and material properties of cells and tissues, termed mechanical state transitions. These mechanical states share features with physical states of matter, liquids and solids. Tissues can switch between mechanical states by changing behavioural dynamics or connectivity between cells. Conversely, these changes in tissue mechanical properties are known to control cell and tissue function, most importantly the ability of cells to move or tissues to deform. Thus, tissue mechanical state transitions are implicated in transmitting information across biological length and time scales, especially during processes of early development, wound healing and diseases such as cancer. This Review will focus on the biological basis of tissue-scale mechanical state transitions, how they emerge from molecular and cellular interactions, and their roles in organismal development, homeostasis, regeneration and disease.
Collapse
Affiliation(s)
- Yanlan Mao
- Laboratory for Molecular Cell Biology, University College London, London, UK.
- Institute for the Physics of Living Systems, University College London, London, UK.
| | - Sara A Wickström
- Department of Cell and Tissue Dynamics, Max Planck Institute for Molecular Biomedicine, Münster, Germany.
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
- Helsinki Institute of Life Science, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
4
|
Ruhoff VT, Leijnse N, Doostmohammadi A, Bendix PM. Filopodia: integrating cellular functions with theoretical models. Trends Cell Biol 2024:S0962-8924(24)00113-2. [PMID: 38969554 DOI: 10.1016/j.tcb.2024.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/24/2024] [Accepted: 05/27/2024] [Indexed: 07/07/2024]
Abstract
Filopodia, widely distributed on cell surfaces, are distinguished by their dynamic extensions, playing pivotal roles in a myriad of biological processes. Their functions span from mechanosensing and guidance to cell-cell communication during cellular organization in the early embryo. Filopodia have significant roles in pathogenic processes, such as cancer invasion and viral dissemination. Molecular mapping of the filopodome has revealed generic components essential for filopodia functions. In parallel, recent insights into biophysical mechanisms governing filopodia dynamics have provided the foundation for broader investigations of filopodia's biological functions. We highlight recent discoveries of engagement of filopodia in various stages of development and pathogenesis and present an overview of intricate molecular and physical features of these cellular structures across a spectrum of cellular activities.
Collapse
Affiliation(s)
| | - Natascha Leijnse
- Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, 2100 København Ø, Denmark
| | - Amin Doostmohammadi
- Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, 2100 København Ø, Denmark
| | - Poul Martin Bendix
- Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, 2100 København Ø, Denmark.
| |
Collapse
|
5
|
Martelli F, Lin J, Mele S, Imlach W, Kanca O, Barlow CK, Paril J, Schittenhelm RB, Christodoulou J, Bellen HJ, Piper MDW, Johnson TK. Identifying potential dietary treatments for inherited metabolic disorders using Drosophila nutrigenomics. Cell Rep 2024; 43:113861. [PMID: 38416643 PMCID: PMC11037929 DOI: 10.1016/j.celrep.2024.113861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 12/09/2023] [Accepted: 02/08/2024] [Indexed: 03/01/2024] Open
Abstract
Inherited metabolic disorders are a group of genetic conditions that can cause severe neurological impairment and child mortality. Uniquely, these disorders respond to dietary treatment; however, this option remains largely unexplored because of low disorder prevalence and the lack of a suitable paradigm for testing diets. Here, we screened 35 Drosophila amino acid disorder models for disease-diet interactions and found 26 with diet-altered development and/or survival. Using a targeted multi-nutrient array, we examine the interaction in a model of isolated sulfite oxidase deficiency, an infant-lethal disorder. We show that dietary cysteine depletion normalizes their metabolic profile and rescues development, neurophysiology, behavior, and lifelong fly survival, thus providing a basis for further study into the pathogenic mechanisms involved in this disorder. Our work highlights the diet-sensitive nature of metabolic disorders and establishes Drosophila as a valuable tool for nutrigenomic studies for informing potential dietary therapies.
Collapse
Affiliation(s)
- Felipe Martelli
- School of Biological Sciences, Monash University, Clayton, VIC 3800, Australia
| | - Jiayi Lin
- School of Biological Sciences, Monash University, Clayton, VIC 3800, Australia
| | - Sarah Mele
- School of Biological Sciences, Monash University, Clayton, VIC 3800, Australia
| | - Wendy Imlach
- Department of Physiology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Oguz Kanca
- Department of Molecular and Human Genetics and Duncan Neurological Research Institute at Texas Children's Hospital, Baylor College of Medicine, Houston, TX, USA
| | - Christopher K Barlow
- Monash Proteomics & Metabolomics Facility, Monash Biomedicine Discovery Institute & Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
| | - Jefferson Paril
- School of BioSciences, The University of Melbourne, Melbourne, VIC 3052, Australia
| | - Ralf B Schittenhelm
- Monash Proteomics & Metabolomics Facility, Monash Biomedicine Discovery Institute & Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
| | - John Christodoulou
- Murdoch Children's Research Institute, Parkville, VIC 3052, Australia; Department of Paediatrics, The University of Melbourne, Melbourne, VIC 3052, Australia
| | - Hugo J Bellen
- Department of Molecular and Human Genetics and Duncan Neurological Research Institute at Texas Children's Hospital, Baylor College of Medicine, Houston, TX, USA
| | - Matthew D W Piper
- School of Biological Sciences, Monash University, Clayton, VIC 3800, Australia.
| | - Travis K Johnson
- School of Biological Sciences, Monash University, Clayton, VIC 3800, Australia; Department of Biochemistry and Chemistry and La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC 3086, Australia.
| |
Collapse
|
6
|
Martelli F, Quig A, Mele S, Lin J, Fulton TL, Wansbrough M, Barlow CK, Schittenhelm RB, Johnson TK, Piper MDW. A defined diet for pre-adult Drosophila melanogaster. Sci Rep 2024; 14:6974. [PMID: 38521863 PMCID: PMC10960813 DOI: 10.1038/s41598-024-57681-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 03/20/2024] [Indexed: 03/25/2024] Open
Abstract
Drosophila melanogaster is unique among animal models because it has a fully defined synthetic diet available to study nutrient-gene interactions. However, use of this diet is limited to adult studies due to impaired larval development and survival. Here, we provide an adjusted formula that reduces the developmental period, restores fat levels, enhances body mass, and fully rescues survivorship without compromise to adult lifespan. To demonstrate an application of this formula, we explored pre-adult diet compositions of therapeutic potential in a model of an inherited metabolic disorder affecting the metabolism of branched-chain amino acids. We reveal rapid, specific, and predictable nutrient effects on the disease state consistent with observations from mouse and patient studies. Together, our diet provides a powerful means with which to examine the interplay between diet and metabolism across all life stages in an animal model.
Collapse
Affiliation(s)
- Felipe Martelli
- School of Biological Sciences, Monash University, Clayton, VIC, 3800, Australia
- School of BioSciences, The University of Melbourne, Melbourne, VIC, 3052, Australia
| | - Annelise Quig
- School of Biological Sciences, Monash University, Clayton, VIC, 3800, Australia
| | - Sarah Mele
- School of Biological Sciences, Monash University, Clayton, VIC, 3800, Australia
| | - Jiayi Lin
- School of Biological Sciences, Monash University, Clayton, VIC, 3800, Australia
| | - Tahlia L Fulton
- School of Biological Sciences, Monash University, Clayton, VIC, 3800, Australia
| | - Mia Wansbrough
- School of Biological Sciences, Monash University, Clayton, VIC, 3800, Australia
| | - Christopher K Barlow
- Monash Proteomics and Metabolomics Platform, Monash Biomedicine Discovery Institute & Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, 3800, Australia
| | - Ralf B Schittenhelm
- Monash Proteomics and Metabolomics Platform, Monash Biomedicine Discovery Institute & Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, 3800, Australia
| | - Travis K Johnson
- School of Biological Sciences, Monash University, Clayton, VIC, 3800, Australia.
- Department of Biochemistry and Chemistry and La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC, 3086, Australia.
| | - Matthew D W Piper
- School of Biological Sciences, Monash University, Clayton, VIC, 3800, Australia.
| |
Collapse
|
7
|
Xu S, Yang TJ, Xu S, Gong YN. Plasma membrane repair empowers the necrotic survivors as innate immune modulators. Semin Cell Dev Biol 2024; 156:93-106. [PMID: 37648621 PMCID: PMC10872800 DOI: 10.1016/j.semcdb.2023.08.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 08/20/2023] [Accepted: 08/20/2023] [Indexed: 09/01/2023]
Abstract
The plasma membrane is crucial to the survival of animal cells, and damage to it can be lethal, often resulting in necrosis. However, cells possess multiple mechanisms for repairing the membrane, which allows them to maintain their integrity to some extent, and sometimes even survive. Interestingly, cells that survive a near-necrosis experience can recognize sub-lethal membrane damage and use it as a signal to secrete chemokines and cytokines, which activate the immune response. This review will present evidence of necrotic cell survival in both in vitro and in vivo systems, including in C. elegans, mouse models, and humans. We will also summarize the various membrane repair mechanisms cells use to maintain membrane integrity. Finally, we will propose a mathematical model to illustrate how near-death experiences can transform dying cells into innate immune modulators for their microenvironment. By utilizing their membrane repair activity, the biological effects of cell death can extend beyond the mere elimination of the cells.
Collapse
Affiliation(s)
- Shiqi Xu
- Center for Stem Cell and Regenerative Medicine and Department of Burn and Wound Repair of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China; International Biomedicine-X Research Center of the Second Affiliated Hospital, Zhejiang University School of Medicine and the Zhejiang University-University of Edinburgh Institute, 718 East Haizhou Rd., Haining, Zhejiang 314400, China
| | - Tyler J Yang
- Departments of Biology and Advanced Placement Biology, White Station High School, Memphis, TN 38117, USA
| | - Suhong Xu
- Center for Stem Cell and Regenerative Medicine and Department of Burn and Wound Repair of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China; International Biomedicine-X Research Center of the Second Affiliated Hospital, Zhejiang University School of Medicine and the Zhejiang University-University of Edinburgh Institute, 718 East Haizhou Rd., Haining, Zhejiang 314400, China.
| | - Yi-Nan Gong
- Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA 15232, USA; Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA; Cancer Immunology and Immunotherapy Program, UPMC Hillman Cancer Center, 5115 Center Avenue, Pittsburgh, PA 15213, USA.
| |
Collapse
|
8
|
Ly M, Schimmer C, Hawkins R, E Rothenberg K, Fernandez-Gonzalez R. Integrin-based adhesions promote cell-cell junction and cytoskeletal remodelling to drive embryonic wound healing. J Cell Sci 2024; 137:jcs261138. [PMID: 37970744 DOI: 10.1242/jcs.261138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 11/06/2023] [Indexed: 11/17/2023] Open
Abstract
Embryos repair wounds rapidly, with no inflammation or scarring. Embryonic wound healing is driven by the collective movement of the cells around the lesion. The cells adjacent to the wound polarize the cytoskeletal protein actin and the molecular motor non-muscle myosin II, which accumulate at the wound edge forming a supracellular cable around the wound. Adherens junction proteins, including E-cadherin, are internalized from the wound edge and localize to former tricellular junctions at the wound margin, in a process necessary for cytoskeletal polarity. We found that the cells adjacent to wounds in the Drosophila embryonic epidermis polarized Talin, a core component of cell-extracellular matrix (ECM) adhesions, which preferentially accumulated at the wound edge. Integrin knockdown and inhibition of integrin binding delayed wound closure and reduced actin polarization and dynamics around the wound. Additionally, disrupting integrins caused a defect in E-cadherin reinforcement at tricellular junctions along the wound edge, suggesting crosstalk between integrin-based and cadherin-based adhesions. Our results show that cell-ECM adhesion contributes to embryonic wound repair and reveal an interplay between cell-cell and cell-ECM adhesion in the collective cell movements that drive rapid wound healing.
Collapse
Affiliation(s)
- Michelle Ly
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada
- Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, University of Toronto, Toronto, ON M5G 1M1, Canada
| | - Clara Schimmer
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada
- Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, University of Toronto, Toronto, ON M5G 1M1, Canada
| | - Raymond Hawkins
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada
- Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, University of Toronto, Toronto, ON M5G 1M1, Canada
| | - Katheryn E Rothenberg
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada
- Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, University of Toronto, Toronto, ON M5G 1M1, Canada
| | - Rodrigo Fernandez-Gonzalez
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada
- Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, University of Toronto, Toronto, ON M5G 1M1, Canada
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
| |
Collapse
|
9
|
Rosa-Birriel C, Malin J, Hatini V. Medioapical contractile pulses coordinated between cells regulate Drosophila eye morphogenesis. J Cell Biol 2024; 223:e202304041. [PMID: 38126997 PMCID: PMC10737437 DOI: 10.1083/jcb.202304041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 10/31/2023] [Accepted: 12/07/2023] [Indexed: 12/23/2023] Open
Abstract
Lattice cells (LCs) in the developing Drosophila retina change shape before attaining final form. Previously, we showed that repeated contraction and expansion of apical cell contacts affect these dynamics. Here, we describe another factor, the assembly of a Rho1-dependent medioapical actomyosin ring formed by nodes linked by filaments that contract the apical cell area. Cell area contraction alternates with relaxation, generating pulsatile changes in cell area that exert force on neighboring LCs. Moreover, Rho1 signaling is sensitive to mechanical changes, becoming active when tension decreases and cells expand, while the negative regulator RhoGAP71E accumulates when tension increases and cells contract. This results in cycles of cell area contraction and relaxation that are reciprocally synchronized between adjacent LCs. Thus, mechanically sensitive Rho1 signaling controls pulsatile medioapical actomyosin contraction and coordinates cell behavior across the epithelium. Disrupting the kinetics of pulsing can lead to developmental errors, suggesting this process controls cell shape and tissue integrity during epithelial morphogenesis of the retina.
Collapse
Affiliation(s)
- Christian Rosa-Birriel
- Department of Developmental, Molecular and Chemical Biology, Program in Cell, Molecular and Developmental Biology, Program in Genetics, and Program in Pharmacology and Experimental Therapeutics, Tufts University School of Medicine, Boston, MA, USA
| | - Jacob Malin
- Department of Developmental, Molecular and Chemical Biology, Program in Cell, Molecular and Developmental Biology, Program in Genetics, and Program in Pharmacology and Experimental Therapeutics, Tufts University School of Medicine, Boston, MA, USA
| | - Victor Hatini
- Department of Developmental, Molecular and Chemical Biology, Program in Cell, Molecular and Developmental Biology, Program in Genetics, and Program in Pharmacology and Experimental Therapeutics, Tufts University School of Medicine, Boston, MA, USA
| |
Collapse
|
10
|
Pozzi G, Ciarletta P. Geometric control by active mechanics of epithelial gap closure. SOFT MATTER 2024; 20:900-908. [PMID: 38180343 DOI: 10.1039/d3sm01419c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
Epithelial wound healing is one of the most important biological processes occurring during the lifetime of an organism. It is a self-repair mechanism closing wounds or gaps within tissues to restore their functional integrity. In this work we derive a new diffuse interface approach for modelling the gap closure by means of a variational principle in the framework of non-equilibrium thermodynamics. We investigate the interplay between the crawling with lamellipodia protrusions and the supracellular tension exerted by the actomyosin cable on the closure dynamics. These active features are modeled as Korteweg forces into a generalised chemical potential. From an asymptotic analysis, we derive a pressure jump across the gap edge in the sharp interface limit. Moreover, the chemical potential diffuses as a Mullins-Sekerka system, and its interfacial value is given by a Gibbs-Thompson relation for its local potential driven by the curvature-dependent purse-string tension. The finite element simulations show an excellent quantitative agreement between the closure dynamics and the morphology of the edge with respect to existing biological experiments. The resulting force patterns are also in good qualitative agreement with existing traction force microscopy measurements. Our results shed light on the geometrical control of the gap closure dynamics resulting from the active forces that are chemically activated around the gap edge.
Collapse
Affiliation(s)
- G Pozzi
- MOX, Dipartimento di Matematica, Politecnico di Milano, piazza Leonardo da Vinci 32, 20133 Milano, Italy.
| | - P Ciarletta
- MOX, Dipartimento di Matematica, Politecnico di Milano, piazza Leonardo da Vinci 32, 20133 Milano, Italy.
| |
Collapse
|
11
|
Gazsó-Gerhát G, Gombos R, Tóth K, Kaltenecker P, Szikora S, Bíró J, Csapó E, Asztalos Z, Mihály J. FRL and DAAM are required for lateral adhesion of interommatidial cells and patterning of the retinal floor. Development 2023; 150:dev201713. [PMID: 37997920 PMCID: PMC10690107 DOI: 10.1242/dev.201713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 10/17/2023] [Indexed: 11/25/2023]
Abstract
Optical insulation of the unit eyes (ommatidia) is an important prerequisite of precise sight with compound eyes. Separation of the ommatidia is ensured by pigment cells that organize into a hexagonal lattice in the Drosophila eye, forming thin walls between the facets. Cell adhesion, mediated by apically and latero-basally located junctional complexes, is crucial for stable attachment of these cells to each other and the basal lamina. Whereas former studies have focused on the formation and remodelling of the cellular connections at the apical region, here, we report a specific alteration of the lateral adhesion of the lattice cells, leaving the apical junctions largely unaffected. We found that DAAM and FRL, two formin-type cytoskeleton regulatory proteins, play redundant roles in lateral adhesion of the interommatidial cells and patterning of the retinal floor. We show that formin-dependent cortical actin assembly is crucial for latero-basal sealing of the ommatidial lattice. We expect that the investigation of these previously unreported eye phenotypes will pave the way toward a better understanding of the three-dimensional aspects of compound eye development.
Collapse
Affiliation(s)
- Gabriella Gazsó-Gerhát
- Institute of Genetics, HUN-REN Biological Research Centre, Temesvári krt. 62, Szeged H-6726, Hungary
- Doctoral School in Biology, Faculty of Science and Informatics, University of Szeged, Szeged H-6726, Hungary
| | - Rita Gombos
- Institute of Genetics, HUN-REN Biological Research Centre, Temesvári krt. 62, Szeged H-6726, Hungary
| | - Krisztina Tóth
- Institute of Genetics, HUN-REN Biological Research Centre, Temesvári krt. 62, Szeged H-6726, Hungary
| | - Péter Kaltenecker
- Institute of Genetics, HUN-REN Biological Research Centre, Temesvári krt. 62, Szeged H-6726, Hungary
| | - Szilárd Szikora
- Institute of Genetics, HUN-REN Biological Research Centre, Temesvári krt. 62, Szeged H-6726, Hungary
| | - Judit Bíró
- Aktogen Hungary Ltd., Szeged H-6726, Hungary
| | - Enikő Csapó
- Aktogen Hungary Ltd., Szeged H-6726, Hungary
| | - Zoltán Asztalos
- Institute of Biochemistry, HUN-REN Biological Research Centre, Szeged H-6726, Hungary
| | - József Mihály
- Institute of Genetics, HUN-REN Biological Research Centre, Temesvári krt. 62, Szeged H-6726, Hungary
- Department of Genetics, University of Szeged, Szeged H-6726, Hungary
| |
Collapse
|
12
|
Lee EEL, O'Malley-Krohn I, Edsinger E, Wu S, Malamy J. Epithelial wound healing in Clytia hemisphaerica provides insights into extracellular ATP signaling mechanisms and P2XR evolution. Sci Rep 2023; 13:18819. [PMID: 37914720 PMCID: PMC10620158 DOI: 10.1038/s41598-023-45424-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 10/19/2023] [Indexed: 11/03/2023] Open
Abstract
Epithelial wound healing involves the collective responses of many cells, including those at the wound margin (marginal cells) and those that lack direct contact with the wound (submarginal cells). How these responses are induced and coordinated to produce rapid, efficient wound healing remains poorly understood. Extracellular ATP (eATP) is implicated as a signal in epithelial wound healing in vertebrates. However, the role of eATP in wound healing in vivo and the cellular responses to eATP are unclear. Almost nothing is known about eATP signaling in non-bilaterian metazoans (Cnidaria, Ctenophora, Placozoa, and Porifera). Here, we show that eATP promotes closure of epithelial wounds in vivo in the cnidarian Clytia hemisphaerica (Clytia) indicating that eATP signaling is an evolutionarily ancient strategy in wound healing. Furthermore, eATP increases F-actin accumulation at the edges of submarginal cells. In Clytia, this indicates eATP is involved in coordinating cellular responses during wound healing, acting in part by promoting actin remodeling in cells at a distance from the wound. We also present evidence that eATP activates a cation channel in Clytia epithelial cells. This implies that the eATP signal is transduced through a P2X receptor (P2XR). Phylogenetic analyses identified four Clytia P2XR homologs and revealed two deeply divergent major branches in P2XR evolution, necessitating revision of current models. Interestingly, simple organisms such as cellular slime mold appear exclusively on one branch, bilaterians are found exclusively on the other, and many non-bilaterian metazoans, including Clytia, have P2XR sequences from both branches. Together, these results re-draw the P2XR evolutionary tree, provide new insights into the origin of eATP signaling in wound healing, and demonstrate that the cytoskeleton of submarginal cells is a target of eATP signaling.
Collapse
Affiliation(s)
- Elizabeth E L Lee
- Department of Molecular Genetics and Cell Biology, The University of Chicago, 929 East 57th Street, Chicago, IL, 60637, USA
| | - Isabel O'Malley-Krohn
- Biological Sciences Collegiate Division, The University of Chicago, 929 East 57th Street, Chicago, IL, 60637, USA
| | - Eric Edsinger
- Whitney Laboratory for Marine Biosciences, University of Florida, 9505 N Ocean Shore Blvd, St. Augustine, FL, 32080, USA
| | - Stephanie Wu
- Biological Sciences Collegiate Division, The University of Chicago, 929 East 57th Street, Chicago, IL, 60637, USA
| | - Jocelyn Malamy
- Department of Molecular Genetics and Cell Biology, The University of Chicago, 929 East 57th Street, Chicago, IL, 60637, USA.
| |
Collapse
|
13
|
Skorentseva KV, Bolshakov FV, Saidova AA, Lavrov AI. Regeneration in calcareous sponge relies on 'purse-string' mechanism and the rearrangements of actin cytoskeleton. Cell Tissue Res 2023; 394:107-129. [PMID: 37466725 DOI: 10.1007/s00441-023-03810-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 07/05/2023] [Indexed: 07/20/2023]
Abstract
The crucial step in any regeneration process is epithelization, i.e. the restoration of an epithelium structural and functional integrity. Epithelization requires cytoskeletal rearrangements, primarily of actin filaments and microtubules. Sponges (phylum Porifera) are early branching metazoans with pronounced regenerative abilities. Calcareous sponges have a unique step during regeneration: the formation of a temporary structure, called regenerative membrane which initially covers a wound. It forms due to the morphallactic rearrangements of exopinaco- and choanoderm epithelial-like layers. The current study quantitatively evaluates morphological changes and characterises underlying actin cytoskeleton rearrangements during regenerative membrane formation in asconoid calcareous sponge Leucosolenia variabilis through a combination of time-lapse imaging, immunocytochemistry, and confocal laser scanning microscopy. Regenerative membrane formation has non-linear stochastic dynamics with numerous fluctuations. The pinacocytes at the leading edge of regenerative membrane form a contractile actomyosin cable. Regenerative membrane formation either depends on its contraction or being coordinated through it. The cell morphology changes significantly during regenerative membrane formation. Exopinacocytes flatten, their area increases, while circularity decreases. Choanocytes transdifferentiate into endopinacocytes, losing microvillar collar and flagellum. Their area increases and circularity decreases. Subsequent redifferentiation of endopinacocytes into choanocytes is accompanied by inverse changes in cell morphology. All transformations rely on actin filament rearrangements similar to those characteristic of bilaterian animals. Altogether, we provide here a qualitative and quantitative description of cell transformations during reparative epithelial morphogenesis in a calcareous sponge.
Collapse
Affiliation(s)
- Kseniia V Skorentseva
- Laboratory of Morphogenesis Evolution, Koltzov Institute of Developmental Biology of Russian Academy of Sciences, 26 Vavilov Street, Moscow, 119334, Russia.
| | - Fyodor V Bolshakov
- Pertsov White Sea Biological Station, Faculty of Biology, Lomonosov Moscow State University, Leninskiye Gory, 1 Build. 12, Moscow, 119234, Russia
| | - Alina A Saidova
- Department of Cell Biology and Histology, Faculty of Biology, Lomonosov Moscow State University, Leninskiye Gory, 1 Build. 12, Moscow, 119234, Russia
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 32 Vavilov Street, Moscow, 119991, Russia
| | - Andrey I Lavrov
- Pertsov White Sea Biological Station, Faculty of Biology, Lomonosov Moscow State University, Leninskiye Gory, 1 Build. 12, Moscow, 119234, Russia
| |
Collapse
|
14
|
Brunet T. Cell contractility in early animal evolution. Curr Biol 2023; 33:R966-R985. [PMID: 37751712 DOI: 10.1016/j.cub.2023.07.054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
Abstract
Tissue deformation mediated by collective cell contractility is a signature characteristic of animals. In most animals, fast and reversible contractions of muscle cells mediate behavior, while slow and irreversible contractions of epithelial or mesenchymal cells play a key role in morphogenesis. Animal tissue contractility relies on the activity of the actin/myosin II complex (together referred to as 'actomyosin'), an ancient and versatile molecular machinery that performs a broad range of functions in development and physiology. This review synthesizes emerging insights from morphological and molecular studies into the evolutionary history of animal contractile tissue. The most ancient functions of actomyosin are cell crawling and cytokinesis, which are found in a wide variety of unicellular eukaryotes and in individual metazoan cells. Another contractile functional module, apical constriction, is universal in metazoans and shared with choanoflagellates, their closest known living relatives. The evolution of animal contractile tissue involved two key innovations: firstly, the ability to coordinate and integrate actomyosin assembly across multiple cells, notably to generate supracellular cables, which ensure tissue integrity but also allow coordinated morphogenesis and movements at the organism scale; and secondly, the evolution of dedicated contractile cell types for adult movement, belonging to two broad categories respectively defined by the expression of the fast (striated-type) and slow (smooth/non-muscle-type) myosin II paralogs. Both contractile cell types ancestrally resembled generic contractile epithelial or mesenchymal cells and might have played a versatile role in both behavior and morphogenesis. Modern animal contractile cells span a continuum between unspecialized contractile epithelia (which underlie behavior in modern placozoans), epithelia with supracellular actomyosin cables (found in modern sponges), epitheliomuscular tissues (with a concentration of actomyosin cables in basal processes, for example in sea anemones), and specialized muscle tissue that has lost most or all epithelial properties (as in ctenophores, jellyfish and bilaterians). Recent studies in a broad range of metazoans have begun to reveal the molecular basis of these transitions, powered by the elaboration of the contractile apparatus and the evolution of 'core regulatory complexes' of transcription factors specifying contractile cell identity.
Collapse
Affiliation(s)
- Thibaut Brunet
- Institut Pasteur, Université Paris-Cité, CNRS UMR3691, Evolutionary Cell Biology and Evolution of Morphogenesis Unit, 25-28 Rue du Docteur Roux, 75015 Paris, France.
| |
Collapse
|
15
|
Xu J, Wang Q, Li X, Zheng Y, Ji B. Cellular mechanisms of wound closure under cyclic stretching. Biophys J 2023; 122:2404-2420. [PMID: 36966361 PMCID: PMC10322892 DOI: 10.1016/j.bpj.2023.03.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 02/23/2023] [Accepted: 03/22/2023] [Indexed: 03/27/2023] Open
Abstract
Wound closure is a fundamental process in many physiological and pathological processes, but the regulating effects of external force on the closure process are still unclear. Here, we systematically studied the closure process of wounds of different shape under cyclic stretching. We found that the stretching amplitude and direction had significant effect on the healing speed and healing mode. For instance, there was a biphasic dependence of the healing speed on the stretching amplitude. That is, the wound closure was faster under relatively small and large amplitude, while it was slower under intermediate amplitude. At the same time, the stretching could regulate the healing pattern. We showed that the stretching would increase the healing speed along the direction perpendicular to the stretching direction. Specifically, when the stretching was along the major axis of the wound, it accelerated the healing speed along the short axis, which induced a rosette to stitching-line mode transition. In contrast, stretching along the minor axis accelerated the healing speed along the long axis, inducing a stitching-line to rosette mode transition. Our theoretical analyses demonstrated that the wound closure process was coregulated by the mechanical factors including prestress in the cytoskeleton, the protrusion of cells, and the contraction of the actin ring, as well as the geometry of the wound. The cyclic stretch could further modulate the roles of these factors. For example, the stretching changed the stress field in the cell layer, and switched the direction of cell protrusions. This article reveals important cellular mechanisms of the wound healing process under cyclic stretching, and provides an insight into possible approaches of regulating cell collective behaviors via mechanical forces.
Collapse
Affiliation(s)
- Jiayi Xu
- Department of Applied Mechanics, Beijing Institute of Technology, Beijing, China; Wenzhou Key Laboratory of Biophysics, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, China
| | - Qianchun Wang
- Wenzhou Key Laboratory of Biophysics, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, China
| | - Xiaojun Li
- Department of Applied Mechanics, Beijing Institute of Technology, Beijing, China
| | - Yifei Zheng
- Institute of Biomechanics and Applications, Department of Engineering Mechanics, Zhejiang University, Hangzhou, China
| | - Baohua Ji
- Institute of Biomechanics and Applications, Department of Engineering Mechanics, Zhejiang University, Hangzhou, China.
| |
Collapse
|
16
|
Kennard AS, Sathe M, Labuz EC, Prinz CK, Theriot JA. Post-injury hydraulic fracturing drives fissure formation in the zebrafish basal epidermal cell layer. Curr Biol 2023:S0960-9822(23)00616-4. [PMID: 37290442 DOI: 10.1016/j.cub.2023.05.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 03/05/2023] [Accepted: 05/10/2023] [Indexed: 06/10/2023]
Abstract
The skin epithelium acts as the barrier between an organism's internal and external environments. In zebrafish and other freshwater organisms, this barrier function requires withstanding a large osmotic gradient across the epidermis. Wounds breach this epithelium, causing a large disruption to the tissue microenvironment due to the mixing of isotonic interstitial fluid with the external hypotonic fresh water. Here, we show that, following acute injury, the larval zebrafish epidermis undergoes a dramatic fissuring process that resembles hydraulic fracturing, driven by the influx of external fluid. After the wound has sealed-preventing efflux of this external fluid-fissuring starts in the basal epidermal layer at the location nearest to the wound and then propagates at a constant rate through the tissue, spanning over 100 μm. During this process, the outermost superficial epidermal layer remains intact. Fissuring is completely inhibited when larvae are wounded in isotonic external media, suggesting that osmotic gradients are required for fissure formation. Additionally, fissuring partially depends on myosin II activity, as myosin II inhibition reduces the distance of fissure propagation away from the wound. During and after fissuring, the basal layer forms large macropinosomes (with cross-sectional areas ranging from 1 to 10 μm2). We conclude that excess external fluid entry through the wound and subsequent closure of the wound through actomyosin purse-string contraction in the superficial cell layer causes fluid pressure buildup in the extracellular space of the zebrafish epidermis. This excess fluid pressure causes tissue to fissure, and eventually the fluid is cleared through macropinocytosis.
Collapse
Affiliation(s)
- Andrew S Kennard
- Biophysics Program, Stanford University, Stanford, CA 94305, USA; Department of Biology and Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA
| | - Mugdha Sathe
- Department of Biology and Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA
| | - Ellen C Labuz
- Biophysics Program, Stanford University, Stanford, CA 94305, USA; Department of Biology and Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA
| | - Christopher K Prinz
- Department of Biology and Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA
| | - Julie A Theriot
- Department of Biology and Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
17
|
Rothenberg KE, Chen Y, McDonald JA, Fernandez-Gonzalez R. Rap1 coordinates cell-cell adhesion and cytoskeletal reorganization to drive collective cell migration in vivo. Curr Biol 2023:S0960-9822(23)00603-6. [PMID: 37244252 DOI: 10.1016/j.cub.2023.05.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 03/16/2023] [Accepted: 05/04/2023] [Indexed: 05/29/2023]
Abstract
Collective cell movements contribute to tissue development and repair and spread metastatic disease. In epithelia, cohesive cell movements require reorganization of adherens junctions and the actomyosin cytoskeleton. However, the mechanisms that coordinate cell-cell adhesion and cytoskeletal remodeling during collective cell migration in vivo are unclear. We investigated the mechanisms of collective cell migration during epidermal wound healing in Drosophila embryos. Upon wounding, the cells adjacent to the wound internalize cell-cell adhesion molecules and polarize actin and the motor protein non-muscle myosin II to form a supracellular cable around the wound that coordinates cell movements. The cable anchors at former tricellular junctions (TCJs) along the wound edge, and TCJs are reinforced during wound closure. We found that the small GTPase Rap1 was necessary and sufficient for rapid wound repair. Rap1 promoted myosin polarization to the wound edge and E-cadherin accumulation at TCJs. Using embryos expressing a mutant form of the Rap1 effector Canoe/Afadin that cannot bind Rap1, we found that Rap1 signals through Canoe for adherens junction remodeling, but not for actomyosin cable assembly. Instead, Rap1 was necessary and sufficient for RhoA/Rho1 activation at the wound edge. The RhoGEF Ephexin localized to the wound edge in a Rap1-dependent manner, and Ephexin was necessary for myosin polarization and rapid wound repair, but not for E-cadherin redistribution. Together, our data show that Rap1 coordinates the molecular rearrangements that drive embryonic wound healing, promoting actomyosin cable assembly through Ephexin-Rho1, and E-cadherin redistribution through Canoe, thus enabling rapid collective cell migration in vivo.
Collapse
Affiliation(s)
- Katheryn E Rothenberg
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada; Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, University of Toronto, Toronto, ON M5G 1M1, Canada
| | - Yujun Chen
- Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| | | | - Rodrigo Fernandez-Gonzalez
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada; Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, University of Toronto, Toronto, ON M5G 1M1, Canada; Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada; Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada.
| |
Collapse
|
18
|
Takaya K, Okabe K, Sakai S, Aramaki-Hattori N, Asou T, Kishi K. Compound 13 Promotes Epidermal Healing in Mouse Fetuses via Activation of AMPK. Biomedicines 2023; 11:biomedicines11041013. [PMID: 37189631 DOI: 10.3390/biomedicines11041013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/15/2023] [Accepted: 03/20/2023] [Indexed: 03/29/2023] Open
Abstract
Unlike adults, early developing fetuses can completely regenerate tissue, and replicating this could lead to the development of treatments to reduce scarring. Mice epidermal structures, including wound healing patterns, are regenerated until embryonic day (E) 13, leaving visible scars thereafter. These patterns require actin cable formation at the epithelial wound margin through AMP-activated protein kinase (AMPK) activation. We aimed to investigate whether the administration of compound 13 (C13), a recently discovered AMPK activator, to the wound could reproduce this actin remodeling and skin regeneration pattern through its AMPK activating effect. The C13 administration resulted in partial formations of actin cables, which would normally result in scarring, and scar reduction during the healing of full-layer skin defects that occurred in E14 and E15 fetuses. Furthermore, C13 was found to cause AMPK activation in these embryonic mouse epidermal cells. Along with AMPK activation, Rac1 signaling, which is involved in leaflet pseudopodia formation and cell migration, was suppressed in C13-treated wounds, indicating that C13 inhibits epidermal cell migration. This suggests that actin may be mobilized by C13 for cable formation. Administration of C13 to wounds may achieve wound healing similar to regenerative wound healing patterns and may be a potential candidate for new treatments to heal scars.
Collapse
|
19
|
Mencel ML, Bittner GD. Repair of traumatic lesions to the plasmalemma of neurons and other cells: Commonalities, conflicts, and controversies. Front Physiol 2023; 14:1114779. [PMID: 37008019 PMCID: PMC10050709 DOI: 10.3389/fphys.2023.1114779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 02/14/2023] [Indexed: 03/17/2023] Open
Abstract
Neuroscientists and Cell Biologists have known for many decades that eukaryotic cells, including neurons, are surrounded by a plasmalemma/axolemma consisting of a phospholipid bilayer that regulates trans-membrane diffusion of ions (including calcium) and other substances. Cells often incur plasmalemmal damage via traumatic injury and various diseases. If the damaged plasmalemma is not rapidly repaired within minutes, activation of apoptotic pathways by calcium influx often results in cell death. We review publications reporting what is less-well known (and not yet covered in neuroscience or cell biology textbooks): that calcium influx at the lesion sites ranging from small nm-sized holes to complete axonal transection activates parallel biochemical pathways that induce vesicles/membrane-bound structures to migrate and interact to restore original barrier properties and eventual reestablishment of the plasmalemma. We assess the reliability of, and problems with, various measures (e.g., membrane voltage, input resistance, current flow, tracer dyes, confocal microscopy, transmission and scanning electron microscopy) used individually and in combination to assess plasmalemmal sealing in various cell types (e.g., invertebrate giant axons, oocytes, hippocampal and other mammalian neurons). We identify controversies such as plug versus patch hypotheses that attempt to account for currently available data on the subcellular mechanisms of plasmalemmal repair/sealing. We describe current research gaps and potential future developments, such as much more extensive correlations of biochemical/biophysical measures with sub-cellular micromorphology. We compare and contrast naturally occurring sealing with recently-discovered artificially-induced plasmalemmal sealing by polyethylene glycol (PEG) that bypasses all natural pathways for membrane repair. We assess other recent developments such as adaptive membrane responses in neighboring cells following injury to an adjacent cell. Finally, we speculate how a better understanding of the mechanisms involved in natural and artificial plasmalemmal sealing is needed to develop better clinical treatments for muscular dystrophies, stroke and other ischemic conditions, and various cancers.
Collapse
Affiliation(s)
- Marshal L. Mencel
- Institute of Cell and Molecular Biology, University of Texas at Austin, Austin, TX, United States
| | - George D. Bittner
- Department of Neuroscience, University of Texas at Austin, Austin, TX, United States
- *Correspondence: George D. Bittner,
| |
Collapse
|
20
|
SpPdp11 Administration in Diet Modified the Transcriptomic Response and Its Microbiota Associated in Mechanically Induced Wound Sparus aurata Skin. Animals (Basel) 2023; 13:ani13020193. [PMID: 36670734 PMCID: PMC9854838 DOI: 10.3390/ani13020193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/22/2022] [Accepted: 12/30/2022] [Indexed: 01/06/2023] Open
Abstract
Skin lesions are a frequent fact associated with intensive conditions affecting farmed fish. Knowing that the use of probiotics can improve fish skin health, SpPdp11 dietary administration has demonstrated beneficial effects for farmed fish, so its potential on the skin needs to be studied more deeply. The wounded specimens that received the diet with SpPdp11 showed a decrease in the abundance of Enterobacteriaceae, Photobacterium and Achromobacter related to bacterial biofilm formation, as well as the overexpression of genes involved in signaling mechanisms (itpr3), cell migration and differentiation (panxa, ttbk1a, smpd3, vamp5); and repression of genes related to cell proliferation (vstm4a, areg), consistent with a more efficient skin healing processes than that observed in the wounded control group. In addition, among the groups of damaged skin with different diets, Achromobacter, f_Ruminococcaceae, p_Bacteroidetes, Fluviicola and Flavobacterium genera with significant differences showed positive correlations with genes related to cell migration and negative correlations with inflammation and cell proliferation and may be the target of future studies.
Collapse
|
21
|
Contractile and expansive actin networks in Drosophila: Developmental cell biology controlled by network polarization and higher-order interactions. Curr Top Dev Biol 2023; 154:99-129. [PMID: 37100525 DOI: 10.1016/bs.ctdb.2023.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2023]
Abstract
Actin networks are central to shaping and moving cells during animal development. Various spatial cues activate conserved signal transduction pathways to polarize actin network assembly at sub-cellular locations and to elicit specific physical changes. Actomyosin networks contract and Arp2/3 networks expand, and to affect whole cells and tissues they do so within higher-order systems. At the scale of tissues, actomyosin networks of epithelial cells can be coupled via adherens junctions to form supracellular networks. Arp2/3 networks typically integrate with distinct actin assemblies, forming expansive composites which act in conjunction with contractile actomyosin networks for whole-cell effects. This review explores these concepts using examples from Drosophila development. First, we discuss the polarized assembly of supracellular actomyosin cables which constrict and reshape epithelial tissues during embryonic wound healing, germ band extension, and mesoderm invagination, but which also form physical borders between tissue compartments at parasegment boundaries and during dorsal closure. Second, we review how locally induced Arp2/3 networks act in opposition to actomyosin structures during myoblast cell-cell fusion and cortical compartmentalization of the syncytial embryo, and how Arp2/3 and actomyosin networks also cooperate for the single cell migration of hemocytes and the collective migration of border cells. Overall, these examples show how the polarized deployment and higher-order interactions of actin networks organize developmental cell biology.
Collapse
|
22
|
Labuz EC, Footer MJ, Theriot JA. Confined keratocytes mimic in vivo migration and reveal volume-speed relationship. Cytoskeleton (Hoboken) 2023; 80:34-51. [PMID: 36576104 DOI: 10.1002/cm.21741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 12/07/2022] [Accepted: 12/26/2022] [Indexed: 12/29/2022]
Abstract
Fish basal epidermal cells, known as keratocytes, are well-suited for cell migration studies. In vitro, isolated keratocytes adopt a stereotyped shape with a large fan-shaped lamellipodium and a nearly spherical cell body. However, in their native in vivo environment, these cells adopt a significantly different shape during their rapid migration toward wounds. Within the epidermis, keratocytes experience two-dimensional (2D) confinement between the outer epidermal cell layer and the basement membrane; these two deformable surfaces constrain keratocyte cell bodies to be flatter in vivo than in isolation. In vivo keratocytes also exhibit a relative elongation of the front-to-back axis and substantially more lamellipodial ruffling, as compared to isolated cells. We have explored the effects of 2D confinement, separated from other in vivo environmental cues, by overlaying isolated cells with an agarose hydrogel with occasional spacers, or with a ceiling made of polydimethylsiloxane (PDMS) elastomer. Under these conditions, isolated keratocytes more closely resemble the in vivo migratory shape phenotype, displaying a flatter apical-basal axis and a longer front-to-back axis than unconfined keratocytes. We propose that 2D confinement contributes to multiple dimensions of in vivo keratocyte shape determination. Further analysis demonstrates that confinement causes a synchronous 20% decrease in both cell speed and volume. Interestingly, we were able to replicate the 20% decrease in speed using a sorbitol hypertonic shock to shrink the cell volume, which did not affect other aspects of cell shape. Collectively, our results suggest that environmentally imposed changes in cell volume may influence cell migration speed, potentially by perturbing physical properties of the cytoplasm.
Collapse
Affiliation(s)
- Ellen C Labuz
- Biophysics Program, Stanford University, Stanford, California, USA.,Department of Biology and Howard Hughes Medical Institute, University of Washington, Seattle, Washington, USA
| | - Matthew J Footer
- Department of Biology and Howard Hughes Medical Institute, University of Washington, Seattle, Washington, USA
| | - Julie A Theriot
- Department of Biology and Howard Hughes Medical Institute, University of Washington, Seattle, Washington, USA
| |
Collapse
|
23
|
Zhang YX, Liu CY, Chen HY, I L. Spontaneous multi-scale void formation and closure in densifying epithelial and fibroblast monolayers from the sub-confluent state. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2022; 45:89. [PMID: 36346482 DOI: 10.1140/epje/s10189-022-00242-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 10/23/2022] [Indexed: 06/16/2023]
Abstract
Using time-lapse phase contrast microscopy, the formation and closure of spontaneously generated voids in the densifying monolayers of isotropic epithelial cells (ECs) and elongated fibroblast cells (FCs) through proliferation from the sub-confluent state are investigated. It is found that, in both types of monolayers after forming a connected network composed of nematic patches with different orientations, numerous multi-scale voids can be spontaneously formed and gradually close with increasing time. The isotropic fluctuations of deformation and crawling of ECs and the anisotropic axial motion/alignment polarizations of FCs are the two keys leading to the following different generic dynamical behaviors. In EC monolayers, voids exhibit irregular boundary fluctuations and easier cell re-orientation of front layer cells (FLCs) surrounding void boundaries. Void closures are mainly through pinching the gap between the opposite fluctuating void boundaries, and the inward crawling of FLCs to reduce void area associated with topological rearrangement to reduce FLC number. In FC monolayers, large voids have piecewise smooth convex boundaries, and cusp-shaped concave boundaries with cells orienting toward the void at cusp tips. The extension of a thin cell bridge from the cusp tip can bisect a large void into smaller voids. For smaller FC voids dominated by convex boundaries, along which cell alignment prohibits inward crawling, the reduction of FLC number through successive outward squeezing of single FLCs by neighboring FLCs sliding along the void boundary plays an important role for topological rearrangement and void closure. Unlike those surrounding artificial wounds in dense EC monolayers, the absence of ring-like purse-strings surrounding EC and FC voids allows topological rearrangements for reducing void perimeter and void area.
Collapse
Affiliation(s)
- Yun-Xuan Zhang
- Department of Physics and Center for Complex Systems, National Central University, Jhongli, 32001, Taiwan
| | - Chun-Yu Liu
- Department of Physics and Center for Complex Systems, National Central University, Jhongli, 32001, Taiwan
| | - Hsiang-Ying Chen
- Department of Physics and Center for Complex Systems, National Central University, Jhongli, 32001, Taiwan
| | - Lin I
- Department of Physics and Center for Complex Systems, National Central University, Jhongli, 32001, Taiwan.
| |
Collapse
|
24
|
Dynamics of Actin Cytoskeleton and Their Signaling Pathways during Cellular Wound Repair. Cells 2022; 11:cells11193166. [PMID: 36231128 PMCID: PMC9564287 DOI: 10.3390/cells11193166] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 09/27/2022] [Accepted: 10/01/2022] [Indexed: 11/17/2022] Open
Abstract
The repair of wounded cell membranes is essential for cell survival. Upon wounding, actin transiently accumulates at the wound site. The loss of actin accumulation leads to cell death. The mechanism by which actin accumulates at the wound site, the types of actin-related proteins participating in the actin remodeling, and their signaling pathways are unclear. We firstly examined how actin accumulates at a wound site in Dictyostelium cells. Actin assembled de novo at the wound site, independent of cortical flow. Next, we searched for actin- and signal-related proteins targeting the wound site. Fourteen of the examined proteins transiently accumulated at different times. Thirdly, we performed functional analyses using gene knockout mutants or specific inhibitors. Rac, WASP, formin, the Arp2/3 complex, profilin, and coronin contribute to the actin dynamics. Finally, we found that multiple signaling pathways related to TORC2, the Elmo/Doc complex, PIP2-derived products, PLA2, and calmodulin are involved in the actin dynamics for wound repair.
Collapse
|
25
|
Da Costa ADS, Subbiah R, Oh SJ, Jeong H, Na JI, Park K, Choi IS, Shin JH. Fibroblasts Close a Void in Free Space by a Purse-String Mechanism. ACS APPLIED MATERIALS & INTERFACES 2022; 14:40522-40534. [PMID: 36036800 DOI: 10.1021/acsami.2c07952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The mechanism by which stromal cells fill voids in injured tissue remains a fundamental question in regenerative medicine. While it is well-established that fibroblasts fill voids by depositing extracellular matrix (ECM) proteins as they migrate toward the wound site, little is known about their ability to adopt an epithelial-like purse-string behavior. To investigate fibroblast behavior during gap closure, we created an artificial wound with a large void space. We discovered that fibroblasts could form a free-standing bridge over deep microvoids, closing the void via purse-string contraction, a mechanism previously thought to be unique to epithelial wound closure. The findings also revealed that myosin II mediated contractility and intercellular adherent junctions were required for the closure of the fibroblast gap in our fabricated three-dimensional artificial wound. To fulfill their repair function under the specific microenvironmental conditions of wounds, fibroblasts appeared to acquire the structural features of epithelial cells, namely, contractile actin bundles that span over multiple cells along the boundary. These findings shed light on a novel mechanism by which stromal cells bridge the 3D gap during physiological processes such as morphogenesis and wound healing.
Collapse
Affiliation(s)
- Avelino Dos Santos Da Costa
- Center for Biomaterials, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
- Division of Bio-Medical Science and Technology, KIST School, University of Science and Technology (UST), Seoul 02792, Republic of Korea
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Ramesh Subbiah
- Center for Biomaterials, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
- Division of Biomaterials and Biomechanics, Department of Restorative Dentistry, School of Dentistry, Oregon Health and Science University (OHSU), Portland, Oregon 97201, United States
| | - Seung Ja Oh
- Center for Biomaterials, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
- Division of Bio-Medical Science and Technology, KIST School, University of Science and Technology (UST), Seoul 02792, Republic of Korea
| | - Hyuntae Jeong
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Jung-Im Na
- Department of Dermatology, Seoul National University Bundang Hospital, Seongnam 13620, Republic of Korea
| | - Kwideok Park
- Center for Biomaterials, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
- Division of Bio-Medical Science and Technology, KIST School, University of Science and Technology (UST), Seoul 02792, Republic of Korea
| | - In-Suk Choi
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Jennifer H Shin
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| |
Collapse
|
26
|
Fernandez-Gonzalez R, Peifer M. Powering morphogenesis: multiscale challenges at the interface of cell adhesion and the cytoskeleton. Mol Biol Cell 2022; 33. [PMID: 35696393 DOI: 10.1091/mbc.e21-09-0452] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Among the defining features of the animal kingdom is the ability of cells to change shape and move. This underlies embryonic and postembryonic development, tissue homeostasis, regeneration, and wound healing. Cell shape change and motility require linkage of the cell's force-generating machinery to the plasma membrane at cell-cell and cell-extracellular matrix junctions. Connections of the actomyosin cytoskeleton to cell-cell adherens junctions need to be both resilient and dynamic, preventing tissue disruption during the dramatic events of embryonic morphogenesis. In the past decade, new insights radically altered the earlier simple paradigm that suggested simple linear linkage via the cadherin-catenin complex as the molecular mechanism of junction-cytoskeleton interaction. In this Perspective we provide a brief overview of our current state of knowledge and then focus on selected examples highlighting what we view as the major unanswered questions in our field and the approaches that offer exciting new insights at multiple scales from atomic structure to tissue mechanics.
Collapse
Affiliation(s)
- Rodrigo Fernandez-Gonzalez
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G5, Canada.,Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, University of Toronto, Toronto, ON M5S 3G5, Canada.,Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada.,Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
| | - Mark Peifer
- Lineberger Comprehensive Cancer Center, Chapel Hill, NC 27599-3280.,Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3280
| |
Collapse
|
27
|
Morris T, Sue E, Geniesse C, Brieher WM, Tang VW. Synaptopodin stress fiber and contractomere at the epithelial junction. J Cell Biol 2022; 221:e202011162. [PMID: 35416930 PMCID: PMC9011326 DOI: 10.1083/jcb.202011162] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 10/07/2021] [Accepted: 02/09/2022] [Indexed: 12/27/2022] Open
Abstract
The apical junction of epithelial cells can generate force to control cell geometry and perform contractile processes while maintaining barrier function and adhesion. Yet, the structural basis for force generation at the apical junction is not fully understood. Here, we describe two synaptopodin-dependent actomyosin structures that are spatially, temporally, and structurally distinct. The first structure is formed by the retrograde flow of synaptopodin initiated at the apical junction, creating a sarcomeric stress fiber that lies parallel to the apical junction. Contraction of the apical stress fiber is associated with either clustering of membrane components or shortening of junctional length. Upon junction maturation, apical stress fibers are disassembled. In mature epithelial monolayer, a motorized "contractomere" capable of "walking the junction" is formed at the junctional vertex. Actomyosin activities at the contractomere produce a compressive force evident by actin filament buckling and measurement with a new α-actinin-4 force sensor. The motility of contractomeres can adjust junctional length and change cell packing geometry during cell extrusion and intercellular movement. We propose a model of epithelial homeostasis that utilizes contractomere motility to support junction rearrangement while preserving the permeability barrier.
Collapse
Affiliation(s)
- Timothy Morris
- Department of Cell and Developmental Biology, University of Illinois, Urbana-Champaign, IL
| | - Eva Sue
- Department of Cell and Developmental Biology, University of Illinois, Urbana-Champaign, IL
| | - Caleb Geniesse
- Department of Cell and Developmental Biology, University of Illinois, Urbana-Champaign, IL
| | - William M Brieher
- Department of Cell and Developmental Biology, University of Illinois, Urbana-Champaign, IL
| | - Vivian W Tang
- Department of Cell and Developmental Biology, University of Illinois, Urbana-Champaign, IL
| |
Collapse
|
28
|
Scepanovic G, Hunter MV, Kafri R, Fernandez-Gonzalez R. p38-mediated cell growth and survival drive rapid embryonic wound repair. Cell Rep 2021; 37:109874. [PMID: 34686334 DOI: 10.1016/j.celrep.2021.109874] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 08/02/2021] [Accepted: 09/30/2021] [Indexed: 12/18/2022] Open
Abstract
Embryos repair wounds rapidly, with no inflammation or scarring, in a process that involves polarization of the actomyosin cytoskeleton. Actomyosin polarization results in the assembly of a contractile cable around the wound that drives wound closure. Here, we demonstrate that a contractile actomyosin cable is not sufficient for rapid wound repair in Drosophila embryos. We show that wounding causes activation of the serine/threonine kinase p38 mitogen-activated protein kinase (MAPK) in the cells adjacent to the wound. p38 activation reduces the levels of wound-induced reactive oxygen species in the cells around the wound, limiting wound size. In addition, p38 promotes an increase in volume in the cells around the wound, thus facilitating the collective cell movements that drive rapid wound healing. Our data indicate that p38 regulates cell volumes through the sodium-potassium-chloride cotransporter NKCC1. Our work reveals cell growth and cell survival as cell behaviors critical for embryonic wound repair.
Collapse
Affiliation(s)
- Gordana Scepanovic
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada; Ted Rogers Centre for Heart Research, University of Toronto, Toronto, ON M5G 1M1, Canada
| | - Miranda Victoria Hunter
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada; Ted Rogers Centre for Heart Research, University of Toronto, Toronto, ON M5G 1M1, Canada
| | - Ran Kafri
- Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Rodrigo Fernandez-Gonzalez
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada; Ted Rogers Centre for Heart Research, University of Toronto, Toronto, ON M5G 1M1, Canada; Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada; Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada.
| |
Collapse
|
29
|
Feng S, Lu S, Grueber WB, Mann RS. Scarless engineering of the Drosophila genome near any site-specific integration site. Genetics 2021; 217:6117239. [PMID: 33772309 DOI: 10.1093/genetics/iyab012] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 01/13/2021] [Indexed: 11/14/2022] Open
Abstract
We describe a simple and efficient technique that allows scarless engineering of Drosophila genomic sequences near any landing site containing an inverted attP cassette, such as a MiMIC insertion. This two-step method combines phiC31 integrase-mediated site-specific integration and homing nuclease-mediated resolution of local duplications, efficiently converting the original landing site allele to modified alleles that only have the desired change(s). Dominant markers incorporated into this method allow correct individual flies to be efficiently identified at each step. In principle, single attP sites and FRT sites are also valid landing sites. Given the large and increasing number of landing site lines available in the fly community, this method provides an easy and fast way to efficiently edit the majority of the Drosophila genome in a scarless manner. This technique should also be applicable to other species.
Collapse
Affiliation(s)
- Siqian Feng
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA.,Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
| | - Shan Lu
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA.,Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Wesley B Grueber
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA.,Department of Neuroscience, Columbia University, New York, NY 10027, USA.,Department of Physiology and Cellular Biophysics, Columbia University, New York, NY 10032, USA
| | - Richard S Mann
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA.,Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA.,Department of Systems Biology, Columbia University, New York, NY 10032, USA
| |
Collapse
|
30
|
Mechanical and Immunological Regulation in Wound Healing and Skin Reconstruction. Int J Mol Sci 2021; 22:ijms22115474. [PMID: 34067386 PMCID: PMC8197020 DOI: 10.3390/ijms22115474] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/07/2021] [Accepted: 05/19/2021] [Indexed: 12/17/2022] Open
Abstract
In the past decade, a new frontier in scarless wound healing has arisen because of significant advances in the field of wound healing realised by incorporating emerging concepts from mechanobiology and immunology. The complete integumentary organ system (IOS) regeneration and scarless wound healing mechanism, which occurs in specific species, body sites and developmental stages, clearly shows that mechanical stress signals and immune responses play important roles in determining the wound healing mode. Advances in tissue engineering technology have led to the production of novel human skin equivalents and organoids that reproduce cell–cell interactions with tissue-scale tensional homeostasis, and enable us to evaluate skin tissue morphology, functionality, drug response and wound healing. This breakthrough in tissue engineering has the potential to accelerate the understanding of wound healing control mechanisms through complex mechanobiological and immunological interactions. In this review, we present an overview of recent studies of biomechanical and immunological wound healing and tissue remodelling mechanisms through comparisons of species- and developmental stage-dependent wound healing mechanisms. We also discuss the possibility of elucidating the control mechanism of wound healing involving mechanobiological and immunological interaction by using next-generation human skin equivalents.
Collapse
|
31
|
Morano AA, Dvorin JD. The Ringleaders: Understanding the Apicomplexan Basal Complex Through Comparison to Established Contractile Ring Systems. Front Cell Infect Microbiol 2021; 11:656976. [PMID: 33954122 PMCID: PMC8089483 DOI: 10.3389/fcimb.2021.656976] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 03/19/2021] [Indexed: 12/02/2022] Open
Abstract
The actomyosin contractile ring is a key feature of eukaryotic cytokinesis, conserved across many eukaryotic kingdoms. Recent research into the cell biology of the divergent eukaryotic clade Apicomplexa has revealed a contractile ring structure required for asexual division in the medically relevant genera Toxoplasma and Plasmodium; however, the structure of the contractile ring, known as the basal complex in these parasites, remains poorly characterized and in the absence of a myosin II homolog, it is unclear how the force required of a cytokinetic contractile ring is generated. Here, we review the literature on the basal complex in Apicomplexans, summarizing what is known about its formation and function, and attempt to provide possible answers to this question and suggest new avenues of study by comparing the Apicomplexan basal complex to well-studied, established cytokinetic contractile rings and their mechanisms in organisms such as S. cerevisiae and D. melanogaster. We also compare the basal complex to structures formed during mitochondrial and plastid division and cytokinetic mechanisms of organisms beyond the Opisthokonts, considering Apicomplexan diversity and divergence.
Collapse
Affiliation(s)
- Alexander A Morano
- Biological and Biomedical Sciences, Harvard Medical School, Boston, MA, United States.,Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, United States
| | - Jeffrey D Dvorin
- Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, United States.,Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
32
|
Rice C, De O, Alhadyian H, Hall S, Ward RE. Expanding the Junction: New Insights into Non-Occluding Roles for Septate Junction Proteins during Development. J Dev Biol 2021; 9:11. [PMID: 33801162 PMCID: PMC8006247 DOI: 10.3390/jdb9010011] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/15/2021] [Accepted: 03/17/2021] [Indexed: 12/17/2022] Open
Abstract
The septate junction (SJ) provides an occluding function for epithelial tissues in invertebrate organisms. This ability to seal the paracellular route between cells allows internal tissues to create unique compartments for organ function and endows the epidermis with a barrier function to restrict the passage of pathogens. Over the past twenty-five years, numerous investigators have identified more than 30 proteins that are required for the formation or maintenance of the SJs in Drosophila melanogaster, and have determined many of the steps involved in the biogenesis of the junction. Along the way, it has become clear that SJ proteins are also required for a number of developmental events that occur throughout the life of the organism. Many of these developmental events occur prior to the formation of the occluding junction, suggesting that SJ proteins possess non-occluding functions. In this review, we will describe the composition of SJs, taking note of which proteins are core components of the junction versus resident or accessory proteins, and the steps involved in the biogenesis of the junction. We will then elaborate on the functions that core SJ proteins likely play outside of their role in forming the occluding junction and describe studies that provide some cell biological perspectives that are beginning to provide mechanistic understanding of how these proteins function in developmental contexts.
Collapse
Affiliation(s)
- Clinton Rice
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS 66045, USA; (C.R.); (H.A.)
| | - Oindrila De
- Department of Biology, Case Western Reserve University, Cleveland, OH 44106, USA;
| | - Haifa Alhadyian
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS 66045, USA; (C.R.); (H.A.)
| | | | - Robert E. Ward
- Department of Biology, Case Western Reserve University, Cleveland, OH 44106, USA;
| |
Collapse
|
33
|
Fernández-Santos B, Caro-Vega JM, Sola-Idígora N, Lazarini-Suárez C, Mañas-García L, Duarte P, Fuerte-Hortigón A, Ybot-González P. Molecular similarity between the mechanisms of epithelial fusion and fetal wound healing during the closure of the caudal neural tube in mouse embryos. Dev Dyn 2021; 250:955-973. [PMID: 33501723 DOI: 10.1002/dvdy.306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 01/14/2021] [Accepted: 01/18/2021] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND Neural tube (NT) closure is a complex developmental process that takes place in the early stages of embryogenesis and that is a key step in neurulation. In mammals, the process by which the neural plate generates the NT requires organized cell movements and tissue folding, and it terminates with the fusion of the apposed ends of the neural folds. RESULTS Here we describe how almost identical cellular and molecular machinery is used to fuse the spinal neural folds as that involved in the repair of epithelial injury in the same area of the embryo. For both natural and wound activated closure of caudal neural tissue, hyaluronic acid and platelet-derived growth factor signaling appear to be crucial for the final fusion step. CONCLUSIONS There seems to be no general wound healing machinery for all tissues but rather, a tissue-specific epithelial fusion machinery that embryos activate when necessary after abnormal epithelial opening.
Collapse
Affiliation(s)
- Beatriz Fernández-Santos
- Neurodevelopment Research Group, Institute of Biomedicine of Seville (IBiS)/Hospital Virgen del Rocio/US/CSIC, Sevilla, Spain
| | - José Manuel Caro-Vega
- Neurodevelopment Research Group, Institute of Biomedicine of Seville (IBiS)/Hospital Virgen del Rocio/US/CSIC, Sevilla, Spain
| | - Noelia Sola-Idígora
- Neurodevelopment Research Group, Institute of Biomedicine of Seville (IBiS)/Hospital Virgen del Rocio/US/CSIC, Sevilla, Spain
| | - Cecilia Lazarini-Suárez
- Neurodevelopment Research Group, Institute of Biomedicine of Seville (IBiS)/Hospital Virgen del Rocio/US/CSIC, Sevilla, Spain
| | - Laura Mañas-García
- Neurodevelopment Research Group, Institute of Biomedicine of Seville (IBiS)/Hospital Virgen del Rocio/US/CSIC, Sevilla, Spain
| | - Patrícia Duarte
- Neurodevelopment Research Group, Institute of Biomedicine of Seville (IBiS)/Hospital Virgen del Rocio/US/CSIC, Sevilla, Spain
| | | | - Patricia Ybot-González
- Neurodevelopment Research Group, Institute of Biomedicine of Seville (IBiS)/Hospital Virgen del Rocio/US/CSIC, Sevilla, Spain.,Department of Neurology and Neurophysiology, Hospital Virgen de Macarena, Sevilla, Spain
| |
Collapse
|
34
|
Bao M, Xie J, Piruska A, Hu X, Huck WTS. Microfabricated Gaps Reveal the Effect of Geometrical Control in Wound Healing. Adv Healthc Mater 2021; 10:e2000630. [PMID: 32761769 PMCID: PMC11468563 DOI: 10.1002/adhm.202000630] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 06/26/2020] [Indexed: 11/06/2022]
Abstract
The geometry (size and shape) of gaps is a key determinant in controlling gap closure during wound healing. However, conventional methods for creating gaps result in un-defined geometries and poorly characterized conditions (cell death factors and cell debris), which can influence the gap closure process. To overcome these limitations, a novel method to create well-defined geometrical gaps is developed. First, smooth muscle cells (SMCs) are seeded in variously shaped micro-containers made out of hyaluronic acid hydrogels. Cell proliferation and cell tension induce fibrous collagen production by SMCs predominantly around the edges of the micro-containers. Upon removal of SMCs, the selectively deposited collagen results in micro-containers with cell-adhesive regions along the edges and walls. Fibroblasts are seeded in these micro-containers, and upon attaching and spreading, they naturally form gaps with different geometries. The rapid proliferation of fibroblasts from the edge results in filling and closure of the gaps. It is demonstrated that gap closure rate as well as closure mechanism is strongly influenced by geometrical features, which points to an important role for cellular tension and cell proliferation in gap closure.
Collapse
Affiliation(s)
- Min Bao
- Institute for Molecules and MaterialsRadboud UniversityHeyendaalseweg 135Nijmegen6525 AJThe Netherlands
- Division of Biology and Biological EngineeringCalifornia Institute of Technology1200 E. California BoulevardPasadenaCA91125USA
| | - Jing Xie
- Institute for Molecules and MaterialsRadboud UniversityHeyendaalseweg 135Nijmegen6525 AJThe Netherlands
| | - Aigars Piruska
- Institute for Molecules and MaterialsRadboud UniversityHeyendaalseweg 135Nijmegen6525 AJThe Netherlands
| | - Xinyu Hu
- Institute for Molecules and MaterialsRadboud UniversityHeyendaalseweg 135Nijmegen6525 AJThe Netherlands
| | - Wilhelm T. S. Huck
- Institute for Molecules and MaterialsRadboud UniversityHeyendaalseweg 135Nijmegen6525 AJThe Netherlands
| |
Collapse
|
35
|
Scepanovic G, Florea A, Fernandez-Gonzalez R. Multiscale In Vivo Imaging of Collective Cell Migration in Drosophila Embryos. Methods Mol Biol 2021; 2179:199-224. [PMID: 32939723 DOI: 10.1007/978-1-0716-0779-4_17] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Coordinated cell movements drive embryonic development and tissue repair, and can also spread disease. Time-lapse microscopy is an integral part in the study of the cell biology of collective cell movements. Advances in imaging techniques enable monitoring dynamic cellular and molecular events in real time within living animals. Here, we demonstrate the use of spinning disk confocal microscopy to investigate coordinated cell movements and epithelial-to-mesenchymal-like transitions during embryonic wound closure in Drosophila. We describe image-based metrics to quantify the efficiency of collective cell migration. Finally, we show the application of super-resolution radial fluctuation microscopy to obtain multidimensional, super-resolution images of protrusive activity in collectively moving cells in vivo. Together, the methods presented here constitute a toolkit for the modern analysis of collective cell migration in living animals.
Collapse
Affiliation(s)
- Gordana Scepanovic
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada.,Ted Rogers Centre for Heart Research, University of Toronto, Toronto, ON, Canada
| | - Alexandru Florea
- Ted Rogers Centre for Heart Research, University of Toronto, Toronto, ON, Canada.,Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON, Canada
| | - Rodrigo Fernandez-Gonzalez
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada. .,Ted Rogers Centre for Heart Research, University of Toronto, Toronto, ON, Canada. .,Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON, Canada. .,Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON, Canada.
| |
Collapse
|
36
|
Kennard A, Prinz C, Labuz E, Theriot J. Wounding Zebrafish Larval Epidermis by Laceration. Bio Protoc 2021; 11:e4260. [DOI: 10.21769/bioprotoc.4260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 09/17/2021] [Accepted: 09/28/2021] [Indexed: 11/02/2022] Open
|
37
|
Single-Protein Tracking to Study Protein Interactions During Integrin-Based Migration. Methods Mol Biol 2021; 2217:85-113. [PMID: 33215379 DOI: 10.1007/978-1-0716-0962-0_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Cell migration is a complex biophysical process which involves the coordination of molecular assemblies including integrin-dependent adhesions, signaling networks and force-generating cytoskeletal structures incorporating both actin polymerization and myosin activity. During the last decades, proteomic studies have generated impressive protein-protein interaction maps, although the subcellular location, duration, strength, sequence, and nature of these interactions are still concealed. In this chapter we describe how recent developments in superresolution microscopy (SRM) and single-protein tracking (SPT) start to unravel protein interactions and actions in subcellular molecular assemblies driving cell migration.
Collapse
|
38
|
Nagai T, Ishikawa T, Minami Y, Nishita M. Tactics of cancer invasion: solitary and collective invasion. J Biochem 2020; 167:347-355. [PMID: 31926018 DOI: 10.1093/jb/mvaa003] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 01/06/2020] [Indexed: 12/15/2022] Open
Abstract
Much attention has been paid on the mechanism of cancer invasion from the viewpoint of the behaviour of individual cancer cells. On the other hand, histopathological analyses of specimens from cancer patients and of cancer invasion model animals have revealed that cancer cells often exhibit collective invasion, characterized by sustained cell-to-cell adhesion and polarized invasion as cell clusters. Interestingly, it has recently become evident that during collective invasion of cancer cells, the cells localized at invasion front (leader cells) and the cells following them (follower cells) exhibit distinct cellular characteristics, and that there exist the cells expressing representative proteins related to both epithelial and mesenchymal properties simultaneously, designated as hybrid epithelial-to-mesenchymal transition (EMT)-induced cells, in cancer tissue. Furthermore, the findings that cells adopted in hybrid EMT state form clusters and show collective invasion in vitro emphasize an importance of hybrid EMT-induced cells in collective cancer invasion. In this article, we overview recent findings of the mechanism underlying collective invasion of cancer cells and discuss the possibility of controlling cancer invasion and metastasis by targeting this process.
Collapse
Affiliation(s)
- Tomoaki Nagai
- Department of Biochemistry, Fukushima Medical University School of Medicine, 1 Hikariga-oka, Fukushima 960-1295, Japan
| | - Tomohiro Ishikawa
- Department of Life and Environmental System Science, Graduate School of Nanobioscience, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama 236-0027, Japan
| | - Yasuhiro Minami
- Division of Cell Physiology, Department of Physiology and Cell Biology, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| | - Michiru Nishita
- Department of Biochemistry, Fukushima Medical University School of Medicine, 1 Hikariga-oka, Fukushima 960-1295, Japan
| |
Collapse
|
39
|
Bajpai A, Li R, Chen W. The cellular mechanobiology of aging: from biology to mechanics. Ann N Y Acad Sci 2020; 1491:3-24. [PMID: 33231326 DOI: 10.1111/nyas.14529] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 10/10/2020] [Accepted: 10/21/2020] [Indexed: 12/14/2022]
Abstract
Aging is a chronic, complicated process that leads to degenerative physical and biological changes in living organisms. Aging is associated with permanent, gradual physiological cellular decay that affects all aspects of cellular mechanobiological features, including cellular cytoskeleton structures, mechanosensitive signaling pathways, and forces in the cell, as well as the cell's ability to sense and adapt to extracellular biomechanical signals in the tissue environment through mechanotransduction. These mechanobiological changes in cells are directly or indirectly responsible for dysfunctions and diseases in various organ systems, including the cardiovascular, musculoskeletal, skin, and immune systems. This review critically examines the role of aging in the progressive decline of the mechanobiology occurring in cells, and establishes mechanistic frameworks to understand the mechanobiological effects of aging on disease progression and to develop new strategies for halting and reversing the aging process. Our review also highlights the recent development of novel bioengineering approaches for studying the key mechanobiological mechanisms in aging.
Collapse
Affiliation(s)
- Apratim Bajpai
- Department of Mechanical and Aerospace Engineering, Tandon School of Engineering, New York University, Brooklyn, New York
| | - Rui Li
- Department of Mechanical and Aerospace Engineering, Tandon School of Engineering, New York University, Brooklyn, New York.,Department of Biomedical Engineering, Tandon School of Engineering, New York University, Brooklyn, New York
| | - Weiqiang Chen
- Department of Mechanical and Aerospace Engineering, Tandon School of Engineering, New York University, Brooklyn, New York.,Department of Biomedical Engineering, Tandon School of Engineering, New York University, Brooklyn, New York.,Laura and Isaac Perlmutter Cancer Center, NYU Langone Health, New York, New York
| |
Collapse
|
40
|
Kennard AS, Theriot JA. Osmolarity-independent electrical cues guide rapid response to injury in zebrafish epidermis. eLife 2020; 9:e62386. [PMID: 33225997 PMCID: PMC7721437 DOI: 10.7554/elife.62386] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Accepted: 11/17/2020] [Indexed: 01/02/2023] Open
Abstract
The ability of epithelial tissues to heal after injury is essential for animal life, yet the mechanisms by which epithelial cells sense tissue damage are incompletely understood. In aquatic organisms such as zebrafish, osmotic shock following injury is believed to be an early and potent activator of a wound response. We find that, in addition to sensing osmolarity, basal skin cells in zebrafish larvae are also sensitive to changes in the particular ionic composition of their surroundings after wounding, specifically the concentration of sodium chloride in the immediate vicinity of the wound. This sodium chloride-specific wound detection mechanism is independent of cell swelling, and instead is suggestive of a mechanism by which cells sense changes in the transepithelial electrical potential generated by the transport of sodium and chloride ions across the skin. Consistent with this hypothesis, we show that electric fields directly applied within the skin are sufficient to initiate actin polarization and migration of basal cells in their native epithelial context in vivo, even overriding endogenous wound signaling. This suggests that, in order to mount a robust wound response, skin cells respond to both osmotic and electrical perturbations arising from tissue injury.
Collapse
Affiliation(s)
- Andrew S Kennard
- Biophysics Program, Stanford UniversityStanfordUnited States
- Department of Biology and Howard Hughes Medical Institute, University of WashingtonSeattleUnited States
| | - Julie A Theriot
- Department of Biology and Howard Hughes Medical Institute, University of WashingtonSeattleUnited States
| |
Collapse
|
41
|
Teo JL, Tomatis VM, Coburn L, Lagendijk AK, Schouwenaar IM, Budnar S, Hall TE, Verma S, McLachlan RW, Hogan BM, Parton RG, Yap AS, Gomez GA. Src kinases relax adherens junctions between the neighbors of apoptotic cells to permit apical extrusion. Mol Biol Cell 2020; 31:2557-2569. [PMID: 32903148 PMCID: PMC7851871 DOI: 10.1091/mbc.e20-01-0084] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 08/12/2020] [Accepted: 08/31/2020] [Indexed: 12/17/2022] Open
Abstract
Epithelia can eliminate apoptotic cells by apical extrusion. This is a complex morphogenetic event where expulsion of the apoptotic cell is accompanied by rearrangement of its immediate neighbors to form a rosette. A key mechanism for extrusion is constriction of an actomyosin network that neighbor cells form at their interface with the apoptotic cell. Here we report a complementary process of cytoskeletal relaxation that occurs when cortical contractility is down-regulated at the junctions between those neighbor cells themselves. This reflects a mechanosensitive Src family kinase (SFK) signaling pathway that is activated in neighbor cells when the apoptotic cell relaxes shortly after injury. Inhibiting SFK signaling blocks both the expulsion of apoptotic cells and the rosette formation among their neighbor cells. This reveals the complex pattern of spatially distinct contraction and relaxation that must be established in the neighboring epithelium for apoptotic cells to be extruded.
Collapse
Affiliation(s)
- Jessica L. Teo
- Division of Cell and Developmental Biology, The University of Queensland, St Lucia, Queensland, Australia, 4072
| | - Vanesa M. Tomatis
- Division of Cell and Developmental Biology, The University of Queensland, St Lucia, Queensland, Australia, 4072
| | - Luke Coburn
- Institute of Complex Systems and Mathematical Biology, University of Aberdeen, Aberdeen, United Kingdom, AB24 3UE
| | - Anne K. Lagendijk
- Division of Cell and Developmental Biology, The University of Queensland, St Lucia, Queensland, Australia, 4072
| | - Irin-Maya Schouwenaar
- Division of Cell and Developmental Biology, The University of Queensland, St Lucia, Queensland, Australia, 4072
| | - Srikanth Budnar
- Division of Cell and Developmental Biology, The University of Queensland, St Lucia, Queensland, Australia, 4072
| | - Thomas E. Hall
- Division of Cell and Developmental Biology, The University of Queensland, St Lucia, Queensland, Australia, 4072
| | - Suzie Verma
- Division of Cell and Developmental Biology, The University of Queensland, St Lucia, Queensland, Australia, 4072
| | - Robert W. McLachlan
- Division of Cell and Developmental Biology, The University of Queensland, St Lucia, Queensland, Australia, 4072
| | - Benjamin M. Hogan
- Division of Genomics of Development and Disease, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland, Australia, 4072
| | - Robert G. Parton
- Division of Cell and Developmental Biology, The University of Queensland, St Lucia, Queensland, Australia, 4072
- Centre for Microscopy and Microanalysis, The University of Queensland, St Lucia, Queensland, Australia, 4072
| | - Alpha S. Yap
- Division of Cell and Developmental Biology, The University of Queensland, St Lucia, Queensland, Australia, 4072
| | - Guillermo A. Gomez
- Division of Cell and Developmental Biology, The University of Queensland, St Lucia, Queensland, Australia, 4072
- Centre for Cancer Biology, SA Pathology and the University of South Australia, Adelaide, South Australia, Australia, 5000
| |
Collapse
|
42
|
Miao H, Blankenship JT. The pulse of morphogenesis: actomyosin dynamics and regulation in epithelia. Development 2020; 147:dev186502. [PMID: 32878903 PMCID: PMC7490518 DOI: 10.1242/dev.186502] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Actomyosin networks are some of the most crucial force-generating components present in developing tissues. The contractile forces generated by these networks are harnessed during morphogenesis to drive various cell and tissue reshaping events. Recent studies of these processes have advanced rapidly, providing us with insights into how these networks are initiated, positioned and regulated, and how they act via individual contractile pulses and/or the formation of supracellular cables. Here, we review these studies and discuss the mechanisms that underlie the construction and turnover of such networks and structures. Furthermore, we provide an overview of how ratcheted processivity emerges from pulsed events, and how tissue-level mechanics are the coordinated output of many individual cellular behaviors.
Collapse
Affiliation(s)
- Hui Miao
- Department of Biological Sciences, Molecular and Cellular Biophysics Program, University of Denver, Denver, CO 80208, USA
| | - J Todd Blankenship
- Department of Biological Sciences, Molecular and Cellular Biophysics Program, University of Denver, Denver, CO 80208, USA
| |
Collapse
|
43
|
Bailey EC, Dehn AS, Gjelsvik KJ, Besen-McNally R, Losick VP. A Drosophila Model to Study Wound-induced Polyploidization. J Vis Exp 2020. [PMID: 32597839 DOI: 10.3791/61252] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Polyploidy is a frequent phenomenon whose impact on organismal health and disease is still poorly understood. A cell is defined as polyploid if it contains more than the diploid copy of its chromosomes, which is a result of endoreplication or cell fusion. In tissue repair, wound-induced polyploidization (WIP) has been found to be a conserved healing strategy from fruit flies to vertebrates. WIP has several advantages over cell proliferation, including resistance to oncogenic growth and genotoxic stress. The challenge has been to identify why polyploid cells arise and how these unique cells function. Provided is a detailed protocol to study WIP in the adult fruit fly epithelium where polyploid cells are generated within 2 days after a puncture wound. Taking advantage of D. melanogaster's extensive genetic tool kit, the genes required to initiate and regulate WIP, including Myc, have begun to be identified. Continued studies using this method can reveal how other genetic and physiological variables including sex, diet, and age regulate and influence WIP's function.
Collapse
Affiliation(s)
| | | | - Kayla J Gjelsvik
- Graduate School of Biomedical Sciences and Engineering and Kathryn W. Davis Center for Regenerative Biology and Medicine, MDI Biological Laboratory, University of Maine
| | | | | |
Collapse
|
44
|
Ponte S, Carvalho L, Gagliardi M, Campos I, Oliveira PJ, Jacinto A. Drp1-mediated mitochondrial fission regulates calcium and F-actin dynamics during wound healing. Biol Open 2020; 9:bio048629. [PMID: 32184231 PMCID: PMC7225088 DOI: 10.1242/bio.048629] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 03/09/2020] [Indexed: 12/15/2022] Open
Abstract
Mitochondria adapt to cellular needs by changes in morphology through fusion and fission events, referred to as mitochondrial dynamics. Mitochondrial function and morphology are intimately connected and the dysregulation of mitochondrial dynamics is linked to several human diseases. In this work, we investigated the role of mitochondrial dynamics in wound healing in the Drosophila embryonic epidermis. Mutants for mitochondrial fusion and fission proteins fail to close their wounds, indicating that the regulation of mitochondrial dynamics is required for wound healing. By live-imaging, we found that loss of function of the mitochondrial fission protein Dynamin-related protein 1 (Drp1) compromises the increase of cytosolic and mitochondrial calcium upon wounding and leads to reduced reactive oxygen species (ROS) production and F-actin defects at the wound edge, culminating in wound healing impairment. Our results highlight a new role for mitochondrial dynamics in the regulation of calcium, ROS and F-actin during epithelial repair.
Collapse
Affiliation(s)
- Susana Ponte
- CEDOC, Chronic Diseases Research Center, NOVA Medical School/Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, 1169-056 Lisboa, Portugal
| | - Lara Carvalho
- CEDOC, Chronic Diseases Research Center, NOVA Medical School/Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, 1169-056 Lisboa, Portugal
| | - Maria Gagliardi
- CEDOC, Chronic Diseases Research Center, NOVA Medical School/Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, 1169-056 Lisboa, Portugal
| | - Isabel Campos
- Animal Platforms, Champalimaud Centre for the Unknown, 1400-038 Lisboa, Portugal
| | - Paulo J Oliveira
- CNC, Center for Neuroscience and Cell Biology, University of Coimbra, UC Biotech Building, 3060-197 Cantanhede, Portugal
| | - António Jacinto
- CEDOC, Chronic Diseases Research Center, NOVA Medical School/Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, 1169-056 Lisboa, Portugal
| |
Collapse
|
45
|
Ghilardi SJ, O'Reilly BM, Sgro AE. Intracellular signaling dynamics and their role in coordinating tissue repair. WILEY INTERDISCIPLINARY REVIEWS. SYSTEMS BIOLOGY AND MEDICINE 2020; 12:e1479. [PMID: 32035001 PMCID: PMC7187325 DOI: 10.1002/wsbm.1479] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 12/20/2019] [Accepted: 12/31/2019] [Indexed: 12/11/2022]
Abstract
Tissue repair is a complex process that requires effective communication and coordination between cells across multiple tissues and organ systems. Two of the initial intracellular signals that encode injury signals and initiate tissue repair responses are calcium and extracellular signal-regulated kinase (ERK). However, calcium and ERK signaling control a variety of cellular behaviors important for injury repair including cellular motility, contractility, and proliferation, as well as the activity of several different transcription factors, making it challenging to relate specific injury signals to their respective repair programs. This knowledge gap ultimately hinders the development of new wound healing therapies that could take advantage of native cellular signaling programs to more effectively repair tissue damage. The objective of this review is to highlight the roles of calcium and ERK signaling dynamics as mechanisms that link specific injury signals to specific cellular repair programs during epithelial and stromal injury repair. We detail how the signaling networks controlling calcium and ERK can now also be dissected using classical signal processing techniques with the advent of new biosensors and optogenetic signal controllers. Finally, we advocate the importance of recognizing calcium and ERK dynamics as key links between injury detection and injury repair programs that both organize and execute a coordinated tissue repair response between cells across different tissues and organs. This article is categorized under: Models of Systems Properties and Processes > Mechanistic Models Biological Mechanisms > Cell Signaling Laboratory Methods and Technologies > Imaging Models of Systems Properties and Processes > Organ, Tissue, and Physiological Models.
Collapse
Affiliation(s)
- Samuel J. Ghilardi
- Department of Biomedical Engineering and the Biological Design CenterBoston UniversityBostonMassachusetts
| | - Breanna M. O'Reilly
- Department of Biomedical Engineering and the Biological Design CenterBoston UniversityBostonMassachusetts
| | - Allyson E. Sgro
- Department of Biomedical Engineering and the Biological Design CenterBoston UniversityBostonMassachusetts
| |
Collapse
|
46
|
Talukder MSU, Pervin MS, Tanvir MIO, Fujimoto K, Tanaka M, Itoh G, Yumura S. Ca 2+-Calmodulin Dependent Wound Repair in Dictyostelium Cell Membrane. Cells 2020; 9:cells9041058. [PMID: 32340342 PMCID: PMC7226253 DOI: 10.3390/cells9041058] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 04/18/2020] [Accepted: 04/21/2020] [Indexed: 12/20/2022] Open
Abstract
Wound repair of cell membrane is a vital physiological phenomenon. We examined wound repair in Dictyostelium cells by using a laserporation, which we recently invented. We examined the influx of fluorescent dyes from the external medium and monitored the cytosolic Ca2+ after wounding. The influx of Ca2+ through the wound pore was essential for wound repair. Annexin and ESCRT components accumulated at the wound site upon wounding as previously described in animal cells, but these were not essential for wound repair in Dictyostelium cells. We discovered that calmodulin accumulated at the wound site upon wounding, which was essential for wound repair. The membrane accumulated at the wound site to plug the wound pore by two-steps, depending on Ca2+ influx and calmodulin. From several lines of evidence, the membrane plug was derived from de novo generated vesicles at the wound site. Actin filaments also accumulated at the wound site, depending on Ca2+ influx and calmodulin. Actin accumulation was essential for wound repair, but microtubules were not essential. A molecular mechanism of wound repair will be discussed.
Collapse
Affiliation(s)
- Md. Shahabe Uddin Talukder
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi 753-8511, Japan; (M.S.U.T.); (M.S.P.); (M.I.O.T.); (K.F.); (M.T.)
- Institute of Food and Radiation Biology, AERE, Bangladesh Atomic Energy Commission, Savar, Dhaka 3787, Bangladesh
| | - Mst. Shaela Pervin
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi 753-8511, Japan; (M.S.U.T.); (M.S.P.); (M.I.O.T.); (K.F.); (M.T.)
- Rajshahi Diabetic Association General Hospital, Luxmipur, Jhautala, Rajshahi 6000, Bangladesh
| | - Md. Istiaq Obaidi Tanvir
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi 753-8511, Japan; (M.S.U.T.); (M.S.P.); (M.I.O.T.); (K.F.); (M.T.)
| | - Koushiro Fujimoto
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi 753-8511, Japan; (M.S.U.T.); (M.S.P.); (M.I.O.T.); (K.F.); (M.T.)
| | - Masahito Tanaka
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi 753-8511, Japan; (M.S.U.T.); (M.S.P.); (M.I.O.T.); (K.F.); (M.T.)
| | - Go Itoh
- Department of Molecular Medicine and Biochemistry, Akita University Graduate School of Medicine, Akita 010-8543, Japan
| | - Shigehiko Yumura
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi 753-8511, Japan; (M.S.U.T.); (M.S.P.); (M.I.O.T.); (K.F.); (M.T.)
- Correspondence: yumura@yamaguchi–u.ac.jp; Tel./Fax: +81-83-933-5717
| |
Collapse
|
47
|
Sadahiro R, Knight B, James F, Hannon E, Charity J, Daniels IR, Burrage J, Knox O, Crawford B, Smart NJ, Mill J. Major surgery induces acute changes in measured DNA methylation associated with immune response pathways. Sci Rep 2020; 10:5743. [PMID: 32238836 PMCID: PMC7113299 DOI: 10.1038/s41598-020-62262-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 03/09/2020] [Indexed: 12/19/2022] Open
Abstract
Surgery is an invasive procedure evoking acute inflammatory and immune responses that can influence risk for postoperative complications including cognitive dysfunction and delirium. Although the specific mechanisms driving these responses have not been well-characterized, they are hypothesized to involve the epigenetic regulation of gene expression. We quantified genome-wide levels of DNA methylation in peripheral blood mononuclear cells (PBMCs) longitudinally collected from a cohort of elderly patients undergoing major surgery, comparing samples collected at baseline to those collected immediately post-operatively and at discharge from hospital. We identified acute changes in measured DNA methylation at sites annotated to immune system genes, paralleling changes in serum-levels of markers including C-reactive protein (CRP) and Interleukin 6 (IL-6) measured in the same individuals. Many of the observed changes in measured DNA methylation were consistent across different types of major surgery, although there was notable heterogeneity between surgery types at certain loci. The acute changes in measured DNA methylation induced by surgery are relatively stable in the post-operative period, generally persisting until discharge from hospital. Our results highlight the dramatic alterations in gene regulation induced by invasive surgery, primarily reflecting upregulation of the immune system in response to trauma, wound healing and anaesthesia.
Collapse
Affiliation(s)
- Ryoichi Sadahiro
- Department of Immune Medicine, National Cancer Center Research Institute, National Cancer Center Japan, Tokyo, Japan. .,University of Exeter Medical School, University of Exeter, Exeter, United Kingdom.
| | - Bridget Knight
- University of Exeter Medical School, University of Exeter, Exeter, United Kingdom.,Royal Devon & Exeter Hospital, Exeter, United Kingdom
| | - Ffion James
- University of Exeter Medical School, University of Exeter, Exeter, United Kingdom
| | - Eilis Hannon
- University of Exeter Medical School, University of Exeter, Exeter, United Kingdom
| | - John Charity
- Royal Devon & Exeter Hospital, Exeter, United Kingdom
| | - Ian R Daniels
- Royal Devon & Exeter Hospital, Exeter, United Kingdom
| | - Joe Burrage
- University of Exeter Medical School, University of Exeter, Exeter, United Kingdom
| | - Olivia Knox
- University of Exeter Medical School, University of Exeter, Exeter, United Kingdom
| | - Bethany Crawford
- University of Exeter Medical School, University of Exeter, Exeter, United Kingdom
| | - Neil J Smart
- Royal Devon & Exeter Hospital, Exeter, United Kingdom
| | - Jonathan Mill
- University of Exeter Medical School, University of Exeter, Exeter, United Kingdom.
| |
Collapse
|
48
|
He S, Green Y, Saeidi N, Li X, Fredberg JJ, Ji B, Pismen LM. A theoretical model of collective cell polarization and alignment. JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS 2020; 137:103860. [PMID: 33518805 PMCID: PMC7842695 DOI: 10.1016/j.jmps.2019.103860] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Collective cell polarization and alignment play important roles in tissue morphogenesis, wound healing and cancer metastasis. How cells sense the direction and position in these processes, however, has not been fully understood. Here we construct a theoretical model based on describing cell layer as a nemato-elastic medium, by which the cell polarization, cell alignment and cell active contraction are explicitly expressed as functions of components of the nematic order parameter. To determine the order parameter we derive two sets of governing equations, one for the force equilibrium of the system, and the other for the minimization of the system's free energy including the energy of cell polarization and alignment. By solving these coupled governing equations, we can predict the effects of substrate stiffness, geometries of cell layers, external forces and myosin activity on the direction- and position-dependent cell aspect ratio and cell orientation. Moreover, the axisymmetric problem with cells on a ring-like pattern is solved analytically, and the analytical solution for cell aspect ratio are governed by parameter groups which include the stiffness of the cell and the substrate, the strength of myosin activity and the external forces. Our predictions of the cell aspect ratio and orientation are generally comparable to experimental observations. These results show that the pattern of cell polarization is determined by the anisotropic degree of active contractile stress, and suggest a stress-driven polarization mechanism that enables cells to sense their spatial positions to develop direction- and position-dependent behavior. This, in turn, sheds light on the ways to control pattern formation in tissue engineering for potential biomedical applications.
Collapse
Affiliation(s)
- Shijie He
- Department of Applied Mechanics, School of Aerospace Engineering, Beijing Institute of Technology, Beijing 100081, China
- Center for Engineering in Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Yoav Green
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
- Department of Mechanical Engineering, Ben-Gurion University of the Negev, Beersheva 8410501, Israel
| | - Nima Saeidi
- Center for Engineering in Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Xiaojun Li
- Department of Applied Mechanics, School of Aerospace Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Jeffrey J. Fredberg
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Baohua Ji
- Department of Applied Mechanics, School of Aerospace Engineering, Beijing Institute of Technology, Beijing 100081, China
- Department of Engineering Mechanics, Zhejiang University, Hangzhou 310027, China
- Corresponding authors. (B. Ji), (L.M. Pismen)
| | - Len M. Pismen
- Department of Chemical Engineering, Technion – Israel Institute of Technology, Haifa 32000, Israel
- Corresponding authors. (B. Ji), (L.M. Pismen)
| |
Collapse
|
49
|
Guzmán-Herrera A, Mao Y. Polarity during tissue repair, a multiscale problem. Curr Opin Cell Biol 2020; 62:31-36. [PMID: 31514044 PMCID: PMC7036748 DOI: 10.1016/j.ceb.2019.07.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 07/18/2019] [Accepted: 07/23/2019] [Indexed: 12/12/2022]
Abstract
Tissue repair is essential for all organisms, as it protects the integrity and function of tissues and prevents infections and diseases. It takes place at multiple scales, from macroscopic to microscopic levels. Most mechanisms driving tissue repair rely on the correct polarisation of collective cell behaviours, such as migration and proliferation, and polarisation of cytoskeletal and junctional components. Furthermore, re-establishment and maintenance of cell polarity are fundamental for a tissue to be fully repaired and for withstanding mechanical stress during homeostasis and repair. Recent evidence highlights an important role for the interplay between cell polarity and tissue mechanics that are critical in tissue repair.
Collapse
Affiliation(s)
- Alejandra Guzmán-Herrera
- MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK; Institute for the Physics of Living Systems, University College London, London, UK
| | - Yanlan Mao
- MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK; Institute for the Physics of Living Systems, University College London, London, UK; College of Information and Control, Nanjing University of Information Science and Technology, Nanjing, Jiangsu 210044, People's Republic of China.
| |
Collapse
|
50
|
Taffoni C, Omi S, Huber C, Mailfert S, Fallet M, Rupprecht JF, Ewbank JJ, Pujol N. Microtubule plus-end dynamics link wound repair to the innate immune response. eLife 2020; 9:e45047. [PMID: 31995031 PMCID: PMC7043892 DOI: 10.7554/elife.45047] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 01/27/2020] [Indexed: 01/20/2023] Open
Abstract
The skin protects animals from infection and physical damage. In Caenorhabditis elegans, wounding the epidermis triggers an immune reaction and a repair response, but it is not clear how these are coordinated. Previous work implicated the microtubule cytoskeleton in the maintenance of epidermal integrity (Chuang et al., 2016). Here, by establishing a simple wounding system, we show that wounding provokes a reorganisation of plasma membrane subdomains. This is followed by recruitment of the microtubule plus end-binding protein EB1/EBP-2 around the wound and actin ring formation, dependent on ARP2/3 branched actin polymerisation. We show that microtubule dynamics are required for the recruitment and closure of the actin ring, and for the trafficking of the key signalling protein SLC6/SNF-12 toward the injury site. Without SNF-12 recruitment, there is an abrogation of the immune response. Our results suggest that microtubule dynamics coordinate the cytoskeletal changes required for wound repair and the concomitant activation of innate immunity.
Collapse
Affiliation(s)
- Clara Taffoni
- CIML, Centre d’Immunologie de Marseille-Luminy, Turing Centre for Living SystemsAix Marseille Univ, INSERM, CNRSMarseilleFrance
| | - Shizue Omi
- CIML, Centre d’Immunologie de Marseille-Luminy, Turing Centre for Living SystemsAix Marseille Univ, INSERM, CNRSMarseilleFrance
| | - Caroline Huber
- CIML, Centre d’Immunologie de Marseille-Luminy, Turing Centre for Living SystemsAix Marseille Univ, INSERM, CNRSMarseilleFrance
| | - Sébastien Mailfert
- CIML, Centre d’Immunologie de Marseille-Luminy, Turing Centre for Living SystemsAix Marseille Univ, INSERM, CNRSMarseilleFrance
| | - Mathieu Fallet
- CIML, Centre d’Immunologie de Marseille-Luminy, Turing Centre for Living SystemsAix Marseille Univ, INSERM, CNRSMarseilleFrance
| | | | - Jonathan J Ewbank
- CIML, Centre d’Immunologie de Marseille-Luminy, Turing Centre for Living SystemsAix Marseille Univ, INSERM, CNRSMarseilleFrance
| | - Nathalie Pujol
- CIML, Centre d’Immunologie de Marseille-Luminy, Turing Centre for Living SystemsAix Marseille Univ, INSERM, CNRSMarseilleFrance
| |
Collapse
|