1
|
Nicot S, Gillard G, Impheng H, Joachimiak E, Urbach S, Mochizuki K, Wloga D, Juge F, Rogowski K. A family of carboxypeptidases catalyzing α- and β-tubulin tail processing and deglutamylation. SCIENCE ADVANCES 2023; 9:eadi7838. [PMID: 37703372 PMCID: PMC10499314 DOI: 10.1126/sciadv.adi7838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 08/10/2023] [Indexed: 09/15/2023]
Abstract
Tubulin posttranslational modifications represent an important mechanism involved in the regulation of microtubule functions. The most widespread among them are detyrosination, α∆2-tubulin, and polyglutamylation. Here, we describe a family of tubulin-modifying enzymes composed of two closely related proteins, KIAA0895L and KIAA0895, which have tubulin metallocarboxypeptidase activity and thus were termed TMCP1 and TMCP2, respectively. We show that TMCP1 (also known as MATCAP) acts as α-tubulin detyrosinase that also catalyzes α∆2-tubulin. In contrast, TMCP2 preferentially modifies βI-tubulin by removing three amino acids from its C terminus, generating previously unknown βI∆3 modification. We show that βI∆3-tubulin is mostly found on centrioles and mitotic spindles and in cilia. Moreover, we demonstrate that TMCPs also remove posttranslational polyglutamylation and thus act as tubulin deglutamylases. Together, our study describes the identification and comprehensive biochemical analysis of a previously unknown type of tubulin-modifying enzymes involved in the processing of α- and β-tubulin C-terminal tails and deglutamylation.
Collapse
Affiliation(s)
- Simon Nicot
- Tubulin Code team, Institute of Human Genetics, Université Montpellier, CNRS, Montpellier, France
| | - Ghislain Gillard
- Tubulin Code team, Institute of Human Genetics, Université Montpellier, CNRS, Montpellier, France
| | - Hathaichanok Impheng
- Department of Physiology, Faculty of Medical science, Naresuan University, Phitsanulok 65000, Thailand
| | - Ewa Joachimiak
- Laboratory of Cytoskeleton and Cilia Biology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland
| | - Serge Urbach
- Functional Proteomics Platform (FPP), IGF, Université Montpellier, CNRS, INSERM, Montpellier, France
| | - Kazufumi Mochizuki
- Epigenetic Chromatin Regulation team, Institute of Human Genetics, Université Montpellier, CNRS, Montpellier, France
| | - Dorota Wloga
- Laboratory of Cytoskeleton and Cilia Biology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland
| | - François Juge
- Tubulin Code team, Institute of Human Genetics, Université Montpellier, CNRS, Montpellier, France
| | - Krzysztof Rogowski
- Tubulin Code team, Institute of Human Genetics, Université Montpellier, CNRS, Montpellier, France
| |
Collapse
|
2
|
Atkins M, Nicol X, Fassier C. Microtubule remodelling as a driving force of axon guidance and pruning. Semin Cell Dev Biol 2023; 140:35-53. [PMID: 35710759 DOI: 10.1016/j.semcdb.2022.05.030] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 04/26/2022] [Accepted: 05/31/2022] [Indexed: 01/28/2023]
Abstract
The establishment of neuronal connectivity relies on the microtubule (MT) cytoskeleton, which provides mechanical support, roads for axonal transport and mediates signalling events. Fine-tuned spatiotemporal regulation of MT functions by tubulin post-translational modifications and MT-associated proteins is critical for the coarse wiring and subsequent refinement of neuronal connectivity. The defective regulation of these processes causes a wide range of neurodevelopmental disorders associated with connectivity defects. This review focuses on recent studies unravelling how MT composition, post-translational modifications and associated proteins influence MT functions in axon guidance and/or pruning to build functional neuronal circuits. We here summarise experimental evidence supporting the key role of this network as a driving force for growth cone steering and branch-specific axon elimination. We further provide a global overview of the MT-interactors that tune developing axon behaviours, with a special emphasis on their emerging versatility in the regulation of MT dynamics/structure. Recent studies establishing the key and highly selective role of the tubulin code in the regulation of MT functions in axon pathfinding are also reported. Finally, our review highlights the emerging molecular links between these MT regulation processes and guidance signals that wire the nervous system.
Collapse
Affiliation(s)
- Melody Atkins
- INSERM, UMR-S 1270, Institut du Fer à Moulin, Sorbonne Université, F-75005 Paris, France
| | - Xavier Nicol
- Institut de la Vision, Sorbonne Université, INSERM, CNRS, F-75012 Paris, France
| | - Coralie Fassier
- Institut de la Vision, Sorbonne Université, INSERM, CNRS, F-75012 Paris, France.
| |
Collapse
|
3
|
Lopes D, Seabra AL, Orr B, Maiato H. α-Tubulin detyrosination links the suppression of MCAK activity with taxol cytotoxicity. J Cell Biol 2023; 222:213730. [PMID: 36459065 PMCID: PMC9723805 DOI: 10.1083/jcb.202205092] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 10/24/2022] [Accepted: 11/09/2022] [Indexed: 12/03/2022] Open
Abstract
α/β-Tubulin posttranslational modifications (PTMs) generate microtubule diversity, but whether they account for cancer cell resistance to microtubule-targeting drugs remains unknown. Here, we performed a pilot dissection of the "cancer tubulin code" using the NCI-60 cancer cell panel. We found that acetylated, detyrosinated, and ∆2-α-tubulin that typically accumulate on stable microtubules were uncoupled in many cancer cells. Acetylated α-tubulin did not affect microtubule dynamics, whereas its levels correlated with, but were not required for, taxol-induced cytotoxicity. In contrast, experimental increase of α-tubulin detyrosination, and/or depletion of the detyrosination-sensitive microtubule-depolymerizing enzyme MCAK, enhanced taxol-induced cytotoxicity by promoting cell death in mitosis and the subsequent interphase, without causing a cumulative effect. Interestingly, only increased detyrosinated α-tubulin aggravated taxol-induced spindle multipolarity. Overall, we identified high α-tubulin acetylation as a potential biomarker for cancer cell response to taxol and uncovered a mechanistic link between α-tubulin detyrosination and the suppression of MCAK activity in taxol-induced cytotoxicity, likely by promoting chromosome missegregation, regardless of spindle defects.
Collapse
Affiliation(s)
- Danilo Lopes
- Chromosome Instability & Dynamics Group, i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - Alexandre L Seabra
- Chromosome Instability & Dynamics Group, i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - Bernardo Orr
- Chromosome Instability & Dynamics Group, i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - Helder Maiato
- Chromosome Instability & Dynamics Group, i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal.,Cell Division Group, Department of Biomedicine, Faculdade de Medicina, Universidade do Porto, Porto, Portugal
| |
Collapse
|
4
|
Ramirez-Rios S, Choi SR, Sanyal C, Blum TB, Bosc C, Krichen F, Denarier E, Soleilhac JM, Blot B, Janke C, Stoppin-Mellet V, Magiera MM, Arnal I, Steinmetz MO, Moutin MJ. VASH1-SVBP and VASH2-SVBP generate different detyrosination profiles on microtubules. J Cell Biol 2022; 222:213744. [PMID: 36512346 PMCID: PMC9750192 DOI: 10.1083/jcb.202205096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 09/30/2022] [Accepted: 11/04/2022] [Indexed: 12/15/2022] Open
Abstract
The detyrosination/tyrosination cycle of α-tubulin is critical for proper cell functioning. VASH1-SVBP and VASH2-SVBP are ubiquitous enzymes involved in microtubule detyrosination, whose mode of action is little known. Here, we show in reconstituted systems and cells that VASH1-SVBP and VASH2-SVBP drive the global and local detyrosination of microtubules, respectively. We solved the cryo-electron microscopy structure of VASH2-SVBP bound to microtubules, revealing a different microtubule-binding configuration of its central catalytic region compared to VASH1-SVBP. We show that the divergent mode of detyrosination between the two enzymes is correlated with the microtubule-binding properties of their disordered N- and C-terminal regions. Specifically, the N-terminal region is responsible for a significantly longer residence time of VASH2-SVBP on microtubules compared to VASH1-SVBP. We suggest that this VASH region is critical for microtubule detachment and diffusion of VASH-SVBP enzymes on lattices. Our results suggest a mechanism by which VASH1-SVBP and VASH2-SVBP could generate distinct microtubule subpopulations and confined areas of detyrosinated lattices to drive various microtubule-based cellular functions.
Collapse
Affiliation(s)
- Sacnicte Ramirez-Rios
- Univ. Grenoble Alpes, Inserm, U1216, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique, Grenoble Institut Neurosciences, Grenoble, France
| | - Sung Ryul Choi
- Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institut, Villigen, Switzerland
| | - Chadni Sanyal
- Univ. Grenoble Alpes, Inserm, U1216, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique, Grenoble Institut Neurosciences, Grenoble, France
| | - Thorsten B. Blum
- Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institut, Villigen, Switzerland
| | - Christophe Bosc
- Univ. Grenoble Alpes, Inserm, U1216, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique, Grenoble Institut Neurosciences, Grenoble, France
| | - Fatma Krichen
- Univ. Grenoble Alpes, Inserm, U1216, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique, Grenoble Institut Neurosciences, Grenoble, France
| | - Eric Denarier
- Univ. Grenoble Alpes, Inserm, U1216, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique, Grenoble Institut Neurosciences, Grenoble, France
| | - Jean-Marc Soleilhac
- Univ. Grenoble Alpes, Inserm, U1216, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique, Grenoble Institut Neurosciences, Grenoble, France
| | - Béatrice Blot
- Univ. Grenoble Alpes, Inserm, U1216, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique, Grenoble Institut Neurosciences, Grenoble, France
| | - Carsten Janke
- Institut Curie, Université Paris Sciences et Lettres, Centre National de la Recherche Scientifique UMR3348, Orsay, France,Université Paris-Saclay, Centre National de la Recherche Scientifique UMR3348, Orsay, France
| | - Virginie Stoppin-Mellet
- Univ. Grenoble Alpes, Inserm, U1216, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique, Grenoble Institut Neurosciences, Grenoble, France
| | - Maria M. Magiera
- Institut Curie, Université Paris Sciences et Lettres, Centre National de la Recherche Scientifique UMR3348, Orsay, France,Université Paris-Saclay, Centre National de la Recherche Scientifique UMR3348, Orsay, France
| | - Isabelle Arnal
- Univ. Grenoble Alpes, Inserm, U1216, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique, Grenoble Institut Neurosciences, Grenoble, France
| | - Michel O. Steinmetz
- Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institut, Villigen, Switzerland,Biozentrum, University of Basel, Basel, Switzerland
| | - Marie-Jo Moutin
- Univ. Grenoble Alpes, Inserm, U1216, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique, Grenoble Institut Neurosciences, Grenoble, France,Correspondence to Marie-Jo Moutin:
| |
Collapse
|
5
|
Sucularli C. Identification of BRIP1, NSMCE2, ANAPC7, RAD18 and TTL from chromosome segregation gene set associated with hepatocellular carcinoma. Cancer Genet 2022; 268-269:28-36. [PMID: 36126360 DOI: 10.1016/j.cancergen.2022.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 07/12/2022] [Accepted: 09/06/2022] [Indexed: 01/25/2023]
Abstract
INTRODUCTION Hepatocellular carcinoma is one of the most frequent cancers with high mortality rate worldwide. METHODS TCGA LIHC HTseq counts were analyzed. GSEA was performed with GO BP gene sets. GO analysis was performed with differentially expressed genes. The subset of genes contributing most of the enrichment result of GO_BP_CHROMOSOME_SEGREGATION of GSEA were identified. Five genes have been selected in this subset of genes for further analysis. A microarray data set, GSE112790, was analyzed as a validation data set. Survival analysis was performed. RESULTS According to GSEA and GO analysis several gene sets and processes related to chromosome segregation were enriched in LIHC. GO_BP_CHROMOSOME_SEGREGATION gene set from GSEA had the highest size of the genes contributing most of the enrichment. Five genes in this gene set; BRIP1, NSMCE2, ANAPC7, RAD18 and TTL, whose expressions and prognostic values have not been studied in hepatocellular carcinoma in detail, have been selected for further analyses. Expression of these five genes were identified as significantly upregulated in LIHC RNA-seq and HCC microarray data set. Survival analysis showed that high expression of the five genes was associated with poor overall survival in HCC patients. CONCLUSION Selected genes were upregulated and had prognostic value in HCC.
Collapse
Affiliation(s)
- Ceren Sucularli
- Department of Bioinformatics, Institute of Health Sciences, Hacettepe University, Ankara, Turkey.
| |
Collapse
|
6
|
Lafanechère L. The microtubule cytoskeleton: An old validated target for novel therapeutic drugs. Front Pharmacol 2022; 13:969183. [PMID: 36188585 PMCID: PMC9521402 DOI: 10.3389/fphar.2022.969183] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 08/30/2022] [Indexed: 12/02/2022] Open
Abstract
Compounds targeting microtubules are widely used in cancer therapy with a proven efficacy. However, because they also target non-cancerous cells, their administration leads to numerous adverse effects. With the advancement of knowledge on the structure of tubulin, the regulation of microtubule dynamics and their deregulation in pathological processes, new therapeutic strategies are emerging, both for the treatment of cancer and for other diseases, such as neuronal or even heart diseases and parasite infections. In addition, a better understanding of the mechanism of action of well-known drugs such as colchicine or certain kinase inhibitors contributes to the development of these new therapeutic approaches. Nowadays, chemists and biologists are working jointly to select drugs which target the microtubule cytoskeleton and have improved properties. On the basis of a few examples this review attempts to depict the panorama of these recent advances.
Collapse
|
7
|
Grignard J, Lamamy V, Vermersch E, Delagrange P, Stephan JP, Dorval T, Fages F. Mathematical modeling of the microtubule detyrosination/tyrosination cycle for cell-based drug screening design. PLoS Comput Biol 2022; 18:e1010236. [PMID: 35759459 PMCID: PMC9236252 DOI: 10.1371/journal.pcbi.1010236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 05/20/2022] [Indexed: 11/18/2022] Open
Abstract
Microtubules and their post-translational modifications are involved in major cellular processes. In severe diseases such as neurodegenerative disorders, tyrosinated tubulin and tyrosinated microtubules are in lower concentration. We present here a mechanistic mathematical model of the microtubule tyrosination cycle combining computational modeling and high-content image analyses to understand the key kinetic parameters governing the tyrosination status in different cellular models. That mathematical model is parameterized, firstly, for neuronal cells using kinetic values taken from the literature, and, secondly, for proliferative cells, by a change of two parameter values obtained, and shown minimal, by a continuous optimization procedure based on temporal logic constraints to formalize experimental high-content imaging data. In both cases, the mathematical models explain the inability to increase the tyrosination status by activating the Tubulin Tyrosine Ligase enzyme. The tyrosinated tubulin is indeed the product of a chain of two reactions in the cycle: the detyrosinated microtubule depolymerization followed by its tyrosination. The tyrosination status at equilibrium is thus limited by both reaction rates and activating the tyrosination reaction alone is not effective. Our computational model also predicts the effect of inhibiting the Tubulin Carboxy Peptidase enzyme which we have experimentally validated in MEF cellular model. Furthermore, the model predicts that the activation of two particular kinetic parameters, the tyrosination and detyrosinated microtubule depolymerization rate constants, in synergy, should suffice to enable an increase of the tyrosination status in living cells.
Collapse
Affiliation(s)
- Jeremy Grignard
- Pole of Activity Data Sciences and Data Management, Institut de Recherches Servier (IdRS), Croissy-sur-Seine, France
- * E-mail: (JG); (TD); (FF)
| | - Véronique Lamamy
- Pole of Activity Cellular Sciences, Institut de Recherches Servier (IdRS), Croissy-sur-Seine, France
| | - Eva Vermersch
- Pole of Activity Cellular Sciences, Institut de Recherches Servier (IdRS), Croissy-sur-Seine, France
| | - Philippe Delagrange
- Therapeutic Area Neuropsychiatry and Immunoinflammation, Institut de Recherches Servier (IdRS), Croissy-sur-Seine, France
| | - Jean-Philippe Stephan
- In Vitro Pharmacology Unit, Institut de Recherches Servier (IdRS), Croissy-sur-Seine, France
| | - Thierry Dorval
- Pole of Activity Data Sciences and Data Management, Institut de Recherches Servier (IdRS), Croissy-sur-Seine, France
- * E-mail: (JG); (TD); (FF)
| | - François Fages
- Team Project Lifeware, Institut National de Recherche en Informatique et Automatique, Inria Saclay, Palaiseau, France
- * E-mail: (JG); (TD); (FF)
| |
Collapse
|
8
|
Sanyal C, Pietsch N, Ramirez Rios S, Peris L, Carrier L, Moutin MJ. The detyrosination/re-tyrosination cycle of tubulin and its role and dysfunction in neurons and cardiomyocytes. Semin Cell Dev Biol 2021; 137:46-62. [PMID: 34924330 DOI: 10.1016/j.semcdb.2021.12.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 12/07/2021] [Accepted: 12/08/2021] [Indexed: 12/28/2022]
Abstract
Among the variety of post-translational modifications to which microtubules are subjected, the detyrosination/re-tyrosination cycle is specific to tubulin. It is conserved by evolution and characterized by the enzymatic removal and re-addition of a gene-encoded tyrosine residue at the C-terminus of α-tubulin. Detyrosinated tubulin can be further converted to Δ2-tubulin by the removal of an additional C-terminal glutamate residue. Detyrosinated and Δ2-tubulin are carried by stable microtubules whereas tyrosinated microtubules are present on dynamic polymers. The cycle regulates trafficking of many cargo transporting molecular motors and is linked to the microtubule dynamics via regulation of microtubule interactions with specific cellular effectors such as kinesin-13. Here, we give an historical overview of the general features discovered for the cycle. We highlight the recent progress toward structure and functioning of the enzymes that keep the levels of tyrosinated and detyrosinated tubulin in cells, the long-known tubulin tyrosine ligase and the recently discovered vasohibin-SVBP complexes. We further describe how the cycle controls microtubule functions in healthy neurons and cardiomyocytes and how deregulations of the cycle are involved in dysfunctions of these highly differentiated cells, leading to neurodegeneration and heart failure in humans.
Collapse
Affiliation(s)
- Chadni Sanyal
- Univ. Grenoble Alpes, Inserm, U1216, CNRS, Grenoble Institut Neurosciences, 38000 Grenoble, France
| | - Niels Pietsch
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Sacnicte Ramirez Rios
- Univ. Grenoble Alpes, Inserm, U1216, CNRS, Grenoble Institut Neurosciences, 38000 Grenoble, France
| | - Leticia Peris
- Univ. Grenoble Alpes, Inserm, U1216, CNRS, Grenoble Institut Neurosciences, 38000 Grenoble, France
| | - Lucie Carrier
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany.
| | - Marie-Jo Moutin
- Univ. Grenoble Alpes, Inserm, U1216, CNRS, Grenoble Institut Neurosciences, 38000 Grenoble, France.
| |
Collapse
|
9
|
Yang H, Zhuang Z, Pan W. A graph convolutional neural network for gene expression data analysis with multiple gene networks. Stat Med 2021; 40:5547-5564. [PMID: 34258781 DOI: 10.1002/sim.9140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 04/07/2021] [Accepted: 06/21/2021] [Indexed: 02/01/2023]
Abstract
Spectral graph convolutional neural networks (GCN) are proposed to incorporate important information contained in graphs such as gene networks. In a standard spectral GCN, there is only one gene network to describe the relationships among genes. However, for genomic applications, due to condition- or tissue-specific gene function and regulation, multiple gene networks may be available; it is unclear how to apply GCNs to disease classification with multiple networks. Besides, which gene networks may provide more effective prior information for a given learning task is unknown a priori and is not straightforward to discover in many cases. A deep multiple graph convolutional neural network is therefore developed here to meet the challenge. The new approach not only computes a feature of a gene as the weighted average of those of itself and its neighbors through spectral GCNs, but also extracts features from gene-specific expression (or other feature) profiles via a feed-forward neural networks (FNN). We also provide two measures, the importance of a given gene and the relative importance score of each gene network, for the genes' and gene networks' contributions, respectively, to the learning task. To evaluate the new method, we conduct real data analyses using several breast cancer and diffuse large B-cell lymphoma datasets and incorporating multiple gene networks obtained from "GIANT 2.0" Compared with the standard FNN, GCN, and random forest, the new method not only yields high classification accuracy but also prioritizes the most important genes confirmed to be highly associated with cancer, strongly suggesting the usefulness of the new method in incorporating multiple gene networks.
Collapse
Affiliation(s)
- Hu Yang
- School of Information, Central University of Finance and Economics, Beijing, China
| | - Zhong Zhuang
- Department of EECE, University of Minnesota, Minneapolis, Minnesota, USA
| | - Wei Pan
- Division of Biostatistics, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
10
|
Müller M, Ringer K, Hub F, Kamm N, Worzfeld T, Jacob R. TTL-Expression Modulates Epithelial Morphogenesis. Front Cell Dev Biol 2021; 9:635723. [PMID: 33614664 PMCID: PMC7892909 DOI: 10.3389/fcell.2021.635723] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 01/18/2021] [Indexed: 11/18/2022] Open
Abstract
Epithelial monolayer formation depends on the architecture and composition of the microtubule cytoskeleton. Microtubules control bidirectional trafficking and determine the positioning of structural cellular proteins. We studied the role of tubulin tyrosination in epithelial cell shape and motility. Tubulin tyrosine ligase (TTL), the enzyme that adds tyrosine to the carboxy terminus of detyrosinated α-tubulin, was depleted or overexpressed in 2D epithelial monolayers as well as in 3D intestinal organoids. We demonstrate qualitatively and quantitatively that in the absence of TTL the cells comprise high levels of detyrosinated tubulin, change their shape into an initial flat morphology and retardedly acquire a differentiated columnar epithelial cell shape. Enhanced adhesion and accelerated migration patterns of TTL-knockout cells combined with reverse effects in TTL-overexpressing cells indicate that the loss of TTL affects the organization of cell adhesion foci. Precipitation of detyrosinated tubulin with focal adhesion scaffold components coincides with increased quantities and persistence of focal adhesion plaques. Our results indicate that the equilibrium between microtubules enriched in detyrosinated or tyrosinated tubulin modulates epithelial tissue formation, cell morphology, and adhesion.
Collapse
Affiliation(s)
- Manuel Müller
- Department of Cell Biology and Cell Pathology, Philipps-Universität Marburg, Marburg, Germany.,DFG Research Training Group, Membrane Plasticity in Tissue Development and Remodelling, Philipps-Universität Marburg, Marburg, Germany
| | - Karina Ringer
- Department of Cell Biology and Cell Pathology, Philipps-Universität Marburg, Marburg, Germany.,DFG Research Training Group, Membrane Plasticity in Tissue Development and Remodelling, Philipps-Universität Marburg, Marburg, Germany
| | - Florian Hub
- Institute of Pharmacology, Biochemical-Pharmacological Center, University of Marburg, Marburg, Germany
| | - Natalia Kamm
- Department of Cell Biology and Cell Pathology, Philipps-Universität Marburg, Marburg, Germany
| | - Thomas Worzfeld
- DFG Research Training Group, Membrane Plasticity in Tissue Development and Remodelling, Philipps-Universität Marburg, Marburg, Germany.,Institute of Pharmacology, Biochemical-Pharmacological Center, University of Marburg, Marburg, Germany.,Max-Planck-Institute for Heart and Lung Research, Department of Pharmacology, Bad Nauheim, Germany
| | - Ralf Jacob
- Department of Cell Biology and Cell Pathology, Philipps-Universität Marburg, Marburg, Germany.,DFG Research Training Group, Membrane Plasticity in Tissue Development and Remodelling, Philipps-Universität Marburg, Marburg, Germany
| |
Collapse
|
11
|
Structural basis of tubulin detyrosination by the vasohibin–SVBP enzyme complex. Nat Struct Mol Biol 2019; 26:571-582. [DOI: 10.1038/s41594-019-0241-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 04/30/2019] [Indexed: 01/08/2023]
|
12
|
Iida-Norita R, Kawamura M, Suzuki Y, Hamada S, Masamune A, Furukawa T, Sato Y. Vasohibin-2 plays an essential role in metastasis of pancreatic ductal adenocarcinoma. Cancer Sci 2019; 110:2296-2308. [PMID: 31074083 PMCID: PMC6609860 DOI: 10.1111/cas.14041] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 04/28/2019] [Accepted: 05/08/2019] [Indexed: 12/28/2022] Open
Abstract
Vasohibin-2 (VASH2) is expressed in various cancers and promotes their progression. We recently reported that pancreatic cancer patients with higher VASH2 expression show poorer prognosis. Herein, we sought to characterize the role of VASH2 in pancreatic cancer. We used LSL-KrasG12D ; LSL-Trp53R172H ; Pdx-1-Cre (KPC) mice, a mouse model of pancreatic ductal adenocarcinoma (PDAC), and cells isolated from them (KPC cells). Knockdown of Vash2 from PDAC cells did not affect their proliferation, but decreased their migration. When Vash2-knockdown PDAC cells were orthotopically inoculated, liver metastasis and peritoneal dissemination were reduced, and the survival period was significantly prolonged. When KPC mice were crossed with Vash2-deficient mice, metastasis was significantly decreased in Vash2-deficient KPC mice. VASH2 was recently identified to have tubulin carboxypeptidase activity. VASH2 knockdown decreased, whereas VASH2 overexpression increased tubulin detyrosination of PDAC cells, and tubulin carboxypeptidase (TCP) inhibitor parthenolide inhibited VASH2-induced cell migration. We next clarified its role in the tumor microenvironment. Tumor angiogenesis was significantly abrogated in vivo when VASH2 was knocked down or deleted. We further examined genes downregulated by Vash2 knockdown in KPC cells, and found chemokines and cytokines that were responsible for the recruitment of myeloid derived suppressor cells (MDSC). Indeed, MDSC were accumulated in PDAC of KPC mice, and they were significantly decreased in Vash2-deficient KPC mice. These findings suggest that VASH2 plays an essential role in the metastasis of PDAC with multiple effects on both cancer cells and the tumor microenvironment, including tubulin detyrosination, tumor angiogenesis and evasion of tumor immunity.
Collapse
Affiliation(s)
- Rie Iida-Norita
- Department of Vascular Biology, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Minaho Kawamura
- Department of Vascular Biology, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Yasuhiro Suzuki
- Department of Vascular Biology, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Shin Hamada
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Atsushi Masamune
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Toru Furukawa
- Department of Histopathology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yasufumi Sato
- Department of Vascular Biology, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| |
Collapse
|
13
|
Tubulin heterogeneity regulates functions and dynamics of microtubules and plays a role in the development of drug resistance in cancer. Biochem J 2019; 476:1359-1376. [DOI: 10.1042/bcj20190123] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 04/21/2019] [Accepted: 04/24/2019] [Indexed: 01/01/2023]
Abstract
Abstract
Microtubules, composed of αβ-tubulin heterodimers, exhibit diverse structural and functional properties in different cell types. The diversity in the microtubule structure originates from tubulin heterogeneities, namely tubulin isotypes and their post-translational modifications (PTMs). These heterogeneities confer differential stability to microtubules and provide spatial cues for the functioning of the cell. Furthermore, the altered expressions of tubulin isotypes and PTMs are prominent factors for the development of resistance against some cancer drugs. In this review, we summarize our current knowledge of the tubulin isotypes and PTMs and how, together, they control the cellular functions of the microtubules. We also describe how cancer cells use this tubulin heterogeneity to acquire resistance against clinical agents and discuss existing attempts to counter the developed resistance.
Collapse
|
14
|
Maimouni S, Lee MH, Sung YM, Hall M, Roy A, Ouaari C, Hwang YS, Spivak J, Glasgow E, Swift M, Patel J, Cheema A, Kumar D, Byers S. Tumor suppressor RARRES1 links tubulin deglutamylation to mitochondrial metabolism and cell survival. Oncotarget 2019; 10:1606-1624. [PMID: 30899431 PMCID: PMC6422194 DOI: 10.18632/oncotarget.26600] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 12/04/2018] [Indexed: 12/12/2022] Open
Abstract
RARRES1, a retinoic acid regulated carboxypeptidase inhibitor associated with fatty acid metabolism, stem cell differentiation and tumorigenesis is among the most commonly methylated loci in multiple cancers but has no known mechanism of action. Here we show that RARRES1 interaction with cytoplasmic carboxypeptidase 2 (CCP2) inhibits tubulin deglutamylation, which in turn regulates the mitochondrial voltage dependent anion channel (VDAC1), mitochondrial membrane potential, AMPK activation, energy balance and metabolically reprograms cells and zebrafish to a more energetic and anabolic phenotype. Depletion of RARRES1 also increases expression of stem cell markers, promotes anoikis, anchorage independent growth and insensitivity to multiple apoptotic stimuli. As depletion of CCP2 or inhibition of VDAC1 reverses the effects of RARRES1 depletion on energy balance and cell survival we conclude that RARRES1 modulation of CCP2-modulated tubulin-mitochondrial VDAC1 interactions is a fundamental regulator of cancer and stem cell metabolism and survival.
Collapse
Affiliation(s)
- Sara Maimouni
- Department of Biochemical, Molecular and Cellular Biology, Georgetown University, Washington, DC, USA
| | - Mi-Hye Lee
- Department of Oncology, Georgetown-Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
| | - You-Me Sung
- Department of Oncology, Georgetown-Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
| | - Michael Hall
- Department of Oncology, Georgetown-Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
| | - Arpita Roy
- University of the District of Columbia, Washington, DC, USA
| | - Chokri Ouaari
- Department of Oncology, Georgetown-Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA.,University of the District of Columbia, Washington, DC, USA
| | - Yoo-Seok Hwang
- Cancer & Developmental Biology Laboratory, National Cancer Institute-Frederick, Frederick, MD, USA
| | - Justin Spivak
- Department of Oncology, Georgetown-Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
| | - Eric Glasgow
- Department of Oncology, Georgetown-Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
| | - Matthew Swift
- Department of Oncology, Georgetown-Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
| | - Jay Patel
- Department of Oncology, Georgetown-Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
| | - Amrita Cheema
- Department of Oncology, Georgetown-Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
| | - Deepak Kumar
- University of the District of Columbia, Washington, DC, USA
| | - Stephen Byers
- Department of Oncology, Georgetown-Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA.,Department of Biochemical, Molecular and Cellular Biology, Georgetown University, Washington, DC, USA
| |
Collapse
|
15
|
Sadoul K, Joubert C, Michallet S, Nolte E, Peronne L, Ramirez-Rios S, Ribba AS, Lafanechère L. [On the road to deciphering the tubulin code: focus on acetylation and detyrosination]. Med Sci (Paris) 2019; 34:1047-1055. [PMID: 30623774 DOI: 10.1051/medsci/2018295] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Microtubules are cytoskeletal fibers formed by the assembly of α- and β-tubulin heterodimers. They contribute to cell morphology, mobility and polarity, as well as to cellular transport processes and cell division. The microtubular network constantly adapts to cellular needs and may be composed of very dynamic or more stable microtubules. To regulate their diverse functions in a spatio-temporal manner, microtubules are subjected to numerous reversible post-translational modifications, which generate the "tubulin code". This review focuses on two modifications characteristic of stable microtubules - acetylation and detyrosination of α-tubulin - and their deregulation in certain pathologies.
Collapse
Affiliation(s)
- Karin Sadoul
- Régulation et pharmacologie du cytosquelette, Institut pour l'avancée des biosciences, Université Grenoble Alpes ; Inserm U 1209 ; CNRS 5309, Allée des Alpes, 38700 La Tronche, France
| | - Clotilde Joubert
- Régulation et pharmacologie du cytosquelette, Institut pour l'avancée des biosciences, Université Grenoble Alpes ; Inserm U 1209 ; CNRS 5309, Allée des Alpes, 38700 La Tronche, France
| | - Sophie Michallet
- Régulation et pharmacologie du cytosquelette, Institut pour l'avancée des biosciences, Université Grenoble Alpes ; Inserm U 1209 ; CNRS 5309, Allée des Alpes, 38700 La Tronche, France
| | - Elsie Nolte
- Régulation et pharmacologie du cytosquelette, Institut pour l'avancée des biosciences, Université Grenoble Alpes ; Inserm U 1209 ; CNRS 5309, Allée des Alpes, 38700 La Tronche, France
| | - Lauralie Peronne
- Régulation et pharmacologie du cytosquelette, Institut pour l'avancée des biosciences, Université Grenoble Alpes ; Inserm U 1209 ; CNRS 5309, Allée des Alpes, 38700 La Tronche, France
| | - Sacnicté Ramirez-Rios
- Régulation et pharmacologie du cytosquelette, Institut pour l'avancée des biosciences, Université Grenoble Alpes ; Inserm U 1209 ; CNRS 5309, Allée des Alpes, 38700 La Tronche, France
| | - Anne-Sophie Ribba
- Régulation et pharmacologie du cytosquelette, Institut pour l'avancée des biosciences, Université Grenoble Alpes ; Inserm U 1209 ; CNRS 5309, Allée des Alpes, 38700 La Tronche, France
| | - Laurence Lafanechère
- Régulation et pharmacologie du cytosquelette, Institut pour l'avancée des biosciences, Université Grenoble Alpes ; Inserm U 1209 ; CNRS 5309, Allée des Alpes, 38700 La Tronche, France
| |
Collapse
|
16
|
Xie ZC, Tang RX, Gao X, Xie QN, Lin JY, Chen G, Li ZY. A meta-analysis and bioinformatics exploration of the diagnostic value and molecular mechanism of miR-193a-5p in lung cancer. Oncol Lett 2018; 16:4114-4128. [PMID: 30250529 PMCID: PMC6144214 DOI: 10.3892/ol.2018.9174] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2017] [Accepted: 02/13/2018] [Indexed: 02/06/2023] Open
Abstract
Lung cancer is a leading cause of mortality worldwide and despite recent improvements in lung cancer treatments patient mortality remains high. miR-193a-5p serves a crucial role in the initiation and development of cancer; it is necessary to understand the underlying molecular mechanisms of miR-193a-5p in lung cancer, which may enable the development of improved clinical diagnoses and therapies. The present study investigated the diagnostic value of peripheral blood and tissue miR-193a-5p expression using a microarray meta-analysis. Peripheral blood miR-193a-5p was revealed to be upregulated in patients with lung cancer. The pooled area under the curve (AUC) was 0.67, with a sensitivity and specificity of 0.74 and 0.56, respectively. Conversely, the peripheral tissue miR-193a-5p expression in patients with lung cancer was significantly downregulated. The pooled AUC was 0.83, and the sensitivity and specificity were 0.65 and 0.89, respectively. Through bioinformatics analysis, three Kyoto Encyclopedia of Genes and Genomes (KEGG) terms, pathways in cancer, prostate cancer and RIG-I-like receptor signaling pathway, were identified as associated with miR-193a-5p in lung cancer. In addition, in lung cancer, six key miR-193a-5p target genes, receptor tyrosine-protein kinase erbB-2 (ERBB2), nuclear cap-binding protein subunit 2 (NCBP2), collagen α-1(I) chain (COL1A1), roprotein convertase subtilisin/kexin type 9 (PCSK9), casein kinase II subunit α (CSNK2A1) and nucleolar transcription factor 1 (UBTF), were identified, five of which were significantly upregulated (ERBB2, NCBP2, COL1A1, CSNK2A1 and UBTF). The protein expression of ERBB2, NCBP2, COL1A1, CSNK2A1 and UBTF was also upregulated. NCBP2 and CSNK2A1 were negatively correlated with miR-193a-5p. The results demonstrated that miR-193a-5p exhibited opposite expression patterns in peripheral blood and tissue. Upregulated peripheral blood miR-193a-5p and downregulated tissue miR-193a-5p may be promising diagnostic biomarkers in lung cancer. In addition, the KEGG terms pathways in cancer, prostate cancer and RIG-I-like receptor signaling pathway may suggest which pathways serve vital roles in lung cancer by regulating miR-193a-5p. In addition, six genes, ERBB2, COL1A1, PCSK9, UBTF and particularly NCBP2 and CSNK2A1, may be key target genes of miR-193a-5p in lung cancer.
Collapse
Affiliation(s)
- Zu-Cheng Xie
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Rui-Xue Tang
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Xiang Gao
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Qiong-Ni Xie
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Jia-Ying Lin
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Gang Chen
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Zu-Yun Li
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| |
Collapse
|
17
|
Aillaud C, Bosc C, Peris L, Bosson A, Heemeryck P, Van Dijk J, Le Friec J, Boulan B, Vossier F, Sanman LE, Syed S, Amara N, Couté Y, Lafanechère L, Denarier E, Delphin C, Pelletier L, Humbert S, Bogyo M, Andrieux A, Rogowski K, Moutin MJ. Vasohibins/SVBP are tubulin carboxypeptidases (TCPs) that regulate neuron differentiation. Science 2017; 358:1448-1453. [PMID: 29146868 DOI: 10.1126/science.aao4165] [Citation(s) in RCA: 175] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 11/03/2017] [Indexed: 12/28/2022]
Abstract
Reversible detyrosination of α-tubulin is crucial to microtubule dynamics and functions, and defects have been implicated in cancer, brain disorganization, and cardiomyopathies. The identity of the tubulin tyrosine carboxypeptidase (TCP) responsible for detyrosination has remained unclear. We used chemical proteomics with a potent irreversible inhibitor to show that the major brain TCP is a complex of vasohibin-1 (VASH1) with the small vasohibin binding protein (SVBP). VASH1 and its homolog VASH2, when complexed with SVBP, exhibited robust and specific Tyr/Phe carboxypeptidase activity on microtubules. Knockdown of vasohibins or SVBP and/or inhibitor addition in cultured neurons reduced detyrosinated α-tubulin levels and caused severe differentiation defects. Furthermore, knockdown of vasohibins disrupted neuronal migration in developing mouse neocortex. Thus, vasohibin/SVBP complexes represent long-sought TCP enzymes.
Collapse
Affiliation(s)
- Chrystelle Aillaud
- Grenoble Institut des Neurosciences (GIN), Université Grenoble Alpes, F-38000 Grenoble, France.,Inserm, U1216, F-38000 Grenoble, France
| | - Christophe Bosc
- Grenoble Institut des Neurosciences (GIN), Université Grenoble Alpes, F-38000 Grenoble, France.,Inserm, U1216, F-38000 Grenoble, France
| | - Leticia Peris
- Grenoble Institut des Neurosciences (GIN), Université Grenoble Alpes, F-38000 Grenoble, France.,Inserm, U1216, F-38000 Grenoble, France
| | - Anouk Bosson
- Grenoble Institut des Neurosciences (GIN), Université Grenoble Alpes, F-38000 Grenoble, France.,Inserm, U1216, F-38000 Grenoble, France
| | - Pierre Heemeryck
- Grenoble Institut des Neurosciences (GIN), Université Grenoble Alpes, F-38000 Grenoble, France.,Inserm, U1216, F-38000 Grenoble, France
| | - Juliette Van Dijk
- Institut de Génétique Humaine (IGH), Université Montpellier, CNRS UMR9002, 34000 Montpellier, France.,Centre de Recherche en Biochimie Macromoléculaire (CRBM), Université Montpellier, CNRS UMR5237, 34000 Montpellier, France
| | - Julien Le Friec
- Grenoble Institut des Neurosciences (GIN), Université Grenoble Alpes, F-38000 Grenoble, France.,Inserm, U1216, F-38000 Grenoble, France
| | - Benoit Boulan
- Grenoble Institut des Neurosciences (GIN), Université Grenoble Alpes, F-38000 Grenoble, France.,Inserm, U1216, F-38000 Grenoble, France
| | - Frédérique Vossier
- Grenoble Institut des Neurosciences (GIN), Université Grenoble Alpes, F-38000 Grenoble, France.,Inserm, U1216, F-38000 Grenoble, France
| | - Laura E Sanman
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Salahuddin Syed
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Neri Amara
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Yohann Couté
- Institut de Biosciences et Biotechnologies de Grenoble (BIG)-Laboratoire Biologie à Grande Échelle, Université Grenoble Alpes, CEA, INSERM, F-38000 Grenoble, France
| | - Laurence Lafanechère
- Team Regulation and Pharmacology of the Cytoskeleton, Institute for Advanced Biosciences, INSERM U 1209, CNRS UMR 5309, Université Grenoble Alpes, 38000 Grenoble, France
| | - Eric Denarier
- Grenoble Institut des Neurosciences (GIN), Université Grenoble Alpes, F-38000 Grenoble, France.,Inserm, U1216, F-38000 Grenoble, France.,BIG-Physiopathologie du Cytosquelette, CEA, F-38000 Grenoble, France
| | - Christian Delphin
- Grenoble Institut des Neurosciences (GIN), Université Grenoble Alpes, F-38000 Grenoble, France.,Inserm, U1216, F-38000 Grenoble, France
| | - Laurent Pelletier
- Grenoble Institut des Neurosciences (GIN), Université Grenoble Alpes, F-38000 Grenoble, France.,Inserm, U1216, F-38000 Grenoble, France
| | - Sandrine Humbert
- Grenoble Institut des Neurosciences (GIN), Université Grenoble Alpes, F-38000 Grenoble, France.,Inserm, U1216, F-38000 Grenoble, France
| | - Matthew Bogyo
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Annie Andrieux
- Grenoble Institut des Neurosciences (GIN), Université Grenoble Alpes, F-38000 Grenoble, France. .,Inserm, U1216, F-38000 Grenoble, France.,BIG-Physiopathologie du Cytosquelette, CEA, F-38000 Grenoble, France
| | - Krzysztof Rogowski
- Institut de Génétique Humaine (IGH), Université Montpellier, CNRS UMR9002, 34000 Montpellier, France
| | - Marie-Jo Moutin
- Grenoble Institut des Neurosciences (GIN), Université Grenoble Alpes, F-38000 Grenoble, France.,Inserm, U1216, F-38000 Grenoble, France
| |
Collapse
|
18
|
AGBL2 promotes cancer cell growth through IRGM-regulated autophagy and enhanced Aurora A activity in hepatocellular carcinoma. Cancer Lett 2017; 414:71-80. [PMID: 29126912 DOI: 10.1016/j.canlet.2017.11.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 11/01/2017] [Accepted: 11/03/2017] [Indexed: 02/07/2023]
Abstract
AGBL2 has been reported to catalyze α-tubulin detyrosination, by which it promotes tumorigenesis and cancer progression. However, its potential role in the pathogenesis of hepatocellular carcinoma (HCC) has not been revealed yet. In the present study, AGBL2 was frequently found being overexpressed in HCC tissues and cell lines. In a large cohort of clinical HCC tissues, high expression of AGBL2 was positively associated with tumor size, tumor multiplicity and advanced clinical stage (p < 0.05), and it was an independent prognostic factor for HCC patients. In HCC cell lines, ectopic overexpression of AGBL2 substantially enhanced HCC cells survival and proliferation in vitro and promoted tumor growth in vivo. In addition, we demonstrated that overexpression of AGBL2 in HCC cells notably inhibited apoptosis by enhancing IRGM-regulated autophagy. Meanwhile, AGBL2 could up-regulate the expression of TPX2 and Aurora A activity to promote cell proliferation in HCC cells. In summary, our findings suggest that up-regulation of AGBL2 plays a critical oncogenic role in the pathogenesis of HCC through modulation on autophagy and Aurora A activity, and it could be a candidate for prognostic marker and therapeutic target in HCC.
Collapse
|
19
|
Identifying tumor promoting genomic alterations in tumor-associated fibroblasts via retrovirus-insertional mutagenesis. Oncotarget 2017; 8:97231-97245. [PMID: 29228606 PMCID: PMC5722558 DOI: 10.18632/oncotarget.21881] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 09/21/2017] [Indexed: 01/01/2023] Open
Abstract
Tumor-associated fibroblasts (TAFs) are often essential for solid tumor growth. However, few genetic or epigenetic alterations have been found in TAFs during the progression of solid tumors. Employing a tumor-stromal cell co-injection model, we adapted here retroviral-insertional mutagenesis to stromal cells to identify novel tumor-associated genes in TAFs. We successfully identified 20 gene candidates that might modulate tumor growth if altered in TAFs at genomic level. To validate our finding, the function of one of the candidate genes, tubulin tyrosine ligase (Ttl), was further studied in TAFs from fibrosarcoma, colon, breast and hepatocarcinoma. We demonstrated that down-regulated TTL expression in TAFs indeed promoted tumor growth in mice. Interestingly, decreased expression of TTL in tumor stromal cells also correlated with poor outcome in human colon carcinoma. Thus, the co-injection model of tumor cells with retrovirus-modified fibroblasts proved a valid method to identify tumor-modulating genes in TAFs, allowing for a deeper insight into the role of the stroma for tumor development.
Collapse
|
20
|
Agarwal S, Varma D. Targeting mitotic pathways for endocrine-related cancer therapeutics. Endocr Relat Cancer 2017; 24:T65-T82. [PMID: 28615236 PMCID: PMC5557717 DOI: 10.1530/erc-17-0080] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 06/14/2017] [Indexed: 12/21/2022]
Abstract
A colossal amount of basic research over the past few decades has provided unprecedented insights into the highly complex process of cell division. There is an ever-expanding catalog of proteins that orchestrate, participate and coordinate in the exquisite processes of spindle formation, chromosome dynamics and the formation and regulation of kinetochore microtubule attachments. Use of classical microtubule poisons has still been widely and often successfully used to combat a variety of cancers, but their non-selective interference in other crucial physiologic processes necessitate the identification of novel druggable components specific to the cell cycle/division pathway. Considering cell cycle deregulation, unscheduled proliferation, genomic instability and chromosomal instability as a hallmark of tumor cells, there lies an enormous untapped terrain that needs to be unearthed before a drug can pave its way from bench to bedside. This review attempts to systematically summarize the advances made in this context so far with an emphasis on endocrine-related cancers and the avenues for future progress to target mitotic mechanisms in an effort to combat these dreadful cancers.
Collapse
Affiliation(s)
- Shivangi Agarwal
- Department of Cell and Molecular BiologyFeinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Dileep Varma
- Department of Cell and Molecular BiologyFeinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| |
Collapse
|
21
|
Cirillo L, Gotta M, Meraldi P. The Elephant in the Room: The Role of Microtubules in Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1002:93-124. [DOI: 10.1007/978-3-319-57127-0_5] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
22
|
Abstract
Microtubules are key cytoskeletal elements of all eukaryotic cells and are assembled of evolutionarily conserved α-tubulin-β-tubulin heterodimers. Despite their uniform structure, microtubules fulfill a large diversity of functions. A regulatory mechanism to control the specialization of the microtubule cytoskeleton is the 'tubulin code', which is generated by (i) expression of different α- and β-tubulin isotypes, and by (ii) post-translational modifications of tubulin. In this Cell Science at a Glance article and the accompanying poster, we provide a comprehensive overview of the molecular components of the tubulin code, and discuss the mechanisms by which these components contribute to the generation of functionally specialized microtubules.
Collapse
Affiliation(s)
- Sudarshan Gadadhar
- Institut Curie, PSL Research University, CNRS UMR3348, Orsay F-91405, France.,Université Paris Sud, Université Paris-Saclay, CNRS UMR3348, Orsay F-91405, France
| | - Satish Bodakuntla
- Institut Curie, PSL Research University, CNRS UMR3348, Orsay F-91405, France.,Université Paris Sud, Université Paris-Saclay, CNRS UMR3348, Orsay F-91405, France
| | - Kathiresan Natarajan
- Institut Curie, PSL Research University, CNRS UMR3348, Orsay F-91405, France.,Université Paris Sud, Université Paris-Saclay, CNRS UMR3348, Orsay F-91405, France
| | - Carsten Janke
- Institut Curie, PSL Research University, CNRS UMR3348, Orsay F-91405, France .,Université Paris Sud, Université Paris-Saclay, CNRS UMR3348, Orsay F-91405, France
| |
Collapse
|
23
|
Bosco A, Golsteyn RM. Emerging Anti-Mitotic Activities and Other Bioactivities of Sesquiterpene Compounds upon Human Cells. Molecules 2017; 22:molecules22030459. [PMID: 28335397 PMCID: PMC6155193 DOI: 10.3390/molecules22030459] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 03/02/2017] [Indexed: 11/29/2022] Open
Abstract
We review the bio-activities of natural product sesquiterpenes and present the first description of their effects upon mitosis. This type of biological effect upon cells is unexpected because sesquiterpenes are believed to inactivate proteins through Michael-type additions that cause non-specific cytotoxicity. Yet, certain types of sesquiterpenes can arrest cells in mitosis as measured by cell biology, biochemical and imaging techniques. We have listed the sesquiterpenes that arrest cells in mitosis and analyzed the biological data that support those observations. In view of the biochemical complexity of mitosis, we propose that a subset of sesquiterpenes have a unique chemical structure that can target a precise protein(s) required for mitosis. Since the process of mitotic arrest precedes that of cell death, it is possible that some sesquiterpenes that are currently classified as cytotoxic might also induce a mitotic arrest. Our analysis provides a new perspective of sesquiterpene chemical biology.
Collapse
Affiliation(s)
- Alessandra Bosco
- Natural Product and Cancer Cell Laboratories, Department of Biological Sciences, 4401 University Dr, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada.
| | - Roy M Golsteyn
- Natural Product and Cancer Cell Laboratories, Department of Biological Sciences, 4401 University Dr, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada.
| |
Collapse
|
24
|
Mechanisms of Chromosome Congression during Mitosis. BIOLOGY 2017; 6:biology6010013. [PMID: 28218637 PMCID: PMC5372006 DOI: 10.3390/biology6010013] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Revised: 01/07/2017] [Accepted: 01/28/2017] [Indexed: 12/13/2022]
Abstract
Chromosome congression during prometaphase culminates with the establishment of a metaphase plate, a hallmark of mitosis in metazoans. Classical views resulting from more than 100 years of research on this topic have attempted to explain chromosome congression based on the balance between opposing pulling and/or pushing forces that reach an equilibrium near the spindle equator. However, in mammalian cells, chromosome bi-orientation and force balance at kinetochores are not required for chromosome congression, whereas the mechanisms of chromosome congression are not necessarily involved in the maintenance of chromosome alignment after congression. Thus, chromosome congression and maintenance of alignment are determined by different principles. Moreover, it is now clear that not all chromosomes use the same mechanism for congressing to the spindle equator. Those chromosomes that are favorably positioned between both poles when the nuclear envelope breaks down use the so-called "direct congression" pathway in which chromosomes align after bi-orientation and the establishment of end-on kinetochore-microtubule attachments. This favors the balanced action of kinetochore pulling forces and polar ejection forces along chromosome arms that drive chromosome oscillatory movements during and after congression. The other pathway, which we call "peripheral congression", is independent of end-on kinetochore microtubule-attachments and relies on the dominant and coordinated action of the kinetochore motors Dynein and Centromere Protein E (CENP-E) that mediate the lateral transport of peripheral chromosomes along microtubules, first towards the poles and subsequently towards the equator. How the opposite polarities of kinetochore motors are regulated in space and time to drive congression of peripheral chromosomes only now starts to be understood. This appears to be regulated by position-dependent phosphorylation of both Dynein and CENP-E and by spindle microtubule diversity by means of tubulin post-translational modifications. This so-called "tubulin code" might work as a navigation system that selectively guides kinetochore motors with opposite polarities along specific spindle microtubule populations, ultimately leading to the congression of peripheral chromosomes. We propose an integrated model of chromosome congression in mammalian cells that depends essentially on the following parameters: (1) chromosome position relative to the spindle poles after nuclear envelope breakdown; (2) establishment of stable end-on kinetochore-microtubule attachments and bi-orientation; (3) coordination between kinetochore- and arm-associated motors; and (4) spatial signatures associated with post-translational modifications of specific spindle microtubule populations. The physiological consequences of abnormal chromosome congression, as well as the therapeutic potential of inhibiting chromosome congression are also discussed.
Collapse
|
25
|
Wen R, Xiao Y, Zhang Y, Yang M, Lin Y, Tang J. Identification of a novel transcript isoform of the TTLL12 gene in human cancers. Oncol Rep 2016; 36:3172-3180. [PMID: 27748896 PMCID: PMC5112610 DOI: 10.3892/or.2016.5135] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 07/28/2016] [Indexed: 02/06/2023] Open
Abstract
Tubulin tyrosine ligase like 12 (TTLL12), a member of the tubulin tyrosine ligase (TTLL) family, has not been completely characterized to date. It is reported that histone methylation, tubulin modifications, mitotic duration and chromosome ploidy play crucial roles in a variety of cancers, and are related to tumorigenesis and cancer progression. A recent study showed that TTLL12 may be a pseudo-enzyme which has a SET-like domain and a TTL-like domain. In the present study, we first used 3′-rapid amplification of cDNA ends (3′-RACE) to amplify the transcripts of the TTLL12 gene from a human lung cancer cell line H1299, and unexpectedly discovered a new transcript isoform characterized with an additional 108-bp nucleotide sequence inserted at the location from 902 to 903 bases of the TTLL12 coding sequence (CDS), where it also locates between exons 5 and 6. Next, utilizing RT-PCR and Sanger sequencing, we further confirmed the existence of such a new transcript isoform of TTLL12 in more human cancer cells including lung cancer cells and other cancer cells. Moreover, several lung cancer cell lines were found to display a much higher proportion of the new isoform compared with TTLL12 wild-type transcript. These results suggest that the new TTLL12 isoform may be of importance for proper maintenance of lung cancer cells. Therefore, the new isoform of TTLL12, with the inserted sequences probably acting as a disordered region, provides a novel perspective regarding TTLL12 functions in human cancers including lung cancer.
Collapse
Affiliation(s)
- Ruiling Wen
- KingMed Diagnostics and KingMed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou, Guangdong 510330, P.R. China
| | - Yingying Xiao
- KingMed Diagnostics and KingMed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou, Guangdong 510330, P.R. China
| | - Yuhua Zhang
- Cytate Institute for Precision Medicine and Innovation, Guangzhou Cytate Biomedical Technologies Inc., Guangzhou, Guangdong 510663, P.R. China
| | - Min Yang
- Cytate Institute for Precision Medicine and Innovation, Guangzhou Cytate Biomedical Technologies Inc., Guangzhou, Guangdong 510663, P.R. China
| | - Yongping Lin
- Department of Clinical Laboratory and Research Center of Translational Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510120, P.R. China
| | - Jun Tang
- KingMed Diagnostics and KingMed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou, Guangdong 510330, P.R. China
| |
Collapse
|
26
|
Barisic M, Maiato H. The Tubulin Code: A Navigation System for Chromosomes during Mitosis. Trends Cell Biol 2016; 26:766-775. [PMID: 27344407 DOI: 10.1016/j.tcb.2016.06.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 05/27/2016] [Accepted: 06/02/2016] [Indexed: 10/25/2022]
Abstract
Before chromosomes segregate during mitosis in metazoans, they align at the cell equator by a process known as chromosome congression. This is in part mediated by the coordinated activities of kinetochore motors with opposite directional preferences that transport peripheral chromosomes along distinct spindle microtubule populations. Because spindle microtubules are all made from the same α/β-tubulin heterodimers, a critical longstanding question has been how chromosomes are guided to specific locations during mitosis. This implies the existence of spatial cues/signals on specific spindle microtubules that are read by kinetochore motors on chromosomes and ultimately indicate the way towards the equator. Here, we discuss the emerging concept that tubulin post-translational modifications (PTMs), as part of the so-called tubulin code, work as a navigation system for kinetochore-based chromosome motility during early mitosis.
Collapse
Affiliation(s)
- Marin Barisic
- Danish Cancer Society Research Center, Cell Division Laboratory, Strandboulevarden 49, 2100 Copenhagen, Denmark.
| | - Helder Maiato
- Chromosome Instability and Dynamics Laboratory, Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; Instituto de Investigação e Inovação em Saúde - i3S, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; Cell Division Unit, Department of Experimental Biology, Faculdade de Medicina, Universidade do Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal.
| |
Collapse
|
27
|
Aillaud C, Bosc C, Saoudi Y, Denarier E, Peris L, Sago L, Taulet N, Cieren A, Tort O, Magiera MM, Janke C, Redeker V, Andrieux A, Moutin MJ. Evidence for new C-terminally truncated variants of α- and β-tubulins. Mol Biol Cell 2016; 27:640-53. [PMID: 26739754 PMCID: PMC4750924 DOI: 10.1091/mbc.e15-03-0137] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 12/22/2015] [Indexed: 11/11/2022] Open
Abstract
New C-terminally truncated α- and β-tubulin variants, both ending with an –EEEG sequence, are identified in vivo: αΔ3-tubulin, which has a specific neuronal distribution pattern (distinct from that of αΔ2-tubulin) and seems to be related to dynamic microtubules, and βΔ4-tubulin, corresponding to β2A/B-tubulin modified by truncation of four C-terminal residues, which is ubiquitously present in cells and tissues. Cellular α-tubulin can bear various carboxy-terminal sequences: full-length tubulin arising from gene neosynthesis is tyrosinated, and two truncated variants, corresponding to detyrosinated and Δ2 α‑tubulin, result from the sequential cleavage of one or two C-terminal residues, respectively. Here, by using a novel antibody named 3EG that is highly specific to the –EEEG C-terminal sequence, we demonstrate the occurrence in neuronal tissues of a new αΔ3‑tubulin variant corresponding to α1A/B‑tubulin deleted of its last three residues (EEY). αΔ3‑tubulin has a specific distribution pattern: its quantity in the brain is similar to that of αΔ2-tubulin around birth but is much lower in adult tissue. This truncated α1A/B-tubulin variant can be generated from αΔ2-tubulin by the deglutamylases CCP1, CCP4, CCP5, and CCP6 but not by CCP2 and CCP3. Moreover, using 3EG antibody, we identify a C‑terminally truncated β-tubulin form with the same –EEEG C-terminal sequence. Using mass spectrometry, we demonstrate that β2A/B-tubulin is modified by truncation of the four C-terminal residues (EDEA). We show that this newly identified βΔ4-tubulin is ubiquitously present in cells and tissues and that its level is constant throughout the cell cycle. These new C-terminally truncated α- and β-tubulin variants, both ending with –EEEG sequence, are expected to regulate microtubule physiology. Of interest, the αΔ3-tubulin seems to be related to dynamic microtubules, resembling tyrosinated-tubulin rather than the other truncated variants, and may have critical function(s) in neuronal development.
Collapse
Affiliation(s)
- Chrystelle Aillaud
- Université Grenoble Alpes, Grenoble Institut des Neurosciences, GIN, F-38000 Grenoble, France Inserm, U1216, F-38000 Grenoble, France
| | - Christophe Bosc
- Université Grenoble Alpes, Grenoble Institut des Neurosciences, GIN, F-38000 Grenoble, France Inserm, U1216, F-38000 Grenoble, France
| | - Yasmina Saoudi
- Université Grenoble Alpes, Grenoble Institut des Neurosciences, GIN, F-38000 Grenoble, France Inserm, U1216, F-38000 Grenoble, France
| | - Eric Denarier
- Université Grenoble Alpes, Grenoble Institut des Neurosciences, GIN, F-38000 Grenoble, France Inserm, U1216, F-38000 Grenoble, France CEA, BIG-GPC, F-38000 Grenoble, France
| | - Leticia Peris
- Université Grenoble Alpes, Grenoble Institut des Neurosciences, GIN, F-38000 Grenoble, France Inserm, U1216, F-38000 Grenoble, France
| | - Laila Sago
- Service d'Identification et de Caractérisation des Protéines par Spectrométrie de masse, CNRS, 91198 Gif-sur-Yvette, France
| | - Nicolas Taulet
- Centre de Recherche de Biochimie Macromoléculaire, CNRS, 34293 Montpellier, France
| | - Adeline Cieren
- Université Grenoble Alpes, Grenoble Institut des Neurosciences, GIN, F-38000 Grenoble, France Inserm, U1216, F-38000 Grenoble, France
| | - Olivia Tort
- Institut de Biotecnologia i de Biomedicina, Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, 08193 Bellaterra (Barcelona), Spain Institut Curie, 91405 Orsay, France Paris Sciences et Lettres Research University, 75005 Paris, France Centre National de la Recherche Scientifique, UMR3348, 91405 Orsay, France
| | - Maria M Magiera
- Institut Curie, 91405 Orsay, France Paris Sciences et Lettres Research University, 75005 Paris, France Centre National de la Recherche Scientifique, UMR3348, 91405 Orsay, France
| | - Carsten Janke
- Institut Curie, 91405 Orsay, France Paris Sciences et Lettres Research University, 75005 Paris, France Centre National de la Recherche Scientifique, UMR3348, 91405 Orsay, France
| | - Virginie Redeker
- Service d'Identification et de Caractérisation des Protéines par Spectrométrie de masse, CNRS, 91198 Gif-sur-Yvette, France Paris-Saclay Institute of Neuroscience, CNRS, 91198 Gif-sur-Yvette Cedex, France
| | - Annie Andrieux
- Université Grenoble Alpes, Grenoble Institut des Neurosciences, GIN, F-38000 Grenoble, France Inserm, U1216, F-38000 Grenoble, France
| | - Marie-Jo Moutin
- Université Grenoble Alpes, Grenoble Institut des Neurosciences, GIN, F-38000 Grenoble, France Inserm, U1216, F-38000 Grenoble, France
| |
Collapse
|
28
|
Chakrabarti KR, Hessler L, Bhandary L, Martin SS. Molecular Pathways: New Signaling Considerations When Targeting Cytoskeletal Balance to Reduce Tumor Growth. Clin Cancer Res 2015; 21:5209-5214. [PMID: 26463706 DOI: 10.1158/1078-0432.ccr-15-0328] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 08/28/2015] [Indexed: 12/20/2022]
Abstract
The dynamic balance between microtubule extension and actin contraction regulates mammalian cell shape, division, and motility, which has made the cytoskeleton an attractive and very successful target for cancer drugs. Numerous compounds in clinical use to reduce tumor growth cause microtubule breakdown (vinca alkaloids, colchicine-site, and halichondrins) or hyperstabilization of microtubules (taxanes and epothilones). However, both of these strategies indiscriminately alter the assembly and dynamics of all microtubules, which causes significant dose-limiting toxicities on normal tissues. Emerging data are revealing that posttranslational modifications of tubulin (detyrosination, acetylation) or microtubule-associated proteins (Tau, Aurora kinase) may allow for more specific targeting of microtubule subsets, thereby avoiding the broad disruption of all microtubule polymerization. Developing approaches to reduce tumor cell migration and invasion focus on disrupting actin regulation by the kinases SRC and ROCK. Because the dynamic balance between microtubule extension and actin contraction also regulates cell fate decisions and stem cell characteristics, disrupting this cytoskeletal balance could yield unexpected effects beyond tumor growth. This review will examine recent data demonstrating that cytoskeletal cancer drugs affect wound-healing responses, microtentacle-dependent reattachment efficiency, and stem cell characteristics in ways that could affect the metastatic potential of tumor cells, both beneficially and detrimentally.
Collapse
Affiliation(s)
- Kristi R Chakrabarti
- Marlene and Stewart Greenebaum NCI Cancer Center, University of Maryland School of Medicine, 22 S. Greene Street, Baltimore, MD 21201, USA.,Program in Molecular Medicine, University of Maryland School of Medicine, 655 W. Baltimore Street, Baltimore, MD 21201, USA
| | - Lindsay Hessler
- Marlene and Stewart Greenebaum NCI Cancer Center, University of Maryland School of Medicine, 22 S. Greene Street, Baltimore, MD 21201, USA.,General Surgery Residency Program, University of Maryland Medical Center, 22 S. Greene Street, Baltimore, MD 21201, USA
| | - Lekhana Bhandary
- Marlene and Stewart Greenebaum NCI Cancer Center, University of Maryland School of Medicine, 22 S. Greene Street, Baltimore, MD 21201, USA.,Program in Molecular Medicine, University of Maryland School of Medicine, 655 W. Baltimore Street, Baltimore, MD 21201, USA
| | - Stuart S Martin
- Marlene and Stewart Greenebaum NCI Cancer Center, University of Maryland School of Medicine, 22 S. Greene Street, Baltimore, MD 21201, USA.,Program in Molecular Medicine, University of Maryland School of Medicine, 655 W. Baltimore Street, Baltimore, MD 21201, USA.,Department of Physiology, University of Maryland School of Medicine, 655 W. Baltimore Street, Baltimore, MD 21201, USA
| |
Collapse
|
29
|
Sheldon KL, Gurnev PA, Bezrukov SM, Sackett DL. Tubulin tail sequences and post-translational modifications regulate closure of mitochondrial voltage-dependent anion channel (VDAC). J Biol Chem 2015; 290:26784-9. [PMID: 26306046 DOI: 10.1074/jbc.m115.678854] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Indexed: 11/06/2022] Open
Abstract
It was previously shown that tubulin dimer interaction with the mitochondrial outer membrane protein voltage-dependent anion channel (VDAC) blocks traffic through the channel and reduces oxidative metabolism and that this requires the unstructured anionic C-terminal tail peptides found on both α- and β-tubulin subunits. It was unclear whether the α- and β-tubulin tails contribute equally to VDAC blockade and what effects might be due to sequence variations in these tail peptides or to tubulin post-translational modifications, which mostly occur on the tails. The nature of the contribution of the tubulin body beyond acting as an anchor for the tails had not been clarified either. Here we present peptide-protein chimeras to address these questions. These constructs allow us to easily combine a tail peptide with different proteins or combine different tail peptides with a particular protein. The results show that a single tail grafted to an inert protein is sufficient to produce channel closure similar to that observed with tubulin. We show that the β-tail is more than an order of magnitude more potent than the α-tail and that the lower α-tail activity is largely due to the presence of a terminal tyrosine. Detyrosination activates the α-tail, and activation is reversed by the removal of the glutamic acid penultimate to the tyrosine. Nitration of tyrosine reverses the tyrosine inhibition of binding and even induces prolonged VDAC closures. Our results demonstrate that small changes in sequence or post-translational modification of the unstructured tails of tubulin result in substantial changes in VDAC closure.
Collapse
Affiliation(s)
- Kely L Sheldon
- From the Program in Physical Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892
| | - Philip A Gurnev
- From the Program in Physical Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892
| | - Sergey M Bezrukov
- From the Program in Physical Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892
| | - Dan L Sackett
- From the Program in Physical Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892
| |
Collapse
|
30
|
Schneider N, Ludwig H, Nick P. Suppression of tubulin detyrosination by parthenolide recruits the plant-specific kinesin KCH to cortical microtubules. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:2001-11. [PMID: 25779700 PMCID: PMC4378638 DOI: 10.1093/jxb/erv012] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 12/16/2014] [Accepted: 12/17/2014] [Indexed: 06/04/2023]
Abstract
Detyrosination of α-tubulin seems to be conserved in all eukaryotes. However, its biological function in plants has remained obscure. A conserved C-terminal tyrosine is removed by a still unidentified tubulin-tyrosine carboxypeptidase (TTC) and can be religated by a tubulin-tyrosine ligase (TTL). To obtain insight into the still elusive biological function of this detyrosination-tyrosination cycle, the effects of the TTC inhibitor parthenolide were analysed in BY-2 tobacco cells. Parthenolide caused a depletion of detyrosinated α-tubulin, whereas the level of tyrosinated tubulin was elevated. This biochemical effect was accompanied by growth inhibition in cycling BY-2 cells and alteration of microtubule-dependent events that define division and expansion geometry such as cell plate alignment or axial expansion. Furthermore, parthenolide triggered an apoplastic alkalinization indicative of activation of defence-related calcium influx channels. At the same time, parthenolide promoted the association of the plant-specific kinesin KCH with cortical microtubules. These observations are integrated into a working model, where detyrosination acts as signal to modulate the binding of kinesin motors involved in structural and sensory functions of the microtubular cytoskeleton.
Collapse
Affiliation(s)
- Natalie Schneider
- Botanical Institute, Molecular Cell Biology, Karlsruhe Institute of Technology, Kaiserstraße 2, D-76131 Karlsruhe, Germany
| | - Holger Ludwig
- Botanical Institute, Molecular Cell Biology, Karlsruhe Institute of Technology, Kaiserstraße 2, D-76131 Karlsruhe, Germany
| | - Peter Nick
- Botanical Institute, Molecular Cell Biology, Karlsruhe Institute of Technology, Kaiserstraße 2, D-76131 Karlsruhe, Germany
| |
Collapse
|
31
|
Abstract
Microtubules are cytoskeletal filaments that are dynamically assembled from α/β-tubulin heterodimers. The primary sequence and structure of the tubulin proteins and, consequently, the properties and architecture of microtubules are highly conserved in eukaryotes. Despite this conservation, tubulin is subject to heterogeneity that is generated in two ways: by the expression of different tubulin isotypes and by posttranslational modifications (PTMs). Identifying the mechanisms that generate and control tubulin heterogeneity and how this heterogeneity affects microtubule function are long-standing goals in the field. Recent work on tubulin PTMs has shed light on how these modifications could contribute to a “tubulin code” that coordinates the complex functions of microtubules in cells.
Collapse
Affiliation(s)
- Carsten Janke
- Institut Curie, 91405 Orsay, France Centre National de la Recherche Scientifique Unité Mixte de Recherche 3306, 91405 Orsay, France Institut National de la Santé et de la Recherche Médicale U1005, 91405 Orsay, France Paris Sciences et Lettres Research University, 75005 Paris, France
| |
Collapse
|
32
|
Whipple RA, Vitolo MI, Boggs AE, Charpentier MS, Thompson K, Martin SS. Parthenolide and costunolide reduce microtentacles and tumor cell attachment by selectively targeting detyrosinated tubulin independent from NF-κB inhibition. Breast Cancer Res 2014; 15:R83. [PMID: 24028602 PMCID: PMC3979133 DOI: 10.1186/bcr3477] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Accepted: 07/22/2013] [Indexed: 12/13/2022] Open
Abstract
Introduction Detyrosinated tubulin, a post-translational modification of α-tubulin and a hallmark of stable microtubules, has gained recent attention given its association with tumor progression, invasiveness, and chemoresistance. We also recently reported that epithelial-to-mesenchymal transition (EMT) promotes tubulin detyrosination through tubulin tyrosine ligase (TTL) suppression. Furthermore, detyrosinated tubulin-enriched membrane protrusions, termed microtentacles (McTN), facilitate tumor cell reattachment to endothelial layers. Given the induction of EMT associated with inflammation and cancer progression, we tested anti-inflammatory nuclear factor-kappaB (NF-κB) inhibitors on a panel of human breast carcinoma cells to examine their effects on detyrosinated tubulin to identify more specific tubulin-directed anti-cancer treatments. Methods Using metastatic human breast carcinoma cells MDA-MB-157, MDA-MB-436, and Bt-549, we measured the impact of NF-κB inhibitors parthenolide, costunolide, and resveratrol on detyrosinated tubulin using protein expression analysis and immunofluorescence. A luciferase reporter assay and a viability screen were performed to determine if the effects were associated with their NF-κB inhibitory properties or were a result of apoptosis. Real-time monitoring of cell-substratum attachment was measured utilizing electrical impedance across microelectronic sensor arrays. We compared the selectivity of the NF-κB inhibitors to specifically target detyrosinated tubulin with traditional tubulin-targeted therapeutics, paclitaxel and colchicine, throughout the study. Results Sesquiterpene lactones, parthenolide and costunolide, selectively decrease detyrosinated tubulin independent of their inhibition of NF-κB. Live-cell scoring of suspended cells treated with parthenolide and costunolide show reduction in the frequency of microtentacles and inhibition of reattachment. Structural analysis shows that parthenolide and costunolide can decrease detyrosinated microtubules without significantly disrupting the overall microtubule network or cell viability. Paclitaxel and colchicine display indiscriminate disruption of the microtubule network. Conclusions Our data demonstrate that selective targeting of detyrosinated tubulin with parthenolide and costunolide can reduce McTN frequency and inhibit tumor cell reattachment. These actions are independent of their effects on NF-κB inhibition presenting a novel anti-cancer property and therapeutic opportunity to selectively target a stable subset of microtubules in circulating tumor cells to reduce metastatic potential with less toxicity in breast cancer patients.
Collapse
|
33
|
Parker AL, Kavallaris M, McCarroll JA. Microtubules and their role in cellular stress in cancer. Front Oncol 2014; 4:153. [PMID: 24995158 PMCID: PMC4061531 DOI: 10.3389/fonc.2014.00153] [Citation(s) in RCA: 281] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 06/03/2014] [Indexed: 01/08/2023] Open
Abstract
Microtubules are highly dynamic structures, which consist of α- and β-tubulin heterodimers, and are involved in cell movement, intracellular trafficking, and mitosis. In the context of cancer, the tubulin family of proteins is recognized as the target of the tubulin-binding chemotherapeutics, which suppress the dynamics of the mitotic spindle to cause mitotic arrest and cell death. Importantly, changes in microtubule stability and the expression of different tubulin isotypes as well as altered post-translational modifications have been reported for a range of cancers. These changes have been correlated with poor prognosis and chemotherapy resistance in solid and hematological cancers. However, the mechanisms underlying these observations have remained poorly understood. Emerging evidence suggests that tubulins and microtubule-associated proteins may play a role in a range of cellular stress responses, thus conferring survival advantage to cancer cells. This review will focus on the importance of the microtubule-protein network in regulating critical cellular processes in response to stress. Understanding the role of microtubules in this context may offer novel therapeutic approaches for the treatment of cancer.
Collapse
Affiliation(s)
- Amelia L Parker
- Tumour Biology and Targeting Program, Children's Cancer Institute Australia, Lowy Cancer Research Centre, University of New South Wales , Sydney, NSW , Australia
| | - Maria Kavallaris
- Tumour Biology and Targeting Program, Children's Cancer Institute Australia, Lowy Cancer Research Centre, University of New South Wales , Sydney, NSW , Australia ; Australian Centre for NanoMedicine, University of New South Wales , Sydney, NSW , Australia
| | - Joshua A McCarroll
- Tumour Biology and Targeting Program, Children's Cancer Institute Australia, Lowy Cancer Research Centre, University of New South Wales , Sydney, NSW , Australia ; Australian Centre for NanoMedicine, University of New South Wales , Sydney, NSW , Australia
| |
Collapse
|
34
|
Prudent R, Vassal-Stermann É, Nguyen CH, Mollaret M, Viallet J, Desroches-Castan A, Martinez A, Barette C, Pillet C, Valdameri G, Soleilhac E, Di Pietro A, Feige JJ, Billaud M, Florent JC, Lafanechère L. Azaindole derivatives are inhibitors of microtubule dynamics, with anti-cancer and anti-angiogenic activities. Br J Pharmacol 2013; 168:673-85. [PMID: 23004938 DOI: 10.1111/j.1476-5381.2012.02230.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Revised: 07/20/2012] [Accepted: 08/10/2012] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND AND PURPOSE Drugs targeting microtubules are commonly used for cancer treatment. However, the potency of microtubule inhibitors used clinically is limited by the emergence of resistance. We thus designed a strategy to find new cell-permeable microtubule-targeting agents. EXPERIMENTAL APPROACH Using a cell-based assay designed to probe for microtubule polymerization status, we screened a chemical library and identified two azaindole derivatives, CM01 and CM02, as cell-permeable microtubule-depolymerizing agents. The mechanism of the anti-tumour effects of these two compounds was further investigated both in vivo and in vitro. KEY RESULTS CM01 and CM02 induced G2/M cell cycle arrest and exerted potent cytostatic effects on several cancer cell lines including multidrug-resistant (MDR) cell lines. In vitro experiments revealed that the azaindole derivatives inhibited tubulin polymerization and competed with colchicines for this effect, strongly indicating that tubulin is the cellular target of these azaindole derivatives. In vivo experiments, using a chicken chorioallantoic xenograft tumour assay, established that these compounds exert a potent anti-tumour effect. Furthermore, an assay probing the growth of vessels out of endothelial cell spheroids showed that CM01 and CM02 exert anti-angiogenic activities. CONCLUSIONS AND IMPLICATIONS CM01 and CM02 are reversible microtubule-depolymerizing agents that exert potent cytostatic effects on human cancer cells of diverse origins, including MDR cells. They were also shown to inhibit angiogenesis and tumour growth in chorioallantoic breast cancer xenografts. Hence, these azaindole derivatives are attractive candidates for further preclinical investigations.
Collapse
Affiliation(s)
- Renaud Prudent
- Institut Albert Bonniot, CRI INSERM/UJF U823, La Tronche Cedex, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Prota AE, Magiera MM, Kuijpers M, Bargsten K, Frey D, Wieser M, Jaussi R, Hoogenraad CC, Kammerer RA, Janke C, Steinmetz MO. Structural basis of tubulin tyrosination by tubulin tyrosine ligase. ACTA ACUST UNITED AC 2013; 200:259-70. [PMID: 23358242 PMCID: PMC3563685 DOI: 10.1083/jcb.201211017] [Citation(s) in RCA: 178] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Structural analysis of a complex of tubulin and tubulin tyrosine ligase (TTL) reveals insights into TTL’s enzymatic mechanism, how it discriminates between α- and β-tubulin, and its possible evolutionary origin. Tubulin tyrosine ligase (TTL) catalyzes the post-translational retyrosination of detyrosinated α-tubulin. Despite the indispensable role of TTL in cell and organism development, its molecular mechanism of action is poorly understood. By solving crystal structures of TTL in complex with tubulin, we here demonstrate that TTL binds to the α and β subunits of tubulin and recognizes the curved conformation of the dimer. Biochemical and cellular assays revealed that specific tubulin dimer recognition controls the activity of the enzyme, and as a consequence, neuronal development. The TTL–tubulin structure further illustrates how the enzyme binds the functionally crucial C-terminal tail sequence of α-tubulin and how this interaction catalyzes the tyrosination reaction. It also reveals how TTL discriminates between α- and β-tubulin, and between different post-translationally modified forms of α-tubulin. Together, our data suggest that TTL has specifically evolved to recognize and modify tubulin, thus highlighting a fundamental role of the evolutionary conserved tubulin tyrosination cycle in regulating the microtubule cytoskeleton.
Collapse
Affiliation(s)
- Andrea E Prota
- Biomolecular Research, Paul Scherrer Institut, CH-5232 Villigen PSI, Switzerland
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Tubulin tyrosine ligase structure reveals adaptation of an ancient fold to bind and modify tubulin. Nat Struct Mol Biol 2011; 18:1250-8. [PMID: 22020298 PMCID: PMC3342691 DOI: 10.1038/nsmb.2148] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2011] [Accepted: 08/12/2011] [Indexed: 12/03/2022]
Abstract
Tubulin tyrosine ligase (TTL) catalyzes the post-translational C-terminal tyrosination of α–tubulin. Tyrosination regulates recruitment of microtubule interacting proteins. TTL is essential. Its loss causes morphogenic abnormalities and is associated with cancers of poor prognosis. We present the first crystal structure of TTL (from Xenopus tropicalis), defining the structural scaffold upon which the diverse TTL-like family of tubulin-modifying enzymes is built. TTL recognizes tubulin using a bipartite strategy. It engages the tubulin tail through low-affinity, high-specificity interactions, and co-opts what is otherwise a homo-oligomerization interface in structurally related ATP-grasp fold enzymes to form a tight hetero-oligomeric complex with the tubulin body. Small-angle X-ray scattering and functional analyses reveal that TTL forms an elongated complex with the tubulin dimer and prevents its incorporation into microtubules by capping the tubulin longitudinal interface, possibly modulating the partition of tubulin between monomeric and polymeric forms.
Collapse
|
37
|
Moutin MJ, Andrieux A, Janke C. [Microtubule polyglutamylation and neurodegeneration]. Med Sci (Paris) 2011; 27:464-7. [PMID: 21609662 DOI: 10.1051/medsci/2011275006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
|
38
|
Identification of BCP-20 (FBXO39) as a cancer/testis antigen from colon cancer patients by SEREX. Biochem Biophys Res Commun 2011; 408:195-201. [DOI: 10.1016/j.bbrc.2011.02.077] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2011] [Accepted: 02/14/2011] [Indexed: 11/19/2022]
|
39
|
Abstract
Alpha tubulin comprises a C-terminal tyrosine residue, which is subject to cyclic removal from the peptide chain by a still uncharacterized carboxypeptidase and re-addition to the chain by a tubulin tyrosine ligase. We have shown in different animal or human models that the presence or absence of the tyrosine residue had dramatic consequences for both tumor progression and neuronal organization. In cells, tubulin detyrosination impairs the proper localization of CAP-Gly proteins at microtubule + end, compromises the activity of microtubule-depolymerizing motors of the Kinesin 13 family, and favors both spastin microtubule-severing activity and kinesin 1 processivity. The biochemical basis for these cellular effects of tubulin detyrosination can now be investigated in reconstituted systems in vitro using homogeneous solutions of polymerizable tyrosinated or detyrosinated tubulin.
Collapse
|
40
|
Wasylyk C, Zambrano A, Zhao C, Brants J, Abecassis J, Schalken JA, Rogatsch H, Schaefer G, Pycha A, Klocker H, Wasylyk B. Tubulin tyrosine ligase like 12 links to prostate cancer through tubulin posttranslational modification and chromosome ploidy. Int J Cancer 2010; 127:2542-53. [PMID: 20162578 DOI: 10.1002/ijc.25261] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Prostate cancer is a common cause of death, and an important goal is to establish the pathways and functions of causative genes. We isolated RNAs that are differentially expressed in macrodissected prostate cancer samples. This study focused on 1 identified gene, TTLL12, which was predicted to modify tubulins, an established target for tumor therapy. TTLL12 is the most poorly characterized member of a recently discovered 14-member family of proteins that catalyze posttranslational modification of tubulins. We show that human TTLL12 is expressed in the proliferating layer of benign prostate. Expression increases during cancer progression to metastasis. It is highly expressed in many metastatic prostate cancer cell lines. It partially colocalizes with vimentin intermediate filaments and cellular structures containing tubulin, including midbodies, centrosomes, intercellular bridges and the mitotic spindle. Downregulation of TTLL12 affects several posttranslational modifications of tubulin (detyrosination and subsequent deglutamylation and polyglutamylation). Overexpression alters chromosomal ploidy. These results raise the possibility that TTLL12 could contribute to tumorigenesis through effects on the cytoskeleton, tubulin modification and chromosome number stability. This study contributes a step toward developing more selective agents targeting microtubules, an already successful target for tumor therapy.
Collapse
Affiliation(s)
- Christine Wasylyk
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, UMR 7104 CNRS UDS-U 964 INSERM, Illkirch, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Whipple RA, Matrone MA, Cho EH, Balzer EM, Vitolo MI, Yoon JR, Ioffe OB, Tuttle KC, Yang J, Martin SS. Epithelial-to-mesenchymal transition promotes tubulin detyrosination and microtentacles that enhance endothelial engagement. Cancer Res 2010; 70:8127-37. [PMID: 20924103 DOI: 10.1158/0008-5472.can-09-4613] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Epithelial-to-mesenchymal transition (EMT) is associated with increased breast tumor metastasis; however, the specific mechanisms by which EMT promotes metastasis remain somewhat unclear. Despite the importance of cytoskeletal dynamics during both EMT and metastasis, very few current studies examine the cytoskeleton of detached and circulating tumor cells. Specific posttranslational α-tubulin modifications are critical for adherent cell motility and implicated in numerous pathologies, but also remain understudied in detached cells. We report here that EMT induced through ectopic expression of Twist or Snail promotes α-tubulin detyrosination and the formation of tubulin-based microtentacles in detached HMLEs. Mechanistically, EMT downregulates the tubulin tyrosine ligase enzyme, resulting in an accumulation of detyrosinated α-tubulin (Glu-tubulin), and increases microtentacles that penetrate endothelial layers to facilitate tumor cell reattachment. Confocal microscopy shows that microtentacles are capable of penetrating the junctions between endothelial cells. Suppression of endogenous Twist in metastatic human breast tumor cells is capable of reducing both tubulin detyrosination and microtentacles. Clinical breast tumor samples display high concordance between Glu-tubulin and Twist expression levels, emphasizing the coupling between EMT and tubulin detyrosination in vivo. Coordinated elevation of Twist and Glu-tubulin at invasive tumor fronts, particularly within ductal carcinoma in situ samples, establishes that EMT-induced tubulin detyrosination occurs at the earliest stages of tumor invasion. These data support a novel model where the EMT that occurs during tumor invasion downregulates tubulin tyrosine ligase, increasing α-tubulin detyrosination and promoting microtentacles that could enhance the reattachment of circulating tumor cells to the vascular endothelium during metastasis.
Collapse
Affiliation(s)
- Rebecca A Whipple
- Marlene and Stewart Greenebaum National Cancer Institute Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Dal Piaz F, Vassallo A, Lepore L, Tosco A, Bader A, De Tommasi N. Sesterterpenes as Tubulin Tyrosine Ligase Inhibitors. First Insight of Structure−Activity Relationships and Discovery of New Lead. J Med Chem 2009; 52:3814-28. [DOI: 10.1021/jm801637f] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Fabrizio Dal Piaz
- Dipartimento di Scienze Farmaceutiche, Università di Salerno, Via Ponte Don Melillo, 84084 Fisciano (SA), Italy, and Faculty of Pharmacy, Al-Zaytoonah Private University of Jordan, P.O. Box 130, 11733 Amman, Jordan
| | - Antonio Vassallo
- Dipartimento di Scienze Farmaceutiche, Università di Salerno, Via Ponte Don Melillo, 84084 Fisciano (SA), Italy, and Faculty of Pharmacy, Al-Zaytoonah Private University of Jordan, P.O. Box 130, 11733 Amman, Jordan
| | - Laura Lepore
- Dipartimento di Scienze Farmaceutiche, Università di Salerno, Via Ponte Don Melillo, 84084 Fisciano (SA), Italy, and Faculty of Pharmacy, Al-Zaytoonah Private University of Jordan, P.O. Box 130, 11733 Amman, Jordan
| | - Alessandra Tosco
- Dipartimento di Scienze Farmaceutiche, Università di Salerno, Via Ponte Don Melillo, 84084 Fisciano (SA), Italy, and Faculty of Pharmacy, Al-Zaytoonah Private University of Jordan, P.O. Box 130, 11733 Amman, Jordan
| | - Ammar Bader
- Dipartimento di Scienze Farmaceutiche, Università di Salerno, Via Ponte Don Melillo, 84084 Fisciano (SA), Italy, and Faculty of Pharmacy, Al-Zaytoonah Private University of Jordan, P.O. Box 130, 11733 Amman, Jordan
| | - Nunziatina De Tommasi
- Dipartimento di Scienze Farmaceutiche, Università di Salerno, Via Ponte Don Melillo, 84084 Fisciano (SA), Italy, and Faculty of Pharmacy, Al-Zaytoonah Private University of Jordan, P.O. Box 130, 11733 Amman, Jordan
| |
Collapse
|
43
|
Miller LM, Menthena A, Chatterjee C, Verdier-Pinard P, Novikoff PM, Horwitz SB, Angeletti RH. Increased levels of a unique post-translationally modified betaIVb-tubulin isotype in liver cancer. Biochemistry 2008; 47:7572-82. [PMID: 18570381 DOI: 10.1021/bi8005225] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Identifying changes at the molecular level during the development of hepatocellular carcinoma is important for the detection and treatment of the disease. The characteristic structural reorganization of preneoplastic cells may involve changes in the microtubule cytoskeleton. Microtubules are dynamic protein polymers that play an essential role in cell division, maintenance of cell shape, vesicle transport, and motility. They are comprised of multiple isotypes of alpha- and beta-tubulin. Changes in the levels of these isotypes may affect not only microtubule stability and sensitivity to drugs but also interactions with endogenous proteins. We employed a rat liver cancer model that progresses through stages similar to those of human liver cancer, including metastasis to the lung, to identify changes in the tubulin cytoskeleton during carcinogenesis. Tubulin isotypes in both liver and lung tissue were purified and subsequently separated by isoelectric focusing electrophoresis. The C-terminal isotype-defining region from each tubulin was obtained by cyanogen bromide cleavage and identified by mass spectrometry. A novel post-translational modification of betaIVb-tubulin in which two hydrophobic residues are proteolyzed from the C-terminus, thus exposing a charged glutamic acid residue, was identified. The unique form of betaIVb-tubulin was quantified in the liver tissue of all carcinoma stages and found to be approximately 3-fold more abundant in nodular and tumor tissue than in control tissue. The level of this form was also found to be increased in lung tissue with liver metastasis. This modification alters the C-terminal domain of one of the most abundant beta-tubulin isotypes in the liver and therefore may affect the interactions of microtubules with endogenous proteins.
Collapse
Affiliation(s)
- Leah M Miller
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | | | | | | | | | |
Collapse
|
44
|
Hammond JW, Cai D, Verhey KJ. Tubulin modifications and their cellular functions. Curr Opin Cell Biol 2008; 20:71-6. [PMID: 18226514 DOI: 10.1016/j.ceb.2007.11.010] [Citation(s) in RCA: 383] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2007] [Revised: 11/29/2007] [Accepted: 11/30/2007] [Indexed: 11/25/2022]
Abstract
All microtubules are built from a basic alpha/beta-tubulin building block, yet subpopulations of microtubules can be differentially marked by a number of post-translational modifications. These modifications, conserved throughout evolution, are thought to act individually or in combination to control specific microtubule-based functions, analogous to how histone modifications regulate chromatin functions. Here we review recent studies demonstrating that tubulin modifications influence microtubule-associated proteins such as severing proteins, plus-end tracking proteins, and molecular motors. In this way, tubulin modifications play an important role in regulating microtubule properties, such as stability and structure, as well as microtubule-based functions, such as ciliary beating, cell division, and intracellular trafficking.
Collapse
Affiliation(s)
- Jennetta W Hammond
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | | | | |
Collapse
|
45
|
Fonrose X, Ausseil F, Soleilhac E, Masson V, David B, Pouny I, Cintrat JC, Rousseau B, Barette C, Massiot G, Lafanechère L. Parthenolide inhibits tubulin carboxypeptidase activity. Cancer Res 2007; 67:3371-8. [PMID: 17409447 DOI: 10.1158/0008-5472.can-06-3732] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Microtubules are centrally involved in cell division, being the principal components of mitotic spindle. Tubulin, the constituent of microtubules, can be cyclically modified on its alpha-subunit by enzymatic removal of the COOH-terminal tyrosine residue by an ill-defined tubulin carboxypeptidase (TCP) and its readdition by tubulin tyrosine ligase (TTL). We and others have previously shown that suppression of TTL and resulting accumulation of detyrosinated tubulin are frequent in human cancers of poor prognosis. Explanations for the involvement of TTL and detyrosinated tubulin in tumor progression arise from the recent discovery that tubulin detyrosination leads to CAP-Gly protein mislocalization, which correlates with defects in spindle positioning during mitosis. Impaired control of spindle positioning is one factor favoring tumor invasiveness. Thus, TCP could be a target for developing novel therapeutic strategies against advanced stages of cancers. Inhibitors of TCP, by reversing abnormal detyrosinated tubulin accumulation in tumor cells, could impair tumor progression. TCP has never been isolated and this has hampered search of specific inhibitors. In this article, we describe a cell-based assay of TCP activity and its use to screen a library of natural extracts for their inhibitory potency. This led to the isolation of two sesquiterpene lactones. We subsequently found that parthenolide, a structurally related compound, can efficiently inhibit TCP. This inhibitory activity is a new specific property of parthenolide independent of its action on the nuclear factor-kappaB pathway. Parthenolide is also known for its anticancer properties. Thus, TCP inhibition could be one of the underlying mechanisms of these anticancer properties.
Collapse
Affiliation(s)
- Xavier Fonrose
- Centre de Criblage pour Molécules Bio-Actives, institut de Recherches en Technologies et Sciences pour le Vivant, Commissariat à l'Energie Atomique-Grenoble, Grenoble, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Whipple RA, Cheung AM, Martin SS. Detyrosinated microtubule protrusions in suspended mammary epithelial cells promote reattachment. Exp Cell Res 2007; 313:1326-36. [PMID: 17359970 PMCID: PMC3132414 DOI: 10.1016/j.yexcr.2007.02.001] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2006] [Revised: 01/31/2007] [Accepted: 02/01/2007] [Indexed: 11/17/2022]
Abstract
Breast tumor cells enter the bloodstream long before the development of clinically evident metastasis. However, the early presence of such bloodborne cells predicts poor patient outcome. Nearly 90% of human breast tumors arise as carcinomas from mammary epithelial cells, so it is important to study how these cells respond to the detached conditions that they would experience in the bloodstream. We report here that mammary epithelial cell lines produce long and dynamic protrusions of the plasma membrane when detached. Although human and mouse mammary epithelial cell lines die by apoptosis within 16 h of detachment, this protrusive response persists for days in cells overexpressing either Bcl-2 or Bcl-xL. Unlike actin-dependent invadopodia and podosomes, these protrusions are actually enhanced by actin depolymerization with Cytochalasin-D or Latrunculin-A. Immunofluorescence and Western blotting demonstrate that the protrusions are enriched in detyrosinated Glu-tubulin, a post-translationally modified form of alpha-tubulin that is found in stabilized microtubules. Video microscopy indicates that these protrusions promote cell-cell attachment, and inhibiting microtubule-based protrusions correlates with reduced extracellular matrix attachment. Since bloodborne metastasis depends on both cell-cell and cell-matrix attachment, microtubule-based protrusions in detached mammary epithelial cells provide a novel mechanism that could influence the metastatic spread of breast tumors.
Collapse
Affiliation(s)
- Rebecca A Whipple
- University of Maryland School of Medicine, Marlene and Stewart Greenebaum Cancer Center, Department of Physiology, Baltimore, MD 21201
| | - Agnes M. Cheung
- University of Maryland School of Medicine, Marlene and Stewart Greenebaum Cancer Center, Department of Physiology, Baltimore, MD 21201
| | - Stuart S. Martin
- University of Maryland School of Medicine, Marlene and Stewart Greenebaum Cancer Center, Department of Physiology, Baltimore, MD 21201
- Corresponding author: HSF-2, Rm S103C, 20 S. Penn St. Baltimore, MD 21201, Tel: 410-706-6601, Fax: 410-706-6600,
| |
Collapse
|
47
|
Kalinina E, Biswas R, Berezniuk I, Hermoso A, Aviles FX, Fricker LD. A novel subfamily of mouse cytosolic carboxypeptidases. FASEB J 2007; 21:836-50. [PMID: 17244818 DOI: 10.1096/fj.06-7329com] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Nna1 is a recently described gene product that has sequence similarity with metallocarboxypeptidases. In the present study, five additional Nna1-like genes were identified in the mouse genome and named cytosolic carboxypeptidase (CCP) 2 through 6. Modeling suggests that the carboxypeptidase domain folds into a structure that resembles metallocarboxypeptidases of the M14 family, with all necessary residues for catalytic activity and broad substrate specificity. All CCPs are abundant in testis and also expressed in brain, pituitary, eye, and other mouse tissues. In brain, Nna1/CCP1, CCP5, and CCP6 are broadly distributed, whereas CCP2 and 3 exhibit restricted patterns of expression. Nna1/CCP1, CCP2, CCP5, and CCP6 were found to exhibit a cytosolic distribution, with a slight accumulation of CCP5 in the nucleus. Based on the above results, we hypothesized that Nna1/CCP1 and CCP2-6 function in the processing of cytosolic proteins such as alpha-tubulin, which is known to be modified by the removal of a C-terminal tyrosine. Analysis of the forms of alpha tubulin in the olfactory bulb of mice lacking Nna1/CCP1 showed the absence of the detyrosinylated form in the mitral cells. Taken together, these results are consistent with a role for Nna1/CCP1 and the related CCPs in the processing of tubulin.
Collapse
Affiliation(s)
- Elena Kalinina
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, NY 10461, USA
| | | | | | | | | | | |
Collapse
|
48
|
Phung AD, Soucek K, Kubala L, Harper RW, Chloë Bulinski J, Eiserich JP. Posttranslational nitrotyrosination of α-tubulin induces cell cycle arrest and inhibits proliferation of vascular smooth muscle cells. Eur J Cell Biol 2006; 85:1241-52. [PMID: 17118269 DOI: 10.1016/j.ejcb.2006.05.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2006] [Revised: 05/03/2006] [Accepted: 05/05/2006] [Indexed: 10/23/2022] Open
Abstract
Hyperproliferation of vascular smooth muscle cells is a hallmark of atherosclerosis and related vascular complications. Microtubules are important for many aspects of mammalian cell responses including growth, migration and signaling. alpha-Tubulin, a component of the microtubule cytoskeleton, is unique amongst cellular proteins in that it undergoes a reversible posttranslational modification whereby the C-terminal tyrosine residue is removed (Glu-tubulin) and re-added (Tyr-tubulin). Whereas the reversible detyrosination/tyrosination cycle of alpha-tubulin has been implicated in regulating various aspects of cell biology, the precise function of this posttranslational modification has remained poorly characterized. Herein, we provide evidence suggesting that alpha-tubulin detyrosination is a required event in the proliferation of vascular smooth muscle cells. Proliferation of rat aortic smooth muscle cells in response to serum was temporally associated with the detyrosination of alpha-tubulin, but not acetylation of alpha-tubulin; Glu-tubulin reached maximal levels between 12 and 18h following cell cycle initiation. Inclusion of 3-nitro-l-tyrosine (NO(2)Tyr) in the culture medium resulted in the selective nitrotyrosination of alpha-tubulin, that was paralleled by decreased elaboration of Glu-tubulin, decreased expression of cyclins A and E, decreased association of the microtubule plus-end binding protein EB1, and inhibited cell proliferation. Nitrotyrosination of alpha-tubulin did not induce necrotic or apoptotic death of rat aortic smooth muscle cells, but instead led to cell cycle arrest at the G(1)/S boundary coincident with decreased DNA synthesis. Collectively, these results suggest that the C-terminus of alpha-tubulin and its detyrosination are functionally important as a molecular switch that regulates cell cycle progression in vascular smooth muscle cells.
Collapse
Affiliation(s)
- Anh D Phung
- Department of Internal Medicine, University of California, Davis, CA 95616, USA
| | | | | | | | | | | |
Collapse
|
49
|
Peris L, Thery M, Fauré J, Saoudi Y, Lafanechère L, Chilton JK, Gordon-Weeks P, Galjart N, Bornens M, Wordeman L, Wehland J, Andrieux A, Job D. Tubulin tyrosination is a major factor affecting the recruitment of CAP-Gly proteins at microtubule plus ends. ACTA ACUST UNITED AC 2006; 174:839-49. [PMID: 16954346 PMCID: PMC2064338 DOI: 10.1083/jcb.200512058] [Citation(s) in RCA: 247] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Tubulin-tyrosine ligase (TTL), the enzyme that catalyzes the addition of a C-terminal tyrosine residue to α-tubulin in the tubulin tyrosination cycle, is involved in tumor progression and has a vital role in neuronal organization. We show that in mammalian fibroblasts, cytoplasmic linker protein (CLIP) 170 and other microtubule plus-end tracking proteins comprising a cytoskeleton-associated protein glycine-rich (CAP-Gly) microtubule binding domain such as CLIP-115 and p150 Glued, localize to the ends of tyrosinated microtubules but not to the ends of detyrosinated microtubules. In vitro, the head domains of CLIP-170 and of p150 Glued bind more efficiently to tyrosinated microtubules than to detyrosinated polymers. In TTL-null fibroblasts, tubulin detyrosination and CAP-Gly protein mislocalization correlate with defects in both spindle positioning during mitosis and cell morphology during interphase. These results indicate that tubulin tyrosination regulates microtubule interactions with CAP-Gly microtubule plus-end tracking proteins and provide explanations for the involvement of TTL in tumor progression and in neuronal organization.
Collapse
Affiliation(s)
- Leticia Peris
- Laboratoire du Cytosquelette, Institut National de la Santé et de la Recherche Médicale U366, Département Réponse et Dynamique Cellulaire, Commisariat à l'Energie Atomique Grenoble, 38054 Grenoble, France
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Soucek K, Kamaid A, Phung AD, Kubala L, Bulinski JC, Harper RW, Eiserich JP. Normal and prostate cancer cells display distinct molecular profiles of alpha-tubulin posttranslational modifications. Prostate 2006; 66:954-65. [PMID: 16541425 DOI: 10.1002/pros.20416] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND Multiple diverse posttranslational modifications of alpha-tubulin such as detyrosination, further cleavage of the penultimate glutamate residue (Delta2-tubulin), acetylation, and polyglutamylation increase the structural and functional diversity of microtubules. METHODS Herein, we characterized the molecular profile of alpha-tubulin posttranslational modifications in normal human prostate epithelial cells (PrEC), immortalized normal prostate epithelial cells (PZ-HPV-7), androgen-dependent prostate cancer cells (LNCaP), transitional androgen-independent prostate cancer cells (LNCaP-cds and CWR22Rv1), and androgen-independent prostate cancer cells (PC3). RESULTS Compared to PrEC and PZ-HPV-7 cells, all cancer cells exhibited elevated levels of detyrosinated and polyglutamylated alpha-tubulin, that was paralleled by decreased protein levels of tubulin tyrosine ligase (TTL). In contrast, PrEC and PZ-HPV-7 cells expressed markedly higher levels of Delta2-tubulin. Whereas alpha-tubulin acetylation levels were generally equivalent in all the cell lines, PC3 cells did not display detectable levels of Ac-tubulin. CONCLUSION These data may reveal novel biomarkers of prostate cancer and new therapeutic targets.
Collapse
Affiliation(s)
- Karel Soucek
- Department of Internal Medicine, University of California, Davis, California 95616, USA
| | | | | | | | | | | | | |
Collapse
|