1
|
Pelaz SG, Flores-Hernández R, Vujic T, Schvartz D, Álvarez-Vázquez A, Ding Y, García-Vicente L, Belloso A, Talaverón R, Sánchez JC, Tabernero A. A proteomic approach supports the clinical relevance of TAT-Cx43 266-283 in glioblastoma. Transl Res 2024; 272:95-110. [PMID: 38876188 DOI: 10.1016/j.trsl.2024.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/18/2024] [Accepted: 06/01/2024] [Indexed: 06/16/2024]
Abstract
Glioblastoma (GBM) is the most frequent and aggressive primary brain cancer. The Src inhibitor, TAT-Cx43266-283, exerts antitumor effects in in vitro and in vivo models of GBM. Because addressing the mechanism of action is essential to translate these results to a clinical setting, in this study we carried out an unbiased proteomic approach. Data-independent acquisition mass spectrometry proteomics allowed the identification of 190 proteins whose abundance was modified by TAT-Cx43266-283. Our results were consistent with the inhibition of Src as the mechanism of action of TAT-Cx43266-283 and unveiled antitumor effectors, such as p120 catenin. Changes in the abundance of several proteins suggested that TAT-Cx43266-283 may also impact the brain microenvironment. Importantly, the proteins whose abundance was reduced by TAT-Cx43266-283 correlated with an improved GBM patient survival in clinical datasets and none of the proteins whose abundance was increased by TAT-Cx43266-283 correlated with shorter survival, supporting its use in clinical trials.
Collapse
Affiliation(s)
- Sara G Pelaz
- Instituto de Neurociencias de Castilla y León (INCYL), Departamento de Bioquímica y Biología Molecular, Universidad de Salamanca, Instituto de Investigación Biomédica de Salamanca (IBSAL), Calle Pintor Fernando Gallego 1, Salamanca, 37007, Spain.
| | - Raquel Flores-Hernández
- Instituto de Neurociencias de Castilla y León (INCYL), Departamento de Bioquímica y Biología Molecular, Universidad de Salamanca, Instituto de Investigación Biomédica de Salamanca (IBSAL), Calle Pintor Fernando Gallego 1, Salamanca, 37007, Spain
| | - Tatjana Vujic
- Department of Medicine, University of Geneva, 1211, Geneva, Switzerland; University Center of Legal Medicine, Lausanne-Geneva, Lausanne University Hospital and University of Lausanne, Geneva University Hospital and University of Geneva, Lausanne Geneva, Switzerland
| | - Domitille Schvartz
- Department of Medicine, University of Geneva, 1211, Geneva, Switzerland; University of Geneva, Faculty of Medicine, Proteomics Core Facility, Geneva, Switzerland
| | - Andrea Álvarez-Vázquez
- Instituto de Neurociencias de Castilla y León (INCYL), Departamento de Bioquímica y Biología Molecular, Universidad de Salamanca, Instituto de Investigación Biomédica de Salamanca (IBSAL), Calle Pintor Fernando Gallego 1, Salamanca, 37007, Spain
| | - Yuxin Ding
- Instituto de Neurociencias de Castilla y León (INCYL), Departamento de Bioquímica y Biología Molecular, Universidad de Salamanca, Instituto de Investigación Biomédica de Salamanca (IBSAL), Calle Pintor Fernando Gallego 1, Salamanca, 37007, Spain
| | - Laura García-Vicente
- Instituto de Neurociencias de Castilla y León (INCYL), Departamento de Bioquímica y Biología Molecular, Universidad de Salamanca, Instituto de Investigación Biomédica de Salamanca (IBSAL), Calle Pintor Fernando Gallego 1, Salamanca, 37007, Spain
| | - Aitana Belloso
- Instituto de Neurociencias de Castilla y León (INCYL), Departamento de Bioquímica y Biología Molecular, Universidad de Salamanca, Instituto de Investigación Biomédica de Salamanca (IBSAL), Calle Pintor Fernando Gallego 1, Salamanca, 37007, Spain
| | - Rocío Talaverón
- Instituto de Neurociencias de Castilla y León (INCYL), Departamento de Bioquímica y Biología Molecular, Universidad de Salamanca, Instituto de Investigación Biomédica de Salamanca (IBSAL), Calle Pintor Fernando Gallego 1, Salamanca, 37007, Spain
| | | | - Arantxa Tabernero
- Instituto de Neurociencias de Castilla y León (INCYL), Departamento de Bioquímica y Biología Molecular, Universidad de Salamanca, Instituto de Investigación Biomédica de Salamanca (IBSAL), Calle Pintor Fernando Gallego 1, Salamanca, 37007, Spain.
| |
Collapse
|
2
|
Jin J, Guo Q, Yan Z. The Role of Lutheran/Basal Cell Adhesion Molecule in Hematological Diseases and Tumors. Int J Mol Sci 2024; 25:7268. [PMID: 39000374 PMCID: PMC11242806 DOI: 10.3390/ijms25137268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/21/2024] [Accepted: 06/27/2024] [Indexed: 07/16/2024] Open
Abstract
Cell adhesion is a dynamic process that plays a fundamental role in cell proliferation, maintenance, differentiation, and migration. Basal cell adhesion molecule (BCAM), also known as Lutheran (Lu), belongs to the immunoglobulin superfamily of cell adhesion molecules. Lu/BCAM, which is widely expressed in red blood cells, endothelial cells, smooth muscle cells and epithelial cells across various tissues, playing a crucial role in many cellular processes, including cell adhesion, cell motility and cell migration. Moreover, Lu/BCAM, dysregulated in many diseases, such as blood diseases and various types of cancer, may act as a biomarker and target for the treatment of these diseases. This review explores the significance of Lu/BCAM in cell adhesion and its potential as a novel target for treating hematological diseases and tumors.
Collapse
Affiliation(s)
| | | | - Zhibin Yan
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; (J.J.); (Q.G.)
| |
Collapse
|
3
|
Sapkota A, Halder SK, Milner R. Cerebral arterioles express the laminin subunits α4 and α5 in conjunction with α6β4 integrin, but strongly downregulate laminin α4 during hypoxia-induced arteriogenic remodeling. Microvasc Res 2024; 152:104625. [PMID: 37979909 PMCID: PMC10872476 DOI: 10.1016/j.mvr.2023.104625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 10/20/2023] [Accepted: 11/01/2023] [Indexed: 11/20/2023]
Abstract
Previous studies have shown that expression of the endothelial laminin receptor α6β4 integrin in the brain is uniquely restricted to arterioles. As exposure to chronic mild hypoxia (CMH, 8 % O2) stimulates robust angiogenic and arteriogenic remodeling responses in the brain, the goal of this study was to determine how CMH influences cerebrovascular expression of the β4 integrin as well as its potential ligands, laminin 411 and 511, containing the α4 and α5 laminin subunits respectively, and then define how aging impacts this expression. We observed the following: (i) CMH launched a robust arteriogenic remodeling response both in the young (10 weeks) and aged (20 months) brain, correlating with an increased number of β4 integrin+ vessels, (ii) while the laminin α4 subunit is expressed evenly across all cerebral blood vessels, laminin α5 was highly expressed preferentially on β4 integrin+ arterioles, (iii) CMH-induced arteriolar remodeling was associated with strong downregulation of the laminin α4 subunit but no change in the laminin α5 subunit, (iv) in addition to its expression on arterioles, β4 integrin was also expressed at lower levels on capillaries specifically in white matter (WM) tracts but not in the grey matter (GM), and (v), these observations were consistent in both the brain and spinal cord, and age had no obvious impact. Taken together, our findings suggest that laminin 511 may be a specific ligand for α6β4 integrin and that dynamic switching of the laminin subunits α4 and α5 might play an instructive role in arteriogenic remodeling. Furthermore, β4 integrin expression differentiates WM from GM capillaries, highlighting a novel and important difference.
Collapse
Affiliation(s)
- Arjun Sapkota
- San Diego Biomedical Research Institute, 3525 John Hopkins Court, Suite 200, San Diego, CA 92121, USA
| | - Sebok K Halder
- San Diego Biomedical Research Institute, 3525 John Hopkins Court, Suite 200, San Diego, CA 92121, USA
| | - Richard Milner
- San Diego Biomedical Research Institute, 3525 John Hopkins Court, Suite 200, San Diego, CA 92121, USA.
| |
Collapse
|
4
|
Halder SK, Sapkota A, Milner R. The importance of laminin at the blood-brain barrier. Neural Regen Res 2023; 18:2557-2563. [PMID: 37449589 DOI: 10.4103/1673-5374.373677] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023] Open
Abstract
The blood-brain barrier is a unique property of central nervous system blood vessels that protects sensitive central nervous system cells from potentially harmful blood components. The mechanistic basis of this barrier is found at multiple levels, including the adherens and tight junction proteins that tightly bind adjacent endothelial cells and the influence of neighboring pericytes, microglia, and astrocyte endfeet. In addition, extracellular matrix components of the vascular basement membrane play a critical role in establishing and maintaining blood-brain barrier integrity, not only by providing an adhesive substrate for blood-brain barrier cells to adhere to, but also by providing guidance cues that strongly influence vascular cell behavior. The extracellular matrix protein laminin is one of the most abundant components of the basement membrane, and several lines of evidence suggest that it plays a key role in directing blood-brain barrier behavior. In this review, we describe the basic structure of laminin and its receptors, the expression patterns of these molecules in central nervous system blood vessels and how they are altered in disease states, and most importantly, how genetic deletion of different laminin isoforms or their receptors reveals the contribution of these molecules to blood-brain barrier function and integrity. Finally, we discuss some of the important unanswered questions in the field and provide a "to-do" list of some of the critical outstanding experiments.
Collapse
Affiliation(s)
- Sebok K Halder
- San Diego Biomedical Research Institute, San Diego, CA, USA
| | - Arjun Sapkota
- San Diego Biomedical Research Institute, San Diego, CA, USA
| | - Richard Milner
- San Diego Biomedical Research Institute, San Diego, CA, USA
| |
Collapse
|
5
|
Di Russo J, Magin TM, Leube RE. A keratin code defines the textile nature of epithelial tissue architecture. Curr Opin Cell Biol 2023; 85:102236. [PMID: 37708744 DOI: 10.1016/j.ceb.2023.102236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/18/2023] [Accepted: 08/18/2023] [Indexed: 09/16/2023]
Abstract
We suggest that the human body can be viewed as of textile nature whose fabric consists of interconnected fiber systems. These fiber systems form highly dynamic scaffolds, which respond to environmental changes at different temporal and spatial scales. This is especially relevant at sites where epithelia border on connective tissue regions that are exposed to dynamic microenvironments. We propose that the enormous heterogeneity and adaptability of epithelia are based on a "keratin code", which results from the cell-specific expression and posttranslational modification of keratin isotypes. It thereby defines unique cytoskeletal intermediate filament networks that are coupled across cells and to the correspondingly heterogeneous fibers of the underlying extracellular matrix. The resulting fabric confers unique local properties.
Collapse
Affiliation(s)
- Jacopo Di Russo
- Institute of Molecular and Cellular Anatomy, RWTH Aachen University, Wendlingweg 2, 52074 Aachen, Germany; Interdisciplinary Centre for Clinical Research, RWTH Aachen University, Pauwelstrasse 30, 52074 Aachen, Germany; DWI - Leibniz-Institute for Interactive Materials, Forckenbeckstrasse 50, 52074 Aachen, Germany
| | - Thomas M Magin
- Institute of Biology, Division of Cell and Developmental Biology, Leipzig University, Philipp-Rosenthal-Str. 55, 04103 Leipzig, Germany
| | - Rudolf E Leube
- Institute of Molecular and Cellular Anatomy, RWTH Aachen University, Wendlingweg 2, 52074 Aachen, Germany.
| |
Collapse
|
6
|
Rinta-Jaskari MM, Naillat F, Ruotsalainen HJ, Koivunen JT, Sasaki T, Pietilä I, Elamaa HP, Kaur I, Manninen A, Vainio SJ, Pihlajaniemi TA. Temporally and spatially regulated collagen XVIII isoforms are involved in ureteric tree development via the TSP1-like domain. Matrix Biol 2023; 115:139-159. [PMID: 36623578 DOI: 10.1016/j.matbio.2023.01.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 12/18/2022] [Accepted: 01/05/2023] [Indexed: 01/09/2023]
Abstract
Collagen XVIII (ColXVIII) is a component of the extracellular matrix implicated in embryogenesis and control of tissue homoeostasis. We now provide evidence that ColXVIII has a specific role in renal branching morphogenesis as observed in analyses of total and isoform-specific knockout embryos and mice. The expression of the short and the two longer isoforms differ temporally and spatially during renal development. The lack of ColXVIII or its specific isoforms lead to congenital defects in the 3D patterning of the ureteric tree where the short isoform plays a prominent role. Moreover, the ex vivo data suggests that ColXVIII is involved in the kidney epithelial tree patterning via its N-terminal domains, and especially the Thrombospondin-1-like domain common to all isoforms. This morphogenetic function likely involves integrins expressed in the ureteric epithelium. Altogether, the results point to an important role for ColXVIII in the matrix-integrin-mediated functions regulating renal development.
Collapse
Affiliation(s)
- Mia M Rinta-Jaskari
- Oulu Center of Cell-Matrix Research, Biocenter Oulu, Faculty of Biochemistry and Molecular Medicine, University of Oulu, Finland
| | - Florence Naillat
- Oulu Center of Cell-Matrix Research, Biocenter Oulu, Faculty of Biochemistry and Molecular Medicine, University of Oulu, Finland
| | - Heli J Ruotsalainen
- Oulu Center of Cell-Matrix Research, Biocenter Oulu, Faculty of Biochemistry and Molecular Medicine, University of Oulu, Finland
| | - Jarkko T Koivunen
- Oulu Center of Cell-Matrix Research, Biocenter Oulu, Faculty of Biochemistry and Molecular Medicine, University of Oulu, Finland
| | - Takako Sasaki
- Department of Biochemistry II, Faculty of Medicine, Oita University, Japan
| | - Ilkka Pietilä
- Oulu Center of Cell-Matrix Research, Biocenter Oulu, Faculty of Biochemistry and Molecular Medicine, University of Oulu, Finland; Currently: Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Sweden
| | - Harri P Elamaa
- Oulu Center of Cell-Matrix Research, Biocenter Oulu, Faculty of Biochemistry and Molecular Medicine, University of Oulu, Finland
| | - Inderjeet Kaur
- Oulu Center of Cell-Matrix Research, Biocenter Oulu, Faculty of Biochemistry and Molecular Medicine, University of Oulu, Finland
| | - Aki Manninen
- Oulu Center of Cell-Matrix Research, Biocenter Oulu, Faculty of Biochemistry and Molecular Medicine, University of Oulu, Finland
| | - Seppo J Vainio
- Infotech Oulu, Kvantum Institute; Disease Networks Research Unit, Faculty of Biochemistry and Molecular Medicine, University of Oulu, Finland
| | - Taina A Pihlajaniemi
- Oulu Center of Cell-Matrix Research, Biocenter Oulu, Faculty of Biochemistry and Molecular Medicine, University of Oulu, Finland.
| |
Collapse
|
7
|
Rousselle P, Laigle C, Rousselet G. The basement membrane in epidermal polarity, stemness, and regeneration. Am J Physiol Cell Physiol 2022; 323:C1807-C1822. [PMID: 36374168 DOI: 10.1152/ajpcell.00069.2022] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The epidermis is a specialized epithelium that constitutes the outermost layer of the skin, and it provides a protective barrier against environmental assaults. Primarily consisting of multilayered keratinocytes, the epidermis is continuously renewed by proliferation of stem cells and the differentiation of their progeny, which undergo terminal differentiation as they leave the basal layer and move upward toward the surface, where they die and slough off. Basal keratinocytes rest on a basement membrane at the dermal-epidermal junction that is composed of specific extracellular matrix proteins organized into interactive and mechanically supportive networks. Firm attachment of basal keratinocytes, and their dynamic regulation via focal adhesions and hemidesmosomes, is essential for maintaining major skin processes, such as self-renewal, barrier function, and resistance to physical and chemical stresses. The adhesive integrin receptors expressed by epidermal cells serve structural, signaling, and mechanosensory roles that are critical for epidermal cell anchorage and tissue homeostasis. More specifically, the basement membrane components play key roles in preserving the stem cell pool, and establishing cell polarity cues enabling asymmetric cell divisions, which result in the transition from a proliferative basal cell layer to suprabasal cells committed to terminal differentiation. Finally, through a well-regulated sequence of synthesis and remodeling, the components of the dermal-epidermal junction play an essential role in regeneration of the epidermis during skin healing. Here too, they provide biological and mechanical signals that are essential to the restoration of barrier function.
Collapse
Affiliation(s)
- Patricia Rousselle
- Laboratoire de Biologie Tissulaire et Ingénierie Thérapeutique, UMR 5305, CNRS, Université Lyon 1, Lyon, France
| | - Chloé Laigle
- Laboratoire de Biologie Tissulaire et Ingénierie Thérapeutique, UMR 5305, CNRS, Université Lyon 1, Lyon, France
| | - Gaelle Rousselet
- Laboratoire de Biologie Tissulaire et Ingénierie Thérapeutique, UMR 5305, CNRS, Université Lyon 1, Lyon, France
| |
Collapse
|
8
|
Nirwane A, Yao Y. Cell-specific expression and function of laminin at the neurovascular unit. J Cereb Blood Flow Metab 2022; 42:1979-1999. [PMID: 35796497 PMCID: PMC9580165 DOI: 10.1177/0271678x221113027] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/08/2022] [Accepted: 06/19/2022] [Indexed: 11/17/2022]
Abstract
Laminin, a major component of the basal lamina (BL), is a heterotrimeric protein with many isoforms. In the CNS, laminin is expressed by almost all cell types, yet different cells synthesize distinct laminin isoforms. By binding to its receptors, laminin exerts a wide variety of important functions. However, due to the reciprocal and cell-specific expression of laminin in different cells at the neurovascular unit, its functions in blood-brain barrier (BBB) maintenance and BBB repair after injury are not fully understood. In this review, we focus on the expression and functions of laminin and its receptors in the neurovascular unit under both physiological and pathological conditions. We first briefly introduce the structures of laminin and its receptors. Next, the expression and functions of laminin and its receptors in the CNS are summarized in a cell-specific manner. Finally, we identify the knowledge gap in the field and discuss key questions that need to be answered in the future. Our goal is to provide a comprehensive overview on cell-specific expression of laminin and its receptors in the CNS and their functions on BBB integrity.
Collapse
Affiliation(s)
- Abhijit Nirwane
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Yao Yao
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| |
Collapse
|
9
|
Halder SK, Sapkota A, Milner R. The impact of genetic manipulation of laminin and integrins at the blood-brain barrier. Fluids Barriers CNS 2022; 19:50. [PMID: 35690759 PMCID: PMC9188059 DOI: 10.1186/s12987-022-00346-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 05/18/2022] [Indexed: 12/26/2022] Open
Abstract
Blood vessels in the central nervous system (CNS) are unique in having high electrical resistance and low permeability, which creates a selective barrier protecting sensitive neural cells within the CNS from potentially harmful components in the blood. The molecular basis of this blood–brain barrier (BBB) is found at the level of endothelial adherens and tight junction protein complexes, extracellular matrix (ECM) components of the vascular basement membrane (BM), and the influence of adjacent pericytes and astrocyte endfeet. Current evidence supports the concept that instructive cues from the BBB ECM are not only important for the development and maturation of CNS blood vessels, but they are also essential for the maintenance of vascular stability and BBB integrity. In this review, we examine the contributions of one of the most abundant ECM proteins, laminin to BBB integrity, and summarize how genetic deletions of different laminin isoforms or their integrin receptors impact BBB development, maturation, and stability.
Collapse
Affiliation(s)
- Sebok K Halder
- San Diego Biomedical Research Institute, 3525 John Hopkins Court, Suite 200, San Diego, CA, 92121, USA
| | - Arjun Sapkota
- San Diego Biomedical Research Institute, 3525 John Hopkins Court, Suite 200, San Diego, CA, 92121, USA
| | - Richard Milner
- San Diego Biomedical Research Institute, 3525 John Hopkins Court, Suite 200, San Diego, CA, 92121, USA.
| |
Collapse
|
10
|
Kang M, Yao Y. Laminin regulates oligodendrocyte development and myelination. Glia 2021; 70:414-429. [PMID: 34773273 DOI: 10.1002/glia.24117] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 10/26/2021] [Accepted: 10/29/2021] [Indexed: 11/08/2022]
Abstract
Oligodendrocytes are the cells that myelinate axons and provide trophic support to neurons in the CNS. Their dysfunction has been associated with a group of disorders known as demyelinating diseases, such as multiple sclerosis. Oligodendrocytes are derived from oligodendrocyte precursor cells, which differentiate into premyelinating oligodendrocytes and eventually mature oligodendrocytes. The development and function of oligodendrocytes are tightly regulated by a variety of molecules, including laminin, a major protein of the extracellular matrix. Accumulating evidence suggests that laminin actively regulates every aspect of oligodendrocyte biology, including survival, migration, proliferation, differentiation, and myelination. How can laminin exert such diverse functions in oligodendrocytes? It is speculated that the distinct laminin isoforms, laminin receptors, and/or key signaling molecules expressed in oligodendrocytes at different developmental stages are the reasons. Understanding molecular targets and signaling pathways unique to each aspect of oligodendrocyte biology will enable more accurate manipulation of oligodendrocyte development and function, which may have implications in the therapies of demyelinating diseases. Here in this review, we first introduce oligodendrocyte biology, followed by the expression of laminin and laminin receptors in oligodendrocytes and other CNS cells. Next, the functions of laminin in oligodendrocyte biology, including survival, migration, proliferation, differentiation, and myelination, are discussed in detail. Last, key questions and challenges in the field are discussed. By providing a comprehensive review on laminin's roles in OL lineage cells, we hope to stimulate novel hypotheses and encourage new research in the field.
Collapse
Affiliation(s)
- Minkyung Kang
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - Yao Yao
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| |
Collapse
|
11
|
Mapping the molecular and structural specialization of the skin basement membrane for inter-tissue interactions. Nat Commun 2021; 12:2577. [PMID: 33972551 PMCID: PMC8110968 DOI: 10.1038/s41467-021-22881-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 04/01/2021] [Indexed: 12/11/2022] Open
Abstract
Inter-tissue interaction is fundamental to multicellularity. Although the basement membrane (BM) is located at tissue interfaces, its mode of action in inter-tissue interactions remains poorly understood, mainly because the molecular and structural details of the BM at distinct inter-tissue interfaces remain unclear. By combining quantitative transcriptomics and immunohistochemistry, we systematically identify the cellular origin, molecular identity and tissue distribution of extracellular matrix molecules in mouse hair follicles, and reveal that BM composition and architecture are exquisitely specialized for distinct inter-tissue interactions, including epithelial–fibroblast, epithelial–muscle and epithelial–nerve interactions. The epithelial–fibroblast interface, namely, hair germ–dermal papilla interface, makes asymmetrically organized side-specific heterogeneity in the BM, defined by the newly characterized interface, hook and mesh BMs. One component of these BMs, laminin α5, is required for hair cycle regulation and hair germ–dermal papilla anchoring. Our study highlights the significance of BM heterogeneity in distinct inter-tissue interactions. The basement membrane is located at tissue interfaces, but how it mediates distinct inter-tissue interactions is unclear. Here, the authors systematically define the spatial heterogeneity of skin basement membrane composition and show its functional importance in inter-tissue interactions.
Collapse
|
12
|
Bu T, Wang L, Wu X, Li L, Mao B, Wong CKC, Perrotta A, Silvestrini B, Sun F, Cheng CY. A laminin-based local regulatory network in the testis that supports spermatogenesis. Semin Cell Dev Biol 2021; 121:40-52. [PMID: 33879391 DOI: 10.1016/j.semcdb.2021.03.025] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 03/24/2021] [Accepted: 03/29/2021] [Indexed: 12/13/2022]
Abstract
In adult rat testes, the basement membrane is structurally constituted by laminin and collagen chains that lay adjacent to the blood-testis barrier (BTB). It plays a crucial scaffolding role to support spermatogenesis. On the other hand, laminin-333 comprised of laminin-α3/ß3/γ3 at the apical ES (ectoplasmic specialization, a testis-specific cell-cell adherens junction at the Sertoli cell-step 8-19 spermatid interface) expressed by spermatids serves as a unique cell adhesion protein that forms an adhesion complex with α6ß1-integrin expressed by Sertoli cells to support spermiogenesis. Emerging evidence has shown that biologically active fragments are derived from basement membrane and apical ES laminin chains through proteolytic cleavage mediated by matrix metalloproteinase 9 (MMP9) and MMP2, respectively. Two of these laminin bioactive fragments: one from the basement membrane laminin-α2 chain called LG3/4/5-peptide, and one from the apical ES laminin-γ3 chain known as F5-peptide, are potent regulators that modify cell adhesion function at the Sertoli-spermatid interface (i.e., apical ES) but also at the Sertoli cell-cell interface designated basal ES at the blood-testis barrier (BTB) with contrasting effects. These findings not only highlight the physiological significance of these bioactive peptides that create a local regulatory network to support spermatogenesis, they also open a unique area of research. For instance, it is likely that several other bioactive peptides remain to be identified. These bioactive peptides including their downstream signaling proteins and cascades should be studied collectively in future investigations to elucidate the underlying mechanism(s) by which they coordinate with each other to maintain spermatogenesis. This is the goal of this review.
Collapse
Affiliation(s)
- Tiao Bu
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Institute of Reproductive Medicine, Nantong University School of Medicine, Nantong, Jiangsu 226001, China
| | - Lingling Wang
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Institute of Reproductive Medicine, Nantong University School of Medicine, Nantong, Jiangsu 226001, China
| | - Xiaolong Wu
- Institute of Reproductive Medicine, Nantong University School of Medicine, Nantong, Jiangsu 226001, China
| | - Linxi Li
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Baiping Mao
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Chris K C Wong
- Department of Biology, Croucher Institute for Environmental Sciences, Hong Kong Baptist University, Kowloon, Hong Kong, China
| | - Adolfo Perrotta
- Department of Translational & Precision Medicine, La Sapienza University of Rome, 00185 Rome, Italy
| | | | - Fei Sun
- Institute of Reproductive Medicine, Nantong University School of Medicine, Nantong, Jiangsu 226001, China
| | - C Yan Cheng
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Institute of Reproductive Medicine, Nantong University School of Medicine, Nantong, Jiangsu 226001, China.
| |
Collapse
|
13
|
Staquicini DI, Barbu EM, Zemans RL, Dray BK, Staquicini FI, Dogra P, Cardó-Vila M, Miranti CK, Baze WB, Villa LL, Kalil J, Sharma G, Prossnitz ER, Wang Z, Cristini V, Sidman RL, Berman AR, Panettieri RA, Tuder RM, Pasqualini R, Arap W. Targeted Phage Display-based Pulmonary Vaccination in Mice and Non-human Primates. MED 2021; 2:321-342. [PMID: 33870243 PMCID: PMC8049167 DOI: 10.1016/j.medj.2020.10.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND The extensive alveolar capillary network of the lungs is an attractive route for administration of several agents. One key functional attribute is the rapid onset of systemic action due to the absence of first-pass metabolism. METHODS Here we applied a combinatorial approach for ligand-directed pulmonary delivery as a unique route for systemic targeting in vaccination. FINDINGS We screened a phage display random peptide library in vivo to select, identify, and validate a ligand (CAKSMGDIVC) that specifically targets and is internalized through its receptor, α3β1 integrin, on the surface of cells lining the lung airways and alveoli and mediates CAKSMGDIVC-displaying phage binding and systemic delivery without compromising lung homeostasis. As a proof-of-concept, we show that the pulmonary delivery of targeted CAKSMGDIVC-displaying phage particles in mice and non-human primates elicit a systemic and specific humoral response. CONCLUSIONS This broad methodology blueprint represents a robust and versatile platform tool enabling new ligand-receptor discovery with many potential translational applications. FUNDING Cancer Center Support Grants to the University of Texas M.D. Anderson Cancer Center (CA016672), University of New Mexico Comprehensive Cancer Center (CA118100), Rutgers Cancer Institute of New Jersey (CA072720), research awards from the Gillson Longenbaugh Foundation, and National Institutes of Health (NIH) grant no. 1R01CA226537.
Collapse
Affiliation(s)
- Daniela I. Staquicini
- Rutgers Cancer Institute of New Jersey, Newark, NJ 07103, USA
- Division of Cancer Biology, Department of Radiation Oncology, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
- These authors equally contributed to this work
| | - E. Magda Barbu
- David H. Koch Center, Department of Genitourinary Medical Oncology, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
- These authors equally contributed to this work
| | - Rachel L. Zemans
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, MI 48109, USA
| | - Beth K. Dray
- Michale E. Keeling Center for Comparative Medicine and Research, Department of Comparative Medicine, The University of Texas M. D. Anderson Cancer Center, Bastrop, TX 78602, USA
- Current address: Charles River Laboratories, Ashland, OH, USA
| | - Fernanda I. Staquicini
- Rutgers Cancer Institute of New Jersey, Newark, NJ 07103, USA
- Current address: MBrace Therapeutics, Summit, NJ, USA
| | - Prashant Dogra
- Mathematics in Medicine Program, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Marina Cardó-Vila
- The University of Arizona Cancer Center, University of Arizona, Tucson, AZ 85724, USA
- Department of Otolaryngology - Head & Neck Surgery, University of Arizona College of Medicine, Tucson, AZ 85724, USA
- Department of Cellular and Molecular Medicine, University of Arizona College of Medicine, Tucson, AZ 85724, USA
| | - Cindy K. Miranti
- The University of Arizona Cancer Center, University of Arizona, Tucson, AZ 85724, USA
- Department of Cellular and Molecular Medicine, University of Arizona College of Medicine, Tucson, AZ 85724, USA
| | - Wallace B. Baze
- Michale E. Keeling Center for Comparative Medicine and Research, Department of Comparative Medicine, The University of Texas M. D. Anderson Cancer Center, Bastrop, TX 78602, USA
| | - Luisa L. Villa
- Cancer Institute of São Paulo, University of São Paulo Medical School, São Paulo, SP 01246, Brazil
- Department of Radiology and Medical Oncology, University of São Paulo Medical School, São Paulo, SP 01246, Brazil
| | - Jorge Kalil
- Laboratory of Immunology, Heart Institute, University of São Paulo Medical School, São Paulo, SP 05403, Brazil
- Division of Clinical Immunology and Allergy, Department of Medicine, University of São Paulo Medical School, São Paulo, SP 05403, Brazil
| | - Geetanjali Sharma
- University of New Mexico Comprehensive Cancer Center, Albuquerque, NM 87131, USA
- Division of Molecular Medicine, Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA
| | - Eric R. Prossnitz
- University of New Mexico Comprehensive Cancer Center, Albuquerque, NM 87131, USA
- Division of Molecular Medicine, Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA
| | - Zhihui Wang
- Mathematics in Medicine Program, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Vittorio Cristini
- Mathematics in Medicine Program, Houston Methodist Research Institute, Houston, TX 77030, USA
- Department of Imaging Physics, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77230, USA
- Department of Nanomedicine, Methodist Hospital Research Institute, Houston, TX 77030, USA
| | - Richard L. Sidman
- Department of Neurology, Harvard Medical School, Boston, MA 02115, USA
| | - Andrew R. Berman
- Division of Pulmonary, Critical Care Medicine, Allergy & Rheumatology, Department of Medicine, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| | - Reynold A. Panettieri
- Rutgers Institute for Translational Medicine and Science, New Brunswick, NJ 08901, USA
| | - Rubin M. Tuder
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Renata Pasqualini
- Rutgers Cancer Institute of New Jersey, Newark, NJ 07103, USA
- Division of Cancer Biology, Department of Radiation Oncology, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
- These authors jointly supervised this work
- Lead contact
| | - Wadih Arap
- Rutgers Cancer Institute of New Jersey, Newark, NJ 07103, USA
- Division of Hematology/Oncology, Department of Medicine, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
- These authors jointly supervised this work
| |
Collapse
|
14
|
The role of basement membrane laminins in vascular function. Int J Biochem Cell Biol 2020; 127:105823. [DOI: 10.1016/j.biocel.2020.105823] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 08/04/2020] [Accepted: 08/07/2020] [Indexed: 11/18/2022]
|
15
|
Iriyama S, Yasuda M, Nishikawa S, Takai E, Hosoi J, Amano S. Decrease of laminin-511 in the basement membrane due to photoaging reduces epidermal stem/progenitor cells. Sci Rep 2020; 10:12592. [PMID: 32724130 PMCID: PMC7387558 DOI: 10.1038/s41598-020-69558-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 07/14/2020] [Indexed: 02/08/2023] Open
Abstract
Daily sunlight exposure damages the epidermal basement membrane (BM) and disrupts epidermal homeostasis. Inter-follicular epidermal stem cells (IFE-SCs) regulate epidermal proliferation and differentiation, which supports epidermal homeostasis. Here, we examine how photoaging affects the function of IFE-SCs and we identify key components in their cellular environment (niche). We found that sun-exposed skin showed a decrease of MCSP-positive and β1-integrin-positive cells concomitantly with a decrease of laminin-511 at the dermal-epidermal junction (DEJ), as compared with sun-protected skin. Higher levels of laminin-511 were associated with not only increased efficiency of colony formation, but also higher expression levels of MCSP as well as other stem cell markers such as Lrig1, ITGB1, CD44, CD46, DLL1, and K15 in keratinocytes from skin of 12- to 62-year-old subjects. UVB exposure to cultured human skin impaired laminin-511 integrity at the dermal-epidermal junction and reduced MCSP-positive basal epidermal cells as well as K15-positive cells. Combined treatment with matrix metalloproteinase and heparanase inhibitors protected the integrity of laminin-511 and inhibited the reduction of MCSP-positive cells and K15-positive cells. These results suggest that photoaging may reduce the levels of MCSP-positive and K15-positive epidermal stem/progenitor cells in the epidermis via loss of laminin-511 at the dermal-epidermal junction.
Collapse
Affiliation(s)
- Shunsuke Iriyama
- Shiseido Global Innovation Center, 1-2-11 Takashima, Nishi-ku, Yokohama, 220-0011, Japan.
| | - Masahito Yasuda
- Department of Dermatology, Gunma University Graduate School of Medicine, 3-39-22 Showa-Machi, Maebashi, Gunma, 371-8511, Japan
| | - Saori Nishikawa
- Shiseido Global Innovation Center, 1-2-11 Takashima, Nishi-ku, Yokohama, 220-0011, Japan
| | - Eisuke Takai
- Shiseido Global Innovation Center, 1-2-11 Takashima, Nishi-ku, Yokohama, 220-0011, Japan
| | - Junichi Hosoi
- Shiseido Global Innovation Center, 1-2-11 Takashima, Nishi-ku, Yokohama, 220-0011, Japan
| | - Satoshi Amano
- Shiseido Global Innovation Center, 1-2-11 Takashima, Nishi-ku, Yokohama, 220-0011, Japan
| |
Collapse
|
16
|
Béguin EP, Janssen EFJ, Hoogenboezem M, Meijer AB, Hoogendijk AJ, van den Biggelaar M. Flow-induced Reorganization of Laminin-integrin Networks Within the Endothelial Basement Membrane Uncovered by Proteomics. Mol Cell Proteomics 2020; 19:1179-1192. [PMID: 32332107 PMCID: PMC7338090 DOI: 10.1074/mcp.ra120.001964] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 04/15/2020] [Indexed: 01/11/2023] Open
Abstract
The vessel wall is continuously exposed to hemodynamic forces generated by blood flow. Endothelial mechanosensors perceive and translate mechanical signals via cellular signaling pathways into biological processes that control endothelial development, phenotype and function. To assess the hemodynamic effects on the endothelium on a system-wide level, we applied a quantitative mass spectrometry approach combined with cell surface chemical footprinting. SILAC-labeled endothelial cells were subjected to flow-induced shear stress for 0, 24 or 48 h, followed by chemical labeling of surface proteins using a non-membrane permeable biotin label, and analysis of the whole proteome and the cell surface proteome by LC-MS/MS analysis. These studies revealed that of the >5000 quantified proteins 104 were altered, which were highly enriched for extracellular matrix proteins and proteins involved in cell-matrix adhesion. Cell surface proteomics indicated that LAMA4 was proteolytically processed upon flow-exposure, which corresponded to the decreased LAMA4 mass observed on immunoblot. Immunofluorescence microscopy studies highlighted that the endothelial basement membrane was drastically remodeled upon flow exposure. We observed a network-like pattern of LAMA4 and LAMA5, which corresponded to the localization of laminin-adhesion molecules ITGA6 and ITGB4. Furthermore, the adaptation to flow-exposure did not affect the inflammatory response to tumor necrosis factor α, indicating that inflammation and flow trigger fundamentally distinct endothelial signaling pathways with limited reciprocity and synergy. Taken together, this study uncovers the blood flow-induced remodeling of the basement membrane and stresses the importance of the subendothelial basement membrane in vascular homeostasis.
Collapse
Affiliation(s)
- Eelke P Béguin
- Department of Molecular and Cellular Hemostasis, Sanquin Research, Amsterdam, The Netherlands
| | - Esmée F J Janssen
- Department of Molecular and Cellular Hemostasis, Sanquin Research, Amsterdam, The Netherlands
| | - Mark Hoogenboezem
- Department of Molecular and Cellular Hemostasis, Sanquin Research, Amsterdam, The Netherlands
| | - Alexander B Meijer
- Department of Molecular and Cellular Hemostasis, Sanquin Research, Amsterdam, The Netherlands; Department of Biomolecular Mass Spectrometry, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, Utrecht, The Netherlands
| | - Arie J Hoogendijk
- Department of Molecular and Cellular Hemostasis, Sanquin Research, Amsterdam, The Netherlands
| | | |
Collapse
|
17
|
Jones LK, Lam R, McKee KK, Aleksandrova M, Dowling J, Alexander SI, Mallawaarachchi A, Cottle DL, Short KM, Pais L, Miner JH, Mallett AJ, Simons C, McCarthy H, Yurchenco PD, Smyth IM. A mutation affecting laminin alpha 5 polymerisation gives rise to a syndromic developmental disorder. Development 2020; 147:dev189183. [PMID: 32439764 PMCID: PMC7540250 DOI: 10.1242/dev.189183] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 04/30/2020] [Indexed: 12/15/2022]
Abstract
Laminin alpha 5 (LAMA5) is a member of a large family of proteins that trimerise and then polymerise to form a central component of all basement membranes. Consequently, the protein plays an instrumental role in shaping the normal development of the kidney, skin, neural tube, lung and limb, and many other organs and tissues. Pathogenic mutations in some laminins have been shown to cause a range of largely syndromic conditions affecting the competency of the basement membranes to which they contribute. We report the identification of a mutation in the polymerisation domain of LAMA5 in a patient with a complex syndromic disease characterised by defects in kidney, craniofacial and limb development, and by a range of other congenital defects. Using CRISPR-generated mouse models and biochemical assays, we demonstrate the pathogenicity of this variant, showing that the change results in a failure of the polymerisation of α/β/γ laminin trimers. Comparing these in vivo phenotypes with those apparent upon gene deletion in mice provides insights into the specific functional importance of laminin polymerisation during development and tissue homeostasis.
Collapse
Affiliation(s)
- Lynelle K Jones
- Department of Anatomy and Developmental Biology, Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Monash University, Melbourne 3800, Australia
| | - Rachel Lam
- Department of Anatomy and Developmental Biology, Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Monash University, Melbourne 3800, Australia
| | - Karen K McKee
- Department of Pathology and Laboratory Medicine, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ 08901, USA
| | - Maya Aleksandrova
- Department of Pathology and Laboratory Medicine, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ 08901, USA
| | | | - Stephen I Alexander
- Nephrology Department, Centre for Kidney Research, The Children's Hospital at Westmead, Sydney 2145, New South Wales, Australia
| | - Amali Mallawaarachchi
- Department of Medical Genomics, Royal Prince Alfred Hospital; Garvan Institute of Medical Research, Sydney 2010, New South Wales, Australia
| | - Denny L Cottle
- Department of Anatomy and Developmental Biology, Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Monash University, Melbourne 3800, Australia
| | - Kieran M Short
- Department of Anatomy and Developmental Biology, Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Monash University, Melbourne 3800, Australia
| | - Lynn Pais
- Broad Center for Mendelian Genomics, Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Jeffery H Miner
- Division of Nephrology, Department of Medicine and Department of Cell Biology and Physiology, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Andrew J Mallett
- Kidney Health Service, Royal Brisbane and Women's Hospital and the Institute for Molecular Bioscience and Faculty of Medicine, The University of Queensland, Brisbane 4072, Queensland, Australia
| | - Cas Simons
- Murdoch Children's Research Institute, The Royal Children's Hospital Melbourne, Melbourne 3052, Victoria, Australia
| | - Hugh McCarthy
- The Sydney Children's Hospitals Network and the Children's Hospital Westmead Clinical School, University of Sydney, Sydney 2145, New South Wales, Australia
| | - Peter D Yurchenco
- Department of Pathology and Laboratory Medicine, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ 08901, USA
| | - Ian M Smyth
- Department of Anatomy and Developmental Biology, Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Monash University, Melbourne 3800, Australia
| |
Collapse
|
18
|
Abstract
Tumors utilize a number of effective strategies, including the programmed death 1/PD ligand 1 (PD-1/PD-L1) axis, to evade immune-mediated control of their growth. PD-L1 expression is mainly induced by IFN receptor signaling or constitutively induced. Integrins are an abundantly expressed class of proteins which play multiple deleterious roles in cancer and exert proangiogenic and prosurvival activities. We asked whether αvβ3-integrin positively regulates PD-L1 expression and the anticancer immune response. We report that αvβ3-integrin regulated constitutive and IFN-induced PD-L1 expression in human and murine cancerous and noncancerous cells. αvβ3-integrin targeted STAT1 through its signaling C tail. The implantation of β3-integrin-depleted tumor cells led to a dramatic decrease in the growth of primary tumors, which exhibited reduced PD-L1 expression and became immunologically hot, with increased IFNγ content and CD8+ cell infiltration. In addition, the implantation of β3-integrin-depleted tumors elicited an abscopal immunotherapeutic effect measured as protection from the challenge tumor and durable splenocyte and serum reactivity to B16 cell antigens. These modifications to the immunosuppressive microenvironment primed cells for checkpoint (CP) blockade. When combined with anti-PD-1, β3-integrin depletion led to durable therapy and elicited an abscopal immunotherapeutic effect. We conclude that in addition to its previously known roles, αvβ3-integrin serves as a critical component of the cancer immune evasion strategy and can be an effective immunotherapy target.
Collapse
|
19
|
Characterization of dystroglycan binding in adhesion of human induced pluripotent stem cells to laminin-511 E8 fragment. Sci Rep 2019; 9:13037. [PMID: 31506597 PMCID: PMC6737067 DOI: 10.1038/s41598-019-49669-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 08/29/2019] [Indexed: 12/16/2022] Open
Abstract
Human induced pluripotent stem cells (hiPSCs) grow indefinitely in culture and have the potential to regenerate various tissues. In the development of cell culture systems, a fragment of laminin-511 (LM511-E8) was found to improve the proliferation of stem cells. The adhesion of undifferentiated cells to LM511-E8 is mainly mediated through integrin α6β1. However, the involvement of non-integrin receptors remains unknown in stem cell culture using LM511-E8. Here, we show that dystroglycan (DG) is strongly expressed in hiPSCs. The fully glycosylated DG is functionally active for laminin binding, and although it has been suggested that LM511-E8 lacks DG binding sites, the fragment does weakly bind to DG. We further identified the DG binding sequence in LM511-E8, using synthetic peptides, of which, hE8A5-20 (human laminin α5 2688–2699: KTLPQLLAKLSI) derived from the laminin coiled-coil domain, exhibited DG binding affinity and cell adhesion activity. Deletion and mutation studies show that LLAKLSI is the active core sequence of hE8A5-20, and that, K2696 is a critical amino acid for DG binding. We further demonstrated that hiPSCs adhere to hE8A5-20-conjugated chitosan matrices. The amino acid sequence of DG binding peptides would be useful to design substrata for culture system of undifferentiated and differentiated stem cells.
Collapse
|
20
|
Tang J, Saito T. iMatrix-511 Stimulates the Proliferation and Differentiation of MDPC-23 Cells into Odontoblastlike Phenotype. J Endod 2019; 44:1367-1375. [PMID: 30144832 DOI: 10.1016/j.joen.2018.05.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 05/23/2018] [Accepted: 05/31/2018] [Indexed: 10/28/2022]
Abstract
INTRODUCTION iMatrix-511 is a novel integrin-binding fragment derived from laminin-511. Previous studies showed its superiority as a culture substrate for xeno-free culture and maintenance of pluripotency in stem cells. However, its effects in the dental field remain largely unknown. The aim of the present study was to unravel the in vitro effects of iMatrix-511 in comparison with vitronectin (VN). METHODS Biochemical assays were performed in vitro in MDPC-23 cells. The optimal coating density for 2 proteins was determined using the cell counting kit-8. To evaluate cell proliferation to both proteins, MDPC-23 cells were directly seeded onto the iMatrix-511 or VN-modified polystyrene and analyzed by the cell counting kit-8. The phenotype of cells seeded on iMatrix-511 and VN was characterized. Phenotypic characterization included real-time reverse-transcription polymerase chain reaction and alizarin red staining. RESULTS The optimal coating density for iMatrix-511 and VN was determined to be 1 μg/cm2 and 0.25 μg/cm2, respectively. Cells cultured on iMatrix-511 showed higher cell proliferative activity than the noncoated control and VN on days 1, 2, and 4. Cell morphology observation revealed MDPC-23 cells attach preferentially to iMatrix-511 and start to spread as early as 1 hour after inoculation. MDPC-23 cells exhibited more potent odontogenic differentiation on iMatrix-511 than the control and VN as shown by the marked enhancement of dentin matrix protein 1 and dentin sialophosphoprotein messenger RNA expression. Although both proteins showed more mineralized nodule formation than the control, iMatrix-511 remained to be the one that elicited stronger calcific deposition. CONCLUSIONS iMatrix-511 supported the proliferation and acquisition of odontogenic cell phenotype in vitro, rendering this novel material a potential candidate for dentin regeneration.
Collapse
Affiliation(s)
- Jia Tang
- Division of Biochemistry, Department of Oral Biology, School of Dentistry, Health Sciences University of Hokkaido, Hokkaido, Japan.
| | - Takashi Saito
- Division of Clinical Cariology and Endodontology, Department of Oral Rehabilitation, School of Dentistry, Health Sciences University of Hokkaido, Hokkaido, Japan
| |
Collapse
|
21
|
Nirwane A, Yao Y. Laminins and their receptors in the CNS. Biol Rev Camb Philos Soc 2019; 94:283-306. [PMID: 30073746 DOI: 10.1111/brv.12454] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 07/05/2018] [Accepted: 07/09/2018] [Indexed: 01/24/2023]
Abstract
Laminin, an extracellular matrix protein, is widely expressed in the central nervous system (CNS). By interacting with integrin and non-integrin receptors, laminin exerts a large variety of important functions in the CNS in both physiological and pathological conditions. Due to the existence of many laminin isoforms and their differential expression in various cell types in the CNS, the exact functions of each individual laminin molecule in CNS development and homeostasis remain largely unclear. In this review, we first briefly introduce the structure and biochemistry of laminins and their receptors. Next, the dynamic expression of laminins and their receptors in the CNS during both development and in adulthood is summarized in a cell-type-specific manner, which allows appreciation of their functional redundancy/compensation. Furthermore, we discuss the biological functions of laminins and their receptors in CNS development, blood-brain barrier (BBB) maintenance, neurodegeneration, stroke, and neuroinflammation. Last, key challenges and potential future research directions are summarized and discussed. Our goals are to provide a synthetic review to stimulate future studies and promote the formation of new ideas/hypotheses and new lines of research in this field.
Collapse
Affiliation(s)
- Abhijit Nirwane
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, 240 W Green Street, Athens, GA 30602, U.S.A
| | - Yao Yao
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, 240 W Green Street, Athens, GA 30602, U.S.A
| |
Collapse
|
22
|
Wang X, Zhong W, Bu J, Li Y, Li R, Nie R, Xiao C, Ma K, Huang X, Li Y. Exosomal protein CD82 as a diagnostic biomarker for precision medicine for breast cancer. Mol Carcinog 2019; 58:674-685. [PMID: 30604894 DOI: 10.1002/mc.22960] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 12/06/2018] [Accepted: 12/10/2018] [Indexed: 01/02/2023]
Abstract
CD82, a member of the tetraspanin superfamily, has been proposed to exert its activity via tetra-transmembrane protein enriched microdomains (TEMs) in exosomes. The present study aimed to explore the potential of the exosome protein CD82 in diagnosing breast cancers of all stages and various histological subtypes in patients. The results strongly suggest that CD82 expression in breast cancer tissue was significantly lower than that in healthy and benign breast disease tissues. There was a significant negative correlation between CD82 expression in tissues and CD82 content in exosomes, which indicated that CD82 expression was redistributed from tissues to the blood with the development and metastasis of breast cancer.
Collapse
Affiliation(s)
- Xiaodan Wang
- Department of Clinical Laboratory, Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Weiliang Zhong
- Department of Orthopaedics, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Jingya Bu
- Department of Clinical Laboratory, Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Yuzhong Li
- Department of Clinical Laboratory, Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Ruihua Li
- Department of Clinical Laboratory, Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Rong Nie
- Department of Clinical Laboratory, Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Chenyang Xiao
- Department of Clinical Laboratory, Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Keli Ma
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian, China
| | - Xiaohua Huang
- Department of Clinical Biochemistry, College of Laboratory Medicine, Dalian Medical University, Dalian, China
| | - Ying Li
- Department of Clinical Laboratory, Second Affiliated Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
23
|
Guneta V, Zhou Z, Tan NS, Sugii S, Wong MTC, Choong C. Recellularization of decellularized adipose tissue-derived stem cells: role of the cell-secreted extracellular matrix in cellular differentiation. Biomater Sci 2018; 6:168-178. [PMID: 29167844 DOI: 10.1039/c7bm00695k] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Adipose-derived stem cells (ASCs) are found in a location within the adipose tissue known as the stem cell niche. The ASCs in the niche are maintained in the quiescent state, and upon exposure to various microenvironmental triggers are prompted to undergo proliferation or differentiation. These microenvironmental triggers also modulate the extracellular matrix (ECM), which interacts with the cells through the cytoskeleton and induces downstream events inside the cells that bring about a change in cell behaviour. In response to these changes, the cells remodel the ECM, which will differ according to the type of tissue being formed by the cells. As the ECM itself plays an important role in the regulation of cellular differentiation, this study aims to explore the role of the cell-secreted ECM at various stages of differentiation of stem cells in triggering the differentiation of ASCs. To this end, the ASCs cultured in proliferation, osteogenic and adipogenic media were decellularized and the secreted ECM was characterized. Overall, it was found that osteo-differentiated ASCs produced higher amounts of collagen and glycosaminoglycans (GAG) compared to the undifferentiated and adipo-differentiated ASCs. The two types of differentiated ECMs were subsequently shown to trigger initial but not terminal differentiation of ASCs into osteo- and adipo-lineages respectively, as indicated by the upregulation of lineage specific markers. In addition, integrin subunits alpha (α) 6 and integrin beta (β) 1 were found to be produced by ASCs cultured on cell-secreted ECM-coated substrates, suggesting that the integrins α6 and β1 play an instrumental role in cell-ECM interactions. Taken together, this study demonstrates the importance of the ECM in cellular fate decisions and how ECM-coated substrates can potentially be used for various tissue engineering applications.
Collapse
Affiliation(s)
- V Guneta
- School of Materials Science and Engineering, Nanyang Technological University, Singapore.
| | | | | | | | | | | |
Collapse
|
24
|
Rohn F, Kordes C, Castoldi M, Götze S, Poschmann G, Stühler K, Herebian D, Benk AS, Geiger F, Zhang T, Spatz JP, Häussinger D. Laminin-521 promotes quiescence in isolated stellate cells from rat liver. Biomaterials 2018; 180:36-51. [PMID: 30014965 DOI: 10.1016/j.biomaterials.2018.07.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 07/06/2018] [Indexed: 12/15/2022]
Abstract
The laminin α5 protein chain is an element of basement membranes and important to maintain stem cells. Hepatic stellate cells (HSC) are liver-resident mesenchymal stem cells, which reside in a quiescent state on a basement membrane-like structure in the space of Dissé. In the present study, laminin α5 chain was detected in the space of Dissé of normal rat liver. Since HSC are critical for liver regeneration and can contribute to fibrosis in chronic liver diseases, the effect of laminins on HSC maintenance was investigated. Therefore, isolated rat HSC were seeded on uncoated polystyrene (PS) or PS coated with either laminin-521 (PS/LN-521) or laminin-211 (PS/LN-211). PS/LN-521 improved HSC adhesion and better preserved their retinoid stores as well as quiescence- and stem cell-associated phenotype, whereas HSC on PS/LN-211 or PS developed into myofibroblasts-like cells. To improve the homogeneity as well as the presentation of laminin molecules on the culture surface to HSC, laminin-functionalized, gold-nanostructured glass surfaces were generated. This approach further enhanced the expression of quiescence-associated genes in HSC. In conclusion, the results indicate that LN-521 supports the quiescent state of HSC and laminin α5 can be regarded as an important element of their niche in the space of Dissé.
Collapse
Affiliation(s)
- Friederike Rohn
- Clinic of Gastroenterology, Hepatology and Infectious Diseases, Heinrich Heine University Düsseldorf, Moorenstraße 5, 40225 Düsseldorf, Germany
| | - Claus Kordes
- Clinic of Gastroenterology, Hepatology and Infectious Diseases, Heinrich Heine University Düsseldorf, Moorenstraße 5, 40225 Düsseldorf, Germany
| | - Mirco Castoldi
- Clinic of Gastroenterology, Hepatology and Infectious Diseases, Heinrich Heine University Düsseldorf, Moorenstraße 5, 40225 Düsseldorf, Germany
| | - Silke Götze
- Clinic of Gastroenterology, Hepatology and Infectious Diseases, Heinrich Heine University Düsseldorf, Moorenstraße 5, 40225 Düsseldorf, Germany
| | - Gereon Poschmann
- Molecular Proteomics Laboratory, Biologisch-Medizinisches Forschungszentrum, Heinrich Heine University Düsseldorf, Moorenstraße 5, 40225 Düsseldorf, Germany
| | - Kai Stühler
- Molecular Proteomics Laboratory, Biologisch-Medizinisches Forschungszentrum, Heinrich Heine University Düsseldorf, Moorenstraße 5, 40225 Düsseldorf, Germany; Institute of Molecular Medicine, University Hospital Düsseldorf, Moorenstraße 5, 40225 Düsseldorf, Germany
| | - Diran Herebian
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, Medical Faculty, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Amelie S Benk
- Max-Planck-Institute for Medical Research, Department of Cellular Biophysics, Jahnstraße 29, 69120 Heidelberg, Germany; Department of Biophysical Chemistry, University of Heidelberg, Im Neuenheimer Feld 253, 69120 Heidelberg, Germany
| | - Fania Geiger
- Max-Planck-Institute for Medical Research, Department of Cellular Biophysics, Jahnstraße 29, 69120 Heidelberg, Germany; Department of Biophysical Chemistry, University of Heidelberg, Im Neuenheimer Feld 253, 69120 Heidelberg, Germany
| | - Tingyu Zhang
- Max-Planck-Institute for Medical Research, Department of Cellular Biophysics, Jahnstraße 29, 69120 Heidelberg, Germany; Department of Biophysical Chemistry, University of Heidelberg, Im Neuenheimer Feld 253, 69120 Heidelberg, Germany
| | - Joachim P Spatz
- Max-Planck-Institute for Medical Research, Department of Cellular Biophysics, Jahnstraße 29, 69120 Heidelberg, Germany; Department of Biophysical Chemistry, University of Heidelberg, Im Neuenheimer Feld 253, 69120 Heidelberg, Germany
| | - Dieter Häussinger
- Clinic of Gastroenterology, Hepatology and Infectious Diseases, Heinrich Heine University Düsseldorf, Moorenstraße 5, 40225 Düsseldorf, Germany.
| |
Collapse
|
25
|
Kim HY, Baek S, Han NR, Lee E, Park CK, Lee ST. Identification of integrin heterodimers functioning on the surface of undifferentiated porcine primed embryonic stem cells. Cell Biol Int 2018; 42:1221-1227. [PMID: 29809293 DOI: 10.1002/cbin.10993] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 05/27/2018] [Indexed: 11/08/2022]
Abstract
In vitro expansion of undifferentiated porcine primed embryonic stem (ES) cells is facilitated by use of non-cellular niches that mimic three-dimensional (3D) microenvironments enclosing an inner cell mass of porcine blastocysts. Therefore, we investigated the integrin heterodimers on the surface of undifferentiated porcine primed ES cells for the purpose of developing a non-cellular niche to support in vitro maintenance of the self-renewal ability of porcine primed ES cells. Immunocytochemistry and a fluorescence immunoassay were performed to assess integrin α and β subunit levels, and attachment and antibody inhibition assays were used to evaluate the function of integrin heterodimers. The integrin α3 , α5 , α6 , α9 , αV , and β1 subunits, but not the α1 , α2 , α4 , α7 , and α8 subunits, were identified on the surface of undifferentiated porcine primed ES cells. Subsequently, significant increase of their adhesion to fibronectin, tenascin C, and vitronectin were observed and functional blocking of integrin heterodimer α5 β1 , α9 β1 , or αV β1 showed significantly inhibited adhesion to fibronectin, tenascin C, or vitronectin. No integrin α6 β1 heterodimer-mediated adhesion to laminin was detected. These results demonstrate that active α5 β1 , α9 β1 , and αV β1 integrin heterodimers are present on the surface of undifferentiated porcine primed ES cells, together with inactive integrin α3 (presumed) and α6 subunits.
Collapse
Affiliation(s)
- Hwa-Young Kim
- Department of Animal Life Science, Kangwon National University, Chuncheon, 24341, Korea
| | - Song Baek
- Department of Animal Life Science, Kangwon National University, Chuncheon, 24341, Korea
| | - Na Rae Han
- Department of Animal Life Science, Kangwon National University, Chuncheon, 24341, Korea
| | - Eunsong Lee
- College of Veterinary Medicine, Kangwon National University, Chuncheon, 24341, Korea
| | - Choon-Keun Park
- Department of Animal Life Science, Kangwon National University, Chuncheon, 24341, Korea
| | - Seung Tae Lee
- Department of Animal Life Science, Kangwon National University, Chuncheon, 24341, Korea
| |
Collapse
|
26
|
Fujisaki H, Futaki S, Yamada M, Sekiguchi K, Hayashi T, Ikejima T, Hattori S. Respective optimal calcium concentrations for proliferation on type I collagen fibrils in two keratinocyte line cells, HaCaT and FEPE1L-8. Regen Ther 2018; 8:73-79. [PMID: 30271869 PMCID: PMC6146901 DOI: 10.1016/j.reth.2018.04.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 03/22/2018] [Accepted: 04/11/2018] [Indexed: 01/02/2023] Open
Abstract
Keratinocyte line cells HaCaT and FEPE1L-8 are used for skin model with type I collagen fibrils (gels). For this purpose, not only differentiation but also regulation of proliferation on type I collagen gels by exogenous calcium concentration is important. When exogenous calcium concentration is low, primary keratinocyte proliferation is repressed and eventually cells are induced to apoptosis on type I collagen gels. The apoptosis induced on type I collagen gels is suppressed by increasing calcium concentration in the medium. That is, higher exogenous calcium concentration is necessary for primary keratinocyte survival on type I collagen gels than for that on dish surface culture. Meanwhile much higher exogenous calcium causes cell differentiation and inhibition of proliferation. The optimal calcium concentrations for proliferation on type I collagen gels have not been clarified in keratinocyte line cells. HaCaT cells have a unique calcium sensitivity in comparison with primary keratinocytes, whereas FEPE1L-8 cells have a similar sensitivity to primary keratinocytes. In this study, we compared the effect of calcium concentrations on proliferation of HaCaT and FEPE1L-8 cells on type I collagen gels. On type I collagen gels, both line cells required higher calcium concentrations for proliferation than on dish surface. HaCaT cells proliferated better in a wider range of calcium concentrations than FEPE1L-8 cells.
Collapse
Key Words
- Calcium concentration
- DAG, diacylglycerol
- DMEM (0), DMEM supplemented without fetal bovine serum
- DMEM (10), DMEM supplemented with 10% fetal bovine serum
- DMEM, Dulbecco's Modified Eagle's Medium
- ECM, extracellular matrix
- HBSS, Hanks' balanced salt solution
- HEPES, 4-(2-hydroxyethyl-1-piperazineethanesulfonic acid
- IP3, inositol trisphosphate
- K110, K110 type II medium
- Keratinocyte proliferation
- MTT, 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazoliumbromide
- PI, propidium iodide
- PI3K, phosphoinositide 3-OH-kinase
- PIP2, hydrolyze phosphatidylinositol bisphosphate
- PKC, protein kinase C
- Type I collagen gel
- WST-8, (2-(2-methoxy-4-nitrophenyl)-3-(4-nitrophenyl)-5-(2,4-disulfophenyl)-2H-tetrazolium, monosodium salt
Collapse
Affiliation(s)
- Hitomi Fujisaki
- Nippi Research Institute of Biomatrix, Toride, Ibaraki, Japan
| | - Sugiko Futaki
- Department of Anatomy and Cell Biology, Osaka Medical College, Osaka, Japan
| | - Masashi Yamada
- Division of Matrixome Research and Application, Institute for Protein Research, Osaka University, Suita, Osaka, Japan
| | - Kiyotoshi Sekiguchi
- Division of Matrixome Research and Application, Institute for Protein Research, Osaka University, Suita, Osaka, Japan
| | - Toshihiko Hayashi
- China-Japan Research Institute of Medical and Pharmaceutical Sciences, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, China
| | - Takashi Ikejima
- China-Japan Research Institute of Medical and Pharmaceutical Sciences, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, China
| | - Shunji Hattori
- Nippi Research Institute of Biomatrix, Toride, Ibaraki, Japan
| |
Collapse
|
27
|
Chermnykh E, Kalabusheva E, Vorotelyak E. Extracellular Matrix as a Regulator of Epidermal Stem Cell Fate. Int J Mol Sci 2018; 19:ijms19041003. [PMID: 29584689 PMCID: PMC5979429 DOI: 10.3390/ijms19041003] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 03/15/2018] [Accepted: 03/21/2018] [Indexed: 12/17/2022] Open
Abstract
Epidermal stem cells reside within the specific anatomic location, called niche, which is a microenvironment that interacts with stem cells to regulate their fate. Regulation of many important processes, including maintenance of stem cell quiescence, self-renewal, and homeostasis, as well as the regulation of division and differentiation, are common functions of the stem cell niche. As it was shown in multiple studies, extracellular matrix (ECM) contributes a lot to stem cell niches in various tissues, including that of skin. In epidermis, ECM is represented, primarily, by a highly specialized ECM structure, basement membrane (BM), which separates the epidermal and dermal compartments. Epidermal stem cells contact with BM, but when they lose the contact and migrate to the overlying layers, they undergo terminal differentiation. When considering all of these factors, ECM is of fundamental importance in regulating epidermal stem cells maintenance, proper mobilization, and differentiation. Here, we summarize the remarkable progress that has recently been made in the research of ECM role in regulating epidermal stem cell fate, paying special attention to the hair follicle stem cell niche. We show that the destruction of ECM components impairs epidermal stem cell morphogenesis and homeostasis. A deep understanding of ECM molecular structure as well as the development of in vitro system for stem cell maintaining by ECM proteins may bring us to developing new approaches for regenerative medicine.
Collapse
Affiliation(s)
- Elina Chermnykh
- Koltzov Institute of Developmental Biology Russian Academy of Sciences, Moscow 119334, Russia.
- Department of Regenerative Medicine, Institute of Translational Medicine, Pirogov Russian National Research Medical University, Moscow 117997, Russia.
| | - Ekaterina Kalabusheva
- Koltzov Institute of Developmental Biology Russian Academy of Sciences, Moscow 119334, Russia.
- Department of Regenerative Medicine, Institute of Translational Medicine, Pirogov Russian National Research Medical University, Moscow 117997, Russia.
| | - Ekaterina Vorotelyak
- Koltzov Institute of Developmental Biology Russian Academy of Sciences, Moscow 119334, Russia.
- Department of Regenerative Medicine, Institute of Translational Medicine, Pirogov Russian National Research Medical University, Moscow 117997, Russia.
- Faculty of Biology, Lomonosov Moscow State University, Moscow 119991, Russia.
| |
Collapse
|
28
|
Song J, Zhang X, Buscher K, Wang Y, Wang H, Di Russo J, Li L, Lütke-Enking S, Zarbock A, Stadtmann A, Striewski P, Wirth B, Kuzmanov I, Wiendl H, Schulte D, Vestweber D, Sorokin L. Endothelial Basement Membrane Laminin 511 Contributes to Endothelial Junctional Tightness and Thereby Inhibits Leukocyte Transmigration. Cell Rep 2017; 18:1256-1269. [PMID: 28147279 DOI: 10.1016/j.celrep.2016.12.092] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Revised: 12/02/2016] [Accepted: 12/29/2016] [Indexed: 12/26/2022] Open
Abstract
Endothelial basement membranes constitute barriers to extravasating leukocytes during inflammation, a process where laminin isoforms define sites of leukocyte exit; however, how this occurs is poorly understood. In addition to a direct effect on leukocyte transmigration, we show that laminin 511 affects endothelial barrier function by stabilizing VE-cadherin at junctions and downregulating expression of CD99L2, correlating with reduced neutrophil extravasation. Binding of endothelial cells to laminin 511, but not laminin 411 or non-endothelial laminin 111, enhanced transendothelial cell electrical resistance (TEER) and inhibited neutrophil transmigration. Data suggest that endothelial adhesion to laminin 511 via β1 and β3 integrins mediates RhoA-induced VE-cadherin localization to cell-cell borders, and while CD99L2 downregulation requires integrin β1, it is RhoA-independent. Our data demonstrate that molecular information provided by basement membrane laminin 511 affects leukocyte extravasation both directly and indirectly by modulating endothelial barrier properties.
Collapse
Affiliation(s)
- Jian Song
- Institute of Physiological Chemistry and Pathobiochemistry, University of Muenster, 48149 Muenster, Germany; Cells-in-Motion Cluster of Excellence, University of Muenster, 48149 Muenster, Germany
| | - Xueli Zhang
- Institute of Physiological Chemistry and Pathobiochemistry, University of Muenster, 48149 Muenster, Germany; Cells-in-Motion Cluster of Excellence, University of Muenster, 48149 Muenster, Germany
| | - Konrad Buscher
- Institute of Physiological Chemistry and Pathobiochemistry, University of Muenster, 48149 Muenster, Germany; Cells-in-Motion Cluster of Excellence, University of Muenster, 48149 Muenster, Germany
| | - Ying Wang
- Institute of Physiological Chemistry and Pathobiochemistry, University of Muenster, 48149 Muenster, Germany; Cells-in-Motion Cluster of Excellence, University of Muenster, 48149 Muenster, Germany
| | - Huiyu Wang
- Institute of Physiological Chemistry and Pathobiochemistry, University of Muenster, 48149 Muenster, Germany; Cells-in-Motion Cluster of Excellence, University of Muenster, 48149 Muenster, Germany
| | - Jacopo Di Russo
- Institute of Physiological Chemistry and Pathobiochemistry, University of Muenster, 48149 Muenster, Germany; Cells-in-Motion Cluster of Excellence, University of Muenster, 48149 Muenster, Germany
| | - Lixia Li
- Institute of Physiological Chemistry and Pathobiochemistry, University of Muenster, 48149 Muenster, Germany; Cells-in-Motion Cluster of Excellence, University of Muenster, 48149 Muenster, Germany
| | - Stefan Lütke-Enking
- Institute of Physiological Chemistry and Pathobiochemistry, University of Muenster, 48149 Muenster, Germany; Cells-in-Motion Cluster of Excellence, University of Muenster, 48149 Muenster, Germany
| | - Alexander Zarbock
- Cells-in-Motion Cluster of Excellence, University of Muenster, 48149 Muenster, Germany; Department of Anesthesiology and Intensive Care Medicine, University of Muenster, 48149 Muenster, Germany
| | - Anika Stadtmann
- Cells-in-Motion Cluster of Excellence, University of Muenster, 48149 Muenster, Germany; Department of Anesthesiology and Intensive Care Medicine, University of Muenster, 48149 Muenster, Germany
| | - Paul Striewski
- Cells-in-Motion Cluster of Excellence, University of Muenster, 48149 Muenster, Germany; Institute for Computational and Applied Mathematics, University of Muenster, 48149 Muenster, Germany
| | - Benedikt Wirth
- Cells-in-Motion Cluster of Excellence, University of Muenster, 48149 Muenster, Germany; Institute for Computational and Applied Mathematics, University of Muenster, 48149 Muenster, Germany
| | - Ivan Kuzmanov
- Cells-in-Motion Cluster of Excellence, University of Muenster, 48149 Muenster, Germany; Department of Neurology, University Hospital of Muenster, University of Muenster, 48149 Muenster, Germany
| | - Heinz Wiendl
- Cells-in-Motion Cluster of Excellence, University of Muenster, 48149 Muenster, Germany; Department of Neurology, University Hospital of Muenster, University of Muenster, 48149 Muenster, Germany
| | - Dörte Schulte
- Max-Planck Institute of Molecular Biomedicine, 48149 Muenster, Germany
| | - Dietmar Vestweber
- Cells-in-Motion Cluster of Excellence, University of Muenster, 48149 Muenster, Germany; Max-Planck Institute of Molecular Biomedicine, 48149 Muenster, Germany
| | - Lydia Sorokin
- Institute of Physiological Chemistry and Pathobiochemistry, University of Muenster, 48149 Muenster, Germany; Cells-in-Motion Cluster of Excellence, University of Muenster, 48149 Muenster, Germany.
| |
Collapse
|
29
|
Matlin KS, Myllymäki SM, Manninen A. Laminins in Epithelial Cell Polarization: Old Questions in Search of New Answers. Cold Spring Harb Perspect Biol 2017; 9:cshperspect.a027920. [PMID: 28159878 DOI: 10.1101/cshperspect.a027920] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Laminin, a basement membrane protein discovered in 1979, was shortly thereafter implicated in the polarization of epithelial cells in both mammals and a variety of lower organisms. To transduce a spatial cue to the intrinsic polarization machinery, laminin must polymerize into a dense network that forms the foundation of the basement membrane. Evidence suggests that activation of the small GTPase Rac1 by β1-integrins mobilizes laminin-binding integrins and dystroglycan to consolidate formation of the laminin network and initiate rearrangements of both the actin and microtubule cytoskeleton to help establish the apicobasal axis. A key coordinator of spatial signals from laminin is the serine-threonine kinase Par-1, which is known to affect dystroglycan availability, microtubule and actin organization, and lumen formation. The signaling protein integrin-linked kinase (ILK) may also play a role. Despite significant advances, knowledge of the mechanism by which assembled laminin produces a spatial signal remains fragmentary, and much more research into the complex functions of laminin in polarization and other cellular processes is needed.
Collapse
Affiliation(s)
- Karl S Matlin
- Department of Surgery, The University of Chicago, Chicago, Illinois 60637-1470
| | - Satu-Marja Myllymäki
- Biocenter Oulu, Oulu Center for Cell-Matrix Research, Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu 90220, Finland
| | - Aki Manninen
- Biocenter Oulu, Oulu Center for Cell-Matrix Research, Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu 90220, Finland
| |
Collapse
|
30
|
Sato-Nishiuchi R, Li S, Ebisu F, Sekiguchi K. Recombinant laminin fragments endowed with collagen-binding activity: A tool for conferring laminin-like cell-adhesive activity to collagen matrices. Matrix Biol 2017; 65:75-90. [PMID: 28801205 DOI: 10.1016/j.matbio.2017.08.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 06/21/2017] [Accepted: 08/01/2017] [Indexed: 01/21/2023]
Abstract
Laminins are major components of basement membranes that sustain a wide variety of stem cells. Among 15 laminin isoforms, laminin-511 and its E8 fragment (LM511E8) have been shown to strongly promote the adhesion and proliferation of human pluripotent stem cells. The aim of this study was to endow the cell-adhesive activity of laminin-511 on collagen matrices, thereby fabricating collagen-based culture scaffolds for stem cells with defined composition. To achieve this goal, we utilized the collagen-binding domain (CBD) of fibronectin to immobilize LM511E8 on collagen matrices. CBD was attached to the N-termini of individual laminin chains (α5E8, β1E8, γ1E8), producing LM511E8s having one, two, or three CBDs. While LM511E8 did not bind to collagen, CBD-attached LM511E8s (CBD-LM511E8s) exhibited significant collagen-binding activity, dependent on the number of attached CBDs. Human iPS cells were cultured on collagen-coated plates preloaded with CBD-LM511E8s. Although iPS cells did not attach or grow on collagen, they robustly proliferated on CBD-LM511E8-loaded collagen matrices, similar to the case with LM511E8-coated plates. Importantly, iPS cells proliferated and yielded round-shaped colonies even on collagen gels preloaded with CBD-LM511E8s. These results demonstrate that CBD-attached laminin E8 fragments are promising tools for fabrication of collagen-based matrices having the cell-adhesive activity of laminins.
Collapse
Affiliation(s)
- Ryoko Sato-Nishiuchi
- Division of Matrixome Research and Application, Institute for Protein Research, Osaka University, Suita, Osaka, Japan
| | - Shaoliang Li
- Division of Matrixome Research and Application, Institute for Protein Research, Osaka University, Suita, Osaka, Japan
| | - Fumi Ebisu
- Division of Matrixome Research and Application, Institute for Protein Research, Osaka University, Suita, Osaka, Japan; Division of Research and Development, Matrixome Inc., Suita, Osaka, Japan
| | - Kiyotoshi Sekiguchi
- Division of Matrixome Research and Application, Institute for Protein Research, Osaka University, Suita, Osaka, Japan; Division of Research and Development, Matrixome Inc., Suita, Osaka, Japan.
| |
Collapse
|
31
|
Park HJ, Park JE, Lee H, Kim SJ, Yun JI, Kim M, Park KH, Lee ST. Integrins functioning in uterine endometrial stromal and epithelial cells in estrus. Reproduction 2017; 153:351-360. [DOI: 10.1530/rep-16-0516] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 11/23/2016] [Accepted: 12/19/2016] [Indexed: 12/14/2022]
Abstract
Here, as a basic study in the construction of a non-cellular niche that supports artificial organization of three-dimensional endometrial tissue, we defined the types of integrin heterodimers that are expressed transcriptionally, translationally and functionally in endometrial stromal (ES) and endometrial epithelial (EE) cells isolated from the mouse uterus in estrus. Gene and protein expression of integrin subunits were analyzed at the transcriptional and translational level by real-time PCR and fluorescent immunoassay, respectively. Moreover, the functionality of integrin heterodimers was confirmed by attachment and antibody inhibition assays. Itga2, Itga5, Itga6, Itga9, Itgav, Itgb1, Itgb3 and Itgb5 in ES cells, and Itga2, Itga5, Itga6, Itga7, Itga9, Itgav, Itgb1, Itgb3, Itgb4, Itgb5 and Itga6 and in EE cells showed significantly higher transcriptional levels than the other integrin subunits. Furthermore, translational expression of the total integrin α and β subunit genes that showed increased transcription was determined in ES and EE cells. ES cells showed significantly increased adhesion to collagen I, fibronectin and vitronectin, and functional blocking of integrin α2, α5 or αV significantly inhibited adhesion to these molecules. Moreover, EE cells showed significantly increased adhesion to collagen I, fibronectin, laminin and vitronectin, and functional blocking of integrin α2, α5, α6 or αV significantly inhibited adhesion to these molecules. Accordingly, we confirmed that integrin α2β1, α5β1, αVβ1, αVβ3 and/or αVβ5, and integrin α2β1, α5β1, α6β1 and/or α6β4, αVβ1, αVβ3 and/or αVβ5, actively function on the surface of ES and EE cells from mouse uterus in estrus phase, respectively.
Collapse
|
32
|
The opposing roles of laminin-binding integrins in cancer. Matrix Biol 2017; 57-58:213-243. [DOI: 10.1016/j.matbio.2016.08.007] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 08/02/2016] [Accepted: 08/17/2016] [Indexed: 02/06/2023]
|
33
|
Di Russo J, Hannocks MJ, Luik AL, Song J, Zhang X, Yousif L, Aspite G, Hallmann R, Sorokin L. Vascular laminins in physiology and pathology. Matrix Biol 2017; 57-58:140-148. [DOI: 10.1016/j.matbio.2016.06.008] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 06/28/2016] [Indexed: 12/11/2022]
|
34
|
Viquez OM, Yazlovitskaya EM, Tu T, Mernaugh G, Secades P, McKee KK, Georges-Labouesse E, De Arcangelis A, Quaranta V, Yurchenco P, Gewin LC, Sonnenberg A, Pozzi A, Zent R. Integrin alpha6 maintains the structural integrity of the kidney collecting system. Matrix Biol 2016; 57-58:244-257. [PMID: 28043890 DOI: 10.1016/j.matbio.2016.12.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 12/10/2016] [Indexed: 10/20/2022]
Abstract
Laminins are a major constituent of the basement membranes of the kidney collecting system. Integrins, transmembrane receptors formed by non-covalently bound α and β subunits, serve as laminin receptors, but their role in development and homeostasis of the kidney collecting system is poorly defined. Integrin α3β1, one of the major laminin receptors, plays a minor role in kidney collecting system development, while the role of α6 containing integrins (α6β1 and α6β4), the other major laminin receptors, is unknown. Patients with mutations in α6 containing integrins not only develop epidermolysis bullosa, but also have abnormalities in the kidney collecting system. In this study, we show that selectively deleting the α6 or β4 integrin subunits at the initiation of ureteric bud development in mice does not affect morphogenesis. However, the collecting system becomes dilated and dysmorphic as the mice age. The collecting system in both null genotypes was also highly susceptible to unilateral ureteric obstruction injury with evidence of excessive tubule dilatation and epithelial cell apoptosis. Mechanistically, integrin α6-null collecting duct cells are unable to withstand high mechanical force when adhered to laminin. Thus, we conclude that α6 integrins are important for maintaining the integrity of the kidney collecting system by enhancing tight adhesion of the epithelial cells to the basement membrane. These data give a mechanistic explanation for the association between kidney collecting system abnormalities in patients and epidermolysis bullosa.
Collapse
Affiliation(s)
- Olga M Viquez
- Division of Nephrology and Hypertension and Vanderbilt Center for Kidney Disease, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Eugenia M Yazlovitskaya
- Division of Nephrology and Hypertension and Vanderbilt Center for Kidney Disease, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Tianxiang Tu
- Division of Nephrology and Hypertension and Vanderbilt Center for Kidney Disease, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Glenda Mernaugh
- Division of Nephrology and Hypertension and Vanderbilt Center for Kidney Disease, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Pablo Secades
- Division of Cell Biology, Netherlands Cancer Institute, 1066 CX Amsterdam, Netherlands
| | - Karen K McKee
- Department of Pathology and Laboratory Medicine, Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA
| | - Elizabeth Georges-Labouesse
- Department of Development and Stem Cells, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Université de Strasbourg, Illkirch, Inserm, U964, Illkirch, CNRS, UMR 7104, Illkirch, Université de Strasbourg, Strasbourg, France
| | - Adele De Arcangelis
- Department of Development and Stem Cells, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Université de Strasbourg, Illkirch, Inserm, U964, Illkirch, CNRS, UMR 7104, Illkirch, Université de Strasbourg, Strasbourg, France
| | - Vito Quaranta
- Department of Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Peter Yurchenco
- Department of Pathology and Laboratory Medicine, Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA
| | - Leslie C Gewin
- Division of Nephrology and Hypertension and Vanderbilt Center for Kidney Disease, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Veterans Affairs Hospital, Nashville, TN 37232, USA
| | - Arnoud Sonnenberg
- Division of Cell Biology, Netherlands Cancer Institute, 1066 CX Amsterdam, Netherlands
| | - Ambra Pozzi
- Division of Nephrology and Hypertension and Vanderbilt Center for Kidney Disease, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Department of Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Veterans Affairs Hospital, Nashville, TN 37232, USA
| | - Roy Zent
- Division of Nephrology and Hypertension and Vanderbilt Center for Kidney Disease, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Department of Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Veterans Affairs Hospital, Nashville, TN 37232, USA.
| |
Collapse
|
35
|
Di Russo J, Luik AL, Yousif L, Budny S, Oberleithner H, Hofschröer V, Klingauf J, van Bavel E, Bakker EN, Hellstrand P, Bhattachariya A, Albinsson S, Pincet F, Hallmann R, Sorokin LM. Endothelial basement membrane laminin 511 is essential for shear stress response. EMBO J 2016; 36:183-201. [PMID: 27940654 PMCID: PMC5239996 DOI: 10.15252/embj.201694756] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 11/08/2016] [Accepted: 11/09/2016] [Indexed: 11/09/2022] Open
Abstract
Shear detection and mechanotransduction by arterial endothelium requires junctional complexes containing PECAM-1 and VE-cadherin, as well as firm anchorage to the underlying basement membrane. While considerable information is available for junctional complexes in these processes, gained largely from in vitro studies, little is known about the contribution of the endothelial basement membrane. Using resistance artery explants, we show that the integral endothelial basement membrane component, laminin 511 (laminin α5), is central to shear detection and mechanotransduction and its elimination at this site results in ablation of dilation in response to increased shear stress. Loss of endothelial laminin 511 correlates with reduced cortical stiffness of arterial endothelium in vivo, smaller integrin β1-positive/vinculin-positive focal adhesions, and reduced junctional association of actin-myosin II In vitro assays reveal that β1 integrin-mediated interaction with laminin 511 results in high strengths of adhesion, which promotes p120 catenin association with VE-cadherin, stabilizing it at cell junctions and increasing cell-cell adhesion strength. This highlights the importance of endothelial laminin 511 in shear response in the physiologically relevant context of resistance arteries.
Collapse
Affiliation(s)
- Jacopo Di Russo
- Institute of Physiological Chemistry and Pathobiochemistry, University of Muenster, Muenster, Germany.,Cells-in-Motion Cluster of Excellence, University of Muenster, Muenster, Germany
| | - Anna-Liisa Luik
- Institute of Physiological Chemistry and Pathobiochemistry, University of Muenster, Muenster, Germany.,Cells-in-Motion Cluster of Excellence, University of Muenster, Muenster, Germany
| | - Lema Yousif
- Institute of Physiological Chemistry and Pathobiochemistry, University of Muenster, Muenster, Germany.,Cells-in-Motion Cluster of Excellence, University of Muenster, Muenster, Germany
| | - Sigmund Budny
- Institute of Physiological Chemistry and Pathobiochemistry, University of Muenster, Muenster, Germany.,Cells-in-Motion Cluster of Excellence, University of Muenster, Muenster, Germany
| | - Hans Oberleithner
- Cells-in-Motion Cluster of Excellence, University of Muenster, Muenster, Germany.,Institute of Physiology II, University of Muenster, Muenster, Germany
| | - Verena Hofschröer
- Cells-in-Motion Cluster of Excellence, University of Muenster, Muenster, Germany.,Institute of Physiology II, University of Muenster, Muenster, Germany
| | - Juergen Klingauf
- Cells-in-Motion Cluster of Excellence, University of Muenster, Muenster, Germany.,Institute of Medical Physics, University of Muenster, Muenster, Germany
| | - Ed van Bavel
- Biomedical Engineering and Physics, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | - Erik Ntp Bakker
- Biomedical Engineering and Physics, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | - Per Hellstrand
- Department of Experimental Medical Science, Lund University, Lund, Sweden
| | | | | | - Frederic Pincet
- Laboratoire de Physique Statistique, École Normale Superieure - PSL Research University, Paris, France.,CNRS UMR8550, Sorbonne Universités - UPMC Univ Paris 06, Université Paris, Paris, France
| | - Rupert Hallmann
- Institute of Physiological Chemistry and Pathobiochemistry, University of Muenster, Muenster, Germany.,Cells-in-Motion Cluster of Excellence, University of Muenster, Muenster, Germany
| | - Lydia M Sorokin
- Institute of Physiological Chemistry and Pathobiochemistry, University of Muenster, Muenster, Germany .,Cells-in-Motion Cluster of Excellence, University of Muenster, Muenster, Germany
| |
Collapse
|
36
|
Prostate-specific membrane antigen (PSMA)-mediated laminin proteolysis generates a pro-angiogenic peptide. Angiogenesis 2016; 19:487-500. [PMID: 27387982 DOI: 10.1007/s10456-016-9521-x] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 06/21/2016] [Indexed: 02/06/2023]
Abstract
Prostate-specific membrane antigen (PSMA) is a membrane-bound glutamate carboxypeptidase expressed in a number of tissues. PSMA participates in various biological functions depending on the substrate available in the particular tissue; in the brain, PSMA cleaves the abundant neuropeptide N-acetyl-aspartyl-glutamate to regulate release of key neurotransmitters, while intestinal PSMA cleaves polyglutamated peptides to supply dietary folate. PSMA expression is also progressively upregulated in prostate cancer where it correlates with tumor progression as well as in tumor vasculature, where it regulates angiogenesis. The previous research determined that PSMA cleavage of small peptides generated via matrix metalloprotease-mediated proteolysis of the extracellular matrix protein laminin potently activated endothelial cells, integrin signaling and angiogenesis, although the specific peptide substrates were not identified. Herein, using enzymatic analyses and LC/MS, we unequivocally demonstrate that several laminin-derived peptides containing carboxy-terminal glutamate moieties (LQE, IEE, LNE) are bona fide substrates for PSMA. Subsequently, the peptide products were tested for their effects on angiogenesis in various models. We report that LQ, the dipeptide product of PSMA cleavage of LQE, efficiently activates endothelial cells in vitro and enhances angiogenesis in vivo. Importantly, LQE is not cleaved by an inactive PSMA enzyme containing an active site mutation (E424S). Endothelial cell activation by LQ was dependent on integrin beta-1-induced activation of focal adhesion kinase. These results characterize a novel PSMA substrate, provide a functional rationale for the upregulation of PSMA in cancer cells and tumor vasculature and suggest that inhibition of PSMA could lead to the development of new angiogenic therapies.
Collapse
|
37
|
Wegner J, Loser K, Apsite G, Nischt R, Eckes B, Krieg T, Werner S, Sorokin L. Laminin α5 in the keratinocyte basement membrane is required for epidermal-dermal intercommunication. Matrix Biol 2016; 56:24-41. [PMID: 27234307 DOI: 10.1016/j.matbio.2016.05.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Revised: 05/04/2016] [Accepted: 05/08/2016] [Indexed: 12/22/2022]
Abstract
Laminin α5 is broadly expressed in the epidermal basement membrane (BM) of mature mice and its elimination at this site (Lama5Ker5 mouse) results in hyperproliferation of basal keratinocytes and a delay in hair follicle development, which correlated with upregulation of the dermally-derived laminin α2 and laminin α4 chains in the epidermal BM and of tenascin-C subjacent to the BM. In vitro studies revealed laminin 511 to be strongly adhesive for primary keratinocytes and that loss of laminin α5 does not result in cell autonomous defects in proliferation. Flow cytometry reveals that the loss of laminin α5 resulted in increased numbers of CD45+, CD4+ and CD11b+ immune cells in the skin, which temporo-spatial analyses revealed were detectable only subsequent to the loss of laminin α5 and the appearance of the hyperproliferative keratinocyte phenotype. These findings indicate that immune cell changes are the consequence and not the cause of keratinocyte hyperproliferation. Loss of laminin α5 in the epidermal BM was also associated with changes in the expression of several dermally-derived growth factors involved in keratinocyte proliferation and hair follicle development in adult but not new born Lama5Ker5 skin, including KGF, EGF and KGF-2. In situ binding of FGF-receptor-2α (IIIb)-Fc chimera (FGFR2IIIb) to mouse skin sections revealed decoration of several BMs, including the epidermal BM, which was absent in Lama5Ker5 skin. This indicates reduced levels of FGFR2IIIb ligands, which include KGF and KGF-2, in the epidermal BM of adult Lama5Ker5 skin. Our data suggest an initial inhibitory effect of laminin α5 on basal keratinocyte proliferation and migration, which is exacerbated by subsequent changes in growth factor expression by epidermal and dermal cells, implicating laminin α5 in epidermal-dermal intercommunication.
Collapse
Affiliation(s)
- Jeannine Wegner
- Institute of Physiological Chemistry and Pathobiochemistry, University of Muenster, Germany; Cells-in-Motion Cluster of Excellence, University of Muenster, Germany
| | - Karin Loser
- Cells-in-Motion Cluster of Excellence, University of Muenster, Germany; Department of Dermatology, University of Muenster, Germany
| | - Gunita Apsite
- Institute of Physiological Chemistry and Pathobiochemistry, University of Muenster, Germany; Cells-in-Motion Cluster of Excellence, University of Muenster, Germany
| | | | - Beate Eckes
- Department of Dermatology, University of Cologne, Germany
| | - Thomas Krieg
- Department of Dermatology, University of Cologne, Germany
| | - Sabine Werner
- Department of Biology, Institute of Molecular Health Sciences, ETH Zurich, Switzerland
| | - Lydia Sorokin
- Institute of Physiological Chemistry and Pathobiochemistry, University of Muenster, Germany; Cells-in-Motion Cluster of Excellence, University of Muenster, Germany.
| |
Collapse
|
38
|
Kikkawa Y, Harashima N, Ikari K, Fujii S, Katagiri F, Hozumi K, Nomizu M. Down-regulation of cell adhesion via rho-associated protein kinase (ROCK) pathway promotes tumor cell migration on laminin-511. Exp Cell Res 2016; 344:76-85. [DOI: 10.1016/j.yexcr.2016.04.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 03/15/2016] [Accepted: 04/07/2016] [Indexed: 11/30/2022]
|
39
|
Savino W, Mendes-da-Cruz DA, Golbert DCF, Riederer I, Cotta-de-Almeida V. Laminin-Mediated Interactions in Thymocyte Migration and Development. Front Immunol 2015; 6:579. [PMID: 26635793 PMCID: PMC4648024 DOI: 10.3389/fimmu.2015.00579] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2015] [Accepted: 10/29/2015] [Indexed: 11/30/2022] Open
Abstract
Intrathymic T-cell differentiation is a key process for the development and maintenance of cell-mediated immunity, and occurs concomitantly to highly regulated migratory events. We have proposed a multivectorial model for describing intrathymic thymocyte migration. One of the individual vectors comprises interactions mediated by laminins (LMs), a heterotrimeric protein family of the extracellular matrix. Several LMs are expressed in the thymus, being produced by microenvironmental cells, particularly thymic epithelial cells (TECs). Also, thymocytes and epithelial cells express integrin-type LM receptors. Functionally, it has been reported that the dy/dy mutant mouse (lacking the LM isoform 211) exhibits defective thymocyte differentiation. Several data show haptotactic effects of LMs upon thymocytes, as well as their adhesion on TECs; both effects being prevented by anti-LM or anti-LM receptor antibodies. Interestingly, LM synergizes with chemokines to enhance thymocyte migration, whereas classe-3 semaphorins and B ephrins, which exhibit chemorepulsive effects in the thymus, downregulate LM-mediated migratory responses of thymocytes. More recently, we showed that knocking down the ITGA6 gene (which encodes the α6 integrin chain of LM receptors) in human TECs modulates a large number of cell migration-related genes and results in changes of adhesion pattern of thymocytes onto the thymic epithelium. Overall, LM-mediated interactions can be placed at the cross-road of the multivectorial process of thymocyte migration, with a direct influence per se, as well as by modulating other molecular interactions associated with the intrathymic-trafficking events.
Collapse
Affiliation(s)
- Wilson Savino
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation , Rio de Janeiro , Brazil
| | | | | | - Ingo Riederer
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation , Rio de Janeiro , Brazil
| | - Vinicius Cotta-de-Almeida
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation , Rio de Janeiro , Brazil
| |
Collapse
|
40
|
Iorio V, Troughton LD, Hamill KJ. Laminins: Roles and Utility in Wound Repair. Adv Wound Care (New Rochelle) 2015; 4:250-263. [PMID: 25945287 DOI: 10.1089/wound.2014.0533] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Accepted: 04/27/2014] [Indexed: 01/13/2023] Open
Abstract
Significance: Laminins are complex extracellular macromolecules that are major players in the control of a variety of core cell processes, including regulating rates of cell proliferation, differentiation, adhesion, and migration. Laminins, and related extracellular matrix components, have essential roles in tissue homeostasis; however, during wound healing, the same proteins are critical players in re-epithelialization and angiogenesis. Understanding how these proteins influence cell behavior in these different conditions holds great potential in identifying new strategies to enhance normal wound closure or to treat chronic/nonhealing wounds. Recent Advances: Laminin-derived bioactive peptides and, more recently, laminin-peptide conjugated scaffolds, have been designed to improve tissue regeneration after injuries. These peptides have been shown to be effective in decreasing inflammation and granulation tissue, and in promoting re-epithelialization, angiogenesis, and cell migration. Critical Issues: Although there is now a wealth of knowledge concerning laminin form and function, there are still areas of some controversy. These include the relative contribution of two laminin-based adhesive devices (focal contacts and hemidesmosomes) to the re-epithelialization process, the impact and implications of laminin proteolytic processing, and the importance of laminin polymer formation on cell behavior. In addition, the roles in wound healing of the laminin-related proteins, netrins, and LaNts are still to be fully defined. Future Directions: The future of laminin-based therapeutics potentially lies in the bioengineering of specific substrates to support laminin deposition for ex vivo expansion of autologous cells for graft formation and transplantation. Significant recent advances suggest that this goal is within sight.
Collapse
Affiliation(s)
- Valentina Iorio
- Department of Eye and Vision Science, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, United Kingdom
| | - Lee D. Troughton
- Department of Eye and Vision Science, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, United Kingdom
| | - Kevin J. Hamill
- Department of Eye and Vision Science, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
41
|
Chang HY, Li MH, Huang TC, Hsu CL, Tsai SR, Lee SC, Huang HC, Juan HF. Quantitative proteomics reveals middle infrared radiation-interfered networks in breast cancer cells. J Proteome Res 2015; 14:1250-62. [PMID: 25556991 DOI: 10.1021/pr5011873] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Breast cancer is one of the leading cancer-related causes of death worldwide. Treatment of triple-negative breast cancer (TNBC) is complex and challenging, especially when metastasis has developed. In this study, we applied infrared radiation as an alternative approach for the treatment of TNBC. We used middle infrared (MIR) with a wavelength range of 3-5 μm to irradiate breast cancer cells. MIR significantly inhibited cell proliferation in several breast cancer cells but did not affect the growth of normal breast epithelial cells. We performed iTRAQ-coupled LC-MS/MS analysis to investigate the MIR-triggered molecular mechanisms in breast cancer cells. A total of 1749 proteins were identified, quantified, and subjected to functional enrichment analysis. From the constructed functionally enriched network, we confirmed that MIR caused G2/M cell cycle arrest, remodeled the microtubule network to an astral pole arrangement, altered the actin filament formation and focal adhesion molecule localization, and reduced cell migration activity and invasion ability. Our results reveal the coordinative effects of MIR-regulated physiological responses in concentrated networks, demonstrating the potential implementation of infrared radiation in breast cancer therapy.
Collapse
Affiliation(s)
- Hsin-Yi Chang
- Department of Life Science, National Taiwan University , Taipei 10617, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Yun SJ, Ha JM, Kim EK, Kim YW, Jin SY, Lee DH, Song SH, Kim CD, Shin HK, Bae SS. Akt1 isoform modulates phenotypic conversion of vascular smooth muscle cells. Biochim Biophys Acta Mol Basis Dis 2014; 1842:2184-92. [PMID: 25201081 DOI: 10.1016/j.bbadis.2014.08.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Revised: 08/13/2014] [Accepted: 08/28/2014] [Indexed: 12/01/2022]
Abstract
In this study, we investigated the role of Akt1 isoform in phenotypic change of vascular smooth muscle cells (VSMCs) and neointima formation. Laminin-induced conversion of synthetic VSMCs into contractile VSMCs was measured by expression of marker proteins for contractile VSMCs and collagen gel contraction assay. Culture of synthetic VSMCs on laminin-coated plates induced expression of marker proteins for contractile VSMCs and showed contraction in response to angiotensin II (AngII) stimulation. Silencing integrin-linked kinase attenuated activation of Akt and blocked phenotypic conversion of VSMCs resulting in the loss of AngII-dependent contraction. Laminin-induced phenotypic conversion of VSMCs was abrogated by phosphatidylinositol 3-kinase inhibitor or in cells silencing Akt1 but not Akt2. Proliferation of contractile VSMCs on laminin-coated plate was enhanced in cells silencing Akt1 whereas silencing Akt2 did not affect. Promoter activity of myocardin and SM22α was enhanced in contractile phenotype and overexpression of myocardin stimulated promoter activity of SM22α in synthetic phenotype. Promoter activity of myocardin and SM22α was reduced in cells silencing Akt1 and promoter activity of SM22α was restored by overexpression of myocardin in cells silencing Akt1. However, silencing of Akt2 affected neither promoter activity of myocardin nor SM22α. Finally, neointima formation in carotid artery ligation and high fat-diet-induced atherosclerosis was facilitated in mice lacking Akt1. This study demonstrates that Akt1 isoform stimulates laminin-induced phenotypic conversion of synthetic VSMCs by regulating the expression of myocardin. VSMCs become susceptible to shifting from contractile to synthetic phenotype by the loss of Akt1 in pathological conditions.
Collapse
Affiliation(s)
- Sung Ji Yun
- MRC for Ischemic Tissue Regeneration, Department of Pharmacology, Pusan National University School of Medicine, Yangsan, Republic of Korea; Department of Pharmacology, Pusan National University School of Medicine, Yangsan, Republic of Korea
| | - Jung Min Ha
- MRC for Ischemic Tissue Regeneration, Department of Pharmacology, Pusan National University School of Medicine, Yangsan, Republic of Korea; Department of Pharmacology, Pusan National University School of Medicine, Yangsan, Republic of Korea
| | - Eun Kyoung Kim
- MRC for Ischemic Tissue Regeneration, Department of Pharmacology, Pusan National University School of Medicine, Yangsan, Republic of Korea; Department of Pharmacology, Pusan National University School of Medicine, Yangsan, Republic of Korea
| | - Young Whan Kim
- MRC for Ischemic Tissue Regeneration, Department of Pharmacology, Pusan National University School of Medicine, Yangsan, Republic of Korea; Department of Pharmacology, Pusan National University School of Medicine, Yangsan, Republic of Korea
| | - Seo Yeon Jin
- MRC for Ischemic Tissue Regeneration, Department of Pharmacology, Pusan National University School of Medicine, Yangsan, Republic of Korea; Department of Pharmacology, Pusan National University School of Medicine, Yangsan, Republic of Korea
| | - Dong Hyung Lee
- Department of Obstetrics and Gynecology, Pusan National University School of Medicine, Yangsan, Republic of Korea
| | - Sang Heon Song
- Department of Internal Medicine, Pusan National University Hospital, Pusan National University School of Medicine, Yangsan, Republic of Korea
| | - Chi Dae Kim
- MRC for Ischemic Tissue Regeneration, Department of Pharmacology, Pusan National University School of Medicine, Yangsan, Republic of Korea; Department of Pharmacology, Pusan National University School of Medicine, Yangsan, Republic of Korea
| | - Hwa Kyoung Shin
- Department of Anatomy, Pusan National University School of Korean Medicine, Yangsan, Republic of Korea
| | - Sun Sik Bae
- MRC for Ischemic Tissue Regeneration, Department of Pharmacology, Pusan National University School of Medicine, Yangsan, Republic of Korea.
| |
Collapse
|
43
|
Warren KJ, Iwami D, Harris DG, Bromberg JS, Burrell BE. Laminins affect T cell trafficking and allograft fate. J Clin Invest 2014; 124:2204-18. [PMID: 24691446 DOI: 10.1172/jci73683] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Accepted: 01/23/2014] [Indexed: 01/01/2023] Open
Abstract
Lymph nodes (LNs) are integral sites for the generation of immune tolerance, migration of CD4⁺ T cells, and induction of Tregs. Despite the importance of LNs in regulation of inflammatory responses, the LN-specific factors that regulate T cell migration and the precise LN structural domains in which differentiation occurs remain undefined. Using intravital and fluorescent microscopy, we found that alloreactive T cells traffic distinctly into the tolerant LN and colocalize in exclusive regions with alloantigen-presenting cells, a process required for Treg induction. Extracellular matrix proteins, including those of the laminin family, formed regions within the LN that were permissive for colocalization of alloantigen-presenting cells, alloreactive T cells, and Tregs. We identified unique expression patterns of laminin proteins in high endothelial venule basement membranes and the cortical ridge that correlated with alloantigen-specific immunity or immune tolerance. The ratio of laminin α4 to laminin α5 was greater in domains within tolerant LNs, compared with immune LNs, and blocking laminin α4 function or inducing laminin α5 overexpression disrupted T cell and DC localization and transmigration through tolerant LNs. Furthermore, reducing α4 laminin circumvented tolerance induction and induced cardiac allograft inflammation and rejection in murine models. This work identifies laminins as potential targets for immune modulation.
Collapse
|
44
|
Di Zenzo G, Carrozzo M, Chan LS. Urban legend series: mucous membrane pemphigoid. Oral Dis 2013; 20:35-54. [DOI: 10.1111/odi.12193] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Revised: 09/17/2013] [Accepted: 10/02/2013] [Indexed: 11/28/2022]
Affiliation(s)
- G Di Zenzo
- Molecular and Cell Biology Laboratory; Istituto Dermopatico dell'Immacolata; IDI-IRCCS; Rome Italy
| | - M Carrozzo
- Department of Oral Medicine; Centre for Oral Health Research; Newcastle University; Newcastle upon Tyne UK
| | - LS Chan
- Department of Dermatology and Immunology/Microbiology; University of Illinois College of Medicine; Chicago IL USA
| |
Collapse
|
45
|
Kikkawa Y, Ogawa T, Sudo R, Yamada Y, Katagiri F, Hozumi K, Nomizu M, Miner JH. The lutheran/basal cell adhesion molecule promotes tumor cell migration by modulating integrin-mediated cell attachment to laminin-511 protein. J Biol Chem 2013; 288:30990-1001. [PMID: 24036115 DOI: 10.1074/jbc.m113.486456] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cell-matrix interactions are critical for tumor cell migration. Lutheran (Lu), also known as basal cell adhesion molecule (B-CAM), competes with integrins for binding to laminin α5, a subunit of LM-511, a major component of basement membranes. Here we show that the preferential binding of Lu/B-CAM to laminin α5 promotes tumor cell migration. The attachment of Lu/B-CAM transfectants to LM-511 was slightly weaker than that of control cells, and this was because Lu/B-CAM disturbed integrin binding to laminin α5. Lu/B-CAM induced a spindle cell shape with pseudopods and promoted cell migration on LM-511. In addition, blocking with an anti-Lu/B-CAM antibody led to a flat cell shape and inhibited migration on LM-511, similar to the effects of an activating integrin β1 antibody. We conclude that tumor cell migration on LM-511 requires that Lu/B-CAM competitively modulates cell attachment through integrins. We suggest that this competitive interaction is involved in a balance between static and migratory cell behaviors.
Collapse
Affiliation(s)
- Yamato Kikkawa
- From the Laboratory of Clinical Biochemistry, Tokyo University of Pharmacy and Life Sciences, Hachioji, 192-0392, Japan
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Murase S. A new model for developmental neuronal death and excitatory/inhibitory balance in hippocampus. Mol Neurobiol 2013; 49:316-25. [PMID: 23943504 DOI: 10.1007/s12035-013-8521-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Accepted: 07/22/2013] [Indexed: 11/24/2022]
Abstract
The nervous system develops through a program that produces neurons in excess and then eliminates approximately half during a period of naturally occurring death. Neuronal activity has been shown to promote the survival of neurons during this period by stimulating the production and release of neurotrophins. In the peripheral nervous system (PNS), neurons depends on neurotrophins that activate survival pathways, which explains how the size of target cells influences number of neurons that innervate them (neurotrophin hypothesis). However, in the central nervous system (CNS), the role of neurotrophins has not been clear. Contrary to the neurotrophin hypothesis, a recent study shows that, in neonatal hippocampus, neurotrophins cannot promote survival without spontaneous network activity: Neurotrophins recruit neurons into spontaneously active networks, and this activity determines which neurons survive. By placing neurotrophin upstream of activity in the survival signaling pathway, these new results change our understanding of how neurotrophins promote survival. Spontaneous, synchronized network activity begins to spread through both principle neurons and interneurons in the hippocampus as they enter the death period. At this stage, neurotransmission mediated by γ-aminobutyric acid (GABA) is excitatory and drives the spontaneous activity. An important recent observation is that neurotrophins preferentially recruit GABAergic neurons into spontaneously active networks; thus, neurotrophins select for survival only those neurons joined to active networks with strong GABAergic inputs, which would later become inhibitory. A proper excitatory/inhibitory (E/I) balance is critical for normal adult brain function. This balance may be especially important in the hippocampus where impairments in E/I balance are associated with pathologies including epilepsy. Here, I discuss the molecular mechanisms for survival in neonatal neurons, how these mechanisms change during development, and how they may be linked to degenerative diseases.
Collapse
Affiliation(s)
- Sachiko Murase
- Laboratory of Molecular Biology, National Institute of Neurological Disorder and Stroke, National Institutes of Health, 35 Lincoln Dr., Bethesda, MD, 20892, USA,
| |
Collapse
|
47
|
Extracellular matrix of secondary lymphoid organs impacts on B-cell fate and survival. Proc Natl Acad Sci U S A 2013; 110:E2915-24. [PMID: 23847204 DOI: 10.1073/pnas.1218131110] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
We describe a unique extracellular matrix (ECM) niche in the spleen, the marginal zone (MZ), characterized by the basement membrane glycoproteins, laminin α5 and agrin, that promotes formation of a specialized population of MZ B lymphocytes that respond rapidly to blood-borne antigens. Mice with reduced laminin α5 expression show reduced MZ B cells and increased numbers of newly formed (NF) transitional B cells that migrate from the bone marrow, without changes in other immune or stromal cell compartments. Transient integrin α6β1-mediated interaction of NF B cells with laminin α5 in the MZ supports the MZ B-cell population, their long-term survival, and antibody response. Data suggest that the unique 3D structure and biochemical composition of the ECM of lymphoid organs impacts on immune cell fate.
Collapse
|
48
|
Yang ZY, Jiang H, Qu Y, Wei M, Yan M, Zhu ZG, Liu BY, Chen GQ, Wu YL, Gu QL. Metallopanstimulin-1 regulates invasion and migration of gastric cancer cells partially through integrin β4. Carcinogenesis 2013; 34:2851-60. [PMID: 23803695 DOI: 10.1093/carcin/bgt226] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
MPS-1 (metallopanstimulin-1), also known as ribosomal protein S27, was overexpressed in gastric cancer cells. However, how MPS-1 contributes to gastric carcinogenesis has not been well characterized. Here, we show that high expression of MPS-1 was observed in gastric cancer tissues and associated with gastric cancer cell metastasis. Alteration of MPS-1 expression regulates invasion and migration of gastric cancer cells both in vitro and in vivo. Furthermore, by using Signal-Net and cluster analyses of microarray data we identified integrin β4 (ITGB4) as a downstream target of MPS-1 that mediates its effects on cell metastasis. Knockdown of MPS-1 expression in gastric cancer cells led to significant reduction of ITGB4 expression at both the RNA and protein levels. Mechanically, we found that overexpression of ITGB4 in MPS-1 knockdown cells largely recovers the ability of invasion and migration. Conversely, knockdown of ITGB4 partially reduced cell invading/migrating ability induced by MPS-1 overexpression. Moreover, MPS-1 and ITGB4 expressions are positively correlated in gastric cancer cell lines and tissues. Finally, the survival analyses show that the expression of MPS-1 and ITGB4 is associated with poor outcomes in gastric cancer patients. Collectively, our findings suggest that MPS-1 regulates cell invasiveness and migration partially through ITGB4 and that MPS-1/ITGB4 signaling axis may serve as therapeutic targets in the treatment of gastric cancer.
Collapse
Affiliation(s)
- Zhong-Yin Yang
- Department of General Surgery, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Wondimu Z, Omrani S, Ishikawa T, Javed F, Oikawa Y, Virtanen I, Juronen E, Ingerpuu S, Patarroyo M. A novel monoclonal antibody to human laminin α5 chain strongly inhibits integrin-mediated cell adhesion and migration on laminins 511 and 521. PLoS One 2013; 8:e53648. [PMID: 23308268 PMCID: PMC3538678 DOI: 10.1371/journal.pone.0053648] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Accepted: 11/30/2012] [Indexed: 11/28/2022] Open
Abstract
Laminins, a large family of αβγ heterotrimeric proteins mainly found in basement membranes, are strong promoters of adhesion and migration of multiple cell types, such as tumor and immune cells, via several integrin receptors. Among laminin α (LMα) chains, α5 displays the widest tissue distribution in adult life and is synthesized by most cell types. Here, we have generated and characterized five novel monoclonal antibodies (mAbs) to the human LMα5 chain to further study the biological relevance of α5 laminins, such as laminins 511 (α5β1γ1) and 521 (α5β2γ1). As detected by ELISA, immunohistochemistry, immunoprecipitation and Western blotting, each antibody displayed unique properties when compared to mAb 4C7, the prototype LMα5 antibody. Of greatest interest, mAb 8G9, but not any other antibody, strongly inhibited α3β1/α6β1 integrin-mediated adhesion and migration of glioma, melanoma, and carcinoma cells on laminin-511 and, together with mAb 4C7, on laminin-521. Accordingly, mAb 8G9 abolished the interaction of soluble α3β1 integrin with immobilized laminins 511 and 521. Binding of mAb 8G9 to laminin-511 was unaffected by the other mAbs to the LMα5 chain but largely hindered by mAb 4E10 to a LMβ1 chain epitope near the globular domain of laminin-511. Thus, mAb 8G9 defines a novel epitope localized at or near the integrin-binding globular domain of the LMα5 chain, which is essential for cell adhesion and migration, and identifies a potential therapeutic target in malignant and inflammatory diseases.
Collapse
Affiliation(s)
- Zenebech Wondimu
- Department of Dental Medicine, Karolinska Institutet, Stockholm, Sweden
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Yousif LF, Di Russo J, Sorokin L. Laminin isoforms in endothelial and perivascular basement membranes. Cell Adh Migr 2012; 7:101-10. [PMID: 23263631 DOI: 10.4161/cam.22680] [Citation(s) in RCA: 172] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Laminins, one of the major functional components of basement membranes, are found underlying endothelium, and encasing pericytes and smooth muscle cells in the vessel wall. Depending on the type of blood vessel (capillary, venule, postcapillary venule, vein or artery) and their maturation state, both the endothelial and mural cell phenotype vary, with associated changes in laminin isoform expression. Laminins containing the α4 and α5 chains are the major isoforms found in the vessel wall, with the added contribution of laminin α2 in larger vessels. We here summarize current data on the precise localization of these laminin isoforms and their receptors in the different layers of the vessel wall, and their potential contribution to vascular homeostasis.
Collapse
Affiliation(s)
- Lema F Yousif
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Münster, Germany
| | | | | |
Collapse
|