1
|
Huttener R, Thorrez L, Veld TI, Granvik M, Van Lommel L, Waelkens E, Derua R, Lemaire K, Goyvaerts L, De Coster S, Buyse J, Schuit F. Sequencing refractory regions in bird genomes are hotspots for accelerated protein evolution. BMC Ecol Evol 2021; 21:176. [PMID: 34537008 PMCID: PMC8449477 DOI: 10.1186/s12862-021-01905-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 08/31/2021] [Indexed: 11/29/2022] Open
Abstract
Background Approximately 1000 protein encoding genes common for vertebrates are still unannotated in avian genomes. Are these genes evolutionary lost or are they not yet found for technical reasons? Using genome landscapes as a tool to visualize large-scale regional effects of genome evolution, we reexamined this question. Results On basis of gene annotation in non-avian vertebrate genomes, we established a list of 15,135 common vertebrate genes. Of these, 1026 were not found in any of eight examined bird genomes. Visualizing regional genome effects by our sliding window approach showed that the majority of these "missing" genes can be clustered to 14 regions of the human reference genome. In these clusters, an additional 1517 genes (often gene fragments) were underrepresented in bird genomes. The clusters of “missing” genes coincided with regions of very high GC content, particularly in avian genomes, making them “hidden” because of incomplete sequencing. Moreover, proteins encoded by genes in these sequencing refractory regions showed signs of accelerated protein evolution. As a proof of principle for this idea we experimentally characterized the mRNA and protein products of four "hidden" bird genes that are crucial for energy homeostasis in skeletal muscle: ALDOA, ENO3, PYGM and SLC2A4. Conclusions A least part of the “missing” genes in bird genomes can be attributed to an artifact caused by the difficulty to sequence regions with extreme GC% (“hidden” genes). Biologically, these “hidden” genes are of interest as they encode proteins that evolve more rapidly than the genome wide average. Finally we show that four of these “hidden” genes encode key proteins for energy metabolism in flight muscle. Supplementary Information The online version contains supplementary material available at 10.1186/s12862-021-01905-7.
Collapse
Affiliation(s)
- R Huttener
- Gene Expression Unit, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, O&N1, bus 901, 3000, Leuven, Belgium
| | - L Thorrez
- Gene Expression Unit, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, O&N1, bus 901, 3000, Leuven, Belgium.,Tissue Engineering Laboratory, Department of Development and Regeneration, KU Leuven Campus Kulak, Kortrijk, Belgium
| | - T In't Veld
- Gene Expression Unit, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, O&N1, bus 901, 3000, Leuven, Belgium
| | - M Granvik
- Gene Expression Unit, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, O&N1, bus 901, 3000, Leuven, Belgium
| | - L Van Lommel
- Gene Expression Unit, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, O&N1, bus 901, 3000, Leuven, Belgium
| | - E Waelkens
- Laboratory of Protein Phosphorylation and Proteomics, KU Leuven, Leuven, Belgium
| | - R Derua
- Laboratory of Protein Phosphorylation and Proteomics, KU Leuven, Leuven, Belgium
| | - K Lemaire
- Gene Expression Unit, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, O&N1, bus 901, 3000, Leuven, Belgium
| | - L Goyvaerts
- Gene Expression Unit, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, O&N1, bus 901, 3000, Leuven, Belgium
| | - S De Coster
- Gene Expression Unit, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, O&N1, bus 901, 3000, Leuven, Belgium
| | - J Buyse
- Laboratory of Livestock Physiology, Department of Biosystems, KU Leuven, Leuven, Belgium
| | - F Schuit
- Gene Expression Unit, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, O&N1, bus 901, 3000, Leuven, Belgium.
| |
Collapse
|
2
|
Lee Y, Fluckey JD, Chakraborty S, Muthuchamy M. Hyperglycemia- and hyperinsulinemia-induced insulin resistance causes alterations in cellular bioenergetics and activation of inflammatory signaling in lymphatic muscle. FASEB J 2017; 31:2744-2759. [PMID: 28298335 DOI: 10.1096/fj.201600887r] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 02/22/2017] [Indexed: 12/27/2022]
Abstract
Insulin resistance is a well-known risk factor for obesity, metabolic syndrome (MetSyn) and associated cardiovascular diseases, but its mechanisms are undefined in the lymphatics. Mesenteric lymphatic vessels from MetSyn or LPS-injected rats exhibited impaired intrinsic contractile activity and associated inflammatory changes. Hence, we hypothesized that insulin resistance in lymphatic muscle cells (LMCs) affects cell bioenergetics and signaling pathways that consequently alter contractility. LMCs were treated with different concentrations of insulin or glucose or both at various time points to determine insulin resistance. Onset of insulin resistance significantly impaired glucose uptake, mitochondrial function, oxygen consumption rates, glycolysis, lactic acid, and ATP production in LMCs. Hyperglycemia and hyperinsulinemia also impaired the PI3K/Akt while enhancing the ERK/p38MAPK/JNK pathways in LMCs. Increased NF-κB nuclear translocation and macrophage chemoattractant protein-1 and VCAM-1 levels in insulin-resistant LMCs indicated activation of inflammatory mechanisms. In addition, increased phosphorylation of myosin light chain-20, a key regulator of lymphatic muscle contraction, was observed in insulin-resistant LMCs. Therefore, our data elucidate the mechanisms of insulin resistance in LMCs and provide the first evidence that hyperglycemia and hyperinsulinemia promote insulin resistance and impair lymphatic contractile status by reducing glucose uptake, altering cellular metabolic pathways, and activating inflammatory signaling cascades.-Lee, Y., Fluckey, J. D., Chakraborty, S., Muthuchamy, M. Hyperglycemia- and hyperinsulinemia-induced insulin resistance causes alterations in cellular bioenergetics and activation of inflammatory signaling in lymphatic muscle.
Collapse
Affiliation(s)
- Yang Lee
- Department of Medical Physiology, Texas A&M Health Science Center College of Medicine, College Station, Texas, USA
| | - James D Fluckey
- Department of Health and Kinesiology, Texas A&M University, College Station, Texas, USA
| | - Sanjukta Chakraborty
- Department of Medical Physiology, Texas A&M Health Science Center College of Medicine, College Station, Texas, USA;
| | - Mariappan Muthuchamy
- Department of Medical Physiology, Texas A&M Health Science Center College of Medicine, College Station, Texas, USA;
| |
Collapse
|
3
|
Lalioti V, Hernandez-Tiedra S, Sandoval IV. DKWSLLL, a versatile DXXXLL-type signal with distinct roles in the Cu(+)-regulated trafficking of ATP7B. Traffic 2014; 15:839-60. [PMID: 24831241 DOI: 10.1111/tra.12176] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Revised: 05/09/2014] [Accepted: 05/09/2014] [Indexed: 11/27/2022]
Abstract
In the liver, the P-type ATPase and membrane pump ATP7B plays a crucial role in Cu(+) donation to cuproenzymes and in the elimination of excess Cu(+). ATP7B is endowed with a COOH-cytoplasmic (DE)XXXLL-type traffic signal. We find that accessory (Lys -3, Trp -2, Ser -1 and Leu +2) and canonical (D -4, Leu 0 and Leu +1) residues confer the DKWSLLL signal with the versatility required for the Cu(+)-regulated cycling of ATP7B between the trans-Golgi network (TGN) and the plasma membrane (PM). The separate mutation of these residues caused a disruption of the signal, resulting in different ATP7B distribution phenotypes. These phenotypes indicate the key roles of specific residues at separate steps of ATP7B trafficking, including sorting at the TGN, transport from the TGN to the PM and its endocytosis, and recycling to the TGN and PM. The distinct roles of ATP7B in the TGN and PM and the variety of phenotypes caused by the mutation of the canonical and accessory residues of the DKWSLLL signal can explain the separate or joined presentation of Wilson's cuprotoxicosis and the dysfunction of the cuproenzymes that accept Cu(+) at the TGN.
Collapse
Affiliation(s)
- Vasiliki Lalioti
- Centro Biología Molecular Severo Ochoa, Cantoblanco, 28049, Madrid, Spain
| | | | | |
Collapse
|
4
|
Abstract
GLUT4 is regulated by its intracellular localization. In the absence of insulin, GLUT4 is efficiently retained intracellularly within storage compartments in muscle and fat cells. Upon insulin stimulation (and contraction in muscle), GLUT4 translocates from these compartments to the cell surface where it transports glucose from the extracellular milieu into the cell. Its implication in insulin-regulated glucose uptake makes GLUT4 not only a key player in normal glucose homeostasis but also an important element in insulin resistance and type 2 diabetes. Nevertheless, how GLUT4 is retained intracellularly and how insulin acts on this retention mechanism is largely unclear. In this review, the current knowledge regarding the various molecular processes that govern GLUT4 physiology is discussed as well as the questions that remain.
Collapse
|
5
|
FSP27 promotes lipid droplet clustering and then fusion to regulate triglyceride accumulation. PLoS One 2011; 6:e28614. [PMID: 22194867 PMCID: PMC3237475 DOI: 10.1371/journal.pone.0028614] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Accepted: 11/11/2011] [Indexed: 02/08/2023] Open
Abstract
Fat Specific Protein 27 (FSP27), a lipid droplet (LD) associated protein in adipocytes, regulates triglyceride (TG) storage. In the present study we demonstrate that FSP27 plays a key role in LD morphology to accumulate TGs. We show here that FSP27 promotes clustering of the LDs which is followed by their fusion into fewer and enlarged droplets. To map the domains of FSP27 responsible for these events, we generated GFP-fusion constructs of deletion mutants of FSP27. Microscopic analysis revealed that amino acids 173–220 of FSP27 are necessary and sufficient for both the targeting of FSP27 to LDs and the initial clustering of the droplets. Amino acids 120–140 are essential but not sufficient for LD enlargement, whereas amino acids 120–210 are necessary and sufficient for both clustering and fusion of LDs to form enlarged droplets. In addition, we found that FSP27-mediated enlargement of LDs, but not their clustering, is associated with triglyceride accumulation. These results suggest a model in which FSP27 facilitates LD clustering and then promotes their fusion to form enlarged droplets in two discrete, sequential steps, and a subsequent triglyceride accumulation.
Collapse
|
6
|
Fujita H, Hatakeyama H, Watanabe TM, Sato M, Higuchi H, Kanzaki M. Identification of three distinct functional sites of insulin-mediated GLUT4 trafficking in adipocytes using quantitative single molecule imaging. Mol Biol Cell 2010; 21:2721-31. [PMID: 20519436 PMCID: PMC2912357 DOI: 10.1091/mbc.e10-01-0029] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Insulin stimulation of glucose uptake is achieved by redistribution of insulin-responsive glucose transporters, GLUT4, from intracellular storage compartment(s) to the plasma membrane in adipocytes and muscle cells. Although GLUT4 translocation has been investigated using various approaches, GLUT4 trafficking properties within the cell are largely unknown. Our novel method allows direct analysis of intracellular GLUT4 dynamics at the single molecule level by using Quantum dot technology, quantitatively establishing the behavioral nature of GLUT4. Our data demonstrate the predominant mechanism for intracellular GLUT4 sequestration in the basal state to be "static retention" in fully differentiated 3T3L1 adipocytes. We also directly defined three distinct insulin-stimulated GLUT4 trafficking processes: 1) release from the putative GLUT4 anchoring system in storage compartment(s), 2) the speed at which transport GLUT4-containing vesicles move, and 3) the tethering/docking steps at the plasma membrane. Intriguingly, insulin-induced GLUT4 liberation from its static state appeared to be abolished by either pretreatment with an inhibitor of phosphatidylinositol 3-kinase or overexpression of a dominant-interfering AS160 mutant (AS160/T642A). In addition, our novel approach revealed the possibility that, in certain insulin-resistant states, derangements in GLUT4 behavior can impair insulin-responsive GLUT4 translocation.
Collapse
Affiliation(s)
- Hideaki Fujita
- Tohoku University Biomedical Engineering Research Organization, Sendai, Miyagi, 980-8575, Japan
| | | | | | | | | | | |
Collapse
|
7
|
Capilla E, Díaz M, Hou JC, Planas JV, Pessin JE. High basal cell surface levels of fish GLUT4 are related to reduced sensitivity of insulin-induced translocation toward GGA and AS160 inhibition in adipocytes. Am J Physiol Endocrinol Metab 2010; 298:E329-36. [PMID: 20075431 PMCID: PMC2822488 DOI: 10.1152/ajpendo.00547.2009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Glucose entry into cells is mediated by a family of facilitative transporter proteins (GLUTs). In mammals, GLUT4 is expressed in insulin-sensitive tissues and is responsible for the postprandial uptake of glucose. In fish, GLUT4 also mediates insulin-regulated glucose entry into cells but differs from mammalian GLUT4 in its affinity for glucose and in protein motifs known to be important for the traffic of GLUT4. In this study, we have characterized the intracellular and plasma membrane (PM) traffic of two orthologs of GLUT4 in fish, trout (btGLUT4) and salmon (okGLUT4), that do not share the amino terminal FQQI targeting motif of mammalian GLUT4. btGLUT4 (FQHL) and, to a lesser extent, okGLUT4 (FQQL) showed higher basal PM levels, faster traffic to the PM after biosynthesis, and earlier acquisition of insulin responsiveness than rat GLUT4. Furthermore, btGLUT4 showed a similar profile of internalization than rat GLUT4. Expression of the dominant-interfering AS160-4P mutant caused a significant decrease in the insulin-induced PM levels of okGLUT4 and rat GLUT4 and, to a lesser extent, of btGLUT4, suggesting that btGLUT4 has reduced retention into the IRC. Contrary to rat GLUT4 and okGLUT4, the presence of btGLUT4 at the PM under insulin-stimulated conditions was not affected by coexpression of a dominant-interfering GGA mutant. These data suggest that fish GLUT4 follow a different trafficking pathway to the PM compared with rat GLUT4 that seems to be relatively independent of GGA. These results indicate that the regulated trafficking characteristics of GLUT4 have been modified during evolution from fish to mammals.
Collapse
Affiliation(s)
- Encarnación Capilla
- Departament de Fisiologia, Facultat de Biologia, Universitat de Barcelona and Institut de Biomedicina de la Universitat de Barcelona, Barcelona, Spain
| | | | | | | | | |
Collapse
|
8
|
The C-terminus of GLUT4 targets the transporter to the perinuclear compartment but not to the insulin-responsive vesicles. Biochem J 2009; 419:105-12, 1 p following 112. [PMID: 19076072 DOI: 10.1042/bj20081448] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Postprandial blood glucose clearance is mediated by GLUT4 (glucose transporter 4) which is translocated from an intracellular storage pool to the plasma membrane in response to insulin. The nature of the intracellular storage pool of GLUT4 is not well understood. Immunofluorescence staining shows that, under basal conditions, the major population of GLUT4 resides in the perinuclear compartment. At the same time, biochemical fractionation reveals that GLUT4 is localized in IRVs (insulin-responsive vesicles). The relationship between the perinuclear GLUT4 compartment and the IRVs is not known. In the present study, we have exchanged the C-termini of GLUT4 and cellugyrin, another vesicular protein that is not localized in the IRVs and has no insulin response. We have found that GLUT4 with the cellugyrin C-terminus loses its specific perinuclear localization, whereas cellugyrin with the GLUT4 C-terminus acquires perinuclear localization and becomes co-localized with GLUT4. This, however, is not sufficient for the effective entry of the latter chimaera into the IRVs as only a small fraction of cellugyrin with the GLUT4 C-terminus is targeted to the IRVs and is translocated to the plasma membrane in response to insulin stimulation. We suggest that the perinuclear GLUT4 storage compartment comprises the IRVs and the donor membranes from which the IRVs originate. The C-terminus of GLUT4 is required for protein targeting to the perinuclear donor membranes, but not to the IRVs.
Collapse
|
9
|
Vishnu Prasad C, Suma Mohan S, Banerji A, Gopalakrishnapillai A. Kaempferitrin inhibits GLUT4 translocation and glucose uptake in 3T3-L1 adipocytes. Biochem Biophys Res Commun 2009; 380:39-43. [DOI: 10.1016/j.bbrc.2009.01.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2008] [Accepted: 01/04/2009] [Indexed: 01/01/2023]
|
10
|
Song XM, Hresko RC, Mueckler M. Identification of amino acid residues within the C terminus of the Glut4 glucose transporter that are essential for insulin-stimulated redistribution to the plasma membrane. J Biol Chem 2008; 283:12571-85. [PMID: 18305115 DOI: 10.1074/jbc.m800838200] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Glut4 glucose transporter undergoes complex insulin-regulated subcellular trafficking in adipocytes. Much effort has been expended in an attempt to identify targeting motifs within Glut4 that direct its subcellular trafficking, but an amino acid motif responsible for the targeting of the transporter to insulin-responsive intracellular compartments in the basal state or that is directly responsible for its insulin-stimulated redistribution to the plasma membrane has not yet been delineated. In this study we define amino acid residues within the C-terminal cytoplasmic tail of Glut4 that are essential for its insulin-stimulated translocation to the plasma membrane. The residues were identified based on sequence similarity (LXXLXPDEXD) between cytoplasmic domains of Glut4 and the insulin-responsive aminopeptidase (IRAP). Alteration of this putative targeting motif (IRM, insulin-responsive motif) resulted in the targeting of the bulk of the mutant Glut4 molecules to dispersed membrane vesicles that lacked detectable levels of wild-type Glut4 in either the basal or insulin-stimulated states and completely abolished the insulin-stimulated translocation of the mutant Glut4 to the plasma membrane in 3T3L1 adipocytes. The bulk of the dispersed membrane vesicles containing the IRM mutant did not contain detectable levels of any subcellular marker tested. A fraction of the total IRM mutant was also detected in a wild-type Glut4/Syntaxin 6-containing perinuclear compartment. Interestingly, mutation of the IRM sequence did not appreciably alter the subcellular trafficking of IRAP. We conclude that residues within the IRM are critical for the targeting of Glut4, but not of IRAP, to insulin-responsive intracellular membrane compartments in 3T3-L1 adipocytes.
Collapse
Affiliation(s)
- Xiao Mei Song
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | |
Collapse
|
11
|
Díaz M, Antonescu CN, Capilla E, Klip A, Planas JV. Fish glucose transporter (GLUT)-4 differs from rat GLUT4 in its traffic characteristics but can translocate to the cell surface in response to insulin in skeletal muscle cells. Endocrinology 2007; 148:5248-57. [PMID: 17702851 DOI: 10.1210/en.2007-0265] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
In mammals, glucose transporter (GLUT)-4 plays an important role in glucose homeostasis mediating insulin action to increase glucose uptake in insulin-responsive tissues. In the basal state, GLUT4 is located in intracellular compartments and upon insulin stimulation is recruited to the plasma membrane, allowing glucose entry into the cell. Compared with mammals, fish are less efficient restoring plasma glucose after dietary or exogenous glucose administration. Recently our group cloned a GLUT4-homolog in skeletal muscle from brown trout (btGLUT4) that differs in protein motifs believed to be important for endocytosis and sorting of mammalian GLUT4. To study the traffic of btGLUT4, we generated a stable L6 muscle cell line overexpressing myc-tagged btGLUT4 (btGLUT4myc). Insulin stimulated btGLUT4myc recruitment to the cell surface, although to a lesser extent than rat-GLUT4myc, and enhanced glucose uptake. Interestingly, btGLUT4myc showed a higher steady-state level at the cell surface under basal conditions than rat-GLUT4myc due to a higher rate of recycling of btGLUT4myc and not to a slower endocytic rate, compared with rat-GLUT4myc. Furthermore, unlike rat-GLUT4myc, btGLUT4myc had a diffuse distribution throughout the cytoplasm of L6 myoblasts. In primary brown trout skeletal muscle cells, insulin also promoted the translocation of endogenous btGLUT4 to the plasma membrane and enhanced glucose transport. Moreover, btGLUT4 exhibited a diffuse intracellular localization in unstimulated trout myocytes. Our data suggest that btGLUT4 is subjected to a different intracellular traffic from rat-GLUT4 and may explain the relative glucose intolerance observed in fish.
Collapse
Affiliation(s)
- Mònica Díaz
- Departament de Fisiologia, Facultat de Biologia, Universitat de Barcelona, 08028, Barcelona, Spain
| | | | | | | | | |
Collapse
|
12
|
Capilla E, Suzuki N, Pessin JE, Hou JC. The glucose transporter 4 FQQI motif is necessary for Akt substrate of 160-kilodalton-dependent plasma membrane translocation but not Golgi-localized (gamma)-ear-containing Arf-binding protein-dependent entry into the insulin-responsive storage compartment. Mol Endocrinol 2007; 21:3087-99. [PMID: 17761952 DOI: 10.1210/me.2006-0476] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Newly synthesized glucose transporter 4 (GLUT4) enters into the insulin-responsive storage compartment in a process that is Golgi-localized gamma-ear-containing Arf-binding protein (GGA) dependent, whereas insulin-stimulated translocation is regulated by Akt substrate of 160 kDa (AS160). In the present study, using a variety of GLUT4/GLUT1 chimeras, we have analyzed the specific motifs of GLUT4 that are important for GGA and AS160 regulation of GLUT4 trafficking. Substitution of the amino terminus and the large intracellular loop of GLUT4 into GLUT1 (chimera 1-441) fully recapitulated the basal state retention, insulin-stimulated translocation, and GGA and AS160 sensitivity of wild-type GLUT4 (GLUT4-WT). GLUT4 point mutation (GLUT4-F5A) resulted in loss of GLUT4 intracellular retention in the basal state when coexpressed with both wild-type GGA and AS160. Nevertheless, similar to GLUT4-WT, the insulin-stimulated plasma membrane localization of GLUT4-F5A was significantly inhibited by coexpression of dominant-interfering GGA. In addition, coexpression with a dominant-interfering AS160 (AS160-4P) abolished insulin-stimulated GLUT4-WT but not GLUT4-F5A translocation. GLUT4 endocytosis and intracellular sequestration also required both the amino terminus and large cytoplasmic loop of GLUT4. Furthermore, both the FQQI and the SLL motifs participate in the initial endocytosis from the plasma membrane; however, once internalized, unlike the FQQI motif, the SLL motif is not responsible for intracellular recycling of GLUT4 back to the specialized compartment. Together, we have demonstrated that the FQQI motif within the amino terminus of GLUT4 is essential for GLUT4 endocytosis and AS160-dependent intracellular retention but not for the GGA-dependent sorting of GLUT4 into the insulin-responsive storage compartment.
Collapse
Affiliation(s)
- Encarnación Capilla
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, New York 11794-8651, USA
| | | | | | | |
Collapse
|
13
|
Watson RT, Pessin JE. GLUT4 translocation: the last 200 nanometers. Cell Signal 2007; 19:2209-17. [PMID: 17629673 DOI: 10.1016/j.cellsig.2007.06.003] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2007] [Accepted: 06/14/2007] [Indexed: 12/23/2022]
Abstract
Insulin regulates circulating glucose levels by suppressing hepatic glucose production and increasing glucose transport into muscle and adipose tissues. Defects in these processes are associated with elevated vascular glucose levels and can lead to increased risk for the development of Type 2 diabetes mellitus and its associated disease complications. At the cellular level, insulin stimulates glucose uptake by inducing the translocation of the glucose transporter 4 (GLUT4) from intracellular storage sites to the plasma membrane, where the transporter facilitates the diffusion of glucose into striated muscle and adipocytes. Although the immediate downstream molecules that function proximal to the activated insulin receptor have been relatively well-characterized, it remains unknown how the distal insulin-signaling cascade interfaces with and recruits GLUT4 to the cell surface. New biochemical assays and imaging techniques, however, have focused attention on the plasma membrane as a potential target of insulin action leading to GLUT4 translocation. Indeed, it now appears that insulin specifically regulates the docking and/or fusion of GLUT4-vesicles with the plasma membrane. Future work will focus on identifying the key insulin targets that regulate the GLUT4 docking/fusion processes.
Collapse
Affiliation(s)
- Robert T Watson
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY 11794, USA
| | | |
Collapse
|
14
|
Abstract
Few physiological parameters are more tightly and acutely regulated in humans than blood glucose concentration. The major cellular mechanism that diminishes blood glucose when carbohydrates are ingested is insulin-stimulated glucose transport into skeletal muscle. Skeletal muscle both stores glucose as glycogen and oxidizes it to produce energy following the transport step. The principal glucose transporter protein that mediates this uptake is GLUT4, which plays a key role in regulating whole body glucose homeostasis. This review focuses on recent advances on the biology of GLUT4.
Collapse
Affiliation(s)
- Shaohui Huang
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | | |
Collapse
|
15
|
Martin OJ, Lee A, McGraw TE. GLUT4 Distribution between the Plasma Membrane and the Intracellular Compartments Is Maintained by an Insulin-modulated Bipartite Dynamic Mechanism. J Biol Chem 2006; 281:484-90. [PMID: 16269413 DOI: 10.1074/jbc.m505944200] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The GLUT4 glucose transporter is predominantly retained inside basal fat and muscle cells, and it is rapidly recruited to the plasma membrane with insulin stimulation. There is controversy regarding the mechanism of basal GLUT4 retention. One model is that GLUT4 retention is dynamic, based on slow exocytosis and rapid internalization of the entire pool of GLUT4 (Karylowski, O., Zeigerer, A., Cohen, A., and McGraw, T. E. (2004) Mol. Biol. Cell 15, 870-882). In this model, insulin increases GLUT4 in the plasma membrane by modulating GLUT4 exocytosis and endocytosis. The second model is that GLUT4 retention is static, with approximately 90% of GLUT4 stored in compartments that are not in equilibrium with the cell surface in basal conditions (Govers, R., Coster, A. C., and James, D. E. (2004) Mol. Cell Biol. 24, 6456-6466). In this model, insulin increases GLUT4 in the plasma membrane by releasing it from the static storage compartment. Here we show that under all experimental conditions examined, basal GLUT4 retention is by a bipartite dynamic mechanism involving slow efflux and rapid internalization. To establish that the dynamic model developed in studies of the extreme conditions of >100 nm insulin and no insulin also describes GLUT4 behavior at more physiological insulin concentrations, we characterized GLUT4 trafficking in 0.5 nm insulin. This submaximal insulin concentration promotes an intermediate effect on both GLUT4 exocytosis and endocytosis, resulting in an intermediate degree of redistribution to the plasma membrane. These data establish that changes in the steady-state surface/total distributions of GLUT4 are the result of gradated, insulin-induced changes in GLUT4 exocytosis and endocytosis rates.
Collapse
Affiliation(s)
- Ola J Martin
- Department of Biochemistry, Weill Cornell Medical College, New York, New York 10013, USA
| | | | | |
Collapse
|
16
|
Sheldon AL, González MI, Robinson MB. A carboxyl-terminal determinant of the neuronal glutamate transporter, EAAC1, is required for platelet-derived growth factor-dependent trafficking. J Biol Chem 2005; 281:4876-86. [PMID: 16368696 DOI: 10.1074/jbc.m504983200] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The neuronal glutamate transporter, EAAC1 (excitatory amino acid carrier 1), undergoes rapid regulation after treatment with platelet-derived growth factor (PDGF) or phorbol ester in C6 glioma cells and neurons. A large intracellular pool of EAAC1 exists, from which transporters are redistributed to the cell surface in response to these signals. Here we show that PDGF had no effect on subcellular localization of the glial glutamate transporter, GLT-1, after transfection into C6 glioma cells. Chimeras consisting of domains from EAAC1 or GLT-1 were used to investigate structural motifs involved in PDGF-dependent redistribution of EAAC1. PDGF did not induce trafficking of an EAAC1 chimera containing the carboxyl-terminal domain of GLT-1; however, it did induce trafficking of a GLT-1 chimera containing the carboxyl-terminal domain of EAAC1. A truncated mutant of EAAC1 lacking 10 carboxyl-terminal amino acids was responsive to PDGF, whereas a mutant lacking 20 residues was not. Alanine substitution mutagenesis in this region revealed a short motif, (502)YVN(504), necessary for regulated trafficking. This motif was also involved in protein kinase C-dependent trafficking, as mutant transporters exhibited an attenuated response to phorbol ester. Interestingly, the presence of YVN in the homologous region of a nonresponsive chimera was not sufficient to confer regulated trafficking; however, the presence of a 12-amino acid motif starting at this Tyr residue was sufficient to confer responsiveness to PDGF. These studies identify a novel motif within the carboxyl terminus of EAAC1 which is required for regulated trafficking. The possibility that this motif targets EAAC1 to an intracellular, "regulated pool" is discussed.
Collapse
Affiliation(s)
- Amanda L Sheldon
- Department of Pediatrics, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, Pennsylvania 19104-4318, USA
| | | | | |
Collapse
|
17
|
Wang L, Kolachala V, Walia B, Balasubramanian S, Hall RA, Merlin D, Sitaraman SV. Agonist-induced polarized trafficking and surface expression of the adenosine 2b receptor in intestinal epithelial cells: role of SNARE proteins. Am J Physiol Gastrointest Liver Physiol 2004; 287:G1100-7. [PMID: 15256361 DOI: 10.1152/ajpgi.00164.2004] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Adenosine, acting through the A2b receptor, induces vectorial chloride and IL-6 secretion in intestinal epithelia and may play an important role in intestinal inflammation. We have previously shown that apical or basolateral adenosine receptor stimulation results in the recruitment of the A2b receptor to the plasma membrane. In this study, we examined domain specificity of recruitment and the role of soluble N-ethylmaleimide (NEM) attachment receptor (SNARE) proteins in the agonist-mediated recruitment of the A2b receptor to the membrane. The colonic epithelial cell line T84 was used because it only expresses the A2b-subtype adenosine receptor. Cell fractionation, biotinylation, and electron microscopic studies showed that the A2b receptor is intracellular at rest and that apical or basolateral adenosine stimulation resulted in the recruitment of the receptor to the apical membrane. Upon agonist stimulation, the A2b receptor is enriched in the vesicle fraction containing vesicle-associated membrane protein (VAMP)-2. Furthermore, in cells stimulated with apical or basolateral adenosine, we demonstrate a complex consisting of VAMP-2, soluble NEM-sensitive factor attachment protein (SNAP)-23, and A2b receptor that is coimmunoprecipitated in cells stimulated with adenosine within 5 min and is no longer detected within 15 min. Inhibition of trafficking with NEM or nocodazole inhibits cAMP synthesis induced by apical or basolateral adenosine by 98 and 90%, respectively. cAMP synthesis induced by foskolin was not affected, suggesting that generalized signaling is not affected under these conditions. Collectively, our data suggest that 1) the A2b receptor is intracellular at rest; 2) apical or basolateral agonist stimulation induces recruitment of the A2b receptor to the apical membrane; 3) the SNARE proteins, VAMP-2 and SNAP-23, participate in the recruitment of the A2b receptor; and 4) the SNARE-mediated recruitment of the A2b receptor may be required for its signaling.
Collapse
Affiliation(s)
- Lixin Wang
- Division of Digestive Diseases, Department of Medicine, Emory University, Atlanta, GA 30322, USA
| | | | | | | | | | | | | |
Collapse
|
18
|
Khan AH, Capilla E, Hou JC, Watson RT, Smith JR, Pessin JE. Entry of newly synthesized GLUT4 into the insulin-responsive storage compartment is dependent upon both the amino terminus and the large cytoplasmic loop. J Biol Chem 2004; 279:37505-11. [PMID: 15247212 DOI: 10.1074/jbc.m405694200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have recently reported that following initial biosynthesis, the GLUT4 protein exits the Golgi apparatus and directly enters the insulin-responsive compartment(s) without transiting the plasma membrane. To investigate the structural motifs involved in these initial sorting events, we have generated a variety of loss-of-function and gain-of-function GLUT4/GLUT1 chimera proteins. Substitution of the GLUT4 carboxyl-terminal domain with GLUT1 had no significant effect on the acquisition of insulin responsiveness. In contrast, substitution of either the GLUT4 amino-terminal domain or the large cytoplasmic loop between transmembrane domains 6 and 7 resulted in the rapid default of GLUT4 to the plasma membrane with blunted insulin response. Consistent with these findings, substitution of the amino-terminal, cytoplasmic loop, or carboxyl-terminal domains individually into GLUT1 backbone did not recapitulate normal GLUT4 trafficking. Similarly, dual substitutions of the GLUT1 amino and carboxyl termini with GLUT4 domains or the combination of the cytoplasmic loop plus the carboxyl terminus failed to display normal GLUT4 trafficking. However, the dual replacement of the amino terminus plus the cytoplasmic loop of GLUT4 in the GLUT1 backbone resulted in a complete restoration of normal GLUT4 trafficking. Alanine-scanning mutagenesis of the GLUT4 amino terminus demonstrated that Phe(5) and Ile(8) within the FQQI motif and, to a lesser extent, Asp(12)/Gly(13) were necessary for the appropriate initial trafficking following biosynthesis. In addition, amino acids 229-271 in the large intracellular loop between transmembrane domains 6 and 7 functionally cooperated with the amino-terminal domain. These data demonstrate that initial trafficking of GLUT4 from the Golgi to the insulin-responsive GLUT4 compartment requires the functional interaction of two distinct domains.
Collapse
Affiliation(s)
- Ahmir H Khan
- Department of Pharmacological Sciences, The State University of New York at Stony Brook, Stony Brook, New York 11794-8651, USA
| | | | | | | | | | | |
Collapse
|
19
|
Watson RT, Kanzaki M, Pessin JE. Regulated membrane trafficking of the insulin-responsive glucose transporter 4 in adipocytes. Endocr Rev 2004; 25:177-204. [PMID: 15082519 DOI: 10.1210/er.2003-0011] [Citation(s) in RCA: 309] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Since the discovery of insulin roughly 80 yr ago, much has been learned about how target cells receive, interpret, and respond to this peptide hormone. For example, we now know that insulin activates the tyrosine kinase activity of its cell surface receptor, thereby triggering intracellular signaling cascades that regulate many cellular processes. With respect to glucose homeostasis, these include the function of insulin to suppress hepatic glucose production and to increase glucose uptake in muscle and adipose tissues, the latter resulting from the translocation of the glucose transporter 4 (GLUT4) to the cell surface membrane. Although simple in broad outline, elucidating the molecular intricacies of these receptor-signaling pathways and membrane-trafficking processes continues to challenge the creative ingenuity of scientists, and many questions remain unresolved, or even perhaps unasked. The identification and functional characterization of specific molecules required for both insulin signaling and GLUT4 vesicle trafficking remain key issues in our pursuit of developing specific therapeutic agents to treat and/or prevent this debilitating disease process. To this end, the combined efforts of numerous research groups employing a range of experimental approaches has led to a clearer molecular picture of how insulin regulates the membrane trafficking of GLUT4.
Collapse
Affiliation(s)
- Robert T Watson
- Department of Pharmacological Sciences, State University of New York at Stony Brook, Stony Brook, NY 11794, USA
| | | | | |
Collapse
|
20
|
Michelle Furtado L, Poon V, Klip A. GLUT4 activation: thoughts on possible mechanisms. ACTA PHYSIOLOGICA SCANDINAVICA 2003; 178:287-96. [PMID: 12864733 DOI: 10.1046/j.1365-201x.2003.01160.x] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A family of facilitative glucose transporters or GLUTs mediates glucose uptake by cells and tissues. The glucose transporter isoform GLUT4, which is the predominant isoform expressed in mature muscle and fat tissues, is primarily responsible for the increase in glucose uptake in response to insulin stimulation. Recent work in our laboratory suggests that there are two divergent responses initiated by insulin stimulation. The first response involves the recruitment of GLUT4 transporters from intracellular reserves and their subsequent insertion into the plasma membrane. The second pathway results in an increase in the intrinsic activity of the transporters. This review will discuss evidence supporting the divergence of the two pathways regulating glucose uptake and, in particular, evidence for the increased intrinsic activity of GLUT4 in response to insulin stimulation. Inhibitors of p38 mitogen-activated protein kinase (MAPK) affected only the arm leading to the insulin-stimulated activation of GLUT4. This implicates p38 MAPK involvement in the regulation of this pathway. There is further evidence that p38 MAPK is itself recruited to the plasma membrane. The role of the phosphorylation state of the glucose transporter in response to insulin stimulation has been studied and indicates that, contrary to what might be predicted, there is actually a decrease in its phosphorylation at the plasma membrane in response to insulin. The relationship of this change to glucose uptake remains to be established. Other possible mechanisms regulating GLUT4 activity include binding of (+) or (-) modulators of its function.
Collapse
Affiliation(s)
- L Michelle Furtado
- Programme in Cell Biology, The Hospital for Sick Children, Toronto, Canada
| | | | | |
Collapse
|
21
|
Lalioti VS, Vergarajauregui S, Pulido D, Sandoval IV. The insulin-sensitive glucose transporter, GLUT4, interacts physically with Daxx. Two proteins with capacity to bind Ubc9 and conjugated to SUMO1. J Biol Chem 2002; 277:19783-91. [PMID: 11842083 DOI: 10.1074/jbc.m110294200] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In this study we have used the yeast two-hybrid system to identify proteins that interact with the carboxyl-cytoplasmic domain (residues 464-509) of the insulin-sensitive glucose transporter GLUT4 (C-GLUT4). Using as bait C-GLUT4, we have isolated the carboxyl domain of Daxx (C-Daxx), the adaptor protein associated with the Fas and the type II TGF-beta (TbetaRII) receptors (1,2 ). The two-hybrid interaction between C-GLUT4 and C-Daxx is validated by the ability of in vitro translated C-GLUT4 to interact with in vitro translated full-length Daxx and C-Daxx. C-Daxx does not interact with the C-cytoplasmic domain of GLUT1, the ubiquitous glucose transporter homologous to GLUT4. Replacement of alanine and serine for the dileucine pair (Leu(489)-Leu(490)) critical for targeting GLUT4 from the trans-Golgi network to the perinuclear intracellular store as well as for its surface internalization by endocytosis inhibits 2-fold the interaction of C-GLUT4 with Daxx. Daxx is pulled down with GLUT4 immunoprecipitated from lysates of 3T3-L1 fibroblasts stably transfected with GLUT4 and 3T3-L1 adipocytes expressing physiological levels of the two proteins. Similarly, GLUT4 is recovered with anti-Daxx immunoprecipitates. Using an established cell fractionation procedure we present evidence for the existence of two distinct intracellular Daxx pools in the nucleus and low density microsomes. Confocal immunofluorescence microscopy studies localize Daxx to promyelocytic leukemia nuclear bodies and punctate cytoplasmic structures, often organized in strings and underneath the plasma membrane. Daxx and GLUT4 are SUMOlated as shown by their reaction with an anti-SUMO1 antibody and by the ability of this antibody to pull down Daxx and GLUT4.
Collapse
Affiliation(s)
- Vassiliki S Lalioti
- Centro de Biologia Molecular Severo Ochoa, Consejo Superior de Investigaciones Cientificas, Universidad Autónoma de Madrid, Madrid 28049, Spain
| | | | | | | |
Collapse
|
22
|
Yang J, Hodel A, Holman GD. Insulin and isoproterenol have opposing roles in the maintenance of cytosol pH and optimal fusion of GLUT4 vesicles with the plasma membrane. J Biol Chem 2002; 277:6559-66. [PMID: 11751852 DOI: 10.1074/jbc.m108610200] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Insulin treatment of rat adipocytes increases both cytoplasmic alkalinity and glucose transport activity. Both processes are blocked by the phosphatidylinositol 3-kinase inhibitor wortmannin. Isoproterenol pre-treatment reverses the alkalinizing effects of insulin and leads to attenuation of insulin-stimulated glucose transport activity and exposure of GLUT4 to photolabeling reagents at the cell surface. These effects of isoproterenol are mimicked by acid loading and are reversed by cell-alkalinizing conditions. However, neither isoproterenol nor acid loading alters the total level of GLUT4 at the plasma membrane as revealed by Western blotting of plasma membrane fractions or immunodetection of GLUT4 in plasma membrane lawns. GLUT4 is therefore occluded from participation in glucose transport catalysis by a pH-sensitive process. To examine the kinetics of trafficking that lead to these changes in cell surface GLUT4 occlusion, we have utilized a new biotinylated photolabel, GP15. This reagent has a 70-atom spacer between the biotin and the photolabeling diazirine group, and this allows quenching of the surface signal of biotinylated GLUT4 by extracellular avidin. The rates of GLUT4 internalization are only slightly altered by isoproterenol or acidification, mainly due to reduced recycling over long internalization times. By contrast, insulin stimulation of GLUT4 exocytosis is slowed by isoproterenol or acidification pre-treatments. Biphasic time courses are evident, with an initial burst of exposure at the cell surface followed by a slow phase. It is hypothesized that the burst kinetics are a consequence of a two-phase fusion reaction that is rapid in the presence of insulin but slowed by cytosol acidification.
Collapse
Affiliation(s)
- Jing Yang
- Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, United Kingdom
| | | | | |
Collapse
|
23
|
Watson RT, Pessin JE. Subcellular compartmentalization and trafficking of the insulin-responsive glucose transporter, GLUT4. Exp Cell Res 2001; 271:75-83. [PMID: 11697884 DOI: 10.1006/excr.2001.5375] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Insulin increases glucose transport into cells of target tissues, primarily striated muscle and adipose. This is accomplished via the insulin-dependent translocation of the facilitative glucose transporter 4 (GLUT4) from intracellular storage sites to the plasma membrane. Insulin binds to the cell-surface insulin receptor and activates its intrinsic tyrosine kinase activity. The subsequent activation of phosphatidylinositol 3-kinase (PI 3-K) is well known to be necessary for the recruitment of GLUT4 to the cell surface. Both protein kinase B (PKB) and the atypical protein kinase C(lambda/zeta) (PKClambda/zeta) appear to function downstream of PI 3-K, but how these effectors influence GLUT4 translocation remains unknown. In addition, emerging evidence suggests that a second signaling cascade that functions independently of the PI 3-K pathway is also required for the insulin-dependent translocation of GLUT4. This second pathway involves the Rho-family GTP binding protein TC10, which functions within the specialized environment of lipid raft microdomains at the plasma membrane. Future work is necessary to identify the downstream effectors that link TC10, PKB, and PKClambda/zeta to GLUT4 translocation. Progress in this area will come from a better understanding of the compartmentalization of GLUT4 within the cell and of the mechanisms responsible for targeting the transporter to specialized insulin-responsive storage compartments. Furthermore, an understanding of how GLUT4 is retained within and released from these compartments will facilitate the identification of downstream signaling molecules that function proximal to the GLUT4 storage sites.
Collapse
Affiliation(s)
- R T Watson
- Department of Physiology and Biophysics, University of Iowa, Iowa, Iowa City 52242, USA
| | | |
Collapse
|
24
|
Holman GD, Sandoval IV. Moving the insulin-regulated glucose transporter GLUT4 into and out of storage. Trends Cell Biol 2001; 11:173-9. [PMID: 11306298 DOI: 10.1016/s0962-8924(01)01953-5] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The glucose transporter isoform GLUT4 is unique among the glucose transporter family of proteins in that, in resting cells, it is sequestered very efficiently in a storage compartment. In insulin-sensitive cells, such as fat and muscle, insulin stimulation leads to release of GLUT4 from this reservoir and its translocation to the plasma membrane. This process is crucial for the control of blood and tissue glucose levels. Investigations of the composition and structure of the GLUT4 storage compartment, together with the targeting motifs that direct GLUT4 to this compartment, have been extensive but have been controversial. Recent findings have now provided a clearer consensus of opinion on the mechanisms involved in the formation of this storage compartment. However, another controversy has now emerged, which is unresolved. This concerns the issue of whether the insulin-regulated step occurs at the level of release of GLUT4 from the storage compartment or at the level at which released vesicles fuse with the plasma membrane.
Collapse
Affiliation(s)
- G D Holman
- Dept of Biology, University of Bath, Bath, BA2 7AY, UK.
| | | |
Collapse
|
25
|
Palacios S, Lalioti V, Martinez-Arca S, Chattopadhyay S, Sandoval IV. Recycling of the insulin-sensitive glucose transporter GLUT4. Access of surface internalized GLUT4 molecules to the perinuclear storage compartment is mediated by the Phe5-Gln6-Gln7-Ile8 motif. J Biol Chem 2001; 276:3371-83. [PMID: 11031262 DOI: 10.1074/jbc.m006739200] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The insulin-sensitive glucose transporter GLUT4 is translocated to the plasma membrane in response to insulin and recycled back to the intracellular store(s) after removal of the hormone. We have used clonal 3T3-L1 fibroblasts and adipocyte-like cells stably expressing wild-type GLUT4 to characterize (a) the intracellular compartment where the bulk of GLUT4 is intracellularly stored and (b) the mechanisms involved in the recycling of endocytosed GLUT4 to the store compartment. Surface internalized GLUT4 is targeted to a large, flat, fenestrated saccular structure resistant to brefeldin A that localized to the vicinity of the Golgi complex is sealed to endocytosed transferrin (GLUT4 storage compartment). Recycling of endocytosed GLUT4 was studied by comparing the cellular distributions of antibody/biotin tagged GLUT4 and GLUT4(Ser(5)), a mutant with the Phe(5)-Gln(6)-Gln(7)-Ile(8) inactivated by the substitution of Ser for Phe(5). Ablation of the Phe(5)-Gln(6)-Gln(7)-Ile(8) inhibits the recycling of endocytosed GLUT4 to the GLUT4 store compartment and results in its transport to late endosomes/lysosomes where it is rapidly degraded.
Collapse
Affiliation(s)
- S Palacios
- Centro de Biologia Molecular Severo Ochoa. CSIC. Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid 28049, Spain
| | | | | | | | | |
Collapse
|
26
|
Johnson AO, Lampson MA, McGraw TE. A di-leucine sequence and a cluster of acidic amino acids are required for dynamic retention in the endosomal recycling compartment of fibroblasts. Mol Biol Cell 2001; 12:367-81. [PMID: 11179421 PMCID: PMC30949 DOI: 10.1091/mbc.12.2.367] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Insulin-regulated aminopeptidase (IRAP), a transmembrane aminopeptidase, is dynamically retained within the endosomal compartment of fibroblasts. The characteristics of this dynamic retention are rapid internalization from the plasma membrane and slow recycling back to the cell surface. These specialized trafficking kinetics result in <15% of IRAP on the cell surface at steady state, compared with 35% of the transferrin receptor, another transmembrane protein that traffics between endosomes and the cell surface. Here we demonstrate that a 29-amino acid region of IRAP's cytoplasmic domain (residues 56--84) is necessary and sufficient to promote trafficking characteristic of IRAP. A di-leucine sequence and a cluster of acidic amino acids within this region are essential elements of the motif that slows IRAP recycling. Rapid internalization requires any two of three distinct motifs: M(15,16), DED(64--66), and LL(76,77). The DED and LL sequences are part of the motif that regulates recycling, demonstrating that this motif is bifunctional. In this study we used horseradish peroxidase quenching of fluorescence to demonstrate that IRAP is dynamically retained within the transferrin receptor-containing general endosomal recycling compartment. Therefore, our data demonstrate that motifs similar to those that determine targeting among distinct membrane compartments can also regulate the rate of transport of proteins from endosomal compartments. We propose a model for dynamic retention in which IRAP is transported from the general endosomal recycling compartment in specialized, slowly budding recycling vesicles that are distinct from those that mediate rapid recycling back to the surface (e.g., transferrin receptor-containing transport vesicles). It is likely that the dynamic retention of IRAP is an example of a general mechanism for regulating the distribution of proteins between the surface and interior of cells.
Collapse
Affiliation(s)
- A O Johnson
- Department of Biochemistry, Weill Graduate School of Medical Sciences of Cornell University, New York, New York 10021, USA
| | | | | |
Collapse
|
27
|
Sandoval IV, Martinez-Arca S, Valdueza J, Palacios S, Holman GD. Distinct reading of different structural determinants modulates the dileucine-mediated transport steps of the lysosomal membrane protein LIMPII and the insulin-sensitive glucose transporter GLUT4. J Biol Chem 2000; 275:39874-85. [PMID: 10973972 DOI: 10.1074/jbc.m006261200] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Leucine-based motifs mediate the sorting of membrane proteins at such cellular sites as the trans-Golgi network, endosomes, and plasma membrane. A Leu paired with a second Leu, Ile, or Met, while itself lacking the ability to mediate transport, is the key structural feature in these motifs. Here we have studied the structural differences between the leucine-based motifs contained in the COOH tails of LIMPII and GLUT4, two membrane proteins that are transported through the secretory pathway and are targeted to lysosomes () and to a perinuclear compartment adjacent to the Golgi complex (), respectively. LIMPII and GLUT4 display negatively (Asp(470)/Glu(471)) and positively (Arg(484)/Arg(485)) charged residues, respectively, at positions -4 and -5 upstream from the critical Leu residue. The change in the charge sign of residues -4 and -5 results in missorting of LIMPII and GLUT4. We note that the acidic Glu residue at position -4 is critical for efficient intracellular sorting of LIMPII to lysosomes, but is dispensable for its surface internalization by endocytosis. Efficient intracellular sorting and endocytosis of GLUT4 require an Arg pair between positions -4 and -7. These results are consistent with the existence of distinct leucine-based motifs and provide evidence of their different readings at different cellular sites.
Collapse
Affiliation(s)
- I V Sandoval
- Centro de Biologia Molecular "Severo Ochoa," Consejo Superior de Investigaciones Cientificas, Facultad de Ciencias, Universidad Autónoma de Madrid, Cantoblanco, Madrid 28049, Spain.
| | | | | | | | | |
Collapse
|
28
|
Chi NW, Lodish HF. Tankyrase is a golgi-associated mitogen-activated protein kinase substrate that interacts with IRAP in GLUT4 vesicles. J Biol Chem 2000; 275:38437-44. [PMID: 10988299 DOI: 10.1074/jbc.m007635200] [Citation(s) in RCA: 216] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The poly(ADP-ribose) polymerase tankyrase was originally described as a telomeric protein whose catalytic activity was proposed to regulate telomere function. Subsequent studies revealed that most tankyrase is actually extranuclear, but a discordant pattern of cytoplasmic targeting was reported. Here we used fractionation and immunofluorescence to show in 3T3-L1 fibroblasts that tankyrase is a peripheral membrane protein associated with the Golgi. We further colocalized tankyrase with GLUT4 storage vesicles in the juxtanuclear region of adipocytes. Consistent with this colocalization, we found that tankyrase binds specifically to a resident protein of GLUT4 vesicles, IRAP (insulin-responsive amino peptidase). The binding of tankyrase to IRAP involves the ankyrin repeats of tankyrase and a defined sequence ((96)RQSPDG(101)) in the IRAP cytosolic domain (IRAP(1-109)). Tankyrase is a novel signaling target of mitogen-activated protein kinase (MAPK); it is stoichiometrically phosphorylated upon insulin stimulation. Phosphorylation enhances the poly(ADP-ribose) polymerase activity of tankyrase but apparently does not mediate the acute effect of insulin on GLUT4 targeting. Taken together, tankyrase is a novel target of MAPK signaling in the Golgi, where it is tethered to GLUT4 vesicles by binding to IRAP. We speculate that tankyrase may be involved in the long term effect of the MAPK cascade on the metabolism of GLUT4 vesicles.
Collapse
Affiliation(s)
- N W Chi
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts 02142, USA
| | | |
Collapse
|
29
|
Abstract
In mammals and birds, several isoforms of facilitative glucose transporters have been identified (GLUT1-4), but no information is available regarding the molecules involved in glucose transport in other vertebrates. Here we report the cloning of a GLUT molecule from fish muscle with high sequence homology to GLUT4 and containing features characteristic of a functional GLUT. Fish GLUT is expressed predominantly in skeletal muscle, kidney and gill, which are tissues with known high glucose utilization. These results indicate that fish GLUT is structurally, and perhaps functionally, similar to the other known GLUTs expressed in muscle in mammalian and avian species.
Collapse
Affiliation(s)
- J V Planas
- Departament de Fisiologia, Facultat de Biologia, Universitat de Barcelona, Av. Diagonal 645, 08028, Barcelona, Spain.
| | | | | |
Collapse
|