1
|
Yumura S. Wound Repair of the Cell Membrane: Lessons from Dictyostelium Cells. Cells 2024; 13:341. [PMID: 38391954 PMCID: PMC10886852 DOI: 10.3390/cells13040341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/30/2024] [Accepted: 02/08/2024] [Indexed: 02/24/2024] Open
Abstract
The cell membrane is frequently subjected to damage, either through physical or chemical means. The swift restoration of the cell membrane's integrity is crucial to prevent the leakage of intracellular materials and the uncontrolled influx of extracellular ions. Consequently, wound repair plays a vital role in cell survival, akin to the importance of DNA repair. The mechanisms involved in wound repair encompass a series of events, including ion influx, membrane patch formation, endocytosis, exocytosis, recruitment of the actin cytoskeleton, and the elimination of damaged membrane sections. Despite the absence of a universally accepted general model, diverse molecular models have been proposed for wound repair in different organisms. Traditional wound methods not only damage the cell membrane but also impact intracellular structures, including the underlying cortical actin networks, microtubules, and organelles. In contrast, the more recent improved laserporation selectively targets the cell membrane. Studies on Dictyostelium cells utilizing this method have introduced a novel perspective on the wound repair mechanism. This review commences by detailing methods for inducing wounds and subsequently reviews recent developments in the field.
Collapse
Affiliation(s)
- Shigehiko Yumura
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi 753-8511, Japan
| |
Collapse
|
2
|
Lehne F, Bogdan S. Getting cells into shape by calcium-dependent actin cross-linking proteins. Front Cell Dev Biol 2023; 11:1171930. [PMID: 37025173 PMCID: PMC10070769 DOI: 10.3389/fcell.2023.1171930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 03/09/2023] [Indexed: 04/08/2023] Open
Abstract
The actin cytoskeleton represents a highly dynamic filament system providing cell structure and mechanical forces to drive a variety of cellular processes. The dynamics of the actin cytoskeleton are controlled by a number of conserved proteins that maintain the pool of actin monomers, promote actin nucleation, restrict the length of actin filaments and cross-link filaments into networks or bundles. Previous work has been established that cytoplasmic calcium is an important signal to rapidly relay information to the actin cytoskeleton, but the underlying mechanisms remain poorly understood. Here, we summarize new recent perspectives on how calcium fluxes are transduced to the actin cytoskeleton in a physiological context. In this mini-review we will focus on three calcium-binding EF-hand-containing actin cross-linking proteins, α-actinin, plastin and EFHD2/Swiprosin-1, and how these conserved proteins affect the cell's actin reorganization in the context of cell migration and wound closure in response to calcium.
Collapse
|
3
|
Dynamics of Actin Cytoskeleton and Their Signaling Pathways during Cellular Wound Repair. Cells 2022; 11:cells11193166. [PMID: 36231128 PMCID: PMC9564287 DOI: 10.3390/cells11193166] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 09/27/2022] [Accepted: 10/01/2022] [Indexed: 11/17/2022] Open
Abstract
The repair of wounded cell membranes is essential for cell survival. Upon wounding, actin transiently accumulates at the wound site. The loss of actin accumulation leads to cell death. The mechanism by which actin accumulates at the wound site, the types of actin-related proteins participating in the actin remodeling, and their signaling pathways are unclear. We firstly examined how actin accumulates at a wound site in Dictyostelium cells. Actin assembled de novo at the wound site, independent of cortical flow. Next, we searched for actin- and signal-related proteins targeting the wound site. Fourteen of the examined proteins transiently accumulated at different times. Thirdly, we performed functional analyses using gene knockout mutants or specific inhibitors. Rac, WASP, formin, the Arp2/3 complex, profilin, and coronin contribute to the actin dynamics. Finally, we found that multiple signaling pathways related to TORC2, the Elmo/Doc complex, PIP2-derived products, PLA2, and calmodulin are involved in the actin dynamics for wound repair.
Collapse
|
4
|
Umachandran S, Mohamed W, Jayaraman M, Hyde G, Brazill D, Baskar R. A PKC that controls polyphosphate levels, pinocytosis and exocytosis, regulates stationary phase onset in Dictyostelium. J Cell Sci 2022; 135:274945. [PMID: 35362518 DOI: 10.1242/jcs.259289] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 03/25/2022] [Indexed: 11/20/2022] Open
Abstract
Many cells can pause their growth cycle, a topic much enriched by studies of the stationary phase (SP) of model microorganisms. While several kinases are implicated in SP onset, a possible role for protein kinase C remains unknown. We show that Dictyostelium discoideum cells lacking pkcA entered SP at a reduced cell density, but only in shaking conditions. Precocious SP entry occurs because extracellular polyphosphate (polyP) levels reach a threshold at the lower cell density; adding exopolyphosphatase to pkcA- cells reverses the effect and mimics wild type growth. PkcA's regulation of polyP depended on inositol hexakisphosphate kinase and phospholipase D. PkcA- mutants also had higher actin levels, higher rates of exocytosis and lower pinocytosis rates. Postlysosomes were smaller and present in fewer pkcA- cells, compared to the wildtype. Overall, the results suggest that a reduced PkcA level triggers SP primarily because cells do not acquire or retain nutrients as efficiently, thus mimicking, or amplifying, the conditions of actual starvation.
Collapse
Affiliation(s)
- Shalini Umachandran
- Bhupat and Jyoti Mehta School of Biosciences, Department of Biotechnology, Indian Institute of Technology-Madras, Chennai-600036, India
| | - Wasima Mohamed
- Bhupat and Jyoti Mehta School of Biosciences, Department of Biotechnology, Indian Institute of Technology-Madras, Chennai-600036, India
| | - Meenakshi Jayaraman
- Bhupat and Jyoti Mehta School of Biosciences, Department of Biotechnology, Indian Institute of Technology-Madras, Chennai-600036, India
| | - Geoff Hyde
- Independent Researcher, Randwick, New South Wales, Australia
| | - Derrick Brazill
- Department of Biological Sciences, Hunter College, New York, NY 10065, USA
| | - Ramamurthy Baskar
- Bhupat and Jyoti Mehta School of Biosciences, Department of Biotechnology, Indian Institute of Technology-Madras, Chennai-600036, India
| |
Collapse
|
5
|
Kay RR, Lutton J, Coker H, Paschke P, King JS, Bretschneider T. The Amoebal Model for Macropinocytosis. Subcell Biochem 2022; 98:41-59. [PMID: 35378702 DOI: 10.1007/978-3-030-94004-1_3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Macropinocytosis is a relatively unexplored form of large-scale endocytosis driven by the actin cytoskeleton. Dictyostelium amoebae form macropinosomes from cups extended from the plasma membrane, then digest their contents and absorb the nutrients in the endo-lysosomal system. They use macropinocytosis for feeding, maintaining a high rate of fluid uptake that makes assay and experimentation easy. Mutants collected over the years identify cytoskeletal and signalling proteins required for macropinocytosis. Cups are organized around plasma membrane domains of intense PIP3, Ras and Rac signalling, proper formation of which also depends on the RasGAPs NF1 and RGBARG, PTEN, the PIP3-regulated protein kinases Akt and SGK and their activators PDK1 and TORC2, Rho proteins, plus other components yet to be identified. This PIP3 domain directs dendritic actin polymerization to the extending lip of macropinocytic cups by recruiting a ring of the SCAR/WAVE complex around itself and thus activating the Arp2/3 complex. The dynamics of PIP3 domains are proposed to shape macropinocytic cups from start to finish. The role of the Ras-PI3-kinase module in organizing feeding structures in unicellular organisms most likely predates its adoption into growth factor signalling, suggesting an evolutionary origin for growth factor signalling.
Collapse
Affiliation(s)
- Robert R Kay
- MRC Laboratory of Molecular Biology, Cambridge, UK.
| | - Josiah Lutton
- Department of Computer Science, University of Warwick, Coventry, UK
| | - Helena Coker
- Warwick Medical School, University of Warwick, Coventry, UK
| | - Peggy Paschke
- MRC Laboratory of Molecular Biology, Cambridge, UK.,Cancer Research UK Beatson Institute, Garscube Estate, Glasgow, UK
| | - Jason S King
- School of Biomedical Sciences, University of Sheffield, Sheffield, UK
| | | |
Collapse
|
6
|
Cole A, Buckler S, Marcucci J, Artemenko Y. Differential Roles of Actin Crosslinking Proteins Filamin and α-Actinin in Shear Flow-Induced Migration of Dictyostelium discoideum. Front Cell Dev Biol 2021; 9:743011. [PMID: 34485315 PMCID: PMC8415421 DOI: 10.3389/fcell.2021.743011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Accepted: 07/28/2021] [Indexed: 01/28/2023] Open
Abstract
Shear flow-induced migration is an important physiological phenomenon experienced by multiple cell types, including leukocytes and cancer cells. However, molecular mechanisms by which cells sense and directionally migrate in response to mechanical perturbation are not well understood. Dictyostelium discoideum social amoeba, a well-established model for studying amoeboid-type migration, also exhibits directional motility when exposed to shear flow, and this behavior is preceded by rapid and transient activation of the same signal transduction network that is activated by chemoattractants. The initial response, which can also be observed following brief 2 s stimulation with shear flow, requires an intact actin cytoskeleton; however, what aspect of the cytoskeletal network is responsible for sensing and/or transmitting the signal is unclear. We investigated the role of actin crosslinkers filamin and α-actinin by analyzing initial shear flow-stimulated responses in cells with or without these proteins. Both filamin and α-actinin showed rapid and transient relocalization from the cytosol to the cortex following shear flow stimulation. Using spatiotemporal analysis of Ras GTPase activation as a readout of signal transduction network activity, we demonstrated that lack of α-actinin did not reduce, and, in fact, slightly improved the response to acute mechanical stimulation compared to cells expressing α-actinin. In contrast, shear flow-induced Ras activation was significantly more robust in filamin-null cells rescued with filamin compared to cells expressing empty vector. Reduced responsiveness appeared to be specific to mechanical stimuli and was not due to a change in the basal activity since response to global stimulation with a chemoattractant and random migration was comparable between cells with or without filamin. Finally, while filamin-null cells rescued with filamin efficiently migrated upstream when presented with continuous flow, cells lacking filamin were defective in directional migration. Overall, our study suggests that filamin, but not α-actinin, is involved in sensing and/or transmitting mechanical stimuli that drive directed migration; however, other components of the actin cytoskeleton likely also contribute to the initial response since filamin-null cells were still able to activate the signal transduction network. These findings could have implications for our fundamental understanding of shear flow-induced migration of leukocytes, cancer cells and other amoeboid-type cells.
Collapse
Affiliation(s)
- Aaron Cole
- Department of Biological Sciences, State University of New York Oswego, Oswego, NY, United States
| | - Sarah Buckler
- Department of Biological Sciences, State University of New York Oswego, Oswego, NY, United States
| | - Jack Marcucci
- Department of Biological Sciences, State University of New York Oswego, Oswego, NY, United States
| | - Yulia Artemenko
- Department of Biological Sciences, State University of New York Oswego, Oswego, NY, United States
| |
Collapse
|
7
|
Calcium in Cell-Extracellular Matrix Interactions. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1131:1079-1102. [PMID: 31646546 DOI: 10.1007/978-3-030-12457-1_43] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In multicellular organisms, the cells are surrounded by persistent, dynamic extracellular matrix (ECM), the largest calcium reservoir in animals. ECM regulates several aspects of cell behavior including cell migration and adhesion, survival, gene expression and differentiation, thus playing a significant role in health and disease. Calcium is reported to be important in the assembly of ECM, where it binds to many ECM proteins. While serving as a calcium reservoir, ECM macromolecules can directly interact with cell surface receptors resulting in calcium transport across the membrane. This chapter mainly focusses on the role of cell-ECM interactions in cellular calcium regulation and how calcium itself mediates these interactions.
Collapse
|
8
|
Roth H, Samereier M, Trommler G, Noegel AA, Schleicher M, Müller-Taubenberger A. Balanced cortical stiffness is important for efficient migration of Dictyostelium cells in confined environments. Biochem Biophys Res Commun 2015; 467:730-5. [PMID: 26482849 DOI: 10.1016/j.bbrc.2015.10.073] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 10/14/2015] [Indexed: 10/22/2022]
Abstract
Dictyostelium discoideum cells resemble in many aspects human leukocytes and serve as a model to study actin cytoskeleton dynamics and cell migration of highly motile cells. Dictyostelium cells deficient in the actin-binding protein filamin (ddFLN) showed a surprisingly subtle change in phenotype with no or only minor effects in single cell motility. These findings were in contrast to the strong actin-crosslinking activities measured for filamin in vitro. In the present study, we set out to revisit the role of ddFLN in cell migration. For this purpose, we examined migration of wild-type, ddFLN-null and ddFLN-overexpressing cells under different conditions. In addition to cyclic-AMP chemotaxis assays using micropipettes, we explored cell migration under more confined conditions: an under-agarose 2D assay and a 3D assay employing a collagen matrix that was adapted from assays for leukocytes. Using 3D migration conditions, cells deficient in ddFLN displayed only a minor impairment of motility, similar to the results obtained for migration in 2D. However, cells overexpressing ddFLN showed a remarkable decrease in the speed of migration in particular in 3D environments. We suggest that these results are in line with an increased stiffening of the cortex due to the crosslinking activity of overexpressed ddFLN. Our conclusion is that the absolute level of ddFLN is critical for efficient migration. Furthermore, our results show that under conditions of increased mechanical stress, Dictyostelium cells, like leukocytes, switch to a bleb-based mode of movement.
Collapse
Affiliation(s)
- Heike Roth
- Department of Cell Biology (Anatomy III), Biomedical Center, Ludwig Maximilian University of Munich, 82152, Planegg-Martinsried, Germany
| | - Matthias Samereier
- Department of Cell Biology (Anatomy III), Biomedical Center, Ludwig Maximilian University of Munich, 82152, Planegg-Martinsried, Germany
| | - Gudrun Trommler
- Department of Cell Biology (Anatomy III), Biomedical Center, Ludwig Maximilian University of Munich, 82152, Planegg-Martinsried, Germany
| | - Angelika A Noegel
- Institute for Biochemistry I, Medical Faculty, University of Cologne, 50931, Cologne, Germany
| | - Michael Schleicher
- Department of Cell Biology (Anatomy III), Biomedical Center, Ludwig Maximilian University of Munich, 82152, Planegg-Martinsried, Germany
| | - Annette Müller-Taubenberger
- Department of Cell Biology (Anatomy III), Biomedical Center, Ludwig Maximilian University of Munich, 82152, Planegg-Martinsried, Germany.
| |
Collapse
|
9
|
Murphy ACH, Young PW. The actinin family of actin cross-linking proteins - a genetic perspective. Cell Biosci 2015; 5:49. [PMID: 26312134 PMCID: PMC4550062 DOI: 10.1186/s13578-015-0029-7] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Revised: 06/22/2015] [Accepted: 06/23/2015] [Indexed: 01/08/2023] Open
Abstract
Actinins are one of the major actin cross-linking proteins found in virtually all cell types and are the ancestral proteins of a larger family that includes spectrin, dystrophin and utrophin. Invertebrates have a single actinin-encoding ACTN gene, while mammals have four. Mutations in all four human genes have now been linked to heritable diseases or traits. ACTN1 mutations cause macrothrombocytopenia, a platelet disorder characterized by excessive bleeding. ACTN2 mutations have been linked to a range of cardiomyopathies, and ACTN4 mutations cause a kidney condition called focal segmental glomerulosclerosis. Intriguingly, approximately 16 % of people worldwide are homozygous for a nonsense mutation in ACTN3 that abolishes actinin-3 protein expression. This ACTN3 null allele has undergone recent positive selection in specific human populations, which may be linked to improved endurance and adaptation to colder climates. In this review we discuss the human genetics of the ACTN gene family, as well as ACTN gene knockout studies in several model organisms. Observations from both of these areas provide insights into the evolution and cellular functions of actinins.
Collapse
Affiliation(s)
- Anita C H Murphy
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | - Paul W Young
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| |
Collapse
|
10
|
Plaza GR, Uyeda TQP, Mirzaei Z, Simmons CA. Study of the influence of actin-binding proteins using linear analyses of cell deformability. SOFT MATTER 2015; 11:5435-5446. [PMID: 26059185 DOI: 10.1039/c5sm00125k] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The actin cytoskeleton plays a key role in the deformability of the cell and in mechanosensing. Here we analyze the contributions of three major actin cross-linking proteins, myosin II, α-actinin and filamin, to cell deformability, by using micropipette aspiration of Dictyostelium cells. We examine the applicability of three simple mechanical models: for small deformation, linear viscoelasticity and drop of liquid with a tense cortex; and for large deformation, a Newtonian viscous fluid. For these models, we have derived linearized equations and we provide a novel, straightforward methodology to analyze the experiments. This methodology allowed us to differentiate the effects of the cross-linking proteins in the different regimes of deformation. Our results confirm some previous observations and suggest important relations between the molecular characteristics of the actin-binding proteins and the cell behavior: the effect of myosin is explained in terms of the relation between the lifetime of the bond to actin and the resistive force; the presence of α-actinin obstructs the deformation of the cytoskeleton, presumably mainly due to the higher molecular stiffness and to the lower dissociation rate constants; and filamin contributes critically to the global connectivity of the network, possibly by rapidly turning over cross-links during the remodeling of the cytoskeletal network, thanks to the higher rate constants, flexibility and larger size. The results suggest a sophisticated relationship between the expression levels of actin-binding proteins, deformability and mechanosensing.
Collapse
Affiliation(s)
- Gustavo R Plaza
- Departamento de Ciencia de Materiales, ETSI de Caminos, Canales y Puertos, Universidad Politécnica de Madrid, 28040 Madrid, Spain.
| | | | | | | |
Collapse
|
11
|
Abstract
α-Actinins are a major class of actin filament cross-linking proteins expressed in virtually all cells. In muscle, actinins cross-link thin filaments from adjacent sarcomeres. In non-muscle cells, different actinin isoforms play analogous roles in cross-linking actin filaments and anchoring them to structures such as cell-cell and cell-matrix junctions. Although actinins have long been known to play roles in cytokinesis, cell adhesion and cell migration, recent studies have provided further mechanistic insights into these functions. Roles for actinins in synaptic plasticity and membrane trafficking events have emerged more recently, as has a 'non-canonical' function for actinins in transcriptional regulation in the nucleus. In the present paper we review recent advances in our understanding of these diverse cell biological functions of actinins in non-muscle cells, as well as their roles in cancer and in genetic disorders affecting platelet and kidney physiology. We also make two proposals with regard to the actinin nomenclature. First, we argue that naming actinin isoforms according to their expression patterns is problematic and we suggest a more precise nomenclature system. Secondly, we suggest that the α in α-actinin is superfluous and can be omitted.
Collapse
|
12
|
Junemann A, Winterhoff M, Nordholz B, Rottner K, Eichinger L, Gräf R, Faix J. ForC lacks canonical formin activity but bundles actin filaments and is required for multicellular development of Dictyostelium cells. Eur J Cell Biol 2013; 92:201-12. [PMID: 23906540 DOI: 10.1016/j.ejcb.2013.07.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Revised: 07/02/2013] [Accepted: 07/03/2013] [Indexed: 01/28/2023] Open
Abstract
Diaphanous-related formins (DRFs) drive the nucleation and elongation of linear actin filaments downstream of Rho GTPase signalling pathways. Dictyostelium formin C (ForC) resembles a DRF, except that it lacks a genuine formin homology domain 1 (FH1), raising the questions whether or not ForC can nucleate and elongate actin filaments. We found that a recombinant ForC-FH2 fragment does not nucleate actin polymerization, but moderately decreases the rate of spontaneous actin assembly and disassembly, although the barbed-end elongation rate in the presence of the formin was not markedly changed. However, the protein bound to and crosslinked actin filaments into loose bundles of mixed polarity. Furthermore, ForC is an important regulator of morphogenesis since ForC-null cells are severely impaired in development resulting in the formation of aberrant fruiting bodies. Immunoblotting revealed that ForC is absent during growth, but becomes detectable at the onset of early aggregation when cells chemotactically stream together to form a multicellular organism, and peaks around the culmination stage. Fluorescence microscopy of cells ectopically expressing a GFP-tagged, N-terminal ForC fragment showed its prominent accumulation in the leading edge, suggesting that ForC may play a role in cell migration. In agreement with its expression profile, no defects were observed in random migration of vegetative mutant cells. Notably, chemotaxis of starved cells towards a source of cAMP was severely impaired as opposed to control. This was, however, largely due to a marked developmental delay of the mutant, as evidenced by the expression profile of the early developmental marker csA. In line with this, chemotaxis was almost restored to wild type levels after prolonged starvation. Finally, we observed a complete failure of phototaxis due to abolished slug formation and a massive reduction of spores consistent with forC promoter-driven expression of β-galactosidase in prespore cells. Together, these findings demonstrate ForC to be critically involved in signalling of the cytoskeleton during various stages of development.
Collapse
Affiliation(s)
- Alexander Junemann
- Institute for Biophysical Chemistry, Hannover Medical School, Hannover, Germany
| | | | | | | | | | | | | |
Collapse
|
13
|
Huber RJ, O'Day DH. EGF-like peptide-enhanced cell movement in Dictyostelium is mediated by protein kinases and the activity of several cytoskeletal proteins. Cell Signal 2012; 24:1770-80. [PMID: 22588127 DOI: 10.1016/j.cellsig.2012.05.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2012] [Revised: 05/07/2012] [Accepted: 05/07/2012] [Indexed: 12/19/2022]
|
14
|
Das M, Quint DA, Schwarz JM. Redundancy and cooperativity in the mechanics of compositely crosslinked filamentous networks. PLoS One 2012; 7:e35939. [PMID: 22590515 PMCID: PMC3348909 DOI: 10.1371/journal.pone.0035939] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Accepted: 03/26/2012] [Indexed: 02/07/2023] Open
Abstract
The cytoskeleton of living cells contains many types of crosslinkers. Some crosslinkers allow energy-free rotations between filaments and others do not. The mechanical interplay between these different crosslinkers is an open issue in cytoskeletal mechanics. Therefore, we develop a theoretical framework based on rigidity percolation to study a generic filamentous system containing both stretching and bond-bending forces to address this issue. The framework involves both analytical calculations via effective medium theory and numerical simulations on a percolating triangular lattice with very good agreement between both. We find that the introduction of angle-constraining crosslinkers to a semiflexible filamentous network with freely rotating crosslinks can cooperatively lower the onset of rigidity to the connectivity percolation threshold-a result argued for years but never before obtained via effective medium theory. This allows the system to ultimately attain rigidity at the lowest concentration of material possible. We further demonstrate that introducing angle-constraining crosslinks results in mechanical behaviour similar to just freely rotating crosslinked semflexible filaments, indicating redundancy and universality. Our results also impact upon collagen and fibrin networks in biological and bio-engineered tissues.
Collapse
Affiliation(s)
- Moumita Das
- Department of Physics and Astronomy, Vrije Universiteit, Amsterdam, The Netherlands
| | - D. A. Quint
- Physics Department, Syracuse University, Syracuse, New York, United States of America
| | - J. M. Schwarz
- Physics Department, Syracuse University, Syracuse, New York, United States of America
| |
Collapse
|
15
|
Abstract
Most experiments observing cell migration use planar plastic or glass surfaces despite these conditions being considerably different from physiological ones. On such planar surfaces, cells take a dorsal-ventral polarity to move two-dimensionally. Cells in tissues, however, interact with surrounding cells and the extracellular matrix such that they transverse three-dimensionally. For this reason, three-dimensional matrices have become more and more popular for cell migration experiments. In addition, recent developments in imaging techniques have enabled high resolution observations of in vivo cell migration. The combination of three-dimensional matrices and such imaging techniques has revealed motile mechanisms in tissues not observable in studies using planar surfaces. Regarding models for such cell migration studies, the cellular slime mould Dictyostelium discoideum is ideal. Single amoeboid cells aggregate into hemispherical mound structures upon starvation to begin a multicellular morphogenesis. These tiny and simple multicellular bodies are suitable for observing the behaviors of individual cells in multicellular structures. Furthermore, the unique life cycle can be exploited to identify which genes are involved in cell migration in multicellular environments. Since mutants lacking such genes are expected to fail to undergo morphogenesis, easy and systematic gene screening is possible by isolating mutants whose developments arrest around the mound stage, which is the case for several mutants lacking specific cytoskeletal proteins. In this article, I discuss the basic elements required for cell migration in multicellular environments and how Dictyostelium can be used to elucidate them.
Collapse
Affiliation(s)
- Masatsune Tsujioka
- Special Research Promotion Group, Graduate School of Frontier Bioscience, Osaka University, 1-3 Yamadaoka, Suita, Japan.
| |
Collapse
|
16
|
Characterization of Neurospora crassa α-Actinin. Curr Microbiol 2011; 63:100-5. [DOI: 10.1007/s00284-011-9954-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2011] [Accepted: 05/04/2011] [Indexed: 10/18/2022]
|
17
|
|
18
|
Hwang RD, Chen CC, Knecht DA. ReAsH: another viable option for in vivo protein labelling in Dictyostelium. J Microsc 2009; 234:9-15. [PMID: 19335452 DOI: 10.1111/j.1365-2818.2009.03149.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Biarsenical-tetracysteine fluorescent protein tagging has been effectively used in a variety of cell types. It has the advantage of requiring a much smaller peptide alteration to existing proteins than fusion to green fluorescent protein (GFP) or monomeric red fluorescent protein (mRFP). However, there are no reports of the tetracysteine tagging system being used in Dictyostelium. In order to establish this tagging system in Dictyostelium, the filamin gene (FLN) was modified to express a C-terminal tetracysteine sequence and then transfected into cells. After addition of either FlAsH-EDT(2) or ReAsH-EDT(2), the fluorescence intensity of cells increased in a time-dependent manner and reached a plateau after 3 h of incubation. ReAsH had a much stronger and more specifically localized fluorescent signal compared with FlAsH. After removal of the ReAsH-EDT(2) reagent, the fluorescence signal remained detectable for at least 24 h. The localization of filamin labelled by ReAsH was similar to that of an FLN-mRFP fusion protein, but the fluorescence signal from the ReAsH-labelled protein was stronger. Our findings suggest that the ReAsH-tetracysteine tagging system can be a useful alternative for in vivo protein tagging in Dictyostelium.
Collapse
Affiliation(s)
- R-D Hwang
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269, U.S.A
| | | | | |
Collapse
|
19
|
Yutin N, Wolf MY, Wolf YI, Koonin EV. The origins of phagocytosis and eukaryogenesis. Biol Direct 2009; 4:9. [PMID: 19245710 PMCID: PMC2651865 DOI: 10.1186/1745-6150-4-9] [Citation(s) in RCA: 157] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2009] [Accepted: 02/26/2009] [Indexed: 11/10/2022] Open
Abstract
Background Phagocytosis, that is, engulfment of large particles by eukaryotic cells, is found in diverse organisms and is often thought to be central to the very origin of the eukaryotic cell, in particular, for the acquisition of bacterial endosymbionts including the ancestor of the mitochondrion. Results Comparisons of the sets of proteins implicated in phagocytosis in different eukaryotes reveal extreme diversity, with very few highly conserved components that typically do not possess readily identifiable prokaryotic homologs. Nevertheless, phylogenetic analysis of those proteins for which such homologs do exist yields clues to the possible origin of phagocytosis. The central finding is that a subset of archaea encode actins that are not only monophyletic with eukaryotic actins but also share unique structural features with actin-related proteins (Arp) 2 and 3. All phagocytic processes are strictly dependent on remodeling of the actin cytoskeleton and the formation of branched filaments for which Arp2/3 are responsible. The presence of common structural features in Arp2/3 and the archaeal actins suggests that the common ancestors of the archaeal and eukaryotic actins were capable of forming branched filaments, like modern Arp2/3. The Rho family GTPases that are ubiquitous regulators of phagocytosis in eukaryotes appear to be of bacterial origin, so assuming that the host of the mitochondrial endosymbiont was an archaeon, the genes for these GTPases come via horizontal gene transfer from the endosymbiont or in an earlier event. Conclusion The present findings suggest a hypothetical scenario of eukaryogenesis under which the archaeal ancestor of eukaryotes had no cell wall (like modern Thermoplasma) but had an actin-based cytoskeleton including branched actin filaments that allowed this organism to produce actin-supported membrane protrusions. These protrusions would facilitate accidental, occasional engulfment of bacteria, one of which eventually became the mitochondrion. The acquisition of the endosymbiont triggered eukaryogenesis, in particular, the emergence of the endomembrane system that eventually led to the evolution of modern-type phagocytosis, independently in several eukaryotic lineages. Reviewers This article was reviewed by Simonetta Gribaldo, Gaspar Jekely, and Pierre Pontarotti. For the full reviews, please go to the Reviewers' Reports section.
Collapse
Affiliation(s)
- Natalya Yutin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA.
| | | | | | | |
Collapse
|
20
|
Semmrich C, Larsen RJ, Bausch AR. Nonlinear mechanics of entangled F-actin solutions. SOFT MATTER 2008; 4:1675-1680. [PMID: 32907161 DOI: 10.1039/b800989a] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Using a variety of different rheological approaches, we study the nonlinear shear response of purified entangled F-actin solutions. We show that the choice of the experimental protocol is crucial. Furthermore, a transition between stress hardening and weakening can be induced even in purely entangled solutions. This transition depends on various ambient and network parameters including temperature, buffer salt concentration, filament length and density.
Collapse
Affiliation(s)
- Christine Semmrich
- Lehrstuhl für Biophysik E27, Technische Universität München, James-Franck-Straße, 85748, Garching, Germany
| | - Ryan J Larsen
- School of Engineering and Applied Sciences, Harvard University, 29 Oxford St., Cambridge, Massachusetts 02138, USA
| | - Andreas R Bausch
- Lehrstuhl für Biophysik E27, Technische Universität München, James-Franck-Straße, 85748, Garching, Germany
| |
Collapse
|
21
|
Washington RW, Knecht DA. Actin binding domains direct actin-binding proteins to different cytoskeletal locations. BMC Cell Biol 2008; 9:10. [PMID: 18269770 PMCID: PMC2275727 DOI: 10.1186/1471-2121-9-10] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2007] [Accepted: 02/13/2008] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Filamin (FLN) and non-muscle alpha-actinin are members of a family of F-actin cross-linking proteins that utilize Calponin Homology domains (CH-domain) for actin binding. Although these two proteins have been extensively characterized, little is known about what regulates their binding to F-actin filaments in the cell. RESULTS We have constructed fusion proteins consisting of green fluorescent protein (GFP) with either the entire cross-linking protein or its actin-binding domain (ABD) and examined the localization of these fluorescent proteins in living cells under a variety of conditions. The full-length fusion proteins, but not the ABD's complemented the defects of cells lacking both endogenous proteins indicating that they are functional. The localization patterns of filamin (GFP-FLN) and alpha-actinin (GFP-alphaA) were overlapping but distinct. GFP-FLN localized to the peripheral cell cortex as well as to new pseudopods of unpolarized cells, but was observed to localize to the rear of polarized cells during cAMP and folate chemotaxis. GFP-alphaA was enriched in new pseudopods and at the front of polarized cells, but in all cases was absent from the peripheral cortex. Although both proteins appear to be involved in macropinocytosis, the association time of the GFP-probes with the internalized macropinosome differed. Surprisingly, the localization of the GFP-actin-binding domain fusion proteins precisely reflected that of their respective full length constructs, indicating that the localization of the protein was determined by the actin-binding domain alone. When expressed in a cell line lacking both filamin and alpha-actinin, the probes maintain their distinct localization patterns suggesting that they are not functionally redundant. CONCLUSION These observations strongly suggest that the regulation of the binding of these proteins to actin filaments is built into the actin-binding domains. We suggest that different actin binding domains have different affinities for F-actin filaments in functionally distinct regions of the cytoskeleton.
Collapse
Affiliation(s)
- Raymond W Washington
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269, USA.
| | | |
Collapse
|
22
|
Endocytosis and the Actin Cytoskeleton in Dictyostelium discoideum. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2008; 267:343-97. [DOI: 10.1016/s1937-6448(08)00633-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
23
|
Dorfleutner A, Stehlik C, Zhang J, Gallick GE, Flynn DC. AFAP-110 is required for actin stress fiber formation and cell adhesion in MDA-MB-231 breast cancer cells. J Cell Physiol 2007; 213:740-9. [PMID: 17520695 DOI: 10.1002/jcp.21143] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Regulation of actin organization and dynamics is a highly complex process that involves a number of actin-binding proteins, including capping, branching, severing, sequestering, and cross-linking proteins. The actin-binding and cross-linking protein AFAP-110 is expressed in normal myoepithelial cells. Screening of different breast epithelial cell lines revealed high expression levels of AFAP-110 in the human breast cancer cell lines MDA-MB-231 and MDA-MB-435. Knockdown of AFAP-110 expression in MDA-MB-231 cells does not result in any changes in cell proliferation but did result in a loss of actin stress fiber cross-linking and decreased adhesion to fibronectin. An inducible knockdown approach confirms that MDA-MB-231 breast cancer cells require AFAP-110 expression for stress fiber formation and adhesion. Thus, AFAP-110 may provide cytoskeletal tension through stress fiber formation, which is required for focal adhesion formation. Indeed, we could not detect any focal contacts or focal adhesions in AFAP-110 knockdown cells after adhesion to fibronectin. Although expression levels of crucial focal adhesion components were not influenced by AFAP-110 expression levels, treatment of AFAP-110 knockdown cells with LPA did not result in induction of actin stress fibers and focal adhesions. In summary, AFAP-110 plays an important role in MDA-MB-231 breast cancer cell adhesion possibly by regulating stress filament cross-linking which would promote focal adhesion formation.
Collapse
Affiliation(s)
- Andrea Dorfleutner
- The Mary Babb Randolph Cancer Center and the Department of Microbiology, Immunology and Cell Biology, West Virginia University, Morgantown, West Virginia 26505-9300, USA
| | | | | | | | | |
Collapse
|
24
|
Somesh BP, Neffgen C, Iijima M, Devreotes P, Rivero F. Dictyostelium RacH Regulates Endocytic Vesicular Trafficking and is Required for Localization of Vacuolin. Traffic 2006; 7:1194-212. [PMID: 17004322 DOI: 10.1111/j.1600-0854.2006.00455.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Dictyostelium RacH localizes predominantly to membranes of the nuclear envelope, endoplasmic reticulum and Golgi apparatus. To investigate the role of this protein, we generated knockout and overexpressor strains. RacH-deficient cells displayed 50% reduced fluid-phase uptake and a moderate exocytosis defect, but phagocytosis was unaffected. Detailed examination of the endocytic pathway revealed defective acidification of early endosomes and reduced secretion of acid phosphatase in the presence of sucrose. The distribution of the post-lysosomal marker vacuolin was altered, with a high proportion of cells showing a diffuse vesicular pattern in contrast to the wild-type strain, where few intensely stained vacuoles predominate. Cytokinesis, cell motility, chemotaxis and development appeared largely unaffected. In a cell-free system, RacH stimulates actin polymerization, suggesting that this protein is involved in actin-based trafficking of vesicular compartments. We also investigated the determinants of subcellular localization of RacH by expression of green-fluorescent-protein-tagged chimeras in which the C-terminus of RacH and the plasma-membrane-targeted RacG were exchanged, the insert region was deleted or the net positive charge of the hypervariable region was increased. We show that several regions of the molecule, not only the hypervariable region, determine targeting of RacH. Overexpression of mistargeted RacH mutants did not recapitulate the phenotypes of a strain overexpressing nonmutated RacH, indicating that the function of this protein is in great part related to its subcellular localization.
Collapse
Affiliation(s)
- Baggavalli P Somesh
- Center for Biochemistry, Medical Faculty, University of Cologne, D-50931 Köln, Germany
| | | | | | | | | |
Collapse
|
25
|
Pikzack C, Prassler J, Furukawa R, Fechheimer M, Rivero F. Role of calcium-dependent actin-bundling proteins: characterization of Dictyostelium mutants lacking fimbrin and the 34-kilodalton protein. ACTA ACUST UNITED AC 2006; 62:210-31. [PMID: 16265631 DOI: 10.1002/cm.20098] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Actin-bundling proteins organize actin filaments into densely packed bundles. In Dictyostelium discoideum two abundant proteins display calcium-regulated bundling activity, fimbrin and the 34-kDa protein (ABP34). Using a GFP fusion we observed transient localization of fimbrin at the phagocytic cup and macropinosomes. The distribution of truncated constructs encompassing the EF hands and the first actin-binding domain (EA1) or both actin-binding domains devoid of EF hands (A1A2) was indistinguishable from that of the full length protein. The role of fimbrin and a possible functional overlap with ABP34 was investigated in fim- and double 34-/fim- mutants. Except for a moderate cell size defect, fim- mutants did not show defects in growth, endocytosis, exocytosis, and chemotaxis. Double mutants were characterized by a small cell size and a defect in morphogenesis resulting in small fruiting bodies and a low spore yield. The cell size defect could not be overcome by expression of fimbrin fragments EA1 or A1A2, suggesting that both bundling activity and regulation by calcium are important. Induction of filopod formation in 34-/fim- cells was not impaired, indicating that both proteins are dispensable for this process. We searched in the Dictyostelium genome database for fimbrin-like proteins that could compensate for the fimbrin defect and identified three unconventional fimbrins and two more proteins with actin-binding domains of the type present in fimbrins.
Collapse
Affiliation(s)
- Claudia Pikzack
- Zentrum für Biochemie, Medizinische Fakultät, Universität zu Köln, Köln, Germany
| | | | | | | | | |
Collapse
|
26
|
Tseng Y, Kole TP, Lee JSH, Fedorov E, Almo SC, Schafer BW, Wirtz D. How actin crosslinking and bundling proteins cooperate to generate an enhanced cell mechanical response. Biochem Biophys Res Commun 2005; 334:183-92. [PMID: 15992772 DOI: 10.1016/j.bbrc.2005.05.205] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2005] [Accepted: 05/25/2005] [Indexed: 12/28/2022]
Abstract
Actin-crosslinking proteins organize actin filaments into dynamic and complex subcellular scaffolds that orchestrate important mechanical functions, including cell motility and adhesion. Recent mutation studies have shown that individual crosslinking proteins often play seemingly non-essential roles, leading to the hypothesis that they have considerable redundancy in function. We report live-cell, in vitro, and theoretical studies testing the mechanical role of the two ubiquitous actin-crosslinking proteins, alpha-actinin and fascin, which co-localize to stress fibers and the basis of filopodia. Using live-cell particle tracking microrheology, we show that the addition of alpha-actinin and fascin elicits a cell mechanical response that is significantly greater than that originated by alpha-actinin or fascin alone. These live-cell measurements are supported by quantitative rheological measurements with reconstituted actin filament networks containing pure proteins that show that alpha-actinin and fascin can work in concert to generate enhanced cell stiffness. Computational simulations using finite element modeling qualitatively reproduce and explain the functional synergy of alpha-actinin and fascin. These findings highlight the cooperative activity of fascin and alpha-actinin and provide a strong rationale that an evolutionary advantage might be conferred by the cooperative action of multiple actin-crosslinking proteins with overlapping but non-identical biochemical properties. Thus the combination of structural proteins with similar function can provide the cell with unique properties that are required for biologically optimal responses.
Collapse
Affiliation(s)
- Yiider Tseng
- Department of Chemical and Biomolecular Engineering and Program in Molecular Biophysics, The Johns Hopkins University, Baltimore, MD 21218, USA
| | | | | | | | | | | | | |
Collapse
|
27
|
Wahlström G, Lahti VP, Pispa J, Roos C, Heino TI. Drosophila non-muscle alpha-actinin is localized in nurse cell actin bundles and ring canals, but is not required for fertility. Mech Dev 2005; 121:1377-91. [PMID: 15454267 DOI: 10.1016/j.mod.2004.06.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2003] [Revised: 06/07/2004] [Accepted: 06/07/2004] [Indexed: 10/26/2022]
Abstract
The single copy Drosophila alpha-actinin gene is alternatively spliced to generate three different isoforms that are expressed in larval muscle, adult muscle and non-muscle cells, respectively. We have generated novel alpha-actinin alleles, which specifically remove the non-muscle isoform. Homozygous mutant flies are viable and fertile with no obvious defects. Using a monoclonal antibody that recognizes all three splice variants, we compared alpha-actinin distribution in wild type and mutant embryos and ovaries. We found that non-muscle alpha-actinin was present in young embryos and in the embryonic central nervous system. In ovaries, non-muscle alpha-actinin was localized in the nurse cell subcortical cytoskeleton, cytoplasmic actin cables and ring canals. In the mutant, alpha-actinin expression remained in muscle tissues, but also in a subpopulation of epithelial cells in both embryos and ovaries. This suggests that various populations of non-muscle cells regulate alpha-actinin expression in different ways. We also show that ectopically expressed adult muscle-specific alpha-actinin localizes to all F-actin containing structures in the nurse cells in the absence of endogenous non-muscle alpha-actinin.
Collapse
Affiliation(s)
- Gudrun Wahlström
- Developmental Biology Program/Institute of Biotechnology, Viikki Biocenter, P.O. Box 56 (Viikinkaari 9), FIN-00014, University of Helsinki, Finland.
| | | | | | | | | |
Collapse
|
28
|
Chisholm RL, Firtel RA. Insights into morphogenesis from a simple developmental system. Nat Rev Mol Cell Biol 2004; 5:531-41. [PMID: 15232571 DOI: 10.1038/nrm1427] [Citation(s) in RCA: 140] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Rex L Chisholm
- Cell and Molecular Biology, Center for Genetic Medicine, Feinberg School of Medicine, Northwestern University, 303 East Chicago Avenue, Chicago, Illinois 60611, USA.
| | | |
Collapse
|
29
|
Iwai S, Ishiji A, Mabuchi I, Sutoh K. A Novel Actin-bundling Kinesin-related Protein from Dictyostelium discoideum. J Biol Chem 2004; 279:4696-704. [PMID: 14623897 DOI: 10.1074/jbc.m308022200] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Actin filaments and microtubules are two major cytoskeletal systems involved in wide cellular processes, and the organizations of their filamentous networks are regulated by a large number of associated proteins. Recently, evidence has accumulated for the functional cooperation between the two filament systems via associated proteins. However, little is known about the interactions of the kinesin superfamily proteins, a class of microtubule-based motor proteins, with actin filaments. Here, we describe the identification and characterization of a novel kinesin-related protein named DdKin5 from Dictyostelium. DdKin5 consists of an N-terminal conserved motor domain, a central stalk region, and a C-terminal tail domain. The motor domain showed binding to microtubules in an ATP-dependent manner that is characteristic of kinesin-related proteins. We found that the C-terminal tail domain directly interacts with actin filaments and bundles them in vitro. Immunofluorescence studies showed that DdKin5 is specifically enriched at the actin-rich surface protrusions in cells. Overexpression of the DdKin5 protein affected the organization of actin filaments in cells. We propose that a kinesin-related protein, DdKin5, is a novel actin-bundling protein and a potential cross-linker of actin filaments and microtubules associated with specific actin-based structures in Dictyostelium.
Collapse
Affiliation(s)
- Sosuke Iwai
- Department of Life Sciences, University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan
| | | | | | | |
Collapse
|
30
|
Laevsky G, Knecht DA. Cross-linking of actin filaments by myosin II is a major contributor to cortical integrity and cell motility in restrictive environments. J Cell Sci 2003; 116:3761-70. [PMID: 12890752 DOI: 10.1242/jcs.00684] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cells are frequently required to move in a local environment that physically restricts locomotion, such as during extravasation or metastatic invasion. In order to model these events, we have developed an assay in which vegetative Dictyostelium amoebae undergo chemotaxis under a layer of agarose toward a source of folic acid [Laevsky, G. and Knecht, D. A. (2001). Biotechniques 31, 1140-1149]. As the concentration of agarose is increased from 0.5% to 3% the cells are increasingly inhibited in their ability to move under the agarose. The contribution of myosin II and actin cross-linking proteins to the movement of cells in this restrictive environment has now been examined. Cells lacking myosin II heavy chain (mhcA-) are unable to migrate under agarose overlays of greater than 0.5%, and even at this concentration they move only a short distance from the trough. While attempting to move, the cells become stretched and fragmented due to their inability to retract their uropods. At higher agarose concentrations, the mhcA- cells protrude pseudopods under the agarose, but are unable to pull the cell body underneath. Consistent with a role for myosin II in general cortical stability, GFP-myosin dynamically localizes to the lateral and posterior cortex of cells moving under agarose. Cells lacking the essential light chain of myosin II (mlcE-), have no measurable myosin II motor activity, yet were able to move normally under all agarose concentrations. Mutants lacking either ABP-120 or alpha-actinin were also able to move under agarose at rates similar to wild-type cells. We hypothesize that myosin stabilizes the actin cortex through its cross-linking activity rather than its motor function and this activity is necessary and sufficient for the maintenance of cortical integrity of cells undergoing movement in a restrictive environment. The actin cross-linkers alpha-actinin and ABP-120 do not appear to play as major a role as myosin II in providing this cortical integrity.
Collapse
Affiliation(s)
- Gary Laevsky
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269, USA
| | | |
Collapse
|
31
|
Maselli A, Furukawa R, Thomson SAM, Davis RC, Fechheimer M. Formation of Hirano bodies induced by expression of an actin cross-linking protein with a gain-of-function mutation. EUKARYOTIC CELL 2003; 2:778-87. [PMID: 12912897 PMCID: PMC178389 DOI: 10.1128/ec.2.4.778-787.2003] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2002] [Accepted: 04/22/2003] [Indexed: 11/20/2022]
Abstract
Hirano bodies are paracrystalline actin filament-containing structures reported to be associated with a variety of neurodegenerative diseases. However, the biological function of Hirano bodies remains poorly understood, since nearly all prior studies of these structures were done with postmortem samples of tissue. In the present study, we generated a full-length form of a Dictyostelium 34-kDa actin cross-linking protein with point mutations in the first putative EF hand, termed 34-kDa DeltaEF1. The 34-kDa DeltaEF1 protein binds calcium normally but has activated actin binding that is unregulated by calcium. The expression of the 34-kDa DeltaEF1 protein in Dictyostelium induces the formation of Hirano bodies, as assessed by both fluorescence microscopy and transmission electron microscopy. Dictyostelium cells bearing Hirano bodies grow normally, indicating that Hirano bodies are not associated with cell death and are not deleterious to cell growth. Moreover, the expression of the 34-kDa DeltaEF1 protein rescues the phenotypes of cells lacking the 34-kDa protein and cells lacking both the 34-kDa protein and alpha-actinin. Finally, the expression of the 34-kDa DeltaEF1 protein also initiates the formation of Hirano bodies in cultured mouse fibroblasts. These results show that the failure to regulate the activity and/or affinity of an actin cross-linking protein can provide a signal for the formation of Hirano bodies. More generally, the formation of Hirano bodies is a cellular response to or a consequence of aberrant function of the actin cytoskeleton.
Collapse
Affiliation(s)
- Andrew Maselli
- Department of Cellular Biology, University of Georgia, Athens, Georgia 30602, USA
| | | | | | | | | |
Collapse
|
32
|
Gloss A, Rivero F, Khaire N, Müller R, Loomis WF, Schleicher M, Noegel AA. Villidin, a novel WD-repeat and villin-related protein from Dictyostelium, is associated with membranes and the cytoskeleton. Mol Biol Cell 2003; 14:2716-27. [PMID: 12857859 PMCID: PMC165671 DOI: 10.1091/mbc.e02-12-0827] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Villidin is a novel multidomain protein (190 kDa) from Dictyostelium amoebae containing WD repeats at its N-terminus, three PH domains in the middle of the molecule, and five gelsolin-like segments at the C-terminus, followed by a villin-like headpiece. Villidin mRNA and protein are present in low amounts during growth and early aggregation, but increase during development and reach their highest levels at the tipped mound stage. The protein is present in the cytosol as well as in the cytoskeletal and membrane fractions. GFP-tagged full-length villidin exhibits a similar distribution as native villidin, including a distinct colocalization with Golgi structures. Interestingly, GFP fusions with the gelsolin/villin-like region are uniformly dispersed in the cytoplasm, whereas GFP fusions of the N-terminal WD repeats codistribute with F-actin and are associated with the Triton-insoluble cytoskeleton. Strains lacking villidin because of targeted deletion of its gene grow normally and can develop into fruiting bodies. However, cell motility is reduced during aggregation and phototaxis is impaired in the mutant strains. We conclude that villidin harbors a major F-actin binding site in the N-terminal domain and not in the villin-like region as expected; association of villidin with vesicular membranes suggests that the protein functions as a linker between membranes and the actin cytoskeleton.
Collapse
Affiliation(s)
- Annika Gloss
- Institut für Zellbiologie der Ludwig-Maximilians-Universität München, 80336 München, Germany
| | | | | | | | | | | | | |
Collapse
|
33
|
Abstract
Eukaryotic cells use actin polymerization to change shape, move, and internalize extracellular materials by phagocytosis and endocytosis, and to form contractile structures. In addition, several pathogens have evolved to use host cell actin assembly for attachment, internalization, and cell-to-cell spread. Although cells possess multiple mechanisms for initiating actin polymerization, attention in the past five years has focused on the regulation of actin nucleation-the formation of new actin filaments from actin monomers. The Arp2/3 complex and the multiple nucleation-promoting factors (NPFs) that regulate its activity comprise the only known cellular actin-nucleating factors and may represent a universal machine, conserved across eukaryotic phyla, that nucleates new actin filaments for various cellular structures with numerous functions. This review focuses on our current understanding of the mechanism of actin nucleation by the Arp2/3 complex and NPFs and how these factors work with other cytoskeletal proteins to generate structurally and functionally diverse actin arrays in cells.
Collapse
Affiliation(s)
- Matthew D Welch
- Department of Molecular and Cell Biology, 301 LSA, University of California, Berkeley 94720-3200, USA.
| | | |
Collapse
|
34
|
Abstract
Endocytosis in protozoa is often regarded as largely different from the pathways operating in mammalian cells. Experiments in the amoeba Dictyostelium, one of the genetically tractable single-celled organisms, have allowed us to manipulate the flow through endocytic compartments and to study the dynamic distribution of molecules by means of green fluorescent protein fusions. This review attempts to compile the molecular data available from Dictyostelium and assign them to specific steps of internalization by phagocytosis or macropinocytosis and to subsequent stages of the endocytic pathway. Parallels to phagocytes of the mammalian immune system are emphasized. The major distinctive feature between mammalian phagocytes and free-living cells is the need for osmoregulation. Therefore Dictyostelium cells possess a contractile vacuole that has occasionally obscured analysis of endocytosis but is now found to be entirely separate from endocytic organelles. In conclusion, the potential of Dictyostelium amoebas to provide a model system of mammalian phagocytes is ever increasing.
Collapse
Affiliation(s)
- Markus Maniak
- Department of Cell Biology, Universitaet Kassel, 34109 Kassel, Germany
| |
Collapse
|
35
|
Furukawa R, Maselli A, Thomson SAM, Lim RWL, Stokes JV, Fechheimer M. Calcium regulation of actin crosslinking is important for function of the actin cytoskeleton in Dictyostelium. J Cell Sci 2003; 116:187-96. [PMID: 12456728 DOI: 10.1242/jcs.00220] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The actin cytoskeleton is sensitive to changes in calcium, which affect contractility, actin-severing proteins, actin-crosslinking proteins and calmodulin-regulated enzymes. To dissect the role of calcium control on the activity of individual proteins from effects of calcium on other processes, calcium-insensitive forms of these proteins were prepared and introduced into living cells to replace a calcium-sensitive form of the same protein. Crosslinking and bundling of actin filaments by the Dictyostelium 34 kDa protein is inhibited in the presence of micromolar free calcium. A modified form of the 34 kDa protein with mutations in the calcium binding EF hand (34 kDa deltaEF2) was prepared using site-directed mutagenesis and expressed in E. coli. Equilibrium dialysis using [(45)Ca]CaCl(2) revealed that the wild-type protein is able to bind one calcium ion with a Kd of 2.4 microM. This calcium binding is absent in the 34 kDa deltaEF2 protein. The actin-binding activity of the 34 kDa deltaEF2 protein was equivalent to wildtype but calcium insensitive in vitro. The wild-type and 34 kDa deltaEF2 proteins were expressed in 34-kDa-null and 34 kDa/alpha-actinin double null mutant Dictyostelium strains to test the hypothesis that calcium regulation of actin crosslinking is important in vivo. The 34 kDa deltaEF2 failed to supply function of the 34 kDa protein important for control of cell size and for normal growth to either of these 34-kDa-null strains. Furthermore, the distribution of the 34 kDa protein and actin were abnormal in cells expressing 34 kDa deltaEF2. Thus, calcium regulation of the formation and/or dissolution of crosslinked actin structures is required for dynamic behavior of the actin cytoskeleton important for cell structure and growth.
Collapse
Affiliation(s)
- Ruth Furukawa
- Department of Cellular Biology, University of Georgia, Athens, Georgia 30602, USA
| | | | | | | | | | | |
Collapse
|
36
|
Tseng Y, Kole TP, Wirtz D. Micromechanical mapping of live cells by multiple-particle-tracking microrheology. Biophys J 2002; 83:3162-76. [PMID: 12496086 PMCID: PMC1302394 DOI: 10.1016/s0006-3495(02)75319-8] [Citation(s) in RCA: 278] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
This paper introduces the method of live-cell multiple-particle-tracking microrheology (MPTM), which quantifies the local mechanical properties of living cells by monitoring the Brownian motion of individual microinjected fluorescent particles. Particle tracking of carboxylated microspheres imbedded in the cytoplasm produce spatial distributions of cytoplasmic compliances and frequency-dependent viscoelastic moduli. Swiss 3T3 fibroblasts are found to behave like a stiff elastic material when subjected to high rates of deformations and like a soft liquid at low rates of deformations. By analyzing the relative contributions of the subcellular compliances to the mean compliance, we find that the cytoplasm is much more mechanically heterogeneous than reconstituted actin filament networks. Carboxylated microspheres embedded in cytoplasm through endocytosis and amine-modified polystyrene microspheres, which are microinjected or endocytosed, often show directed motion and strong nonspecific interactions with cytoplasmic proteins, which prevents computation of local moduli from the microsphere displacements. Using MPTM, we investigate the mechanical function of alpha-actinin in non-muscle cells: alpha-actinin-microinjected cells are stiffer and yet mechanically more heterogeneous than control cells, in agreement with models of reconstituted cross-linked actin filament networks. MPTM is a new type of functional microscopy that can test the local, rate-dependent mechanical and ultrastructural properties of living cells.
Collapse
Affiliation(s)
- Yiider Tseng
- Department of Chemical Engineering, The Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218, USA
| | | | | |
Collapse
|
37
|
Takeda K, Saito T, Ochiai H. A novel Dictyostelium Cdk8 is required for aggregation, but is dispensable for growth. Dev Growth Differ 2002; 44:213-23. [PMID: 12060071 DOI: 10.1046/j.1440-169x.2002.00636.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
When Dictyostelium cells starve, they express genes necessary for aggregation. Using insertional mutagenesis, we have isolated a mutant that does not aggregate upon starvation and that forms small plaques on bacterial lawns, thus indicating slow growth. Sequencing of the mutated locus showed a strong similarity to the catalytic domain of cdc2-related kinase genes. Phylogenetic analysis further indicated that the amino acid sequence was more close to cyclin-dependent kinase 8 than to the sequence of other cyclin-dependent kinases. Thus, we designated this gene as Ddcdk8. The Ddcdk8-null cells do not aggregate and grow somewhat more slowly than parental cells when being shaken in axenic medium or laid on bacterial plates. To confirm whether these defective phenotypes were caused by disruption of this gene, the Ddcdk8-null cells were complemented with DdCdk8 protein expressed from an endogenous promoter, but not an actin promoter, and when the complemented cells were then allowed to grow on a bacterial lawn, they began to aggregate as the food supply was depleted and finally became fruiting bodies. The results suggest that properly regulated DdCdk8 activity is essential for aggregation. Because, when starved, Ddcdk8-null cells do not express the acaA transcripts required for aggregation, we deduce that Ddcdk8 is epistatic for acaA expression, indicating that the DdCdk8 products may regulate expression of acaA and/or other genes.
Collapse
Affiliation(s)
- Kosuke Takeda
- Division of Biological Sciences, Graduate School of Science, Hokkaido University Sapporo, Japan
| | | | | |
Collapse
|
38
|
van der Flier A, Sonnenberg A. Structural and functional aspects of filamins. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1538:99-117. [PMID: 11336782 DOI: 10.1016/s0167-4889(01)00072-6] [Citation(s) in RCA: 321] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Filamins are a family of high molecular mass cytoskeletal proteins that organize filamentous actin in networks and stress fibers. Over the past few years it has become clear that filamins anchor various transmembrane proteins to the actin cytoskeleton and provide a scaffold for a wide range of cytoplasmic signaling proteins. The recent cloning of three human filamins and studies on filamin orthologues from chicken and Drosophila revealed unexpected complexity of the filamin family, the biological implications of which have just started to be addressed. Expression of dysfunctional filamin-A leads to the genetic disorder of ventricular heterotopia and gives reason to expect that abnormalities in the other isogenes may also be connected with human disease. In this review aspects of filamin structure, its splice variants, binding partners and biological function will be discussed.
Collapse
Affiliation(s)
- A van der Flier
- Division of Cell Biology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | | |
Collapse
|
39
|
Wu JQ, Bähler J, Pringle JR. Roles of a fimbrin and an alpha-actinin-like protein in fission yeast cell polarization and cytokinesis. Mol Biol Cell 2001; 12:1061-77. [PMID: 11294907 PMCID: PMC32287 DOI: 10.1091/mbc.12.4.1061] [Citation(s) in RCA: 121] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Eukaryotic cells contain many actin-interacting proteins, including the alpha-actinins and the fimbrins, both of which have actin cross-linking activity in vitro. We report here the identification and characterization of both an alpha-actinin-like protein (Ain1p) and a fimbrin (Fim1p) in the fission yeast Schizosaccharomyces pombe. Ain1p localizes to the actomyosin-containing medial ring in an F-actin-dependent manner, and the Ain1p ring contracts during cytokinesis. ain1 deletion cells have no obvious defects under normal growth conditions but display severe cytokinesis defects, associated with defects in medial-ring and septum formation, under certain stress conditions. Overexpression of Ain1p also causes cytokinesis defects, and the ain1 deletion shows synthetic effects with other mutations known to affect medial-ring positioning and/or organization. Fim1p localizes both to the cortical actin patches and to the medial ring in an F-actin-dependent manner, and several lines of evidence suggest that Fim1p is involved in polarization of the actin cytoskeleton. Although a fim1 deletion strain has no detectable defect in cytokinesis, overexpression of Fim1p causes a lethal cytokinesis defect associated with a failure to form the medial ring and concentrate actin patches at the cell middle. Moreover, an ain1 fim1 double mutant has a synthetical-lethal defect in medial-ring assembly and cell division. Thus, Ain1p and Fim1p appear to have an overlapping and essential function in fission yeast cytokinesis. In addition, protein-localization and mutant-phenotype data suggest that Fim1p, but not Ain1p, plays important roles in mating and in spore formation.
Collapse
Affiliation(s)
- J Q Wu
- Department of Biology and Program in Molecular Biology and Biotechnology, University of North Carolina, Chapel Hill 27599, USA
| | | | | |
Collapse
|
40
|
Maniak M. Fluid-phase uptake and transit in axenic Dictyostelium cells. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1525:197-204. [PMID: 11257433 DOI: 10.1016/s0304-4165(01)00105-2] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The main route for fluid-phase uptake in Dictyostelium is macropinocytosis, a process powered by the actin cytoskeleton. Nutrients within the endocytosed fluid are digested and resorbed, disposal of remnants follows by exocytosis. Along the endocytic pathway, membrane fusion and fission events take place at multiple steps. The regulator and effector molecules involved in uptake and transit are largely conserved between higher and lower eukaryotes. This feature, together with its accessibility by molecular genetics, recommend Dictyostelium as a valuable model system for mammalian cells.
Collapse
Affiliation(s)
- M Maniak
- Abt. Zellbiologie, Universität GhK, Heinrich-Plett-Str. 40, D-34132, Kassel, Germany.
| |
Collapse
|
41
|
Abstract
The process of engulfing a foreign particle - phagocytosis - is of fundamental importance for a wide diversity of organisms. From simple unicellular organisms that use phagocytosis to obtain their next meal, to complex metazoans in which phagocytic cells represent an essential branch of the immune system, evolution has armed cells with a fantastic repertoire of molecules that serve to bring about this complex event. Regardless of the organism or specific molecules concerned, however, all phagocytic processes are driven by a finely controlled rearrangement of the actin cytoskeleton. A variety of signals can converge to locally reorganise the actin cytoskeleton at a phagosome, and there are significant similarities and differences between different organisms and between different engulfment processes within the same organism. Recent advances have demonstrated the complexity of phagocytic signalling, such as the involvement of phosphoinostide lipids and multicomponent signalling complexes in transducing signals from phagocytic receptors to the cytoskeleton. Similarly, a wide diversity of ‘effector molecules’ are now implicated in actin-remodelling downstream of these receptors.
Collapse
Affiliation(s)
- R C May
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | | |
Collapse
|
42
|
Lee E, Pang K, Knecht D. The regulation of actin polymerization and cross-linking in Dictyostelium. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1525:217-27. [PMID: 11257435 DOI: 10.1016/s0304-4165(01)00107-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
It is clear that the polymerization and organization of actin filament networks plays a critical role in numerous cellular processes. Inhibition of actin polymerization by pharmacological agents will completely prevent chemotactic motility, macropinocytosis, endocytosis, and phagocytosis. Recently there has been great progress in understanding the mechanisms that control the assembly and structure of the actin cytoskeleton. Members of the Rho family of GTPases have been identified as major players in the signal transduction pathway leading from a cell surface signal to actin polymerization. The Arp2/3 complex has been added to the list of means by which new actin filaments can be nucleated. However, it is clear that actin polymerization by Arp2/3 complex is not the whole story. In principle, the final structures formed by actin filaments will depend on factors such as: the length of actin filaments, the degree of branching, how they are cross-linked and the tensions imparted on them. In addition, the means by which actin polymerization generates protrusion of membranes is still controversial. A phagosome, filopodium and a lamellipodium all require polymerization of new actin filaments, but each has a characteristic morphology and cytoskeletal structure. In the following chapter, we will discuss actin polymerization and filament organization, especially as it relates to the machinery of phagocytosis in Dictyostelium.
Collapse
Affiliation(s)
- E Lee
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269, USA
| | | | | |
Collapse
|
43
|
Stossel TP, Condeelis J, Cooley L, Hartwig JH, Noegel A, Schleicher M, Shapiro SS. Filamins as integrators of cell mechanics and signalling. Nat Rev Mol Cell Biol 2001; 2:138-45. [PMID: 11252955 DOI: 10.1038/35052082] [Citation(s) in RCA: 788] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Filamins are large actin-binding proteins that stabilize delicate three-dimensional actin webs and link them to cellular membranes. They integrate cellular architectural and signalling functions and are essential for fetal development and cell locomotion. Here, we describe the history, structure and function of this group of proteins.
Collapse
Affiliation(s)
- T P Stossel
- Brigham and Women's Hospital, Boston, Massachusetts 02115, USA.
| | | | | | | | | | | | | |
Collapse
|
44
|
Araki N, Hatae T, Yamada T, Hirohashi S. Actinin-4 is preferentially involved in circular ruffling and macropinocytosis in mouse macrophages: analysis by fluorescence ratio imaging. J Cell Sci 2000; 113 ( Pt 18):3329-40. [PMID: 10954430 DOI: 10.1242/jcs.113.18.3329] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have applied fluorescence ratio imaging to the analysis of an actin-binding protein concentration relative to F-actin in macrophages, in order to explore the role of a novel (alpha)-actinin isoform, actinin-4, relative to that of the classical isoform, actinin-1. Conventional immunofluorescence images showed that both isoforms were enriched in F-actin-rich regions such as cell surface ruffles. However, ratio images further demonstrated that actinin-4 concentrations relative to F-actin were higher in peripheral inward curved ruffles and dorsal circular ruffles, presumed precursor forms of macropinosomes, than in straight linear ruffles, while actinin-1 concentrations were uniform among the different types of ruffles. Macropinosome pulse-labeling and chase experiments indicated that actinin-4 was also closely associated with newly formed macropinosomes and gradually dissociated with their maturation. Consistent with ratio imaging data, macrophages scrape-loaded with anti-actinin-4 showed a more reduced rate of macropinocytosis than those loaded with anti-actinin-1. Altogether, these results indicate that actinin-4 and actinin-1 contribute differently to F-actin dynamics, that actinin-4 is more preferentially involved in early stages of macropinocytosis than actinin-1. A similar redistribution of actinin-4 was also observed during phagocytosis, suggesting that actinin-4 may play the same role in the two mechanistically analogous types of endocytosis, i.e. macropinocytosis and phagocytosis.
Collapse
Affiliation(s)
- N Araki
- Department of Anatomy, Kagawa Medical University, Miki, Kagawa 761-0793, Japan.
| | | | | | | |
Collapse
|
45
|
Noegel AA, Schleicher M. The actin cytoskeleton of Dictyostelium: a story told by mutants. J Cell Sci 2000; 113 ( Pt 5):759-66. [PMID: 10671366 DOI: 10.1242/jcs.113.5.759] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Actin-binding proteins are effectors of cell signalling and coordinators of cellular behaviour. Research on the Dictyostelium actin cytoskeleton has focused both on the elucidation of the function of bona fide actin-binding proteins as well as on proteins involved in signalling to the cytoskeleton. A major part of this work is concerned with the analysis of Dictyostelium mutants. The results derived from these investigations have added to our understanding of the role of the actin cytoskeleton in growth and development. Furthermore, the studies have identified several cellular and developmental stages that are particularly sensitive to an unbalanced cytoskeleton. In addition, use of GFP fusion proteins is revealing the spatial and temporal dynamics of interactions between actin-associated proteins and the cytoskeleton.
Collapse
Affiliation(s)
- A A Noegel
- Institut für Biochemie I, Medizinische Fakultät, Universität zu Köln, Joseph-Stelzmann-Str. 52, Germany.
| | | |
Collapse
|
46
|
Ponte E, Rivero F, Fechheimer M, Noegel A, Bozzaro S. Severe developmental defects in Dictyostelium null mutants for actin-binding proteins. Mech Dev 2000; 91:153-61. [PMID: 10704840 DOI: 10.1016/s0925-4773(99)00292-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
The actin cytoskeleton is implicated in many cellular processes, such as cell adhesion, locomotion, contraction and cytokinesis, which are central to any development. The extent of polymerization, cross-linking, and bundling of actin is regulated by several actin-binding proteins. Knock-out mutations in these proteins have revealed in many cases only subtle, if any, defects in development, suggesting that the actin system is redundant, with multiple proteins sharing overlapping functions. The apparent redundancy may, however, reflect limitations of available laboratory assays in assessing the developmental role of a given protein. By using a novel assay, which reproduces conditions closer to the natural ones, we have re-examined the effects of disruption of many actin-binding proteins, and show here that deletion of alpha-actinin, interaptin, synexin, 34-kDa actin-bundling protein, and gelation factor affect to varying degrees the efficiency of Dictyostelium cells to complete development and form viable spores. No phenotypic defects were found in hisactophilin or comitin null mutants.
Collapse
Affiliation(s)
- E Ponte
- Dipartimento di Scienze Cliniche e Biologiche, Università di Torino, Ospedale S. Luigi, 10043-, Orbassano, Italy
| | | | | | | | | |
Collapse
|
47
|
Abstract
Parallel actin bundles are present in a diverse array of structures, where they are critical determinants of cellular shape and physiology. In the past 18 months, new findings have solidified the concept that parallel actin bundles are assembled in cells through the sequential action of multiple actin-bundling proteins and have begun to shed light on the roles played by the individual actin-bundling proteins.
Collapse
Affiliation(s)
- J R Bartles
- Department of Cell and Molecular Biology, Ward 11-185, Northwestern University Medical School, Chicago, IL 60611, USA.
| |
Collapse
|