1
|
Rhode H, Tautkus B, Weigel F, Schitke J, Metzing O, Boeckhaus J, Kiess W, Gross O, Dost A, John-Kroegel U. Preclinical Detection of Early Glomerular Injury in Children with Kidney Diseases-Independently of Usual Markers of Kidney Impairment and Inflammation. Int J Mol Sci 2024; 25:9320. [PMID: 39273271 PMCID: PMC11395411 DOI: 10.3390/ijms25179320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/23/2024] [Accepted: 08/24/2024] [Indexed: 09/15/2024] Open
Abstract
Glomerular kidney diseases typically begin insidiously and can progress to end stage kidney failure. Early onset of therapy can slow down disease progression. Early diagnosis is required to ensure such timely therapy. The goal of our study was to evaluate protein biomarkers (BMs) for common nephropathies that have been described for children with Alport syndrome. Nineteen candidate BMs were determined by commercial ELISA in children with congenital anomalies of the kidneys and urogenital tract, inflammatory kidney injury, or diabetes mellitus. It is particularly essential to search for kidney disease BMs in children because they are a crucial target group that likely exhibits early disease stages and in which misleading diseases unrelated to the kidney are rare. Only minor differences in blood between affected individuals and controls were found. However, in urine, several biomarker candidates alone or in combination seemed to be promising indicators of renal injury in early disease stages. The BMs of highest sensitivity and specificity were collagen type XIII, hyaluronan-binding protein 2, and complement C4-binding protein. These proteins are unrelated to inflammation markers or to risk factors for and signs of renal failure. In conclusion, our study evaluated several strong candidates for screening for early stages of kidney diseases and can help to establish early nephroprotective regimens.
Collapse
Grants
- German Federal Ministry of Education and Research (01KG1104), German Research Foundation (GR1852/6-1), Thuringian Ministry for Education, Science, and Culture, and the EFRE-fund (2013 FE 9075), and XLifeSciences (X-Kidneys, DD 0290-20). German Federal Ministry of Education and Research (01KG1104), German Research Foundation (GR1852/6-1), Thuringian Ministry for Education, Science, and Culture, and the EFRE-fund (2013 FE 9075), and XLifeSciences (X-Kidneys, DD 0290-20).
Collapse
Affiliation(s)
- Heidrun Rhode
- Jena University Hospital, Institute of Biochemistry I, Nonnenplan 2-4, 07743 Jena, Germany
| | - Baerbel Tautkus
- Jena University Hospital, Institute of Biochemistry I, Nonnenplan 2-4, 07743 Jena, Germany
| | - Friederike Weigel
- Jena University Hospital, Department of Pediatrics and Adolescent Medicine, Am Klinikum 1, 07747 Jena, Germany
| | - Julia Schitke
- Jena University Hospital, Department of Pediatrics and Adolescent Medicine, Am Klinikum 1, 07747 Jena, Germany
| | - Oliver Metzing
- Jena University Hospital, Department of Pediatrics and Adolescent Medicine, Am Klinikum 1, 07747 Jena, Germany
| | - Jan Boeckhaus
- Clinics for Nephrology and Rheumatology, University Medical Center Göttingen, Robert-Koch-Str. 40, 37075 Göttingen, Germany
| | - Wieland Kiess
- Hospital for Children and Adolescents, University of Leipzig, Liebigstr. 20a, 04103 Leipzig, Germany
| | - Oliver Gross
- Clinics for Nephrology and Rheumatology, University Medical Center Göttingen, Robert-Koch-Str. 40, 37075 Göttingen, Germany
| | - Axel Dost
- Jena University Hospital, Department of Pediatrics and Adolescent Medicine, Am Klinikum 1, 07747 Jena, Germany
| | - Ulrike John-Kroegel
- Jena University Hospital, Department of Pediatrics and Adolescent Medicine, Am Klinikum 1, 07747 Jena, Germany
| |
Collapse
|
2
|
Rhode H, Lüse A, Tautkus B, Nabity M, John-Kroegel U, Weigel F, Dost A, Schitke J, Metzing O, Böckhaus J, Rubel D, Kiess W, Gross O. Urinary Protein-Biomarkers Reliably Indicate Very Early Kidney Damage in Children With Alport Syndrome Independently of Albuminuria and Inflammation. Kidney Int Rep 2023; 8:2778-2793. [PMID: 38106579 PMCID: PMC10719601 DOI: 10.1016/j.ekir.2023.09.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/04/2023] [Accepted: 09/25/2023] [Indexed: 12/19/2023] Open
Abstract
Introduction Alport syndrome (AS) is a hereditary type IV collagen disease. It starts shortly after birth, without clinical symptoms, and progresses to end-stage kidney disease early in life. The earlier therapy starts, the more effectively end-stage kidney disease can be delayed. Clearly then, to ensure preemptive therapy, early diagnosis is an essential prerequisite. Methods To provide early diagnosis, we searched for protein biomarkers (BMs) by mass spectrometry in dogs with AS stage 0. At this very early stage, we identified 74 candidate BMs. Of these, using commercial enzyme-linked immunosorbent assays (ELISAs), we evaluated 27 in dogs and 28 in children, 50 with AS and 104 healthy controls. Results Most BMs from blood appeared as fractions of multiple variants of the same protein, as shown by their chromatographic distribution before mass spectrometry. Blood samples showed only minor differences because ELISAs rarely detect disease-specific variants. However, in urine , several proteins, individually or in combination, were promising indicators of very early and preclinical kidney injury. The BMs with the highest sensitivity and specificity were collagen type XIII, hyaluronan binding protein 2 (HABP2), and complement C4 binding protein (C4BP). Conclusion We generated very strong candidate BMs by our approach of first examining preclinical AS in dogs and then validating these BMs in children at early stages of disease. These BMs might serve for screening purposes for AS before the onset of kidney damage and therefore allow preemptive therapy.
Collapse
Affiliation(s)
- Heidrun Rhode
- Institute of Biochemistry I, Jena University Hospital, Jena, Germany
| | - Alexandra Lüse
- Institute of Biochemistry I, Jena University Hospital, Jena, Germany
| | - Bärbel Tautkus
- Institute of Biochemistry I, Jena University Hospital, Jena, Germany
| | - Mary Nabity
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Texas A&M University, College Station, Texas, USA
| | | | | | - Axel Dost
- Department of Pediatrics, Jena University Hospital, Jena, Germany
| | - Julia Schitke
- Department of Pediatrics, Jena University Hospital, Jena, Germany
| | - Oliver Metzing
- Department of Pediatrics, Jena University Hospital, Jena, Germany
| | - Jan Böckhaus
- Clinics for Nephrology and Rheumatology, University Medical Center Göttingen, Göttingen, Germany
| | - Diana Rubel
- Clinics for Nephrology and Rheumatology, University Medical Center Göttingen, Göttingen, Germany
| | - Wieland Kiess
- Hospital for Children and Adolescents, University of Leipzig, Liebigstr. 20a, 04103 Leipzig, Germany
| | - Oliver Gross
- Clinics for Nephrology and Rheumatology, University Medical Center Göttingen, Göttingen, Germany
| |
Collapse
|
3
|
Perez-Castro L, Venkateswaran N, Garcia R, Hao YH, Lafita-Navarro MC, Kim J, Segal D, Saponzik E, Chang BJ, Fiolka R, Danuser G, Xu L, Brabletz T, Conacci-Sorrell M. The AHR target gene scinderin activates the WNT pathway by facilitating the nuclear translocation of β-catenin. J Cell Sci 2022; 135:jcs260028. [PMID: 36148682 PMCID: PMC10658791 DOI: 10.1242/jcs.260028] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 09/12/2022] [Indexed: 01/12/2023] Open
Abstract
The ligand-activated transcription factor aryl hydrocarbon receptor (AHR) regulates cellular detoxification, proliferation and immune evasion in a range of cell types and tissues, including cancer cells. In this study, we used RNA-sequencing to identify the signature of the AHR target genes regulated by the pollutant 2,3,7,8-tetrachlorodibenzodioxin (TCDD) and the endogenous ligand kynurenine (Kyn), a tryptophan-derived metabolite. This approach identified a signature of six genes (CYP1A1, ALDH1A3, ABCG2, ADGRF1 and SCIN) as commonly activated by endogenous or exogenous ligands of AHR in multiple colon cancer cell lines. Among these, the actin-severing protein scinderin (SCIN) was necessary for cell proliferation; SCIN downregulation limited cell proliferation and its expression increased it. SCIN expression was elevated in a subset of colon cancer patient samples, which also contained elevated β-catenin levels. Remarkably, SCIN expression promoted nuclear translocation of β-catenin and activates the WNT pathway. Our study identifies a new mechanism for adhesion-mediated signaling in which SCIN, likely via its ability to alter the actin cytoskeleton, facilitates the nuclear translocation of β-catenin. This article has an associated First Person interview with the first authors of the paper.
Collapse
Affiliation(s)
- Lizbeth Perez-Castro
- Department of Cell Biology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | | | - Roy Garcia
- Department of Cell Biology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Yi-Heng Hao
- Department of Cell Biology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - M. C. Lafita-Navarro
- Department of Cell Biology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jiwoong Kim
- Quantitative Biomedical Research Center, Department of Population & Data Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Dagan Segal
- Department of Cell Biology, UT Southwestern Medical Center, Dallas, TX 75390, USA
- Lyda Hill Department of Bioinformatics, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Etai Saponzik
- Lyda Hill Department of Bioinformatics, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Bo-Jui Chang
- Lyda Hill Department of Bioinformatics, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Reto Fiolka
- Lyda Hill Department of Bioinformatics, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Gaudenz Danuser
- Department of Cell Biology, UT Southwestern Medical Center, Dallas, TX 75390, USA
- Lyda Hill Department of Bioinformatics, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Lin Xu
- Quantitative Biomedical Research Center, Department of Population & Data Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Pediatrics, Division of Hematology/Oncology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Thomas Brabletz
- Nikolaus-Fiebiger Center for Molecular Medicine, University Erlangen-Nurnberg, Erlangen 91054, Germany
| | - Maralice Conacci-Sorrell
- Department of Cell Biology, UT Southwestern Medical Center, Dallas, TX 75390, USA
- Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX 75390, USA
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
4
|
Jian W, Zhang X, Wang J, Liu Y, Hu C, Wang X, Liu R. Scinderin-knockdown inhibits proliferation and promotes apoptosis in human breast carcinoma cells. Oncol Lett 2018; 16:3207-3214. [PMID: 30127916 DOI: 10.3892/ol.2018.9009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Accepted: 05/11/2018] [Indexed: 01/16/2023] Open
Abstract
Previous studies have reported that scinderin (SCIN) affects multiple cellular processes, including proliferation, migration and differentiation in cancer. However, the specific role of SCIN in breast cancer (BC) cells is unknown. Immunohistochemistry was used to investigate SCIN expression in 46 BC and 21 mammary fibroadenoma or fibroadenomatoid hyperplasia tissue samples. SCIN expression was ablated in MDA-MB-231 and T-47D cells using lentivirus-mediated small interfering RNA technology. Cell proliferation was tested using Celigo and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assays. Cell apoptosis was analyzed by measuring Caspase 3/7 activity and annexin-V staining. The results of the present study demonstrated that SCIN expression was elevated in BC tissues compared with mammary fibroadenoma or fibroadenomatoid hyperplasia tissues. Specifically, higher SCIN expression was observed in Ki-67-positive BC tissues (78.6%) compared with Ki-67-negative BC tissues. Furthermore, knockdown of SCIN expression in the BC cell lines significantly suppressed cell proliferation and induced apoptosis. The data presented in the present study indicate that SCIN serves an important role in the development of breast cancer.
Collapse
Affiliation(s)
- Wenjing Jian
- Department of Thyroid and Breast Surgery, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510630, P.R. China.,Department of Thyroid and Breast Surgery, The Second People's Hospital of Shenzhen, Shenzhen, Guangdong 518035, P.R. China
| | - Xiaoli Zhang
- Central Laboratory, The Second People's Hospital of Shenzhen, Shenzhen, Guangdong 518035, P.R. China
| | - Jiguo Wang
- Department of Medical Oncology, Baoan District Traditional Chinese Medicine Hospital, Shenzhen, Guangdong 518133, P.R. China
| | - Yunlong Liu
- Department of Thyroid and Breast Surgery, The Second People's Hospital of Shenzhen, Shenzhen, Guangdong 518035, P.R. China
| | - Chuting Hu
- Department of Thyroid and Breast Surgery, The Second People's Hospital of Shenzhen, Shenzhen, Guangdong 518035, P.R. China
| | - Xianming Wang
- Department of Thyroid and Breast Surgery, The Second People's Hospital of Shenzhen, Shenzhen, Guangdong 518035, P.R. China
| | - Renbin Liu
- Department of Thyroid and Breast Surgery, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510630, P.R. China
| |
Collapse
|
5
|
Yoshida S, Fukutomi T, Kimura T, Sakurai H, Hatano R, Yamamoto H, Mukaisho KI, Hattori T, Sugihara H, Asano S. Comprehensive proteome analysis of brush border membrane fraction of ileum of ezrin knockdown mice. Biomed Res 2017; 37:127-39. [PMID: 27108882 DOI: 10.2220/biomedres.37.127] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Ezrin is an actin binding protein which cross-links membrane proteins with cytoskeleton directly or indirectly via PDZ domain-containing scaffold proteins. It is mainly expressed at the brush border membrane (BBM) of gastrointestinal tracts, and is involved in the construction of microvilli structure and the functional expression of membrane protein complexes at the cell surface. To precisely study the roles of ezrin on the expression of membrane proteins at the cell surface, here we prepared the BBM fractions of ileums from the wild-type and ezrin-knockdown (Vil2(kd/kd)) mice, analyzed them by mass spectrometry, and compared their proteomic patterns. Totally 313 proteins were identified in the BBM fractions. Several transport proteins, cytoskeleton-associated proteins, and trafficking proteins were up- or down-regulated in the BBM fraction of the ileum in the Vil2(kd/kd) mice. Among them, the expressions of i) Na(+)/H(+) exchanger regulatory factor 1 (a PDZ domain-containing scaffold protein), ii) sodium monocarboxylate transporter 1, which contains a PDZ domain-binding motif at their carboxy-terminal, and iii) chloride intracellular channel protein 5 were down-regulated at the BBM fraction of the ileum in the Vil2(kd/kd) mice, suggesting that ezrin is involved in their expression in the BBM.
Collapse
Affiliation(s)
- Saori Yoshida
- Department of Molecular Physiology, College of Pharmaceutical Sciences, Ritsumeikan University
| | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Kim BS, Cho Y, Lee H, Joo DJ, Huh KH, Kim MS, Kim YS. Comparative Proteomic Analysis of Rapamycin Versus Cyclosporine Combination Treatment in Mouse Podocytes. Transplant Proc 2016; 48:1297-301. [PMID: 27320608 DOI: 10.1016/j.transproceed.2016.01.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 01/13/2016] [Accepted: 01/21/2016] [Indexed: 11/18/2022]
Abstract
BACKGROUND The mechanism of podocyte injury observed with the use of rapamycin (RPM) remains unclear. The conversion from calcineurin inhibitors (CNIs) to RPM in kidney transplant recipients has been associated with a higher incidence of proteinuria and renal injury. In this study, we performed proteomic analyses to investigate the alteration of protein expression in mouse podocytes treated with RPM in comparison with CNI/RPM combination. METHODS Immortalized mouse podocytes were treated with 20 nmol/L RPM or 20 nmol/L RPM + 1 μg/mL cyclosporine. Podocyte proteins were separated by 2-dimensional polyacrylamide gel electrophoresis (2DE) and identified by matrix-assisted laser desorption time-of-flight (MALDI-TOF) mass spectrometry and peptide fingerprinting. Selected proteins were analyzed by means of Western blot assay. RESULTS We identified 36 differently expressed proteins after isolated RPM or CNI/RPM combination treatment in cultured mouse podocytes. There are 3 distinct patterns of protein expression: (1) potentiated down- or upregulation of proteins by CNI/RPM treatment compared with isolated RPM treatment (n = 4); (2) partial offset of down-regulation by CNI/RPM in comparison with RPM treatment (n = 25); (3) no difference in down-regulation between RPM and CNI/RPM treatment (n = 5). We found a significant interplay between RPM and CNI on the expression of the selected proteins in mouse podocytes. This might explain the higher incidence of proteinuria by CNI/RPM combination in clinical settings. CONCLUSIONS Further study is required to elucidate the target protein associated with RPM-induced podocyte injury.
Collapse
Affiliation(s)
- B S Kim
- Division of Nephrology, Department of Internal Medicine, Severance Hospital, Yonsei University Health System, Seoul, Republic of Korea; The Research Institute for Transplantation, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Y Cho
- The Research Institute for Transplantation, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - H Lee
- The Research Institute for Transplantation, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - D J Joo
- The Research Institute for Transplantation, Yonsei University College of Medicine, Seoul, Republic of Korea; Department of Transplantation Surgery, Severance Hospital, Yonsei University Health System, Seoul, Republic of Korea
| | - K H Huh
- The Research Institute for Transplantation, Yonsei University College of Medicine, Seoul, Republic of Korea; Department of Transplantation Surgery, Severance Hospital, Yonsei University Health System, Seoul, Republic of Korea
| | - M S Kim
- The Research Institute for Transplantation, Yonsei University College of Medicine, Seoul, Republic of Korea; Department of Transplantation Surgery, Severance Hospital, Yonsei University Health System, Seoul, Republic of Korea
| | - Y S Kim
- The Research Institute for Transplantation, Yonsei University College of Medicine, Seoul, Republic of Korea; Department of Transplantation Surgery, Severance Hospital, Yonsei University Health System, Seoul, Republic of Korea.
| |
Collapse
|
7
|
Li M, Cui F, Cheng Y, Han L, Wang J, Sun D, Liu YL, Zhou PK, Min R. Gelsolin: role of a functional protein in mitigating radiation injury. Cell Biochem Biophys 2016; 71:389-96. [PMID: 25164111 DOI: 10.1007/s12013-014-0210-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The present study was conducted to explore the protective effect of exogenous gelsolin (GSN) in mice exposed to high-dose of radiation. Changes in the levels of GSNs in peripheral blood of mice and cytoplasm of cultured human intestinal epithelial cells (HIECs) were analyzed after their exposure to different doses of (137)Cs γ-rays at a fixed dose rate. The coagulation associated indices, such as prothrombin time (PT) and activated partial thromboplastin time (APTT) were measured. Effect on radiation-mediated oxidative damage was evaluated by estimating the altered glutathione (GSH) and malondialdehyde (MDA) concentrations in the blood. The results showed that radiation induced a pronounced decrease in the pGSN blood levels. However, the cGSN levels of irradiated HIECs were increased in a dose-dependent manner. Administration of recombinant human pGSN to irradiated mice resulted in an ameliorated clotting time as indicated by the PT and the APTT indices. The treatment of mice with hpGSN enhanced the blood levels of GSH while MDA concentrations were decreased indicating an improved antioxidant status. These results suggest that GSNs might play a regulatory role in the suppression of the tissue damage induced by acute radiation exposure.
Collapse
Affiliation(s)
- Mingjuan Li
- Division of Radiation Medicine Department of Naval Medicine, Second Military Medical University, Shanghai, China
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Jiang H, Wang Y, Viniegra A, Sima C, McCulloch CA, Glogauer M. Adseverin plays a role in osteoclast differentiation and periodontal disease-mediated bone loss. FASEB J 2015; 29:2281-91. [PMID: 25681458 DOI: 10.1096/fj.14-265744] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Accepted: 01/23/2015] [Indexed: 01/27/2023]
Abstract
Osteoclast differentiation and function are highly dependent on the assembly and turnover of actin filaments, but little is known about the roles of actin binding proteins in these processes. Adseverin (Ads), a member of the gelsolin superfamily of actin capping and severing proteins, regulates actin filament turnover and can regulate the turnover of cortical actin filaments of chromaffin cells during exocytosis. Using a conditional Ads knockout mouse model, we confirmed our previous finding in cultured cells that Ads plays a role in osteoclastogenesis (OCG) and actin cytoskeletal organization in osteoclasts. Here we show that Ads is required for osteoclast formation and that when alveolar bone resorption is experimentally induced in mice, genetic deletion of Ads prevents osteoclast-mediated bone loss. Further, when Ads-null osteoclasts are cultured, they exhibit defective OCG, disorganized podosome-based actin filament superstructures, and decreased bone resorption. Reintroduction of Ads into Ads-null osteoclast precursor cells restored these osteoclast defects. Collectively, these data demonstrate a unique and osteoclast-specific role for Ads in OCG and osteoclast function.
Collapse
Affiliation(s)
- Hongwei Jiang
- *Matrix Dynamics Group, Faculty of Dentistry, University of Toronto, Ontario, Canada; and Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology, Sun Yat-sen University, and Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Yongqiang Wang
- *Matrix Dynamics Group, Faculty of Dentistry, University of Toronto, Ontario, Canada; and Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology, Sun Yat-sen University, and Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Ana Viniegra
- *Matrix Dynamics Group, Faculty of Dentistry, University of Toronto, Ontario, Canada; and Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology, Sun Yat-sen University, and Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Corneliu Sima
- *Matrix Dynamics Group, Faculty of Dentistry, University of Toronto, Ontario, Canada; and Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology, Sun Yat-sen University, and Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Christopher A McCulloch
- *Matrix Dynamics Group, Faculty of Dentistry, University of Toronto, Ontario, Canada; and Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology, Sun Yat-sen University, and Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Michael Glogauer
- *Matrix Dynamics Group, Faculty of Dentistry, University of Toronto, Ontario, Canada; and Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology, Sun Yat-sen University, and Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| |
Collapse
|
9
|
Kayyali US, Larsen CG, Bashiruddin S, Lewandowski SL, Trivedi CM, Warburton RR, Parkhitko AA, Morrison TA, Henske EP, Chekaluk Y, Kwiatkowski DJ, Finlay GA. Targeted deletion of Tsc1 causes fatal cardiomyocyte hyperplasia independently of afterload. Cardiovasc Pathol 2014; 24:80-93. [PMID: 25434723 DOI: 10.1016/j.carpath.2014.10.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Revised: 10/29/2014] [Accepted: 10/31/2014] [Indexed: 11/18/2022] Open
Abstract
Despite high expression levels, the role of Tsc1 in cardiovascular tissue is ill defined. We launched this study to examine the role of Tsc1 in cardiac physiology and pathology. Mice in which Tsc1 was deleted in cardiac tissue and vascular smooth muscle (Tsc1c/cSM22cre(+/-)), developed progressive cardiomegaly and hypertension and died early. Hearts of Tsc1c/cSM22cre(+/-) mice displayed a progressive increase in cardiomyocyte number, and to a lesser extent, size between the ages of 1 and 6 weeks. In addition, compared to control hearts, proliferation markers (phospho-histone 3 and PCNA) were elevated in Tsc1c/cSM22cre(+/-) cardiomyocytes at 0-4 weeks, suggesting that cardiomyocyte proliferation was the predominant mechanism underlying cardiomegaly in Tsc1c/cSM22cre(+/-) mice. To examine the contribution of Tsc1 deletion in peripheral vascular smooth muscle to the cardiac phenotype, Tsc1c/cSM22cre(+/-) mice were treated with the antihypertensive, hydralazine. Prevention of hypertension had no effect on survival, cardiac size, or cardiomyocyte number in these mice. We furthermore generated mice in which Tsc1 was deleted only in vascular smooth muscle but not in cardiac tissue (Tsc1c/cSMAcre-ER(T2+/-)). The Tsc1c/cSMAcre-ER(T2+/-) mice also developed hypertension. However, their survival was normal and no cardiac abnormalities were observed. Our results suggest that loss of Tsc1 in the heart causes cardiomegaly, which is driven by increased cardiomyocyte proliferation that also appears to confer relative resistance to afterload reduction. These findings support a critical role for the Tsc1 gene as gatekeeper in the protection against uncontrolled cardiac growth.
Collapse
Affiliation(s)
- Usamah S Kayyali
- Pulmonary, Critical Care & Sleep Division, Department of Medicine, Tupper Research Institute, Tufts Medical Center, Tufts University School of Medicine, Boston, MA 02111, USA.
| | - Christopher G Larsen
- Pulmonary, Critical Care & Sleep Division, Department of Medicine, Tupper Research Institute, Tufts Medical Center, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Sarah Bashiruddin
- Pulmonary, Critical Care & Sleep Division, Department of Medicine, Tupper Research Institute, Tufts Medical Center, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Sara L Lewandowski
- Divison of Cardiovascular Medicine, Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Chinmay M Trivedi
- Divison of Cardiovascular Medicine, Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Rod R Warburton
- Pulmonary, Critical Care & Sleep Division, Department of Medicine, Tupper Research Institute, Tufts Medical Center, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Andrey A Parkhitko
- Division of Translational Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02111, USA
| | - Tasha A Morrison
- Division of Translational Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02111, USA
| | - Elizabeth P Henske
- Division of Translational Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02111, USA
| | - Yvonne Chekaluk
- Division of Translational Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02111, USA
| | - David J Kwiatkowski
- Division of Translational Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02111, USA
| | - Geraldine A Finlay
- Pulmonary, Critical Care & Sleep Division, Department of Medicine, Tupper Research Institute, Tufts Medical Center, Tufts University School of Medicine, Boston, MA 02111, USA
| |
Collapse
|
10
|
Qi W, Gao Y, Tian J, Jiang H. Adseverin knockdown inhibits osteoclastogenesis in RAW264.7 cells. Int J Mol Med 2014; 34:1483-91. [PMID: 25339151 PMCID: PMC4214352 DOI: 10.3892/ijmm.2014.1941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Accepted: 09/11/2014] [Indexed: 11/08/2022] Open
Abstract
Osteoclastogenesis is a complex process that is highly dependent on the dynamic regulation of the actin cytoskeleton. Adseverin (Ads), a member of the gelsolin superfamily of actin-binding proteins, regulates actin remodeling by severing and capping actin filaments. The objective of the present study was to characterize the role of Ads during osteoclastogenesis by assessing Ads expression and using a knockdown strategy. Immunoblot analyses were used to examine Ads expression during osteoclastogenesis. A stable Ads knockdown macrophage cell line was generated using a retroviral shRNA construct. Osteoclast differentiation was morphologically examined via cell staining with osteoclast specific markers and light microscopy. The results showed that Ads expression was significantly increased in response to receptor activator of nuclear factor-κB ligand during osteoclastogenesis, and Ads was highly expressed in mature osteoclasts. Ads-knockdown macrophages showed major osteoclastogenesis defects, most likely caused by a pre-osteoclast fusion defect. These results indicate that Ads deficiency in monocytes inhibits osteoclastogenesis. Thus, in future studies it could be noteworthy to investigate the function of Ads in bone marrow monocytes during osteoclastogenesis.
Collapse
Affiliation(s)
- Wenting Qi
- Department of Operative Dentistry and Endodontics, Guanghua School and Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat‑sen University, Guangzhou, Guangdong 510055, P.R. China
| | - Yan Gao
- Department of Operative Dentistry and Endodontics, Guanghua School and Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat‑sen University, Guangzhou, Guangdong 510055, P.R. China
| | - Jun Tian
- Department of Operative Dentistry and Endodontics, Guanghua School and Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat‑sen University, Guangzhou, Guangdong 510055, P.R. China
| | - Hongwei Jiang
- Department of Operative Dentistry and Endodontics, Guanghua School and Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat‑sen University, Guangzhou, Guangdong 510055, P.R. China
| |
Collapse
|
11
|
CHEN XIAOMIN, GUO JUNMING, CHEN PING, MAO LIANGANG, FENG WEIYUN, LE DONGHAI, LI KEQIANG. Suppression of scinderin modulates epithelial-mesenchymal transition markers in highly metastatic gastric cancer cell line SGC-7901. Mol Med Rep 2014; 10:2327-33. [DOI: 10.3892/mmr.2014.2523] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2013] [Accepted: 06/17/2014] [Indexed: 11/05/2022] Open
|
12
|
Proteomic analysis of intestinal mucosa responses to Salmonella enterica serovar typhimurium in naturally infected pig. Comp Immunol Microbiol Infect Dis 2013; 37:59-67. [PMID: 24268431 DOI: 10.1016/j.cimid.2013.10.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Revised: 10/29/2013] [Accepted: 10/30/2013] [Indexed: 02/07/2023]
Abstract
Salmonella enterica serovar typhimurium (S. typhimurium) is one of the most frequent Salmonella serotypes isolated from European pigs. Despite the advances in understanding the mechanisms involved in host-pathogen interactions and host cell responses to S. typhimurium, the global change that occurs in naturally exposed populations has been poorly characterized. Here, we present a proteomics study on intestinal mucosa of pigs naturally infected with S. typhimurium, in order to better understand the pathogenesis of salmonellosis and the pathways which might be affected after infection. Samples were analyzed by 2D-DIGE and 44 different proteins exhibited statistically significant differences. The data set was analyzed by employing the Ingenuity Pathway Analysis and the physiological function most significantly perturbed were immunological and infectious disease, cellular assembly and organization and metabolism. The pathways implicated in the porcine immune response to S. typhimurium were gluconeogenesis and Rho GDI/RhoA signaling, and our results suggest that keratins and the intermediate filaments could play an important role in the damage of the mucosa and in the success of infection. The role of these findings in salmonellosis has been discussed, as well as the importance of analyzing naturally infected animals to have a complete picture of the infection. Also, we compared the results found in this work with those obtained in a similar study using experimentally infected animals.
Collapse
|
13
|
Quantitative apical membrane proteomics reveals vasopressin-induced actin dynamics in collecting duct cells. Proc Natl Acad Sci U S A 2013; 110:17119-24. [PMID: 24085853 DOI: 10.1073/pnas.1309219110] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
In kidney collecting duct cells, filamentous actin (F-actin) depolymerization is a critical step in vasopressin-induced trafficking of aquaporin-2 to the apical plasma membrane. However, the molecular components of this response are largely unknown. Using stable isotope-based quantitative protein mass spectrometry and surface biotinylation, we identified 100 proteins that showed significant abundance changes in the apical plasma membrane of mouse cortical collecting duct cells in response to vasopressin. Fourteen of these proteins are involved in actin cytoskeleton regulation, including actin itself, 10 actin-associated proteins, and 3 regulatory proteins. Identified were two integral membrane proteins (Clmn, Nckap1) and one actin-binding protein (Mpp5) that link F-actin to the plasma membrane, five F-actin end-binding proteins (Arpc2, Arpc4, Gsn, Scin, and Capzb) involved in F-actin reorganization, and two actin adaptor proteins (Dbn1, Lasp1) that regulate actin cytoskeleton organization. There were also protease (Capn1), protein kinase (Cdc42bpb), and Rho guanine nucleotide exchange factor 2 (Arhgef2) that mediate signal-induced F-actin changes. Based on these findings, we devised a live-cell imaging method to observe vasopressin-induced F-actin dynamics in polarized mouse cortical collecting duct cells. In response to vasopressin, F-actin gradually disappeared near the center of the apical plasma membrane while consolidating laterally near the tight junction. This F-actin peripheralization was blocked by calcium ion chelation. Vasopressin-induced apical aquaporin-2 trafficking and forskolin-induced water permeability increase were blocked by F-actin disruption. In conclusion, we identified a vasopressin-regulated actin network potentially responsible for vasopressin-induced apical F-actin dynamics that could explain regulation of apical aquaporin-2 trafficking and water permeability increase.
Collapse
|
14
|
Signaling mechanisms of glucose-induced F-actin remodeling in pancreatic islet β cells. Exp Mol Med 2013; 45:e37. [PMID: 23969997 PMCID: PMC3789261 DOI: 10.1038/emm.2013.73] [Citation(s) in RCA: 105] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Accepted: 06/24/2013] [Indexed: 12/12/2022] Open
Abstract
The maintenance of whole-body glucose homeostasis is critical for survival, and is controlled by the coordination of multiple organs and endocrine systems. Pancreatic islet β cells secrete insulin in response to nutrient stimuli, and insulin then travels through the circulation promoting glucose uptake into insulin-responsive tissues such as liver, skeletal muscle and adipose. Many of the genes identified in human genome-wide association studies of diabetic individuals are directly associated with β cell survival and function, giving credence to the idea that β-cell dysfunction is central to the development of type 2 diabetes. As such, investigations into the mechanisms by which β cells sense glucose and secrete insulin in a regulated manner are a major focus of current diabetes research. In particular, recent discoveries of the detailed role and requirements for reorganization/remodeling of filamentous actin (F-actin) in the regulation of insulin release from the β cell have appeared at the forefront of islet function research, having lapsed in prior years due to technical limitations. Recent advances in live-cell imaging and specialized reagents have revealed localized F-actin remodeling to be a requisite for the normal biphasic pattern of nutrient-stimulated insulin secretion. This review will provide an historical look at the emergent focus on the role of the actin cytoskeleton and its regulation of insulin secretion, leading up to the cutting-edge research in progress in the field today.
Collapse
|
15
|
Isoforms of gelsolin from lobster striated muscles differ in Calcium-dependence. Arch Biochem Biophys 2013; 536:38-45. [DOI: 10.1016/j.abb.2013.05.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2013] [Revised: 05/07/2013] [Accepted: 05/10/2013] [Indexed: 11/30/2022]
|
16
|
Michel J, Schönhaar K, Schledzewski K, Gkaniatsou C, Sticht C, Kellert B, Lasitschka F, Géraud C, Goerdt S, Schmieder A. Identification of the novel differentiation marker MS4A8B and its murine homolog MS4A8A in colonic epithelial cells lost during neoplastic transformation in human colon. Cell Death Dis 2013; 4:e469. [PMID: 23348583 PMCID: PMC3564002 DOI: 10.1038/cddis.2012.215] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The CD20-homolog Ms4a8a has recently been shown to be a marker for alternatively activated macrophages but its expression is not restricted to hematopoietic cells. Here, MS4A8A/MS4A8B expression was detected in differentiated intestinal epithelium in mouse and human, respectively. Interestingly, no MS4A8B expression was found in human colon carcinoma. Forced overexpression of MS4A8A in the murine colon carcinoma cell line CT26 led to a reduced proliferation and migration rate. In addition, MS4A8A-expressing CT26 cells displayed an increased resistance to hydrogen peroxide-induced apoptosis, which translated in an increased end weight of subcutaneous MS4A8A+ CT26 tumors. Gene profiling of MS4A8A+ CT26 cells revealed a significant regulation of 225 genes, most of them involved in cytoskeletal organization, apoptosis, proliferation, transcriptional regulation and metabolic processes. Thereby, the highest upregulated gene was the intestinal differentiation marker cytokeratin 20. In conclusion, we show that MS4A8A/MS4A8B is a novel differentiation marker of the intestinal epithelium that supports the maintenance of a physiological barrier function in the gut by modulating the transcriptome and by conferring an increased resistance to reactive oxygen species. The absence of MS4A8B in human colonic adenocarcinomas shown in this study might be a helpful tool to differentiate between healthy and neoplastic tissue.
Collapse
Affiliation(s)
- J Michel
- Department of Dermatology, Venereology and Allergology, University Medical Center and Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Hur D, Hong S. Cloning and characterization of a fish specific gelsolin family gene, ScinL, in olive flounder (Paralichthys olivaceus). Comp Biochem Physiol B Biochem Mol Biol 2012; 164:89-98. [PMID: 23159325 DOI: 10.1016/j.cbpb.2012.11.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Revised: 11/07/2012] [Accepted: 11/07/2012] [Indexed: 12/23/2022]
Abstract
Scinderin like (ScinL) gene is a unique gelsolin family gene found only in fish. In this study ScinL gene was cloned in olive flounder for the first time and characterized its expression and function. Flounder ScinL cDNA consists of 2911 nucleotides encoding a putative protein of 720 amino acids (79.4 kDa). In phylogenetic analysis, flounder ScinL is closely related to ScinL of zebra fish, anableps, and fugu with the similarity of 51-72%. Fish ScinLs are positioned between gelsolin and scinderin of other species. Flounder ScinL protein has the highly conserved actin and PIP2 binding sites, Ca(2+) coordination site, and a C-terminal latch helix preventing the activation of ScinL protein in the absence of Ca(2+). Putative binding sites for NFAT and AP-1 were found in 5' flanking region. Constitutive ScinL expression was found in most organs and the expression level was higher in gill, head kidney, trunk kidney, spleen and skin than muscle, stomach, intestine and brain. In Q-PCR analysis ScinL and CYP1A1 gene expression were significantly upregulated by BaP in head kidney in vivo and in vitro, and in macrophage cells. Upregulated ScinL expression by BaP was blocked by EGTA, indicating a calcium dependent regulation of ScinL expression.
Collapse
Affiliation(s)
- Deokhwe Hur
- Department of Marine Biotechnology, Gangneung Wonju National University, Gangneung 210-702, South Korea
| | | |
Collapse
|
18
|
Brown D, Bouley R, Păunescu TG, Breton S, Lu HAJ. New insights into the dynamic regulation of water and acid-base balance by renal epithelial cells. Am J Physiol Cell Physiol 2012; 302:C1421-33. [PMID: 22460710 DOI: 10.1152/ajpcell.00085.2012] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Maintaining tight control over body fluid and acid-base homeostasis is essential for human health and is a major function of the kidney. The collecting duct is a mosaic of two cell populations that are highly specialized to perform these two distinct processes. The antidiuretic hormone vasopressin (VP) and its receptor, the V2R, play a central role in regulating the urinary concentrating mechanism by stimulating accumulation of the aquaporin 2 (AQP2) water channel in the apical membrane of collecting duct principal cells. This increases epithelial water permeability and allows osmotic water reabsorption to occur. An understanding of the basic cell biology/physiology of AQP2 regulation and trafficking has informed the development of new potential treatments for diseases such as nephrogenic diabetes insipidus, in which the VP/V2R/AQP2 signaling axis is defective. Tubule acidification due to the activation of intercalated cells is also critical to organ function, and defects lead to several pathological conditions in humans. Therefore, it is important to understand how these "professional" proton-secreting cells respond to environmental and cellular cues. Using epididymal proton-secreting cells as a model system, we identified the soluble adenylate cyclase (sAC) as a sensor that detects luminal bicarbonate and activates the vacuolar proton-pumping ATPase (V-ATPase) via cAMP to regulate tubular pH. Renal intercalated cells also express sAC and respond to cAMP by increasing proton secretion, supporting the hypothesis that sAC could function as a luminal sensor in renal tubules to regulate acid-base balance. This review summarizes recent advances in our understanding of these fundamental processes.
Collapse
Affiliation(s)
- Dennis Brown
- MGH Center for Systems Biology, Program in Membrane Biology and Division of Nephrology, Simches Research Center, Massachusetts General Hospital, Boston, MA 02114, USA.
| | | | | | | | | |
Collapse
|
19
|
Actin reorganization as the molecular basis for the regulation of apoptosis in gastrointestinal epithelial cells. Cell Death Differ 2012; 19:1514-24. [PMID: 22421965 DOI: 10.1038/cdd.2012.28] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The gastrointestinal (GI) epithelium is a rapidly renewing tissue in which apoptosis represents part of the overall homeostatic process. Regulation of apoptosis in the GI epithelium is complex with a precise relationship between cell position and apoptosis. Apoptosis occurs spontaneously and in response to radiation and cytotoxic drugs at the base of the crypts. By contrast, the villus epithelial cells are extremely resistant to apoptosis. The molecular mechanism underlying this loss of function of villus epithelial cells to undergo apoptosis shortly after their exit from the crypt is unknown. In this study we demonstrate for the first time, that deletion of two homologous actin-binding proteins, villin and gelsolin renders villus epithelial cells extremely sensitive to apoptosis. Ultrastructural analysis of the villin-gelsolin(-/-) double-knockout mice shows an abnormal accumulation of damaged mitochondria demonstrating that villin and gelsolin function on an early step in the apoptotic signaling at the level of the mitochondria. A characterization of functional and ligand-binding mutants demonstrate that regulated changes in actin dynamics determined by the actin severing activities of villin and gelsolin are required to maintain cellular homeostasis. Our study provides a molecular basis for the regulation of apoptosis in the GI epithelium and identifies cell biological mechanisms that couple changes in actin dynamics to apoptotic cell death.
Collapse
|
20
|
Kalwat MA, Wiseman DA, Luo W, Wang Z, Thurmond DC. Gelsolin associates with the N terminus of syntaxin 4 to regulate insulin granule exocytosis. Mol Endocrinol 2011; 26:128-41. [PMID: 22108804 DOI: 10.1210/me.2011-1112] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The plasma membrane soluble N-ethylmaleimide-sensitive factor attachment receptor (SNARE) protein syntaxin (Syn)4 is required for biphasic insulin secretion, although how it regulates each phase remains unclear. In a screen to identify new Syn4-interacting factors, the calcium-activated F-actin-severing protein gelsolin was revealed. Gelsolin has been previously implicated as a positive effector of insulin secretion, although a molecular mechanism to underlie this function is lacking. Toward this, our in vitro binding studies showed the Syn4-gelsolin interaction to be direct and mediated by the N-terminal Ha domain (amino acid residues 39-70) of Syn4. Syn4-gelsolin complexes formed under basal conditions and dissociated upon acute glucose or KCl stimulation; nifedipine blocked dissociation. The dissociating action of secretagogues could be mimicked by expression of the N-terminal Ha domain of Syn4 fused to green fluorescent protein (GFP) (GFP-39-70). Furthermore, GFP-39-70 expression in isolated mouse islet and clonal MIN6 β-cells initiated insulin release in the absence of appropriate stimuli. Consistent with this, the inhibitory GFP-39-70 peptide also initiated Syn4 activation in the absence of stimuli. Moreover, although MIN6 β-cells expressing the GFP-39-70 peptide maintained normal calcium influx in response to KCl, KCl-stimulated insulin secretion and the triggering pathway of insulin secretion were significantly impaired. Taken together, these data support a mechanistic model for gelsolin's role in insulin exocytosis: gelsolin clamps unsolicited soluble N-ethylmaleimide-sensitive factor attachment receptor (SNARE)-regulated exocytosis through direct association with Syn4 in the absence of appropriate stimuli, which is relieved upon stimulus-induced calcium influx to activate gelsolin and induce its dissociation from Syn4 to facilitate insulin exocytosis.
Collapse
Affiliation(s)
- Michael A Kalwat
- Departments of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA
| | | | | | | | | |
Collapse
|
21
|
Wagner CA. Rho rocks H⁺-ATPases. Focus on "Regulation of V-ATPase recycling via a RhoA- and ROCKII-dependent pathway in epididymal clear cells". Am J Physiol Cell Physiol 2011; 301:C18-20. [PMID: 21543741 DOI: 10.1152/ajpcell.00134.2011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
22
|
Malhowski AJ, Hira H, Bashiruddin S, Warburton R, Goto J, Robert B, Kwiatkowski DJ, Finlay GA. Smooth muscle protein-22-mediated deletion of Tsc1 results in cardiac hypertrophy that is mTORC1-mediated and reversed by rapamycin. Hum Mol Genet 2011; 20:1290-305. [PMID: 21212099 DOI: 10.1093/hmg/ddq570] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Constitutive activation of mammalian target of rapamycin complex 1 (mTORC1), a key kinase complex that regulates cell size and growth, is observed with inactivating mutations of either of the tuberous sclerosis complex (TSC) genes, Tsc1 and Tsc2. Tsc1 and Tsc2 are highly expressed in cardiovascular tissue but their functional role there is unknown. We generated a tissue-specific knock-out of Tsc1, using a conditional allele of Tsc1 and a cre recombinase allele regulated by the smooth muscle protein-22 (SM22) promoter (Tsc1c/cSM22cre+/-) to constitutively activate mTOR in cardiovascular tissue. Significant gene recombination (∼80%) occurred in the heart by embryonic day (E) 15, and reduction in Tsc1 expression with increased levels of phosphorylated S6 kinase (S6K) and S6 was observed, consistent with constitutive activation of mTORC1. Cardiac hypertrophy was evident by E15 with post-natal progression to heart weights of 142 ± 24 mg in Tsc1c/cSM22cre+/- mice versus 65 ± 14 mg in controls (P < 0.01). Median survival of Tsc1c/cSM22cre+/- mice was 24 days, with none surviving beyond 6 weeks. Pathologic and echocardiographic analysis revealed severe biventricular hypertrophy without evidence of fibrosis or myocyte disarray, and significant reduction in the left ventricular end-diastolic diameter (P < 0.001) and fractional index (P < 0.001). Inhibition of mTORC1 by rapamycin resulted in prolonged survival of Tsc1c/cSM22cre+/- mice, with regression of ventricular hypertrophy. These data support a critical role for the Tsc1/Tsc2-mTORC1-S6K axis in the normal development of cardiovascular tissue and also suggest possible therapeutic potential of rapamycin in cardiac disorders where pathologic mTORC1 activation occurs.
Collapse
Affiliation(s)
- Amy J Malhowski
- Pulmonary and Critical Care Division, Department of Medicine, Tupper Research Institute, Tufts Medical Center, No 257, 800 Washington Street, Boston, MA 02111, USA
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Liu H, Tian N, Arany I, Bigler SA, Waxman DJ, Shah SV, Baliga R. Cytochrome P450 2B1 mediates complement-dependent sublytic injury in a model of membranous nephropathy. J Biol Chem 2010; 285:40901-10. [PMID: 20947506 PMCID: PMC3003390 DOI: 10.1074/jbc.m110.165498] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2010] [Revised: 09/27/2010] [Indexed: 11/06/2022] Open
Abstract
Membranous nephropathy is a disease that affects the filtering units of the kidney, the glomeruli, and results in proteinuria accompanied by loss of kidney function. Passive Heymann nephritis is an experimental model that mimics membranous nephropathy in humans, wherein the glomerular epithelial cell (GEC) injury induced by complement C5b-9 leads to proteinuria. We examined the role of cytochrome P450 2B1 (CYP2B1) in this complement-mediated sublytic injury. Overexpression of CYP2B1 in GECs significantly increased the formation of reactive oxygen species, cytotoxicity, and collapse of the actin cytoskeleton following treatment with anti-tubular brush-border antiserum (anti-Fx1A). In contrast, silencing of CYP2B1 markedly attenuated anti-Fx1A-induced reactive oxygen species generation and cytotoxicity with preservation of the actin cytoskeleton. Gelsolin, which maintains an organized actin cytoskeleton, was significantly decreased by complement C5b-9-mediated injury but was preserved in CYP2B1-silenced cells. In rats injected with anti-Fx1A, the cytochrome P450 inhibitor cimetidine blocked an increase in catalytic iron and ROS generation, reduced the formation of malondialdehyde adducts, maintained a normal distribution of nephrin in the glomeruli, and provided significant protection at the onset of proteinuria. Thus, GEC CYP2B1 contributes to complement C5b-9-mediated injury and plays an important role in the pathogenesis of passive Heymann nephritis.
Collapse
Affiliation(s)
- Hua Liu
- From the Departments of Pediatrics and
| | - Niu Tian
- From the Departments of Pediatrics and
| | | | - Steven A. Bigler
- Pathology, University of Mississippi Medical Center, Jackson, Mississippi 39216
| | - David J. Waxman
- the Division of Cell and Molecular Biology, Department of Biology, Boston University, Boston, Massachusetts 02215, and
| | - Sudhir V. Shah
- the Division of Nephrology, Department of Internal Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
| | | |
Collapse
|
24
|
Li GH, Arora PD, Chen Y, McCulloch CA, Liu P. Multifunctional roles of gelsolin in health and diseases. Med Res Rev 2010; 32:999-1025. [PMID: 22886630 DOI: 10.1002/med.20231] [Citation(s) in RCA: 182] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Gelsolin, a Ca(2+) -regulated actin filament severing, capping, and nucleating protein, is an ubiquitous, multifunctional regulator of cell structure and metabolism. More recent data show that gelsolin can act as a transcriptional cofactor in signal transduction and its own expression and function can be influenced by epigenetic changes. Here, we review the functions of the plasma and cytoplasmic forms of gelsolin, and their manifold impacts on cancer, apoptosis, infection and inflammation, cardiac injury, pulmonary diseases, and aging. An improved understanding of the functions and regulatory mechanisms of gelsolin may lead to new considerations of this protein as a potential biomarker and/or therapeutic target.
Collapse
Affiliation(s)
- Guo Hua Li
- Toronto General Hospital, University Health Network, Toronto, Ontario, Canada
| | | | | | | | | |
Collapse
|
25
|
Zhang Y, Li Y, Qiu F, Qiu Z. Comparative analysis of the human urinary proteome by 1D SDS-PAGE and chip-HPLC-MS/MS identification of the AACT putative urinary biomarker. J Chromatogr B Analyt Technol Biomed Life Sci 2010; 878:3395-401. [PMID: 21093387 DOI: 10.1016/j.jchromb.2010.10.026] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2010] [Revised: 10/25/2010] [Accepted: 10/25/2010] [Indexed: 10/18/2022]
Abstract
Urine is one of the most attractive analyte used for clinical diagnosis. NSCLC (non-small cell lung carcinoma), which includes adenocarcinoma, squamous cell carcinoma and large-cell carcinoma, is a leading cause of cancer-related deaths. In the present study, urinary proteomes of normal individuals and NSCLC patients were compared using 1D SDS-PAGE. From the distinctly differentially expressed bands in SDS-PAGE gel, 40 proteins were identified by chip-HPLC-MS/MS, including five proteins relevant to NSCLC. One of the selected proteins, alpha-1-antichymotrypsin (AACT), was further validated in urine by western blot and in lung tissue by immunohistochemistry staining. Higher expression level of AACT in NSCLC patients was observed by western blot when compared with normal urine samples. Significantly, the NSCLC tumor tissue (18 out of 20 cases, 90%) showed a significantly higher expression level of AACT compared to adjacent non-tumor lung tissue (3 out of 20 cases, 15%). These results establish AACT as a potential biomarker for objective and non-invasive diagnosis of NSCLC in urine and the other four NSCLC-related proteins were also listed.
Collapse
Affiliation(s)
- Yuan Zhang
- College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | | | | | | |
Collapse
|
26
|
Da Silva N, Pisitkun T, Belleannée C, Miller LR, Nelson R, Knepper MA, Brown D, Breton S. Proteomic analysis of V-ATPase-rich cells harvested from the kidney and epididymis by fluorescence-activated cell sorting. Am J Physiol Cell Physiol 2010; 298:C1326-42. [PMID: 20181927 DOI: 10.1152/ajpcell.00552.2009] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Proton-transporting cells are located in several tissues where they acidify the extracellular environment. These cells express the vacuolar H(+)-ATPase (V-ATPase) B1 subunit (ATP6V1B1) in their plasma membrane. We provide here a comprehensive catalog of the proteins that are expressed in these cells, after their isolation by enzymatic digestion and fluorescence-activated cell sorting (FACS) from transgenic B1-enhanced green fluorescent protein (EGFP) mice. In these mice, type A and B intercalated cells and connecting segment cells of the kidney, and narrow and clear cells of the epididymis, which all express ATP6V1B1, also express EGFP, while all other cell types are negative. The proteome of renal and epididymal EGFP-positive (EGFP(+)) cells was identified by liquid chromatography-tandem mass spectrometry (LC-MS/MS) and compared with their respective EGFP-negative (EGFP(-)) cell populations. A total of 2,297 and 1,564 proteins were detected in EGFP(+) cells from the kidney and epididymis, respectively. Out of these proteins, 202 and 178 were enriched by a factor greater than 1.5 in EGFP(+) cells compared with EGFP(-) cells, in the kidney and epididymis respectively, and included subunits of the V-ATPase (B1, a4, and A). In addition, several proteins involved in intracellular trafficking, signaling, and cytoskeletal dynamics were identified. A novel common protein that was enriched in renal and epididymal EGFP(+) cells is the progesterone receptor, which might be a potential candidate for the regulation of V-ATPase-dependent proton transport. These proteomic databases provide a framework for comprehensive future analysis of the common and distinct functions of V-ATPase-B1-expressing cells in the kidney and epididymis.
Collapse
|
27
|
Finlay GA, Malhowski AJ, Polizzi K, Malinowska-Kolodziej I, Kwiatkowski DJ. Renal and liver tumors in Tsc2(+/-) mice, a model of tuberous sclerosis complex, do not respond to treatment with atorvastatin, a 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitor. Mol Cancer Ther 2009; 8:1799-807. [PMID: 19584242 DOI: 10.1158/1535-7163.mct-09-0055] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Inactivating mutations of the tumor suppressor gene TSC2 are associated with tumorigenesis in tuberous sclerosis complex (TSC) and lymphangioleiomyomatosis. Statins, as 3-hydroxy-3-methylglutaryl CoA reductase inhibitors, have the potential to limit the growth of these tumors by limiting the isoprenylation of activated GTPases in Tsc2-null cells. We tested atorvastatin as a therapy for (a) ethylnitrosourea (ENU)-enhanced renal cystadenoma and (b) spontaneous liver hemangioma in 129Sv/Jae Tsc2(+/-) mice. ENU-treated Tsc2(+/-) mice were given atorvastatin chow (0.1%, w/w) for 1 or 3 months before sacrifice at 6 months; 129Sv/Jae Tsc2(+/-) mice were given atorvastatin chow (0.1%, w/w) for 6 months before sacrifice at 12 months. All treatment groups were compared with mice of identical genotype and strain background that were fed control chow. Pathologic analyses revealed a predominance of renal cystadenoma in ENU-treated and liver hemangioma in non-ENU-treated 129Sv/Jae Tsc2(+/-) mice. In both cohorts, serum cholesterol levels and levels of phosphorylated S6 and GTP-RhoA in healthy tissue were significantly (>50%) reduced in atorvastatin-treated mice as compared with controls. Following atorvastatin treatment, no significant reduction in tumor size, morphology, or phosphorylated S6 levels was observed for either ENU-associated renal cystadenoma or spontaneous liver hemangioma as compared with the untreated groups. In conclusion, although the marked reduction in cholesterol levels indicates that atorvastatin was effective as an 3-hydroxy-3-methylglutaryl CoA reductase inhibitor, it did not inhibit the growth of tumors that develop in these Tsc2(+/-) models, suggesting that it is unlikely to have benefit as a single-agent therapy for TSC-associated tumors.
Collapse
Affiliation(s)
- Geraldine A Finlay
- Pulmonary and Critical Care Division, Tufts Medical Center, Boston, MA 02111, USA.
| | | | | | | | | |
Collapse
|
28
|
Harvey SJ, Jarad G, Cunningham J, Goldberg S, Schermer B, Harfe BD, McManus MT, Benzing T, Miner JH. Podocyte-specific deletion of dicer alters cytoskeletal dynamics and causes glomerular disease. J Am Soc Nephrol 2008; 19:2150-8. [PMID: 18776121 DOI: 10.1681/asn.2008020233] [Citation(s) in RCA: 247] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
MicroRNAs (miRNAs) regulate gene expression by binding the 3' untranslated region of mRNAs. To define their role in glomerular function, miRNA biogenesis was disrupted in mouse podocytes using a conditional Dicer allele. Mutant mice developed proteinuria by 3 wk after birth and progressed rapidly to end-stage kidney disease. Podocyte pathology included effacement, vacuolization, and hypertrophy with crescent formation. Despite normal expression of WT1, podocytes underwent dedifferentiation, exemplified by cytoskeletal disruption with early transcriptional downregulation of synaptopodin. These abnormalities differed from Cd2ap(-/-) mice, indicating they were not a general consequence of glomerular disease. Glomerular labeling of ezrin, moesin, and gelsolin was altered at 3 wk, but expression of nestin and alpha-actinin was unchanged. Abnormal cell proliferation or apoptosis was not responsible for the glomerular injury. Mutant podocytes were incapable of synthesizing mature miRNA, as revealed by their loss of miR-30a. In contrast, expression of glomerular endothelial and mesangial cell miRNAs (miR-126 and miR-145, respectively) was unchanged. These findings demonstrate a critical role for miRNA in glomerular function and suggest a pathway that may participate in the pathogenesis of kidney diseases of podocyte origin. The unique architecture of podocytes may make them especially susceptible to cytoskeletal alterations initiated by aberrant miRNA dynamics.
Collapse
Affiliation(s)
- Scott J Harvey
- Renal Division, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Khurana S, George SP. Regulation of cell structure and function by actin-binding proteins: villin's perspective. FEBS Lett 2008; 582:2128-39. [PMID: 18307996 PMCID: PMC2680319 DOI: 10.1016/j.febslet.2008.02.040] [Citation(s) in RCA: 114] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2008] [Accepted: 02/19/2008] [Indexed: 12/23/2022]
Abstract
Villin is a tissue-specific actin modifying protein that is associated with actin filaments in the microvilli and terminal web of epithelial cells. It belongs to a large family of actin-binding proteins which includes actin-capping, -nucleating and/or -severing proteins such as gelsolin, severin, fragmin, adseverin/scinderin and actin crosslinking proteins such as dematin and supervillin. Studies done in epithelial cell lines and villin knock-out mice have demonstrated the function of villin in regulating actin dynamics, cell morphology, epithelial-to-mesenchymal transition, cell migration and cell survival. In addition, the ligand-binding properties of villin (F-actin, G-actin, calcium, phospholipids and phospholipase C-gamma1) are mechanistically important for the crosstalk between signaling pathways and actin reorganization in epithelial cells.
Collapse
Affiliation(s)
- Seema Khurana
- Department of Physiology, University of Tennessee Health Science Center, 894 Union Avenue, Nash 402, Memphis, TN 38163, United States.
| | | |
Collapse
|
30
|
Jia S, Omelchenko M, Garland D, Vasiliou V, Kanungo J, Spencer M, Wolf Y, Koonin E, Piatigorsky J. Duplicated gelsolin family genes in zebrafish: a novel scinderin-like gene (scinla) encodes the major corneal crystallin. FASEB J 2007; 21:3318-28. [PMID: 17548429 PMCID: PMC6007973 DOI: 10.1096/fj.07-8172com] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
We have previously identified a gelsolin-like protein (C/L-gelsolin) as a corneal crystallin in zebrafish. Here we show by phylogenetic analysis that there are at least six genes encoding gelsolin-like proteins based on their gelsolin domains in zebrafish: gsna and gsnb group with the vertebrate gelsolin gene, scina and scinb group with the scinderin (adseverin) gene, and scinla (C/L-gelsolin) and scinlb are novel scinderin-like genes. RT-PCR showed that scinla, scinlb, and gsnb are preferentially expressed in the adult cornea whereas gsna is expressed to a similar extent in cornea, lens, brain, and heart; scina and scinb expression were detectable only in whole zebrafish and not in these adult tissues. Quantitative RT-PCR and 2-dimensional polyacrylamide gel electrophoresis followed by MALDI/TOF mass spectroscopy confirmed high expression of beta-actin and scinla, moderate expression of scinlb, and very low expression of gsna and gsnb in the cornea. Finally, transgenic zebrafish carrying a green fluorescent protein reporter transgene driven by a 4 kb scinla promoter fragment showed expression in the cornea, snout, dorsal fin, and tail fin of 3-day-old zebrafish larvae. Our data suggest that scinla and scinlb are diverged paralogs of the vertebrate scinderin gene and show that scinla encodes the zebrafish corneal crystallin previously called C/L-gelsolin.
Collapse
Affiliation(s)
- Sujuan Jia
- Laboratory of Molecular and Developmental Biology, Bethesda, Maryland, USA
| | - Marina Omelchenko
- National Library of Medicine, National Institutes of Health, Bethesda, Maryland, USA
| | - Donita Garland
- Laboratory of Retinal Cellular and Molecular Biology, National Eye Institute, Bethesda, Maryland, USA
| | - Vasilis Vasiliou
- University of Colorado Health Sciences Center, School of Pharmacy, University of Colorado, Denver, Colorado, USA
| | | | - Michael Spencer
- Laboratory of Molecular and Developmental Biology, Bethesda, Maryland, USA
| | - Yuri Wolf
- National Library of Medicine, National Institutes of Health, Bethesda, Maryland, USA
| | - Eugene Koonin
- National Library of Medicine, National Institutes of Health, Bethesda, Maryland, USA
| | - Joram Piatigorsky
- Laboratory of Molecular and Developmental Biology, Bethesda, Maryland, USA
| |
Collapse
|
31
|
Xiang Y, Huang X, Wang T, Zhang Y, Liu Q, Hussey PJ, Ren H. ACTIN BINDING PROTEIN 29 from Lilium pollen plays an important role in dynamic actin remodeling. THE PLANT CELL 2007; 19:1930-46. [PMID: 17586658 PMCID: PMC1955736 DOI: 10.1105/tpc.106.048413] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Villin/gelsolin/fragmin superfamily proteins have been shown to function in tip-growing plant cells. However, genes encoding gelsolin/fragmin do not exist in the Arabidopsis thaliana and rice (Oryza sativa) databases, and it is possible that these proteins are encoded by villin mRNA splicing variants. We cloned a 1006-bp full-length cDNA from Lilium longiflorum that encodes a 263-amino acid predicted protein sharing 100% identity with the N terminus of 135-ABP (Lilium villin) except for six C-terminal amino acids. The deduced 29-kD protein, Lilium ACTIN BINDING PROTEIN29 (ABP29), contains only the G1 and G2 domains and is the smallest identified member of the villin/gelsolin/fragmin superfamily. The purified recombinant ABP29 accelerates actin nucleation, blocks barbed ends, and severs actin filaments in a Ca(2+)- and/or phosphatidylinositol 4,5-bisphosphate-regulated manner in vitro. Microinjection of the protein into stamen hair cells disrupted transvacuolar strands whose backbone is mainly actin filament bundles. Transient expression of ABP29 by microprojectile bombardment of lily pollen resulted in actin filament fragmentation and inhibited pollen germination and tube growth. Our results suggest that ABP29 is a splicing variant of Lilium villin and a member of the villin/gelsolin/fragmin superfamily, which plays important roles in rearrangement of the actin cytoskeleton during pollen germination and tube growth.
Collapse
Affiliation(s)
- Yun Xiang
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education and College of Life Science, Beijing Normal University, Beijing, PR China
| | | | | | | | | | | | | |
Collapse
|
32
|
Abstract
Gelsolin is a calcium-activated actin filament severing and capping protein found in many cell types and as a secreted form in the plasma of vertebrates. Mutant mice for gelsolin as well as clinical studies have shown that gelsolin is linked to a number of pathological conditions such as inflammation, cancer and amyloidosis. The tight regulation of gelsolin by calcium is crucial for its physiological role and constitutive activation leads to apoptosis. In the following we will give an overview on how gelsolin is regulated by calcium, and which clinical conditions have been linked to lack or misregulation of gelsolin.
Collapse
Affiliation(s)
- L Spinardi
- Direzione Scientifica, IRCCS Fondazione Ospedale Policlinico, Mangiagalli e Regina Elena, Via Francesco Sforza 28, 20122 Milano, Italy.
| | | |
Collapse
|
33
|
Ono S. Mechanism of depolymerization and severing of actin filaments and its significance in cytoskeletal dynamics. INTERNATIONAL REVIEW OF CYTOLOGY 2007; 258:1-82. [PMID: 17338919 DOI: 10.1016/s0074-7696(07)58001-0] [Citation(s) in RCA: 212] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The actin cytoskeleton is one of the major structural components of the cell. It often undergoes rapid reorganization and plays crucial roles in a number of dynamic cellular processes, including cell migration, cytokinesis, membrane trafficking, and morphogenesis. Actin monomers are polymerized into filaments under physiological conditions, but spontaneous depolymerization is too slow to maintain the fast actin filament dynamics observed in vivo. Gelsolin, actin-depolymerizing factor (ADF)/cofilin, and several other actin-severing/depolymerizing proteins can enhance disassembly of actin filaments and promote reorganization of the actin cytoskeleton. This review presents advances as well as a historical overview of studies on the biochemical activities and cellular functions of actin-severing/depolymerizing proteins.
Collapse
Affiliation(s)
- Shoichiro Ono
- Department of Pathology, Emory University, Atlanta, GA 30322, USA
| |
Collapse
|
34
|
Breton S, Brown D. New insights into the regulation of V-ATPase-dependent proton secretion. Am J Physiol Renal Physiol 2006; 292:F1-10. [PMID: 17032935 DOI: 10.1152/ajprenal.00340.2006] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The vacuolar H(+)-ATPase (V-ATPase) is a key player in several aspects of cellular function, including acidification of intracellular organelles and regulation of extracellular pH. In specialized cells of the kidney, male reproductive tract and osteoclasts, proton secretion via the V-ATPase represents a major process for the regulation of systemic acid/base status, sperm maturation and bone resorption, respectively. These processes are regulated via modulation of the plasma membrane expression and activity of the V-ATPase. The present review describes selected aspects of V-ATPase regulation, including recycling of V-ATPase-containing vesicles to and from the plasma membrane, assembly/disassembly of the two domains (V(0) and V(1)) of the holoenzyme, and the coupling ratio between ATP hydrolysis and proton pumping. Modulation of the V-ATPase-rich cell phenotype and the pathophysiology of the V-ATPase in humans and experimental animals are also discussed.
Collapse
Affiliation(s)
- Sylvie Breton
- Program in Membrane Biology, Nephrology Division, Massachusetts General Hospital, and Department of Medicine, Harvard Medical School, Boston, Massachusetts 02114-2790, USA.
| | | |
Collapse
|
35
|
Tomar A, George S, Kansal P, Wang Y, Khurana S. Interaction of Phospholipase C-γ1 with Villin Regulates Epithelial Cell Migration. J Biol Chem 2006. [DOI: 10.1016/s0021-9258(19)84111-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
36
|
Tomar A, George S, Kansal P, Wang Y, Khurana S. Interaction of phospholipase C-gamma1 with villin regulates epithelial cell migration. J Biol Chem 2006; 281:31972-86. [PMID: 16921170 DOI: 10.1074/jbc.m604323200] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Tyrosine-phosphorylated villin regulates actin dynamics, cell morphology, and cell migration. Previously, we identified four tyrosine phosphorylation sites in the amino-terminal domain of villin. In this study we report six new sites in the carboxyl-terminal region of the villin core. With this study we document all phosphorylatable tyrosine residues in villin and map them to functions of villin. In this study, we identify for the first time the functional relevance of the carboxyl-terminal domains of the villin core. Expression of the carboxyl-terminal phosphorylation site mutant, as well as the villin truncation mutant S1-S3, inhibited cell migration in HeLa and Madin-Darby canine kidney Tet-Off cells, confirming the role of the carboxyl-terminal phosphorylation sites in villin-induced cell migration. The carboxyl-terminal phosphorylation sites were found to be critical for the interaction of villin with its ligand phospholipase C-gamma1 and for its localization to the developing lamellipodia in a motile cell. The results presented here elucidate the molecular basis for tyrosine-phosphorylated villin-induced changes in cell motility.
Collapse
Affiliation(s)
- Alok Tomar
- Department of Physiology, University of Tennessee Health Science Center, Memphis, Tennessee 38163, USA
| | | | | | | | | |
Collapse
|
37
|
Yang J, Ramnath N, Moysich KB, Asch HL, Swede H, Alrawi SJ, Huberman J, Geradts J, Brooks JSJ, Tan D. Prognostic significance of MCM2, Ki-67 and gelsolin in non-small cell lung cancer. BMC Cancer 2006; 6:203. [PMID: 16882345 PMCID: PMC1555597 DOI: 10.1186/1471-2407-6-203] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2006] [Accepted: 08/01/2006] [Indexed: 11/23/2022] Open
Abstract
Background Uncontrolled proliferation and increased motility are hallmarks of neoplastic cells, therefore markers of proliferation and motility may be valuable in assessing tumor progression and prognosis. MCM2 is a member of the minichromosome maintenance (MCM) protein family. It plays critical roles in the initiation of DNA replication and in replication fork movement, and is intimately related to cell proliferation. Ki-67 is a proliferation antigen that is expressed during all but G0 phases of the cell cycle. Gelsolin is an actin-binding protein that regulates the integrity of the actin cytoskeletal structure and facilitates cell motility. In this study, we assessed the prognostic significance of MCM2 and Ki-67, two markers of proliferation, and gelsolin, a marker of motility, in non-small cell lung cancer (NSCLC). Methods 128 patients with pathologically confirmed, resectable NSCLC (stage I-IIIA) were included. Immunohistochemistry was utilized to measure the expressions of these markers in formalin-fixed, paraffin-embedded tumor tissues. Staining and scoring of MCM2, Ki-67 and gelsolin was independently performed. Analyses were performed to evaluate the prognostic significance of single expression of each marker, as well as the prognostic significance of composite expressions of MCM2 and gelsolin. Cox regression and Kaplan-Meier survival analysis were used for statistical analysis. Results Of the three markers, higher levels of gelsolin were significantly associated with an increased risk of death (adjusted RR = 1.89, 95% CI = 1.17–3.05, p = 0.01), and higher levels of MCM2 were associated with a non-significant increased risk of death (adjusted RR = 1.36, 95% CI = 0.84–2.20, p = 0.22). Combined, adjusted analyses revealed a significantly poor prognostic effect for higher expression of MCM2 and gelsolin compared to low expression of both biomarkers (RR = 2.32, 95% CI = 1.21–4.45, p = 0.01). Ki-67 did not display apparent prognostic effect in this study sample. Conclusion The results suggest that higher tumor proliferation and motility may be important in the prognosis of NSCLC, and composite application of biomarkers might be of greater value than single marker application in assessing tumor prognosis.
Collapse
Affiliation(s)
- Jun Yang
- Roswell Park Cancer Institute, Buffalo, NY 14263, USA
| | | | | | - Harold L Asch
- Roswell Park Cancer Institute, Buffalo, NY 14263, USA
| | - Helen Swede
- Connecticut Tumor Registry, Department of Public Health, Hartford, CT 06134, USA
| | | | - Joel Huberman
- Roswell Park Cancer Institute, Buffalo, NY 14263, USA
| | - Joseph Geradts
- Department of Pathology, Duke University, Durham, NC 27710, USA
| | - John SJ Brooks
- Dept. of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Dongfeng Tan
- Dept. of Pathology and Lab Medicine, University of Texas Health Science Center, Houston, TX 77030, USA
| |
Collapse
|
38
|
Tomas A, Yermen B, Min L, Pessin JE, Halban PA. Regulation of pancreatic beta-cell insulin secretion by actin cytoskeleton remodelling: role of gelsolin and cooperation with the MAPK signalling pathway. J Cell Sci 2006; 119:2156-67. [PMID: 16638805 DOI: 10.1242/jcs.02942] [Citation(s) in RCA: 134] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
We have previously isolated two MIN6 beta-cell sublines, B1, highly responsive to glucose-stimulated insulin secretion, and C3, markedly refractory (Lilla, V., Webb, G., Rickenbach, K., Maturana, A., Steiner, D. F., Halban, P. A. and Irminger, J. C. (2003) Endocrinology 144, 1368-1379). We now demonstrate that C3 cells have substantially increased amounts of F-actin stress fibres whereas B1 cells have shorter cortical F-actin. Consistent with these data, B1 cells display glucose-dependent actin remodelling whereas, in C3 cells, F-actin is refractory to this secretagogue. Furthermore, F-actin depolymerisation with latrunculin B restores glucose-stimulated insulin secretion in C3 cells. In parallel, glucose-stimulated ERK1/2 activation is greater in B1 than in C3 cells, and is potentiated in both sublines following F-actin depolymerisation. Glucose-activated phosphoERK1/2 accumulates at actin filament tips adjacent to the plasma membrane, indicating that these are the main sites of action for this kinase during insulin secretion. In addition, B1 cell expression of the calcium-dependent F-actin severing protein gelsolin is >100-fold higher than that of C3 cells. Knock-down of gelsolin reduced glucose-stimulated insulin secretion, whereas gelsolin over-expression potentiated secretion from B1 cells. Gelsolin localised along depolymerised actin fibres after glucose stimulation. Taken together, these data demonstrate that F-actin reorganization prior to insulin secretion requires gelsolin and plays a role in the glucose-dependent MAPK signal transduction that regulates beta-cell insulin secretion.
Collapse
Affiliation(s)
- Alejandra Tomas
- Department of Genetic Medicine and Development, University of Geneva Medical School, Switzerland.
| | | | | | | | | |
Collapse
|
39
|
Pastor-Soler N, Piétrement C, Breton S. Role of acid/base transporters in the male reproductive tract and potential consequences of their malfunction. Physiology (Bethesda) 2006; 20:417-28. [PMID: 16287991 DOI: 10.1152/physiol.00036.2005] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Acid/base transporters play a key role in establishing an acidic luminal environment for sperm maturation and storage in the male reproductive tract. Impairment of the acidification capacity of the epididymis, via either genetic mutations or exposure to environmental factors, may have profound consequences on male fertility.
Collapse
Affiliation(s)
- Nuria Pastor-Soler
- Program in Membrane Biology/Nephrology Division, Massachusetts General Hospital and Harvard Medical School, Boston, USA
| | | | | |
Collapse
|
40
|
Ransom RF, Vega-Warner V, Smoyer WE, Klein J. Differential proteomic analysis of proteins induced by glucocorticoids in cultured murine podocytes. Kidney Int 2005; 67:1275-85. [PMID: 15780080 DOI: 10.1111/j.1523-1755.2005.00205.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
BACKGROUND The glomerular podocyte is the kidney cell most affected during the development of nephrotic syndrome, and mutations in podocyte proteins are responsible for a variety of inherited forms of nephrotic syndrome. Although glucocorticoids are a primary treatment for nephrotic syndrome, neither their target cell nor mechanism of action are known. In order to describe the proteome of the podocyte, and to identify podocyte proteins whose expression is altered by glucocorticoids, we performed a differential proteomic analysis of control and dexamethasone-treated cultured murine podocytes. METHODS Podocyte proteins were separated by two-dimensional-polyacrylamide gel electrophoresis (PAGE) and identified by matrix-assisted laser desorption time-of-flight (MALDI-TOF) mass spectrometry and peptide fingerprinting. Comparisons of stained two-dimensional-PAGE separations were used to identify proteins whose expression was altered by treatment with the glucocorticoid dexamethasone, and these results were confirmed by quantitative Western blotting. RESULTS A total of 106 protein spots yielded MALDI-TOF results, and 92 were identified by protein fingerprinting. Of the 88 unique proteins and four protein isoforms identified, six proteins were found whose expression was altered by dexamethasone. The proteome of cultured murine podocytes is particularly rich in actin cytoskeletal proteins and proteins involved in responses to cellular stress. The change in expression of three proteins [ciliary neurotrophic factor (CNTF), alphaB-crystallin, and heat shock protein 27 (hsp27)] was confirmed by quantitative Western blotting. CONCLUSION Three proteins with known roles in protecting cells from injury were up-regulated by dexamethasone, demonstrating that glucocorticoids exert a direct effect on cultured podocytes resulting in changes in the expression of proteins with potential relevance to the therapeutic action of glucocorticoids in diseases such as nephrotic syndrome.
Collapse
Affiliation(s)
- Richard F Ransom
- Pediatric Nephrology Division, University of Michigan, Ann Arbor, Michigan 48109, USA.
| | | | | | | |
Collapse
|
41
|
Mariadason JM, Nicholas C, L'Italien KE, Zhuang M, Smartt HJM, Heerdt BG, Yang W, Corner GA, Wilson AJ, Klampfer L, Arango D, Augenlicht LH. Gene expression profiling of intestinal epithelial cell maturation along the crypt-villus axis. Gastroenterology 2005; 128:1081-8. [PMID: 15825089 DOI: 10.1053/j.gastro.2005.01.054] [Citation(s) in RCA: 146] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
BACKGROUND & AIMS To define the genetic reprogramming that drives intestinal epithelial cell maturation along the crypt-villus axis, enterocytes were sequentially isolated from the villus tip to the crypts of mouse small intestine. METHODS Changes in gene expression were assessed using 27,405-element complementary DNA microarrays (14,685 unique genes) and specific changes validated by Western blotting. RESULTS A total of 1113 genes differentially expressed between the crypt and villus were identified. Among these, established markers of absorptive and goblet cell differentiation were up-regulated in villus cells, whereas Paneth cell markers were maximally expressed in crypt cells. The 1113 differentially expressed genes were significantly enriched for genes involved in cell cycle progression, RNA processing, and translation (all predominantly down-regulated during maturation) and genes involved in cytoskeleton assembly and lipid uptake (predominantly up-regulated during maturation). No enrichment for apoptosis-regulating genes was observed. We confirmed that Wnt signaling was maximal in the proliferative compartment and observed a decrease in MYC and an increase in MAD and MAX expression during the maturation program. Consistent with these changes, the 1113 genes were enriched for MYC targets, establishing the importance of this network in intestinal cell maturation. CONCLUSIONS This database serves as a resource for understanding the molecular mechanisms of intestinal cell maturation and for dissection of how perturbations in the maturation process can lead to changes in gastrointestinal physiology and pathology, particularly intestinal tumorigenesis.
Collapse
Affiliation(s)
- John M Mariadason
- Montefiore Medical Cente, Albert Einstein Cancer Center, Bronx, New Yorrk 10467, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Noske A, Denkert C, Schober H, Sers C, Zhumabayeva B, Weichert W, Dietel M, Wiechen K. Loss of Gelsolin expression in human ovarian carcinomas. Eur J Cancer 2005; 41:461-9. [PMID: 15691647 DOI: 10.1016/j.ejca.2004.10.025] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2004] [Accepted: 10/21/2004] [Indexed: 11/25/2022]
Abstract
The ubiquitously expressed actin-binding protein, gelsolin, is known to play a role in the modulation of the actin network and in the regulation of cell growth and cell motility. In the present study, we analysed the expression of gelsolin in 241 matched cDNA pairs from human normal and tumour tissues using a Cancer Profiling Array. We found a decreased expression of gelsolin in cancer tissue from female reproductive organs, including the ovary. On a protein level, we examined the expression of gelsolin in human ovarian cancer cell lines and in a set of 110 cases of human benign and malignant ovarian tumours. Low levels of gelsolin protein were observed in four of six ovarian carcinoma cell lines, in contrast to its expression in normal ovarian surface epithelial cells. In addition, we found a reduced expression of gelsolin in borderline tumours and ovarian carcinomas compared with the epithelium of normal ovaries and benign adenomas. Decreased gelsolin expression was associated with poorly differentiated carcinomas (p=0.014). No significant association between gelsolin expression and other clinicopathological markers or patient survival could be established. In addition, we investigated the growth regulatory function of gelsolin in human ovarian cancer cell lines using cDNA transfections. Re-expression of gelsolin in OAW42 and ES-2 cells resulted in a suppression of tumour cell survival in vitro. To explore the mechanism responsible for the downregulation of gelsolin expression in ovarian carcinoma cells, we treated cells with inhibitors of DNA methylation and histone deacetylation. We observed an upregulation of gelsolin in ovarian cancer cells after treatment with both types of inhibitor. Our results suggest that gelsolin might be involved in the growth regulation of human ovarian cancer.
Collapse
Affiliation(s)
- Aurelia Noske
- Institute of Pathology, University Hospital Charité, Schumannstr. 20/21, D-10117 Berlin, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Oberemm A, Meckert C, Brandenburger L, Herzig A, Lindner Y, Kalenberg K, Krause E, Ittrich C, Kopp-Schneider A, Stahlmann R, Richter-Reichhelm HB, Gundert-Remy U. Differential signatures of protein expression in marmoset liver and thymus induced by single-dose TCDD treatment. Toxicology 2005; 206:33-48. [PMID: 15590107 DOI: 10.1016/j.tox.2004.06.061] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2004] [Revised: 06/18/2004] [Accepted: 06/21/2004] [Indexed: 12/30/2022]
Abstract
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is an ubiquitously distributed environmental pollutant. Health effects have been studied intensively, but low-dose effects are quite complex and not yet fully understood. In many studies, the immune system was identified as the most sensitive target. Here, we demonstrate changes of protein expression in liver and thymus of male marmosets (Callithrix jacchus) which were subjected to a single dose of a subcutaneous injection of 100 ng/kg body weight TCDD. Histopathological examination revealed myocardial fibrosis, but there were no significant findings in pathology and histopathology of liver and thymus. In order to detect more subtle treatment-related changes, we performed a comparative proteomic investigation of liver and thymus using a 2-D gel electrophoresis based proteomics approach. Fluorescence labeling and automated image analysis was used to enhance sensitivity and reproducibility. In both organs, distinct changes of protein expression were detected which were more pronounced in thymus, where the pattern of deregulated proteins could be clearly related to immune responses. In the thymus of treated animals, several toxicologically relevant factors were increased, including chaperones, glycerol-3-phosphate dehydrogenase, and adseverin. Among others, vimentin, Ca-dependent protease and protein disulfide isomerase were downregulated. In the liver, transferrins, lamin A and HSP70 were upregulated, whereas thymidine phosphorylase (synonyms: endothelial cell growth factor, PD-ECGF, gliostatin) was significantly reduced. Comparative analysis of deregulated proteins in both organs revealed a pattern of related functions, which fits well into the existing knowledge of the toxic processes and mechanisms underlying TCDD-mediated toxicity.
Collapse
Affiliation(s)
- Axel Oberemm
- Federal Institute for Risk Assessment, Thielallee 88-92, 14195 Berlin, Germany.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Beaulieu V, Da Silva N, Pastor-Soler N, Brown CR, Smith PJS, Brown D, Breton S. Modulation of the actin cytoskeleton via gelsolin regulates vacuolar H+-ATPase recycling. J Biol Chem 2004; 280:8452-63. [PMID: 15591047 DOI: 10.1074/jbc.m412750200] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The role of the actin cytoskeleton in regulating membrane protein trafficking is complex and depends on the cell type and protein being examined. Using the epididymis as a model system in which luminal acidification is crucial for sperm maturation and storage, we now report that modulation of the actin cytoskeleton by the calcium-activated actin-capping and -severing protein gelsolin plays a key role in regulating vacuolar H(+)-ATPase (V-ATPase) recycling. Epididymal clear cells contain abundant V-ATPase in their apical pole, and an increase in their cell-surface V-ATPase expression correlates with an increase in luminal proton secretion. We have shown that apical membrane accumulation of V-ATPase is triggered by an elevation in cAMP following activation of bicarbonate-regulated soluble adenylyl cyclase in response to alkaline luminal pH (Pastor-Soler, N., Beaulieu, V., Litvin, T. N., Da Silva, N., Chen, Y., Brown, D., Buck, J., Levin, L. R., and Breton, S. (2003) J. Biol. Chem. 278, 49523-49529). Here, we show that clear cells express high levels of gelsolin, indicating a potential role in the functional activity of these cells. When jasplakinolide was used to overcome the severing action of gelsolin by polymerizing actin, complete inhibition of the alkaline pH- and cAMP-induced apical membrane accumulation of V-ATPase was observed. Conversely, when gelsolin-mediated actin filament elongation was inhibited using a 10-residue peptide (PBP10) derived from the phosphatidylinositol 4,5-bisphosphate-binding region (phosphoinositide-binding domain 2) of gelsolin, significant V-ATPase apical membrane mobilization was induced, even at acidic luminal pH. In contrast, the calcium chelator 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid tetrakis(acetoxymethyl ester) and the phospholipase C inhibitor U-73122 inhibited the alkaline pH-induced V-ATPase apical accumulation. Thus, maintenance of the actin cytoskeleton in a depolymerized state by gelsolin facilitates calcium-dependent apical accumulation of V-ATPase in response to luminal pH alkalinization. Gelsolin is present in other cell types that express the V-ATPase in their plasma membrane and recycling vesicles, including kidney intercalated cells and osteoclasts. Therefore, modulation of the actin cortex by this severing and capping protein may represent a common mechanism by which these cells regulate their rate of proton secretion.
Collapse
Affiliation(s)
- Valérie Beaulieu
- Program in Membrane Biology, Massachusetts General Hospital, Charlestown, Massachusetts 02129, USA
| | | | | | | | | | | | | |
Collapse
|
45
|
Ehre C, Rossi AH, Abdullah LH, De Pestel K, Hill S, Olsen JC, Davis CW. Barrier role of actin filaments in regulated mucin secretion from airway goblet cells. Am J Physiol Cell Physiol 2004; 288:C46-56. [PMID: 15342343 DOI: 10.1152/ajpcell.00397.2004] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Airway goblet cells secrete mucin onto mucosal surfaces under the regulation of an apical, phospholipase C/G(q)-coupled P2Y(2) receptor. We tested whether cortical actin filaments negatively regulate exocytosis in goblet cells by forming a barrier between secretory granules and plasma membrane docking sites as postulated for other secretory cells. Immunostaining of human lung tissues and SPOC1 cells (an epithelial, mucin-secreting cell line) revealed an apical distribution of beta- and gamma-actin in ciliated and goblet cells. In goblet cells, actin appeared as a prominent subplasmalemmal sheet lying between granules and the apical membrane, and it disappeared from SPOC1 cells activated by purinergic agonist. Disruption of actin filaments with latrunculin A stimulated SPOC1 cell mucin secretion under basal and agonist-activated conditions, whereas stabilization with jasplakinolide or overexpression of beta- or gamma-actin conjugated to yellow fluorescent protein (YFP) inhibited secretion. Myristoylated alanine-rich C kinase substrate, a PKC-activated actin-plasma membrane tethering protein, was phosphorylated after agonist stimulation, suggesting a translocation to the cytosol. Scinderin (or adseverin), a Ca(2+)-activated actin filament severing and capping protein was cloned from human airway and SPOC1 cells, and synthetic peptides corresponding to its actin-binding domains inhibited mucin secretion. We conclude that actin filaments negatively regulate mucin secretion basally in airway goblet cells and are dynamically remodeled in agonist-stimulated cells to promote exocytosis.
Collapse
Affiliation(s)
- Camille Ehre
- Cystic Fibrosis/Pulmonary Research and Treatment Center, University of North Carolina, Chapel Hill, North Carolina 27599-7248, USA
| | | | | | | | | | | | | |
Collapse
|
46
|
Chou CL, Christensen BM, Frische S, Vorum H, Desai RA, Hoffert JD, de Lanerolle P, Nielsen S, Knepper MA. Non-muscle myosin II and myosin light chain kinase are downstream targets for vasopressin signaling in the renal collecting duct. J Biol Chem 2004; 279:49026-35. [PMID: 15347643 DOI: 10.1074/jbc.m408565200] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have previously demonstrated that vasopressin increases the water permeability of the inner medullary collecting duct (IMCD) by inducing trafficking of aquaporin-2 to the apical plasma membrane and that this response is dependent on intracellular calcium mobilization and calmodulin activation. Here, we address the hypothesis that this water permeability response is mediated in part through activation of the calcium/calmodulin-dependent myosin light chain kinase (MLCK) and regulation of non-muscle myosin II. Immunoblotting and immunocytochemistry demonstrated the presence of MLCK, the myosin regulatory light chain (MLC), and the IIA and IIB isoforms of the non-muscle myosin heavy chain in rat IMCD cells. Two-dimensional electrophoresis and matrix-assisted laser desorption ionization time-of-flight mass spectrometry identified two isoforms of MLC, both of which also exist in phosphorylated and non-phosphorylated forms. 32P incubation of the inner medulla followed by autoradiography of two-dimensional gels demonstrated increased 32P labeling of both isoforms in response to the V2 receptor agonist [deamino-Cys1,D-Arg8]vasopressin (DDAVP). Time course studies of MLC phosphorylation in IMCD suspensions (using immunoblotting with anti-phospho-MLC antibodies) showed that the increase in phosphorylation could be detected as early as 30 s after exposure to vasopressin. The MLCK inhibitor ML-7 blocked the DDAVP-induced MLC phosphorylation and substantially reduced [Arg8]vasopressin (AVP)-stimulated water permeability. AVP-induced MLC phosphorylation was associated with a rearrangement of actin filaments (Alexa Fluor 568-phalloidin) in primary cultures of IMCD cells. These results demonstrate that MLC phosphorylation by MLCK represents a downstream effect of AVP-activated calcium/calmodulin signaling in IMCD cells and point to a role for non-muscle myosin II in regulation of water permeability by vasopressin.
Collapse
MESH Headings
- Actins/chemistry
- Actins/metabolism
- Amino Acid Sequence
- Animals
- Aquaporin 2
- Aquaporins/metabolism
- Azepines/pharmacology
- Bridged Bicyclo Compounds, Heterocyclic/pharmacology
- Cells, Cultured
- Deamino Arginine Vasopressin/pharmacology
- Depsipeptides/pharmacology
- Electrophoresis, Gel, Two-Dimensional
- Gizzard, Non-avian/metabolism
- Immunoblotting
- Immunochemistry
- Immunohistochemistry
- Kidney Tubules, Collecting/cytology
- Kidney Tubules, Collecting/metabolism
- Male
- Mass Spectrometry
- Molecular Sequence Data
- Myosin Type II/physiology
- Myosin-Light-Chain Kinase/physiology
- Naphthalenes/pharmacology
- Osmosis
- Peptides/chemistry
- Perfusion
- Phosphorylation
- Protein Isoforms
- Proteome
- Rats
- Rats, Sprague-Dawley
- Signal Transduction
- Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
- Thiazoles/pharmacology
- Thiazolidines
- Time Factors
- Turkey
- Vasopressins/chemistry
- Vasopressins/metabolism
- Water/chemistry
Collapse
Affiliation(s)
- Chung-Lin Chou
- Laboratory of Kidney and Electrolyte Metabolism, NHLBI, National Institutes of Health, Bethesda, Maryland 20892-1603, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Athman R, Louvard D, Robine S. Villin enhances hepatocyte growth factor-induced actin cytoskeleton remodeling in epithelial cells. Mol Biol Cell 2003; 14:4641-53. [PMID: 12937273 PMCID: PMC266779 DOI: 10.1091/mbc.e03-02-0091] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Villin is an actin-binding protein localized to intestinal and kidney brush borders. In vitro, villin has been demonstrated to bundle and sever F-actin in a calcium-dependent manner. Although villin is not necessary for the bundling of F-actin in vivo, it is important for the reorganization of the actin cytoskeleton elicited by stress during both physiological and pathological conditions (Ferrary et al., 1999). These data suggest that villin may be involved in actin cytoskeleton remodeling necessary for many processes requiring cellular plasticity. Here, we study the role of villin in hepatocyte growth factor (HGF)-induced epithelial cell motility and morphogenesis. For this purpose, we used primary cultures of enterocytes derived from wild-type and villin knock-out mice and Madin-Darby canine kidney cells, expressing villin in an inducible manner. In vitro, we show that epithelial cell lysates from villin-expressing cells induced dramatic, calcium-dependent severing of actin filaments. In cell culture, we found that villin-expressing cells exhibit enhanced cell motility and morphogenesis upon HGF stimulation. In addition, we show that the ability of villin to potentiate HGF-induced actin reorganization occurs through the HGF-activated phospholipase Cgamma signaling pathway. Collectively, these data demonstrate that villin acts as a regulator of HGF-induced actin dynamics.
Collapse
Affiliation(s)
- Rafika Athman
- Laboratoire de Morphogenèse et Signalisation Cellulaires, Institut Curie Unité Mixte Recherche 144, 75248 Paris, France
| | | | | |
Collapse
|
48
|
Abstract
This review outlines recent advances related to the molecular mechanisms and pathways of aquaporin-2 (AQP2) water channel trafficking. AQP2 is a fascinating protein, whose sorting signals can be interpreted by different cell types to achieve apical or basolateral membrane insertion, in both regulated and constitutive trafficking pathways. In addition to the well-known cAMP-mediated, stimulatory effect of vasopressin on AQP2 membrane insertion, other signaling and trafficking events can also lead to AQP2 membrane accumulation via cAMP-independent mechanisms. These include 1) elevation of cGMP, mediated by sodium nitroprusside (a nitric oxide donor), atrial natriuretic factor, and l-arginine (via nitric oxide synthase); 2) disruption of the actin cytoskeleton; and 3) inhibition of the clathrin-mediated endocytotic arm of the AQP2 recycling pathway by dominant-negative dynamin expression and by membrane cholesterol depletion. Recent data also indicate that AQP2 recycles constitutively in epithelial cells, it can be inserted into different membrane domains in different cell types both in vitro and in vivo, and these pathways can be modulated by factors including hypertonicity. The roles of accessory proteins, including small GTPases and soluble N-ethylmaleimide-sensitive factor attachment protein receptor proteins in AQP2 membrane insertion, are also being uncovered. Understanding cAMP-independent mechanisms for membrane insertion of AQP2 is especially relevant to the therapeutic bypassing of the mutated, dysfunctional vasopressin receptor in patients with X-linked nephrogenic diabetes insipidus.
Collapse
Affiliation(s)
- Dennis Brown
- Program in Membrane Biology and Renal Unit, Department of Medicine, Massachusetts General Hospital, Charlestown 02129, USA.
| |
Collapse
|
49
|
Lagarrigue E, Maciver SK, Fattoum A, Benyamin Y, Roustan C. Co-operation of domain-binding and calcium-binding sites in the activation of gelsolin. EUROPEAN JOURNAL OF BIOCHEMISTRY 2003; 270:2236-43. [PMID: 12752443 DOI: 10.1046/j.1432-1033.2003.03591.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Gelsolin is an abundant calcium dependent actin filament severing and capping protein. In the absence of calcium the molecule is compact but in the presence of calcium, as its six similar domains alter their relative position, a generally more open configuration is adopted to reveal the three actin binding sites. It is generally held that a 'helical-latch' at the C-terminus of gelsolin's domain 6 (G6), binds domain 2 (G2) to keep gelsolin in the calcium-free compact state, and that the crutial calcium binding site(s) reside in the C-terminal half of gelsolin perhaps involving the C-terminal helix itself has to be bound to release this latch. Here we provide evidence for a calcium dependent conformational change within G2 (Kd = approximately 15 micro m). We also report a calcium dependent binding site for the C-terminus (G4-6) within G2 and delimit this further to a specific region formed by residues 203-225 and 159-193. It is known that the activation of gelsolin involves multiple calcium binding events (around 6) the first of which (in G6) may release the latch. We propose that the calcium-dependent conformational change in G2 may be a subsequent step that is necessary for the dissociation of G2 from G4-6, and that this movement occurs in sympathy with calcium induced conformational changes within G6 by the physical coupling of the two calcium binding sites within G2 and G6. Additional calcium binding in other domains then result in the complete opening and activation of the gelsolin molecule.
Collapse
Affiliation(s)
- Emeline Lagarrigue
- UMR 5539 (CNRS), Laboratoire de motilité cellulaire (Ecole Pratique des Hautes Etudes), Université de Montpellier 2, France
| | | | | | | | | |
Collapse
|
50
|
Visapää H, Bui M, Huang Y, Seligson D, Tsai H, Pantuck A, Figlin R, Rao JYU, Belldegrun A, Horvath S, Palotie A. Correlation of Ki-67 and gelsolin expression to clinical outcome in renal clear cell carcinoma. Urology 2003; 61:845-50. [PMID: 12670587 DOI: 10.1016/s0090-4295(02)02404-4] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
OBJECTIVES To analyze the expression levels of Ki-67 and gelsolin in renal cell carcinoma (RCC) and determine their prognostic value in association with other clinicopathologic factors using tissue microarray technology. Histologic nuclear grade, performance status, and clinical stage are important prognostic factors in RCC. Because patients with tumors of similar grade, performance status, and stage may show a wide variation in biologic behavior and clinical outcome, additional biomarkers for RCC are needed to provide further prognostic information and possibly offer insight into the mechanisms of the disease. METHODS Using a renal cancer tissue microarray, we correlated the expression of Ki-67, a marker of cell proliferation, and gelsolin, an actin-binding protein, with grade, stage, and survival in patients with clear cell RCC. RESULTS In Cox multivariate regression analysis, stage (pT) was the most significant predictor of cancer-specific survival (P <0.0001), followed by Ki-67 (P = 0.0216). In univariate analysis, increased Ki-67 expression predicted poor cancer-specific survival (P = 0.0006) when a cutoff value for Ki-67 staining was applied. In patients with grade 2 tumors, increased Ki-67 expression and decreased gelsolin expression in the same tumor was suggestive of poor cancer-specific survival (P = 0.0507). CONCLUSIONS Our findings support the utility of Ki-67 as a prognostic biomarker for RCC and suggest a role for gelsolin in renal carcinogenesis.
Collapse
Affiliation(s)
- Harri Visapää
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, School of Medicine, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|