1
|
Annunziata C, Fattahpour H, Fong D, Hadjiargyrou M, Sanaei P. Effects of Elasticity on Cell Proliferation in a Tissue-Engineering Scaffold Pore. Bull Math Biol 2023; 85:25. [PMID: 36826607 DOI: 10.1007/s11538-023-01134-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 02/07/2023] [Indexed: 02/25/2023]
Abstract
Scaffolds engineered for in vitro tissue engineering consist of multiple pores where cells can migrate along with nutrient-rich culture medium. The presence of the nutrient medium throughout the scaffold pores promotes cell proliferation, and this process depends on several factors such as scaffold geometry, nutrient medium flow rate, shear stress, cell-scaffold focal adhesions and elastic properties of the scaffold material. While numerous studies have addressed the first four factors, the mathematical approach described herein focuses on cell proliferation rate in elastic scaffolds, under constant flux of nutrients. As cells proliferate, the scaffold pores radius shrinks and thus, in order to sustain the nutrient flux, the inlet applied pressure on the upstream side of the scaffold pore must be increased. This results in expansion of the elastic scaffold pore, which in turn further increases the rate of cell proliferation. Considering the elasticity of the scaffold, the pore deformation allows further cellular growth beyond that of inelastic conditions. In this paper, our objectives are as follows: (i) Develop a mathematical model for describing fluid dynamics, scaffold elasticity and cell proliferation for scaffolds consist of identical nearly cylindrical pores; (ii) Solve the models and then simulate cellular proliferation within an elastic pore. The simulation can emulate real life tissue growth in a scaffold and offer a solution which reduces the numerical burdens. Lastly, our results demonstrated are in qualitative agreement with experimental observations reported in the literature.
Collapse
Affiliation(s)
- Carlyn Annunziata
- Department of Biomedical Engineering, New York Institute of Technology, Old Westbury, NY, 11568, USA
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Haniyeh Fattahpour
- Department of Mathematics and Statistics, Georgia State University, Atlanta, GA, 30303, USA
| | - Daniel Fong
- Department of Mathematics and Science, U.S. Merchant Marine Academy, Kings Point, NY, 11024, USA
| | - Michael Hadjiargyrou
- Department of Biological and Chemical Sciences, New York Institute of Technology, Old Westbury, NY, 11568, USA
| | - Pejman Sanaei
- Department of Mathematics and Statistics, Georgia State University, Atlanta, GA, 30303, USA.
| |
Collapse
|
2
|
Zhang J, Li L, Zhang Q, Yang X, Zhang C, Zhang X, Zhang D, Lv Y, Song H, Chen B, Liu Y, Hu J, Huang Y. Phosphorylation of Microtubule- Associated Protein 4 Promotes Hypoxic Endothelial Cell Migration and Proliferation. Front Pharmacol 2019; 10:368. [PMID: 31040780 PMCID: PMC6476958 DOI: 10.3389/fphar.2019.00368] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 03/25/2019] [Indexed: 12/13/2022] Open
Abstract
Endothelial cells play a critical role in the process of angiogenesis during skin wound healing. The migration and proliferation of endothelial cells are processes that are initiated by the hypoxic microenvironment in a wound, but the underlying mechanisms remain largely unknown. Here, we identified a novel role for microtubule-associated protein 4 (MAP4) in angiogenesis. We firstly demonstrated that MAP4 phosphorylation was induced in hypoxic endothelial cells; the increase in MAP4 phosphorylation enhanced the migration and proliferation of endothelial cells. We also found that hypoxia (2% O2) activated p38/mitogen-activated protein kinase (MAPK) signaling, and we identified p38/MAPK as an upstream regulator of MAP4 phosphorylation in endothelial cells. Moreover, we showed that the promigration and proproliferation effects of MAP4 phosphorylation were attributed to its role in microtubule dynamics. These results indicated that MAP4 phosphorylation induced by p38/MAPK signaling promotes angiogenesis by inducing the proliferation and migration of endothelial cells cultured under hypoxic conditions via microtubule dynamics regulation. These findings provide new insights into the potential mechanisms underlying the initiation of the migration and proliferation of endothelial cells.
Collapse
Affiliation(s)
- Junhui Zhang
- Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China.,State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Lingfei Li
- Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China.,State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Qiong Zhang
- Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China.,State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Xu Yang
- Department of Respiratory Medicine, The 983 Hospital of Joint Logistics Support Force of the Chinese People's Liberation Army, Tianjin, China
| | - Can Zhang
- Department of Plastic Surgery, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Xingyue Zhang
- Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China.,State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Dongxia Zhang
- Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China.,State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Yanling Lv
- Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China.,State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Huapei Song
- Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China.,State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Bing Chen
- Endocrinology Department, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Yao Liu
- Department of Pharmacy, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Jiongyu Hu
- State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China.,Endocrinology Department, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Yuesheng Huang
- Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China.,State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| |
Collapse
|
3
|
Lembong J, Lerman MJ, Kingsbury TJ, Civin CI, Fisher JP. A Fluidic Culture Platform for Spatially Patterned Cell Growth, Differentiation, and Cocultures. Tissue Eng Part A 2018; 24:1715-1732. [PMID: 29845891 PMCID: PMC6302678 DOI: 10.1089/ten.tea.2018.0020] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 05/24/2018] [Indexed: 01/09/2023] Open
Abstract
Stem cell cultures within perfusion bioreactors, while efficient in obtaining cell numbers, often lack the similarity to native tissues and consequently cell phenotype. We develop a three-dimensional (3D)-printed fluidic chamber for dynamic stem cell culture, with emphasis on control over flow and substrate curvature in a 3D environment, two physiologic features of native tissues. The chamber geometry, consisting of an array of vertical cylindrical pillars, facilitates actin-mediated localization of human mesenchymal stem cells (hMSCs) within ∼200 μm distance from the pillars, enabling spatial patterning of hMSCs and endothelial cells in cocultures and subsequent modulation of calcium signaling between these two essential cell types in the bone marrow microenvironment. Flow-enhanced osteogenic differentiation of hMSCs in growth media imposes spatial variations of alkaline phosphatase expression, which positively correlates with local shear stress. Proliferation of hMSCs is maintained within the chamber, exceeding the cell expansion in conventional static culture. The capability to manipulate cell spatial patterning, differentiation, and 3D tissue formation through geometry and flow demonstrates the culture chamber's relevant chemomechanical cues in stem cell microenvironments, thus providing an easy-to-implement tool to study interactions among substrate curvature, shear stress, and intracellular actin machinery in the tissue-engineered construct.
Collapse
Affiliation(s)
- Josephine Lembong
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland
- NIH Center for Engineering Complex Tissues, University of Maryland, College Park, Maryland
| | - Max J. Lerman
- NIH Center for Engineering Complex Tissues, University of Maryland, College Park, Maryland
- Department of Materials Science and Engineering, University of Maryland, College Park, Maryland
- Surface and Trace Chemical Analysis Group, Materials Measurement Lab, National Institute of Standards and Technology, Gaithersburg, Maryland
| | - Tami J. Kingsbury
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland
- Center for Stem Cell Biology & Regenerative Medicine, University of Maryland School of Medicine, Baltimore, Maryland
| | - Curt I. Civin
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, Maryland
- Center for Stem Cell Biology & Regenerative Medicine, University of Maryland School of Medicine, Baltimore, Maryland
| | - John P. Fisher
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland
- NIH Center for Engineering Complex Tissues, University of Maryland, College Park, Maryland
| |
Collapse
|
4
|
Mu S, Liu Y, Jiang J, Ding R, Li X, Li X, Ma X. Unfractionated heparin ameliorates pulmonary microvascular endothelial barrier dysfunction via microtubule stabilization in acute lung injury. Respir Res 2018; 19:220. [PMID: 30442128 PMCID: PMC6238311 DOI: 10.1186/s12931-018-0925-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 10/29/2018] [Indexed: 12/13/2022] Open
Abstract
Background Endothelial barrier dysfunction is central to the pathogenesis of sepsis-associated acute lung injury (ALI). Microtubule (MT) dynamics in vascular endothelium are crucial for the regulation of endothelial barrier function. Unfractionated heparin (UFH) possesses various biological activities, such as anti-inflammatory activity and endothelial barrier protection during sepsis. Methods Here, we investigated the effects and underlying mechanisms of UFH on lipopolysaccharide (LPS)-induced endothelial barrier dysfunction. C57BL/6 J mice were randomized into vehicle, UFH, LPS and LPS + UFH groups. Intraperitoneal injection of 30 mg/kg LPS was used to induce sepsis. Mice in the LPS + UFH group received intravenous UFH 0.5 h prior to LPS injection. Human pulmonary microvascular endothelial cells (HPMECs) were cultured for analyzing the effects of UFH on LPS-induced and nocodazole-induced hyperpermeability, F-actin remodeling, and LPS-induced p38 MAPK activation. Results UFH pretreatment significantly attenuated LPS-induced pulmonary histopathological changes, and increased the lung W/D ratio and Evans blue accumulation in vivo. Both in vivo and in vitro studies showed that UFH pretreatment blocked the LPS-induced increase in guanine nucleotide exchange factor (GEF-H1) expression and myosin phosphatase target subunit 1 (MYPT1) phosphorylation, and microtubule (MT) disassembly in LPS-induced ALI mouse model and human pulmonary microvascular endothelial cells (HPMECs). These results suggested that UFH ameliorated LPS-induced endothelial barrier dysfunction by inhibiting MT disassembly and GEF-H1 expression. In addition, UFH attenuated LPS-induced hyperpermeability of HPMECs and F-actin remodeling. In vitro, UFH pretreatment inhibited LPS-induced increase in monomeric tubulin expression and decrease in tubulin polymerization and acetylation. Meanwhile, UFH ameliorates nocodazole-induced MTs disassembly and endothelial barrier dysfunction.Additionally, UFH decreased p38 phosphorylation and activation, which was similar to the effect of the p38 MAPK inhibitor, SB203580. Conclusions UFH exert its protective effects on pulmonary microvascular endothelial barrier dysfunction via microtubule stabilization and is associated with the p38 MAPK pathway.
Collapse
Affiliation(s)
- Shengtian Mu
- Department of Intensive Care Unit, The First Affiliated Hospital of China Medical University, No. 92 Bei-er Road, Shenyang, 110001, Liaoning Province, People's Republic of China
| | - Yina Liu
- Department of Intensive Care Unit, The First Affiliated Hospital of China Medical University, No. 92 Bei-er Road, Shenyang, 110001, Liaoning Province, People's Republic of China
| | - Jing Jiang
- Department of Intensive Care Unit, The First Affiliated Hospital of China Medical University, No. 92 Bei-er Road, Shenyang, 110001, Liaoning Province, People's Republic of China
| | - Renyu Ding
- Department of Intensive Care Unit, The First Affiliated Hospital of China Medical University, No. 92 Bei-er Road, Shenyang, 110001, Liaoning Province, People's Republic of China
| | - Xu Li
- Department of Intensive Care Unit, The First Affiliated Hospital of China Medical University, No. 92 Bei-er Road, Shenyang, 110001, Liaoning Province, People's Republic of China
| | - Xin Li
- Department of Intensive Care Unit, The First Affiliated Hospital of China Medical University, No. 92 Bei-er Road, Shenyang, 110001, Liaoning Province, People's Republic of China
| | - Xiaochun Ma
- Department of Intensive Care Unit, The First Affiliated Hospital of China Medical University, No. 92 Bei-er Road, Shenyang, 110001, Liaoning Province, People's Republic of China.
| |
Collapse
|
5
|
Zielinski A, Linnartz C, Pleschka C, Dreissen G, Springer R, Merkel R, Hoffmann B. Reorientation dynamics and structural interdependencies of actin, microtubules and intermediate filaments upon cyclic stretch application. Cytoskeleton (Hoboken) 2018; 75:385-394. [DOI: 10.1002/cm.21470] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 05/18/2018] [Accepted: 06/01/2018] [Indexed: 12/17/2022]
Affiliation(s)
- Alexander Zielinski
- Forschungszentrum Jülich, Institute of Complex Systems, ICS-7: Biomechanics; Jülich Germany
| | - Christina Linnartz
- Forschungszentrum Jülich, Institute of Complex Systems, ICS-7: Biomechanics; Jülich Germany
| | - Catharina Pleschka
- Forschungszentrum Jülich, Institute of Complex Systems, ICS-7: Biomechanics; Jülich Germany
| | - Georg Dreissen
- Forschungszentrum Jülich, Institute of Complex Systems, ICS-7: Biomechanics; Jülich Germany
| | - Ronald Springer
- Forschungszentrum Jülich, Institute of Complex Systems, ICS-7: Biomechanics; Jülich Germany
| | - Rudolf Merkel
- Forschungszentrum Jülich, Institute of Complex Systems, ICS-7: Biomechanics; Jülich Germany
| | - Bernd Hoffmann
- Forschungszentrum Jülich, Institute of Complex Systems, ICS-7: Biomechanics; Jülich Germany
| |
Collapse
|
6
|
Myer NM, Myers KA. CLASP1 regulates endothelial cell branching morphology and directed migration. Biol Open 2017; 6:1502-1515. [PMID: 28860131 PMCID: PMC5665473 DOI: 10.1242/bio.028571] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Endothelial cell (EC) branching is critically dependent upon the dynamic nature of the microtubule (MT) cytoskeleton. Extracellular matrix (ECM) mechanosensing is a prominent mechanism by which cytoskeletal reorganization is achieved; yet how ECM-induced signaling is able to target cytoskeletal reorganization intracellularly to facilitate productive EC branching morphogenesis is not known. Here, we tested the hypothesis that the composition and density of the ECM drive the regulation of MT growth dynamics in ECs by targeting the MT stabilizing protein, cytoplasmic linker associated protein 1 (CLASP1). High-resolution fluorescent microscopy coupled with computational image analysis reveal that CLASP1 promotes slow MT growth on glass ECMs and promotes short-lived MT growth on high-density collagen-I and fibronectin ECMs. Within EC branches, engagement of either high-density collagen-I or high-density fibronectin ECMs results in reduced MT growth speeds, while CLASP1-dependent effects on MT dynamics promotes elevated numbers of short, branched protrusions that guide persistent and directed EC migration. Summary: CLASP1 modulates microtubule dynamics with sub-cellular specificity in response to extracellular matrix density and composition. CLASP1 effects on microtubules promote short, branched protrusions that guide persistent and directional EC migration. This article has an associated First Person interview with the first author of the paper as part of the supplementary information.
Collapse
Affiliation(s)
- Nicole M Myer
- Department of Biological Sciences, University of the Sciences in Philadelphia, Philadelphia PA 19104, USA
| | - Kenneth A Myers
- Department of Biological Sciences, University of the Sciences in Philadelphia, Philadelphia PA 19104, USA
| |
Collapse
|
7
|
Chanet S, Martin AC. Mechanical force sensing in tissues. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2015; 126:317-52. [PMID: 25081624 DOI: 10.1016/b978-0-12-394624-9.00013-0] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Tissue size, shape, and organization reflect individual cell behaviors such as proliferation, shape change, and movement. Evidence suggests that mechanical signals operate in tandem with biochemical cues to properly coordinate cell behavior and pattern tissues. The objective of this chapter is to present recent evidence demonstrating that forces transmitted between cells act as signals that coordinate cell behavior across tissues. We first briefly summarize molecular and cellular mechanisms by which forces are sensed by cells with an emphasis on forces generated and transmitted by cytoskeletal networks. We then discuss evidence for these mechanisms operating in multicellular contexts to coordinate complex cell and tissue behaviors that occur during embryonic development: specifically growth and morphogenesis.
Collapse
Affiliation(s)
- Soline Chanet
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Adam C Martin
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| |
Collapse
|
8
|
Li L, Hu J, He T, Zhang Q, Yang X, Lan X, Zhang D, Mei H, Chen B, Huang Y. P38/MAPK contributes to endothelial barrier dysfunction via MAP4 phosphorylation-dependent microtubule disassembly in inflammation-induced acute lung injury. Sci Rep 2015; 5:8895. [PMID: 25746230 PMCID: PMC4352893 DOI: 10.1038/srep08895] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Accepted: 02/10/2015] [Indexed: 02/07/2023] Open
Abstract
Excessive activation of inflammation and the accompanying lung vascular endothelial barrier disruption are primary pathogenic features of acute lung injury (ALI). Microtubule-associated protein 4 (MAP4), a tubulin assembly-promoting protein, is important for maintaining the microtubule (MT) cytoskeleton and cell-cell junctional structures. However, both the involvement and exact mechanism of MAP4 in the development of endothelial barrier disruption in ALI remains unknown. In this study, lipopolysaccharide (LPS) and tumour necrosis factor-α (TNF-α) were applied to human pulmonary microvascular endothelial cells (HPMECs) to mimic the endothelial damage during inflammation in vitro. We demonstrated that the MAP4 (Ser696 and Ser787) phosphorylation increased concomitantly with the p38/MAPK pathway activation by the LPS and TNF-α stimulation of HPMECs, which induced MT disassembly followed by hyperpermeability. Moreover, the application of taxol, the overexpression of a MAP4 (Ala) mutant, or the application of the p38/MAPK inhibitor SB203580 inhibited the MT disruption and the intracellular junction dysfunction. In contrast, MKK6 (Glu), which constitutively activated p38/MAPK, resulted in microtubule depolymerisation and, subsequently, hyperpermeability. Our findings reveal a novel role of MAP4 in endothelial barrier dysfunction.
Collapse
Affiliation(s)
- Lingfei Li
- Institute of Burn Research, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Jiongyu Hu
- Endocrinology Department, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Ting He
- Institute of Burn Research, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Qiong Zhang
- Institute of Burn Research, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Xu Yang
- Institute of Respiratory Diseases, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Xiaodong Lan
- Institute of Burn Research, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Dongxia Zhang
- Institute of Burn Research, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Hao Mei
- Department of Biostatistics in the School of Public Health, Yale University
| | - Bing Chen
- Endocrinology Department, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Yuesheng Huang
- Institute of Burn Research, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Third Military Medical University, Chongqing, China
| |
Collapse
|
9
|
Goldmacher VS, Audette CA, Guan Y, Sidhom EH, Shah JV, Whiteman KR, Kovtun YV. High-affinity accumulation of a maytansinoid in cells via weak tubulin interaction. PLoS One 2015; 10:e0117523. [PMID: 25671541 PMCID: PMC4324968 DOI: 10.1371/journal.pone.0117523] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Accepted: 12/27/2014] [Indexed: 11/18/2022] Open
Abstract
The microtubule-targeting maytansinoids accumulate in cells and induce mitotic arrest at 250- to 1000-fold lower concentrations than those required for their association with tubulin or microtubules. To identify the mechanisms of this intracellular accumulation and exceptional cytotoxicity of maytansinoids we studied interaction of a highly cytotoxic maytansinoid, S-methyl DM1 and several other maytansinoids with cells. S-methyl DM1 accumulated inside the cells with a markedly higher apparent affinity than to tubulin or microtubules. The apparent affinities of maytansinoids correlated with their cytotoxicities. The number of intracellular binding sites for S-methyl DM1 in MCF7 cells was comparable to the number of tubulin molecules per cell (~ 4-6 × 10(7) copies). Efflux of 3[H]-S-methyl DM1 from cells was enhanced in the presence of an excess of non-labeled S-methyl DM1, indicating that re-binding of 3 [H]-S-methyl DM1 to intracellular binding sites contributed to its intracellular retention. Liposomes loaded with non-polymerized tubulin recapitulated the apparent high-affinity association of S-methyl DM1 to cells. We propose a model for the intracellular accumulation of maytansinoids in which molecules of the compounds diffuse into a cell and associate with tubulin. Affinities of maytansinoids for individual tubulin molecules are weak, but the high intracellular concentration of tubulin favors, after dissociation of a compound-tubulin complex, their re-binding to a tubulin molecule, or to a tip of a microtubule in the same cell, over their efflux. As a result, a significant fraction of microtubule tips is occupied with a maytansinoid when added to cells at sub-nanomolar concentrations, inducing mitotic arrest and cell death.
Collapse
Affiliation(s)
- Victor S. Goldmacher
- Department of Cell Biology, ImmunoGen, Inc., Waltham, Massachusetts, United States of America
- * E-mail:
| | - Charlene A. Audette
- Department of Cell Biology, ImmunoGen, Inc., Waltham, Massachusetts, United States of America
| | - Yinghua Guan
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts, United States of America
- Renal Division, Brigham and Women’s Hospital, Boston, Massachusetts, United States of America
| | - Eriene-Heidi Sidhom
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts, United States of America
- Renal Division, Brigham and Women’s Hospital, Boston, Massachusetts, United States of America
| | - Jagesh V. Shah
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts, United States of America
- Renal Division, Brigham and Women’s Hospital, Boston, Massachusetts, United States of America
| | - Kathleen R. Whiteman
- Department of Cell Biology, ImmunoGen, Inc., Waltham, Massachusetts, United States of America
| | - Yelena V. Kovtun
- Department of Cell Biology, ImmunoGen, Inc., Waltham, Massachusetts, United States of America
| |
Collapse
|
10
|
Zhou Z, Guo F, Yi L, Tang J, Dou Y, Huan J. The p38/mitogen-activated protein kinase pathway is implicated in lipopolysaccharide-induced microtubule depolymerization via up-regulation of microtubule-associated protein 4 phosphorylation in human vascular endothelium. Surgery 2014; 157:590-8. [PMID: 25633728 DOI: 10.1016/j.surg.2014.10.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Revised: 10/14/2014] [Accepted: 10/17/2014] [Indexed: 12/31/2022]
Abstract
BACKGROUND Microtubules (MTs) play an important role in lipopolysaccharide (LPS)-induced overexpression of inflammatory cytokines and vascular barrier dysfunction; however, the mechanisms behind MT dynamics changes in the vascular endothelium under septic conditions are still not well understood. METHODS Human umbilical vein endothelial cells (HUVECs) stimulated with LPS were pretreated with or without the specific p38/mitogen-activated protein kinase (MAPK) inhibitor, SB203580. p38/MAPK cascade-induced signaling events and proteins expression were investigated by Western blotting assay. The interaction between p38/MAPK and microtubule-associated protein 4 (MAP4) was examined by immunoprecipitation. Furthermore, the effects of agonists on LPS-induced MT disruption and alteration of acetylated alpha-tubulin (Acet-tubulin) were analyzed by double-immunofluorescent assay and Western blotting analysis. RESULTS In the present study, our results indicated that LPS induced MT depolymerization, but the effects of LPS could be reversed in endothelial cells pretreated with taxol. Furthermore, phosphor-p38 and MAP4 interacted to form a complex after exposure to LPS. LPS-induced MAP4 phosphorylation was greatly suppressed by SB203580, suggesting that activation of p38/MAPK signaling affected MAP4 phosphorylation linked to MT acetylation after stimulation with LPS. CONCLUSION The present study demonstrated that the p38/MAPK signaling pathway might disrupt MT dynamics via phosphorylation of MAP4 in vascular endothelial cells challenged by LPS. Our findings provide novel insights into the pathogenic mechanism of MT disassembly and consider new targets for therapeutic intervention under sepsis or septic shock conditions.
Collapse
Affiliation(s)
- Zengding Zhou
- Department of Burn and Plastic Surgery, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Feng Guo
- Department of Burn and Plastic Surgery, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Lei Yi
- Department of Burn and Plastic Surgery, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jiajun Tang
- Department of Burn and Plastic Surgery, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yi Dou
- Department of Burn and Plastic Surgery, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jingning Huan
- Department of Burn and Plastic Surgery, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
11
|
Abstract
Physical forces are central players in development and morphogenesis, provide an ever-present backdrop influencing physiological functions, and contribute to a variety of pathologies. Mechanotransduction encompasses the rich variety of ways in which cells and tissues convert cues from their physical environment into biochemical signals. These cues include tensile, compressive and shear stresses, and the stiffness or elastic modulus of the tissues in which cells reside. This article focuses on the proximal events that lead directly from a change in physical state to a change in cell-signaling state. A large body of evidence demonstrates a prominent role for the extracellular matrix, the intracellular cytoskeleton, and the cell matrix adhesions that link these networks in transduction of the mechanical environment. Recent work emphasizes the important role of physical unfolding or conformational changes in proteins induced by mechanical loading, with examples identified both within the focal adhesion complex at the cell-matrix interface and in extracellular matrix proteins themselves. Beyond these adhesion and matrix-based mechanisms, classical and new mechanisms of mechanotransduction reside in stretch-activated ion channels, the coupling of physical forces to interstitial autocrine and paracrine signaling, force-induced activation of extracellular proteins, and physical effects directly transmitted to the cell's nucleus. Rapid progress is leading to detailed delineation of molecular mechanisms by which the physical environment shapes cellular signaling events, opening up avenues for exploring how mechanotransduction pathways are integrated into physiological and pathophysiological cellular and tissue processes.
Collapse
Affiliation(s)
- Daniel J Tschumperlin
- Department of Environmental Health, Harvard School of Public Health, Boston, MA, USA.
| |
Collapse
|
12
|
Xu X, Zhang Q, Hu JY, Zhang DX, Jiang XP, Jia JZ, Zhu JC, Huang YS. Phosphorylation of DYNLT1 at serine 82 regulates microtubule stability and mitochondrial permeabilization in hypoxia. Mol Cells 2013; 36:322-32. [PMID: 24170091 PMCID: PMC3887991 DOI: 10.1007/s10059-013-0114-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Revised: 07/09/2013] [Accepted: 08/22/2013] [Indexed: 12/19/2022] Open
Abstract
Hypoxia-induced microtubule disruption and mitochondrial permeability transition (mPT) are crucial events leading to fatal cell damage and recent studies showed that microtubules (MTs) are involved in the modulation of mitochondrial function. Dynein light chain Tctex-type 1 (DYNLT1) is thought to be associated with MTs and mitochondria. Previously we demonstrated that DYNLT1 knockdown aggravates hypoxia-induced mitochondrial permeabilization, which indicates a role of DYNLT1 in hypoxic cytoprotection. But the underlying regulatory mechanism of DYNLT1 remains illusive. Here we aimed to investigate the phosphorylation alteration of DYNLT1 at serine 82 (S82) in hypoxia (1% O2). We therefore constructed recombinant adenoviruses to generate S82E and S82A mutants, used to transfect H9c2 and HeLa cell lines. Development of hypoxia-induced mPT (MMP examining, Cyt c release and mPT pore opening assay), hypoxic energy metabolism (cellular viability and ATP quantification), and stability of MTs were examined. Our results showed that phosph-S82 (S82-P) expression was increased in early hypoxia; S82E mutation (phosphomimic) aggravated mitochondrial damage, elevated the free tubulin in cytoplasm and decreased the cellular viability; S82A mutation (dephosphomimic) seemed to diminish the hypoxia-induced injury. These data suggest that DYNLT1 phosphorylation at S82 is involved in MTs and mitochondria regulation, and their interaction and cooperation contribute to the cellular hypoxic tolerance. Thus, we provide new insights into a DYNLT1 mechanism in stabilizing MTs and mitochondria, and propose a potential therapeutic target for hypoxia cytoprotective studies.
Collapse
Affiliation(s)
- Xue Xu
- School of Nursing, The Third Military Medical University, Chongqing, China
| | - Qiong Zhang
- Institute of Burn Research, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, The Third Military Medical University, Chongqing 400038, China
| | - Jiong-yu Hu
- Institute of Burn Research, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, The Third Military Medical University, Chongqing 400038, China
| | - Dong-xia Zhang
- Institute of Burn Research, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, The Third Military Medical University, Chongqing 400038, China
| | - Xu-pin Jiang
- Institute of Burn Research, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, The Third Military Medical University, Chongqing 400038, China
| | - jie-zhi Jia
- Institute of Burn Research, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, The Third Military Medical University, Chongqing 400038, China
| | - Jing-ci Zhu
- School of Nursing, The Third Military Medical University, Chongqing, China
| | - Yue-sheng Huang
- Institute of Burn Research, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, The Third Military Medical University, Chongqing 400038, China
| |
Collapse
|
13
|
Landrein B, Hamant O. How mechanical stress controls microtubule behavior and morphogenesis in plants: history, experiments and revisited theories. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 75:324-38. [PMID: 23551516 DOI: 10.1111/tpj.12188] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Revised: 03/11/2013] [Accepted: 03/20/2013] [Indexed: 05/19/2023]
Abstract
Microtubules have a key role in plant morphogenesis, as they control the oriented deposition of cellulose in the cell wall, and thus growth anisotropy. The idea that mechanical stress could be one of the main determinants behind the orientation of microtubules in plant cells emerged very soon after their discovery. The cause of mechanical stress in plant cells is turgor pressure, which can build up to 1 MPa and is restrained by cell wall stiffness. On the tissue scale, this can lead to regional patterns of tension, in particular in the epidermis of aerial organs, which resist the stress generated by cells in internal tissues. Here we summarize more than 50 years of work on the contribution of mechanical stress in guiding microtubule behavior, and the resulting impact on growth anisotropy and growth heterogeneity. We propose a conceptual model on microtubule dynamics and their ability to self-organize in bundles parallel to the direction of maximal stress, as well as a synthetic representation of the putative mechanotransducers at play.
Collapse
Affiliation(s)
- Benoît Landrein
- Laboratoire de Reproduction et Développement des Plantes, INRA, CNRS, ENS, UCB Lyon 1, 46 Allee d'Italie, Lyon, Cedex 07 69364, France
| | | |
Collapse
|
14
|
Özgen N, Lu Z, Boink GJJ, Lau DH, Shlapakova IN, Bobkov Y, Danilo P, Cohen IS, Rosen MR. Microtubules and angiotensin II receptors contribute to modulation of repolarization induced by ventricular pacing. Heart Rhythm 2012; 9:1865-72. [PMID: 22820054 DOI: 10.1016/j.hrthm.2012.07.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2012] [Indexed: 01/09/2023]
Abstract
BACKGROUND Left ventricular pacing (LVP) in canine heart alters ventricular activation, leading to reduced transient outward potassium current (I(to)), loss of the epicardial action potential notch, and T-wave vector displacement. These repolarization changes, referred to as cardiac memory, are initiated by locally increased angiotensin II (AngII) levels. In HEK293 cells in which Kv4.3 and KChIP2, the channel subunits contributing to I(to), are overexpressed with the AngII receptor 1 (AT1R), AngII induces a decrease in I(to) as the result of internalization of a Kv4.3/KChIP2/AT1R macromolecular complex. OBJECTIVE To test the hypothesis that in canine heart in situ, 2h LVP-induced decreases in membrane KChIP2, AT1R, and I(to) are prevented by blocking subunit trafficking. METHODS We used standard electrophysiological, biophysical, and biochemical methods to study 4 groups of dogs: (1) Sham, (2) 2h LVP, (3) LVP + colchicine (microtubule-disrupting agent), and (4) LVP + losartan (AT1R blocker). RESULTS The T-wave vector displacement was significantly greater in LVP than in Sham and was inhibited by colchicine or losartan. Epicardial biopsies showed significant decreases in KChIP2 and AT1R proteins in the membrane fraction after LVP but not after sham treatment, and these decreases were prevented by colchicine or losartan. Colchicine but not losartan significantly reduced microtubular polymerization. In isolated ventricular myocytes, AngII-induced I(to) reduction and loss of action potential notch were blocked by colchicine. CONCLUSIONS LVP-induced reduction of KChIP2 in plasma light membranes depends on an AngII-mediated pathway and intact microtubular status. Loss of I(to) and the action potential notch appear to derive from AngII-initiated trafficking of channel subunits.
Collapse
Affiliation(s)
- Nazira Özgen
- Department of Pharmacology, Columbia University, New York, New York 10032, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Fang YD, Xu X, Dang YM, Zhang YM, Zhang JP, Hu JY, Zhang Q, Dai X, Teng M, Zhang DX, Huang YS. MAP4 mechanism that stabilizes mitochondrial permeability transition in hypoxia: microtubule enhancement and DYNLT1 interaction with VDAC1. PLoS One 2011; 6:e28052. [PMID: 22164227 PMCID: PMC3229508 DOI: 10.1371/journal.pone.0028052] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2011] [Accepted: 10/31/2011] [Indexed: 01/22/2023] Open
Abstract
Mitochondrial membrane permeability has received considerable attention recently because of its key role in apoptosis and necrosis induced by physiological events such as hypoxia. The manner in which mitochondria interact with other molecules to regulate mitochondrial permeability and cell destiny remains elusive. Previously we verified that hypoxia-induced phosphorylation of microtubule-associated protein 4 (MAP4) could lead to microtubules (MTs) disruption. In this study, we established the hypoxic (1% O2) cell models of rat cardiomyocytes, H9c2 and HeLa cells to further test MAP4 function. We demonstrated that increase in the pool of MAP4 could promote the stabilization of MT networks by increasing the synthesis and polymerization of tubulin in hypoxia. Results showed MAP4 overexpression could enhance cell viability and ATP content under hypoxic conditions. Subsequently we employed a yeast two-hybrid system to tag a protein interacting with mitochondria, dynein light chain Tctex-type 1 (DYNLT1), by hVDAC1 bait. We confirmed that DYNLT1 had protein-protein interactions with voltage-dependent anion channel 1 (VDAC1) using co-immunoprecipitation; and immunofluorescence technique showed that DYNLT1 was closely associated with MTs and VDAC1. Furthermore, DYNLT1 interactions with MAP4 were explored using a knockdown technique. We thus propose two possible mechanisms triggered by MAP4: (1) stabilization of MT networks, (2) DYNLT1 modulation, which is connected with VDAC1, and inhibition of hypoxia-induced mitochondrial permeabilization.
Collapse
Affiliation(s)
- Ya-dong Fang
- State Key Laboratory for Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Xue Xu
- The No. 324 Hospital of PLA, Chongqing, China
| | - Yong-ming Dang
- State Key Laboratory for Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Yi-ming Zhang
- Department of Plastic and Cosmetic Surgery, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Jia-ping Zhang
- State Key Laboratory for Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Jiong-yu Hu
- State Key Laboratory for Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Qiong Zhang
- State Key Laboratory for Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Xia Dai
- Department of Plastic and Cosmetic Surgery, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Miao Teng
- State Key Laboratory for Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Dong-xia Zhang
- State Key Laboratory for Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Yue-sheng Huang
- State Key Laboratory for Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University, Chongqing, China
- * E-mail:
| |
Collapse
|
16
|
Morioka M, Parameswaran H, Naruse K, Kondo M, Sokabe M, Hasegawa Y, Suki B, Ito S. Microtubule dynamics regulate cyclic stretch-induced cell alignment in human airway smooth muscle cells. PLoS One 2011; 6:e26384. [PMID: 22022610 PMCID: PMC3195692 DOI: 10.1371/journal.pone.0026384] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2010] [Accepted: 09/26/2011] [Indexed: 01/06/2023] Open
Abstract
Microtubules are structural components of the cytoskeleton that determine cell shape, polarity, and motility in cooperation with the actin filaments. In order to determine the role of microtubules in cell alignment, human airway smooth muscle cells were exposed to cyclic uniaxial stretch. Human airway smooth muscle cells, cultured on type I collagen-coated elastic silicone membranes, were stretched uniaxially (20% in strain, 30 cycles/min) for 2 h. The population of airway smooth muscle cells which were originally oriented randomly aligned near perpendicular to the stretch axis in a time-dependent manner. However, when the cells treated with microtubule disruptors, nocodazole and colchicine, were subjected to the same cyclic uniaxial stretch, the cells failed to align. Lack of alignment was also observed for airway smooth muscle cells treated with a microtubule stabilizer, paclitaxel. To understand the intracellular mechanisms involved, we developed a computational model in which microtubule polymerization and attachment to focal adhesions were regulated by the preexisting tensile stress, pre-stress, on actin stress fibers. We demonstrate that microtubules play a central role in cell re-orientation when cells experience cyclic uniaxial stretching. Our findings further suggest that cell alignment and cytoskeletal reorganization in response to cyclic stretch results from the ability of the microtubule-stress fiber assembly to maintain a homeostatic strain on the stress fiber at focal adhesions. The mechanism of stretch-induced alignment we uncovered is likely involved in various airway functions as well as in the pathophysiology of airway remodeling in asthma.
Collapse
Affiliation(s)
- Masataka Morioka
- Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Harikrishnan Parameswaran
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, United States of America
| | - Keiji Naruse
- Department of Cardiovascular Physiology, Okayama University Graduate School of Medicine, Okayama, Japan
| | - Masashi Kondo
- Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Masahiro Sokabe
- Department of Physiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yoshinori Hasegawa
- Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Béla Suki
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, United States of America
| | - Satoru Ito
- Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
- * E-mail:
| |
Collapse
|
17
|
Dubiel EA, Martin Y, Vermette P. Bridging the Gap Between Physicochemistry and Interpretation Prevalent in Cell−Surface Interactions. Chem Rev 2011; 111:2900-36. [DOI: 10.1021/cr9002598] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Evan A. Dubiel
- Laboratoire de bio-ingénierie et de biophysique de l’Université de Sherbrooke, Department of Chemical and Biotechnological Engineering, Université de Sherbrooke, 2500 Boulevard de l’Université, Sherbrooke, Québec, Canada J1K 2R1
- Research Centre on Aging, Institut universitaire de gériatrie de Sherbrooke, 1036 rue Belvédère Sud, Sherbrooke, Québec, Canada J1H 4C4
| | - Yves Martin
- Laboratoire de bio-ingénierie et de biophysique de l’Université de Sherbrooke, Department of Chemical and Biotechnological Engineering, Université de Sherbrooke, 2500 Boulevard de l’Université, Sherbrooke, Québec, Canada J1K 2R1
- Research Centre on Aging, Institut universitaire de gériatrie de Sherbrooke, 1036 rue Belvédère Sud, Sherbrooke, Québec, Canada J1H 4C4
| | - Patrick Vermette
- Laboratoire de bio-ingénierie et de biophysique de l’Université de Sherbrooke, Department of Chemical and Biotechnological Engineering, Université de Sherbrooke, 2500 Boulevard de l’Université, Sherbrooke, Québec, Canada J1K 2R1
- Research Centre on Aging, Institut universitaire de gériatrie de Sherbrooke, 1036 rue Belvédère Sud, Sherbrooke, Québec, Canada J1H 4C4
| |
Collapse
|
18
|
Abstract
Our lab has previously demonstrated that cytoplasmic trafficking and subsequent nuclear entry of non-viral plasmid DNA can be significantly enhanced through the application of cyclic stretch following transfection in vitro1,2. Here, we demonstrate that cyclic stretching of the murine lung using ventilation immediately following the endotracheal administration and transthoracic electroporation of plasmid DNA increases exogenous gene expression up to 4-fold over Our mice that were not ventilated after plasmid administration and transfection via electroporation in vivo. This increase is time and sequence specific (i.e. the ventilation must occur immediately after the transfection event). The ventilation-enhanced gene transfer is also amplitude-dependent, confirming similar studies completed in vitro, and is mediated, at least in part, through the cytoplasmic tubulin deacetylase, HDAC6. Using immunohistochemistry, we demonstrate that this increase in expression is due to an increase in the number of cells expressing the exogenous protein rather than an increase in the amount of protein produced per cell. These studies demonstrate the potential mechanical stimulation has in vivo in significantly increasing non-viral DNA gene expression, and may ultimately pave the way for more successful clinical trials using this type of therapy in the future.
Collapse
|
19
|
Goldyn AM, Rioja BA, Spatz JP, Ballestrem C, Kemkemer R. Force-induced cell polarisation is linked to RhoA-driven microtubule-independent focal-adhesion sliding. J Cell Sci 2010; 122:3644-51. [PMID: 19812308 DOI: 10.1242/jcs.054866] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Mechanical forces play a crucial role in controlling the integrity and functionality of cells and tissues. External forces are sensed by cells and translated into signals that induce various responses. To increase the detailed understanding of these processes, we investigated cell migration and dynamic cellular reorganisation of focal adhesions and cytoskeleton upon application of cyclic stretching forces. Of particular interest was the role of microtubules and GTPase activation in the course of mechanotransduction. We showed that focal adhesions and the actin cytoskeleton undergo dramatic reorganisation perpendicular to the direction of stretching forces even without microtubules. Rather, we found that microtubule orientation is controlled by the actin cytoskeleton. Using biochemical assays and fluorescence resonance energy transfer (FRET) measurements, we revealed that Rac1 and Cdc42 activities did not change upon stretching, whereas overall RhoA activity increased dramatically, but independently of intact microtubules. In conclusion, we demonstrated that key players in force-induced cellular reorganisation are focal-adhesion sliding, RhoA activation and the actomyosin machinery. In contrast to the importance of microtubules in migration, the force-induced cellular reorganisation, including focal-adhesion sliding, is independent of a dynamic microtubule network. Consequently, the elementary molecular mechanism of cellular reorganisation during migration is different to the one in force-induced cell reorganisation.
Collapse
Affiliation(s)
- Alexandra M Goldyn
- Department of New Materials and Biosystems, Max Planck Institute for Metals Research, 70569 Stuttgart, Germany
| | | | | | | | | |
Collapse
|
20
|
Hu JY, Chu ZG, Han J, Dang YM, Yan H, Zhang Q, Liang GP, Huang YS. The p38/MAPK pathway regulates microtubule polymerization through phosphorylation of MAP4 and Op18 in hypoxic cells. Cell Mol Life Sci 2010; 67:321-33. [PMID: 19915797 PMCID: PMC11115776 DOI: 10.1007/s00018-009-0187-z] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2009] [Revised: 10/13/2009] [Accepted: 10/16/2009] [Indexed: 02/07/2023]
Abstract
In both cardiomyocytes and HeLa cells, hypoxia (1% O(2)) quickly leads to microtubule disruption, but little is known about how microtubule dynamics change during the early stages of hypoxia. We demonstrate that microtubule associated protein 4 (MAP4) phosphorylation increases while oncoprotein 18/stathmin (Op18) phosphorylation decreases after hypoxia, but their protein levels do not change. p38/MAPK activity increases quickly after hypoxia concomitant with MAP4 phosphorylation, and the activated p38/MAPK signaling leads to MAP4 phosphorylation and to Op18 dephosphorylation, both of which induce microtubule disruption. We confirmed the interaction between phospho-p38 and MAP4 using immunoprecipitation and found that SB203580, a p38/MAPK inhibitor, increases and MKK6(Glu) overexpression decreases hypoxic cell viability. Our results demonstrate that hypoxia induces microtubule depolymerization and decreased cell viability via the activation of the p38/MAPK signaling pathway and changes the phosphorylation levels of its downstream effectors, MAP4 and Op18.
Collapse
Affiliation(s)
- Jiong-Yu Hu
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Burn Research, Southwest Hospital, The Third Military Medical University, 400038 Chongqing, People’s Republic of China
| | - Zhi-Gang Chu
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Burn Research, Southwest Hospital, The Third Military Medical University, 400038 Chongqing, People’s Republic of China
| | - Jian Han
- Department of Gynecology and Obstetrics, Daping Hospital, The Third Military Medical University, 400038 Chongqing, People’s Republic of China
| | - Yong-ming Dang
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Burn Research, Southwest Hospital, The Third Military Medical University, 400038 Chongqing, People’s Republic of China
| | - Hong Yan
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Burn Research, Southwest Hospital, The Third Military Medical University, 400038 Chongqing, People’s Republic of China
| | - Qiong Zhang
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Burn Research, Southwest Hospital, The Third Military Medical University, 400038 Chongqing, People’s Republic of China
| | - Guang-ping Liang
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Burn Research, Southwest Hospital, The Third Military Medical University, 400038 Chongqing, People’s Republic of China
| | - Yue-Sheng Huang
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Burn Research, Southwest Hospital, The Third Military Medical University, 400038 Chongqing, People’s Republic of China
| |
Collapse
|
21
|
Boudreault F, Tschumperlin DJ. Stretch-induced mitogen-activated protein kinase activation in lung fibroblasts is independent of receptor tyrosine kinases. Am J Respir Cell Mol Biol 2009; 43:64-73. [PMID: 19684308 DOI: 10.1165/rcmb.2009-0092oc] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Lung growth and remodeling are modulated by mechanical stress, with fibroblasts thought to play a leading role. Little mechanistic information is available about how lung fibroblasts respond to mechanical stress. We exposed cultured lung fibroblasts to tonic stretch and measured changes in phosphorylation status of mitogen-activated protein kinases (MAPKs), selected receptor tyrosine kinases (RTKs), and phospholipase Cgamma1 (PLCgamma1) and activation of the small G-protein Ras. Human lung fibroblasts (LFs) were seeded on matrix-coated silicone membranes and exposed to equibiaxial 10 to 40% static stretch or 20% contraction. LFs were stimulated with EGF, FGF2, or PDGF-BB or exposed to stretch in the presence of inhibitors of EGFR (AG1478), FGFR (PD173074), and PDGFR (AG1296). Phospho-MAPK, phospho-RTK, and phospho-PLCgamma1 levels were measured by Western blotting. Active GTP-Ras was quantified by immunoblotting after pull-down with a glutathione S-transferase-Raf-RBD construct. Normalized p-ERK1/2, p-JNK, and p-p38 levels increased after stretch but not contraction. Ligands to RTKs broadly stimulated MAPKs, with the responses to EGF and PDGF most similar to stretch in terms of magnitude and rank order of MAPK responses. Stretching cells failed to elicit measurable activation of EGFR, FGFR (FRS2alpha phosphorylation), or PDGFR. Potent inhibitors of the kinase activity of each receptor failed to attenuate stretch-induced MAPK activation. PLCgamma1 and Ras, prominent effectors downstream of RTKs, were not activated by stretch. Our findings demonstrate that MAPKs are potently activated by stretch in lung fibroblasts, but, in contrast to stress responses observed in other cell types, RTKs are not necessary for stretch-induced MAPK activation in LFs.
Collapse
Affiliation(s)
- Francis Boudreault
- Department of Environmental Health, Harvard School of Public Health, 665 Huntington Ave, Boston, MA 02115, USA
| | | |
Collapse
|
22
|
Raz D, Zaretsky U, Einav S, Elad D. Cellular Alterations in Cultured Endothelial Cells Exposed to Therapeutic Ultrasound Irradiation. ACTA ACUST UNITED AC 2009; 12:201-13. [PMID: 16162443 DOI: 10.1080/10623320500227317] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Restoration of blood supply to tissue with impaired perfusion depends on spontaneous or mediated angiogenesis, which among other mechanisms includes stimulation, migration, and proliferation of endothelial cells (ECs). Therapeutic ultrasound (US) irradiation is known as an inducer of cellular modifications and is used to accelerate wound healing. An in vitro setup was developed in order to allow for a comprehensive investigation of cellular alterations induced in cultured ECs after exposure to different modes of therapeutic US irradiation. Viability assays revealed a higher rate of proliferation in the sonicated groups, although cell death was not observed. Visualization of actin stress fibers demonstrated partial disassembly of the fibers immediately after US sonication, with a maximum after about 2 h. However, 24 h following sonication the fibers regain normal appearance. A similar behavior was observed with the microtubules and focal adhesion complexes. Utilizing a wound healing assay revealed that migration rate of ECs is enhanced by US irradiation. These findings hint that therapeutic US sonication of ECs results in temporarily cellular alterations, which may induce tissue remodeling via stimulation of EC proliferation and migration.
Collapse
Affiliation(s)
- Dalit Raz
- Department of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel
| | | | | | | |
Collapse
|
23
|
Rumpler M, Woesz A, Dunlop JWC, van Dongen JT, Fratzl P. The effect of geometry on three-dimensional tissue growth. J R Soc Interface 2008; 5:1173-80. [PMID: 18348957 PMCID: PMC2495039 DOI: 10.1098/rsif.2008.0064] [Citation(s) in RCA: 287] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Tissue formation is determined by uncountable biochemical signals between cells; in addition, physical parameters have been shown to exhibit significant effects on the level of the single cell. Beyond the cell, however, there is still no quantitative understanding of how geometry affects tissue growth, which is of much significance for bone healing and tissue engineering. In this paper, it is shown that the local growth rate of tissue formed by osteoblasts is strongly influenced by the geometrical features of channels in an artificial three-dimensional matrix. Curvature-driven effects and mechanical forces within the tissue may explain the growth patterns as demonstrated by numerical simulation and confocal laser scanning microscopy. This implies that cells within the tissue surface are able to sense and react to radii of curvature much larger than the size of the cells themselves. This has important implications towards the understanding of bone remodelling and defect healing as well as towards scaffold design in bone tissue engineering.
Collapse
Affiliation(s)
- Monika Rumpler
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, 14424 Potsdam, Germany
| | | | | | | | | |
Collapse
|
24
|
Peyton SR, Ghajar CM, Khatiwala CB, Putnam AJ. The emergence of ECM mechanics and cytoskeletal tension as important regulators of cell function. Cell Biochem Biophys 2007; 47:300-20. [PMID: 17652777 DOI: 10.1007/s12013-007-0004-y] [Citation(s) in RCA: 130] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/1999] [Revised: 11/30/1999] [Accepted: 11/30/1999] [Indexed: 12/17/2022]
Abstract
The ability to harvest and maintain viable cells from mammalian tissues represented a critical advance in biomedical research, enabling individual cells to be cultured and studied in molecular detail. However, in these traditional cultures, cells are grown on rigid glass or polystyrene substrates, the mechanical properties of which often do not match those of the in vivo tissue from which the cells were originally derived. This mechanical mismatch likely contributes to abrupt changes in cellular phenotype. In fact, it has been proposed that mechanical changes in the cellular microenvironment may alone be responsible for driving specific cellular behaviors. Recent multidisciplinary efforts from basic scientists and engineers have begun to address this hypothesis more explicitly by probing the effects of ECM mechanics on cell and tissue function. Understanding the consequences of such mechanical changes is physiologically relevant in the context of a number of tissues in which altered mechanics may either correlate with or play an important role in the onset of pathology. Examples include changes in the compliance of blood vessels associated with atherosclerosis and intimal hyperplasia, as well as changes in the mechanical properties of developing tumors. Compelling evidence from 2-D in vitro model systems has shown that substrate mechanical properties induce changes in cell shape, migration, proliferation, and differentiation, but it remains to be seen whether or not these same effects translate to 3-D systems or in vivo. Furthermore, the molecular "mechanotransduction" mechanisms by which cells respond to changes in ECM mechanics remain unclear. Here, we provide some historical context for this emerging area of research, and discuss recent evidence that regulation of cytoskeletal tension by changes in ECM mechanics (either directly or indirectly) may provide a critical switch that controls cell function.
Collapse
Affiliation(s)
- Shelly R Peyton
- Department of Chemical Engineering and Materials Science, The Henry Samueli School of Engineering, University of California, Irvine, CA 92697-2715, USA
| | | | | | | |
Collapse
|
25
|
Abstract
The microtubule cytoskeleton in living cells generate and resist mechanical forces to mediate fundamental cell processes, including cell division and migration. Recent advances in digital fluorescence microscopy have enabled the direct observation of bending of individual microtubules in living cells, which has enabled quantitative estimation of the mechanical state of the microtubule array. Although a variety of mechanisms have been proposed, the precise origins of microtubule deformation in living cells remain largely obscure. To investigate these mechanisms and their relative importance in cellular processes, a method is needed to accurately quantify microtubule bending within living cells. Here we describe a method for quantification of bending, using digital fluorescence microscope images to estimate the distribution of curvature in the microtubule. Digital images of individual microtubules can be used to obtain a set of discrete x-y coordinates along the microtubule contour, which is then used to estimate the curvature distribution. Due to system noise and digitization error, the estimate will be inaccurate to some degree. To quantify the inaccuracy, a computational model is used to simulate both the bending of thermally driven microtubules and their observation by digital fluorescence microscopy. This allows for direct comparison between experimental and simulated images, a method which we call model convolution microscopy. We assess the accuracy of various methods and present a suitable method for estimating the curvature distribution for thermally driven semiflexible polymers. Finally, we discuss extensions of the method to quantify microtubule curvature in living cells.
Collapse
Affiliation(s)
- Andrew D Bicek
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | | | | | | |
Collapse
|
26
|
Geiger R, Taylor W, Glucksberg M, Dean D. Cyclic stretch-induced reorganization of the cytoskeleton and its role in enhanced gene transfer. Gene Ther 2006; 13:725-31. [PMID: 16437132 PMCID: PMC4150916 DOI: 10.1038/sj.gt.3302693] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Cyclic stretch is known to alter a number of cellular and subcellular processes, including those involved in nonviral gene delivery. We have previously shown that moderate equibiaxial cyclic stretch (10% change in basement membrane area, 0.5 Hz, 50% duty cycle) of human pulmonary A549 cells enhances gene transfer and expression of reporter plasmid DNA in vitro, and that this phenomena may be due to alterations in cytoplasmic trafficking. Although the path by which plasmid DNA travels through the cytoplasm toward the nucleus is not well understood, the cytoskeleton and the constituents of the cytoplasm are known to significantly hinder macromolecular diffusion. Using biochemical techniques and immunofluorescence microscopy, we show that both the microfilament and microtubule networks are significantly reorganized by equibiaxial cyclic stretch. Prevention of this reorganization through the use of cytoskeletal stabilizing compounds mitigates the stretch-induced increase in gene expression, however, depolymerization in the absence of stretch is not sufficient to increase gene expression. These results suggest that cytoskeletal reorganization plays an important role in stretch-induced gene transfer and expression.
Collapse
Affiliation(s)
- R.C. Geiger
- Division of Pulmonary and Critical Care Medicine, Northwestern University Medical School, Chicago, IL, 60611
| | | | - M.R. Glucksberg
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208-3107
| | - D.A. Dean
- Division of Pulmonary and Critical Care Medicine, Northwestern University Medical School, Chicago, IL, 60611
- Address for Correspondence: David A. Dean, Ph.D., Division of Pulmonary and Critical Care Medicine, Feinberg School of Medicine, Northwestern University, 240 E. Huron Ave., McGaw 2336, Chicago, IL 60611, tel (312) 503-3121, fax (312) 908-4650,
| |
Collapse
|
27
|
Shieh AC, Koay EJ, Athanasiou KA. Strain-dependent Recovery Behavior of Single Chondrocytes. Biomech Model Mechanobiol 2006; 5:172-9. [PMID: 16506017 DOI: 10.1007/s10237-006-0028-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2005] [Accepted: 06/01/2005] [Indexed: 11/29/2022]
Abstract
One of the challenges facing researchers studying chondrocyte mechanobiology is determining the range of mechanical forces pertinent to the problems they study. One possible way to deal with this problem is to quantify how the biomechanical behavior of cells varies in response to changing mechanical forces. In this study, the compressibility and recovery behaviors of single chondrocytes were determined as a function of compressive strains from 6 to 63%. Bovine articular chondrocytes from the middle and deep zones were subjected to this range of strains, and digital videocapture was used to track changes in cell dimensions during and after compression. The normalized volume change, apparent Poisson's ratio, residual strain after recovery, cell volume fraction after recovery, and characteristic recovery time constant were analyzed with respect to axial strain. Normalized volume change varied as a function of strain, demonstrating that chondrocytes exhibited compressibility. The mean Poisson's ratio of chondrocytes was found to be 0.29 +/- 0.14, and did not vary with axial strain. In contrast, residual strain, recovered volume fraction, and recovery time constant all depended on axial strain. The dependence of residual strain and recovered volume fraction on axial strain showed a change in behavior around 25-30% strain, opening up the possibility that this range of strains represents a critical value for chondrocytes. Quantifying the mechanical behavior of cells as a function of stress and strain is a potentially useful approach for identifying levels of mechanical stimulation that may be germane to normal cartilage physiology, functional tissue engineering of cartilage, and the etiopathogenesis of osteoarthritis.
Collapse
Affiliation(s)
- Adrian C Shieh
- Department of Bioengineering MS-142, Rice University, P.O. Box 1892, Houston, TX 77251-1892, USA
| | | | | |
Collapse
|
28
|
|
29
|
Dalby MJ. Topographically induced direct cell mechanotransduction. Med Eng Phys 2005; 27:730-42. [PMID: 15921949 DOI: 10.1016/j.medengphy.2005.04.005] [Citation(s) in RCA: 136] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2005] [Accepted: 04/11/2005] [Indexed: 01/26/2023]
Abstract
This review is designed to introduce the cytoskeleton and then discuss how mechanical forces may be transduced to the cell nucleus. In addition to this, it also tries to explain current thinking as to how the nucleus turns these mechanical cues into gene changes and is especially interested in mechanotransduction arising from topographically induced morphological changes, specifically nanotopography. Thus, this review also describes cell responses to topography.
Collapse
Affiliation(s)
- Matthew J Dalby
- Centre for Cell Engineering, Institute of Biomedical and Life Sciences, Joseph Black Building, University of Glasgow, Glasgow G12 8QQ, UK.
| |
Collapse
|
30
|
Glawe JD, Hill JB, Mills DK, McShane MJ. Influence of channel width on alignment of smooth muscle cells by high-aspect-ratio microfabricated elastomeric cell culture scaffolds. J Biomed Mater Res A 2005; 75:106-14. [PMID: 16052500 DOI: 10.1002/jbm.a.30403] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Engineered smooth muscle tissue requires ordered configurations of cells to reproduce native function, and microtechnology offers possibilities for physically and chemically controlling cell organization with high spatial resolution. In this work, poly(dimethylsiloxane) microchannel scaffolds, modified by layer-by-layer self-assembly of polyelectrolytes to promote cell adhesion, were evaluated for use as substrates for the culture of aligned smooth muscle cells. The hypothesis that narrower channels would result in better alignment was tested using channel width dimensions of 20, 30, 40, 50, and 60 microm, in addition to flat (control) surfaces. Alignment of cells was assessed by two different methods, each sensitive to a different aspect of cell alignment from fluorescence micrographs. Two-dimensional fast Fourier transform analysis was performed to analyze the orientation distribution of actin filaments in cells. This was complemented by connectivity analysis of stained nuclei to obtain nuclear orientation distributions. Both methods produced consistent data that support the hypothesis that narrow microchannels promote a highly aligned culture of smooth muscle cells, and the degree of alignment is dependent on the microchannel width. Precise replication of in vivo cell alignment in engineered tissue, with the ability to tailor specific surface chemistries of the scaffold to the desired application, will potentially allow the production of artificial tissue that more closely duplicates the structure and function of native tissue.
Collapse
Affiliation(s)
- John D Glawe
- Biomedical Engineering Program, Louisiana Tech University, Ruston, LA 71272, USA
| | | | | | | |
Collapse
|
31
|
Peyton SR, Putnam AJ. Extracellular matrix rigidity governs smooth muscle cell motility in a biphasic fashion. J Cell Physiol 2005; 204:198-209. [PMID: 15669099 DOI: 10.1002/jcp.20274] [Citation(s) in RCA: 440] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Increasing evidence suggests that mechanical cues inherent to the extracellular matrix (ECM) may be equally as critical as its chemical identity in regulating cell behavior. We hypothesized that the mechanical properties of the ECM directly regulate the motility of vascular smooth muscle cells (SMCs) and tested this hypothesis using polyacrylamide substrates with tunable mechanical properties. Quantification of the migration speed on uniformly compliant hydrogels spanning a range of stiffnesses (Young's moduli values from 1.0 to 308 kPa for acrylamide/bisacrylamide ratios between 5/0.1% and 15/1.2%, respectively) revealed a biphasic dependence on substrate compliance, suggesting the existence of an optimal substrate stiffness capable of supporting maximal migration. The value of this optimal stiffness shifted depending on the concentration of ECM protein covalently attached to the substrate. Specifically, on substrates presenting a theoretical density of 0.8 microg/cm(2) fibronectin, the maximum speed of 0.74 +/- 0.09 microm/min was achieved on a 51.9 kPa gel; on substrates presenting a theoretical density of 8.0 microg/cm(2) fibronectin, the maximum speed of 0.72 +/- 0.06 microm/min occurred on a softer 21.6 kPa gel. Pre-treatment of cells with Y27632, an inhibitor of the Rho/Rho-kinase (ROCK) pathway, reduced these observed maxima to values comparable to those on non-optimal stiffnesses. In parallel, quantification of TritonX-insoluble vinculin via Western blotting, coupled with qualitative fluorescent microscopy, revealed that the formation of focal adhesions and actin stress fibers also depends on ECM stiffness. Combined, these data suggest that the mechanical properties of the underlying ECM regulate Rho-mediated contractility in SMCs by disrupting a presumptive cell-ECM force balance, which in turn regulates cytoskeletal assembly and ultimately, cell migration.
Collapse
Affiliation(s)
- Shelly R Peyton
- Department of Chemical Engineering and Materials Science, The Henry Samueli School of Engineering, University of California, Irvine, California, USA
| | | |
Collapse
|
32
|
Tolić-Nørrelykke IM, Wang N. Traction in smooth muscle cells varies with cell spreading. J Biomech 2005; 38:1405-12. [PMID: 15922751 DOI: 10.1016/j.jbiomech.2004.06.027] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2004] [Accepted: 06/30/2004] [Indexed: 11/26/2022]
Abstract
Changes in cell shape regulate cell growth, differentiation, and apoptosis. It has been suggested that the regulation of cell function by the cell shape is a result of the tension in the cytoskeleton and the distortion of the cell. Here we explore the association between cell-generated mechanical forces and the cell morphology. We hypothesized that the cell contractile force is associated with the degree of cell spreading, in particular with the cell length. We measured traction fields of single human airway smooth muscle cells plated on a polyacrylamide gel, in which fluorescent microbeads were embedded to serve as markers of gel deformation. The traction exerted by the cells at the cell-substrate interface was determined from the measured deformation of the gel. The traction was measured before and after treatment with the contractile agonist histamine, or the relaxing agonist isoproterenol. The relative increase in traction induced by histamine was negatively correlated with the baseline traction. On the contrary, the relative decrease in traction due to isoproterenol was independent of the baseline traction, but it was associated with cell shape: traction decreased more in elongated than in round cells. Maximum cell width, mean cell width, and projected area of the cell were the parameters most tightly coupled to both baseline and histamine-induced traction in this study. Wide and well-spread cells exerted larger traction than slim cells. These results suggest that cell contractility is controlled by cell spreading.
Collapse
|
33
|
Dalby MJ, Riehle MO, Sutherland DS, Agheli H, Curtis ASG. Use of nanotopography to study mechanotransduction in fibroblasts--methods and perspectives. Eur J Cell Biol 2005; 83:159-69. [PMID: 15260438 DOI: 10.1078/0171-9335-00369] [Citation(s) in RCA: 122] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The environment around a cell during in vitro culture is unlikely to mimic those in vivo. Preliminary experiments with nanotopography have shown that nanoscale features can strongly influence cell morphology, adhesion, proliferation and gene regulation, but the mechanisms mediating this cell response remain unclear. In this perspective article, we attempt to illustrate that a possible mechanism is direct transmittal of forces encountered by cells during spreading to the nucleus via the cytoskeleton. We further try to illustrate that this 'self-induced' mechanotransduction may alter gene expression by changing interphase chromosome positioning. Whilst the observations described here to show how we think nanotopography can be developed as a tool to look at mechanotransduction are preliminary, we feel they indicate that topography may give cell biologists a non-invasive tool with which to investigate in vitro cellular mechanisms.
Collapse
Affiliation(s)
- Matthew J Dalby
- Centre for Cell Engineering, Institute of Biomedical and Life Sciences, University of Glasgow, Glasgow, UK.
| | | | | | | | | |
Collapse
|
34
|
Balcells M, Fernández Suárez M, Vázquez M, Edelman ER. Cells in fluidic environments are sensitive to flow frequency. J Cell Physiol 2005; 204:329-35. [PMID: 15700266 DOI: 10.1002/jcp.20281] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Virtually all cells accommodate to their mechanical environment. In particular, cells subject to flow respond to rapid changes in fluid shear stress (SS), cyclic stretch (CS), and pressure. Recent studies have focused on the effect of pulsatility on cellular behavior. Since cells of many different tissue beds are constantly exposed to fluid flows over a narrow range of frequencies, we hypothesized that an intrinsic flow frequency that is optimal for determining cell phenotype exists. We report here that cells from various tissue beds (bovine aortic endothelial cells (BAEC), rat small intestine epithelial cells (RSIEC), and rat lung epithelial cells (RLEC)) proliferate maximally when cultured in a perfusion bioreactor under pulsatile conditions at a specific frequency, independent of the applied SS. Vascular endothelial and pulmonary epithelial cell proliferation peaked under 1 Hz pulsatile flow. In contrast, proliferation of gastrointestinal cells, which in their physiological context are subject to no flow or higher wavelength signal, was maximum at 0.125 Hz or under no flow. Moreover, exposure of BAEC to pulsatile flow of varying frequency influenced their nitric oxide synthase activity and prostacyclin production, which reached maximum values at 1 Hz. Notably, the "optimal" frequencies for the cell types examined correspond to the physiologic operating range of the organs from where they were initially derived. These findings suggest that frequency, independent of shear, is an essential determinant of cell response in pulsatile environments.
Collapse
Affiliation(s)
- Mercedes Balcells
- Harvard-MIT Division of Health Sciences and Technology, Cambridge, Massachusetts, USA.
| | | | | | | |
Collapse
|
35
|
Polte TR, Eichler GS, Wang N, Ingber DE. Extracellular matrix controls myosin light chain phosphorylation and cell contractility through modulation of cell shape and cytoskeletal prestress. Am J Physiol Cell Physiol 2004; 286:C518-28. [PMID: 14761883 DOI: 10.1152/ajpcell.00280.2003] [Citation(s) in RCA: 134] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The mechanism by which vascular smooth muscle (VSM) cells modulate their contractility in response to structural cues from extracellular matrix remains poorly understood. When pulmonary VSM cells were cultured on increasing densities of immobilized fibronectin (FN), cell spreading, myosin light chain (MLC) phosphorylation, cytoskeletal prestress (isometric tension in the cell before vasoagonist stimulation), and the active contractile response to the vasoconstrictor endothelin-1 all increased in parallel. In contrast, MLC phosphorylation did not increase when suspended cells were allowed to bind FN-coated microbeads (4.5-microm diameter) or cultured on micrometer-sized (30 x 30 microm) FN islands surrounded by nonadhesive regions that support integrin binding but prevent cell spreading. Cell spreading and MLC phosphorylation also both decreased in parallel when the mechanical compliance of flexible FN substrates was raised. MLC phosphorylation was inhibited independently of cell shape when cytoskeletal prestress was dissipated using a myosin ATPase inhibitor in fully spread cells, whereas it increased to maximal levels when microtubules were disrupted using nocodazole in cells adherent to FN but not in suspended cells. These data demonstrate that changes in cell-extracellular matrix (ECM) interactions modulate smooth muscle cell contractility at the level of biochemical signal transduction and suggest that the mechanism underlying this regulation may involve physical interplay between ECM and the cytoskeleton, such that cell spreading and generation of cytoskeletal tension feed back to promote MLC phosphorylation and further increase tension generation.
Collapse
Affiliation(s)
- Thomas R Polte
- Departments of Pathology and Surgery, Children's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | |
Collapse
|
36
|
Yoshigi M, Clark EB, Yost HJ. Quantification of stretch-induced cytoskeletal remodeling in vascular endothelial cells by image processing. Cytometry A 2004; 55:109-18. [PMID: 14505316 DOI: 10.1002/cyto.a.10076] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND Reorientation of the cell axis induced by cyclic stretching is an early response to mechanical forces in vitro. However, quantitative assay for this phenomenon has been difficult due to lack of robust methods. We hypothesized that cell orientation may be redefined by the orientation of actin fibers. We developed image processing methods to quantitate the orientation and density of actin fibers. METHODS A convolution filter using Sobel kernels was adapted to determine the orientation and density of actin fibers in human endothelial cells. Unidirectional stretching (10%, 0.5 Hz) was applied to induce cytoskeletal remodeling by varying the duration of stimulation (control, 0.5, 1, 2, 5, 10, and 20 h). Actin fibers were visualized by fluorescent phalloidin. The image processing method was compared with the manual method for reproducibility. Both confluent and subconfluent cells were tested to assess the efficacy of the methods. RESULTS Cyclic stretch-induced dense and uninterrupted actin cabling formed across the cell body and, later, the actin fibers became aligned perpendicular to the stretch direction. The variance of actin fiber orientation became smaller after 2 h of stretch (F < 0.01). The actin fiber density index, a derived parameter related to the density of actin fibers, increased as early as 30 min of stretching (P < 0.05) and decreased after 10 h of stretching. Reproducibility of our method was extremely good. Applicability of the method was not compromised by cell density. CONCLUSIONS Our method is reliable for quantifying cytoskeletal remodeling induced by mechanical force.
Collapse
Affiliation(s)
- Masaaki Yoshigi
- Department of Pediatrics, University of Utah, Salt Lake City, Utah 84132, USA.
| | | | | |
Collapse
|
37
|
Ingber DE. Tensegrity II. How structural networks influence cellular information processing networks. J Cell Sci 2003; 116:1397-408. [PMID: 12640025 DOI: 10.1242/jcs.00360] [Citation(s) in RCA: 511] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The major challenge in biology today is biocomplexity: the need to explain how cell and tissue behaviors emerge from collective interactions within complex molecular networks. Part I of this two-part article, described a mechanical model of cell structure based on tensegrity architecture that explains how the mechanical behavior of the cell emerges from physical interactions among the different molecular filament systems that form the cytoskeleton. Recent work shows that the cytoskeleton also orients much of the cell's metabolic and signal transduction machinery and that mechanical distortion of cells and the cytoskeleton through cell surface integrin receptors can profoundly affect cell behavior. In particular, gradual variations in this single physical control parameter (cell shape distortion) can switch cells between distinct gene programs (e.g. growth, differentiation and apoptosis), and this process can be viewed as a biological phase transition. Part II of this article covers how combined use of tensegrity and solid-state mechanochemistry by cells may mediate mechanotransduction and facilitate integration of chemical and physical signals that are responsible for control of cell behavior. In addition, it examines how cell structural networks affect gene and protein signaling networks to produce characteristic phenotypes and cell fate transitions during tissue development.
Collapse
Affiliation(s)
- Donald E Ingber
- Department of Surgery, Children's Hospital and Harvard Medical School, Enders 1007, 300 Longwood Avenue, Boston, MA 02115, USA.
| |
Collapse
|
38
|
Taylor W, Gokay KE, Capaccio C, Davis E, Glucksberg M, Dean DA. The effects of cyclic stretch on gene transfer in alveolar epithelial cells. Mol Ther 2003; 7:542-9. [PMID: 12727118 PMCID: PMC4394637 DOI: 10.1016/s1525-0016(03)00041-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Cyclic stretch has been shown to alter cell physiology, cytoskeletal structure, signal transduction, and gene expression in a variety of cell types. To determine the effects of stretch on the gene transfer process, we compared the transfection efficiencies of human A549 cells grown either statically or exposed to 10% cyclic stretch (Delta surface area) at 60 cycles/min (1 Hz) for 24 hours prior to, and/or after transfection with pEGFP-N1 and pCMV-lux-DTS using lipoplex or electroporation. Stretching the cells prior to transfection had no effect on gene transfer. By contrast, cyclic, but not continuous, stretch applied immediately after transfection for as little as 30 minutes resulted in a 10-fold increase in gene transfer and expression by either transfection technique. These stretch conditions did not result in rupture of the plasma membrane based on the fact that DNA was unable to enter stretched cells unless either an electric field was applied or the DNA was complexed with liposomes. Taken together with the timing of the stretch response and the known effects of stretch on transcription, these findings suggest that cyclic stretch may be altering the intracellular transport of plasmids to increase gene expression.
Collapse
Affiliation(s)
- Winna Taylor
- Division of Pulmonary and Critical Care Medicine, Northwestern University Medical School, Chicago, IL 60611, USA
| | | | | | | | | | | |
Collapse
|
39
|
Abstract
In 1993, a Commentary in this journal described how a simple mechanical model of cell structure based on tensegrity architecture can help to explain how cell shape, movement and cytoskeletal mechanics are controlled, as well as how cells sense and respond to mechanical forces (J. Cell Sci. 104, 613-627). The cellular tensegrity model can now be revisited and placed in context of new advances in our understanding of cell structure, biological networks and mechanoregulation that have been made over the past decade. Recent work provides strong evidence to support the use of tensegrity by cells, and mathematical formulations of the model predict many aspects of cell behavior. In addition, development of the tensegrity theory and its translation into mathematical terms are beginning to allow us to define the relationship between mechanics and biochemistry at the molecular level and to attack the larger problem of biological complexity. Part I of this two-part article covers the evidence for cellular tensegrity at the molecular level and describes how this building system may provide a structural basis for the hierarchical organization of living systems--from molecule to organism. Part II, which focuses on how these structural networks influence information processing networks, appears in the next issue.
Collapse
Affiliation(s)
- Donald E Ingber
- Department of Surgery, Children's Hospital and Harvard Medical School, Enders 1007, 300 Longwood Avenue, Boston, MA 02115, USA.
| |
Collapse
|
40
|
Putnam AJ, Cunningham JJ, Pillemer BBL, Mooney DJ. External mechanical strain regulates membrane targeting of Rho GTPases by controlling microtubule assembly. Am J Physiol Cell Physiol 2003; 284:C627-39. [PMID: 12409284 DOI: 10.1152/ajpcell.00137.2002] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Transmission of externally applied mechanical forces to the interior of a cell requires coordination of biochemical signaling pathways with changes in cytoskeletal assembly and organization. In this study, we addressed one potential mechanism for this signal integration by applying uniform single external mechanical strains to aortic smooth muscle cells (SMCs) via their adhesion substrate. A tensile strain applied to the substrate for 15 min significantly increased microtubule (MT) assembly by 32 +/- 7%, with no apparent effect on the cells' focal adhesions as revealed by immunofluorescence and quantitative analysis of Triton X-100-insoluble vinculin levels. A compressive strain decreased MT mass by 24 +/- 9% but did not influence the level of vinculin in focal adhesions. To understand the decoupling of these two cell responses to mechanical strain, we examined a redistribution of the small GTPases RhoA and Rac. Tensile strain was found to decrease the amount of membrane-associated RhoA and Rac by 70 +/- 9% and 45 +/- 11%, respectively, compared with static controls. In contrast, compressive strain increased membrane-associated RhoA and Rac levels by 74 +/- 17% and 36 +/- 13%, respectively. Disruption of the MT network by prolonged treatments with low doses of either nocodazole or paclitaxel before the application of strain abolished the redistribution of RhoA and Rac in response to the applied forces. Combined, these results indicate that the effects of externally applied mechanical strain on the distribution and activation of the Rho family GTPases require changes in the state of MT polymerization.
Collapse
MESH Headings
- Animals
- Cell Adhesion/drug effects
- Cell Adhesion/physiology
- Cell Membrane/drug effects
- Cell Membrane/enzymology
- Cytoskeleton/drug effects
- Cytoskeleton/enzymology
- Focal Adhesions/drug effects
- Focal Adhesions/enzymology
- Lysophospholipids/pharmacology
- Mechanotransduction, Cellular/drug effects
- Mechanotransduction, Cellular/physiology
- Microtubules/drug effects
- Microtubules/enzymology
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/enzymology
- Myocytes, Smooth Muscle/cytology
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/enzymology
- Nocodazole/pharmacology
- Paclitaxel/pharmacology
- Rats
- Rats, Sprague-Dawley
- Stress, Mechanical
- rac GTP-Binding Proteins/drug effects
- rac GTP-Binding Proteins/metabolism
- rho GTP-Binding Proteins/metabolism
- rhoA GTP-Binding Protein/drug effects
- rhoA GTP-Binding Protein/metabolism
Collapse
Affiliation(s)
- Andrew J Putnam
- Department of Chemical Engineering, University of Michigan, Ann Arbor 48109-1078, USA
| | | | | | | |
Collapse
|
41
|
Nikolovski J, Kim BS, Mooney DJ. Cyclic strain inhibits switching of smooth muscle cells to an osteoblast-like phenotype. FASEB J 2003; 17:455-7. [PMID: 12514116 DOI: 10.1096/fj.02-0459fje] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Ectopic calcification is commonly associated with cardiovascular disease, injury, aging, and biomaterial implantation. We hypothesized that the normal mechanical environment of smooth muscle cells (SMCs) inhibits a phenotypic switch to a pattern of gene expression more typical for bone and inducive for calcification. This hypothesis was tested using a 3-D engineered smooth muscle tissue model subjected to cyclic mechanical strain. This simplified model maintained a 3-D tissue architecture while eliminating systemic effects as can be seen with in vivo models. All engineered tissues were found to express bone-associated genes (osteopontin, matrix gla protein, alkaline phosphatase, and the transcription factor CBFA-1). Strikingly, however, expression of these genes was down-regulated in tissues exposed to cyclic strain at all time points ranging from 5 to 150 days. Furthermore, long-term strain played a protective role in regard to calcification, as unstrained tissues exhibited increased calcium deposition with respect to strained tissues. The results of this study suggest that without an appropriate mechanical environment, SMCs in 3-D culture undergo a phenotypic conversion to an osteoblast-like pattern of gene expression. This finding has significant implications for the mechanisms underlying a variety of cardiovascular diseases and indicates the broad utility of engineered tissue models in basic biology studies.
Collapse
Affiliation(s)
- Janeta Nikolovski
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan 48109-2136, USA
| | | | | |
Collapse
|
42
|
Cytrynbaum EN, Scholey JM, Mogilner A. A force balance model of early spindle pole separation in Drosophila embryos. Biophys J 2003; 84:757-69. [PMID: 12547760 PMCID: PMC1302656 DOI: 10.1016/s0006-3495(03)74895-4] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
The formation and function of the mitotic spindle depends upon force generation by multiple molecular motors and by the dynamics of microtubules, but how these force-generating mechanisms relate to one another is unclear. To address this issue we have modeled the separation of spindle poles as a function of time during the early stages of spindle morphogenesis in Drosophila embryos. We propose that the outward forces that drive the separation of the spindle poles depend upon forces exerted by cortical dynein and by microtubule polymerization, and that these forces are antagonized by a C-terminal kinesin, Ncd, which generates an inward force on the poles. We computed the sum of the forces generated by dynein, microtubule polymerization, and Ncd, as a function of the extent of spindle pole separation and solved an equation relating the rate of pole separation to the net force. As a result, we obtained graphs of the time course of spindle pole separation during interphase and prophase that display a reasonable fit to the experimental data for wild-type and motor-inhibited embryos. Among the novel contributions of the model are an explanation of pole separation after simultaneous loss of Ncd and dynein function, and the prediction of a large value for the effective centrosomal drag that is needed to fit the experimental data. The results demonstrate the utility of force balance models for explaining certain mitotic movements because they explain semiquantitatively how the force generators drive a rapid initial burst of pole separation when the net force is great, how pole separation slows down as the force decreases, and how a stable separation of the spindle poles characteristic of the prophase steady state is achieved when the force reaches zero.
Collapse
Affiliation(s)
- E N Cytrynbaum
- Center for Genetics and Development, Section of Molecular and Cell Biology, University of California, Davis, California 95616, USA
| | | | | |
Collapse
|
43
|
Abstract
Great advances have been made in the identification of the soluble angiogenic factors, insoluble extracellular matrix (ECM) molecules, and receptor signaling pathways that mediate control of angiogenesis--the growth of blood capillaries. This review focuses on work that explores how endothelial cells integrate these chemical signals with mechanical cues from their local tissue microenvironment so as to produce functional capillary networks that exhibit specialized form as well as function. These studies have revealed that ECM governs whether an endothelial cell will switch between growth, differentiation, motility, or apoptosis programs in response to a soluble stimulus based on its ability to mechanically resist cell tractional forces and thereby produce cell and cytoskeletal distortion. Transmembrane integrin receptors play a key role in this mechanochemical transduction process because they both organize a cytoskeletal signaling complex within the focal adhesion and preferentially focus mechanical forces on this site. Molecular filaments within the internal cytoskeleton--microfilaments, microtubules, and intermediate filaments--also contribute to the cell's structural and functional response to mechanical stress through their role as discrete support elements within a tensegrity-stabilized cytoskeletal array. Importantly, a similar form of mechanical control also has been shown to be involved in the regulation of contractility in vascular smooth muscle cells and cardiac myocytes. Thus, the mechanism by which cells perform mechanochemical transduction and the implications of these findings for morphogenetic control are discussed in the wider context of vascular development and cardiovascular physiology.
Collapse
Affiliation(s)
- Donald E Ingber
- Vascular Biology Program, Departments of Pathology and Surgery, Harvard Medical School and Children's Hospital, Boston, Mass 02115, USA.
| |
Collapse
|
44
|
Collinsworth AM, Zhang S, Kraus WE, Truskey GA. Apparent elastic modulus and hysteresis of skeletal muscle cells throughout differentiation. Am J Physiol Cell Physiol 2002; 283:C1219-27. [PMID: 12225985 DOI: 10.1152/ajpcell.00502.2001] [Citation(s) in RCA: 229] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The effect of differentiation on the transverse mechanical properties of mammalian myocytes was determined by using atomic force microscopy. The apparent elastic modulus increased from 11.5 +/- 1.3 kPa for undifferentiated myoblasts to 45.3 +/- 4.0 kPa after 8 days of differentiation (P < 0.05). The relative contribution of viscosity, as determined from the normalized hysteresis area, ranged from 0.13 +/- 0.02 to 0.21 +/- 0.03 and did not change throughout differentiation. Myosin expression correlated with the apparent elastic modulus, but neither myosin nor beta-tubulin were associated with hysteresis. Microtubules did not affect mechanical properties because treatment with colchicine did not alter the apparent elastic modulus or hysteresis. Treatment with cytochalasin D or 2,3-butanedione 2-monoxime led to a significant reduction in the apparent elastic modulus but no change in hysteresis. In summary, skeletal muscle cells exhibited viscoelastic behavior that changed during differentiation, yielding an increase in the transverse elastic modulus. Major contributors to changes in the transverse elastic modulus during differentiation were actin and myosin.
Collapse
Affiliation(s)
- Amy M Collinsworth
- Department of Biomedical Engineering, 136 Hudson Hall, Duke University, Durham, NC 27708, USA
| | | | | | | |
Collapse
|
45
|
Stamenović D, Mijailovich SM, Tolić-Nørrelykke IM, Chen J, Wang N. Cell prestress. II. Contribution of microtubules. Am J Physiol Cell Physiol 2002; 282:C617-24. [PMID: 11832347 DOI: 10.1152/ajpcell.00271.2001] [Citation(s) in RCA: 138] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The tensegrity model hypothesizes that cytoskeleton-based microtubules (MTs) carry compression as they balance a portion of cell contractile stress. To test this hypothesis, we used traction force microscopy to measure traction at the interface of adhering human airway smooth muscle cells and a flexible polyacrylamide gel substrate. The prediction is that if MTs balance a portion of contractile stress, then, upon their disruption, the portion of stress balanced by MTs would shift to the substrate, thereby causing an increase in traction. Measurements were done first in maximally activated cells (10 microM histamine) and then again after MTs had been disrupted (1 microM colchicine). We found that after disruption of MTs, traction increased on average by approximately 13%. Because in activated cells colchicine induced neither an increase in intracellular Ca(2+) nor an increase in myosin light chain phosphorylation as shown previously, we concluded that the observed increase in traction was a result of load shift from MTs to the substrate. In addition, energy stored in the flexible substrate was calculated as work done by traction on the deformation of the substrate. This result was then utilized in an energetic analysis. We assumed that cytoskeleton-based MTs are slender elastic rods supported laterally by intermediate filaments and that MTs buckle as the cell contracts. Using the post-buckling equilibrium theory of Euler struts, we found that energy stored during buckling of MTs was quantitatively consistent with the measured increase in substrate energy after disruption of MTs. This is further evidence supporting the idea that MTs are intracellular compression-bearing elements.
Collapse
Affiliation(s)
- Dimitrije Stamenović
- Department of Biomedical Engineering, Boston University, 44 Cummington Street, Boston, MA 02215, USA.
| | | | | | | | | |
Collapse
|
46
|
Bruinink A, Siragusano D, Ettel G, Brandsberg T, Brandsberg F, Petitmermet M, Müller B, Mayer J, Wintermantel E. The stiffness of bone marrow cell-knit composites is increased during mechanical load. Biomaterials 2001; 22:3169-78. [PMID: 11603589 DOI: 10.1016/s0142-9612(01)00069-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
A novel device for mechanical stimulation of primary adult rat bone marrow cells cultured on three-dimensional knitted textiles has been prototyped. A method has been developed ensuring a well-defined, high-density, and reproducible cell seeding on the knitted fabric. After culturing for 18-52 days the cell-knit composites were subjected to uniaxial 2% stretching and relaxation. The frequency was altered between 0.1 Hz (196 min, loading phase) and 0.01 Hz (360 min, resting phase). Identically treated knits without cells exhibited a slight stiffness reduction, whereas the stiffness of knits with cells increased from cycle to cycle. The stiffness increase was found to depend on the duration of the culture period before mechanical loading. Our data suggest that the extracellular matrix deposited by the cells on the knit and intact microtubuli of living cells cause the observed stiffness increase. In comparison to the unstrained static cell-knit composites cell proliferation and bone cell differentiation were reduced by the mechanical load.
Collapse
Affiliation(s)
- A Bruinink
- Department of Materials, Biocompatible Materials Science and Engineering, Swiss Federal Institute-Technology, ETH Zürich, Schlieren.
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Songu-Mize E, Sevieux N, Liu X, Jacobs M. Effect of short-term cyclic stretch on sodium pump activity in aortic smooth muscle cells. Am J Physiol Heart Circ Physiol 2001; 281:H2072-8. [PMID: 11668068 DOI: 10.1152/ajpheart.2001.281.5.h2072] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We previously demonstrated that expression of both the alpha1- and alpha2-subunits of Na+-K+-ATPase is elevated after a 2- to 4-day cyclic stretch in aortic smooth muscle cells. In this study, we determined the effect of short-term (2-30 min) cyclic stretch on the activity of the Na pump and investigated possible mechanisms that may be involved in the action of stretch. Na pump activity was significantly increased above the baseline activity between 2 and 30 min of stretch. This effect of stretch was reversible within 1 h. Intracellular Na was also elevated at corresponding time points. Blocking the entry of Na with Gd and amiloride did not affect the stretch-induced increase in Na pump activity. Inhibition of protein kinase A (PKA) activity attenuated the effect of stretch on the Na pump. Furthermore, inhibition of polymerization of actin and phosphatidylinositol 3-kinase (PI3K) activity prevented the action of stretch on Na pump activity. We conclude that the stimulation of the Na pump in response to cyclic stretch requires the integrity of the actin cytoskeleton as well as the activity of PI3K, which has a role in intracellular vesicular trafficking. PKA may also be involved in this effect of stretch on Na pump.
Collapse
Affiliation(s)
- E Songu-Mize
- Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center, New Orleans, Louisiana 70112, USA.
| | | | | | | |
Collapse
|
48
|
Endlich N, Kress KR, Reiser J, Uttenweiler D, Kriz W, Mundel P, Endlich K. Podocytes respond to mechanical stress in vitro. J Am Soc Nephrol 2001; 12:413-422. [PMID: 11181788 DOI: 10.1681/asn.v123413] [Citation(s) in RCA: 226] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Glomerular capillary pressure is thought to affect the structure and function of glomerular cells. However, it is unknown whether podocytes are intrinsically sensitive to mechanical forces. In the present study, differentiated mouse podocytes were cultured on flexible silicone membranes. Biaxial cyclic stress (0.5 Hz and 5% linear strain) was applied to the membranes for up to 3 d. Mechanical stress reduced the size of podocyte cell bodies, and processes became thin and elongated. Podocytes did not align in the inhomogeneous force field. Whereas the network of microtubules and that of the intermediate filament vimentin exhibited no major changes, mechanical stress induced a reversible reorganization of the actin cytoskeleton: transversal stress fibers (SF) disappeared and radial SF that were connected to an actin-rich center (ARC) formed. Epithelial and fibroblast cell lines did not exhibit a comparable stress-induced reorganization of the F-actin. Confocal and electron microscopy revealed an ellipsoidal and dense filamentous structure of the ARC. Myosin II, alpha-actinin, and the podocyte-specific protein synaptopodin were present in radial SF, but, opposite to F-actin, they were not enriched in the ARC. The formation of the ARC and of radial SF in response to mechanical stress was inhibited by nonspecific blockade of Ca(2+) influx with Ni(2+) (1 mM), by Rho kinase inhibition with Y-27632 (10 microM), but not by inhibition of stretch-activated cation channels with Gd(3+) (50 microM). In summary, mechanical stress induces a unique reorganization of the actin cytoskeleton in podocytes, featuring radial SF and an ARC, which differ in protein composition. The F-actin reorganization in response to mechanical stress depends on Ca(2+) influx and Rho kinase. The present study provides the first direct evidence that podocytes are mechanosensitive.
Collapse
Affiliation(s)
- Nicole Endlich
- Institute of Anatomy and Cell Biology I, University of Heidelberg, Heidelberg, Germany
| | - Kai R Kress
- Institute of Anatomy and Cell Biology I, University of Heidelberg, Heidelberg, Germany
| | - Jochen Reiser
- Institute of Anatomy and Cell Biology I, University of Heidelberg, Heidelberg, Germany
| | - Dietmar Uttenweiler
- Institute of Physiology and Pathophysiology, University of Heidelberg, Heidelberg, Germany
| | - Wilhelm Kriz
- Institute of Anatomy and Cell Biology I, University of Heidelberg, Heidelberg, Germany
| | - Peter Mundel
- Department of Medicine and Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, New York
| | - Karlhans Endlich
- Institute of Anatomy and Cell Biology I, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
49
|
Putnam AJ, Schultz K, Mooney DJ. Control of microtubule assembly by extracellular matrix and externally applied strain. Am J Physiol Cell Physiol 2001; 280:C556-64. [PMID: 11171575 DOI: 10.1152/ajpcell.2001.280.3.c556] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A number of studies have suggested that externally applied mechanical forces and alterations in the intrinsic cell-extracellular matrix (ECM) force balance equivalently induce changes in cell phenotype. However, this possibility has never been directly tested. To test this hypothesis, we directly investigated the response of the microtubule (MT) cytoskeleton in smooth muscle cells to both mechanical signals and alterations in the ECM. A tensile force that resulted in a positive 10% step change in substrate strain increased MT mass by 34 +/- 10% over static controls, independent of the cell adhesion ligand and tyrosine phosphorylation. Conversely, a compressive force that resulted in a negative 10% step change in substrate strain decreased MT mass by 40 +/- 6% over static controls. In parallel, increasing the density of the ECM ligand fibronectin from 50 to 1,000 ng/cm(2) in the absence of any applied force increased the amount of polymeric tubulin in the cell from 59 +/- 11% to 81 +/- 13% of the total cellular tubulin. These data are consistent with a model in which MT assembly is, in part, controlled by forces imposed on these structures, and they suggest a novel control point for MT assembly by altering the intrinsic cell-ECM force balance and applying external mechanical forces.
Collapse
Affiliation(s)
- A J Putnam
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109-2136, USA
| | | | | |
Collapse
|
50
|
Abstract
BACKGROUND Microtubules in interphase Schizosaccharomyces pombe are essential for maintaining the linear growth habit of these cells. The dynamics of assembly and disassembly of these microtubules are so far uncharacterised. RESULTS Live cell confocal imaging of alpha1 tubulin tagged with enhanced green fluorescent protein revealed longitudinally oriented, dynamically unstable interphase microtubule assemblies (IMAs). The IMAs were uniformly bright along their length apart from a zone of approximately doubly intense fluorescence commonly present close to their centres. The ends of each IMA switched from growth ( approximately 3.0 microm/min) to shrinkage ( approximately 4.5 microm/min) at 1.0 events per minute and from shrinkage to growth at 1.9 events per minute, and the two ends were equivalently dynamic, suggesting equivalent structure. We accordingly propose a symmetrical model for microtubule packing within the IMAs, in which microtubules are plus ends out and overlap close to the equator of the cell. IMAs may contain multiple copies of this motif; if so, then within each IMA end, the microtubule ends must synchronise catastrophe and rescue. When both ends of an IMA lodge in the hemispherical cell ends, the IMAs start to bend under compression and their overall growth rate is inhibited about twofold. Similar microtubule dynamics were observed in cells ranging in size from half to twice normal length. Patterned photobleaching indicated no detectable treadmilling or microtubule sliding during interphase. CONCLUSIONS The consequence of the mechanisms described is continuous recruitment of microtubule ends to the ends of growing cells, supporting microtubule-based transport into the cell ends and qualitatively accounting for the essential role for microtubules in directing linear cell growth in S. pombe.
Collapse
Affiliation(s)
- D R Drummond
- Molecular Motors Group, Marie Curie Research Institute, The Chart, Surrey, UK
| | | |
Collapse
|