1
|
LDLR, LRP1, and Megalin redundantly participate in the uptake of Clostridium novyi alpha-toxin. Commun Biol 2022; 5:906. [PMID: 36064583 PMCID: PMC9445046 DOI: 10.1038/s42003-022-03873-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 08/23/2022] [Indexed: 11/30/2022] Open
Abstract
Clostridium novyi alpha-toxin (Tcnα) is a potent exotoxin that induces severe symptoms including gas gangrene, myositis, necrotic hepatitis, and sepsis. Tcnα binds to sulfated glycosaminoglycans (sGAG) for cell-surface attachment and utilizes low-density lipoprotein receptor (LDLR) for rapid entry. However, it was also shown that Tcnα may use alternative entry receptors other than LDLR. Here, we define that LRP1 and Megalin can also facilitate the cellular entry of Tcnα by employing reconstitutive LDLR family proteins. LDLR, LRP1, and Megalin recognize Tcnα via their ligand-binding domains (also known as LDL receptor type A repeats). Notably, LDLR and LRP1 have contrasting expression levels in many different cells, thus the dominant entry receptor for Tcnα could be cell-type dependent. These findings together increase our knowledge of the Tcnα actions and further help to understand the pathogenesis of C. novyi infection-associated diseases. Clostridium novyi alpha-toxin (Tcnα) also uses LRP1 and Megalin as cellular entry receptors besides LDLR, and this might be a response to cell-type dependent receptor availability for the exotoxin.
Collapse
|
2
|
Zhang D, Yang Y, Liang C, Liu J, Wang H, Liu S, Yan Q. poFUT1 promotes uterine angiogenesis and vascular remodeling via enhancing the O-fucosylation on uPA. Cell Death Dis 2019; 10:775. [PMID: 31601791 PMCID: PMC6787057 DOI: 10.1038/s41419-019-2005-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 09/12/2019] [Accepted: 09/17/2019] [Indexed: 12/17/2022]
Abstract
Uterine angiogenesis and vascular remodeling play critical roles in determing the normal menstrual cycle and successful pregnancy. Poor uterine angiogenesis usually results in pregnancy failure. Protein O-fucosyltransferase 1 (poFUT1) is the key enzyme responsible for O-fucosylated glycan biosynthesis on glycoproteins. However, the dynamic expression and regulation of poFUT1 on the uterine angiogenesis and vascular remodeling remain unknown. Here, we showed that the enlargement of the vascular lumen in the secretory phase was greater than that in the proliferative phase of the uterine endometrium during menstrual cycle; whereas there was a narrower vessel lumen and fewer blood vessels in the decidua from miscarriage patients than in that from healthy pregnancy women. Additionally, the expression of poFUT1 was increased in the uterine endometrium during the secretory phase compared with that in the proliferation phase, and its expression was decreased in the uterus of miscarriage patients compared with that of the healthy pregnancy women. Using hESCs and a mouse model, we demonstrated that poFUT1 increased the O-fucosylation on uPA, and activated of the RhoA signaling pathway, thus facilitating uterine angiogenesis and vascular remodeling. We also provide evidence that poFUT1 promotes hESCs angiogenesis by the decreased stemness of hESCs. These findings reveal a new insight into the uterine angiogenesis and vascular remodeling. The study suggests that poFUT1 could be seen as a novel potential diagnostic and therapeutic target for miscarriage.
Collapse
Affiliation(s)
- Dandan Zhang
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Liaoning Provincial Core Lab of Glycobiology and Glycoengineering, 116044, Dalian, China
| | - Yu Yang
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Liaoning Provincial Core Lab of Glycobiology and Glycoengineering, 116044, Dalian, China
| | - Caixia Liang
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Liaoning Provincial Core Lab of Glycobiology and Glycoengineering, 116044, Dalian, China
| | - Jianwei Liu
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Liaoning Provincial Core Lab of Glycobiology and Glycoengineering, 116044, Dalian, China
| | - Hao Wang
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Liaoning Provincial Core Lab of Glycobiology and Glycoengineering, 116044, Dalian, China
| | - Shuai Liu
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Liaoning Provincial Core Lab of Glycobiology and Glycoengineering, 116044, Dalian, China.
| | - Qiu Yan
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Liaoning Provincial Core Lab of Glycobiology and Glycoengineering, 116044, Dalian, China.
| |
Collapse
|
3
|
Liu L, Wang Y, Li Y, Lin Y, Hou Y, Zhang Y, Wei S, Zhao P, Zhao P, He H. LBD1 of Vitellogenin Receptor Specifically Binds to the Female-Specific Storage Protein SP1 via LBR1 and LBR3. PLoS One 2016; 11:e0162317. [PMID: 27637099 PMCID: PMC5026343 DOI: 10.1371/journal.pone.0162317] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 08/19/2016] [Indexed: 11/18/2022] Open
Abstract
Storage proteins are the major protein synthesized in the fat body, released into hemolymph and re-sequestered into the fat body before pupation in most insect species. Storage proteins are important amino acid and nutrition resources during the non-feeding pupal period and play essential roles for the metamorphosis and oogenesis of insects. The sequestration of storage protein is a selective, specific receptor-mediated process. However, to date, the potential receptor mediating the sequestration of storage protein has not been determined in Bombyx mori. In this study, we expressed and purified the first ligand binding domain of Bombyx mori vitellogenin receptor (BmVgR), LBD1, and found LBD1 could bind with an unknown protein from the hemolymph of the ultimate silkworm larval instar via pull-down assay. This unknown protein was subsequently identified to be the female-specific storage protein SP1 by mass spectrometry. Furthermore, far western blotting assay, immunoprecipitation and isothermal titration calorimetry analysis demonstrated LBD1 specifically bound with the female-specific SP1, rather than another unisex storage protein SP2. The specific binding of LBD1 with SP1 was dependent on the presence of Ca2+ as it was essential for the proper conformation of LBD1. Deletion mutagenesis and ITC analysis revealed the first and third ligand binding repeats LBR1 and LBR3 were indispensable for the binding of LBD1 with SP1, and LBR2 and LBR4 also had a certain contribution to the specific binding. Our results implied BmVgR may mediate the sequestration of SP1 from hemolymph into the fat body during the larval-pupal transformation of Bombyx mori.
Collapse
Affiliation(s)
- Lina Liu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Beibei, Chongqing, 400715, China
| | - Yejing Wang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Beibei, Chongqing, 400715, China
- Chongqing Engineering and Technology Research Center for Novel Silk Materials, College of Biotechnology, Southwest University, Beibei, Chongqing, 400715, China
- * E-mail: (YW); (HH)
| | - Yu Li
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Beibei, Chongqing, 400715, China
| | - Ying Lin
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Beibei, Chongqing, 400715, China
| | - Yong Hou
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Beibei, Chongqing, 400715, China
| | - Yan Zhang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Beibei, Chongqing, 400715, China
| | - Shuguang Wei
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Beibei, Chongqing, 400715, China
| | - Peng Zhao
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Beibei, Chongqing, 400715, China
| | - Ping Zhao
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Beibei, Chongqing, 400715, China
| | - Huawei He
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Beibei, Chongqing, 400715, China
- Chongqing Engineering and Technology Research Center for Novel Silk Materials, College of Biotechnology, Southwest University, Beibei, Chongqing, 400715, China
- * E-mail: (YW); (HH)
| |
Collapse
|
4
|
Yakovlev S, Medved L. Interaction of Fibrin with the Very Low Density Lipoprotein Receptor: Further Characterization and Localization of the Fibrin-Binding Site. Biochemistry 2015; 54:4751-61. [PMID: 26153297 DOI: 10.1021/acs.biochem.5b00582] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Our recent study revealed that fibrin interacts with the very low density lipoprotein receptor (VLDLR) on endothelial cells through its βN domains, and this interaction promotes transendothelial migration of leukocytes and thereby inflammation. The major aims of this study were to further characterize this interaction and localize the fibrin-binding site in the VLDLR. To localize the fibrin-binding site, we expressed a soluble extracellular portion of this receptor, sVLDLRHT, its N- and C-terminal regions, VLDLR(1-8)HT and des(1-8)VLDLRHT, respectively, and a number of VLDLR fragments containing various combinations of CR domains and confirmed their proper folding by fluorescence spectroscopy. Interaction of these fragments with the (β15-66)2 fragment corresponding to a pair of VLDLR-binding βN domains of fibrin was tested by different methods. Our experiments performed by an enzyme-linked immunosorbent assay and surface plasmon resonance revealed that the VLDLR(1-8)HT fragment containing eight CR domains of VLDLR and its subfragments, VLDLR(1-4)HT and VLDLR(2-4)HT, interact with (β15-66)2 with practically the same affinity as sVLDLRHT while the affinity of VLDLR(2-3)HT was ∼2-fold lower. In contrast, des(1-8)VLDLRHT exhibited no binding. Formation of the complex in solution between the fibrin-binding fragments of VLDLR and (β15-66)2 was detected by fluorescence spectroscopy. In addition, formation of a complex between VLDLR(2-4)HT and (β15-66)2 in solution was confirmed by size-exclusion chromatography. Thus, the results obtained indicate that minimal fibrin-binding structures are located within the second and third CR domains of the VLDL receptor and the presence of the fourth CR domain is required for high-affinity binding. They also indicate that tryptophan residues of CR domains are involved in this binding.
Collapse
Affiliation(s)
- Sergiy Yakovlev
- Center for Vascular and Inflammatory Diseases and Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland 21201, United States
| | - Leonid Medved
- Center for Vascular and Inflammatory Diseases and Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland 21201, United States
| |
Collapse
|
5
|
Ceruloplasmin-induced aggregation of P19 neurons involves a serine protease activity and is accompanied by reelin cleavage. Neuroscience 2010; 167:633-43. [PMID: 20188154 DOI: 10.1016/j.neuroscience.2010.02.039] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2010] [Revised: 02/16/2010] [Accepted: 02/17/2010] [Indexed: 12/27/2022]
Abstract
The cytoarchitectural organization of the nervous system depends partly on extracellular serine proteases, including reelin. This 400K protein, which also exists as the N-terminally-derived 300K and 180K fragments, acts through binding to the lipoprotein receptors apolipoprotein E receptor 2 (ApoER2) and very low-density lipoprotein receptor (VLDLR). Ceruloplasmin (CP), a multifunctional protein found in the circulation and also expressed on glial cells, was shown to bind to, and induce aggregation of neurons newly differentiated from P19 embryonic stem cells. This indicated a potential developmental role of CP in neuronal organization, possibly in relation with reelin and other extracellular serine proteases. Therefore, we analysed the effect of cell-impermeant, large spectrum, serine protease inhibitors on CP-induced neuroaggregation and studied reelin expression. Soybean trypsin inhibitor and aprotinin (SBTI+Apro) inhibited CP neuroaggregative action. Undifferentiated and neurally-differentiating cultures secreted the 400K reelin. The 180K fragment was present during and after differentiation whereas the 300K species was barely detectable. However, CP stimulated generation of the 300K in the differentiated neuronal cultures, and SBTI+Apro abolished this CP effect. Time course profiles and function-blocking antibody indicated that neuroaggregation does not depend on the generation of the 300K fragment or on reelin action. CP neuroaggregative action thus involves a pericellular serine protease, different from reelin. On the other hand, the CP stimulation of reelin cleavage is in line with a possible role of CP in nervous system development. Since P19 cells express ApoER2 and VLDLR, they can help understanding relationships existing between CP, reelin and intervening protease(s).
Collapse
|
6
|
Sakai K, Tiebel O, Ljungberg MC, Sullivan M, Lee HJ, Terashima T, Li R, Kobayashi K, Lu HC, Chan L, Oka K. A neuronal VLDLR variant lacking the third complement-type repeat exhibits high capacity binding of apoE containing lipoproteins. Brain Res 2009; 1276:11-21. [PMID: 19393635 DOI: 10.1016/j.brainres.2009.04.030] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2009] [Revised: 03/30/2009] [Accepted: 04/12/2009] [Indexed: 12/31/2022]
Abstract
Very-low-density lipoprotein receptor (VLDLR) is a multi ligand apolipoprotein E (apoE) receptor and is involved in brain development through Reelin signaling. Different forms of VLDLR can be generated by alternative splicing. VLDLR-I contains all exons. VLDLR-II lacks an O-linked sugar domain encoded by exon 16, while VLDLR-III lacks the third complement-type repeat in the ligand binding domain encoded by exon 4. We quantitatively compared lipoprotein binding to human VLDLR variants and analyzed their mRNA expression in both human cerebellum and mouse brain. VLDLR-III exhibited the highest capacity in binding to apoE enriched beta-VLDL in vitro and was more effective in removing apoE containing lipoproteins from the circulation than other variants in vivo. In human cerebellum, the major species was VLDLR-II, while the second most abundant species was a newly identified VLDLR-IV which lacks both exon 4 and 16. VLDLR-I was present at low levels. In adult mice, exon 4 skipping varied between 30 and 47% in different brain regions, while exon 16 skipping ranged by 51-76%. Significantly higher levels of VLDLR proteins were found in mouse cerebellum and cerebral cortex than other regions. The deletions of exon 4 and exon 16 frequently occurred in primary neurons, indicating that newly identified variant VLDLR-IV is abundant in neurons. In contrast, VLDLR mRNA lacking exon 4 was not detectable in primary astrocytes. Such cell type-specific splicing patterns were found in both mouse cerebellum and cerebral cortex. These results suggest that a VLDLR variant lacking the third complement-type repeat is generated by neuron-specific alternative splicing. Such differential splicing may result in different lipid uptake in neurons and astrocytes.
Collapse
Affiliation(s)
- Keiko Sakai
- Department of Neurology, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Croucher D, Saunders D, Stillfried G, Ranson M. A structural basis for differential cell signalling by PAI-1 and PAI-2 in breast cancer cells. Biochem J 2007; 408:203-10. [PMID: 17696882 PMCID: PMC2267350 DOI: 10.1042/bj20070767] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
PAI-1 and PAI-2 (plasminogen-activator inibitor types 1 and 2) are inhibitors of cell surface uPA (urokinase plasminogen activator). However, tumour expression of PAI-1 and PAI-2 correlates with poor compared with good patient prognosis in breast cancer respectively. This biological divergence may be related to additional functional roles of PAI-1. For example, the inhibition of uPA by PAI-1 reveals a cryptic high-affinity site within the PAI-1 moiety for the VLDLr (very-low-density-lipoprotein receptor), which sustains cell signalling events initiated by binding of uPA to its receptor. These interactions and subsequent signalling events promote proliferation of breast cancer cells. Biochemical and structural analyses show that, unlike PAI-1, the PAI-2 moiety of uPA-PAI-2 does not contain a high-affinity-binding site for VLDLr, although uPA-PAI-2 is still efficiently endocytosed via this receptor in breast cancer cells. Furthermore, global protein tyrosine phosphorylation events were not sustained by uPA-PAI-2 and cell proliferation was not affected. We thus propose a structurally based mechanism for these differences between PAI-1 and PAI-2 and suggest that PAI-2 is able to inhibit and clear uPA activity without initiating mitogenic signalling events through VLDLr.
Collapse
Affiliation(s)
- David R. Croucher
- *School of Biological Sciences, University of Wollongong, NSW 2522, Australia
| | - Darren N. Saunders
- †Cancer Research Program, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
- ‡Department of Pathology and Laboratory Medicine, University of British Columbia and Department of Molecular Oncology, BC Cancer Research Centre, Vancouver, BC, Canada V5Z 1L3
| | | | - Marie Ranson
- *School of Biological Sciences, University of Wollongong, NSW 2522, Australia
- To whom correspondence should be addressed (email )
| |
Collapse
|
8
|
Isbell SL, Haslam SB, Zankel TC. Minimization of the third domain of the LDL receptor-associated protein (RAP). Biochem Biophys Res Commun 2007; 361:758-62. [PMID: 17678622 DOI: 10.1016/j.bbrc.2007.07.058] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2007] [Accepted: 07/16/2007] [Indexed: 11/23/2022]
Abstract
The third domain of the low-density lipoprotein receptor-associated protein (RAP d3) binds with high-affinity to pairs of complement-type repeats (CR) within the LDLR family of receptors. Structural analyses have defined the contact surface between RAP d3 and a CR pair from the low-density lipoprotein receptor (LDLR). Much of the sequence of RAP d3 has been proposed to stabilize the receptor-binding region without participating directly in formation of the contact surface. We have developed a truncated version of RAP d3 in which these scaffolding regions are excised and replaced with a single, intramolecular disulfide bond. This substitution allows for deletion of as much as a third of the RAP d3 sequence with substantial retention of receptor-binding ability.
Collapse
Affiliation(s)
- Sara L Isbell
- Raptor Pharmaceutical Inc., 9 Commercial Boulevard, Suite 200, Novato, CA 94949, USA
| | | | | |
Collapse
|
9
|
Skeldal S, Larsen JV, Pedersen KE, Petersen HH, Egelund R, Christensen A, Jensen JK, Gliemann J, Andreasen PA. Binding areas of urokinase-type plasminogen activator?plasminogen activator inhibitor-1 complex for endocytosis receptors of the low-density lipoprotein receptor family, determined by site-directed mutagenesis. FEBS J 2006; 273:5143-59. [PMID: 17042782 DOI: 10.1111/j.1742-4658.2006.05511.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Some endocytosis receptors related to the low-density lipoprotein receptor, including low-density lipoprotein receptor-related protein-1A, very-low-density lipoprotein receptor, and sorting protein-related receptor, bind protease-inhibitor complexes, including urokinase-type plasminogen activator (uPA), plasminogen activator inhibitor-1 (PAI-1), and the uPA-PAI-1 complex. The unique capacity of these receptors for high-affinity binding of many structurally unrelated ligands renders mapping of receptor-binding surfaces of serpin and serine protease ligands a special challenge. We have mapped the receptor-binding area of the uPA-PAI-1 complex by site-directed mutagenesis. Substitution of a cluster of basic residues near the 37-loop and 60-loop of uPA reduced the receptor-binding affinity of the uPA-PAI-1 complex approximately twofold. Deletion of the N-terminal growth factor domain of uPA reduced the affinity 2-4-fold, depending on the receptor, and deletion of both the growth factor domain and the kringle reduced the affinity sevenfold. The binding affinity of the uPA-PAI-1 complex to the receptors was greatly reduced by substitution of basic and hydrophobic residues in alpha-helix D and alpha-helix E of PAI-1. The localization of the implicated residues in the 3D structures of uPA and PAI-1 shows that they form a continuous receptor-binding area spanning the serpin as well as the A-chain and the serine protease domain of uPA. Our results suggest that the 10-100-fold higher affinity of the uPA-PAI-1 complex compared with the free components depends on the bonus effect of bringing the binding areas on uPA and PAI-1 together on the same binding entity.
Collapse
Affiliation(s)
- Sune Skeldal
- Department of Molecular Biology, University of Aarhus, Denmark
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Moser R, Snyers L, Wruss J, Angulo J, Peters H, Peters T, Blaas D. Neutralization of a common cold virus by concatemers of the third ligand binding module of the VLDL-receptor strongly depends on the number of modules. Virology 2005; 338:259-69. [PMID: 15950998 DOI: 10.1016/j.virol.2005.05.016] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2005] [Revised: 04/22/2005] [Accepted: 05/13/2005] [Indexed: 10/25/2022]
Abstract
Concatemers of various numbers of the third ligand binding repeat of human very-low density lipoprotein receptor arranged in tandem were fused to maltose-binding protein and expressed as soluble polypeptides. These artificial receptors protected HeLa cells against infection with human rhinovirus serotype 2 (HRV2) to a degree that strongly increased with the number of repeats present; maximal protection was seen for the pentameric concatemer (MBP-V33333). This V3 pentamer neutralized HRV2 more efficiently than a recombinant protein with the entire ligand binding domain of the native receptor encompassing all 8 non-identical repeats. A concatemer of seven V3 modules (MBP-V3333333) was also less neutralizing. Neutralization was correlated with the degree of inhibition of virus binding to the cell surface. The results were in agreement with kinetic measurements using Biacore instrumentation demonstrating an increase in avidity with the number of modules present. At low concentrations of the receptor fragments, a 1:1 Langmuir kinetics was observed which became of complex type in the higher concentration range. This is most likely a consequence of receptor molecules simultaneously binding via several modules. Since there is no viral aggregation, neutralization of viral infectivity results from blockage of the receptor binding sites and possibly from inhibition of viral uncoating by crosslinking the viral capsid subunits via multi-module binding. Finally, the low affinity of the single V3 module allowed demonstrating the possibility of mapping the binding epitope of the V3 receptor fragment by saturation transfer difference nuclear magnetic resonance methodology.
Collapse
Affiliation(s)
- Rosita Moser
- Max F. Perutz Laboratories, University Departments at the Vienna Biocenter, Department of Medical Biochemistry, Medical University of Vienna, Dr. Bohr Gasse 9/3, A-1030 Vienna, Austria
| | | | | | | | | | | | | |
Collapse
|
11
|
Abstract
The low-density lipoprotein receptor (LDLR) is responsible for uptake of cholesterol-carrying lipoprotein particles into cells. The receptor binds lipoprotein particles at the cell surface and releases them in the low-pH environment of the endosome. The focus of the current review is on biochemical and structural studies of the LDLR and its ligands, emphasizing how structural features of the receptor dictate the binding of low-density lipoprotein (LDL) and beta-migrating forms of very low-density lipoprotein (beta-VLDL) particles, how the receptor releases bound ligands at low pH, and how the cytoplasmic tail of the LDLR interfaces with the endocytic machinery.
Collapse
Affiliation(s)
- Hyesung Jeon
- Life Sciences Division, Korea Institute of Science and Technology, Seoul 136-791, Korea.
| | | |
Collapse
|
12
|
Lillis AP, Mikhailenko I, Strickland DK. Beyond endocytosis: LRP function in cell migration, proliferation and vascular permeability. J Thromb Haemost 2005; 3:1884-93. [PMID: 16102056 DOI: 10.1111/j.1538-7836.2005.01371.x] [Citation(s) in RCA: 149] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The low-density lipoprotein (LDL) receptor related protein (LRP1 or LRP) is a large endocytic receptor widely expressed in several tissues and known to play roles in areas as diverse as lipoprotein metabolism, degradation of proteases, activation of lysosomal enzymes and cellular entry of bacterial toxins and viruses. This member of the LDL receptor superfamily is constitutively endocytosed from the membrane and recycled back to the cell surface. Its many functions were long thought to involve its ability to bind over 30 different ligands and deliver them to lysosomes for degradation. However, LRP has since been shown to interact with scaffolding and signaling proteins via its intracellular domain in a phosphorylation-dependent manner and to function as a co-receptor partnering with other cell surface or integral membrane proteins. This multi-talented receptor has been implicated in regulation of platelet derived growth factor receptor activity, integrin maturation and recycling, and focal adhesion disassembly. These functions may account for recent studies identifying LRP's role in protection of the vasculature, regulation of cell migration, and modulation of the integrity of the blood-brain barrier.
Collapse
Affiliation(s)
- A P Lillis
- Department of Surgery, University of Maryland School of Medicine, Rockville, MD 20855, USA
| | | | | |
Collapse
|
13
|
Abstract
PURPOSE OF REVIEW Cellular uptake of plasma lipids is to a large extent mediated by specific membrane-associated proteins that recognize lipid-protein complexes. In the kidney, the apical surface of proximal tubules has a high capacity for receptor-mediated uptake of filtered lipid-binding plasma proteins. We describe the renal receptor system and its role in lipid metabolism in health and disease, and discuss the general effect of the diseased kidney on lipid metabolism. RECENT FINDINGS Megalin and cubilin are receptors in the proximal tubules. An accumulating number of lipid-binding and regulating proteins (e.g. albumin, apolipoprotein A-I and leptin) have been identified as ligands, suggesting that their receptors may directly take up lipids in the proximal tubules and indirectly affect plasma and tissue lipid metabolism. Recently, the amnionless protein was shown to be essential for the membrane association and trafficking of cubilin. SUMMARY The kidney has a high capacity for uptake of lipid-binding proteins and lipid-regulating hormones via the megalin and cubilin/amnionless protein receptors. Although the glomerular filtration barrier prevents access of the large lipoprotein particles to the proximal tubules, the receptors may be exposed to lipids bound to filtered lipid-binding proteins not associated to lipoprotein particles. Renal filtration and receptor-mediated uptake of lipid-binding and lipid-regulating proteins may therefore influence overall lipid metabolism. The pathological mechanisms causing the pronounced atherosclerosis-promoting effect of uremia may involve impairment of this clearance pathway.
Collapse
Affiliation(s)
- Søren K Moestrup
- Department of Medical Biochemistry, University of Aarhus, Denmark.
| | | |
Collapse
|
14
|
Ruiz J, Kouiavskaia D, Migliorini M, Robinson S, Saenko EL, Gorlatova N, Li D, Lawrence D, Hyman BT, Weisgraber KH, Strickland DK. The apoE isoform binding properties of the VLDL receptor reveal marked differences from LRP and the LDL receptor. J Lipid Res 2005; 46:1721-31. [PMID: 15863833 DOI: 10.1194/jlr.m500114-jlr200] [Citation(s) in RCA: 130] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Apolipoprotein E (apoE) associates with lipoproteins and mediates their interaction with members of the LDL receptor family. ApoE exists as three common isoforms that have important distinct functional and biological properties. Two apoE isoforms, apoE3 and apoE4, are recognized by the LDL receptor, whereas apoE2 binds poorly to this receptor and is associated with type III hyperlipidemia. In addition, the apoE4 isoform is associated with the common late-onset familial and sporadic forms of Alzheimer's disease. Although the interaction of apoE with the LDL receptor is well characterized, the specificity of other members of this receptor family for apoE is poorly understood. In the current investigation, we have characterized the binding of apoE to the VLDL receptor and the LDL receptor-related protein (LRP). Our results indicate that like the LDL receptor, LRP prefers lipid-bound forms of apoE, but in contrast to the LDL receptor, both LRP and the VLDL receptor recognize all apoE isoforms. Interestingly, the VLDL receptor does not require the association of apoE with lipid for optimal recognition and avidly binds lipid-free apoE. It is likely that this receptor-dependent specificity for various apoE isoforms and for lipid-free versus lipid-bound forms of apoE is physiologically significant and is connected to distinct functions for these receptors.
Collapse
Affiliation(s)
- Jose Ruiz
- Department of Surgery, University of Maryland School of Medicine, Rockville, MD 21201, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Van Hoof D, Rodenburg KW, Van der Horst DJ. Intracellular fate of LDL receptor family members depends on the cooperation between their ligand-binding and EGF domains. J Cell Sci 2005; 118:1309-20. [PMID: 15741231 DOI: 10.1242/jcs.01725] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The insect low-density lipoprotein (LDL) receptor (LDLR) homologue LpR mediates endocytosis of an insect lipoprotein (lipophorin) that is structurally related to LDL. Despite these similarities, lipophorin and LDL follow distinct intracellular routes upon endocytosis by their receptors. Whereas LDL is degraded in lysosomes, lipophorin is recycled in a transferrin-like manner. We constructed several hybrid receptors composed of Locusta migratoria LpR and human LDLR regions to identify the domains implicated in LpR-mediated ligand recycling. Additionally, the triadic His562 residue of LDLR, which is putatively involved in ligand uncoupling, was mutated to Asn, corresponding to Asn643 in LpR, to analyse the role of the His triad in receptor functioning. The familial hypercholesterolaemia (FH) class 5 mutants LDLRH562Y and LDLRH190Y were also analysed in vitro. Fluorescence microscopic investigation and quantification suggest that LpR-mediated ligand recycling involves cooperation between the ligand-binding domain and epidermal growth factor (EGF) domain of LpR, whereas its cytosolic tail does not harbour motifs that affect this process. LDLR residue His562 appears to be essential for LDLR recycling after ligand endocytosis but not for constitutive receptor recycling. Like LDLRH562N, LDLRH562Y did not recycle bound ligand; moreover, the intracellular distribution of both mutant receptors after ligand incubation coincides with that of a lysosomal marker. The LDLR mutant characterization in vitro suggests that LDLR FH class 5 mutations might be divided into two subclasses.
Collapse
MESH Headings
- Animals
- Asparagine/chemistry
- Blotting, Western
- CHO Cells
- Cell Membrane/metabolism
- Cricetinae
- DNA, Complementary/metabolism
- Endocytosis
- ErbB Receptors/metabolism
- Histidine/chemistry
- Hydrogen-Ion Concentration
- Ligands
- Lipoproteins/chemistry
- Locusta migratoria
- Microscopy, Fluorescence
- Models, Chemical
- Models, Molecular
- Mutation
- Phenotype
- Protein Structure, Tertiary
- Receptors, LDL/chemistry
- Receptors, LDL/genetics
- Receptors, LDL/metabolism
- Receptors, Lipoprotein/chemistry
- Time Factors
- Transfection
- Transferrin/chemistry
Collapse
Affiliation(s)
- Dennis Van Hoof
- Department of Biochemical Physiology and Institute of Biomembranes, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | | | | |
Collapse
|
16
|
Sun F, Avramoglu RK, Vassiliou G, Brown RJ, Ko KWS, McPherson R, Yao Z. Do clustered β-propeller domains within the N-terminus of LRP1 play a functional role? Biochim Biophys Acta Gen Subj 2005; 1721:139-51. [PMID: 15652189 DOI: 10.1016/j.bbagen.2004.10.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2004] [Revised: 09/29/2004] [Accepted: 10/20/2004] [Indexed: 10/26/2022]
Abstract
The six beta-propellers located within the N-terminus of low density lipoprotein receptor-related protein 1 (LRP1) are arranged in two clusters that contain two and four beta-propellers, respectively. Working with LRP1 deletion mutants, we found that randomly removing large segments of amino acid sequences did not affect the intracellular trafficking of LRP1 as long as the clustered beta-propeller domains were retained. However, deletion mutants with crippled beta-propeller clusters invariably exhibited retarded exit from the endoplasmic reticulum (ER). To determine potential functions of the clustered beta-propellers, we generated a series of deletion mutants in which the beta-propellers were systematically removed from the C-terminal end of the second cluster. The resulting minireceptors, designated LRPbeta1-6, beta1-5, beta1-4, beta1-3, and beta1-2 containing decreasing numbers of the beta-propellers, were stably expressed in LRP1-null CHO cells. Binding/degradation assays with receptor-associated protein or alpha2-macroglobulin showed that removing one or more beta-propellers had little effect on binding or degradation of these ligands. However, minireceptors containing odd number of beta-propellers (i.e., LRPbeta1-3 and beta1-5) showed prolonged retention within the ER and remained endoglycosidase H-sensitive, whereas minireceptors containing even number of beta-propellers (i.e., LRPbeta1-2, beta1-4 and beta1-6) exited ER at variable rates. Cell surface biotinylation experiments showed that LRPbeta1-3 was absent from the cell surface. Prolonged retention of LRPbeta1-3 within the ER was accompanied by increased association with molecular chaperone Grp78/Bip. These results suggest that the clustered beta-propellers may play a role in folding and intracellular trafficking of LRP1.
Collapse
Affiliation(s)
- Fengcheng Sun
- Lipoprotein and Atherosclerosis Research Group, University of Ottawa Heart Institute, Ottawa, Canada K1Y 4W7
| | | | | | | | | | | | | |
Collapse
|
17
|
Beglova N, Jeon H, Fisher C, Blacklow SC. Cooperation between fixed and low pH-inducible interfaces controls lipoprotein release by the LDL receptor. Mol Cell 2004; 16:281-92. [PMID: 15494314 DOI: 10.1016/j.molcel.2004.09.038] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2004] [Revised: 08/27/2004] [Accepted: 09/08/2004] [Indexed: 10/26/2022]
Abstract
Low-density lipoprotein (LDL) receptors bind lipoprotein particles at the cell surface and release them in the low pH environment of the endosome. The published structure of the receptor determined at endosomal pH reveals an interdomain interface between its beta propeller and its fourth and fifth ligand binding (LA) repeats, suggesting that the receptor adopts a closed conformation at low pH to release LDL. Here, we combine lipoprotein binding and release assays with NMR spectroscopy to examine structural features of the receptor promoting release of LDL at low pH. These studies lead to a model in which the receptor uses a pH-invariant scaffold as an anchor to restrict conformational search space, combining it with flexible linkers between ligand binding repeats to interconvert between open and closed conformations. This finely tuned balance between interdomain rigidity and flexibility is likely to represent a shared structural feature in proteins of the LDL receptor family.
Collapse
Affiliation(s)
- Natalia Beglova
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | | | | | | |
Collapse
|
18
|
Zilberberg A, Yaniv A, Gazit A. The low density lipoprotein receptor-1, LRP1, interacts with the human frizzled-1 (HFz1) and down-regulates the canonical Wnt signaling pathway. J Biol Chem 2004; 279:17535-42. [PMID: 14739301 DOI: 10.1074/jbc.m311292200] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Members of the low density lipoprotein receptor family (LDLR), LRP5/6, were shown to interact with the Frizzled (Fz) receptors and to function as Wnt coreceptors. Here we show that mLRP4T100, a minireceptor of LRP1, another member of the LDLR family, interacts with the human Fz-1 (HFz1), previously shown to serve as a receptor transmitting the canonical Wnt-3a-induced signaling cascade. However, in contrast to LRP5/6, mLRP4T100, as well as the full-length LRP1, did not cooperate with HFz1 in transmitting the Wnt-3a signaling but rather repressed it. mLRP4T100 inhibitory effect was displayed also by endocytosis-defective mLRP4T100 mutants, suggesting that LRP1 repressive effect is not attributable to LRP1-mediated enhanced HFz1 internalization and subsequent degradation. Enforced expression of mLRP4T100 decreased the capacity of HFz1 cysteine-rich domain (CRD) to interact with LRP6, in contrast to HFz1-CRD/Wnt-3a interaction that was not disrupted by overexpressing mLRP4T100. These data suggest that LRP1, by sequestering HFz1, disrupts the receptor/coreceptor complex formation, leading to the repression of the canonical Wnt signaling. Thus, this study implies that the ability to interact with Fz receptors is shared by several members of the LDLR family. However, whereas some members of the LDLR family, such as LRP5/6, interact with Fz and serve as Wnt coreceptors, others negatively regulate Wnt signaling, presumably by sequestering Fz.
Collapse
Affiliation(s)
- Alona Zilberberg
- Department of Human Microbiology, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | | | | |
Collapse
|
19
|
Vlasak M, Blomqvist S, Hovi T, Hewat E, Blaas D. Sequence and structure of human rhinoviruses reveal the basis of receptor discrimination. J Virol 2003; 77:6923-30. [PMID: 12768011 PMCID: PMC156168 DOI: 10.1128/jvi.77.12.6923-6930.2003] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The sequences of the capsid protein VP1 of all minor receptor group human rhinoviruses were determined. A phylogenetic analysis revealed that minor group HRVs were not more related to each other than to the nine major group HRVs whose sequences are known. Examination of the surface exposed amino acid residues of HRV1A and HRV2, whose X-ray structures are available, and that of three-dimensional models computed for the remaining eight minor group HRVs indicated a pattern of positively charged residues within the region, which, in HRV2, was shown to be the binding site of the very-low-density lipoprotein (VLDL) receptor. A lysine in the HI loop of VP1 (K224 in HRV2) is strictly conserved within the minor group. It lies in the middle of the footprint of a single repeat of the VLDL receptor on HRV2. Major group virus serotypes exhibit mostly negative charges at the corresponding positions and do not bind the negatively charged VLDL receptor, presumably because of charge repulsion.
Collapse
Affiliation(s)
- Marketa Vlasak
- Institute of Medical Biochemistry, University of Vienna, Vienna Biocenter (VBC), A-1030 Vienna, Austria
| | | | | | | | | |
Collapse
|
20
|
Brabec M, Baravalle G, Blaas D, Fuchs R. Conformational changes, plasma membrane penetration, and infection by human rhinovirus type 2: role of receptors and low pH. J Virol 2003; 77:5370-7. [PMID: 12692239 PMCID: PMC153956 DOI: 10.1128/jvi.77.9.5370-5377.2003] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human rhinovirus type 2 (HRV2) is internalized by members of the low-density lipoprotein (LDL) receptor (LDLR) family. It then progresses into late endosomes, where it undergoes conversion from D- to C-antigenicity at pH < 5.6. Upon uncoating, the viral RNA is transferred into the cytoplasm across the endsosomal membrane. However, C-antigenic particles fail to attach to LDLR; this raised the question of whether the virus remains attached to the receptors and is carried to late compartments or rather falls off at the higher pH in early endosomes. We therefore determined the pH dependence of virus-receptor dissociation and virus conversion to C-antigen under conditions preventing endocytosis. (35)S-HRV2 was attached to HeLa cells at 4 degrees C and incubated in buffers of pH 7.4 to 5.0; levels of native virus and C-antigenic particles remaining cell associated or having been released into the medium were determined by immunoprecipitation. At pH 6.0, HRV2 was readily released from plasma membrane receptors in its native form, whereas at pH < or = 5.4, it was entirely converted to C-antigen, which, however, only dissociated from the surface upon prolonged incubation. The antigenic conversion occurred at the same pH regardless of whether HRV2 was free in solution or bound to its receptors. These data suggest that, in vivo, the virus is no longer bound to its receptors when the antigenic conversion and uncoating occur in more acidic late endosomes. When virus was bound to HeLa cells at 4 degrees C, converted into C-antigen by exposure to pH 5.3, and subsequently warmed to 34 degrees C in the presence of bafilomycin (to prevent endosomal uncoating), viral de novo synthesis was detected. This study demonstrates for the first time that a nonenveloped virus such as HRV2 can infect from the plasma membrane when artificially exposed to low pH. This implies that the viral RNA can gain access to the cytoplasm from the plasma membrane.
Collapse
Affiliation(s)
- Marianne Brabec
- Department of Pathophysiologythe. Institute of Medical Biochemistry, University of Vienna, Austria
| | | | | | | |
Collapse
|
21
|
Abstract
Study of the LDL receptor as a model system has led to insights into general principles underlying receptor-mediated endocytosis of bound ligands. The recently published structure of the entire LDL receptor ectodomain, determined at pH 5.3, now suggests an elegant model to explain how lipoprotein ligands are released from the receptor by exposure to the low-pH environment of the endosome.
Collapse
Affiliation(s)
- Hyesung Jeon
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA
| | | |
Collapse
|
22
|
Li A, Sadasivam M, Ding JL. Receptor-ligand interaction between vitellogenin receptor (VtgR) and vitellogenin (Vtg), implications on low density lipoprotein receptor and apolipoprotein B/E. The first three ligand-binding repeats of VtgR interact with the amino-terminal region of Vtg. J Biol Chem 2003; 278:2799-806. [PMID: 12429745 DOI: 10.1074/jbc.m205067200] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The vitellogenin receptor (VtgR) belongs to the low density lipoprotein receptor (LDLR) gene family. It mediates the uptake of vitellogenin (Vtg) in oocyte development of oviparous animals. In this study, we cloned and characterized two forms of Oreochromis aureus VtgR. Northern analysis showed that VtgR was specifically expressed in ovarian tissues. However, reverse transcription-PCR indicates that either there are trace levels of expression of VtgR or a homolog of LDLR exists in nonovarian tissues. The VtgR is highly homologous to the very low density lipoprotein receptor. To better understand the mechanism by which similar structural modules in the ligand-binding domain bind different ligands, we used the yeast two-hybrid system to screen for the minimal interaction motifs in Vtg and VtgR. The amino-terminal region of the lipovitellin I domain of Vtg interacts with the ligand-binding domain of VtgR. The first three ligand-binding repeats of the receptor were found to be essential for ligand binding. Computational analysis of the binding sequence indicates that Vtg has a similar receptor-binding region to apolipoprotein (apo) E and apoB. Site-directed mutagenesis of this region indicates electrostatic interaction between Vtg and its receptor. Sequence analysis suggests the coevolution of receptor-ligand pairs for the LDLR/apo superfamily and suggests that the mode of binding of LDLR/very low density lipoprotein receptor to apoB and apoE is inherited from the electrostatic attraction of VtgR and Vtg.
Collapse
Affiliation(s)
- Ankang Li
- Department of Biological Sciences, National University of Singapore, Singapore 119260
| | | | | |
Collapse
|
23
|
Rudenko G, Henry L, Henderson K, Ichtchenko K, Brown MS, Goldstein JL, Deisenhofer J. Structure of the LDL receptor extracellular domain at endosomal pH. Science 2002; 298:2353-8. [PMID: 12459547 DOI: 10.1126/science.1078124] [Citation(s) in RCA: 364] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The low-density lipoprotein receptor mediates cholesterol homeostasis through endocytosis of lipoproteins. It discharges its ligand in the endosome at pH < 6. In the crystal structure at pH = 5.3, the ligand-binding domain (modules R2 to R7) folds back as an arc over the epidermal growth factor precursor homology domain (the modules A, B, beta propeller, and C). The modules R4 and R5, which are critical for lipoprotein binding, associate with the beta propeller via their calcium-binding loop. We propose a mechanism for lipoprotein release in the endosome whereby the beta propeller functions as an alternate substrate for the ligand-binding domain, binding in a calcium-dependent way and promoting lipoprotein release.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Binding Sites
- Calcium/metabolism
- Crystallization
- Crystallography, X-Ray
- Endosomes/metabolism
- Epidermal Growth Factor/chemistry
- Humans
- Hydrogen-Ion Concentration
- Hydrophobic and Hydrophilic Interactions
- Ligands
- Lipoproteins, LDL/metabolism
- Models, Biological
- Models, Molecular
- Mutation
- Protein Binding
- Protein Conformation
- Protein Folding
- Protein Precursors/chemistry
- Protein Structure, Secondary
- Protein Structure, Tertiary
- Receptors, LDL/chemistry
- Receptors, LDL/genetics
- Receptors, LDL/metabolism
- Repetitive Sequences, Amino Acid
Collapse
Affiliation(s)
- Gabby Rudenko
- Department of Biochemistry, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard Y4-206, Dallas, TX 75390, USA
| | | | | | | | | | | | | |
Collapse
|
24
|
Affiliation(s)
- Peter G W Gettins
- Department of Biochemistry & Molecular Genetics, University of Illinois at Chicago, M/C 536, 1819-53 West Polk Street, Chicago, Illinois 60612, USA.
| |
Collapse
|
25
|
Van Hoof D, Rodenburg KW, Van der Horst DJ. Insect lipoprotein follows a transferrin-like recycling pathway that is mediated by the insect LDL receptor homologue. J Cell Sci 2002; 115:4001-12. [PMID: 12356906 DOI: 10.1242/jcs.00113] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The lipoprotein of insects, high-density lipophorin (HDLp), is homologous to that of mammalian low-density lipoprotein (LDL) with respect to its apolipoprotein structure. Moreover, an endocytic receptor for HDLp has been identified (insect lipophorin receptor, iLR) that is homologus to the LDL receptor. We transfected LDL-receptor-expressing CHO cells with iLR cDNA to study the endocytic uptake and intracellular pathways of LDL and HDLp simultaneously. Our studies provide evidence that these mammalian and insect lipoproteins follow distinct intracellular routes after receptor-mediated endocytosis. Multicolour imaging and immunofluorescence was used to visualize the intracellular trafficking of fluorescently labeled ligands in these cells. Upon internalization, which can be completely inhibited by human receptor-associated protein (RAP), mammalian and insect lipoproteins share endocytic vesicles. Subsequently, however, HDLp evacuates the LDL-containing endosomes. In contrast to LDL, which is completely degraded in lysosomes after dissociating from its receptor, both HDLp and iLR converge in a nonlysosomal juxtanuclear compartment. Colocalization studies with transferrin identified this organelle as the endocytic recycling compartment via which iron-depleted transferrin exits the cell. Fluorescently labeled RAP is also transported to this recycling organelle upon receptor-mediated endocytosis by iLR. Internalized HDLp eventually exits the cell via the recycling compartment, a process that can be blocked by monensin, and is re-secreted with a t(1/2) of approximately 13 minutes. From these observations, we conclude that HDLp is the first non-exchangeable apolipoprotein-containing lipoprotein that follows a transferrin-like recycling pathway despite the similarities between mammalian and insect lipoproteins and their receptors.
Collapse
Affiliation(s)
- Dennis Van Hoof
- Department of Biochemical Physiology and Institute of Biomembranes, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands.
| | | | | |
Collapse
|
26
|
Salicioni AM, Mizelle KS, Loukinova E, Mikhailenko I, Strickland DK, Gonias SL. The low density lipoprotein receptor-related protein mediates fibronectin catabolism and inhibits fibronectin accumulation on cell surfaces. J Biol Chem 2002; 277:16160-6. [PMID: 11867643 DOI: 10.1074/jbc.m201401200] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Low density lipoprotein receptor-related protein (LRP) is a member of the low density lipoprotein receptor family, which functions as an endocytic receptor for diverse ligands. In this study, we demonstrate that murine embryonic fibroblasts (MEF-2 cells) and 13-5-1 Chinese hamster ovary cells, which are LRP-deficient, accumulate greatly increased levels of cell-surface fibronectin (Fn), compared with LRP-expressing MEF-1 and CHO-K1 cells. Increased Fn was also detected in conditioned medium from LRP-deficient MEF-2 cells; however, biosynthesis of Fn by MEF-1 and MEF-2 cells was not significantly different. When LRP-deficient cells were dissociated from monolayer culture, increased levels of Fn remained with the cells, as determined by cell-surface protein biotinylation, suggesting an intimate relationship with cell surface-binding sites. The LRP antagonist, receptor-associated protein (RAP), promoted Fn accumulation in association with MEF-1 cells, whereas expression of full-length LRP in MEF-2 cells substantially decreased Fn accumulation, confirming the role of LRP in this process. Purified LRP bound directly to immobilized Fn, and this interaction was inhibited by RAP. Furthermore, MEF-1 cells degraded (125)I-Fn at an increased rate, compared with MEF-2 cells. (125)I-Fn degradation by MEF-1 cells was inhibited by RAP. These results demonstrate that LRP functions as a catabolic receptor for Fn. The function of LRP in Fn degradation and the ability of LRP to regulate levels of other plasma membrane proteins represent possible mechanisms whereby LRP prevents Fn accumulation on cell surfaces.
Collapse
Affiliation(s)
- Ana M Salicioni
- Department of Pathology, University of Virginia School of Medicine, Charlottesville, Virginia 22908, USA
| | | | | | | | | | | |
Collapse
|
27
|
Parker MS, Lundell I, Parker SL. Pancreatic polypeptide receptors: affinity, sodium sensitivity and stability of agonist binding. Peptides 2002; 23:291-303. [PMID: 11825644 DOI: 10.1016/s0196-9781(01)00610-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Cloned rat, human and guinea-pig Y4 pancreatic polypeptide (PP) receptors expressed in Chinese hamster ovary (CHO) cells, as well as the rabbit Y4-like PP receptor, show a selective sensitivity to Na+ over K+ ion in PP attachment, but little sensitivity to Na+ in dissociation of bound PP peptides. Agonist binding to Y4 receptors of intact CHO cells also shows much greater sensitivity to Na+ over K+, and a tenacious attachment of the bound agonist. Binding sensitivity to K+ is greatly enhanced upon receptor solubilization. Pancreatic polypeptide sites also show large sensitivity to modulators of Na+ transport such as N5-substituted amilorides and to RFamides, as different from Y1 or Y2 receptors. Thus, PP binding is modulated by cation-induced changes in site environment (with selectivity for Na+) and ultimately results in a blocking attachment. This would support receptor operation in the presence of ion gradients, as well as prolonged agonist-delimited signaling activity (which can include partial antagonism). Also, this could point to an evolutionary adaptation enabling small numbers of PP receptors to perform extensive metabolic tasks in response to low agonist signals.
Collapse
Affiliation(s)
- Michael S Parker
- Department of Microbiology and Molecular Cell Sciences, University of Memphis, Memphis, TN 38152, USA
| | | | | |
Collapse
|
28
|
Wind T, Hansen M, Jensen JK, Andreasen PA. The molecular basis for anti-proteolytic and non-proteolytic functions of plasminogen activator inhibitor type-1: roles of the reactive centre loop, the shutter region, the flexible joint region and the small serpin fragment. Biol Chem 2002; 383:21-36. [PMID: 11928815 DOI: 10.1515/bc.2002.003] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The serine proteinase inhibitor plasminogen activator inhibitor type-1 (PAI-1) is the primary physiological inhibitor of the tissue-type and the urokinase-type plasminogen activator (tPA and uPA, respectively) and as such an important regulator of proteolytic events taking place in the circulation and in the extracellular matrix. Moreover, a few non-proteolytic functions have been ascribed to PAI-1, mediated by its interaction with vitronectin or the interaction between the uPA-PAI-1 complex bound to the uPA receptor and members of the low density lipoprotein receptor family. PAI-1 belongs to the serpin family, characterised by an unusual conformational flexibility, which governs its molecular interactions. In this review we describe the anti-proteolytic and non-proteolytic functions of PAI-1 from both a biological and a biochemical point of view. We will relate the various biological roles of PAI-1 to its biochemistry in general and to the different conformations of PAI-1 in particular. We put emphasis on the intramolecular rearrangements of PAI-1 that are required for its antiproteolytic as well as its non-proteolytic functions.
Collapse
Affiliation(s)
- Troels Wind
- Department of Molecular and Structural Biology, Aarhus University, Denmark
| | | | | | | |
Collapse
|
29
|
Simonovic M, Dolmer K, Huang W, Strickland DK, Volz K, Gettins PG. Calcium coordination and pH dependence of the calcium affinity of ligand-binding repeat CR7 from the LRP. Comparison with related domains from the LRP and the LDL receptor. Biochemistry 2001; 40:15127-34. [PMID: 11735395 DOI: 10.1021/bi015688m] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We have determined the X-ray crystal structure to 1.8 A resolution of the Ca(2+) complex of complement-like repeat 7 (CR7) from the low-density lipoprotein receptor-related protein (LRP) and characterized its calcium binding properties at pH 7.4 and 5. CR7 occurs in a region of the LRP that binds to the receptor-associated protein, RAP, and other protein ligands in a Ca(2+)-dependent manner. The calcium coordination is identical to that found in LB5 and consists of carboxyls from three conserved aspartates and one conserved glutamate, and the backbone carbonyls of a tryptophan and another aspartate. The overall fold of CR7 is similar to those of CR3 and CR8 from the LRP and LB5 from the LDL receptor, though the low degree of sequence homology of residues not involved in calcium coordination or in disulfide formation results in a distinct pattern of surface residues for each domain, including CR7. The thermodynamic parameters for Ca(2+) binding at both extracellular and endosomal pHs were determined by isothermal titration calorimetry for CR7 and for related complement-like repeats CR3, CR8, and LB5. Although the drop in pH resulted in a reduction in calcium affinity in each case, the changes were very variable in magnitude, being as low as a 2-fold reduction for CR3. This suggests that a pH-dependent change in calcium affinity alone cannot be responsible for the release of bound protein ligands from the LRP at the pH prevailing in the endosome, which in turn requires one or more other pH-dependent effects for regulating protein ligand release.
Collapse
Affiliation(s)
- M Simonovic
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612-4316, USA
| | | | | | | | | | | |
Collapse
|
30
|
Kurniawan ND, Aliabadizadeh K, Brereton IM, Kroon PA, Smith R. NMR structure and backbone dynamics of a concatemer of epidermal growth factor homology modules of the human low-density lipoprotein receptor. J Mol Biol 2001; 311:341-56. [PMID: 11478865 DOI: 10.1006/jmbi.2001.4867] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The ligand-binding region of the low-density lipoprotein (LDL) receptor is formed by seven N-terminal, imperfect, cysteine-rich (LB) modules. This segment is followed by an epidermal growth factor precursor homology domain with two N-terminal, tandem, EGF-like modules that are thought to participate in LDL binding and recycling of the endocytosed receptor to the cell surface. EGF-A and the concatemer, EGF-AB, of these modules were expressed in Escherichia coli. Correct protein folding of EGF-A and the concatemer EGF-AB was achieved in the presence or absence of calcium ions, in contrast to the LB modules, which require them for correct folding. Homonuclear and heteronuclear 1H-15N NMR spectroscopy at 17.6 T was used to determine the three-dimensional structure of the concatemer. Both modules are formed by two pairs of short, anti-parallel beta-strands. In the concatemer, these modules have a fixed relative orientation, stabilized by calcium ion-binding and hydrophobic interactions at the interface. 15N longitudinal and transverse relaxation rates, and [1H]-15N heteronuclear NOEs were used to derive a model-free description of the backbone dynamics of the molecule. The concatemer appears relatively rigid, particularly near the calcium ion-binding site at the module interface, with an average generalized order parameter of 0.85+/-0.11. Some mutations causing familial hypercholesterolemia may now be rationalized. Mutations of D41, D43 and E44 in the EGF-B calcium ion-binding region may affect the stability of the linker and thus the orientation of the tandem modules. The diminutive core also provides little structural stabilization, necessitating the presence of disulfide bonds. The structure and dynamics of EGF-AB contrast with the N-terminal LB modules, which require calcium ions both for folding to form the correct disulfide connectivities and for maintenance of the folded structure, and are connected by highly mobile linking peptides.
Collapse
Affiliation(s)
- N D Kurniawan
- Department of Biochemistry and Molecular Biology, The University of Queensland, Australia
| | | | | | | | | |
Collapse
|
31
|
Li Y, Lu W, Marzolo MP, Bu G. Differential functions of members of the low density lipoprotein receptor family suggested by their distinct endocytosis rates. J Biol Chem 2001; 276:18000-6. [PMID: 11279214 DOI: 10.1074/jbc.m101589200] [Citation(s) in RCA: 114] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The low density lipoprotein receptor (LDLR) family is composed of a class of cell surface endocytic receptors that recognize extracellular ligands and internalize them for degradation by lysosomes. In addition to LDLR, mammalian members of this family include the LDLR-related protein (LRP), the very low density lipoprotein receptor (VLDLR), the apolipoprotein E receptor-2 (apoER2), and megalin. Herein we have analyzed the endocytic functions of the cytoplasmic tails of these receptors using LRP minireceptors, its chimeric receptor constructs, and full-length VLDLR and apoER2 stably expressed in LRP-null Chinese hamster ovary cells. We find that the initial endocytosis rates mediated by different cytoplasmic tails are significantly different, with half-times of ligand internalization ranging from less than 30 s to more than 8 min. The tail of LRP mediates the highest rate of endocytosis, whereas those of the VLDLR and apoER2 exhibit least endocytosis function. Compared with the tail of LRP, the tails of the LDLR and megalin display significantly lower levels of endocytosis rates. Ligand degradation analyses strongly support differential endocytosis rates initiated by these receptors. Interestingly apoER2, which has recently been shown to mediate intracellular signal transduction, exhibited the lowest level of ligand degradation efficiency. These results thus suggest that the endocytic functions of members of the LDLR family are distinct and that certain receptors in this family may play their main roles in areas other than receptor-mediated endocytosis.
Collapse
Affiliation(s)
- Y Li
- Department of Pediatrics, Washington University School of Medicine and St. Louis Children's Hospital, St. Louis, Missouri 63110, USA
| | | | | | | |
Collapse
|
32
|
Hembrough TA, Ruiz JF, Papathanassiu AE, Green SJ, Strickland DK. Tissue factor pathway inhibitor inhibits endothelial cell proliferation via association with the very low density lipoprotein receptor. J Biol Chem 2001; 276:12241-8. [PMID: 11278667 DOI: 10.1074/jbc.m010395200] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Tissue factor pathway inhibitor (TFPI) contains three Kunitz-type proteinase inhibitor domains and is a potent inhibitor of tissue factor-mediated coagulation. Here, we report that TFPI inhibits the proliferation of basic fibroblast growth factor-stimulated endothelial cells. A truncated form of TFPI, containing only the first two Kunitz-type proteinase inhibitor domains, has very little antiproliferative activity, suggesting that the carboxyl-terminal region of TFPI is responsible for this activity. Binding studies revealed that full-length TFPI, but not the truncated TFPI molecule, is recognized by the very low density lipoprotein receptor (VLDL receptor) indicating that this receptor is a novel high affinity endothelial cell receptor for TFPI. The antiproliferative activity of TFPI on endothelial cells is inhibited by the receptor-associated protein, a known antagonist of ligand binding by the VLDL receptor, and by anti-VLDL receptor antibodies. These results confirm that the antiproliferative activity of TFPI is mediated by the VLDL receptor and suggest that this receptor-ligand system may be a useful target for the development of new anti-angiogenic and antitumor agents.
Collapse
Affiliation(s)
- T A Hembrough
- American Red Cross, Holland Laboratory, Department of Vascular Biology, Rockville, Maryland 20855, USA.
| | | | | | | | | |
Collapse
|
33
|
Okun VM, Moser R, Ronacher B, Kenndler E, Blaas D. VLDL receptor fragments of different lengths bind to human rhinovirus HRV2 with different stoichiometry. An analysis of virus-receptor complexes by capillary electrophoresis. J Biol Chem 2001; 276:1057-62. [PMID: 11054420 DOI: 10.1074/jbc.m008039200] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The formation of complexes between the minor receptor group human rhinovirus HRV2 and two recombinant soluble receptor fragments derived from the human very low density lipoprotein receptor (VLDLR) and containing ligand-binding repeats 1-3 (MBP.VLDLR(1-3)) or 1-8 (MBP.VLDLR(1-8)) fused to the carboxyl terminus of the maltose-binding protein was analyzed by affinity capillary electrophoresis. At low molar ratios of receptor/virus, the peaks corresponding to substoichiometric complexes were broad indicating heterogeneity. When the receptors were present in molar excess with respect to the virus, the peaks were sharp, suggesting saturation of all binding sites. For the determination of the stoichiometry, constant amounts of receptor were incubated with increasing amounts of virus, and the peak areas corresponding to free receptor were measured and plotted versus total virus concentration. Extrapolation of the linear part of the resulting curve to zero concentration of free receptor enabled quantitation of the molar ratios of the components present in the complex. Using this method, we determined that about 60 molecules of MBP.VLDLR(1-3) but only about 30 molecules of MBP.VLDLR(1-8) were bound per virion.
Collapse
Affiliation(s)
- V M Okun
- Institute of Medical Biochemistry, Vienna Biocenter, University of Vienna, Dr. Bohr Gasse 9/3, A-1030 Vienna, Austria
| | | | | | | | | |
Collapse
|
34
|
Andersen OM, Christensen LL, Christensen PA, Sørensen ES, Jacobsen C, Moestrup SK, Etzerodt M, Thogersen HC. Identification of the minimal functional unit in the low density lipoprotein receptor-related protein for binding the receptor-associated protein (RAP). A conserved acidic residue in the complement-type repeats is important for recognition of RAP. J Biol Chem 2000; 275:21017-24. [PMID: 10747921 DOI: 10.1074/jbc.m000507200] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The low density lipoprotein receptor-related protein (LRP), a member of the low density lipoprotein receptor family, mediates the internalization of a diverse set of ligands. The ligand binding sites are located in different regions of clusters consisting of approximately 40 residues, cysteine-rich complement-type repeats (CRs). The 39-40-kDa receptor-associated protein, a folding chaperone/escort protein required for efficient transport of functional LRP to the cell surface, is an antagonist of all identified ligands. To analyze the multisite inhibition by RAP in ligand binding of LRP, we have used an Escherichia coli expression system to produce fragments of the entire second ligand binding cluster of LRP (CR3-10). By ligand affinity chromatography and surface plasmon resonance analysis, we show that RAP binds to all two-repeat modules except CR910. CR10 differs from other repeats in cluster II by not containing a surface-exposed conserved acidic residue between Cys(IV) and Cys(V). By site-directed mutagenesis and ligand competition analysis, we provide evidence for a crucial importance of this conserved residue for RAP binding. We provide experimental evidence showing that two adjacent complement-type repeats, both containing a conserved acidic residue, represent a minimal unit required for efficient binding to RAP.
Collapse
Affiliation(s)
- O M Andersen
- Laboratory of Gene Expression and Protein Chemistry Laboratory, Department of Molecular and Structural Biology, University of Aarhus, Gustav Wieds Vej 10, DK-8000 Aarhus C, Denmark
| | | | | | | | | | | | | | | |
Collapse
|