1
|
Leone M, Musa G, Engel FB. Cardiomyocyte binucleation is associated with aberrant mitotic microtubule distribution, mislocalization of RhoA and IQGAP3, as well as defective actomyosin ring anchorage and cleavage furrow ingression. Cardiovasc Res 2019. [PMID: 29522098 DOI: 10.1093/cvr/cvy056] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Aims After birth mammalian cardiomyocytes initiate a last cell cycle which results in binucleation due to cytokinesis failure. Despite its importance for cardiac regenerative therapies, this process is poorly understood. Here, we aimed at a better understanding of the difference between cardiomyocyte proliferation and binucleation and providing a new tool to distinguish these two processes. Methods and results Monitoring of cell division by time-lapse imaging revealed that rat cardiomyocyte binucleation stems from a failure to properly ingress the cleavage furrow. Astral microtubule required for actomyosin ring anchorage and thus furrow ingression were not symmetrically distributed at the periphery of the equatorial region during anaphase in binucleating cardiomyocytes. Consequently, RhoA, the master regulator of actomyosin ring formation and constriction, non-muscle myosin IIB, a central component of the actomyosin ring, as well as IQGAP3 were abnormally localized during cytokinesis. In agreement with improper furrow ingression, binucleation in vitro and in vivo was associated with a failure of RhoA and IQGAP3 to localize to the stembody of the midbody. Conclusion Taken together, these results indicate that naturally occurring cytokinesis failure in primary cardiomyocytes is due to an aberrant mitotic microtubule apparatus resulting in inefficient anchorage of the actomyosin ring to the plasma cell membrane. Thus, cardiomyocyte binucleation and division can be discriminated by the analysis of RhoA as well as IQGAP3 localization.
Collapse
Affiliation(s)
- Marina Leone
- Department of Cardiac Development and Remodelling, Max Planck Institute for Heart and Lung Research, Parkstrasse 1, 61231 Bad Nauheim, Germany.,Experimental Renal and Cardiovascular Research, Department of Nephropathology, Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Schwabachanlage 12, 91054 Erlangen, Germany
| | - Gentian Musa
- Experimental Renal and Cardiovascular Research, Department of Nephropathology, Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Schwabachanlage 12, 91054 Erlangen, Germany
| | - Felix Benedikt Engel
- Department of Cardiac Development and Remodelling, Max Planck Institute for Heart and Lung Research, Parkstrasse 1, 61231 Bad Nauheim, Germany.,Experimental Renal and Cardiovascular Research, Department of Nephropathology, Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Schwabachanlage 12, 91054 Erlangen, Germany.,Muscle Research Center Erlangen
| |
Collapse
|
2
|
Sutradhar S, Yadav V, Sridhar S, Sreekumar L, Bhattacharyya D, Ghosh SK, Paul R, Sanyal K. A comprehensive model to predict mitotic division in budding yeasts. Mol Biol Cell 2015; 26:3954-65. [PMID: 26310442 PMCID: PMC4710229 DOI: 10.1091/mbc.e15-04-0236] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 08/14/2015] [Indexed: 12/26/2022] Open
Abstract
A mechanistic in silico model predicts mitotic events and effects of perturbation in budding yeasts belonging to Ascomycota and Basidiomycota. The model identifies distinct pathways based on the population of cytoplasmic microtubules and cortical dyneins as determinants of nuclear and spindle positioning in these phyla. High-fidelity chromosome segregation during cell division depends on a series of concerted interdependent interactions. Using a systems biology approach, we built a robust minimal computational model to comprehend mitotic events in dividing budding yeasts of two major phyla: Ascomycota and Basidiomycota. This model accurately reproduces experimental observations related to spindle alignment, nuclear migration, and microtubule (MT) dynamics during cell division in these yeasts. The model converges to the conclusion that biased nucleation of cytoplasmic microtubules (cMTs) is essential for directional nuclear migration. Two distinct pathways, based on the population of cMTs and cortical dyneins, differentiate nuclear migration and spindle orientation in these two phyla. In addition, the model accurately predicts the contribution of specific classes of MTs in chromosome segregation. Thus we present a model that offers a wider applicability to simulate the effects of perturbation of an event on the concerted process of the mitotic cell division.
Collapse
Affiliation(s)
- Sabyasachi Sutradhar
- Department of Solid State Physics, Indian Association for the Cultivation of Science, Kolkata 700032, India
| | - Vikas Yadav
- Molecular Mycology Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064, India
| | - Shreyas Sridhar
- Molecular Mycology Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064, India
| | - Lakshmi Sreekumar
- Molecular Mycology Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064, India
| | - Dibyendu Bhattacharyya
- Tata Memorial Centre, Advanced Centre for Treatment Research and Education in Cancer, Kharghar, Navi Mumbai 410210, India
| | - Santanu Kumar Ghosh
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Bombay, Powai, Mumbai 400076, India
| | - Raja Paul
- Department of Solid State Physics, Indian Association for the Cultivation of Science, Kolkata 700032, India
| | - Kaustuv Sanyal
- Molecular Mycology Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064, India
| |
Collapse
|
3
|
Anastasia SD, Nguyen DL, Thai V, Meloy M, MacDonough T, Kellogg DR. A link between mitotic entry and membrane growth suggests a novel model for cell size control. ACTA ACUST UNITED AC 2012; 197:89-104. [PMID: 22451696 PMCID: PMC3317797 DOI: 10.1083/jcb.201108108] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Addition of new membrane to the cell surface by membrane trafficking is necessary for cell growth. In this paper, we report that blocking membrane traffic causes a mitotic checkpoint arrest via Wee1-dependent inhibitory phosphorylation of Cdk1. Checkpoint signals are relayed by the Rho1 GTPase, protein kinase C (Pkc1), and a specific form of protein phosphatase 2A (PP2A(Cdc55)). Signaling via this pathway is dependent on membrane traffic and appears to increase gradually during polar bud growth. We hypothesize that delivery of vesicles to the site of bud growth generates a signal that is proportional to the extent of polarized membrane growth and that the strength of the signal is read by downstream components to determine when sufficient growth has occurred for initiation of mitosis. Growth-dependent signaling could explain how membrane growth is integrated with cell cycle progression. It could also control both cell size and morphogenesis, thereby reconciling divergent models for mitotic checkpoint function.
Collapse
Affiliation(s)
- Steph D Anastasia
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | | | | | | | | | | |
Collapse
|
4
|
Saberianfar R, Cunningham-Dunlop S, Karagiannis J. Global gene expression analysis of fission yeast mutants impaired in Ser-2 phosphorylation of the RNA pol II carboxy terminal domain. PLoS One 2011; 6:e24694. [PMID: 21931816 PMCID: PMC3171476 DOI: 10.1371/journal.pone.0024694] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2011] [Accepted: 08/15/2011] [Indexed: 12/29/2022] Open
Abstract
In Schizosaccharomyces pombe the nuclear-localized Lsk1p-Lsc1p cyclin dependent kinase complex promotes Ser-2 phosphorylation of the heptad repeats found within the RNA pol II carboxy terminal domain (CTD). Here, we first provide evidence supporting the existence of a third previously uncharacterized Ser-2 CTD kinase subunit, Lsg1p. As expected for a component of the complex, Lsg1p localizes to the nucleus, promotes Ser-2 phosphorylation of the CTD, and physically interacts with both Lsk1p and Lsc1p in vivo. Interestingly, we also demonstrate that lsg1Δ mutants – just like lsk1Δ and lsc1Δ strains – are compromised in their ability to faithfully and reliably complete cytokinesis. Next, to address whether kinase mediated alterations in CTD phosphorylation might selectively alter the expression of genes with roles in cytokinesis and/or the cytoskeleton, global gene expression profiles were analyzed. Mutants impaired in Ser-2 phosphorylation display little change with respect to the level of transcription of most genes. However, genes affecting cytokinesis – including the actin interacting protein gene, aip1 – as well as genes with roles in meiosis, are included in a small subset that are differentially regulated. Significantly, genetic analysis of lsk1Δ aip1Δ double mutants is consistent with Lsk1p and Aip1p acting in a linear pathway with respect to the regulation of cytokinesis.
Collapse
Affiliation(s)
- Reza Saberianfar
- Department of Biology, University of Western Ontario, London, Ontario, Canada
| | | | - Jim Karagiannis
- Department of Biology, University of Western Ontario, London, Ontario, Canada
- * E-mail:
| |
Collapse
|
5
|
Park SY, Cable AE, Blair J, Stockstill KE, Shannnon KB. Bub2 regulation of cytokinesis and septation in budding yeast. BMC Cell Biol 2009; 10:43. [PMID: 19490645 PMCID: PMC2701927 DOI: 10.1186/1471-2121-10-43] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2009] [Accepted: 06/02/2009] [Indexed: 11/17/2022] Open
Abstract
Background The mitotic exit network (MEN) is required for events at the end of mitosis such as degradation of mitotic cyclins and cytokinesis. Bub2 and its binding partner Bfa1 act as a GTPase activating protein (GAP) to negatively regulate the MEN GTPase Tem1. The Bub2/Bfa1 checkpoint pathway is required to delay the cell cycle in response to mispositioned spindles. In addition to its role in mitotic exit, Tem1 is required for actomyosin ring contraction. Results To test the hypothesis that the Bub2 pathway prevents premature actin ring assembly, we compared the timing of actin ring formation in wild type, bub2Δ, mad2Δ, and bub2Δmad2Δ cells both with and without microtubules. There was no difference in the timing of actin ring formation between wild type and mutant cells in a synchronized cell cycle. In the presence of nocodazole, both bub2Δ and mad2Δ cells formed rings after a delay of the same duration. Double mutant bub2Δmad2Δ and bfa1Δmad2Δ cells formed rings at the same time with and without nocodazole. To determine if Bub2 has an effect on actomyosin ring contraction through its regulation of Tem1, we used live cell imaging of Myo1-GFP in a bub2Δ strain. We found a significant decrease in the total time of contraction and an increase in rate of contraction compared to wild type cells. We also examined myosin contraction using Myo1-GFP in cells overexpressing an epitope tagged Bub2. Surprisingly, overexpression of Bub2 also led to a significant increase in the rate of contraction, as well as morphological defects. The chained cell phenotype caused by Bub2 overexpression could be rescued by co-overexpression of Tem1, and was not rescued by deletion of BFA1. Conclusion Our data indicate that the Bub2 checkpoint pathway does not have a specific role in delaying actin ring formation. The observed increase in the rate of myosin contraction in the bub2Δ strain provides evidence that the MEN regulates actomyosin ring contraction. Our data suggest that the overexpression of the Bub2 fusion protein acts as a dominant negative, leading to septation defects by a mechanism that is Tem1-dependent.
Collapse
Affiliation(s)
- Su Young Park
- Department of Biological Sciences, Missouri University of Science and Technology, Rolla, MO, USA.
| | | | | | | | | |
Collapse
|
6
|
Mukherjee C, Majumder S, Lohia A. Inter-cellular variation in DNA content of Entamoeba histolytica originates from temporal and spatial uncoupling of cytokinesis from the nuclear cycle. PLoS Negl Trop Dis 2009; 3:e409. [PMID: 19352422 PMCID: PMC2659751 DOI: 10.1371/journal.pntd.0000409] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2008] [Accepted: 03/11/2009] [Indexed: 11/19/2022] Open
Abstract
Accumulation of multiple copies of the genome in a single nucleus and several nuclei in a single cell has previously been noted in Entamoeba histolytica, contributing to the genetic heterogeneity of this unicellular eukaryote. In this study, we demonstrate that this genetic heterogeneity is an inherent feature of the cell cycle of this organism. Chromosome segregation occurs on a variety of novel microtubular assemblies including multi-polar spindles. Cytokinesis in E. histolytica is completed by the mechanical severing of a thin cytoplasmic bridge, either independently or with the help of neighboring cells. Importantly, cytokinesis is uncoupled from the nuclear division cycle, both temporally and spatially, leading to the formation of unequal daughter cells. Sorting of euploid and polyploid cells showed that each of these sub-populations acquired heterogeneous DNA content upon further growth. Our study conclusively demonstrates that genetic heterogeneity originates from the unique mode of cell division events in this protist. Proliferating eukaryotic cells regulate their DNA synthesis, chromosome segregation, and cell division with great precision so that daughter cells are genetically identical. Our study demonstrates that in proliferating cells of the protist pathogen Entamoeba histolytica re-duplication of DNA followed by segregation on atypical and diverse microtubular structures is frequently observed. In this parasite, cell division is erratic, so that each daughter cell may contain one or more nuclei and sometimes no nuclei. This uncoupling of cell cycle events and survival of daughter cells with unequal DNA contents leads to genetic heterogeneity in E. histolytica. Our study highlights the inherent plasticity of the Entamoeba genome and the ability of this protist to survive in the absence of strict regulatory mechanisms that are a hallmark of the eukaryotic cell cycle.
Collapse
Affiliation(s)
| | | | - Anuradha Lohia
- Department of Biochemistry, Bose Institute, Kolkata, India
- * E-mail:
| |
Collapse
|
7
|
Martín-Cuadrado AB, Encinar del Dedo J, de Medina-Redondo M, Fontaine T, del Rey F, Latgé JP, Vázquez de Aldana CR. The Schizosaccharomyces pombe endo-1,3-beta-glucanase Eng1 contains a novel carbohydrate binding module required for septum localization. Mol Microbiol 2008; 69:188-200. [PMID: 18466295 DOI: 10.1111/j.1365-2958.2008.06275.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cell separation in Schizosaccharomyces pombe is achieved through the concerted action of the Eng1 endo-beta-1,3-glucanase and the Agn1 endo-alpha-1,3-glucanase, which are transported to the septum and localize to a ring-like structure that surrounds the septum. Correct localization of these hydrolases requires the presence of both the septins and the exocyst. In this work, we show that the glucanase Eng1 contains a region at the C-terminus that acts as a carbohydrate-binding module (CBM) and that it is not present in other members of glycoside hydrolases family 81 (GH81). In vitro, the purified CBM has affinity for beta-1,3-glucan chains with a minimum degree of polymerization of 30 glucose units. Deletion of the CBM results in a protein that is largely defective in complementing the separation defect of eng1Delta mutants. This defect is due to a reduction in the catalytic activity against insoluble substrates and to a defect in targeting of Eng1 to the septum, as the truncated protein localizes to the lateral cell wall of the cell. Thus, the targeting of Eng1 to the primary septum requires not only trans-factors (septins and the exocyst complex) but also a cis-element localized to the C-terminus of the protein.
Collapse
Affiliation(s)
- Ana Belén Martín-Cuadrado
- Instituto de Microbiología Bioquímica, Dpto. Microbiología y Genética, CSIC/Universidad de Salamanca, Campus Miguel de Unamuno 37007, Salamanca, Spain
| | | | | | | | | | | | | |
Collapse
|
8
|
Characterisation of Aspergillus nidulans polarisome component BemA. Fungal Genet Biol 2007; 45:897-911. [PMID: 18234530 DOI: 10.1016/j.fgb.2007.12.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2007] [Revised: 11/30/2007] [Accepted: 12/03/2007] [Indexed: 11/22/2022]
Abstract
BemA, the orthologue of Saccharomyces cerevisiae Bem1p, was identified through genome sequence comparison. We have shown that it plays a similar role to Bem1p in yeast, acting as a cell growth protein. Deletion of the gene produced a moderately abnormal hyphal tip morphology, and had an extremely detrimental effect on conidiospore production, with development stalling after conidiophore vesicle production. It was also shown that BemA is required for vacuole fusion, similar to Bem1p. This role is dependent on the first SH3 domain of the protein, whose deletion has no detectable effect on cell growth. Localisation studies showed that BemA formed a clear cap at hyphal tips, analogous to the S. cerevisiae polarisome. The relationship between BemA and SepA, a spitzenkörper protein, was investigated. It was found that localisation of the proteins were interdependent, and a conditional double mutant was inviable.
Collapse
|
9
|
Fernández de Mattos S, Alemany V, Aligué R, Tauler A. Increase in Fru-2,6-P(2) levels results in altered cell division in Schizosaccharomyces pombe. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2007; 1783:144-52. [PMID: 17900713 DOI: 10.1016/j.bbamcr.2007.07.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2007] [Revised: 07/17/2007] [Accepted: 07/18/2007] [Indexed: 11/18/2022]
Abstract
Mitogenic response to growth factors is concomitant with the modulation they exert on the levels of Fructose 2,6-bisphosphate (Fru-2,6-P2), an essential activator of the glycolytic flux. In mammalian cells, decreased Fru-2,6-P2 concentration causes cell cycle delay, whereas high levels of Fru-2,6-P2 sensitize cells to apoptosis. In order to analyze the cell cycle consequences due to changes in Fru-2,6-P2 levels, the bisphosphatase-dead mutant (H258A) of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase enzyme was over-expressed in Schizosaccharomyces pombe cells and the variation in cell phenotype was studied. The results obtained demonstrate that the increase in Fru-2,6-P2 levels results in a defective division of S. pombe, as revealed by an altered multisepted phenotype. The H258A-expressing cells showed impairment of cytokinesis, but normal nuclear division. In order to identify cellular mediators responsible for this effect, we transformed different S. pombe strains and observed that the cytokinetic defect was absent in cells defective for Wee1 kinase function. Therefore, in S. pombe, Wee1 integrates the metabolic signal emerging from changes in Fru-2,6-P2 content, thus coupling metabolism with cell proliferation. As the key regulators of the cell cycle checkpoints are conserved throughout evolution, these results may help to understand the experimental evidences obtained by manipulation of Fru-2,6-P2 levels in mammalian cells.
Collapse
Affiliation(s)
- Silvia Fernández de Mattos
- Cancer Cell Biology and Translational Oncology Group, Institut Universitari d'Investigació en Ciències de la Salut, Departament de Biologia Fonamental, Universitat de les Illes Balears, Illes Balears, Spain.
| | | | | | | |
Collapse
|
10
|
Cukier IH, Li Y, Lee JM. Cyclin B1/Cdk1 binds and phosphorylates Filamin A and regulates its ability to cross-link actin. FEBS Lett 2007; 581:1661-72. [PMID: 17408621 DOI: 10.1016/j.febslet.2007.03.041] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2007] [Revised: 02/19/2007] [Accepted: 03/14/2007] [Indexed: 01/13/2023]
Abstract
Substantial actin remodelling occurs prior to mitosis as cells alter their shape in preparation for cytokinesis. In mammalian cells, mitosis is initiated by a heterodimer of cyclin B1 and the cyclin dependent kinase 1 (Cdk1) serine/threonine kinase. In this report. we show that human cyclin B1 binds the actin cross-linking protein Filamin-A (FLNa). The proteins co-immunoprecipitate and co-localize in mitotic human cells. We find that cyclin B1/Cdk1 can phosphorylate FLNa in vitro and reduce its ability to gelate actin. We have also identified serine 1436 as one FLNa residue phosphorylated by cyclin B1/Cdk1 in vitro. Our results suggest a role for cyclin B1/Cdk1 in FLNa-dependent actin remodelling.
Collapse
Affiliation(s)
- I Howard Cukier
- Juravinski Cancer Centre and Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | | | | |
Collapse
|
11
|
Csikász-Nagy A, Kapuy O, Gyorffy B, Tyson JJ, Novák B. Modeling the septation initiation network (SIN) in fission yeast cells. Curr Genet 2007; 51:245-55. [PMID: 17340144 DOI: 10.1007/s00294-007-0123-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2006] [Revised: 01/16/2007] [Accepted: 01/30/2007] [Indexed: 12/01/2022]
Abstract
Cytokinesis in fission yeast is controlled by a signal transduction pathway called the Septation Initiation Network (SIN). From a dynamical point of view the most interesting questions about the regulation of fission yeast cytokinesis are: how do wild type cells ensure that septation is initiated only once per cycle? Why does the control system stay in a continuously septating state in some mutant strains? And how is it that the SIN remains active when cytokinesis fails? To answer these questions we construct a simplified mathematical model of the SIN and graft this regulatory module onto our previous model of cyclin-dependent kinase (Cdk) dynamics in fission yeast cells. The SIN is both activated and inhibited by mitotic Cdk/cyclin complexes. As a consequence of this dual regulation, the SIN gets activated only once at the end of mitosis, when Cdk activity drops. The mathematical model describes the timing of septation not only in wild type cells but also in mutants where components of the SIN are knocked out. The model predicts phenotypes of some uncharacterized mutant cells and shows how a cytokinesis checkpoint can stop the cell cycle if septation fails.
Collapse
Affiliation(s)
- Attila Csikász-Nagy
- Materials Structure and Modeling Research Group of the Hungarian Academy of Sciences and Department of Applied Biotechnology and Food Science, Budapest University of Technology and Economics, 1111, Budapest, Szt. Gellért tér 4, Hungary.
| | | | | | | | | |
Collapse
|
12
|
La Carbona S, Le Goff X. Spatial regulation of cytokinesis by the Kin1 and Pom1 kinases in fission yeast. Curr Genet 2006; 50:377-91. [PMID: 16988828 DOI: 10.1007/s00294-006-0099-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2006] [Revised: 08/28/2006] [Accepted: 08/29/2006] [Indexed: 10/24/2022]
Abstract
Cytokinesis requires a tight spatio-temporal coordination with mitosis to ensure proper segregation of the genetic information during cell division. In fission yeast, an actomyosin contractile ring is assembled in mitosis and dictates the site of cytokinesis. Here we investigated the functions of Kin1 and Pom1, two conserved fission yeast kinases, in cell division. We found that kin1Delta is synthetically lethal with pom1Delta because double mutant cells fail to spatially organize the actomyosin ring during mitosis, leading to aberrant septum synthesis and accumulation of post-mitotic nuclei in the same cell compartment. Assembly of an Rlc1-GFP ring in the cell center at mitosis is also compromised. Similar cytokinetic defects are observed in a tea1Delta kin1Delta mutant. Furthermore, aberrant septation and nuclear accumulation are observed in a pom1Delta strain in which the Kin1 level is either down or up-regulated. Thus, a tight control of Kin1 level is critical for ensuring accurate cell division in a pom1Delta background. Since none of the kinases can substitute for each other, Kin1 and Pom1 have distinct complementary functions. We show that Kin1 is required for F-actin polarization in interphase and after completion of mitosis and this function may be essential for cytokinesis in a pom1Delta background.
Collapse
Affiliation(s)
- Stéphanie La Carbona
- CNRS UMR 6061 Génétique et Développement, Université de Rennes 1, IFR140 Génétique Fonctionnelle, Agronomie et Santé, Faculté de Médecine, 2 avenue du Pr Léon Bernard, CS 34317, 35043, Rennes Cedex, France.
| | | |
Collapse
|
13
|
Ng SS, Papadopoulou K, McInerny CJ. Regulation of gene expression and cell division by Polo-like kinases. Curr Genet 2006; 50:73-80. [PMID: 16691419 DOI: 10.1007/s00294-006-0077-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2006] [Revised: 04/11/2006] [Accepted: 04/13/2006] [Indexed: 01/31/2023]
Abstract
Much scientific research has focused on characterising regulatory pathways and mechanisms responsible for cell integrity, growth and division. This area of study is of direct relevance to human medicine as uncontrolled growth and division underlies many diseases, most strikingly cancer. In cancer cells, normal regulatory mechanisms for growth and division are often altered, or even fail to exist. This review summarises the mechanisms that control the genes and gene products regulating cytokinesis and cell separation in the fission yeast Schizosaccharomyces pombe, as well as highlighting conserved aspects in the budding yeast Saccharomyces cerevisiae and higher eukaryotes. Particular emphasis is put on the role of gene expression, the Polo-like kinases (Plks), and the signal transduction pathways that control these processes.
Collapse
Affiliation(s)
- Szu Shien Ng
- Division of Biochemistry and Molecular Biology, Institute of Biomedical and Life Sciences, University of Glasgow, Scotland, UK
| | | | | |
Collapse
|
14
|
Donoso I, Muñoz-Centeno MC, Sànchez-Durán MA, Flores A, Daga RR, Guevara CM, Bejarano ER. Mpg1, a fission yeast protein required for proper septum structure, is involved in cell cycle progression through cell-size checkpoint. Mol Genet Genomics 2005; 274:155-67. [PMID: 16049679 DOI: 10.1007/s00438-005-0005-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2004] [Accepted: 04/29/2005] [Indexed: 11/25/2022]
Abstract
Using a yeast two-hybrid screen we isolated a gene from Schizosaccharomyces pombe which corresponds to the previously uncharacterized ORF SPCC1906.01. We have designated this gene as mpg1, based on the putative function of its product as a mannose-1-phosphatase guanyltransferase. Mpg1 shows strong similarity to other GDP-mannose-1-phosphate guanyltransferases involved in the maintenance of cell wall integrity and/or glycosylation. This homology, together with the protein's localization pattern demonstrated in this work, strongly suggests that Mpg1 is involved in cell wall and septum synthesis. Moreover, cells lacking Mpg1 present a defect in glycosylation, are more sensitive to Lyticase, and show an aberrant septum structure from the start of its deposition, indicating that the Mpg1 function is necessary for the correct assembly of the septum. Interestingly, lack of Mpg1 clearly affects cell cycle progression: mpg1 null mutants arrest as septated and bi-nucleated 4C cells, without an actomyosin ring. Wee1 is required for the G2/M arrest induced in the absence of Mpg1, since the blockade is circumvented when Wee1 is inactivated. Wee1 is part of a cell-size checkpoint that prevents entry into mitosis before cells reach a critical size. The results presented in this work demonstrate that the G2/M arrest induced in the absence of Mpg1 is mediated by this cell size checkpoint, since oversized mutant cells enter mitosis. The mpg1 loss-of-function mutant, therefore, provides a good model in which to study how cells coordinate cell growth and cell division.
Collapse
Affiliation(s)
- I Donoso
- Departamento de Biología Celular, Genética y Fisiología, Universidad de Málaga, Campus de Teatinos, 29071 Málaga, Spain
| | | | | | | | | | | | | |
Collapse
|
15
|
Van Damme D, Bouget FY, Van Poucke K, Inzé D, Geelen D. Molecular dissection of plant cytokinesis and phragmoplast structure: a survey of GFP-tagged proteins. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2004; 40:386-98. [PMID: 15469496 DOI: 10.1111/j.1365-313x.2004.02222.x] [Citation(s) in RCA: 150] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
To identify molecular players implicated in cytokinesis and division plane determination, the Arabidopsis thaliana genome was explored for potential cytokinesis genes. More than 100 open reading frames were selected based on similarity to yeast and animal cytokinesis genes, cytoskeleton and polarity genes, and Nicotiana tabacum genes showing cell cycle-controlled expression. The subcellular localization of these proteins was determined by means of GFP tagging in tobacco Bright Yellow-2 cells and Arabidopsis plants. Detailed confocal microscopy identified 15 proteins targeted to distinct regions of the phragmoplast and the cell plate. EB1- and MAP65-like proteins were associated with the plus-end, the minus-end, or along the entire length of microtubules. The actin-binding protein myosin, the kinase Aurora, and a novel cell cycle protein designated T22, accumulated preferentially at the midline. EB1 and Aurora, in addition to other regulatory proteins (homologs of Mob1, Sid1, and Sid2), were targeted to the nucleus, suggesting that this organelle operates as a coordinating hub for cytokinesis.
Collapse
Affiliation(s)
- Daniël Van Damme
- Department of Plant Systems Biology, Flanders Interuniversity Institute for Biotechnology, Ghent University, Technologiepark 927, B-9052 Gent, Belgium
| | | | | | | | | |
Collapse
|
16
|
Motegi F, Mishra M, Balasubramanian MK, Mabuchi I. Myosin-II reorganization during mitosis is controlled temporally by its dephosphorylation and spatially by Mid1 in fission yeast. ACTA ACUST UNITED AC 2004; 165:685-95. [PMID: 15184401 PMCID: PMC2172373 DOI: 10.1083/jcb.200402097] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Cytokinesis in many eukaryotes requires an actomyosin contractile ring. Here, we show that in fission yeast the myosin-II heavy chain Myo2 initially accumulates at the division site via its COOH-terminal 134 amino acids independently of F-actin. The COOH-terminal region can access to the division site at early G2, whereas intact Myo2 does so at early mitosis. Ser1444 in the Myo2 COOH-terminal region is a phosphorylation site that is dephosphorylated during early mitosis. Myo2 S1444A prematurely accumulates at the future division site and promotes formation of an F-actin ring even during interphase. The accumulation of Myo2 requires the anillin homologue Mid1 that functions in proper ring placement. Myo2 interacts with Mid1 in cell lysates, and this interaction is inhibited by an S1444D mutation in Myo2. Our results suggest that dephosphorylation of Myo2 liberates the COOH-terminal region from an intramolecular inhibition. Subsequently, dephosphorylated Myo2 is anchored by Mid1 at the medial cortex and promotes the ring assembly in cooperation with F-actin.
Collapse
Affiliation(s)
- Fumio Motegi
- Division of Biology, Department of Life Sciences, Graduate School of Arts and Science, University of Tokyo, Komaba, Meguro-ku, Tokyo 153-8902, Japan
| | | | | | | |
Collapse
|
17
|
Esteban V, Blanco M, Cueille N, Simanis V, Moreno S, Bueno A. A role for the Cdc14-family phosphatase Flp1p at the end of the cell cycle in controlling the rapid degradation of the mitotic inducer Cdc25p in fission yeast. J Cell Sci 2004; 117:2461-8. [PMID: 15128870 DOI: 10.1242/jcs.01107] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Schizosaccaromyces pombe protein Flp1p belongs to a conserved family of serine-threonine-phosphatases. The founding member of this family, Saccharomyces cerevisiae Cdc14p, is required for inactivation of mitotic CDKs and reversal of CDK mediated phosphorylation at the end of mitosis, thereby bringing about the M-G1 transition. Initial studies of Flp1p suggest that it may play a different role to Cdc14p. Here we show that Flp1p is required for rapid degradation of the mitotic inducer Cdc25p at the end of mitosis, and that Cdc25p is a substrate of Flp1p in vitro. Down-regulation of Cdc25p activity by Flp1p may ensure a prompt inactivation of mitotic CDK complexes to trigger cell division. Our results suggest a regulatory mechanism, and a universal role, for Cdc14p like proteins in coordination of cytokinesis with other cell cycle events.
Collapse
Affiliation(s)
- Verónica Esteban
- Departamento de Microbiología y Genética, Campus Miguel de Unamuno, Universidad de Salamanca/CSIC, 37007 Salamanca, Spain
| | | | | | | | | | | |
Collapse
|
18
|
Carmichael JB, Provost P, Ekwall K, Hobman TC. ago1 and dcr1, two core components of the RNA interference pathway, functionally diverge from rdp1 in regulating cell cycle events in Schizosaccharomyces pombe. Mol Biol Cell 2003; 15:1425-35. [PMID: 14699070 PMCID: PMC363162 DOI: 10.1091/mbc.e03-06-0433] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
In the fission yeast Schizosaccharomyces pombe, three genes that function in the RNA interference (RNAi) pathway, ago1+, dcr1+, and rdp1+, have recently been shown to be important for timely formation of heterochromatin and accurate chromosome segregation. In the present study, we present evidence that null mutants for ago1+ and dcr1+ but not rdp1+, exhibit abnormal cytokinesis, cell cycle arrest deficiencies, and mating defects. Subsequent analyses showed that ago1+ and dcr1+ are required for regulated hyperphosphorylation of Cdc2 when encountering genotoxic insults. Because rdp1+ is dispensable for this process, the functions of ago1+ and dcr1+ in this pathway are presumably independent of their roles in RNAi-mediated heterochromatin formation and chromosome segregation. This was further supported by the finding that ago1+ is a multicopy suppressor of the S-M checkpoint deficiency and cytokinesis defects associated with loss of Dcr1 function, but not for the chromosome segregation defects of this mutant. Accordingly, we conclude that Dcr1-dependent production of small interfering RNAs is not required for enactment and/or maintenance of certain cell cycle checkpoints and that Ago1 and Dcr1 functionally diverge from Rdp1 to control cell cycle events in fission yeast. Finally, exogenous expression of hGERp95/EIF2C2/hAgo2, a human Ago1 homolog implicated in posttranscriptional gene silencing, compensated for the loss of ago1+ function in S. pombe. This suggests that PPD proteins may also be important for regulation of cell cycle events in higher eukaryotes.
Collapse
Affiliation(s)
- Jon B Carmichael
- Department of Cell Biology, University of Alberta, Edmonton, Alberta, Canada T6G 2H7
| | | | | | | |
Collapse
|
19
|
Abstract
Cytokinesis is the ultimate step of a cell cycle resulting in the generation of two progeny. Failure of correct cell division may be lethal for both, mother and daughter cells, and thus such a process must be tightly regulated with other events of the cell cycle. Differing solutions to the same problem have been developed in bacteria and plants while cytokinesis in animal and fungal cells is highly similar and requires a contractile ring containing actomyosin. Cytokinesis in fungi can be viewed as a three-stage process: (i) selection of a division site, (ii) orderly assembly of protein complexes, and finally (iii) dynamic events that lead to a constriction of the contractile ring and septum construction. Elaborate mechanisms known as the Mitotic Exit Network (MEN) and the Septation Initiation Network (SIN) have evolved to link these events, particularly the final steps of cytokinesis, with nuclear division. The purpose of this review was to discuss the latest developments in the fungal field and to describe the central known players required for key steps on the road to cell division. Differences in the cytokinesis of yeast-like fungi that result in complete cell separation in contrast to septation which leads to the compartmentalization of fungal hyphae are highlighted.
Collapse
Affiliation(s)
- Andrea Walther
- Department of Microbiology, Hans-Knöll Institute, Friedrich-Schiller University Jena, Winzerlaer, Germany
| | | |
Collapse
|
20
|
Hwa Lim H, Yeong FM, Surana U. Inactivation of mitotic kinase triggers translocation of MEN components to mother-daughter neck in yeast. Mol Biol Cell 2003; 14:4734-43. [PMID: 12937277 PMCID: PMC266787 DOI: 10.1091/mbc.e03-04-0238] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Chromosome segregation, mitotic exit, and cytokinesis are executed in this order during mitosis. Although a scheme coordinating sister chromatid separation and initiation of mitotic exit has been proposed, the mechanism that temporally links the onset of cytokinesis to mitotic exit is not known. Exit from mitosis is regulated by the mitotic exit network (MEN), which includes a GTPase (Tem1) and various kinases (Cdc15, Cdc5, Dbf2, and Dbf20). Here, we show that Dbf2 and Dbf20 functions are necessary for the execution of cytokinesis. Relocalization of these proteins from spindle pole bodies to mother daughter neck seems to be necessary for this role because cdc15-2 mutant cells, though capable of exiting mitosis at semipermissive temperature, are unable to localize Dbf2 (and Dbf20) to the "neck" and fail to undergo cytokinesis. These cells can assemble and constrict the actomyosin ring normally but are incapable of forming a septum, suggesting that MEN components are critical for the initiation of septum formation. Interestingly, the spindle pole body to neck translocation of Dbf2 and Dbf20 is triggered by the inactivation of mitotic kinase. The requirement of kinase inactivation for translocation of MEN components to the division site thus provides a mechanism that renders mitotic exit a prerequisite for cytokinesis.
Collapse
Affiliation(s)
- Hong Hwa Lim
- Institute of Molecular and Cell Biology, Singapore 117609
| | | | | |
Collapse
|
21
|
Carnahan RH, Gould KL. The PCH family protein, Cdc15p, recruits two F-actin nucleation pathways to coordinate cytokinetic actin ring formation in Schizosaccharomyces pombe. J Cell Biol 2003; 162:851-62. [PMID: 12939254 PMCID: PMC2172828 DOI: 10.1083/jcb.200305012] [Citation(s) in RCA: 136] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Cytokinetic actin ring (CAR) formation in Schizosaccharomyces pombe requires two independent actin nucleation pathways, one dependent on the Arp2/3 complex and another involving the formin Cdc12p. Here we investigate the role of the S. pombe Cdc15 homology family protein, Cdc15p, in CAR assembly and find that it interacts with proteins from both of these nucleation pathways. Cdc15p binds directly to the Arp2/3 complex activator Myo1p, which likely explains why actin patches and the Arp2/3 complex fail to be medially recruited during mitosis in cdc15 mutants. Cdc15p also binds directly to Cdc12p. Cdc15p and Cdc12p not only display mutual dependence for CAR localization, but also exist together in a ring-nucleating structure before CAR formation. The disruption of these interactions in cdc15 null cells is likely to be the reason for their complete lack of CARs. We propose a model in which Cdc15p plays a critical role in recruiting and coordinating the pathways essential for the assembly of medially located F-actin filaments and construction of the CAR.
Collapse
Affiliation(s)
- Robert H Carnahan
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | | |
Collapse
|
22
|
Paoletti A, Bordes N, Haddad R, Schwartz CL, Chang F, Bornens M. Fission yeast cdc31p is a component of the half-bridge and controls SPB duplication. Mol Biol Cell 2003; 14:2793-808. [PMID: 12857865 PMCID: PMC165677 DOI: 10.1091/mbc.e02-10-0661] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The fission yeast spindle pole body (SPB) is a nucleus-associated organelle that duplicates once each cell cycle during interphase. Duplicated SPBs serve as the poles of an intranuclear mitotic spindle after their insertion into the nuclear envelope in mitosis (Ding et al., Mol. Biol. Cell 8, 1461-1479). Here, we report the identification and characterization of Schizosaccharomyces pombe cdc31p, a member of the conserved calcium-binding centrin/CDC31 family. Immunofluorescence and immunoelectron microscopy show that cdc31p is a SPB component localized at the half-bridge structure of the SPB. cdc31 is an essential gene and Deltacdc31 cells and cdc31 conditional mutant cells arrest in mitosis with a monopolar mitotic spindle organized from a single SPB. EM analysis demonstrates that mutant cdc31 cells fail to duplicate the SPB. In addition, cdc31p exhibits genetic interactions with the SPB component sad1p and is required for sad1p localization. Finally, cdc31 mutant can undergo single or multiple rounds of septation before the exit from mitosis, suggesting that cdc31p activity or SPB duplication may be required for the proper coordination between the exit from mitosis and the initiation of septation.
Collapse
|
23
|
Pardo M, Nurse P. Equatorial retention of the contractile actin ring by microtubules during cytokinesis. Science 2003; 300:1569-74. [PMID: 12791993 DOI: 10.1126/science.1084671] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
In most eukaryotes cytokinesis is brought about by a contractile actin ring located at the division plane. Here, in fission yeast the actin ring was found to be required to generate late-mitotic microtubular structures located at the division plane, and these in turn maintained the medial position of the actin ring. When these microtubular structures were disrupted, the actin ring migrated away from the cell middle in a membrane traffic-dependent manner, resulting in asymmetrical cell divisions that led to genomic instability. We propose that these microtubular structures contribute to a checkpoint control that retains the equatorial position of the ring when progression through cytokinesis is delayed.
Collapse
Affiliation(s)
- Mercedes Pardo
- Cell Cycle Laboratory, Cancer Research UK London Research Institute, 44 Lincoln's Inn Fields, London WC2A 3PX, UK.
| | | |
Collapse
|
24
|
Martín-Cuadrado AB, Dueñas E, Sipiczki M, Vázquez de Aldana CR, del Rey F. The endo-beta-1,3-glucanase eng1p is required for dissolution of the primary septum during cell separation in Schizosaccharomyces pombe. J Cell Sci 2003; 116:1689-98. [PMID: 12665550 DOI: 10.1242/jcs.00377] [Citation(s) in RCA: 141] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Schizosaccharomyces pombe cells divide by medial fission throughout contraction of an actomyosin ring and deposition of a multilayered division septum that must be cleaved to release the two daughter cells. Although many studies have focused on the actomoysin ring and septum assembly, little information is available concerning the mechanism of cell separation. Here we describe the characterization of eng1+, a new gene that encodes a protein with detectable endo-beta-1,3-glucanase activity and whose deletion is not lethal to the cells but does interfere in their separation. Electron microscopic observation of mutant cells indicated that this defect is mainly due to the failure of the cells to degrade the primary septum, a structure rich in beta-1,3-glucans, that separates the two sisters cells. Expression of eng1+ varies during the cell cycle, maximum expression being observed before septation, and the protein localizes to a ring-like structure that surrounds the septum region during cell separation. This suggests that it could also be involved in the cleavage of the cylinder of the cell wall that covers the division septum. The expression of eng1+ during vegetative growth is regulated by a C2H2 zinc-finger protein (encoded by the SPAC6G10.12c ORF), which shows significant sequence similarity to the Saccharomyces cerevisiae ScAce2p, especially in the zinc-finger region. Mutants lacking this transcriptional regulator (which we have named ace2+) show a severe cell separation defect, hyphal growth being observed. Thus, ace2p may regulate the expression of the eng1+ gene together with that of other genes whose products are also involved in cell separation.
Collapse
Affiliation(s)
- Ana Belén Martín-Cuadrado
- Instituto de Microbiología Bioquímica, Departamento de Microbiología y Genética, CSIC/ Universidad de Salamanca, Campus Miguel de Unamuno, 37007 Salamanca, Spain
| | | | | | | | | |
Collapse
|
25
|
Kopecká M, Gabriel M, Takeo K, Yamaguchi M, Svoboda A, Hata K. Analysis of microtubules and F-actin structures in hyphae and conidia development of the opportunistic human pathogenic black yeast Aureobasidium pullulans. MICROBIOLOGY (READING, ENGLAND) 2003; 149:865-876. [PMID: 12686629 DOI: 10.1099/mic.0.26006-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Organization of the cytoskeleton was studied in the ascomycetous black yeast Aureobasidium pullulans, an opportunistic human pathogen, in an effort to present it as a potential target of antifungal therapy. Long cytoplasmic microtubules, extending along the hyphae from the base to the growing apex, were the dominant structures in multinucleate interphase cells. Before mitosis these microtubules disappeared and were replaced by intranuclear spindles. This reorganization of microtubules occurred along the whole length of hypha before synchronous division of the nuclei. Actin cytokinetic rings were rarely seen. Cortical actin in the form of patches accumulated in areas of cell wall growth, i.e. in the hyphal apex and near the occasionally formed septum. Actin cables were not seen. During synchronous conidiogenesis, the cytoplasmic microtubules extended along developing conidia, and actin patches lined their subcortical areas. Actin rings were formed regularly at the base of uninuclear conidia. Microtubule inhibitor methyl benzimidazol-2-ylcarbamate disintegrated the microtubules, and inhibited nuclear division, development of hyphae and conidiogenesis. Actin inhibitor Cytochalasin D induced swelling of hyphal apexes and developing conidia. This inhibitory activity ceased after 5 to 12 h when the occasional septa appeared and conidiogenesis was completed. The lack of unicellular organization in multinucleate hyphae of A. pullulans seems be related to a rarity of F-actin structures: i.e. absence of actin cables, the lack of actin cytokinetic rings in particular, resulting in the uncoupling of the nuclear division from cytokinesis; the association of both processes is, however, retained during conidiogenesis.
Collapse
Affiliation(s)
- Marie Kopecká
- Research Center for Pathogenic Fungi and Microbial Toxicoses, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8673, Japan
- Department of Biology, Faculty of Medicine, Masaryk University, Joštova 10, Brno 66243, Czech Republic
| | - Miroslav Gabriel
- Department of Biology, Faculty of Medicine, Masaryk University, Joštova 10, Brno 66243, Czech Republic
| | - Kanji Takeo
- Research Center for Pathogenic Fungi and Microbial Toxicoses, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8673, Japan
| | - Masashi Yamaguchi
- Research Center for Pathogenic Fungi and Microbial Toxicoses, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8673, Japan
| | - Augustin Svoboda
- Department of Biology, Faculty of Medicine, Masaryk University, Joštova 10, Brno 66243, Czech Republic
| | - Kunihiko Hata
- Research Center for Pathogenic Fungi and Microbial Toxicoses, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8673, Japan
| |
Collapse
|
26
|
Lohia A. Midwifery and assisted reproduction in Dictyostelium and Entamoeba. J Biosci 2003; 28:139-40. [PMID: 12711803 DOI: 10.1007/bf02706210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Anuradha Lohia
- Department of Biochemistry, Bose Institute, Kolkata 700 054, India.
| |
Collapse
|
27
|
Wang H, Oliferenko S, Balasubramanian MK. Cytokinesis: relative alignment of the cell division apparatus and the mitotic spindle. Curr Opin Cell Biol 2003; 15:82-7. [PMID: 12517708 DOI: 10.1016/s0955-0674(02)00006-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The cell division apparatus is assembled at different stages of the cell cycle in different eukaryotic organisms. Mechanisms exist in all organisms, however, to ensure that the cell division apparatus and the mitotic spindle are aligned perpendicular to each other. Such an alignment ensures that each daughter cell receives a nucleus and that the cell division apparatus does not cleave and destroy the genetic material. The interaction(s) of astral microtubules with the cell cortex appears to play an important role in establishing perpendicularity between chromosome segregation and cell division machinery.
Collapse
Affiliation(s)
- Hongyan Wang
- Temasek Life Sciences Laboratory, 1 Research Link, The National University of Singapore, Singapore 117604, Singapore
| | | | | |
Collapse
|
28
|
Szilágyi Z, Grallert A, Zilahi E, Sipiczki M. Isolation and characterization of fission yeast genes involved in transcription regulation of cell cycle events (a short communication). Acta Microbiol Immunol Hung 2003; 49:285-7. [PMID: 12109160 DOI: 10.1556/amicr.49.2002.2-3.16] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- Zs Szilágyi
- Department of Genetics and Molecular Biology, University of Debrecen, PO. Box 56, H-4010 Debrecen, Hungary
| | | | | | | |
Collapse
|
29
|
Sánchez R, Alagón A, Stock RP. Entamoeba histolytica: intracellular distribution of the proteasome. Exp Parasitol 2002; 102:187-90. [PMID: 12856315 DOI: 10.1016/s0014-4894(03)00055-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We have studied the intracellular distribution of proteasome subunits, corresponding to the catalytic (20S) core and the regulatory (19S) cap, in the extracellular protozoan parasite Entamoeba histolytica. Contrary to all cell types described to date, notably mammalian and yeast, in which the proteasome is found in the nucleus and actively imported into it, microscopic analysis and subcellular fractionation of E. histolytica trophozoites show that the proteasome is absent from the nucleus of these cells. We speculate that, given the relative abundance of mono- and multinucleated trophozoites in culture, a relationship may exist between this unusual distribution of the proteasome and the frequent lack of synchrony between karyo- and cytokinesis in this primitive eukaryote.
Collapse
Affiliation(s)
- Ricardo Sánchez
- Instituto de Biotechnología, Universidad Nacional Autónoma de México, Avenida Universidad 2001, Cuernavaca, Morelos 62210, Mexico
| | | | | |
Collapse
|
30
|
Cortés JCG, Ishiguro J, Durán A, Ribas JC. Localization of the (1,3)beta-D-glucan synthase catalytic subunit homologue Bgs1p/Cps1p from fission yeast suggests that it is involved in septation, polarized growth, mating, spore wall formation and spore germination. J Cell Sci 2002; 115:4081-96. [PMID: 12356913 DOI: 10.1242/jcs.00085] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Schizosaccharomyces pombe Bgs1p/Cps1p has been identified as a putative (1,3)beta-D-glucan synthase (GS) catalytic subunit with a possible function during cytokinesis and polarized growth. To study this possibility, double mutants of cps1-12 and cdc septation mutants were made. The double mutants displayed several hypersensitive phenotypes and altered actin distribution. Epistasis analysis showed mutations prior to septum synthesis were dominant over cps1-12, while cps1-12 was dominant over the end of septation mutant cdc16-116, suggesting Bgs1p is involved in septum cell-wall (1,3)beta-D-glucan synthesis at cytokinesis. We have studied the in vivo physiological localization of Bgs1p in a bgs1delta strain containing a functional GFP-bgs1(+) gene (integrated single copy and expressed under its own promoter). During vegetative growth, Bgs1p always localizes to the growing zones: one or both ends during cell growth and contractile ring and septum during cytokinesis. Bgs1p localization in cdc septation mutants indicates that Bgs1p needs the medial ring and septation initiation network (SIN) proteins to localize properly with the rest of septation components. Bgs1p localization in the actin mutant cps8-188 shows it depends on actin localization. In addition, Bgs1p remains polarized in the mislocalized growing poles and septa of tea1-1 and tea2-1 mutants. During the meiotic process of the life cycle, Bgs1p localizes to the mating projection, to the cell-to-cell contact zone during cell fusion and to the neck area during zygote formation. Also, Bgs1p localization suggests that it collaborates in forespore and spore wall synthesis. During spore germination, Bgs1p localizes first around the spore during isotropic growth, then to the zone of polarized growth and finally, to the medial ring and septum. At the end of spore-cell division, the Bgs1p displacement to the old end occurs only in the new cell. All these data show that Bgs1p is localized to the areas of polarized cell wall growth and so we propose that it might be involved in synthesizing the lineal (1,3)beta-D-glucan of the primary septum, as well as a similar lineal (1,3)beta-D-glucan when other processes of cell wall growth or repair are needed.
Collapse
Affiliation(s)
- Juan Carlos G Cortés
- Departamento de Microbiología y Genética, Consejo Superior de Investigaciones Científicas (CSIC)/Universidad de Salamanca, 37007 Salamanca, Spain
| | | | | | | |
Collapse
|
31
|
Lu Y, Sugiura R, Yada T, Cheng H, Sio SO, Shuntoh H, Kuno T. Calcineurin is implicated in the regulation of the septation initiation network in fission yeast. Genes Cells 2002; 7:1009-19. [PMID: 12354095 DOI: 10.1046/j.1365-2443.2002.00582.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND In fission yeast, calcineurin has been implicated in cytokinesis because calcineurin-deleted cells form multiple septa and cell separation is impeded. However, this mechanism remains unclear. RESULTS We screened for mutations that confer synthetic lethality with calcineurin deletion and isolated a mutant, its 10-1/cdc7-i10, a novel allele of the cdc7+ gene involved in the septation initiation network (SIN). The mutation created a termination codon, resulting in the truncation of Cdc7 by 162 amino acids, which is not localized in the spindle pole body. Following treatment with the immune suppressive drug FK506, cdc7-i10 and the original cdc7-24 mutant cells showed highly elongated multinuclear morphology with few visible septa, closely resembling the phenotype at the restrictive temperature. Other SIN mutants, cdc11, spg1, sid2 and mob1 showed similar phenotypes following FK506 treatment. Consistent with this, expression of the constitutively active calcineurin suppressed the growth defects and septum initiation deficiency of these SIN mutants at the restrictive temperature. Moreover, electron microscopy revealed that calcineurin-deleted cells had very thick multiple septa which were partially and ectopically formed. CONCLUSION These results suggest that calcineurin is involved in the regulation of the SIN pathway, and is required for the proper formation and maturation of the septum in fission yeast.
Collapse
Affiliation(s)
- Yabin Lu
- Division of Molecular Pharmacology and Pharmacogenomics, Department of Genome Sciences, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| | | | | | | | | | | | | |
Collapse
|
32
|
Mulvihill DP, Hyams JS. Cytokinetic actomyosin ring formation and septation in fission yeast are dependent on the full recruitment of the polo-like kinase Plo1 to the spindle pole body and a functional spindle assembly checkpoint. J Cell Sci 2002; 115:3575-86. [PMID: 12186944 DOI: 10.1242/jcs.00031] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In dividing cells, the assembly and contraction of the cytokinetic actomyosin ring (CAR) is precisely coordinated with spindle formation and chromosome segregation. Despite having a cell wall, the fission yeast Schizosaccharomyces pombe forms a CAR reminiscent of the structure responsible for the cleavage of cells with flexible boundaries. We used the myo2-gc fission yeast strain in which the chromosomal copy of the type II myosin gene, myo2(+), is fused to the gene encoding green fluorescent protein (GFP) to investigate the dynamics of Myo2 recruitment to the cytokinetic actomyosin ring in living cells. Analysis of CAR formation in relation to spindle pole body (SPB) and centromere separation enabled us to pinpoint the timing of Myo2 recruitment into a stable CAR structure to the onset of anaphase A. Depolymerisation of actin with latrunculin B did not affect the timing of Myo2 accumulation at the cell equator (although Myo2 no longer formed a ring), whereas depolymerisation of microtubules with either thiabendazole (TBZ) or methyl 2-benzimidazolecarbamate (MBC) resulted in a delay of up to 90 minutes in CAR formation. Microtubule depolymerisation also delayed the localisation of other CAR components such as actin and Mid1/Dmf1. The delay of cytokinesis in response to loss of microtubule integrity was abolished in cells lacking the spindle assembly checkpoint protein Mad2 or containing non-functional Cdc16, a component of the fission yeast septation initiation network (SIN). The delay was also abolished in cells lacking Zfs1, a component of the previously described S. pombe cytokinesis checkpoint. Recruitment of the polo-related kinase, Plo1, a key regulator of CAR formation, to the SPBs was substantially reduced in TBZ in a Mad2-dependent manner. Loading of Cdc7, a component of the SIN and downstream of Plo1 in the cytokinesis pathway, onto the the SPBs was also delayed in TBZ to the same extent as CAR formation. We conclude that CAR formation is subject to regulation by the spindle assembly checkpoint via the loading of Plo1 onto the SPBs and the consequent activation of the SIN.
Collapse
Affiliation(s)
- Daniel P Mulvihill
- Department of Biology, University College London, Gower Street, London WC1E 6BT, UK.
| | | |
Collapse
|
33
|
Gruneberg U, Glotzer M, Gartner A, Nigg EA. The CeCDC-14 phosphatase is required for cytokinesis in the Caenorhabditis elegans embryo. J Cell Biol 2002; 158:901-14. [PMID: 12213836 PMCID: PMC2173158 DOI: 10.1083/jcb.200202054] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In all eukaryotic organisms, the physical separation of two nascent cells must be coordinated with chromosome segregation and mitotic exit. In Saccharomyces cerevisiae and Schizosaccharomyces pombe this coordination depends on a number of genes that cooperate in intricate regulatory pathways termed mitotic exit network and septum initiation network, respectively. Here we have explored the function of potentially homologous genes in a metazoan organism, Caenorhabditis elegans, using RNA-mediated interference. Of all the genes tested, only depletion of CeCDC-14, the C. elegans homologue of the budding yeast dual-specificity phosphatase Cdc14p (Clp1/Flp1p in fission yeast), caused embryonic lethality. We show that CeCDC-14 is required for cytokinesis but may be dispensable for progression of the early embryonic cell cycles. In response to depletion of CeCDC-14, embryos fail to establish a central spindle, and several proteins normally found at this structure are mislocalized. CeCDC-14 itself localizes to the central spindle in anaphase and to the midbody in telophase. It colocalizes with the mitotic kinesin ZEN-4, and the two proteins depend on each other for correct localization. These findings identify the CDC14 phosphatase as an important regulator of central spindle formation and cytokinesis in a metazoan organism.
Collapse
Affiliation(s)
- Ulrike Gruneberg
- Department of Cell Biology, Max-Planck-Institute for Biochemistry, D-82152 Martinsried, Germany
| | | | | | | |
Collapse
|
34
|
Karagiannis J, Oulton R, Young PG. The Scw1 RNA-Binding Domain Protein Regulates Septation and Cell-Wall Structure in Fission Yeast. Genetics 2002; 162:45-58. [PMID: 12242222 PMCID: PMC1462257 DOI: 10.1093/genetics/162.1.45] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
AbstractLoss of the nonessential RNA-binding domain protein, Scw1, increases resistance to cell-wall-degrading enzymes in fission yeast. Surprisingly, scw1 null mutations also suppress the lethality of mutations (cdc11-136, cdc7-24, cdc14-118, sid1-239, sid2-250, sid3-106, sid4-A1, and mob1-1) at all levels of the sid pathway. This pathway forms part of the septation initiation network (SIN), which regulates the onset of septum formation and ensures the proper coupling of mitosis to cytokinesis. In contrast, scw1- mutations do not suppress ts alleles of the rng genes, cdc12 or cdc15. These mutations also prevent the formation of a septum and in addition block assembly and/or function of the contractile acto-myosin ring. sid mutants exhibit a hyper-sensitivity to cell-wall-degrading enzymes that is suppressed by loss of Scw1. Furthermore, scw1--mediated rescue of sid mutants is abolished in the presence of calcofluor white, a compound that interferes with cell-wall synthesis. These data suggest that Scw1 acts in opposition to the SIN as a negative regulator of cell-wall/septum deposition. Unlike components of the SIN, Scw1 is predominantly a cytoplasmic protein and is not localized to the spindle pole body.
Collapse
Affiliation(s)
- Jim Karagiannis
- Department of Biology, Queen's University, Kingston, Ontario K7L-3N6, Canada
| | | | | |
Collapse
|
35
|
Harper JW, Burton JL, Solomon MJ. The anaphase-promoting complex: it's not just for mitosis any more. Genes Dev 2002; 16:2179-206. [PMID: 12208841 DOI: 10.1101/gad.1013102] [Citation(s) in RCA: 368] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- J Wade Harper
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas 77030, USA.
| | | | | |
Collapse
|
36
|
Kaiser BK, Zimmerman ZA, Charbonneau H, Jackson PK. Disruption of centrosome structure, chromosome segregation, and cytokinesis by misexpression of human Cdc14A phosphatase. Mol Biol Cell 2002; 13:2289-300. [PMID: 12134069 PMCID: PMC117313 DOI: 10.1091/mbc.01-11-0535] [Citation(s) in RCA: 118] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
In budding yeast, the Cdc14p phosphatase activates mitotic exit by dephosphorylation of specific cyclin-dependent kinase (Cdk) substrates and seems to be regulated by sequestration in the nucleolus until its release in mitosis. Herein, we have analyzed the two human homologs of Cdc14p, hCdc14A and hCdc14B. We demonstrate that the human Cdc14A phosphatase is selective for Cdk substrates in vitro and that although the protein abundance and intrinsic phosphatase activity of hCdc14A and B vary modestly during the cell cycle, their localization is cell cycle regulated. hCdc14A dynamically localizes to interphase but not mitotic centrosomes, and hCdc14B localizes to the interphase nucleolus. These distinct patterns of localization suggest that each isoform of human Cdc14 likely regulates separate cell cycle events. In addition, hCdc14A overexpression induces the loss of the pericentriolar markers pericentrin and gamma-tubulin from centrosomes. Overproduction of hCdc14A also causes mitotic spindle and chromosome segregation defects, defective karyokinesis, and a failure to complete cytokinesis. Thus, the hCdc14A phosphatase appears to play a role in the regulation of the centrosome cycle, mitosis, and cytokinesis, thereby influencing chromosome partitioning and genomic stability in human cells.
Collapse
Affiliation(s)
- Brett K Kaiser
- Departments of Pathology and Microbiology, and Immunology, Stanford University School of Medicine, Stanford, California 94305, USA
| | | | | | | |
Collapse
|
37
|
Yeong FM, Lim HH, Surana U. MEN, destruction and separation: mechanistic links between mitotic exit and cytokinesis in budding yeast. Bioessays 2002; 24:659-66. [PMID: 12111726 DOI: 10.1002/bies.10106] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Cellular events must be executed in a certain sequence during the cell division in order to maintain genome integrity and hence ensure a cell's survival. In M phase, for instance, chromosome segregation always precedes mitotic exit (characterized by mitotic kinase inactivation via cyclin destruction); this is then followed by cytokinesis. How do cells impose this strict order? Recent findings in budding yeast have suggested a mechanism whereby partitioning of chromosomes into the daughter cell is a prerequisite for the activation of mitotic exit network (MEN). So far, however, a regulatory scheme that would temporally link the initiation of cytokinesis to the execution of mitotic exit has not been determined. We propose that the requirement of MEN components for cytokinesis, their translocation to the mother-daughter neck and triggering of this translocation by inactivation of the mitotic kinase may be the three crucial elements that render initiation of cytokinesis dependent on mitotic exit.
Collapse
Affiliation(s)
- Foong May Yeong
- Institute of Molecular and Cell Biology, 30 Medical Drive, Singapore 117609. [corrected]
| | | | | |
Collapse
|
38
|
Abstract
Cytokinesis is the final event of the cell division cycle, and its completion results in irreversible partition of a mother cell into two daughter cells. Cytokinesis was one of the first cell cycle events observed by simple cell biological techniques; however, molecular characterization of cytokinesis has been slowed by its particular resistance to in vitro biochemical approaches. In recent years, the use of genetic model organisms has greatly advanced our molecular understanding of cytokinesis. While the outcome of cytokinesis is conserved in all dividing organisms, the mechanism of division varies across the major eukaryotic kingdoms. Yeasts and animals, for instance, use a contractile ring that ingresses to the cell middle in order to divide, while plant cells build new cell wall outward to the cortex. As would be expected, there is considerable conservation of molecules involved in cytokinesis between yeast and animal cells, while at first glance, plant cells seem quite different. However, in recent years, it has become clear that some aspects of division are conserved between plant, yeast, and animal cells. In this review we discuss the major recent advances in defining cytokinesis, focusing on deciding where to divide, building the division apparatus, and dividing. In addition, we discuss the complex problem of coordinating the division cycle with the nuclear cycle, which has recently become an area of intense research. In conclusion, we discuss how certain cells have utilized cytokinesis to direct development.
Collapse
Affiliation(s)
- David A Guertin
- Department of Molecular Genetics and Microbiology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | | | | |
Collapse
|
39
|
Söllner R, Glässer G, Wanner G, Somerville CR, Jürgens G, Assaad FF. Cytokinesis-defective mutants of Arabidopsis. PLANT PHYSIOLOGY 2002; 129:678-90. [PMID: 12068111 PMCID: PMC161693 DOI: 10.1104/pp.004184] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2002] [Accepted: 03/18/2002] [Indexed: 05/17/2023]
Abstract
We have identified mutations in six previously uncharacterized genes of Arabidopsis, named club, bublina, massue, rod, bloated, and bims, that are required for cytokinesis. The mutants are seedling lethal, have morphological abnormalities, and are characterized by cell wall stubs, gapped walls, and multinucleate cells. In these and other respects, the new mutants are phenotypically similar to knolle, keule, hinkel, and pleiade mutants. The mutants display a gradient of stomatal phenotypes, correlating roughly with the severity of their cytokinesis defect. Similarly, the extent to which the different mutant lines were capable of growing in tissue culture correlated well with the severity of the cytokinesis defect. Phenotypic analysis of the novel and previously characterized loci indicated that the secondary consequences of a primary defect in cytokinesis include anomalies in body organization, organ number, and cellular differentiation, as well as organ fusions and perturbations of the nuclear cycle. Two of the 10 loci are required for both cytokinesis and root hair morphogenesis. The results have implications for the identification of novel cytokinesis genes and highlight the mechanistic similarity between cytokinesis and root hair morphogenesis, two processes that result in a rapid deposition of new cell walls via polarized secretion.
Collapse
Affiliation(s)
- Rosi Söllner
- Genetics and Microbiology Institute, Ludwig Maximillian University, Maria Ward Strasse 1a, 80638 Munich, Germany
| | | | | | | | | | | |
Collapse
|
40
|
Stevenson V, Hudson A, Cooley L, Theurkauf WE. Arp2/3-dependent pseudocleavage [correction of psuedocleavage] furrow assembly in syncytial Drosophila embryos. Curr Biol 2002; 12:705-11. [PMID: 12007413 DOI: 10.1016/s0960-9822(02)00807-2] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND In syncytial blastoderm Drosophila embryos, actin caps assemble during telophase. As the cell cycle progresses through interphase, these small caps expand and fuse to form pseudocleavage furrows that are structurally related to the cleavage furrows that assemble during somatic cell division. The molecular mechanism driving cell cycle coordinated actin reorganization from the caps to the furrows is not understood. RESULTS We show that Drosophila embryos contain a typical Arp2/3 complex and that components of this complex localize to the margins of the expanding caps, to mature pseudocleavage furrows, and to somatic cell cleavage furrows during the postcellularization embryonic divisions. A mutation that disrupts the arpc1 subunit of Arp2/3 leads to spindle fusions that are characteristic of pseudocleavage furrow disruption. By contrast, this mutation does not significantly affect nuclear positioning during interphase, which is dependent on actin cap function. In vivo analysis of actin reorganization demonstrates that the arpc1 mutation does not prevent assembly of small actin caps but blocks cap expansion and furrow assembly as the cell cycle progresses through interphase. The scrambled gene is also required for cap expansion and furrow assembly, and Scrambled is required for Arp2/3 localization to the cap margins. CONCLUSIONS The Drosophila Arp2/3 complex and Scrambled protein are required for actin cap expansion and pseudocleavage furrow formation during the syncytial blastoderm divisions. We propose that Scrambled-dependent localization of Arp2/3 to the margins of the expanding caps triggers local actin polymerization that drives cap expansion and pseudocleavage furrow assembly.
Collapse
Affiliation(s)
- Victoria Stevenson
- Program in Molecular Medicine, University of Massachusetts School of Medicine, Worcester, MA 01655, USA
| | | | | | | |
Collapse
|
41
|
Pereira G, Manson C, Grindlay J, Schiebel E. Regulation of the Bfa1p-Bub2p complex at spindle pole bodies by the cell cycle phosphatase Cdc14p. J Cell Biol 2002; 157:367-79. [PMID: 11970961 PMCID: PMC2173300 DOI: 10.1083/jcb.200112085] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The budding yeast mitotic exit network (MEN) is a GTPase-driven signal transduction cascade that controls the release of the phosphatase Cdc14p from the nucleolus in anaphase and thereby drives mitotic exit. We show that Cdc14p is partially released from the nucleolus in early anaphase independent of the action of the MEN components Cdc15p, Dbf2p, and Tem1p. Upon release, Cdc14p binds to the spindle pole body (SPB) via association with the Bfa1p-Bub2p GTPase activating protein complex, which is known to regulate the activity of the G protein Tem1p. Cdc14p also interacts with this GTPase. The association of the MEN component Mob1p with the SPB acts as a marker of MEN activation. The simultaneous binding of Cdc14p and Mob1p to the SPB in early anaphase suggests that Cdc14p initially activates the MEN. In a second, later step, which coincides with mitotic exit, Cdc14p reactivates the Bfa1p-Bub2p complex by dephosphorylating Bfa1p. This inactivates the MEN and displaces Mob1p from SPBs. These data indicate that Cdc14p activates the MEN in early anaphase but later inactivates it through Bfa1p dephosphorylation and so restricts MEN activity to a short period in anaphase.
Collapse
Affiliation(s)
- Gislene Pereira
- The Beatson Institute for Cancer Research, CRC Beatson Laboratories, Glasgow G61 1BD, UK
| | | | | | | |
Collapse
|
42
|
Liu J, Tang X, Wang H, Oliferenko S, Balasubramanian MK. The localization of the integral membrane protein Cps1p to the cell division site is dependent on the actomyosin ring and the septation-inducing network in Schizosaccharomyces pombe. Mol Biol Cell 2002; 13:989-1000. [PMID: 11907277 PMCID: PMC99614 DOI: 10.1091/mbc.01-12-0581] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Schizosaccharomyces pombe cells divide by medial fission through the use of an actomyosin-based contractile ring. Constriction of the actomyosin ring is accompanied by the centripetal addition of new membranes and cell wall material. In this article, we characterize the mechanism responsible for the localization of Cps1p, a septum-synthesizing 1,3-beta-glucan synthase, to the division site during cytokinesis. We show that Cps1p is an integral membrane protein that localizes to the cell division site late in anaphase. Neither F-actin nor microtubules are essential for the initial assembly of Cps1p to the medial division site. F-actin, but not microtubules, is however important for the eventual incorporation of Cps1p into the actomyosin ring. Assembly of Cps1p into the cell division ring is also dependent on the septation-inducing network (SIN) proteins that regulate division septum formation after assembly of the actomyosin ring. Fluorescence-recovery after-photobleaching experiments reveal that Cps1p does not diffuse appreciably within the plasma membrane and is retained at the division site by a mechanism that does not depend on an intact F-actin cytoskeleton. We conclude that the actomyosin ring serves as a spatial cue for Cps1p localization, whereas the maintenance of Cps1p at the division site occurs by a novel F-actin- and microtubule-independent mechanism. Furthermore, we propose that the SIN proteins ensure localization of Cps1p at the appropriate point in the cell cycle.
Collapse
Affiliation(s)
- Jianhua Liu
- The Institute of Molecular Agrobiology, The National University of Singapore, Singapore 117604.
| | | | | | | | | |
Collapse
|
43
|
Abstract
Cytokinesis creates two daughter cells endowed with a complete set of chromosomes and cytoplasmic organelles. This conceptually simple event is mediated by a complex and dynamic interplay between the microtubules of the mitotic spindle, the actomyosin cytoskeleton, and membrane fusion events. For many decades the study of cytokinesis was driven by morphological studies on specimens amenable to physical manipulation. The studies led to great insights into the cellular structures that orchestrate cell division, but the underlying molecular machinery was largely unknown. Molecular and genetic approaches have now allowed the initial steps in the development of a molecular understanding of this fundamental event in the life of a cell. This review provides an overview of the literature on cytokinesis with a particular emphasis on the molecular pathways involved in the division of animal cells.
Collapse
Affiliation(s)
- M Glotzer
- Research Institute of Molecular Pathology (IMP), Dr. Bohr-Gasse 1, A-1030 Vienna, Austria.
| |
Collapse
|
44
|
Heitz MJ, Petersen J, Valovin S, Hagan IM. MTOC formation during mitotic exit in fission yeast. J Cell Sci 2001; 114:4521-32. [PMID: 11792817 DOI: 10.1242/jcs.114.24.4521] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Microtubules polymerise from nucleation templates containing γ tubulin. These templates are generally concentrated in discrete structures called microtubule organising centres (MTOCs). In Schizosaccharomyces pombe, an equatorial MTOC (EMTOC) forms mid-way through anaphase B and then disassembles during the final stages of cell separation. We show that the EMTOC was generated by recruiting γ tubulin to the equatorial F-actin ring before it constricted to cleave the cell in two during cytokinesis. The EMTOC was not a continuous ring. It had a variable structure ranging from a horseshoe to a number of short bars. EMTOC integrity depended upon the integrity of the F-actin but not the microtubule cytoskeleton. EMTOC assembly required the activity of both the septation-inducing network (SIN) that regulates the onset of cytokinesis and the anaphase-promoting complex. Activation of the SIN in interphase cells induced F-actin ring formation and contraction and the synthesis of the primary septum but did not promote EMTOC assembly. In contrast, overproduction of the polo-like kinase, Plo1, which also induced multiple rounds of septation in interphase cells, induced EMTOC formation. Thus, the network governing EMTOC formation shared many of the regulatory elements that control cytokinesis but was more complex and revealed an additional function for Plo1 during mitotic exit.
Collapse
Affiliation(s)
- M J Heitz
- School of Biological Sciences, 2.205 Stopford Building, University of Manchester, Stopford Building, Oxford Road, Manchester M13 9PT, UK
| | | | | | | |
Collapse
|
45
|
Mulvihill DP, Barretto C, Hyams JS. Localization of fission yeast type II myosin, Myo2, to the cytokinetic actin ring is regulated by phosphorylation of a C-terminal coiled-coil domain and requires a functional septation initiation network. Mol Biol Cell 2001; 12:4044-53. [PMID: 11739799 PMCID: PMC60774 DOI: 10.1091/mbc.12.12.4044] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Myo2 truncations fused to green fluorescent protein (GFP) defined a C-terminal domain essential for the localization of Myo2 to the cytokinetic actin ring (CAR). The localization domain contained two predicted phosphorylation sites. Mutation of serine 1518 to alanine (S(1518)A) abolished Myo2 localization, whereas Myo2 with a glutamic acid at this position (S(1518)E) localized to the CAR. GFP-Myo2 formed rings in the septation initiation kinase (SIN) mutant cdc7-24 at 25 degrees C but not at 36 degrees C. GFP-Myo2S(1518)E rings persisted at 36 degrees C in cdc7-24 but not in another SIN kinase mutant, sid2-250. To further examine the relationship between Myo2 and the SIN pathway, the chromosomal copy of myo2(+) was fused to GFP (strain myo2-gc). Myo2 ring formation was abolished in the double mutants myo2-gc cdc7.24 and myo2-gc sid2-250 at the restrictive temperature. In contrast, activation of the SIN pathway in the double mutant myo2-gc cdc16-116 resulted in the formation of Myo2 rings which subsequently collapsed at 36 degrees C. We conclude that the SIN pathway that controls septation in fission yeast also regulates Myo2 ring formation and contraction. Cdc7 and Sid2 are involved in ring formation, in the case of Cdc7 by phosphorylation of a single serine residue in the Myo2 tail. Other kinases and/or phosphatases may control ring contraction.
Collapse
Affiliation(s)
- D P Mulvihill
- Department of Biology, University College London, London WC1E 6BT, United Kingdom
| | | | | |
Collapse
|
46
|
Pereira G, Schiebel E. The role of the yeast spindle pole body and the mammalian centrosome in regulating late mitotic events. Curr Opin Cell Biol 2001; 13:762-9. [PMID: 11698194 DOI: 10.1016/s0955-0674(00)00281-7] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Centrosomes of vertebrate cells and spindle pole bodies (SPBs) of fungi were first recognized through their ability to organize microtubules. Recent studies suggest that centrosomes and SPBs also have a function in the regulation of cell cycle progression, in particular in controlling late mitotic events. Regulators of mitotic exit and cytokinesis are associated with the SPB of budding and fission yeast. Elucidation of the molecular roles played by these regulators is helping to clarify the function of the SPB in controlling progression though mitosis.
Collapse
Affiliation(s)
- G Pereira
- The Beatson Institute for Cancer Research, CRC Beatson Laboratories, Glasgow G61 1BD, UK
| | | |
Collapse
|
47
|
Abstract
In budding yeast, the release of the protein phosphatase Cdc14 from its inhibitor Cfi1/Net1 in the nucleolus during anaphase triggers the inactivation of Clb CDKs that leads to exit from mitosis. The mitotic exit pathway controls the association between Cdc14 and Cfi1/Net1. It is comprised of the RAS-like GTP binding protein Tem1, the exchange factor Lte1, the GTPase activating protein complex Bub2-Bfa1/Byr4, and several protein kinases including Cdc15 and Dbf2. Here we investigate the regulation of the protein kinases Dbf2 and Cdc15. We find that Cdc15 is recruited to both spindle pole bodies (SPBs) during anaphase. This recruitment depends on TEM1 but not DBF2 or CDC14 and is inhibited by BUB2. Dbf2 also localizes to SPBs during anaphase, which coincides with activation of Dbf2 kinase activity. Both events depend on the mitotic exit pathway components TEM1 and CDC15. In cells lacking BUB2, Dbf2 localized to SPBs in cell cycle stages other than anaphase and telophase and Dbf2 kinase was prematurely active during metaphase. Our results suggest an order of function of mitotic exit pathway components with respect to SPB localization of Cdc15 and Dbf2 and activation of Dbf2 kinase. BUB2 negatively regulates all 3 events. Loading of Cdc15 on SPBs depends on TEM1, whereas loading of Dbf2 on SPBs and activation of Dbf2 kinase depend on TEM1 and CDC15.
Collapse
Affiliation(s)
- R Visintin
- Center for Cancer Research, Howard Hughes Medical Institute, Massachusetts Institute of Technology, E17-233, 40 Ames Street, Cambridge MA 02139, USA
| | | |
Collapse
|
48
|
Luca FC, Mody M, Kurischko C, Roof DM, Giddings TH, Winey M. Saccharomyces cerevisiae Mob1p is required for cytokinesis and mitotic exit. Mol Cell Biol 2001; 21:6972-83. [PMID: 11564880 PMCID: PMC99873 DOI: 10.1128/mcb.21.20.6972-6983.2001] [Citation(s) in RCA: 118] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The Saccharomyces cerevisiae mitotic exit network (MEN) is a conserved set of genes that mediate the transition from mitosis to G(1) by regulating mitotic cyclin degradation and the inactivation of cyclin-dependent kinase (CDK). Here, we demonstrate that, in addition to mitotic exit, S. cerevisiae MEN gene MOB1 is required for cytokinesis and cell separation. The cytokinesis defect was evident in mob1 mutants under conditions in which there was no mitotic-exit defect. Observation of live cells showed that yeast myosin II, Myo1p, was present in the contractile ring at the bud neck but that the ring failed to contract and disassemble. The cytokinesis defect persisted for several mitotic cycles, resulting in chains of cells with correctly segregated nuclei but with uncontracted actomyosin rings. The cytokinesis proteins Cdc3p (a septin), actin, and Iqg1p/ Cyk1p (an IQGAP-like protein) appeared to correctly localize in mob1 mutants, suggesting that MOB1 functions subsequent to actomyosin ring assembly. We also examined the subcellular distribution of Mob1p during the cell cycle and found that Mob1p first localized to the spindle pole bodies during mid-anaphase and then localized to a ring at the bud neck just before and during cytokinesis. Localization of Mob1p to the bud neck required CDC3, MEN genes CDC5, CDC14, CDC15, and DBF2, and spindle pole body gene NUD1 but was independent of MYO1. The localization of Mob1p to both spindle poles was abolished in cdc15 and nud1 mutants and was perturbed in cdc5 and cdc14 mutants. These results suggest that the MEN functions during the mitosis-to-G(1) transition to control cyclin-CDK inactivation and cytokinesis.
Collapse
Affiliation(s)
- F C Luca
- Department of Animal Biology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania 19104, USA.
| | | | | | | | | | | |
Collapse
|
49
|
Hendrickson TW, Yao J, Bhadury S, Corbett AH, Joshi HC. Conditional mutations in gamma-tubulin reveal its involvement in chromosome segregation and cytokinesis. Mol Biol Cell 2001; 12:2469-81. [PMID: 11514629 PMCID: PMC58607 DOI: 10.1091/mbc.12.8.2469] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
gamma-Tubulin is a conserved essential protein required for assembly and function of the mitotic spindle in humans and yeast. For example, human gamma-tubulin can replace the gamma-tubulin gene in Schizosaccharomyces pombe. To understand the structural/functional domains of gamma-tubulin, we performed a systematic alanine-scanning mutagenesis of human gamma-tubulin (TUBG1) and studied phenotypes of each mutant allele in S. pombe. Our screen, both in the presence and absence of the endogenous S. pombe gamma-tubulin, resulted in 11 lethal mutations and 12 cold-sensitive mutations. Based on structural mapping onto a homology model of human gamma-tubulin generated by free energy minimization, all deleterious mutations are found in residues predicted to be located on the surface, some in positions to interact with alpha- and/or beta-tubulins in the microtubule lattice. As expected, one class of tubg1 mutations has either an abnormal assembly or loss of the mitotic spindle. Surprisingly, a subset of mutants with abnormal spindles does not arrest in M phase but proceeds through anaphase followed by abnormal cytokinesis. These studies reveal that in addition to its previously appreciated role in spindle microtubule nucleation, gamma-tubulin is involved in the coordination of postmetaphase events, anaphase, and cytokinesis.
Collapse
Affiliation(s)
- T W Hendrickson
- Program in Biochemistry, Cell, and Developmental Biology, Department of Cell Biology, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | | | | | | | | |
Collapse
|
50
|
Jiang W, Hallberg RL. Correct regulation of the septation initiation network in Schizosaccharomyces pombe requires the activities of par1 and par2. Genetics 2001; 158:1413-29. [PMID: 11514436 PMCID: PMC1461769 DOI: 10.1093/genetics/158.4.1413] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In Schizosaccharomyces pombe, the initiation of cytokinesis is regulated by a septation initiation network (SIN). We previously reported that deletion of par1 and par2, two S. pombe genes encoding B' regulatory subunits of protein phosphatase 2A, causes a multiseptation phenotype, very similar to that seen in hyperactive SIN mutants. In this study, we examined the genetic interactions between par deletions and mutations in the genes encoding components of SIN and found that deletion of par1 and par2 suppressed the morphological and viability defects caused by overproduction of Byr4p and rescued a loss-of-function allele of spg1. However, par deletions could not suppress any mutations in genes downstream of spg1 in the SIN pathway. We showed further that, in suppressing the lethality of a spg1 loss-of-function allele, the correct localization of Cdc7p to the spindle pole body (SPB), which is normally lost in spg1 mutant cells, was restored. The fact that par mutant cells themselves exhibited a symmetric localization of Cdc7p to SPBs indicated a hyperactivity of SIN in such cells. On the basis of our epistasis analyses and cytological studies, we concluded that par genes normally negatively regulate SIN at or upstream of cdc7, ensuring that multiple rounds of septation do not occur.
Collapse
Affiliation(s)
- W Jiang
- Department of Biology, Syracuse University, Syracuse, New York 13244, USA
| | | |
Collapse
|