1
|
Rifai OM, Waldron FM, Sleibi D, O'Shaughnessy J, Leighton DJ, Gregory JM. Clinicopathological analysis of NEK1 variants in amyotrophic lateral sclerosis. Brain Pathol 2025; 35:e13287. [PMID: 38986433 PMCID: PMC11669413 DOI: 10.1111/bpa.13287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 06/26/2024] [Indexed: 07/12/2024] Open
Abstract
Many genes have been linked to amyotrophic lateral sclerosis (ALS), including never in mitosis A (NIMA)-related kinase 1 (NEK1), a serine/threonine kinase that plays a key role in several cellular functions, such as DNA damage response and cell cycle regulation. Whole-exome sequencing studies have shown that NEK1 mutations are associated with an increased risk for ALS, where a significant enrichment of NEK1 loss-of-function (LOF) variants were found in individuals with ALS compared to controls. In particular, the p.Arg261His missense variant was associated with significantly increased disease susceptibility. This case series aims to understand the neuropathological phenotypes resulting from NEK1 mutations in ALS. We examined a cohort of three Scottish patients with a mutation in the NEK1 gene and evaluated the distribution and cellular expression of NEK1, as well as the abundance of phosphorylated TDP-43 (pTDP-43) aggregates, in the motor cortex compared to age- and sex-matched control tissue. We show pathological, cytoplasmic TDP-43 aggregates in all three NEK1-ALS cases. NEK1 protein staining revealed no immunoreactivity in two of the NEK1-ALS cases, indicating a LOF and corresponding to a reduction in NEK1 mRNA as detected by in situ hybridisation. However, the p.Arg261His missense mutation resulted in an increase in NEK1 mRNA molecules and abundant NEK1-positive cytoplasmic aggregates, with the same morphologic appearance, and within the same cells as co-occurring TDP-43 aggregates. Here we show the first neuropathological assessment of a series of ALS cases carrying mutations in the NEK1 gene. Specifically, we show that TDP-43 pathology is present in these cases and that potential NEK1 LOF can either be mediated through loss of NEK1 translation or through aggregation of NEK1 protein as in the case with p.Arg261His mutation, a potential novel pathological feature of NEK1-ALS.
Collapse
Affiliation(s)
- Olivia M. Rifai
- Centre for Discovery Brain SciencesUniversity of EdinburghEdinburghUK
- Department of NeurologyCenter for Motor Neuron Biology and Disease, Columbia UniversityNew YorkNew YorkUSA
| | | | - Danah Sleibi
- Institute of Medical SciencesUniversity of AberdeenAberdeenUK
| | | | - Danielle J. Leighton
- Department of ChemistryUniversity of EdinburghEdinburghUK
- Department of NeurologyUniversity of GlasgowGlasgowUK
- School of Psychology & NeuroscienceUniversity of GlasgowGlasgowUK
- Euan MacDonald Centre for Motor Neuron Disease ResearchUniversity of EdinburghEdinburghUK
| | | |
Collapse
|
2
|
Wang Q, Liu X, Yuan J, Yang T, Ding L, Song B, Xu Y. Nek6 regulates autophagy through the mTOR signaling pathway to alleviate cerebral ischemia-reperfusion injury. Mol Brain 2024; 17:96. [PMID: 39702325 DOI: 10.1186/s13041-024-01166-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 11/22/2024] [Indexed: 12/21/2024] Open
Abstract
OBJECTIVE Cerebral ischemia-reperfusion injury (CIRI) is a major obstacle to neurological recovery after clinical treatment of ischemic stroke. The aim of this study was to investigate the molecular mechanism of Nek6 alleviating CIRI through autophagy after cerebral ischemia. MATERIALS AND METHODS A mouse model of CIRI was constructed by middle cerebral artery occlusion (MCAO). TUNEL staining was used to observe the apoptosis of neuronal cells. The oxygen glucose deprivation/reoxygenation (OGD/R) model was established by hypoxia and reoxygenation. The cell apoptosis and activity was detected. Western blot was performed to detect the expression of autophagy-related proteins, protein kinase B (Akt)/mammalian target of rapamycin (mTOR) and adenosine 5'-monophosphate-activated protein kinase (AMPK)/mTOR signaling pathway-related proteins. Cellular autophagy flux was observed by fluorometric method. NIMA-related kinase 6 (Nek6) mRNA stability was detected by actinomycin D treatment. Methylation RNA immunoprecipitation technique was used to detect Nek6 methylation level. RESULTS Nek6 expression was increased in both MCAO and OGD/R models. Overexpression of Nek6 in OGD/R inhibited apoptosis, decreased LC3II and Beclin-1 expression, increased p62 expression, and occurred lysosome dysfunction. Interference with Nek6 has opposite results. Nek6 overexpression promoted p-Akt and p-mTOR protein expressions, inhibited p-AMPK and p-UNC-51-like kinase 1 protein expressions and cell apoptosis, while LY294002, Rapamycin or RSVA405 treatment reversed this effect. Abnormal methyltransferase·like protein 3 (METTL3) expression in CIRI enhanced m6A modification and promoted Nek6 expression level. CONCLUSION This study confirmed that Nek6 regulates autophagy and alleviates CIRI through the mTOR signaling pathway, which provides a novel therapeutic strategy for patients with ischemic stroke in the future.
Collapse
Affiliation(s)
- Qingzhi Wang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, No. 1 Eastern Jian-She Road, Zhengzhou, 450052, Henan, China
- Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- NHC Key Laboratory of Prevention and Treatment of Cerebrovascular Disease, Zhengzhou, China
| | - Xinjing Liu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, No. 1 Eastern Jian-She Road, Zhengzhou, 450052, Henan, China
- Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- NHC Key Laboratory of Prevention and Treatment of Cerebrovascular Disease, Zhengzhou, China
| | - Jing Yuan
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, No. 1 Eastern Jian-She Road, Zhengzhou, 450052, Henan, China
- Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- NHC Key Laboratory of Prevention and Treatment of Cerebrovascular Disease, Zhengzhou, China
| | - Ting Yang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, No. 1 Eastern Jian-She Road, Zhengzhou, 450052, Henan, China
- Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- NHC Key Laboratory of Prevention and Treatment of Cerebrovascular Disease, Zhengzhou, China
| | - Lan Ding
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, No. 1 Eastern Jian-She Road, Zhengzhou, 450052, Henan, China
- Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- NHC Key Laboratory of Prevention and Treatment of Cerebrovascular Disease, Zhengzhou, China
| | - Bo Song
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, No. 1 Eastern Jian-She Road, Zhengzhou, 450052, Henan, China
- Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- NHC Key Laboratory of Prevention and Treatment of Cerebrovascular Disease, Zhengzhou, China
| | - Yuming Xu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, No. 1 Eastern Jian-She Road, Zhengzhou, 450052, Henan, China.
- Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
- NHC Key Laboratory of Prevention and Treatment of Cerebrovascular Disease, Zhengzhou, China.
| |
Collapse
|
3
|
Dwivedi D, Meraldi P. Balancing Plk1 activity levels: The secret of synchrony between the cell and the centrosome cycle. Bioessays 2024; 46:e2400048. [PMID: 39128131 DOI: 10.1002/bies.202400048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 07/29/2024] [Accepted: 08/01/2024] [Indexed: 08/13/2024]
Abstract
The accuracy of cell division requires precise regulation of the cellular machinery governing DNA/genome duplication, ensuring its equal distribution among the daughter cells. The control of the centrosome cycle is crucial for the formation of a bipolar spindle, ensuring error-free segregation of the genome. The cell and centrosome cycles operate in close synchrony along similar principles. Both require a single duplication round in every cell cycle, and both are controlled by the activity of key protein kinases. Nevertheless, our comprehension of the precise cellular mechanisms and critical regulators synchronizing these two cycles remains poorly defined. Here, we present our hypothesis that the spatiotemporal regulation of a dynamic equilibrium of mitotic kinases activities forms a molecular clock that governs the synchronous progression of both the cell and the centrosome cycles.
Collapse
Affiliation(s)
- Devashish Dwivedi
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Translational Research Centre in Onco-haematology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Patrick Meraldi
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Translational Research Centre in Onco-haematology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|
4
|
Zelina P, de Ruiter AA, Kolsteeg C, van Ginneken I, Vos HR, Supiot LF, Burgering BMT, Meye FJ, Veldink JH, van den Berg LH, Pasterkamp RJ. ALS-associated C21ORF2 variant disrupts DNA damage repair, mitochondrial metabolism, neuronal excitability and NEK1 levels in human motor neurons. Acta Neuropathol Commun 2024; 12:144. [PMID: 39227882 PMCID: PMC11373222 DOI: 10.1186/s40478-024-01852-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 08/15/2024] [Indexed: 09/05/2024] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is an adult-onset neurodegenerative disease leading to motor neuron loss. Currently mutations in > 40 genes have been linked to ALS, but the contribution of many genes and genetic mutations to the ALS pathogenic process remains poorly understood. Therefore, we first performed comparative interactome analyses of five recently discovered ALS-associated proteins (C21ORF2, KIF5A, NEK1, TBK1, and TUBA4A) which highlighted many novel binding partners, and both unique and shared interactors. The analysis further identified C21ORF2 as a strongly connected protein. The role of C21ORF2 in neurons and in the nervous system, and of ALS-associated C21ORF2 variants is largely unknown. Therefore, we combined human iPSC-derived motor neurons with other models and different molecular cell biological approaches to characterize the potential pathogenic effects of C21ORF2 mutations in ALS. First, our data show C21ORF2 expression in ALS-relevant mouse and human neurons, such as spinal and cortical motor neurons. Further, the prominent ALS-associated variant C21ORF2-V58L caused increased apoptosis in mouse neurons and movement defects in zebrafish embryos. iPSC-derived motor neurons from C21ORF2-V58L-ALS patients, but not isogenic controls, show increased apoptosis, and changes in DNA damage response, mitochondria and neuronal excitability. In addition, C21ORF2-V58L induced post-transcriptional downregulation of NEK1, an ALS-associated protein implicated in apoptosis and DDR. In all, our study defines the pathogenic molecular and cellular effects of ALS-associated C21ORF2 mutations and implicates impaired post-transcriptional regulation of NEK1 downstream of mutant C21ORF72 in ALS.
Collapse
Affiliation(s)
- Pavol Zelina
- Department of Translational Neuroscience, University Medical Center Utrecht Brain Center, Utrecht University, Universiteitsweg 100, 3584 CG, Utrecht, The Netherlands
| | - Anna Aster de Ruiter
- Department of Translational Neuroscience, University Medical Center Utrecht Brain Center, Utrecht University, Universiteitsweg 100, 3584 CG, Utrecht, The Netherlands
| | - Christy Kolsteeg
- Department of Translational Neuroscience, University Medical Center Utrecht Brain Center, Utrecht University, Universiteitsweg 100, 3584 CG, Utrecht, The Netherlands
| | - Ilona van Ginneken
- Department of Translational Neuroscience, University Medical Center Utrecht Brain Center, Utrecht University, Universiteitsweg 100, 3584 CG, Utrecht, The Netherlands
| | - Harmjan R Vos
- Center for Molecular Medicine, Oncode Institute, University Medical Center Utrecht, Utrecht University, Universiteitsweg 100, 3584 CG, Utrecht, The Netherlands
| | - Laura F Supiot
- Department of Translational Neuroscience, University Medical Center Utrecht Brain Center, Utrecht University, Universiteitsweg 100, 3584 CG, Utrecht, The Netherlands
| | - Boudewijn M T Burgering
- Center for Molecular Medicine, Oncode Institute, University Medical Center Utrecht, Utrecht University, Universiteitsweg 100, 3584 CG, Utrecht, The Netherlands
| | - Frank J Meye
- Department of Translational Neuroscience, University Medical Center Utrecht Brain Center, Utrecht University, Universiteitsweg 100, 3584 CG, Utrecht, The Netherlands
| | - Jan H Veldink
- Department of Neurology and Neurosurgery, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, 3584 CX, Utrecht, The Netherlands
| | - Leonard H van den Berg
- Department of Neurology and Neurosurgery, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, 3584 CX, Utrecht, The Netherlands
| | - R Jeroen Pasterkamp
- Department of Translational Neuroscience, University Medical Center Utrecht Brain Center, Utrecht University, Universiteitsweg 100, 3584 CG, Utrecht, The Netherlands.
| |
Collapse
|
5
|
Bayliss R, Fry T, Mahen R, Shackleton S, Tanaka K. Remembering Andrew Fry (1966-2024). J Cell Sci 2024; 137:jcs263478. [PMID: 39240162 DOI: 10.1242/jcs.263478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2024] Open
Abstract
In this article we reflect on the life and work of Andrew Fry, a renowned molecular cell biologist and a cherished member of the scientific community at the University of Leicester, UK, who passed away on 30th April 2024 at the age of 57. His groundbreaking work on the cellular mechanisms of Never in Mitosis gene-A related kinases (Neks) made an indelible mark on the field. Alongside his scientific achievements, Andrew was an exceptional mentor, a thoughtful academic leader and a dependable collaborator. To understand what motivated Andrew, we first need to look into his background.
Collapse
Affiliation(s)
- Richard Bayliss
- School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, UK
| | | | - Robert Mahen
- Department of Molecular and Cell Biology, University of Leicester, Leicester LE1 7RH, UK
| | - Sue Shackleton
- Department of Molecular and Cell Biology, University of Leicester, Leicester LE1 7RH, UK
| | - Kayoko Tanaka
- Department of Molecular and Cell Biology, University of Leicester, Leicester LE1 7RH, UK
| |
Collapse
|
6
|
Gu S, Yasen Y, Wang M, Huang B, Zhou Y, Wang W. NEK2 promotes the migration, invasion, proliferation of ESCC and mediates ESCC immunotherapy. Heliyon 2024; 10:e29682. [PMID: 38707418 PMCID: PMC11066149 DOI: 10.1016/j.heliyon.2024.e29682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 04/06/2024] [Accepted: 04/12/2024] [Indexed: 05/07/2024] Open
Abstract
Purpose Esophageal squamous cell carcinoma (ESCC) is a disease with a high incidence rate and high mortality worldwide. The Never in Mitosis A (NIMA) family member NIMA-related kinase 2 (NEK2) plays an important role in mitosis. However, the role of NEK2 in the pathogenesis of ESCC remains unclear. Patients and methods The expression and function of NEK2 in TCGA and GEO data sets were analyzed by bioinformatics. We verified the expression of NEK2 in ESCC tissues and cell lines by Western blotting and immunohistochemical methods and further explored the relationship between tumor stage and NEK2 expression. The differences in NEK2 expression and survival in patients with EC were verified by bioinformatics analysis. ESCC cell lines with stable knockdown of NEK2 were established by lentivirus-mediated shRNA delivery. The effects of NEK2 on ESCC cells were analyzed on the cytological level with assays including CCK-8, EdU, cell scratch, Transwell migration and invasion, colony formation, flow cytometry and apoptosis assays. Tumor growth was measured in a mouse xenograft model. Results We found that NEK2 is highly expressed in ESCC tissues and ESCC cells and that the high expression of NEK2 is associated with poor tumor healing. Knockdown of the NEK2 gene inhibits the migration, proliferation, invasion and cell cycle of ESCC cells. Biologic analysis shows that NEK2 is involved in biological processes such as progression and apoptosis of esophageal cancer, and is related to E2F.Mechanistically, NEK2 knockdown decreases the expression levels of E2F1 and IGF2. NEK2 competes with the transcription factor E2F1 to bind CDC20, resulting in decreased degradation and increased expression of E2F1. IGF2 expression is also increased, which promotes the expression of thymidylate synthase, further promoting the drug resistance of ESCC cells. NEK2 is associated with immune infiltration in esophageal cancer. Conclusion NEK2 is highly expressed in ESCC and can promote the migration, proliferation and invasion of ESCC cells. NEK2 mediates ESCC immunotherapy.
Collapse
Affiliation(s)
- Shaorui Gu
- Department of Cardiothoracic Surgery, Shanghai Tongji Hospital Affiliated With Tongji University, Shanghai, 200065, PR China
| | - YakuFujiang Yasen
- Department of Cardiothoracic Surgery, Shanghai Tongji Hospital Affiliated With Tongji University, Shanghai, 200065, PR China
| | - Mengying Wang
- Department of Anesthesiology, Shuguang Hospital Affiliated With Shanghai University of Traditional Chinese Medicine, Shanghai, PR China
| | - Baiqing Huang
- Department of Cardiothoracic Surgery, Shanghai Tongji Hospital Affiliated With Tongji University, Shanghai, 200065, PR China
| | - Yongxin Zhou
- Department of Cardiothoracic Surgery, Shanghai Tongji Hospital Affiliated With Tongji University, Shanghai, 200065, PR China
| | - Wenli Wang
- Department of Cardiothoracic Surgery, Shanghai Tongji Hospital Affiliated With Tongji University, Shanghai, 200065, PR China
| |
Collapse
|
7
|
Zhou HY, Wang YC, Wang T, Wu W, Cao YY, Zhang BC, Wang MD, Mao P. CCNA2 and NEK2 regulate glioblastoma progression by targeting the cell cycle. Oncol Lett 2024; 27:206. [PMID: 38516683 PMCID: PMC10956385 DOI: 10.3892/ol.2024.14339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 02/05/2024] [Indexed: 03/23/2024] Open
Abstract
Glioblastoma (GBM) is characterized by significant heterogeneity, leading to poor survival outcomes for patients, despite the implementation of comprehensive treatment strategies. The roles of cyclin A2 (CCNA2) and NIMA related kinase 2 (NEK2) have been extensively studied in numerous cancers, but their specific functions in GBM remain to be elucidated. The present study aimed to investigate the potential molecular mechanisms of CCNA2 and NEK2 in GBM. CCNA2 and NEK2 expression and prognosis in glioma were evaluated by bioinformatics methods. In addition, the distribution of CCNA2 and NEK2 expression in GBM subsets was determined using pseudo-time analysis and tricycle position of single-cell sequencing. Gene Expression Omnibus and Kyoto Encyclopedia of Genes and Genome databases were employed and enrichment analyses were conducted to investigate potential signaling pathways in GBM subsets and a nomogram was established to predict 1-, 2- and 3-year overall survival probability in GBM. CCNA2 and NEK2 expression levels were further validated by western blot analysis and immunohistochemical staining in GBM samples. High expression of CCNA2 and NEK2 in glioma indicates poor clinical outcomes. Single-cell sequencing of GBM revealed that these genes were upregulated in a subset of positive neural progenitor cells (P-NPCs), which showed significant proliferation and progression properties and may activate G2M checkpoint pathways. A comprehensive nomogram predicts 1-, 2- and 3-year overall survival probability in GBM by considering P-NPCs, age, chemotherapy and radiotherapy scores. CCNA2 and NEK2 regulate glioblastoma progression by targeting the cell cycle, thus indicating the potential of novel therapy directed to CCNA2 and NEK2 in GBM.
Collapse
Affiliation(s)
- Hao-Yu Zhou
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Yi-Chang Wang
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Tuo Wang
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Wei Wu
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Yi-Yang Cao
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Bei-Chen Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Mao-De Wang
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Ping Mao
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| |
Collapse
|
8
|
Zhou X, Nie H, Wang C, Yu X, Yang X, He X, Ou C. Prognostic value and therapeutic potential of NEK family in stomach adenocarcinoma. J Cancer 2024; 15:3154-3172. [PMID: 38706902 PMCID: PMC11064251 DOI: 10.7150/jca.90197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 03/27/2024] [Indexed: 05/07/2024] Open
Abstract
Never in mitosis gene A-related kinase (NEK) is an 11-membered family of serine/threonine kinases (NEK1-NEK11), which are known to play important roles in the formation and development of cancer. However, few studies have examined the roles of these kinases in the development of stomach adenocarcinoma (STAD). In this study, we conducted a comprehensive analysis of the relationships between the NEKs family members and STAD. The differential expression of the NEK genes in STAD was validated using The Cancer Genome Atlas (TCGA) and Tumor Immune Estimation Resource (TIMER) databases, and their prognostic and diagnostic values of NEKs in STAD were assessed using the Kaplan-Meier plotter and TCGA data. The effect of NEK expression on immune cell infiltration in STAD was analysed using the TIMER and TISIDB databases. The expression levels of the majority of the NEK family members were consistently upregulated in STAD, whereas that of NEK10 was downregulated. The upregulation of NEK2/3/4/5/6/8 was closely associated with clinicopathological parameters of patients, and the overexpressed levels of these proteins had good diagnostic value for the disease. NEK1/8/9/10/11 expression correlated with poor overall survival and post-progressive survival, whereas a higher NEK1/6/9/11 level implied worse first progressive survival. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses revealed that the NEKs may be related to immunological responses. Additionally, our study confirmed that these kinases correlated with immune cell infiltration and different immune infiltration subtypes in STAD. Our results suggest that NEK9 in particular has the potential to be used as a diagnostic and prognostic biomarker of STAD development and progression and an immune target for treatment of the disease. These findings expand our understanding of the biological functions of the NEK family members in STAD.
Collapse
Affiliation(s)
- Xunjian Zhou
- Department of Pathology, The First Hospital of Changsha (The Affiliated Changsha Hospital of Xiangya School of Medicine, Central South University), Changsha 410013, Hunan, China
| | - Hui Nie
- Department of Pathology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Chunrong Wang
- Department of Pathology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Xiaoqian Yu
- Department of Pathology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Xuejie Yang
- Department of Pathology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Xiaoyun He
- Departments of Ultrasound Imaging, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Chunlin Ou
- Department of Pathology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| |
Collapse
|
9
|
Flax RG, Rosston P, Rocha C, Anderson B, Capener JL, Durcan TM, Drewry DH, Prinos P, Axtman AD. Illumination of understudied ciliary kinases. Front Mol Biosci 2024; 11:1352781. [PMID: 38523660 PMCID: PMC10958382 DOI: 10.3389/fmolb.2024.1352781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 01/29/2024] [Indexed: 03/26/2024] Open
Abstract
Cilia are cellular signaling hubs. Given that human kinases are central regulators of signaling, it is not surprising that kinases are key players in cilia biology. In fact, many kinases modulate ciliogenesis, which is the generation of cilia, and distinct ciliary pathways. Several of these kinases are understudied with few publications dedicated to the interrogation of their function. Recent efforts to develop chemical probes for members of the cyclin-dependent kinase like (CDKL), never in mitosis gene A (NIMA) related kinase (NEK), and tau tubulin kinase (TTBK) families either have delivered or are working toward delivery of high-quality chemical tools to characterize the roles that specific kinases play in ciliary processes. A better understanding of ciliary kinases may shed light on whether modulation of these targets will slow or halt disease onset or progression. For example, both understudied human kinases and some that are more well-studied play important ciliary roles in neurons and have been implicated in neurodevelopmental, neurodegenerative, and other neurological diseases. Similarly, subsets of human ciliary kinases are associated with cancer and oncological pathways. Finally, a group of genetic disorders characterized by defects in cilia called ciliopathies have associated gene mutations that impact kinase activity and function. This review highlights both progress related to the understanding of ciliary kinases as well as in chemical inhibitor development for a subset of these kinases. We emphasize known roles of ciliary kinases in diseases of the brain and malignancies and focus on a subset of poorly characterized kinases that regulate ciliary biology.
Collapse
Affiliation(s)
- Raymond G. Flax
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Peter Rosston
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Cecilia Rocha
- The Neuro’s Early Drug Discovery Unit (EDDU), McGill University, Montreal, QC, Canada
| | - Brian Anderson
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Jacob L. Capener
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Thomas M. Durcan
- The Neuro’s Early Drug Discovery Unit (EDDU), McGill University, Montreal, QC, Canada
| | - David H. Drewry
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- UNC Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Panagiotis Prinos
- Structural Genomics Consortium, University of Toronto, Toronto, ON, Canada
| | - Alison D. Axtman
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
10
|
Roka Pun H, Karp X. An RNAi screen for conserved kinases that enhance microRNA activity after dauer in Caenorhabditis elegans. G3 (BETHESDA, MD.) 2024; 14:jkae007. [PMID: 38226857 PMCID: PMC10917497 DOI: 10.1093/g3journal/jkae007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 10/17/2023] [Accepted: 01/05/2024] [Indexed: 01/17/2024]
Abstract
Gene regulation in changing environments is critical for maintaining homeostasis. Some animals undergo a stress-resistant diapause stage to withstand harsh environmental conditions encountered during development. MicroRNAs are one mechanism for regulating gene expression during and after diapause. MicroRNAs downregulate target genes posttranscriptionally through the activity of the microRNA-induced silencing complex. Argonaute is the core microRNA-induced silencing complex protein that binds to both the microRNA and to other microRNA-induced silencing complex proteins. The 2 major microRNA Argonautes in the Caenorhabditis elegans soma are ALG-1 and ALG-2, which function partially redundantly. Loss of alg-1 [alg-1(0)] causes penetrant developmental phenotypes including vulval defects and the reiteration of larval cell programs in hypodermal cells. However, these phenotypes are essentially absent if alg-1(0) animals undergo a diapause stage called dauer. Levels of the relevant microRNAs are not higher during or after dauer, suggesting that activity of the microRNA-induced silencing complex may be enhanced in this context. To identify genes that are required for alg-1(0) mutants to develop without vulval defects after dauer, we performed an RNAi screen of genes encoding conserved kinases. We focused on kinases because of their known role in modulating microRNA-induced silencing complex activity. We found RNAi knockdown of 4 kinase-encoding genes, air-2, bub-1, chk-1, and nekl-3, caused vulval defects and reiterative phenotypes in alg-1(0) mutants after dauer, and that these defects were more penetrant in an alg-1(0) background than in wild type. Our results implicate these kinases as potential regulators of microRNA-induced silencing complex activity during postdauer development in C. elegans.
Collapse
Affiliation(s)
- Himal Roka Pun
- Department of Biology, Central Michigan University, Mount Pleasant, MI 48859, USA
- Biochemistry, Cell and Molecular Biology Program, Central Michigan University, Mount Pleasant, MI 48859, USA
| | - Xantha Karp
- Department of Biology, Central Michigan University, Mount Pleasant, MI 48859, USA
- Biochemistry, Cell and Molecular Biology Program, Central Michigan University, Mount Pleasant, MI 48859, USA
| |
Collapse
|
11
|
Schatten H. The Impact of Centrosome Pathologies on Ovarian Cancer Development and Progression with a Focus on Centrosomes as Therapeutic Target. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1452:37-64. [PMID: 38805124 DOI: 10.1007/978-3-031-58311-7_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
The impact of centrosome abnormalities on cancer cell proliferation has been recognized as early as 1914 (Boveri, Zur Frage der Entstehung maligner Tumoren. Jena: G. Fisher, 1914), but vigorous research on molecular levels has only recently started when it became fully apparent that centrosomes can be targeted for new cancer therapies. While best known for their microtubule-organizing capabilities as MTOC (microtubule organizing center) in interphase and mitosis, centrosomes are now further well known for a variety of different functions, some of which are related to microtubule organization and consequential activities such as cell division, migration, maintenance of cell shape, and vesicle transport powered by motor proteins, while other functions include essential roles in cell cycle regulation, metabolic activities, signal transduction, proteolytic activity, and several others that are now heavily being investigated for their role in diseases and disorders (reviewed in Schatten and Sun, Histochem Cell Biol 150:303-325, 2018; Schatten, Adv Anat Embryol Cell Biol 235:43-50, 2022a; Schatten, Adv Anat Embryol Cell Biol 235:17-35, 2022b).Cancer cell centrosomes differ from centrosomes in noncancer cells in displaying specific abnormalities that include phosphorylation abnormalities, overexpression of specific centrosomal proteins, abnormalities in centriole and centrosome duplication, formation of multipolar spindles that play a role in aneuploidy and genomic instability, and several others that are highlighted in the present review on ovarian cancer. Ovarian cancer cell centrosomes, like those in other cancers, display complex abnormalities that in part are based on the heterogeneity of cells in the cancer tissues resulting from different etiologies of individual cancer cells that will be discussed in more detail in this chapter.Because of the critical role of centrosomes in cancer cell proliferation, several lines of research are being pursued to target centrosomes for therapeutic intervention to inhibit abnormal cancer cell proliferation and control tumor progression. Specific centrosome abnormalities observed in ovarian cancer will be addressed in this chapter with a focus on targeting such aberrations for ovarian cancer-specific therapies.
Collapse
Affiliation(s)
- Heide Schatten
- University of Missouri-Columbia Department of Veterinary Pathobiology, Columbia, MO, USA.
| |
Collapse
|
12
|
Chen Y, Zhang Y, Zhou X. Non-classical functions of nuclear pore proteins in ciliopathy. Front Mol Biosci 2023; 10:1278976. [PMID: 37908226 PMCID: PMC10614291 DOI: 10.3389/fmolb.2023.1278976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 10/02/2023] [Indexed: 11/02/2023] Open
Abstract
Nucleoporins (NUPs) constitute integral nuclear pore protein (NPC) elements. Although traditional NUP functions have been extensively researched, evidence of additional vital non-NPC roles, referred to herein as non-classical NUP functions, is also emerging. Several NUPs localise at the ciliary base. Indeed, Nup188, Nup93 or Nup205 knockdown results in cilia loss, impacting cardiac left-right patterning in models and cell lines. Genetic variants of Nup205 and Nup188 have been identified in patients with congenital heart disease and situs inversus totalis or heterotaxy, a prevalent human ciliopathy. These findings link non-classical NUP functions to human diseases. This mini-review summarises pivotal NUP interactions with NIMA-related kinases or nephronophthisis proteins that regulate ciliary function and explores other NUPs potentially implicated in cilia-related disorders. Overall, elucidating the non-classical roles of NUPs will enhance comprehension of ciliopathy aetiology.
Collapse
Affiliation(s)
- Yan Chen
- Obstetrics and Gynecology Hospital of Fudan University, Fudan University Shanghai Medical College, Shanghai, China
| | - Yuan Zhang
- Department of Assisted Reproduction, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xiangyu Zhou
- Obstetrics and Gynecology Hospital of Fudan University, Fudan University Shanghai Medical College, Shanghai, China
| |
Collapse
|
13
|
Drozd CJ, Quinn CC. UNC-116 and UNC-16 function with the NEKL-3 kinase to promote axon targeting. Development 2023; 150:dev201654. [PMID: 37756604 PMCID: PMC10561693 DOI: 10.1242/dev.201654] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023]
Abstract
KIF5C is a kinesin-1 heavy chain that has been associated with neurodevelopmental disorders. Although the roles of kinesin-1 in axon transport are well known, little is known about how it regulates axon targeting. We report that UNC-116/KIF5C functions with the NEKL-3/NEK6/7 kinase to promote axon targeting in Caenorhabditis elegans. Loss of UNC-116 causes the axon to overshoot its target and UNC-116 gain-of-function causes premature axon termination. We find that loss of the UNC-16/JIP3 kinesin-1 cargo adaptor disrupts axon termination, but loss of kinesin-1 light chain function does not affect axon termination. Genetic analysis indicates that UNC-16 functions with the NEKL-3 kinase to promote axon termination. Consistent with this observation, imaging experiments indicate that loss of UNC-16 and UNC-116 disrupt localization of NEKL-3 in the axon. Moreover, genetic interactions suggest that NEKL-3 promotes axon termination by functioning with RPM-1, a ubiquitin ligase that regulates microtubule stability in the growth cone. These observations support a model where UNC-116 functions with UNC-16 to promote localization of NEKL-3 in the axon. NEKL-3, in turn, functions with the RPM-1 ubiquitin ligase to promote axon termination.
Collapse
Affiliation(s)
- Cody J. Drozd
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI 53201, USA
| | - Christopher C. Quinn
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI 53201, USA
| |
Collapse
|
14
|
Castresana JS, Shahi MH, Sharma A. Editorial: The role of transcription factors, stem cell markers and epigenetics contributing to chemoresistance in brain cancers. Front Oncol 2023; 13:1263469. [PMID: 37727217 PMCID: PMC10505812 DOI: 10.3389/fonc.2023.1263469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 08/21/2023] [Indexed: 09/21/2023] Open
Affiliation(s)
- Javier S. Castresana
- Department of Biochemistry and Genetics, University of Navarra School of Sciences, Pamplona, Spain
| | - Mehdi H. Shahi
- Interdisciplinary Brain Research Centre, Faculty of Medicine, Aligarh Muslim University, Aligarh, India
| | - Ashok Sharma
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
15
|
Cao B, Zhang K, Pan C, Dong Y, Lu F. NEK8 regulates colorectal cancer progression via phosphorylating MYC. Cell Commun Signal 2023; 21:209. [PMID: 37596667 PMCID: PMC10436496 DOI: 10.1186/s12964-023-01215-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 07/04/2023] [Indexed: 08/20/2023] Open
Abstract
Radiotherapy and chemotherapy remain the mainstay of treatment for colorectal cancer (CRC), although their efficacy is limited. A detailed understanding of the molecular mechanisms underlying CRC progression could lead to the development of new therapeutic strategies. Although it has been established that MYC signaling is dysregulated in various human cancers, direct targeting MYC remains challenging due to its "undruggable" protein structure. Post-translational modification of proteins can affect their stability, activation, and subcellular localization. Hence, targeting the post-translational modification of MYC represents a promising approach to disrupting MYC signaling. Herein, we revealed that NEK8 positively regulates CRC progression by phosphorylating c-MYC protein at serine 405, which exhibited enhanced stability via polyubiquitination. Our findings shed light on the role of NEK8/MYC signaling in CRC progression, offering a novel and helpful target for colorectal cancer treatment. Video Abstract.
Collapse
Affiliation(s)
- Beibei Cao
- Department of Breast Surgery, Henan Provincial People's Hospital, Zhengzhou City, China
| | - Kailun Zhang
- Zhengzhou University People's Hospital, Zhengzhou City, China
| | - Changjie Pan
- Zhengzhou University People's Hospital, Zhengzhou City, China
| | - Yifei Dong
- Zhengzhou University People's Hospital, Zhengzhou City, China
| | - Feng Lu
- Department of Breast Surgery, Henan Provincial People's Hospital, Zhengzhou City, China.
| |
Collapse
|
16
|
Lu G, Du R, Dong J, Sun Y, Zhou F, Feng F, Feng B, Han Y, Shang Y. Cancer associated fibroblast derived SLIT2 drives gastric cancer cell metastasis by activating NEK9. Cell Death Dis 2023; 14:421. [PMID: 37443302 PMCID: PMC10344862 DOI: 10.1038/s41419-023-05965-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 06/29/2023] [Accepted: 07/06/2023] [Indexed: 07/15/2023]
Abstract
The secretory properties of cancer-associated fibroblasts (CAFs) play predominant roles in shaping a pro-metastatic tumor microenvironment. The present study demonstrated that SLIT2, an axon guidance protein, produced by CAFs and promoted gastric cancer (GC) metastasis in two gastric cancer cell lines (AGS and MKN45) by binding to roundabout guidance receptor 1 (ROBO1). Mass-spectrometry analysis revealed that ROBO1 could interact with NEK9, a serine/threonine kinase. And their mutual binding activities were further enhanced by SLIT2. Domain analysis revealed the kinase domain of NEK9 was critical in its interaction with the intracellular domain (ICD) of ROBO1, and it also directly phosphorylated tripartite motif containing 28 (TRIM28) and cortactin (CTTN) in AGS and MKN45 cells. TRIM28 function as a transcriptional elongation factor, which directly facilitate CTTN activation. In addition, Bioinformatics analysis and experimental validation identified transcriptional regulation of STAT3 and NF-κB p100 by TRIM28, and a synergetic transcription of CTTN by STAT3 and NF-κB p100 was also observed in AGS and MKN45. Therefore, CAF-derived SLIT2 increased the expression and phosphorylation levels of CTTN, which induced cytoskeletal reorganization and GC cells metastasis. A simultaneous increase in the expression levels of NEK9, TRIM28 and CTTN was found in metastatic GC lesions compared with paired non-cancerous tissues and primary cancer lesions via IHC and Multiplex IHC. The analysis of the data from a cohort of patients with GC revealed that increased levels of NEK9, TRIM28 and CTTN were associated with a decreased overall survival rate. On the whole, these findings revealed the connections of CAFs and cancer cells through SLIT2/ROBO1 and inflammatory signaling, and the key molecules involved in this process may serve as potential biomarkers and therapeutic targets for GC.
Collapse
Affiliation(s)
- Guofang Lu
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, China
- Department of Physiology and Pathophysiology, National Key Discipline of Cell Biology, Fourth Military Medical University, Xi'an, 710032, China
| | - Rui Du
- Institute for Biomedical Sciences of Pain, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, China
| | - Jiaqiang Dong
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, China
| | - Yi Sun
- Department of Ultrasound Diagnostics, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, China
| | - Fenli Zhou
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, China
| | - Fan Feng
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, China
| | - Bin Feng
- Department of Radiation Oncology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China.
| | - Ying Han
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, China.
| | - Yulong Shang
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, China.
| |
Collapse
|
17
|
Huynh TV, Hall AS, Xu S. The Transcriptomic Signature of Cyclical Parthenogenesis. Genome Biol Evol 2023; 15:evad122. [PMID: 37392457 PMCID: PMC10340444 DOI: 10.1093/gbe/evad122] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 06/13/2023] [Accepted: 06/28/2023] [Indexed: 07/03/2023] Open
Abstract
Cyclical parthenogenesis, where females can engage in sexual or asexual reproduction depending on environmental conditions, represents a novel reproductive phenotype that emerged during eukaryotic evolution. The fact that environmental conditions can trigger cyclical parthenogens to engage in distinct reproductive modes strongly suggests that gene expression plays a key role in the origin of cyclical parthenogenesis. However, the genetic basis underlying cyclical parthenogenesis remains understudied. In this study, we characterize the female transcriptomic signature of sexual versus asexual reproduction in the cyclically parthenogenetic microcrustacean Daphnia pulex and Daphnia pulicaria. Our analyses of differentially expressed genes (DEGs), pathway enrichment, and gene ontology (GO) term enrichment clearly show that compared with sexual reproduction, the asexual reproductive stage is characterized by both the underregulation of meiosis and cell cycle genes and the upregulation of metabolic genes. The consensus set of DEGs that this study identifies within the meiotic, cell cycle, and metabolic pathways serves as candidate genes for future studies investigating how the two reproductive cycles in cyclical parthenogenesis are mediated at a molecular level. Furthermore, our analyses identify some cases of divergent expression among gene family members (e.g., doublesex and NOTCH2) associated with asexual or sexual reproductive stage, suggesting potential functional divergence among gene family members.
Collapse
Affiliation(s)
- Trung Viet Huynh
- Department of Biology, University of Texas at Arlington, Arlington, Texas, USA
| | - Alexander S Hall
- Department of Biology, University of Texas at Arlington, Arlington, Texas, USA
| | - Sen Xu
- Department of Biology, University of Texas at Arlington, Arlington, Texas, USA
| |
Collapse
|
18
|
Wilk EJ, Howton TC, Fisher JL, Oza VH, Brownlee RT, McPherson KC, Cleary HL, Yoder BK, George JF, Mrug M, Lasseigne BN. Prioritized polycystic kidney disease drug targets and repurposing candidates from pre-cystic and cystic mouse Pkd2 model gene expression reversion. Mol Med 2023; 29:67. [PMID: 37217845 PMCID: PMC10201779 DOI: 10.1186/s10020-023-00664-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 05/10/2023] [Indexed: 05/24/2023] Open
Abstract
BACKGROUND Autosomal dominant polycystic kidney disease (ADPKD) is one of the most prevalent monogenic human diseases. It is mostly caused by pathogenic variants in PKD1 or PKD2 genes that encode interacting transmembrane proteins polycystin-1 (PC1) and polycystin-2 (PC2). Among many pathogenic processes described in ADPKD, those associated with cAMP signaling, inflammation, and metabolic reprogramming appear to regulate the disease manifestations. Tolvaptan, a vasopressin receptor-2 antagonist that regulates cAMP pathway, is the only FDA-approved ADPKD therapeutic. Tolvaptan reduces renal cyst growth and kidney function loss, but it is not tolerated by many patients and is associated with idiosyncratic liver toxicity. Therefore, additional therapeutic options for ADPKD treatment are needed. METHODS As drug repurposing of FDA-approved drug candidates can significantly decrease the time and cost associated with traditional drug discovery, we used the computational approach signature reversion to detect inversely related drug response gene expression signatures from the Library of Integrated Network-Based Cellular Signatures (LINCS) database and identified compounds predicted to reverse disease-associated transcriptomic signatures in three publicly available Pkd2 kidney transcriptomic data sets of mouse ADPKD models. We focused on a pre-cystic model for signature reversion, as it was less impacted by confounding secondary disease mechanisms in ADPKD, and then compared the resulting candidates' target differential expression in the two cystic mouse models. We further prioritized these drug candidates based on their known mechanism of action, FDA status, targets, and by functional enrichment analysis. RESULTS With this in-silico approach, we prioritized 29 unique drug targets differentially expressed in Pkd2 ADPKD cystic models and 16 prioritized drug repurposing candidates that target them, including bromocriptine and mirtazapine, which can be further tested in-vitro and in-vivo. CONCLUSION Collectively, these results indicate drug targets and repurposing candidates that may effectively treat pre-cystic as well as cystic ADPKD.
Collapse
Affiliation(s)
- Elizabeth J. Wilk
- The Department of Cell, Developmental and Integrative Biology, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, AL USA
| | - Timothy C. Howton
- The Department of Cell, Developmental and Integrative Biology, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, AL USA
| | - Jennifer L. Fisher
- The Department of Cell, Developmental and Integrative Biology, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, AL USA
| | - Vishal H. Oza
- The Department of Cell, Developmental and Integrative Biology, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, AL USA
| | - Ryan T. Brownlee
- The Department of Cell, Developmental and Integrative Biology, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, AL USA
- Department of Biomedical Sciences, Mercer University, Macon, GA USA
| | - Kasi C. McPherson
- The Department of Cell, Developmental and Integrative Biology, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, AL USA
| | - Hannah L. Cleary
- The Department of Cell, Developmental and Integrative Biology, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, AL USA
- University of Kentucky College of Medicine, Lexington, KY USA
| | - Bradley K. Yoder
- The Department of Cell, Developmental and Integrative Biology, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, AL USA
| | - James F. George
- The Department of Surgery, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, AL USA
| | - Michal Mrug
- The Department of Medicine, HeersinkSchool of Medicine, The University of Alabama at Birmingham, Birmingham, AL USA
- Department of Veterans Affairs Medical Center, Birmingham, AL USA
| | - Brittany N. Lasseigne
- The Department of Cell, Developmental and Integrative Biology, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, AL USA
| |
Collapse
|
19
|
Abstract
As an important sensor in the innate immune system, NLRP3 detects exogenous pathogenic invasions and endogenous cellular damage and responds by forming the NLRP3 inflammasome, a supramolecular complex that activates caspase-1. The three major components of the NLRP3 inflammasome are NLRP3, which captures the danger signals and recruits downstream molecules; caspase-1, which elicits maturation of the cytokines IL-1β and IL-18 and processing of gasdermin D to mediate cytokine release and pyroptosis; and ASC (apoptosis-associated speck-like protein containing a caspase recruitment domain), which functions as a bridge connecting NLRP3 and caspase-1. In this article, we review the structural information that has been obtained on the NLRP3 inflammasome and its components or subcomplexes, with special focus on the inactive NLRP3 cage, the active NLRP3-NEK7 (NIMA-related kinase 7)-ASC inflammasome disk, and the PYD-PYD and CARD-CARD homotypic filamentous scaffolds of the inflammasome. We further implicate structure-derived mechanisms for the assembly and activation of the NLRP3 inflammasome.
Collapse
Affiliation(s)
- Jianing Fu
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA;
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Hao Wu
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA;
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, Massachusetts, USA
| |
Collapse
|
20
|
Joseph BB, Naslavsky N, Binti S, Conquest S, Robison L, Bai G, Homer RO, Grant BD, Caplan S, Fay DS. Conserved NIMA kinases regulate multiple steps of endocytic trafficking. PLoS Genet 2023; 19:e1010741. [PMID: 37099601 PMCID: PMC10166553 DOI: 10.1371/journal.pgen.1010741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 05/08/2023] [Accepted: 04/11/2023] [Indexed: 04/27/2023] Open
Abstract
Human NIMA-related kinases have primarily been studied for their roles in cell cycle progression (NEK1/2/6/7/9), checkpoint-DNA-damage control (NEK1/2/4/5/10/11), and ciliogenesis (NEK1/4/8). We previously showed that Caenorhabditis elegans NEKL-2 (NEK8/9 homolog) and NEKL-3 (NEK6/7 homolog) regulate apical clathrin-mediated endocytosis (CME) in the worm epidermis and are essential for molting. Here we show that NEKL-2 and NEKL-3 also have distinct roles in controlling endosome function and morphology. Specifically, loss of NEKL-2 led to enlarged early endosomes with long tubular extensions but showed minimal effects on other compartments. In contrast, NEKL-3 depletion caused pronounced defects in early, late, and recycling endosomes. Consistently, NEKL-2 was strongly localized to early endosomes, whereas NEKL-3 was localized to multiple endosomal compartments. Loss of NEKLs also led to variable defects in the recycling of two resident cargoes of the trans-Golgi network (TGN), MIG-14/Wntless and TGN-38/TGN38, which were missorted to lysosomes after NEKL depletion. In addition, defects were observed in the uptake of clathrin-dependent (SMA-6/Type I BMP receptor) and independent cargoes (DAF-4/Type II BMP receptor) from the basolateral surface of epidermal cells after NEKL-2 or NEKL-3 depletion. Complementary studies in human cell lines further showed that siRNA knockdown of the NEKL-3 orthologs NEK6 and NEK7 led to missorting of the mannose 6-phosphate receptor from endosomes. Moreover, in multiple human cell types, depletion of NEK6 or NEK7 disrupted both early and recycling endosomal compartments, including the presence of excess tubulation within recycling endosomes, a defect also observed after NEKL-3 depletion in worms. Thus, NIMA family kinases carry out multiple functions during endocytosis in both worms and humans, consistent with our previous observation that human NEKL-3 orthologs can rescue molting and trafficking defects in C. elegans nekl-3 mutants. Our findings suggest that trafficking defects could underlie some of the proposed roles for NEK kinases in human disease.
Collapse
Affiliation(s)
- Braveen B. Joseph
- Department of Molecular Biology, College of Agriculture Life Sciences, and Natural Resources, University of Wyoming, Laramie, Wyoming, United States of America
| | - Naava Naslavsky
- Department of Biochemistry & Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
- The Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Shaonil Binti
- Department of Molecular Biology, College of Agriculture Life Sciences, and Natural Resources, University of Wyoming, Laramie, Wyoming, United States of America
| | - Sylvia Conquest
- Department of Molecular Biology, College of Agriculture Life Sciences, and Natural Resources, University of Wyoming, Laramie, Wyoming, United States of America
| | - Lexi Robison
- Department of Molecular Biology, College of Agriculture Life Sciences, and Natural Resources, University of Wyoming, Laramie, Wyoming, United States of America
| | - Ge Bai
- Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, New Jersey, United States of America
| | - Rafael O. Homer
- Department of Molecular Biology, College of Agriculture Life Sciences, and Natural Resources, University of Wyoming, Laramie, Wyoming, United States of America
| | - Barth D. Grant
- Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, New Jersey, United States of America
| | - Steve Caplan
- Department of Biochemistry & Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
- The Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - David S. Fay
- Department of Molecular Biology, College of Agriculture Life Sciences, and Natural Resources, University of Wyoming, Laramie, Wyoming, United States of America
| |
Collapse
|
21
|
Guo W, Wang H, Tharkeshwar AK, Couthouis J, Braems E, Masrori P, Van Schoor E, Fan Y, Ahuja K, Moisse M, Jacquemyn M, da Costa RFM, Gajjar M, Balusu S, Tricot T, Fumagalli L, Hersmus N, Janky R, Impens F, Berghe PV, Ho R, Thal DR, Vandenberghe R, Hegde ML, Chandran S, De Strooper B, Daelemans D, Van Damme P, Van Den Bosch L, Verfaillie C. CRISPR/Cas9 screen in human iPSC-derived cortical neurons identifies NEK6 as a novel disease modifier of C9orf72 poly(PR) toxicity. Alzheimers Dement 2023; 19:1245-1259. [PMID: 35993441 PMCID: PMC9943798 DOI: 10.1002/alz.12760] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 06/14/2022] [Accepted: 07/08/2022] [Indexed: 11/10/2022]
Abstract
INTRODUCTION The most common genetic cause of frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS) are hexanucleotide repeats in chromosome 9 open reading frame 72 (C9orf72). These repeats produce dipeptide repeat proteins with poly(PR) being the most toxic one. METHODS We performed a kinome-wide CRISPR/Cas9 knock-out screen in human induced pluripotent stem cell (iPSC) -derived cortical neurons to identify modifiers of poly(PR) toxicity, and validated the role of candidate modifiers using in vitro, in vivo, and ex-vivo studies. RESULTS Knock-down of NIMA-related kinase 6 (NEK6) prevented neuronal toxicity caused by poly(PR). Knock-down of nek6 also ameliorated the poly(PR)-induced axonopathy in zebrafish and NEK6 was aberrantly expressed in C9orf72 patients. Suppression of NEK6 expression and NEK6 activity inhibition rescued axonal transport defects in cortical neurons from C9orf72 patient iPSCs, at least partially by reversing p53-related DNA damage. DISCUSSION We identified NEK6, which regulates poly(PR)-mediated p53-related DNA damage, as a novel therapeutic target for C9orf72 FTD/ALS.
Collapse
Affiliation(s)
- Wenting Guo
- Stem Cell Institute, Department of Devolpment and Regeneration, KU Leuven, Leuven, Belgium
- Department of Neurosciences, Experimental Neurology, Laboratory of Neurobiology, KU Leuven-University of Leuven, Leuven, Belgium
- VIB, Center for Brain & Disease Research, Leuven, Belgium and Leuven Brain Institute (LBI), Leuven, Belgium
| | - Haibo Wang
- Division of DNA Repair Research, Department of Neurosurgery, Center for Neuroregeneration, Houston Methodist Research Institute, Houston, Texas, USA
- Department of Neuroscience Research at Neurological Surgery, Weill Medical College, New York, New York, USA
| | - Arun Kumar Tharkeshwar
- Department of Neurosciences, Experimental Neurology, Laboratory of Neurobiology, KU Leuven-University of Leuven, Leuven, Belgium
- VIB, Center for Brain & Disease Research, Leuven, Belgium and Leuven Brain Institute (LBI), Leuven, Belgium
| | - Julien Couthouis
- Department of Genetics, Stanford University School of Medicine, Stanford, California, USA
| | - Elke Braems
- Department of Neurosciences, Experimental Neurology, Laboratory of Neurobiology, KU Leuven-University of Leuven, Leuven, Belgium
- VIB, Center for Brain & Disease Research, Leuven, Belgium and Leuven Brain Institute (LBI), Leuven, Belgium
| | - Pegah Masrori
- Department of Neurosciences, Experimental Neurology, Laboratory of Neurobiology, KU Leuven-University of Leuven, Leuven, Belgium
- VIB, Center for Brain & Disease Research, Leuven, Belgium and Leuven Brain Institute (LBI), Leuven, Belgium
- Department of Neurology, University Hospitals Leuven, Leuven, Belgium
| | - Evelien Van Schoor
- Department of Neurosciences, Experimental Neurology, Laboratory of Neurobiology, KU Leuven-University of Leuven, Leuven, Belgium
- VIB, Center for Brain & Disease Research, Leuven, Belgium and Leuven Brain Institute (LBI), Leuven, Belgium
- Laboratory of Neuropathology, Department of Imaging and Pathology, KU Leuven, and Leuven Brain Institute (LBI), Leuven, Belgium
| | - Yannan Fan
- Stem Cell Institute, Department of Devolpment and Regeneration, KU Leuven, Leuven, Belgium
| | - Karan Ahuja
- Stem Cell Institute, Department of Devolpment and Regeneration, KU Leuven, Leuven, Belgium
| | - Matthieu Moisse
- Department of Neurosciences, Experimental Neurology, Laboratory of Neurobiology, KU Leuven-University of Leuven, Leuven, Belgium
- VIB, Center for Brain & Disease Research, Leuven, Belgium and Leuven Brain Institute (LBI), Leuven, Belgium
| | - Maarten Jacquemyn
- KU Leuven Department of Microbiology, Immunology and Transplantation, Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, Leuven, Belgium
| | | | - Madhavsai Gajjar
- Stem Cell Institute, Department of Devolpment and Regeneration, KU Leuven, Leuven, Belgium
| | - Sriram Balusu
- VIB, Center for Brain & Disease Research, Leuven, Belgium and Leuven Brain Institute (LBI), Leuven, Belgium
| | - Tine Tricot
- Stem Cell Institute, Department of Devolpment and Regeneration, KU Leuven, Leuven, Belgium
| | - Laura Fumagalli
- Department of Neurosciences, Experimental Neurology, Laboratory of Neurobiology, KU Leuven-University of Leuven, Leuven, Belgium
- VIB, Center for Brain & Disease Research, Leuven, Belgium and Leuven Brain Institute (LBI), Leuven, Belgium
| | - Nicole Hersmus
- Department of Neurosciences, Experimental Neurology, Laboratory of Neurobiology, KU Leuven-University of Leuven, Leuven, Belgium
- VIB, Center for Brain & Disease Research, Leuven, Belgium and Leuven Brain Institute (LBI), Leuven, Belgium
| | | | - Francis Impens
- VIB-UGent Center for Medical Biotechnology, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- VIB Proteomics Core, Ghent, Belgium
| | - Pieter Vanden Berghe
- Translational Research Centre for Gastrointestinal Disorders (TARGID), KU Leuven–University of Leuven, Leuven, Belgium
| | - Ritchie Ho
- Center for Neural Science and Medicine, Board of Governors Regenerative Medicine Institute, Departments of Biomedical Sciences and Neurology, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Dietmar Rudolf Thal
- Laboratory of Neuropathology, Department of Imaging and Pathology, KU Leuven, and Leuven Brain Institute (LBI), Leuven, Belgium
| | - Rik Vandenberghe
- Department of Neurology, University Hospitals Leuven, Leuven, Belgium
- KU Leuven-Laboratory for Cognitive Neurology, Department of Neurosciences, Leuven Brain Institute, Leuven, Belgium
| | - Muralidhar L. Hegde
- Division of DNA Repair Research, Department of Neurosurgery, Center for Neuroregeneration, Houston Methodist Research Institute, Houston, Texas, USA
- Department of Neuroscience Research at Neurological Surgery, Weill Medical College, New York, New York, USA
| | - Siddharthan Chandran
- UK-Dementia Research Institute at University College London, London, UK
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Bart De Strooper
- VIB, Center for Brain & Disease Research, Leuven, Belgium and Leuven Brain Institute (LBI), Leuven, Belgium
- UK-Dementia Research Institute at University College London, London, UK
| | - Dirk Daelemans
- KU Leuven Department of Microbiology, Immunology and Transplantation, Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, Leuven, Belgium
| | - Philip Van Damme
- Department of Neurosciences, Experimental Neurology, Laboratory of Neurobiology, KU Leuven-University of Leuven, Leuven, Belgium
- VIB, Center for Brain & Disease Research, Leuven, Belgium and Leuven Brain Institute (LBI), Leuven, Belgium
- Department of Neurology, University Hospitals Leuven, Leuven, Belgium
| | - Ludo Van Den Bosch
- Department of Neurosciences, Experimental Neurology, Laboratory of Neurobiology, KU Leuven-University of Leuven, Leuven, Belgium
- VIB, Center for Brain & Disease Research, Leuven, Belgium and Leuven Brain Institute (LBI), Leuven, Belgium
| | - Catherine Verfaillie
- Stem Cell Institute, Department of Devolpment and Regeneration, KU Leuven, Leuven, Belgium
| |
Collapse
|
22
|
Revisiting the inhibitory potential of protein kinase inhibitors against NEK7 protein via comprehensive computational investigations. Sci Rep 2023; 13:4304. [PMID: 36922575 PMCID: PMC10017757 DOI: 10.1038/s41598-023-31499-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 03/13/2023] [Indexed: 03/17/2023] Open
Abstract
The NEK7 protein is required for spindle formation, cell division, and the activation of the NLRP3 inflammasome receptor. The aberrant expression of NEK7 has been implicated to the growth of metastasis and severe inflammatory conditions like rheumatoid arthritis, liver cirrhosis, and gout. An emergent target for the development of anti-cancer drugs is NEK7. In this context, the PubChem database was used to retrieve the 675 compound library and FDA-approved protein kinase inhibitors, which were then thoroughly examined via in-silico experiments. Computational studies investigated the binding orientation, electronic, and thermodynamic characteristics of drug candidates related to target protein. Drugs were investigated using density functional theory and molecular docking to find binding interactions with NEK7. Molecular dynamic simulations assessed interactions and stability of protein-ligand complex. DFT analyses showed that selected compounds maintained a significant amount of chemical reactivity in both liquid and gaseous states. Alectinib, Crizotinib, and compound 146476703 all displayed promising molecular interactions, according to molecular docking studies, with docking scores of - 32.76, - 30.54, and - 34.34 kJ/mol, respectively. Additionally, MD simulations determined the stability and dynamic characteristics of the complex over a 200 ns production run. The current study's findings indicate that the drugs Alectinib, Crizotinib, and compound 146476703 can successfully inhibit the overexpression of the NEK7 protein. To discover more potent drugs against NEK7, it is recommended to synthesize the derivatives of Alectinib and Crizotinib and carry out additional in-vitro and in-vivo studies at the molecular level.
Collapse
|
23
|
Sun Y, Xue Y, Liu H, Mu S, Sun P, Sun Y, Wang L, Wang H, Wang J, Wu T, Yin W, Qin Q, Sun Y, Yang H, Zhao D, Cheng M. Discovery of CZS-241: A Potent, Selective, and Orally Available Polo-Like Kinase 4 Inhibitor for the Treatment of Chronic Myeloid Leukemia. J Med Chem 2023; 66:2396-2421. [PMID: 36734825 DOI: 10.1021/acs.jmedchem.2c02124] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Recent studies demonstrate that PLK4 has emerged as a therapeutic target for the treatment of multiple cancers owing to its indispensable role in cell division. Herein, starting from previously identified effective compound CZS-034, based on rational drug design strategies, tyrosine kinase receptor A (TRKA) selectivity- and metabolic stability-guided structure-activity relationship (SAR) exploration were carried out to discover a highly potent (IC50 = 2.6 nM) and selective (SF = 1054.4 over TRKA) PLK4 inhibitor B43 (CZS-241) with acceptable human liver microsome stability (t1/2 = 31.5 min). Moreover, compound B43 effectively inhibited leukemia cells in 29 tested cell lines, especially chronic myeloid leukemia (CML) cell lines K562 and KU-812. Pharmacokinetic characteristics revealed that compound B43 possessed over 4 h of half-life and 70.8% bioavailability in mice. In the K562 cells xenograft mouse model, a 20 mg/kg/day dosage treatment obviously suppressed tumor progression. As a potential and novel PLK4-targeted candidate drug for CML, compound B43 is undergoing extensive preclinical safety evaluation.
Collapse
Affiliation(s)
- Yin Sun
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, P. R. China
| | - Yanli Xue
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, P. R. China
| | - Hongbing Liu
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, P. R. China
| | - Shuyi Mu
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, P. R. China
| | - Pengkun Sun
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, P. R. China
| | - Yu Sun
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, P. R. China
| | - Lin Wang
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, P. R. China
| | - Hanxun Wang
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, P. R. China
| | - Jingkai Wang
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, P. R. China
| | - Tianxiao Wu
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, P. R. China
| | - Wenbo Yin
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, P. R. China
| | - Qiaohua Qin
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, P. R. China
| | - Yixiang Sun
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, P. R. China
| | - Huali Yang
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, P. R. China
| | - Dongmei Zhao
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, P. R. China
| | - Maosheng Cheng
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, P. R. China
| |
Collapse
|
24
|
Panchal NK, Evan Prince S. The NEK family of serine/threonine kinases as a biomarker for cancer. Clin Exp Med 2023; 23:17-30. [PMID: 35037094 DOI: 10.1007/s10238-021-00782-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 12/01/2021] [Indexed: 12/18/2022]
Abstract
Cancer is defined by unrestrained cell proliferation due to impaired protein activity. Cell cycle-related proteins are likely to play a role in human cancers, including proliferation, invasion, and therapeutic resistance. The serine/threonine NEK kinases are the part of Never In Mitosis A Kinases (NIMA) family, which are less explored kinase family involved in the cell cycle, checkpoint regulation, and cilia biology. They comprise of eleven members, namely NEK1, NEK2, NEK3, NEK4, NEK5, NEK6, NEK7, NEK8, NEK9, NEK10, and NEK11, located in different cellular regions. Recent research has shown the role of NEK family in various cancers by perversely expressing. Therefore, this review aimed to provide a systematic account of our understanding of NEK kinases; structural details; and its role in the cell cycle regulation. Furthermore, we have comprehensively reviewed the NEK kinases in terms of their expression and regulation in different cancers. Lastly, we have emphasized on some of the potential NEK inhibitors reported so far.
Collapse
Affiliation(s)
- Nagesh Kishan Panchal
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, 632 014, India
| | - Sabina Evan Prince
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, 632 014, India.
| |
Collapse
|
25
|
Liu F, Dai L, Li Z, Yin’s X. Novel variants of NEK9 associated with neonatal arthrogryposis: Two case reports and a literature review. Front Genet 2023; 13:989215. [PMID: 36712877 PMCID: PMC9879004 DOI: 10.3389/fgene.2022.989215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 12/01/2022] [Indexed: 01/06/2023] Open
Abstract
Objective: Pathogenic variants in NEK9 (MIM: 609798) have been identified in patients with lethal congenital contracture syndrome 10 (OMIM: 617022) and arthrogryposis, Perthes disease, and upward gaze palsy (APUG and OMIM: 614262). The shared core phenotype is multiple joint contractures or arthrogryposis. In the present study, three novel variants of NEK9 associated with neonatal arthrogryposis were reported. Methods: The clinical data of two premature infants and their parents were collected. The genomic DNA was extracted from their peripheral blood samples and subjected to trio-whole-exome sequencing (trio-WES) and copy number variation analysis. Results: Using trio-WES, a total of three novel pathogenic variants of NEK9 were detected in the two families. Patient 1 carried compound heterozygous variations of c.717C > A (p. C239*741) and c.2824delA (p.M942Cfs*21), which were inherited from his father and mother, respectively. Patient 2 also carried compound heterozygous variations of c.61G > T (p. E21*959) and c. 2824delA (p. M942Cfs*21), which were inherited from his father and mother, respectively. These variants have not been previously reported in the ClinVar, HGMD, or gnomAD databases. Conclusion: This is the first report about NEK9-related arthrogryposis in neonatal patients. The findings from this study suggest that different types of mutations in NEK9 lead to different phenotypes. Our study expanded the clinical phenotype spectrum and gene spectrum of NEK9-associated arthrogryposis.
Collapse
Affiliation(s)
- Fang Liu
- Department of Pediatrics, NICU, the 980th Hospital of the People’s Liberation Army Joint Service Support Force, Bethune International Peace Hospital, Shijiazhuang, China,*Correspondence: Fang Liu,
| | - Liying Dai
- Department of Neonatology, Anhui Children’s Hospital, Hefei, China
| | - Zhi Li
- Department of Pediatrics, NICU, the 980th Hospital of the People’s Liberation Army Joint Service Support Force, Bethune International Peace Hospital, Shijiazhuang, China
| | - Xiaowei Yin’s
- Department of Pediatrics, NICU, the 980th Hospital of the People’s Liberation Army Joint Service Support Force, Bethune International Peace Hospital, Shijiazhuang, China
| |
Collapse
|
26
|
Panchal NK, Mohanty S, Prince SE. NIMA-related kinase-6 (NEK6) as an executable target in cancer. CLINICAL & TRANSLATIONAL ONCOLOGY : OFFICIAL PUBLICATION OF THE FEDERATION OF SPANISH ONCOLOGY SOCIETIES AND OF THE NATIONAL CANCER INSTITUTE OF MEXICO 2023; 25:66-77. [PMID: 36074296 DOI: 10.1007/s12094-022-02926-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 08/09/2022] [Indexed: 01/07/2023]
Abstract
Cancer is a disease that develops when cells begin to divide uncontrollably and spreads to other parts of the body. Proliferation and invasion of cancerous cells are generally known to be influenced by cell cycle-related proteins in human malignancies. Therefore, in this review, we have emphasized on the serine/threonine kinase named NEK6. NEK6 is been deliberated to play a critical role in mitosis progression that includes mitotic spindle formation, metaphase to anaphase transition, and centrosome separation. Moreover, it has a mechanistic role in DNA repair and can cause apoptosis when inhibited. Past studies have connected NEK6 protein expression to cancer cell senescence. Besides, there are reports relating NEK6 to a range of malignancies including breast, lung, ovarian, prostate, kidney, liver, and others. Given its significance, this review attempts to describe the structural and functional aspects of NEK6 in various cellular processes, as well as how it is linked to different forms of cancer. Lastly, we have accentuated, on some of the plausible inhibitors that have been explored against NEK6 overexpression.
Collapse
Affiliation(s)
- Nagesh Kishan Panchal
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, 632014, India
| | - Shruti Mohanty
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, 632014, India
| | - Sabina Evan Prince
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, 632014, India.
| |
Collapse
|
27
|
Xie DM, Sun C, Tu Q, Li S, Zhang Y, Mei X, Li Y. Modified black phosphorus quantum dots promotes spinal cord injury repair by targeting the AKT signaling pathway. J Tissue Eng 2023; 14:20417314231180033. [PMID: 37333896 PMCID: PMC10272649 DOI: 10.1177/20417314231180033] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 05/19/2023] [Indexed: 06/20/2023] Open
Abstract
Spinal cord injury (SCI) is a serious refractory disease of the central nervous system (CNS), which mostly caused by high-energy trauma. Existing interventions such as hormone shock and surgery are insufficient options, which relate to the secondary inflammation and neuronal dysfunction. Hydrogel with neuron-protective behaviors attracts tremendous attention, and black phosphorus quantum dots (BPQDs) encapsulating with Epigallocatechin-3-gallate (EGCG) hydrogels (E@BP) is designed for inflammatory modulation and SCI treatment in this study. E@BP displays good stability, biocompatibility and safety profiles. E@BP incubation alleviates lipopolysaccharide (LPS)-induced inflammation of primary neurons and enhances neuronal regeneration in vitro. Furthermore, E@BP reconstructs structural versus functional integrity of spinal cord tracts, which promotes recovery of motor neuron function in SCI rats after transplantation. Importantly, E@BP restarts the cell cycle and induces nerve regeneration. Moreover, E@BP diminishes local inflammation of SCI tissues, characterized by reducing accumulation of astrocyte, microglia, macrophages, and oligodendrocytes. Indeed, a common underlying mechanism of E@BP regulating neural regenerative and inflammatory responses is to promote the phosphorylation of key proteins related to AKT signaling pathway. Together, E@BP probably repairs SCI by reducing inflammation and promoting neuronal regeneration via the AKT signaling pathway.
Collapse
Affiliation(s)
- Dong-Mei Xie
- Department of Cardiology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Chuanwei Sun
- Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China
| | - Qingqiang Tu
- Zhongshan Medical College, Sun Yat-sen University, Guangzhou, China
| | - Suyi Li
- Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China
- Department of Orthopedics, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Yu Zhang
- Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China
- Department of Orthopedics, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Xifan Mei
- Department of Orthopedics, The Third Affiliated Hospital of Jinzhou Medical University, Jinzhou Medical University, Jinzhou, China
| | - Yuanlong Li
- Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China
- Department of Orthopedics, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| |
Collapse
|
28
|
Shah D, Joshi M, Patel BM. Role of NIMA‐related kinase 2 in lung cancer: Mechanisms and therapeutic prospects. Fundam Clin Pharmacol 2022; 36:766-776. [DOI: 10.1111/fcp.12777] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 03/10/2022] [Accepted: 03/24/2022] [Indexed: 01/04/2023]
Affiliation(s)
- Darshak Shah
- Institute of Pharmacy Nirma University Ahmedabad India
| | - Mit Joshi
- Institute of Pharmacy Nirma University Ahmedabad India
| | | |
Collapse
|
29
|
Glavač D, Mladinić M, Ban J, Mazzone GL, Sámano C, Tomljanović I, Jezernik G, Ravnik-Glavač M. The Potential Connection between Molecular Changes and Biomarkers Related to ALS and the Development and Regeneration of CNS. Int J Mol Sci 2022; 23:ijms231911360. [PMID: 36232667 PMCID: PMC9570269 DOI: 10.3390/ijms231911360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/10/2022] [Accepted: 09/22/2022] [Indexed: 11/16/2022] Open
Abstract
Neurodegenerative diseases are one of the greatest medical burdens of the modern age, being mostly incurable and with limited prognostic and diagnostic tools. Amyotrophic lateral sclerosis (ALS) is a fatal, progressive neurodegenerative disease characterized by the loss of motoneurons, with a complex etiology, combining genetic, epigenetic, and environmental causes. The neuroprotective therapeutic approaches are very limited, while the diagnostics rely on clinical examination and the exclusion of other diseases. The recent advancement in the discovery of molecular pathways and gene mutations involved in ALS has deepened the understanding of the disease pathology and opened the possibility for new treatments and diagnostic procedures. Recently, 15 risk loci with distinct genetic architectures and neuron-specific biology were identified as linked to ALS through common and rare variant association analyses. Interestingly, the quantity of related proteins to these genes has been found to change during early postnatal development in mammalian spinal cord tissue (opossum Monodelphis domestica) at the particular time when neuroregeneration stops being possible. Here, we discuss the possibility that the ALS-related genes/proteins could be connected to neuroregeneration and development. Moreover, since the regulation of gene expression in developmental checkpoints is frequently regulated by non-coding RNAs, we propose that studying the changes in the composition and quantity of non-coding RNA molecules, both in ALS patients and in the developing central nervous (CNS) system of the opossum at the time when neuroregeneration ceases, could reveal potential biomarkers useful in ALS prognosis and diagnosis.
Collapse
Affiliation(s)
- Damjan Glavač
- Department of Molecular Genetics, Institute of Pathology, Faculty of Medicine, University of Ljubljana, 1000 Ljublana, Slovenia
- Center for Human Genetics & Pharmacogenomics, Faculty of Medicine, University of Maribor, 2000 Maribor, Slovenia
| | - Miranda Mladinić
- Laboratory for Molecular Neurobiology, Department of Biotechnology, University of Rijeka, 51000 Rijeka, Croatia
| | - Jelena Ban
- Laboratory for Molecular Neurobiology, Department of Biotechnology, University of Rijeka, 51000 Rijeka, Croatia
| | - Graciela L. Mazzone
- Instituto de Investigaciones en Medicina Traslacional (IIMT), CONICET-Universidad Austral, Buenos Aires B1629AHJ, Argentina
| | - Cynthia Sámano
- Departamento de Ciencias Naturales, Universidad Autónoma Metropolitana Unidad Cuajimalpa, Mexico City 05348, Mexico
| | - Ivana Tomljanović
- Laboratory for Molecular Neurobiology, Department of Biotechnology, University of Rijeka, 51000 Rijeka, Croatia
| | - Gregor Jezernik
- Center for Human Genetics & Pharmacogenomics, Faculty of Medicine, University of Maribor, 2000 Maribor, Slovenia
| | - Metka Ravnik-Glavač
- Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
- Correspondence:
| |
Collapse
|
30
|
The Inflammasome Activity of NLRP3 Is Independent of NEK7 in HEK293 Cells Co-Expressing ASC. Int J Mol Sci 2022; 23:ijms231810269. [PMID: 36142182 PMCID: PMC9499477 DOI: 10.3390/ijms231810269] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/17/2022] [Accepted: 08/25/2022] [Indexed: 11/24/2022] Open
Abstract
The cytosolic immune receptor NLRP3 (nucleotide-binding domain, leucine-rich repeat (LRR), and pyrin domain (PYD)-containing protein 3) oligomerizes into the core of a supramolecular complex termed inflammasome in response to microbes and danger signals. It is thought that NLRP3 has to bind NEK7 (NIMA (never in mitosis gene a)-related kinase 7) to form a functional inflammasome core that induces the polymerization of the adaptor protein ASC (Apoptosis-associated speck-like protein containing a CARD (caspase recruitment domain)), which is a hallmark for NLRP3 activity. We reconstituted the NLRP3 inflammasome activity in modified HEK293 (human embryonic kidney 293) cells and showed that the ASC speck polymerization is independent of NEK7 in the context of this cell system. Probing the interfaces observed in the different, existing structural models of NLRP3 oligomers, we present evidence that the NEK7-independent, constitutively active NLRP3 inflammasome core in HEK293 cells may resemble a stacked-torus-like hexamer seen for NLRP3 lacking its PYD (pyrin domain).
Collapse
|
31
|
Langlois-Lemay L, D’Amours D. Moonlighting at the Poles: Non-Canonical Functions of Centrosomes. Front Cell Dev Biol 2022; 10:930355. [PMID: 35912107 PMCID: PMC9329689 DOI: 10.3389/fcell.2022.930355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 06/17/2022] [Indexed: 11/13/2022] Open
Abstract
Centrosomes are best known as the microtubule organizing centers (MTOCs) of eukaryotic cells. In addition to their classic role in chromosome segregation, centrosomes play diverse roles unrelated to their MTOC activity during cell proliferation and quiescence. Metazoan centrosomes and their functional doppelgängers from lower eukaryotes, the spindle pole bodies (SPBs), act as important structural platforms that orchestrate signaling events essential for cell cycle progression, cellular responses to DNA damage, sensory reception and cell homeostasis. Here, we provide a critical overview of the unconventional and often overlooked roles of centrosomes/SPBs in the life cycle of eukaryotic cells.
Collapse
Affiliation(s)
- Laurence Langlois-Lemay
- Department of Cellular and Molecular Medicine, Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON, Canada
| | | |
Collapse
|
32
|
Wang J, Chen S, Liu M, Zhang M, Jia X. NEK7: a new target for the treatment of multiple tumors and chronic inflammatory diseases. Inflammopharmacology 2022; 30:1179-1187. [PMID: 35829941 DOI: 10.1007/s10787-022-01026-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 06/20/2022] [Indexed: 11/05/2022]
Abstract
NIMA-related kinase 7 (NEK7) is a serine/threonine kinase, which is the smallest one in mammalian NEK family. At present, many studies have reported that NEK7 has a physiological role in regulating the cell cycle and promoting the mitotic process of cells. In recent years, an increasing number of studies have proposed that NEK7 is involved in the activation of the NLRP3 inflammasome. Under normal conditions, NEK7 is in a low activity state, while under pathological conditions, NEK7 is abnormally expressed and therefore plays a key role in the progression of multiple tumors and chronic inflammatory diseases. This review will concentrate on the mechanism of NEK7 participates in the process of mitosis and regulates the activation of NLRP3 inflammasome, the aberrant expression of NEK7 in a variety of tumors and chronic inflammatory diseases, and some potential inhibitors, which may provide some new ideas for the treatment of diverse tumors and chronic inflammatory diseases associated with NEK7.
Collapse
Affiliation(s)
- Jin Wang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, People's Republic of China.,Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, 230012, People's Republic of China.,Anhui Province Key Laboratory of Research and Development of Chinese Medicine, Hefei, 230012, People's Republic of China
| | - Simeng Chen
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, People's Republic of China.,Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, 230012, People's Republic of China.,Anhui Province Key Laboratory of Research and Development of Chinese Medicine, Hefei, 230012, People's Republic of China
| | - Min Liu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, People's Republic of China.,Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, 230012, People's Republic of China.,Anhui Province Key Laboratory of Research and Development of Chinese Medicine, Hefei, 230012, People's Republic of China
| | - Min Zhang
- Department of Rheumatology and Immunology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, People's Republic of China
| | - Xiaoyi Jia
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, People's Republic of China. .,Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, 230012, People's Republic of China. .,Anhui Province Key Laboratory of Research and Development of Chinese Medicine, Hefei, 230012, People's Republic of China.
| |
Collapse
|
33
|
Kim JM. Molecular Link between DNA Damage Response and Microtubule Dynamics. Int J Mol Sci 2022; 23:ijms23136986. [PMID: 35805981 PMCID: PMC9266319 DOI: 10.3390/ijms23136986] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/20/2022] [Accepted: 06/21/2022] [Indexed: 11/16/2022] Open
Abstract
Microtubules are major components of the cytoskeleton that play important roles in cellular processes such as intracellular transport and cell division. In recent years, it has become evident that microtubule networks play a role in genome maintenance during interphase. In this review, we highlight recent advances in understanding the role of microtubule dynamics in DNA damage response and repair. We first describe how DNA damage checkpoints regulate microtubule organization and stability. We then highlight how microtubule networks are involved in the nuclear remodeling following DNA damage, which leads to changes in chromosome organization. Lastly, we discuss how microtubule dynamics participate in the mobility of damaged DNA and promote consequent DNA repair. Together, the literature indicates the importance of microtubule dynamics in genome organization and stability during interphase.
Collapse
Affiliation(s)
- Jung Min Kim
- Department of Pharmacology, Chonnam National University Medical School, Gwangju 58128, Korea
| |
Collapse
|
34
|
Derisoud E, Jouneau L, Dubois C, Archilla C, Jaszczyszyn Y, Legendre R, Daniel N, Peynot N, Dahirel M, Auclair-Ronzaud J, Wimel L, Duranthon V, Chavatte-Palmer P. Maternal age affects equine day 8 embryo gene expression both in trophoblast and inner cell mass. BMC Genomics 2022; 23:443. [PMID: 35705916 PMCID: PMC9199136 DOI: 10.1186/s12864-022-08593-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 04/22/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Breeding a mare until she is not fertile or even until her death is common in equine industry but the fertility decreases as the mare age increases. Embryo loss due to reduced embryo quality is partly accountable for this observation. Here, the effect of mare's age on blastocysts' gene expression was explored. Day 8 post-ovulation embryos were collected from multiparous young (YM, 6-year-old, N = 5) and older (OM, > 10-year-old, N = 6) non-nursing Saddlebred mares, inseminated with the semen of one stallion. Pure or inner cell mass (ICM) enriched trophoblast, obtained by embryo bisection, were RNA sequenced. Deconvolution algorithm was used to discriminate gene expression in the ICM from that in the trophoblast. Differential expression was analyzed with embryo sex and diameter as cofactors. Functional annotation and classification of differentially expressed genes and gene set enrichment analysis were also performed. RESULTS Maternal aging did not affect embryo recovery rate, embryo diameter nor total RNA quantity. In both compartments, the expression of genes involved in mitochondria and protein metabolism were disturbed by maternal age, although more genes were affected in the ICM. Mitosis, signaling and adhesion pathways and embryo development were decreased in the ICM of embryos from old mares. In trophoblast, ion movement pathways were affected. CONCLUSIONS This is the first study showing that maternal age affects gene expression in the equine blastocyst, demonstrating significant effects as early as 10 years of age. These perturbations may affect further embryo development and contribute to decreased fertility due to aging.
Collapse
Affiliation(s)
- Emilie Derisoud
- Université Paris-Saclay, UVSQ, INRAE, BREED, 78350, Jouy-en-Josas, France.
- Ecole Nationale Vétérinaire d'Alfort, BREED, 94700, Maisons-Alfort, France.
| | - Luc Jouneau
- Université Paris-Saclay, UVSQ, INRAE, BREED, 78350, Jouy-en-Josas, France
- Ecole Nationale Vétérinaire d'Alfort, BREED, 94700, Maisons-Alfort, France
| | - Cédric Dubois
- IFCE, Plateau technique de Chamberet, 19370, Chamberet, France
| | - Catherine Archilla
- Université Paris-Saclay, UVSQ, INRAE, BREED, 78350, Jouy-en-Josas, France
- Ecole Nationale Vétérinaire d'Alfort, BREED, 94700, Maisons-Alfort, France
| | - Yan Jaszczyszyn
- Institute for Integrative Biology of the Cell (I2BC), UMR 9198 CNRS, CEA, Paris-Sud University F-91198, Gif-sur-Yvette, France
| | - Rachel Legendre
- Institut Pasteur-Bioinformatics and Biostatistics Hub-Department of Computational Biology, Paris, France
| | - Nathalie Daniel
- Université Paris-Saclay, UVSQ, INRAE, BREED, 78350, Jouy-en-Josas, France
- Ecole Nationale Vétérinaire d'Alfort, BREED, 94700, Maisons-Alfort, France
| | - Nathalie Peynot
- Université Paris-Saclay, UVSQ, INRAE, BREED, 78350, Jouy-en-Josas, France
- Ecole Nationale Vétérinaire d'Alfort, BREED, 94700, Maisons-Alfort, France
| | - Michèle Dahirel
- Université Paris-Saclay, UVSQ, INRAE, BREED, 78350, Jouy-en-Josas, France
- Ecole Nationale Vétérinaire d'Alfort, BREED, 94700, Maisons-Alfort, France
| | | | - Laurence Wimel
- IFCE, Plateau technique de Chamberet, 19370, Chamberet, France
| | - Véronique Duranthon
- Université Paris-Saclay, UVSQ, INRAE, BREED, 78350, Jouy-en-Josas, France
- Ecole Nationale Vétérinaire d'Alfort, BREED, 94700, Maisons-Alfort, France
| | - Pascale Chavatte-Palmer
- Université Paris-Saclay, UVSQ, INRAE, BREED, 78350, Jouy-en-Josas, France.
- Ecole Nationale Vétérinaire d'Alfort, BREED, 94700, Maisons-Alfort, France.
| |
Collapse
|
35
|
Mari T, Mösbauer K, Wyler E, Landthaler M, Drosten C, Selbach M. In Vitro Kinase-to-Phosphosite Database (iKiP-DB) Predicts Kinase Activity in Phosphoproteomic Datasets. J Proteome Res 2022; 21:1575-1587. [PMID: 35608653 DOI: 10.1021/acs.jproteome.2c00198] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Phosphoproteomics routinely quantifies changes in the levels of thousands of phosphorylation sites, but functional analysis of such data remains a major challenge. While databases like PhosphoSitePlus contain information about many phosphorylation sites, the vast majority of known sites is not assigned to any protein kinase. Assigning changes in the phosphoproteome to the activity of individual kinases therefore remains a key challenge. A recent large-scale study systematically identified in vitro substrates for most human protein kinases. Here, we reprocessed and filtered these data to generate an in vitro Kinase-to-Phosphosite database (iKiP-DB). We show that iKiP-DB can accurately predict changes in kinase activity in published phosphoproteomic data sets for both well-studied and poorly characterized kinases. We apply iKiP-DB to a newly generated phosphoproteomic analysis of SARS-CoV-2 infected human lung epithelial cells and provide evidence for coronavirus-induced changes in host cell kinase activity. In summary, we show that iKiP-DB is widely applicable to facilitate the functional analysis of phosphoproteomic data sets.
Collapse
Affiliation(s)
- Tommaso Mari
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, 13092 Berlin, Germany
| | - Kirstin Mösbauer
- Institute of Virology, Charité-Universitätsmedizin, 10117 Berlin, Germany
| | - Emanuel Wyler
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, 13092 Berlin, Germany
| | - Markus Landthaler
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, 13092 Berlin, Germany
| | - Christian Drosten
- Institute of Virology, Charité-Universitätsmedizin, 10117 Berlin, Germany
| | - Matthias Selbach
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, 13092 Berlin, Germany.,Charité-Universitätsmedizin, 10117 Berlin, Germany
| |
Collapse
|
36
|
Basei FL, de Castro Ferezin C, Rodrigues de Oliveira AL, Muñoz JP, Zorzano A, Kobarg J. Nek4 regulates mitochondrial respiration and morphology. FEBS J 2022; 289:3262-3279. [DOI: 10.1111/febs.16343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 12/13/2021] [Accepted: 01/04/2022] [Indexed: 11/29/2022]
Affiliation(s)
- Fernanda Luisa Basei
- Faculdade de Ciências Farmacêuticas Universidade Estadual de Campinas Brazil
- Institute for Research in Biomedicine (IRB Barcelona) The Barcelona Institute of Science and Technology Spain
| | - Camila de Castro Ferezin
- Faculdade de Ciências Farmacêuticas Universidade Estadual de Campinas Brazil
- Departamento de Bioquímica e Biologia Tecidual Instituto de Biologia Universidade Estadual de Campinas Brazil
| | - Ana Luisa Rodrigues de Oliveira
- Faculdade de Ciências Farmacêuticas Universidade Estadual de Campinas Brazil
- Departamento de Bioquímica e Biologia Tecidual Instituto de Biologia Universidade Estadual de Campinas Brazil
| | - Juan Pablo Muñoz
- Institute for Research in Biomedicine (IRB Barcelona) The Barcelona Institute of Science and Technology Spain
- Departament de Bioquímica i Biomedicina Molecular Facultat de Biologia Universitat de Barcelona Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM) Instituto de Salud Carlos III Barcelona Spain
| | - Antonio Zorzano
- Institute for Research in Biomedicine (IRB Barcelona) The Barcelona Institute of Science and Technology Spain
- Departament de Bioquímica i Biomedicina Molecular Facultat de Biologia Universitat de Barcelona Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM) Instituto de Salud Carlos III Barcelona Spain
| | - Jörg Kobarg
- Faculdade de Ciências Farmacêuticas Universidade Estadual de Campinas Brazil
- Departamento de Bioquímica e Biologia Tecidual Instituto de Biologia Universidade Estadual de Campinas Brazil
| |
Collapse
|
37
|
Moser R, Gurley KE, Nikolova O, Qin G, Joshi R, Mendez E, Shmulevich I, Ashley A, Grandori C, Kemp CJ. Synthetic lethal kinases in Ras/p53 mutant squamous cell carcinoma. Oncogene 2022; 41:3355-3369. [PMID: 35538224 DOI: 10.1038/s41388-022-02330-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 04/14/2022] [Accepted: 04/20/2022] [Indexed: 12/31/2022]
Abstract
The oncogene Ras and the tumor suppressor gene p53 are frequently co-mutated in human cancer and mutations in Ras and p53 can cooperate to generate a more malignant cell state. To discover novel druggable targets for cancers carrying co-mutations in Ras and p53, we performed arrayed, kinome focused siRNA and oncology drug phenotypic screening utilizing a set of syngeneic Ras mutant squamous cell carcinoma (SCC) cell lines that also carried co-mutations in selected p53 pathway genes. These cell lines were derived from SCCs from carcinogen-treated inbred mice which harbored germline deletions or mutations in Trp53, p19Arf, Atm, or Prkdc. Both siRNA and drug phenotypic screening converge to implicate the phosphoinositol kinases, receptor tyrosine kinases, MAP kinases, as well as cell cycle and DNA damage response genes as targetable dependencies in SCC. Differences in functional kinome profiles between Ras mutant cell lines reflect incomplete penetrance of Ras synthetic lethal kinases and indicate that co-mutations cause a rewiring of survival pathways in Ras mutant tumors. This study describes the functional kinomic landscape of Ras/p53 mutant chemically-induced squamous cell carcinoma in both the baseline unperturbed state and following DNA damage and nominates candidate therapeutic targets, including the Nek4 kinase, for further development.
Collapse
Affiliation(s)
- Russell Moser
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Kay E Gurley
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Olga Nikolova
- Division of Oncological Sciences, Oregon Health and Science University, Portland, OR, USA
| | | | - Rashmi Joshi
- New Mexico State University, Las Cruces, NM, USA
| | | | | | | | | | - Christopher J Kemp
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.
| |
Collapse
|
38
|
Senatore E, Iannucci R, Chiuso F, Delle Donne R, Rinaldi L, Feliciello A. Pathophysiology of Primary Cilia: Signaling and Proteostasis Regulation. Front Cell Dev Biol 2022; 10:833086. [PMID: 35646931 PMCID: PMC9130585 DOI: 10.3389/fcell.2022.833086] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 04/21/2022] [Indexed: 01/29/2023] Open
Abstract
Primary cilia are microtubule-based, non-motile sensory organelles present in most types of growth-arrested eukaryotic cells. They are transduction hubs that receive and transmit external signals to the cells in order to control growth, differentiation and development. Mutations of genes involved in the formation, maintenance or disassembly of ciliary structures cause a wide array of developmental genetic disorders, also known as ciliopathies. The primary cilium is formed during G1 in the cell cycle and disassembles at the G2/M transition. Following the completion of the cell division, the cilium reassembles in G1. This cycle is finely regulated at multiple levels. The ubiquitin-proteasome system (UPS) and the autophagy machinery, two main protein degradative systems in cells, play a fundamental role in cilium dynamics. Evidence indicate that UPS, autophagy and signaling pathways may act in synergy to control the ciliary homeostasis. However, the mechanisms involved and the links between these regulatory systems and cilium biogenesis, dynamics and signaling are not well defined yet. Here, we discuss the reciprocal regulation of signaling pathways and proteolytic machineries in the control of the assembly and disassembly of the primary cilium, and the impact of the derangement of these regulatory networks in human ciliopathies.
Collapse
|
39
|
Kandil EE, El-Banna AAA, Tabl DMM, Mackled MI, Ghareeb RY, Al-Huqail AA, Ali HM, Jebril J, Abdelsalam NR. Zinc Nutrition Responses to Agronomic and Yield Traits, Kernel Quality, and Pollen Viability in Rice ( Oryza sativa L.). FRONTIERS IN PLANT SCIENCE 2022; 13:791066. [PMID: 35615130 PMCID: PMC9125238 DOI: 10.3389/fpls.2022.791066] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 04/04/2022] [Indexed: 05/08/2023]
Abstract
Rice (Oryza sativa L.) is one of the major cereal crops worldwide with wheat and maize. A total of two field experiments were performed to evaluate the response of some rice cultivars to various foliar zinc (Zn) concentrations based on different measurements, such as agronomic, yield, yield compounds, and grain technological parameters. The experimental layout was a split plot in three replicates; the five rice cultivars (Skaha 101, Giza178, Yasmeen, Fourate, and Amber 33) were distributed in the main plots while the four foliar applications of Zn (1,500, 2,000, 2,500 mg/L besides spray water) were occupied the sub-plots. The findings showed significant differences among the five rice cultivars regarding plant height, grain yield, straw yield, biological yield, harvest index, 1,000-grain weight, panicle length, protein percentage, and grain Zn content. There is a significant effect of Zn on all plant attributes. A significant interaction between rice cultivars and foliar application of Zn was observed, whereas fertilizing Giza 178 with foliar application of Zn at the rate of 2,500 mg/L achieved the highest mean values of grain yield and straw yield, biological yield, harvest index, 1,000-grain weight, panicle length, protein %, and Zn content followed by Sakha 101 with Zn application at the rate of 2,000 mg/L, respectively, in both seasons. The rice cultivars significantly differed in hulling (%), broken (%), hardness, grain length, shape, amylose (%), gel consistency, and gelatinization temperature. Unfortunately, the commercial Zn product used was genotoxic to pollen grains with a higher rate of Zn. Aberrations were observed such as stickiness, ultrastructural changes in the exterior and interior walls, partially or fully degenerated grains, and shrunken and unfilled grains. This study concluded that using Zn application at the rate of 2,000 mg/L to protect human and environmental health, the side effects and toxicity of the local commercial Zn product market should be investigated before making recommendations to farmers.
Collapse
Affiliation(s)
- Essam E. Kandil
- Department of Plant Protection, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria, Egypt
| | - Aly A. A. El-Banna
- Department of Plant Protection, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria, Egypt
| | - Dalia M. M. Tabl
- Rice Research Technology Center (RTTC), Field Crops Research Institute, Agricultural Research Center, Alexandria, Egypt
| | - Marwa I. Mackled
- Department of Stored Product Pests, Plant Protection Institute, Agriculture Research Center (ARC), Alexandria, Egypt
| | - Rehab Y. Ghareeb
- Plant Protection and Biomolecular Diagnosis Department, Arid Lands Cultivation Research Institute, The City of Scientific Research and Technological Applications, New Borg El Arab, Egypt
| | - Asma A. Al-Huqail
- Chair of Climate Change, Environmental Development and Vegetation Cover, Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Hayssam M. Ali
- Chair of Climate Change, Environmental Development and Vegetation Cover, Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Jebril Jebril
- Department of Agronomy, Kansas State University, Manhattan, KS, United States
| | - Nader R. Abdelsalam
- Agricultural Botany Department, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria, Egypt
| |
Collapse
|
40
|
Jeltema D, Wang J, Cai J, Kelley N, Yang Z, He Y. A Single Amino Acid Residue Defines the Difference in NLRP3 Inflammasome Activation between NEK7 and NEK6. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:2029-2036. [PMID: 35354613 PMCID: PMC9012696 DOI: 10.4049/jimmunol.2101154] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 02/13/2022] [Indexed: 11/19/2022]
Abstract
The NOD-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome is a critical component of the innate immune system that is activated by microbial infections and cellular stress signals. The molecular mechanism of NLRP3 inflammasome activation remains not fully understood. As an NLRP3-interacting partner, NEK7 has emerged as a critical mediator for NLRP3 inflammasome activation. In contrast to NEK7, NEK6, the closely related member of the NEK family, does not support NLRP3 inflammasome activation. In this study, we show that the mouse NEK7 catalytic domain, which shares high sequence identity with the counterpart of NEK6, mediates its interaction with NLRP3 and inflammasome activation in mouse macrophages. Within their catalytic domains, a single amino acid residue at a corresponding position (R121NEK7, Q132NEK6) differentiates their function in NLRP3 inflammasome activation. Surprisingly, substitution of the glutamine residue to an arginine residue at position 132 confers NEK6 the ability of NLRP3 binding and inflammasome activation in mouse macrophages. Furthermore, our results suggest a structural pocket surrounding the residue R121 of NEK7 that is essential for NLRP3 binding and inflammasome activation.
Collapse
Affiliation(s)
- Devon Jeltema
- Department of Biochemistry, Microbiology, and Immunology, Wayne State University, Detroit, MI
| | - Jihong Wang
- Department of Biochemistry, Microbiology, and Immunology, Wayne State University, Detroit, MI
| | - Juan Cai
- Department of Biochemistry, Microbiology, and Immunology, Wayne State University, Detroit, MI
| | - Nathan Kelley
- Department of Biochemistry, Microbiology, and Immunology, Wayne State University, Detroit, MI
| | - Zhe Yang
- Department of Biochemistry, Microbiology, and Immunology, Wayne State University, Detroit, MI
| | - Yuan He
- Department of Biochemistry, Microbiology, and Immunology, Wayne State University, Detroit, MI
| |
Collapse
|
41
|
In Mitosis You Are Not: The NIMA Family of Kinases in Aspergillus, Yeast, and Mammals. Int J Mol Sci 2022; 23:ijms23074041. [PMID: 35409400 PMCID: PMC8999480 DOI: 10.3390/ijms23074041] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 03/31/2022] [Accepted: 04/01/2022] [Indexed: 11/17/2022] Open
Abstract
The Never in mitosis gene A (NIMA) family of serine/threonine kinases is a diverse group of protein kinases implicated in a wide variety of cellular processes, including cilia regulation, microtubule dynamics, mitotic processes, cell growth, and DNA damage response. The founding member of this family was initially identified in Aspergillus and was found to play important roles in mitosis and cell division. The yeast family has one member each, Fin1p in fission yeast and Kin3p in budding yeast, also with functions in mitotic processes, but, overall, these are poorly studied kinases. The mammalian family, the main focus of this review, consists of 11 members named Nek1 to Nek11. With the exception of a few members, the functions of the mammalian Neks are poorly understood but appear to be quite diverse. Like the prototypical NIMA, many members appear to play important roles in mitosis and meiosis, but their functions in the cell go well beyond these well-established activities. In this review, we explore the roles of fungal and mammalian NIMA kinases and highlight the most recent findings in the field.
Collapse
|
42
|
Gao WL, Niu L, Chen WL, Zhang YQ, Huang WH. Integrative Analysis of the Expression Levels and Prognostic Values for NEK Family Members in Breast Cancer. Front Genet 2022; 13:798170. [PMID: 35368696 PMCID: PMC8967485 DOI: 10.3389/fgene.2022.798170] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 02/07/2022] [Indexed: 12/29/2022] Open
Abstract
Background: In the latest rankings, breast cancer ranks first in incidence and fifth in mortality among female malignancies worldwide. Early diagnosis and treatment can improve the prognosis and prolong the survival of breast cancer (BC) patients. The NIMA-related kinase (NEK), a group of serine/threonine kinase, is a large and conserved gene family that includes NEK1–NEK11. The NEK plays a pivotal role in the cell cycle and microtubule formation. However, an integrative analysis of the effect and prognosis value of NEK family members on BC patients is still lacking. Methods: In this study, the expression profiles of NEK family members in BC and its subgroups were analyzed using UALCAN, GEPIA2, and Human Protein Atlas datasets. The prognostic values of NEK family members in BC were evaluated using the Kaplan–Meier plotter. Co-expression profiles and genetic alterations of NEK family members were analyzed using the cBioPortal database. The function and pathway enrichment analysis of the NEK family were performed using the WebGestalt database. The correlation analysis of the NEK family and immune cell infiltration in BC was conducted using the TIMER 2.0 database. Results: In this study, we compared and analyzed the prognosis values of the NEKs. We found that NEK9 was highly expressed in normal breast tissues than BC, and NEK2, NEK6, and NEK11 were significantly highly expressed in BC than adjacent normal tissues. Interestingly, the expression levels of NEK2, NEK6, and NEK10 were not only remarkably correlated with the tumor stage but also with the molecular subtype. Through multilevel research, we found that high expression levels of NEK1, NEK3, NEK8, NEK9, NEK10, and NEK11 suggested a better prognosis value in BC, while high expression levels of NEK2 and NEK6 suggested a poor prognosis value in BC. Conclusion: Our studies show the prognosis values of the NEKs in BC. Thus, we suggest that NEKs may be regarded as novel biomarkers for predicting potential prognosis values and potential therapeutic targets of BC patients.
Collapse
Affiliation(s)
- Wen-Liang Gao
- Department of Breast-Thyroid-Surgery and Cancer Research Center, Xiang’an Hospital of Xiamen University, Xiamen, China
- Xiamen Research Center of Clinical Medicine in Breast and Thyroid Cancers, Xiamen, China
- Xiamen Key Laboratory of Endocrine-Related Cancer Precision Medicine, Xiamen, China
| | - Lei Niu
- Department of Breast-Thyroid-Surgery and Cancer Research Center, Xiang’an Hospital of Xiamen University, Xiamen, China
- Xiamen Research Center of Clinical Medicine in Breast and Thyroid Cancers, Xiamen, China
- Xiamen Key Laboratory of Endocrine-Related Cancer Precision Medicine, Xiamen, China
| | - Wei-Ling Chen
- Department of Breast-Thyroid-Surgery and Cancer Research Center, Xiang’an Hospital of Xiamen University, Xiamen, China
- Xiamen Research Center of Clinical Medicine in Breast and Thyroid Cancers, Xiamen, China
- Xiamen Key Laboratory of Endocrine-Related Cancer Precision Medicine, Xiamen, China
| | - Yong-Qu Zhang
- Department of Breast-Thyroid-Surgery and Cancer Research Center, Xiang’an Hospital of Xiamen University, Xiamen, China
- Xiamen Research Center of Clinical Medicine in Breast and Thyroid Cancers, Xiamen, China
- Xiamen Key Laboratory of Endocrine-Related Cancer Precision Medicine, Xiamen, China
- *Correspondence: Yong-Qu Zhang, ; Wen-He Huang,
| | - Wen-He Huang
- Department of Breast-Thyroid-Surgery and Cancer Research Center, Xiang’an Hospital of Xiamen University, Xiamen, China
- Xiamen Research Center of Clinical Medicine in Breast and Thyroid Cancers, Xiamen, China
- Xiamen Key Laboratory of Endocrine-Related Cancer Precision Medicine, Xiamen, China
- *Correspondence: Yong-Qu Zhang, ; Wen-He Huang,
| |
Collapse
|
43
|
Zhu Z, Gao R, Ye T, Feng K, Zhang J, Chen Y, Xie Z, Wang Y. The Therapeutic Effect of iMSC-Derived Small Extracellular Vesicles on Tendinopathy Related Pain Through Alleviating Inflammation: An in vivo and in vitro Study. J Inflamm Res 2022; 15:1421-1436. [PMID: 35256850 PMCID: PMC8898180 DOI: 10.2147/jir.s345517] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 02/15/2022] [Indexed: 12/30/2022] Open
Abstract
Background Tendinopathy is a common cause of tendon pain. However, there is a lack of effective therapies for managing tendinopathy pain, despite the pain being the most common complaint of patients. This study aimed to evaluate the therapeutic effect of small extracellular vesicles released from induced pluripotent stem cell-derived mesenchymal stem cells (iMSC-sEVs) on tendinopathy pain and explore the underlying mechanisms. Methods Rat tendinopathy model was established and underwent the injection of iMSC-sEVs to the quadriceps tendon one week after modeling. Pain-related behaviors were measured for the following four weeks. Tendon histology was assessed four weeks after the injection. To further investigate the potential mechanism, tenocytes were stimulated with IL-1β to mimic tendinopathy in vitro. The effect of iMSC-sEVs on tenocyte proliferation and the expression of proinflammatory cytokines were measured by CCK-8, RT-qPCR, and ELISA. RNA-seq was further performed to systematically analyze the related global changes and underlying mechanisms. Results Local injection of iMSC-sEVs was effective in alleviating pain in the tendinopathy rats compared with the vehicle group. Tendon histology showed ameliorated tendinopathy characteristics. Upon iMSC-sEVs treatment, significantly increased tenocyte proliferation and less expression of proinflammatory cytokines were observed. Transcriptome analysis revealed that iMSC-sEVs treatment upregulated the expression of genes involved in cell proliferation and downregulated the expression of genes involved in inflammation and collagen degeneration. Conclusion Collectively, this study demonstrated iMSC-sEVs protect tenocytes from inflammatory stimulation and promote cell proliferation as well as collagen synthesis, thereby relieving pain derived from tendinopathy. As a cell-free regenerative treatment, iMSC-sEVs might be a promising therapeutic candidate for tendinopathy.
Collapse
Affiliation(s)
- Zhaochen Zhu
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, 200233, People’s Republic of China
- Institute of Microsurgery on Extremities, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, 200233, People’s Republic of China
| | - Renzhi Gao
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, 200233, People’s Republic of China
- Institute of Microsurgery on Extremities, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, 200233, People’s Republic of China
| | - Teng Ye
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, 200233, People’s Republic of China
- Institute of Microsurgery on Extremities, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, 200233, People’s Republic of China
| | - Kai Feng
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, 200233, People’s Republic of China
- Institute of Microsurgery on Extremities, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, 200233, People’s Republic of China
| | - Juntao Zhang
- Institute of Microsurgery on Extremities, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, 200233, People’s Republic of China
| | - Yu Chen
- Institute of Microsurgery on Extremities, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, 200233, People’s Republic of China
| | - Zongping Xie
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, 200233, People’s Republic of China
- Correspondence: Zongping Xie, Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, 600# Yishan Road, Shanghai, 200233, People’s Republic of China Email
| | - Yang Wang
- Institute of Microsurgery on Extremities, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, 200233, People’s Republic of China
| |
Collapse
|
44
|
Marino N, German R, Podicheti R, Rusch DB, Rockey P, Huang J, Sandusky GE, Temm CJ, Althouse S, Nephew KP, Nakshatri H, Liu J, Vode A, Cao S, Storniolo AMV. Aberrant epigenetic and transcriptional events associated with breast cancer risk. Clin Epigenetics 2022; 14:21. [PMID: 35139887 PMCID: PMC8830042 DOI: 10.1186/s13148-022-01239-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 01/25/2022] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Genome-wide association studies have identified several breast cancer susceptibility loci. However, biomarkers for risk assessment are still missing. Here, we investigated cancer-related molecular changes detected in tissues from women at high risk for breast cancer prior to disease manifestation. Disease-free breast tissue cores donated by healthy women (N = 146, median age = 39 years) were processed for both methylome (MethylCap) and transcriptome (Illumina's HiSeq4000) sequencing. Analysis of tissue microarray and primary breast epithelial cells was used to confirm gene expression dysregulation. RESULTS Transcriptomic analysis identified 69 differentially expressed genes between women at high and those at average risk of breast cancer (Tyrer-Cuzick model) at FDR < 0.05 and fold change ≥ 2. Majority of the identified genes were involved in DNA damage checkpoint, cell cycle, and cell adhesion. Two genes, FAM83A and NEK2, were overexpressed in tissue sections (FDR < 0.01) and primary epithelial cells (p < 0.05) from high-risk breasts. Moreover, 1698 DNA methylation changes were identified in high-risk breast tissues (FDR < 0.05), partially overlapped with cancer-related signatures, and correlated with transcriptional changes (p < 0.05, r ≤ 0.5). Finally, among the participants, 35 women donated breast biopsies at two time points, and age-related molecular alterations enhanced in high-risk subjects were identified. CONCLUSIONS Normal breast tissue from women at high risk of breast cancer bears molecular aberrations that may contribute to breast cancer susceptibility. This study is the first molecular characterization of the true normal breast tissues, and provides an opportunity to investigate molecular markers of breast cancer risk, which may lead to new preventive approaches.
Collapse
Affiliation(s)
- Natascia Marino
- Susan G. Komen Tissue Bank at the IU Simon Comprehensive Cancer Center, Indianapolis, IN, 46202, USA. .,Department of Medicine, Hematology/Oncology Division, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
| | - Rana German
- Susan G. Komen Tissue Bank at the IU Simon Comprehensive Cancer Center, Indianapolis, IN, 46202, USA
| | - Ram Podicheti
- Center for Genomics and Bioinformatics, Indiana University, Bloomington, IN, 47405, USA
| | - Douglas B Rusch
- Center for Genomics and Bioinformatics, Indiana University, Bloomington, IN, 47405, USA
| | - Pam Rockey
- Susan G. Komen Tissue Bank at the IU Simon Comprehensive Cancer Center, Indianapolis, IN, 46202, USA
| | - Jie Huang
- Center for Genomics and Bioinformatics, Indiana University, Bloomington, IN, 47405, USA
| | - George E Sandusky
- Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Constance J Temm
- Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Sandra Althouse
- Department of Biostatistics and Health Data Science, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Kenneth P Nephew
- Department of Anatomy, Cell Biology, & Physiology, Indiana University, Bloomington, IN, 47405, USA
| | - Harikrishna Nakshatri
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Jun Liu
- Center for Genomics and Bioinformatics, Indiana University, Bloomington, IN, 47405, USA
| | - Ashley Vode
- Susan G. Komen Tissue Bank at the IU Simon Comprehensive Cancer Center, Indianapolis, IN, 46202, USA
| | - Sha Cao
- Department of Biostatistics and Health Data Science, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Anna Maria V Storniolo
- Susan G. Komen Tissue Bank at the IU Simon Comprehensive Cancer Center, Indianapolis, IN, 46202, USA.,Department of Medicine, Hematology/Oncology Division, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| |
Collapse
|
45
|
Li Q, Feng H, Wang H, Wang Y, Mou W, Xu G, Zhang P, Li R, Shi W, Wang Z, Fang Z, Ren L, Wang Y, Lin L, Hou X, Dai W, Li Z, Wei Z, Liu T, Wang J, Guo Y, Li P, Zhao X, Zhan X, Xiao X, Bai Z. Licochalcone B specifically inhibits the NLRP3 inflammasome by disrupting NEK7-NLRP3 interaction. EMBO Rep 2022; 23:e53499. [PMID: 34882936 PMCID: PMC8811655 DOI: 10.15252/embr.202153499] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 11/17/2021] [Accepted: 11/23/2021] [Indexed: 02/05/2023] Open
Abstract
The activation of the nucleotide oligomerization domain (NOD)-like receptor (NLR) family, pyrin domain-containing protein 3 (NLRP3) inflammasome is related to the pathogenesis of a wide range of inflammatory diseases, but drugs targeting the NLRP3 inflammasome are still scarce. In the present study, we demonstrated that Licochalcone B (LicoB), a main component of the traditional medicinal herb licorice, is a specific inhibitor of the NLRP3 inflammasome. LicoB inhibits the activation of the NLRP3 inflammasome in macrophages but has no effect on the activation of AIM2 or NLRC4 inflammasome. Mechanistically, LicoB directly binds to NEK7 and inhibits the interaction between NLRP3 and NEK7, thus suppressing NLRP3 inflammasome activation. Furthermore, LicoB exhibits protective effects in mouse models of NLRP3 inflammasome-mediated diseases, including lipopolysaccharide (LPS)-induced septic shock, MSU-induced peritonitis and non-alcoholic steatohepatitis (NASH). Our findings indicate that LicoB is a specific NLRP3 inhibitor and a promising candidate for treating NLRP3 inflammasome-related diseases.
Collapse
Affiliation(s)
- Qiang Li
- School of PharmacyFujian University of Traditional Chinese MedicineFuzhouChina
- Department of HepatologyFifth Medical Center of Chinese PLA General HospitalBeijingChina
- China Military Institute of Chinese MateriaFifth Medical Center of Chinese PLA General HospitalBeijingChina
| | - Hui Feng
- Department of UltrasoundFifth Medical Center of Chinese PLA General HospitalBeijingChina
| | - Hongbo Wang
- Department of HepatologyFifth Medical Center of Chinese PLA General HospitalBeijingChina
| | - Yinghao Wang
- School of PharmacyFujian University of Traditional Chinese MedicineFuzhouChina
| | - Wenqing Mou
- China Military Institute of Chinese MateriaFifth Medical Center of Chinese PLA General HospitalBeijingChina
| | - Guang Xu
- Department of HepatologyFifth Medical Center of Chinese PLA General HospitalBeijingChina
- China Military Institute of Chinese MateriaFifth Medical Center of Chinese PLA General HospitalBeijingChina
| | - Ping Zhang
- Department of HepatologyFifth Medical Center of Chinese PLA General HospitalBeijingChina
- China Military Institute of Chinese MateriaFifth Medical Center of Chinese PLA General HospitalBeijingChina
| | - Ruisheng Li
- Research Center for Clinical and Translational MedicineFifth Medical Center of Chinese PLA General HospitalBeijingChina
| | - Wei Shi
- China Military Institute of Chinese MateriaFifth Medical Center of Chinese PLA General HospitalBeijingChina
| | - Zhilei Wang
- China Military Institute of Chinese MateriaFifth Medical Center of Chinese PLA General HospitalBeijingChina
| | - Zhie Fang
- China Military Institute of Chinese MateriaFifth Medical Center of Chinese PLA General HospitalBeijingChina
| | - Lutong Ren
- China Military Institute of Chinese MateriaFifth Medical Center of Chinese PLA General HospitalBeijingChina
| | - Yan Wang
- China Military Institute of Chinese MateriaFifth Medical Center of Chinese PLA General HospitalBeijingChina
| | - Li Lin
- China Military Institute of Chinese MateriaFifth Medical Center of Chinese PLA General HospitalBeijingChina
| | - Xiaorong Hou
- China Military Institute of Chinese MateriaFifth Medical Center of Chinese PLA General HospitalBeijingChina
| | - Wenzhang Dai
- China Military Institute of Chinese MateriaFifth Medical Center of Chinese PLA General HospitalBeijingChina
| | - Zhiyong Li
- China Military Institute of Chinese MateriaFifth Medical Center of Chinese PLA General HospitalBeijingChina
| | - Ziying Wei
- China Military Institute of Chinese MateriaFifth Medical Center of Chinese PLA General HospitalBeijingChina
| | - Tingting Liu
- China Military Institute of Chinese MateriaFifth Medical Center of Chinese PLA General HospitalBeijingChina
| | - Jiabo Wang
- China Military Institute of Chinese MateriaFifth Medical Center of Chinese PLA General HospitalBeijingChina
| | - Yuming Guo
- Department of HepatologyFifth Medical Center of Chinese PLA General HospitalBeijingChina
- China Military Institute of Chinese MateriaFifth Medical Center of Chinese PLA General HospitalBeijingChina
| | - Pengyan Li
- Department of HepatologyFifth Medical Center of Chinese PLA General HospitalBeijingChina
- China Military Institute of Chinese MateriaFifth Medical Center of Chinese PLA General HospitalBeijingChina
| | - Xu Zhao
- Department of HepatologyFifth Medical Center of Chinese PLA General HospitalBeijingChina
- China Military Institute of Chinese MateriaFifth Medical Center of Chinese PLA General HospitalBeijingChina
| | - Xiaoyan Zhan
- Department of HepatologyFifth Medical Center of Chinese PLA General HospitalBeijingChina
- China Military Institute of Chinese MateriaFifth Medical Center of Chinese PLA General HospitalBeijingChina
| | - Xiaohe Xiao
- School of PharmacyFujian University of Traditional Chinese MedicineFuzhouChina
- Department of HepatologyFifth Medical Center of Chinese PLA General HospitalBeijingChina
- China Military Institute of Chinese MateriaFifth Medical Center of Chinese PLA General HospitalBeijingChina
| | - Zhaofang Bai
- Department of HepatologyFifth Medical Center of Chinese PLA General HospitalBeijingChina
- China Military Institute of Chinese MateriaFifth Medical Center of Chinese PLA General HospitalBeijingChina
| |
Collapse
|
46
|
Yang M, Guo Y, Guo X, Mao Y, Zhu S, Wang N, Lu D. Analysis of the effect of NEKs on the prognosis of patients with non-small-cell lung carcinoma based on bioinformatics. Sci Rep 2022; 12:1705. [PMID: 35105934 PMCID: PMC8807624 DOI: 10.1038/s41598-022-05728-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 01/14/2022] [Indexed: 12/14/2022] Open
Abstract
NEKs are proteins that are involved in various cell processes and play important roles in the formation and development of cancer. However, few studies have examined the role of NEKs in the development of non-small-cell lung carcinoma (NSCLC). To address this problem, the Oncomine, UALCAN, and the Human Protein Atlas databases were used to analyze differential NEK expression and its clinicopathological parameters, while the Kaplan-Meier, cBioPortal, GEPIA, and DAVID databases were used to analyze survival, gene mutations, similar genes, and biological enrichments. The rate of NEK family gene mutation was high (> 50%) in patients with NSCLC, in which NEK2/4/6/8/ was overexpressed and significantly correlated with tumor stage and nodal metastasis status. In addition, the high expression of NEK2/3mRNA was significantly associated with poor prognosis in patients with NSCLC, while high expression of NEK1/4/6/7/8/9/10/11mRNA was associated with good prognosis. In summary, these results suggest that NEK2/4/6/8 may be a potential prognostic biomarker for the survival of patients with NSCLC.
Collapse
Affiliation(s)
- Mengxia Yang
- Graduate School, Beijing University of Chinese Medicine, Beijing, 100029, People's Republic of China.,Department of Oncology, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, 100102, People's Republic of China
| | - Yikun Guo
- Graduate School, Beijing University of Chinese Medicine, Beijing, 100029, People's Republic of China
| | - Xiaofei Guo
- Department of Oncology, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, 100102, People's Republic of China
| | - Yun Mao
- Department of Oncology, The Second Hospital of Hunan University of Chinese Medicine, Changsha, 410005, People's Republic of China
| | - Shijie Zhu
- Department of Oncology, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, 100102, People's Republic of China
| | - Ningjun Wang
- Department of Oncology, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, 100102, People's Republic of China.
| | - Dianrong Lu
- Department of Oncology, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, 100102, People's Republic of China.
| |
Collapse
|
47
|
Wu Y, Devotta A, José-Edwards DS, Kugler JE, Negrón-Piñeiro LJ, Braslavskaya K, Addy J, Saint-Jeannet JP, Di Gregorio A. Xbp1 and Brachyury establish an evolutionarily conserved subcircuit of the notochord gene regulatory network. eLife 2022; 11:e73992. [PMID: 35049502 PMCID: PMC8803312 DOI: 10.7554/elife.73992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 01/19/2022] [Indexed: 11/13/2022] Open
Abstract
Gene regulatory networks coordinate the formation of organs and structures that compose the evolving body plans of different organisms. We are using a simple chordate model, the Ciona embryo, to investigate the essential gene regulatory network that orchestrates morphogenesis of the notochord, a structure necessary for the proper development of all chordate embryos. Although numerous transcription factors expressed in the notochord have been identified in different chordates, several of them remain to be positioned within a regulatory framework. Here, we focus on Xbp1, a transcription factor expressed during notochord formation in Ciona and other chordates. Through the identification of Xbp1-downstream notochord genes in Ciona, we found evidence of the early co-option of genes involved in the unfolded protein response to the notochord developmental program. We report the regulatory interplay between Xbp1 and Brachyury, and by extending these results to Xenopus, we show that Brachyury and Xbp1 form a cross-regulatory subcircuit of the notochord gene regulatory network that has been consolidated during chordate evolution.
Collapse
Affiliation(s)
- Yushi Wu
- Department of Molecular Pathobiology, New York University College of DentistryNew YorkUnited States
| | - Arun Devotta
- Department of Molecular Pathobiology, New York University College of DentistryNew YorkUnited States
| | - Diana S José-Edwards
- Department of Molecular Pathobiology, New York University College of DentistryNew YorkUnited States
| | - Jamie E Kugler
- Department of Molecular Pathobiology, New York University College of DentistryNew YorkUnited States
| | - Lenny J Negrón-Piñeiro
- Department of Molecular Pathobiology, New York University College of DentistryNew YorkUnited States
| | - Karina Braslavskaya
- Department of Molecular Pathobiology, New York University College of DentistryNew YorkUnited States
| | - Jermyn Addy
- Department of Molecular Pathobiology, New York University College of DentistryNew YorkUnited States
| | | | - Anna Di Gregorio
- Department of Molecular Pathobiology, New York University College of DentistryNew YorkUnited States
| |
Collapse
|
48
|
MicroRNA-323a-3p Negatively Regulates NEK6 in Colon Adenocarcinoma Cells. JOURNAL OF ONCOLOGY 2022; 2022:7007718. [PMID: 35096064 PMCID: PMC8791743 DOI: 10.1155/2022/7007718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 12/31/2021] [Accepted: 01/05/2022] [Indexed: 11/18/2022]
Abstract
Objective. The activity of NEK6 is enhanced in several cancer cells, including colon adenocarcinoma (COAD) cells. However, there are few reports on the microRNA (miRNA/miR) regulation of NEK6. In this study, we aimed to investigate the effects of miRNAs targeting NEK6 in COAD cells. Methods. Public data and online analysis sites were used to analyze the expression levels of NEK6 and miR-323a-3p in COAD tissues as well as the relationship between NEK6 or miR-323a-3p levels and survival in patients with COAD and to predict miRNAs targeting NEK6. Real-time polymerase chain reaction and western blotting were performed to determine the levels of NEK6 and miR-323a-3p in COAD cells. The targeting of NEK6 by miR-323a-3p was verified using a dual-luciferase reporter assay. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, 5-ethynyl-2′-deoxyuridine assay, propidium iodide (PI) staining, annexin V-fluorescein isothiocyanate/PI staining, and transwell assay were employed to test the proliferation, apoptosis, migration ability, and invasiveness of COAD cells. Results. In COAD cells, NEK6 was highly expressed, whereas miR-323a-3p was expressed at low levels and negatively regulated NEK6. Upregulating the level of miR-323a-3p impaired the proliferation, migration, and invasion of COAD cells and promoted apoptosis, whereas supplementing NEK6 alleviated the damage of the proliferation, migration, and invasion of COAD cells caused by miR-323a-3p and inhibited miR-323a-3p-induced apoptosis. These findings indicate that miR-323a-3p regulates the proliferation, migration, invasion, and apoptosis of COAD cells by targeting NEK6. Conclusion. miR-323a-3p downregulates NEK6 in COAD cells; this provides a novel basis for further understanding the occurrence and development of COAD.
Collapse
|
49
|
Xiang J, Alafate W, Wu W, Wang Y, Li X, Xie W, Bai X, Li R, Wang M, Wang J. NEK2 enhances malignancies of glioblastoma via NIK/NF-κB pathway. Cell Death Dis 2022; 13:58. [PMID: 35031599 PMCID: PMC8760305 DOI: 10.1038/s41419-022-04512-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 12/16/2021] [Accepted: 01/06/2022] [Indexed: 02/08/2023]
Abstract
Glioblastoma (GBM) is one of the most lethal primary brain tumor with a poor median survival less than 15 months. Despite the development of the clinical strategies over the decades, the outcomes for GBM patients remain dismal due to the strong proliferation and invasion ability and the acquired resistance to radiotherapy and chemotherapy. Therefore, developing new biomarkers and therapeutic strategies targeting GBM is in urgent need. In this study, gene expression datasets and relevant clinical information were extracted from public cancers/glioma datasets, including TCGA, GRAVENDEEL, REMBRANDT, and GILL datasets. Differentially expressed genes were analyzed and NEK2 was picked as a candidate gene for subsequent validation. Human tissue samples and corresponding data were collected from our center and detected by immunohistochemistry analysis. Molecular biological assays and in vivo xenograft transplantation were performed to confirm the bioinformatic findings. High-throughput RNA sequencing, followed by KEGG analysis, GSEA analysis and GO analysis were conducted to identify potential signaling pathways related to NEK2 expression. Subsequent mechanism assays were used to verify the relationship between NEK2 and NF-κB signaling. Overall, we identified that NEK2 is significantly upregulated in GBM and the higher expression of NEK2 exhibited a poorer prognosis. Functionally, NEK2 knockdown attenuated cell proliferation, migration, invasion, and tumorigenesis of GBM while NEK2 overexpression promoted the GBM progression. Furthermore, High-throughput RNA sequencing and bioinformatics analysis indicated that NEK2 was positively related to the NF-κB signaling pathway in GBM. Mechanically, NEK2 activated the noncanonical NF-κB signaling pathway by phosphorylating NIK and increasing the activity and stability of NIK. In conclusion, NEK2 promoted the progression of GBM through activation of noncanonical NF-κB signaling, indicating that NEK2- NF-κB axis could be a potential drug target for GBM.
Collapse
Affiliation(s)
- Jianyang Xiang
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
- Center of Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Wahafu Alafate
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
- Center of Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Wei Wu
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
- Center of Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Yichang Wang
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
- Center of Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Xiaodong Li
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
- Center of Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Wanfu Xie
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Xiaobin Bai
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Ruichun Li
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Maode Wang
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China.
- Center of Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China.
| | - Jia Wang
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China.
- Center of Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China.
| |
Collapse
|
50
|
Dana D, Das T, Choi A, Bhuiyan AI, Das TK, Talele TT, Pathak SK. Nek2 Kinase Signaling in Malaria, Bone, Immune and Kidney Disorders to Metastatic Cancers and Drug Resistance: Progress on Nek2 Inhibitor Development. Molecules 2022; 27:347. [PMID: 35056661 PMCID: PMC8779408 DOI: 10.3390/molecules27020347] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 12/27/2021] [Accepted: 12/30/2021] [Indexed: 11/25/2022] Open
Abstract
Cell cycle kinases represent an important component of the cell machinery that controls signal transduction involved in cell proliferation, growth, and differentiation. Nek2 is a mitotic Ser/Thr kinase that localizes predominantly to centrosomes and kinetochores and orchestrates centrosome disjunction and faithful chromosomal segregation. Its activity is tightly regulated during the cell cycle with the help of other kinases and phosphatases and via proteasomal degradation. Increased levels of Nek2 kinase can promote centrosome amplification (CA), mitotic defects, chromosome instability (CIN), tumor growth, and cancer metastasis. While it remains a highly attractive target for the development of anti-cancer therapeutics, several new roles of the Nek2 enzyme have recently emerged: these include drug resistance, bone, ciliopathies, immune and kidney diseases, and parasitic diseases such as malaria. Therefore, Nek2 is at the interface of multiple cellular processes and can influence numerous cellular signaling networks. Herein, we provide a critical overview of Nek2 kinase biology and discuss the signaling roles it plays in both normal and diseased human physiology. While the majority of research efforts over the last two decades have focused on the roles of Nek2 kinase in tumor development and cancer metastasis, the signaling mechanisms involving the key players associated with several other notable human diseases are highlighted here. We summarize the efforts made so far to develop Nek2 inhibitory small molecules, illustrate their action modalities, and provide our opinion on the future of Nek2-targeted therapeutics. It is anticipated that the functional inhibition of Nek2 kinase will be a key strategy going forward in drug development, with applications across multiple human diseases.
Collapse
Affiliation(s)
- Dibyendu Dana
- Chemistry and Biochemistry Department, Queens College of the City University of New York, 65-30 Kissena Blvd., Flushing, NY 11367, USA; (D.D.); (T.D.); (A.C.); (A.I.B.)
- KemPharm Inc., 2200 Kraft Drive, Blacksburg, VA 24060, USA
| | - Tuhin Das
- Chemistry and Biochemistry Department, Queens College of the City University of New York, 65-30 Kissena Blvd., Flushing, NY 11367, USA; (D.D.); (T.D.); (A.C.); (A.I.B.)
| | - Athena Choi
- Chemistry and Biochemistry Department, Queens College of the City University of New York, 65-30 Kissena Blvd., Flushing, NY 11367, USA; (D.D.); (T.D.); (A.C.); (A.I.B.)
- Brooklyn Technical High School, 29 Fort Greene Pl, Brooklyn, NY 11217, USA
| | - Ashif I. Bhuiyan
- Chemistry and Biochemistry Department, Queens College of the City University of New York, 65-30 Kissena Blvd., Flushing, NY 11367, USA; (D.D.); (T.D.); (A.C.); (A.I.B.)
- Chemistry Doctoral Program, The Graduate Center of the City University of New York, 365 5th Ave, New York, NY 10016, USA
| | - Tirtha K. Das
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;
- Mindich Child Health and Development Institute, Department of Pediatrics, Department of Genetics and Genomic Science, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Tanaji T. Talele
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, 8000 Utopia Parkway, Queens, NY 11439, USA;
| | - Sanjai K. Pathak
- Chemistry and Biochemistry Department, Queens College of the City University of New York, 65-30 Kissena Blvd., Flushing, NY 11367, USA; (D.D.); (T.D.); (A.C.); (A.I.B.)
- Chemistry Doctoral Program, The Graduate Center of the City University of New York, 365 5th Ave, New York, NY 10016, USA
- Biochemistry Doctoral Program, The Graduate Center of the City University of New York, 365 5th Ave, New York, NY 10016, USA
| |
Collapse
|