1
|
Antonescu CN, Ishikura S, Bilan PJ, Klip A. Measurement of GLUT4 Traffic to and from the Cell Surface in Muscle Cells. Curr Protoc 2023; 3:e803. [PMID: 37367531 DOI: 10.1002/cpz1.803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
Elevated blood glucose following a meal is cleared by insulin-stimulated glucose entry into muscle and fat cells. The hormone increases the amount of the glucose transporter GLUT4 at the plasma membrane in these tissues at the expense of preformed intracellular pools. In addition, muscle contraction also increases glucose uptake via a gain in GLUT4 at the plasma membrane. Regulation of GLUT4 levels at the cell surface could arise from alterations in the rate of its exocytosis, endocytosis, or both. Hence, methods that can independently measure these traffic parameters for GLUT4 are essential to understanding the mechanism of regulation of membrane traffic of the transporter. Here, we describe cell population-based assays to measure the steady-state levels of GLUT4 at the cell surface, as well as to separately measure the rates of GLUT4 endocytosis and endocytosis. © 2023 Wiley Periodicals LLC. Basic Protocol 1: Measuring steady-state cell surface GLUT4myc Basic Protocol 2: Measuring steady-state cell surface GLUT4-HA Basic Protocol 3: Measuring GLUT4myc endocytosis Basic Protocol 4: Measuring GLUT4myc exocytosis.
Collapse
Affiliation(s)
- Costin N Antonescu
- Department of Chemistry and Biology, Toronto Metropolitan University, Toronto, Canada
| | | | - Philip J Bilan
- Program in Cell Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Amira Klip
- Program in Cell Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
| |
Collapse
|
2
|
Handy RM, Holloway GP. Insights into the development of insulin resistance: Unraveling the interaction of physical inactivity, lipid metabolism and mitochondrial biology. Front Physiol 2023; 14:1151389. [PMID: 37153211 PMCID: PMC10157178 DOI: 10.3389/fphys.2023.1151389] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 04/07/2023] [Indexed: 05/09/2023] Open
Abstract
While impairments in peripheral tissue insulin signalling have a well-characterized role in the development of insulin resistance and type 2 diabetes (T2D), the specific mechanisms that contribute to these impairments remain debatable. Nonetheless, a prominent hypothesis implicates the presence of a high-lipid environment, resulting in both reactive lipid accumulation and increased mitochondrial reactive oxygen species (ROS) production in the induction of peripheral tissue insulin resistance. While the etiology of insulin resistance in a high lipid environment is rapid and well documented, physical inactivity promotes insulin resistance in the absence of redox stress/lipid-mediated mechanisms, suggesting alternative mechanisms-of-action. One possible mechanism is a reduction in protein synthesis and the resultant decrease in key metabolic proteins, including canonical insulin signaling and mitochondrial proteins. While reductions in mitochondrial content associated with physical inactivity are not required for the induction of insulin resistance, this could predispose individuals to the detrimental effects of a high-lipid environment. Conversely, exercise-training induced mitochondrial biogenesis has been implicated in the protective effects of exercise. Given mitochondrial biology may represent a point of convergence linking impaired insulin sensitivity in both scenarios of chronic overfeeding and physical inactivity, this review aims to describe the interaction between mitochondrial biology, physical (in)activity and lipid metabolism within the context of insulin signalling.
Collapse
|
3
|
Im S, Kang S, Kim JH, Oh SJ, Pak YK. Low-Dose Dioxin Reduced Glucose Uptake in C2C12 Myocytes: The Role of Mitochondrial Oxidative Stress and Insulin-Dependent Calcium Mobilization. Antioxidants (Basel) 2022; 11:2109. [PMID: 36358481 PMCID: PMC9686767 DOI: 10.3390/antiox11112109] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/17/2022] [Accepted: 10/24/2022] [Indexed: 01/14/2024] Open
Abstract
Chronic exposure to some environmental polluting chemicals (EPCs) is strongly associated with metabolic syndrome, and insulin resistance is a major biochemical abnormality in the skeletal muscle in patients with metabolic syndrome. However, the causal relationship is inconsistent and little is known about how EPCs affect the insulin signaling cascade in skeletal muscle. Here, we investigated whether exposure to 100 pM of 2,3,7,8-tetrachlorodibenzodioxin (TCDD) as a low dose of dioxin induces insulin resistance in C2C12 myocytes. The treatment with TCDD inhibited the insulin-stimulated glucose uptake and translocation of glucose transporter 4 (GLUT4). The low-dose TCDD reduced the expression of insulin receptor β (IRβ) and insulin receptor substrate (IRS)-1 without affecting the phosphorylation of Akt. The TCDD impaired mitochondrial activities, leading to reactive oxygen species (ROS) production and the blockage of insulin-induced Ca2+ release. All TCDD-mediated effects related to insulin resistance were still observed in aryl hydrocarbon receptor (AhR)-deficient myocytes and prevented by MitoTEMPO, a mitochondria-targeting ROS scavenger. These results suggest that low-dose TCDD stress may induce muscle insulin resistance AhR-independently and that mitochondrial oxidative stress is a novel therapeutic target for dioxin-induced insulin resistance.
Collapse
Affiliation(s)
- Suyeol Im
- Department of Biomedical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Korea
| | - Sora Kang
- Department of Neuroscience, Graduate School, Kyung Hee University, Seoul 02447, Korea
| | - Ji Hwan Kim
- Department of Biomedical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Korea
| | - Seung Jun Oh
- Department of Biomedical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Korea
| | - Youngmi Kim Pak
- Department of Biomedical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Korea
- Department of Neuroscience, Graduate School, Kyung Hee University, Seoul 02447, Korea
- Department of Physiology, School of Medicine, Biomedical Science Institute CRI, Kyung Hee University, Seoul 02447, Korea
| |
Collapse
|
4
|
Vilas-Boas EA, Almeida DC, Roma LP, Ortis F, Carpinelli AR. Lipotoxicity and β-Cell Failure in Type 2 Diabetes: Oxidative Stress Linked to NADPH Oxidase and ER Stress. Cells 2021; 10:cells10123328. [PMID: 34943836 PMCID: PMC8699655 DOI: 10.3390/cells10123328] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/18/2021] [Accepted: 11/22/2021] [Indexed: 12/17/2022] Open
Abstract
A high caloric intake, rich in saturated fats, greatly contributes to the development of obesity, which is the leading risk factor for type 2 diabetes (T2D). A persistent caloric surplus increases plasma levels of fatty acids (FAs), especially saturated ones, which were shown to negatively impact pancreatic β-cell function and survival in a process called lipotoxicity. Lipotoxicity in β-cells activates different stress pathways, culminating in β-cells dysfunction and death. Among all stresses, endoplasmic reticulum (ER) stress and oxidative stress have been shown to be strongly correlated. One main source of oxidative stress in pancreatic β-cells appears to be the reactive oxygen species producer NADPH oxidase (NOX) enzyme, which has a role in the glucose-stimulated insulin secretion and in the β-cell demise during both T1 and T2D. In this review, we focus on the acute and chronic effects of FAs and the lipotoxicity-induced β-cell failure during T2D development, with special emphasis on the oxidative stress induced by NOX, the ER stress, and the crosstalk between NOX and ER stress.
Collapse
Affiliation(s)
- Eloisa Aparecida Vilas-Boas
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo 05508-000, Brazil
- Department of Biochemistry, Institute of Chemistry, University of São Paulo (USP), São Paulo 05508-900, Brazil
- Correspondence: (E.A.V.-B.); (A.R.C.); Tel.: +55-(11)-3091-7246 (A.R.C.)
| | - Davidson Correa Almeida
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo 05508-000, Brazil; (D.C.A.); (F.O.)
| | - Leticia Prates Roma
- Center for Human and Molecular Biology (ZHMB), Department of Biophysics, Saarland University, 66424 Homburg, Germany;
| | - Fernanda Ortis
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo 05508-000, Brazil; (D.C.A.); (F.O.)
| | - Angelo Rafael Carpinelli
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo 05508-000, Brazil
- Correspondence: (E.A.V.-B.); (A.R.C.); Tel.: +55-(11)-3091-7246 (A.R.C.)
| |
Collapse
|
5
|
Insulin rapidly increases skeletal muscle mitochondrial ADP sensitivity in the absence of a high lipid environment. Biochem J 2021; 478:2539-2553. [PMID: 34129667 DOI: 10.1042/bcj20210264] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 06/07/2021] [Accepted: 06/14/2021] [Indexed: 11/17/2022]
Abstract
Reductions in mitochondrial function have been proposed to cause insulin resistance, however the possibility that impairments in insulin signaling negatively affects mitochondrial bioenergetics has received little attention. Therefore, we tested the hypothesis that insulin could rapidly improve mitochondrial ADP sensitivity, a key process linked to oxidative phosphorylation and redox balance, and if this phenomenon would be lost following high-fat diet (HFD)-induced insulin resistance. Insulin acutely (60 min post I.P.) increased submaximal (100-1000 µM ADP) mitochondrial respiration ∼2-fold without altering maximal (>1000 µM ADP) respiration, suggesting insulin rapidly improves mitochondrial bioenergetics. The consumption of HFD impaired submaximal ADP-supported respiration ∼50%, however, despite the induction of insulin resistance, the ability of acute insulin to stimulate ADP sensitivity and increase submaximal respiration persisted. While these data suggest that insulin mitigates HFD-induced impairments in mitochondrial bioenergetics, the presence of a high intracellular lipid environment reflective of an HFD (i.e. presence of palmitoyl-CoA) completely prevented the beneficial effects of insulin. Altogether, these data show that while insulin rapidly stimulates mitochondrial bioenergetics through an improvement in ADP sensitivity, this phenomenon is possibly lost following HFD due to the presence of intracellular lipids.
Collapse
|
6
|
Abstract
As the principal tissue for insulin-stimulated glucose disposal, skeletal muscle is a primary driver of whole-body glycemic control. Skeletal muscle also uniquely responds to muscle contraction or exercise with increased sensitivity to subsequent insulin stimulation. Insulin's dominating control of glucose metabolism is orchestrated by complex and highly regulated signaling cascades that elicit diverse and unique effects on skeletal muscle. We discuss the discoveries that have led to our current understanding of how insulin promotes glucose uptake in muscle. We also touch upon insulin access to muscle, and insulin signaling toward glycogen, lipid, and protein metabolism. We draw from human and rodent studies in vivo, isolated muscle preparations, and muscle cell cultures to home in on the molecular, biophysical, and structural elements mediating these responses. Finally, we offer some perspective on molecular defects that potentially underlie the failure of muscle to take up glucose efficiently during obesity and type 2 diabetes.
Collapse
|
7
|
Redox regulation of the insulin signalling pathway. Redox Biol 2021; 42:101964. [PMID: 33893069 PMCID: PMC8113030 DOI: 10.1016/j.redox.2021.101964] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 03/19/2021] [Accepted: 03/29/2021] [Indexed: 12/11/2022] Open
Abstract
The peptide hormone insulin is a key regulator of energy metabolism, proliferation and survival. Binding of insulin to its receptor activates the PI3K/AKT signalling pathway, which mediates fundamental cellular responses. Oxidants, in particular H2O2, have been recognised as insulin-mimetics. Treatment of cells with insulin leads to increased intracellular H2O2 levels affecting the activity of downstream signalling components, thereby amplifying insulin-mediated signal transduction. Specific molecular targets of insulin-stimulated H2O2 include phosphatases and kinases, whose activity can be altered via redox modifications of critical cysteine residues. Over the past decades, several of these redox-sensitive cysteines have been identified and their impact on insulin signalling evaluated. The aim of this review is to summarise the current knowledge on the redox regulation of the insulin signalling pathway.
Collapse
|
8
|
Vilas-Boas EA, Nalbach L, Ampofo E, Lucena CF, Naudet L, Ortis F, Carpinelli AR, Morgan B, Roma LP. Transient NADPH oxidase 2-dependent H 2O 2 production drives early palmitate-induced lipotoxicity in pancreatic islets. Free Radic Biol Med 2021; 162:1-13. [PMID: 33249137 DOI: 10.1016/j.freeradbiomed.2020.11.023] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 11/18/2020] [Accepted: 11/20/2020] [Indexed: 01/12/2023]
Abstract
Modern lifestyles, including lack of physical activity and poor nutritional habits, are driving the rapidly increasing prevalence of obesity and type 2 diabetes. Increased levels of free fatty acids (FFAs), particularly saturated FFAs, in obese individuals have been linked to pancreatic β-cell failure. This process, termed lipotoxicity, involves activation of several stress responses, including ER stress and oxidative stress. However, the molecular underpinnings and causal relationships between the disparate stress responses remain unclear. Here we employed transgenic mice, expressing a genetically-encoded cytosolic H2O2 sensor, roGFP2-Orp1, to monitor dynamic changes in H2O2 levels in pancreatic islets in response to chronic palmitate exposure. We identified a transient increase in H2O2 levels from 4 to 8 h after palmitate addition, which was mirrored by a concomitant decrease in cellular NAD(P)H levels. Intriguingly, islets isolated from NOX2 knock-out mice displayed no H2O2 transient upon chronic palmitate treatment. Furthermore, NOX2 knockout rescued palmitate-dependent impairment of insulin secretion, calcium homeostasis and viability. Chemical inhibition of NOX activity protected islets from palmitate-induced impairment in insulin secretion, however had no detectable impact upon the induction of ER stress. In summary, our results reveal that transient NOX2-dependent H2O2 production is a likely cause of early palmitate-dependent lipotoxic effects.
Collapse
Affiliation(s)
- Eloisa Aparecida Vilas-Boas
- Department of Biophysics, Center for Human and Molecular Biology (ZHMB), Saarland University, Homburg, Germany; Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, SP, Brazil
| | - Lisa Nalbach
- Institute for Clinical and Experimental Surgery, Saarland University, Homburg, Germany
| | - Emmanuel Ampofo
- Institute for Clinical and Experimental Surgery, Saarland University, Homburg, Germany
| | - Camila Ferraz Lucena
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, SP, Brazil
| | - Léa Naudet
- Department of Biophysics, Center for Human and Molecular Biology (ZHMB), Saarland University, Homburg, Germany
| | - Fernanda Ortis
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, SP, Brazil
| | - Angelo Rafael Carpinelli
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, SP, Brazil
| | - Bruce Morgan
- Institute for Biochemistry, Center for Human and Molecular Biology (ZHMB), Saarland University, Saarbrücken, Germany
| | - Leticia Prates Roma
- Department of Biophysics, Center for Human and Molecular Biology (ZHMB), Saarland University, Homburg, Germany.
| |
Collapse
|
9
|
Guo S, Gong L, Shen Q, Xing D. Photobiomodulation reduces hepatic lipogenesis and enhances insulin sensitivity through activation of CaMKKβ/AMPK signaling pathway. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2020; 213:112075. [PMID: 33152638 DOI: 10.1016/j.jphotobiol.2020.112075] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 10/22/2020] [Accepted: 10/27/2020] [Indexed: 12/18/2022]
Abstract
Photobiomodulation (PBM) could improve systemic blood glucose and insulin resistance in diet-induced diabetic mice. A few possible molecular mechanisms for the beneficial effects of PBM on diabetes have been proposed, but there is still an urgent need to explore the underlying mechanisms that support the application of PBM in the treatment of diabetes. Our study aimed to evaluate the effects of PBM on lipid metabolism in the liver of high-fat diet (HFD)-induced mice and explore the potential mechanisms of PBM on obesity and type 2 diabetes. Here, we administered PBM therapy (wavelength: 635 nm, energy density: 8 J/cm2) daily for eight weeks to HFD-induced mice. We detected that eight-week daily administration of PBM ameliorated HFD-induced gain weight, hyperlipidemia, and hyperglycemia, but also protected against diet-induced hepatic steatosis and insulin resistance. Furthermore, PBM increased AMP-activated protein kinase (AMPK) activation, lowered nuclear translocation of sterol regulatory element binding protein 1 (SREBP1), decreased aberrant lipogenesis, and enhanced insulin sensitive in HFD-induced mice livers. We also observed that Ca2+/calmodulin-dependent protein kinase kinase β (CaMKKβ) activation was responsible for AMPK activation in insulin-resistant HepG2 cells exposed to PBM. In summary, PBM at 635 nm and 8 J/cm2 improved hepatic lipid metabolism and inhibited the development of HFD-induced obesity and type 2 diabetes. Moreover, increased intracellular Ca2+ content and CaMKKβ-dependent AMPK activation were possible molecular mechanisms underlying the PBM-induced improvement on obesity and type 2 diabetes.
Collapse
Affiliation(s)
- Shuang Guo
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, South China Normal University, Guangzhou 510631, China; College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Longlong Gong
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, South China Normal University, Guangzhou 510631, China; College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Qi Shen
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, South China Normal University, Guangzhou 510631, China; College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Da Xing
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, South China Normal University, Guangzhou 510631, China; College of Biophotonics, South China Normal University, Guangzhou 510631, China.
| |
Collapse
|
10
|
|
11
|
Møller LLV, Jaurji M, Kjøbsted R, Joseph GA, Madsen AB, Knudsen JR, Lundsgaard AM, Andersen NR, Schjerling P, Jensen TE, Krauss RS, Richter EA, Sylow L. Insulin-stimulated glucose uptake partly relies on p21-activated kinase (PAK)2, but not PAK1, in mouse skeletal muscle. J Physiol 2020; 598:5351-5377. [PMID: 32844438 DOI: 10.1113/jp280294] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 08/24/2020] [Indexed: 12/28/2022] Open
Abstract
KEY POINTS Muscle-specific genetic ablation of p21-activated kinase (PAK)2, but not whole-body PAK1 knockout, impairs glucose tolerance in mice. Insulin-stimulated glucose uptake partly relies on PAK2 in glycolytic extensor digitorum longus muscle By contrast to previous reports, PAK1 is dispensable for insulin-stimulated glucose uptake in mouse muscle. ABSTRACT The group I p21-activated kinase (PAK) isoforms PAK1 and PAK2 are activated in response to insulin in skeletal muscle and PAK1/2 signalling is impaired in insulin-resistant mouse and human skeletal muscle. Interestingly, PAK1 has been suggested to be required for insulin-stimulated glucose transporter 4 translocation in mouse skeletal muscle. Therefore, the present study aimed to examine the role of PAK1 in insulin-stimulated muscle glucose uptake. The pharmacological inhibitor of group I PAKs, IPA-3 partially reduced (-20%) insulin-stimulated glucose uptake in isolated mouse soleus muscle (P < 0.001). However, because there was no phenotype with genetic ablation of PAK1 alone, consequently, the relative requirement for PAK1 and PAK2 in whole-body glucose homeostasis and insulin-stimulated muscle glucose uptake was investigated. Whole-body respiratory exchange ratio was largely unaffected in whole-body PAK1 knockout (KO), muscle-specific PAK2 KO and in mice with combined whole-body PAK1 KO and muscle-specific PAK2 KO. By contrast, glucose tolerance was mildly impaired in mice lacking PAK2 specifically in muscle, but not PAK1 KO mice. Moreover, while PAK1 KO muscles displayed normal insulin-stimulated glucose uptake in vivo and in isolated muscle, insulin-stimulated glucose uptake was slightly reduced in isolated glycolytic extensor digitorum longus muscle lacking PAK2 alone (-18%) or in combination with PAK1 KO (-12%) (P < 0.05). In conclusion, glucose tolerance and insulin-stimulated glucose uptake partly rely on PAK2 in glycolytic mouse muscle, whereas PAK1 is dispensable for whole-body glucose homeostasis and insulin-stimulated muscle glucose uptake.
Collapse
Affiliation(s)
- Lisbeth L V Møller
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Merna Jaurji
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Rasmus Kjøbsted
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Giselle A Joseph
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, NY, USA
| | - Agnete B Madsen
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Jonas R Knudsen
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark.,Microsystems Laboratory 2, Institute of Microengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Anne-Marie Lundsgaard
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Nicoline R Andersen
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Peter Schjerling
- Institute of Sports Medicine, Department of Orthopaedic Surgery M, Bispebjerg Hospital, Copenhagen, Denmark.,Center for Healthy Aging, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Thomas E Jensen
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Robert S Krauss
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, NY, USA
| | - Erik A Richter
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Lykke Sylow
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
12
|
Diaz-Vegas A, Sanchez-Aguilera P, Krycer JR, Morales PE, Monsalves-Alvarez M, Cifuentes M, Rothermel BA, Lavandero S. Is Mitochondrial Dysfunction a Common Root of Noncommunicable Chronic Diseases? Endocr Rev 2020; 41:5807952. [PMID: 32179913 PMCID: PMC7255501 DOI: 10.1210/endrev/bnaa005] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Accepted: 03/12/2020] [Indexed: 12/19/2022]
Abstract
Mitochondrial damage is implicated as a major contributing factor for a number of noncommunicable chronic diseases such as cardiovascular diseases, cancer, obesity, and insulin resistance/type 2 diabetes. Here, we discuss the role of mitochondria in maintaining cellular and whole-organism homeostasis, the mechanisms that promote mitochondrial dysfunction, and the role of this phenomenon in noncommunicable chronic diseases. We also review the state of the art regarding the preclinical evidence associated with the regulation of mitochondrial function and the development of current mitochondria-targeted therapeutics to treat noncommunicable chronic diseases. Finally, we give an integrated vision of how mitochondrial damage is implicated in these metabolic diseases.
Collapse
Affiliation(s)
- Alexis Diaz-Vegas
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, Santiago, Chile.,Charles Perkins Centre, School of Life and Environmental Sciences, The University of Sydney, Camperdown, Sydney, NSW, Australia
| | - Pablo Sanchez-Aguilera
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - James R Krycer
- Charles Perkins Centre, School of Life and Environmental Sciences, The University of Sydney, Camperdown, Sydney, NSW, Australia
| | - Pablo E Morales
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Matías Monsalves-Alvarez
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, Santiago, Chile.,Institute of Nutrition and Food Technology (INTA), Universidad de Chile, Santiago, Chile
| | - Mariana Cifuentes
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, Santiago, Chile.,Institute of Nutrition and Food Technology (INTA), Universidad de Chile, Santiago, Chile.,Center for Studies of Exercise, Metabolism and Cancer (CEMC), Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Beverly A Rothermel
- Department of Internal Medicine (Cardiology Division), University of Texas Southwestern Medical Center, Dallas, Texas
| | - Sergio Lavandero
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, Santiago, Chile.,Department of Internal Medicine (Cardiology Division), University of Texas Southwestern Medical Center, Dallas, Texas.,Center for Studies of Exercise, Metabolism and Cancer (CEMC), Facultad de Medicina, Universidad de Chile, Santiago, Chile
| |
Collapse
|
13
|
Henríquez-Olguín C, Boronat S, Cabello-Verrugio C, Jaimovich E, Hidalgo E, Jensen TE. The Emerging Roles of Nicotinamide Adenine Dinucleotide Phosphate Oxidase 2 in Skeletal Muscle Redox Signaling and Metabolism. Antioxid Redox Signal 2019; 31:1371-1410. [PMID: 31588777 PMCID: PMC6859696 DOI: 10.1089/ars.2018.7678] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Significance: Skeletal muscle is a crucial tissue to whole-body locomotion and metabolic health. Reactive oxygen species (ROS) have emerged as intracellular messengers participating in both physiological and pathological adaptations in skeletal muscle. A complex interplay between ROS-producing enzymes and antioxidant networks exists in different subcellular compartments of mature skeletal muscle. Recent evidence suggests that nicotinamide adenine dinucleotide phosphate (NADPH) oxidases (NOXs) are a major source of contraction- and insulin-stimulated oxidants production, but they may paradoxically also contribute to muscle insulin resistance and atrophy. Recent Advances: Pharmacological and molecular biological tools, including redox-sensitive probes and transgenic mouse models, have generated novel insights into compartmentalized redox signaling and suggested that NOX2 contributes to redox control of skeletal muscle metabolism. Critical Issues: Major outstanding questions in skeletal muscle include where NOX2 activation occurs under different conditions in health and disease, how NOX2 activation is regulated, how superoxide/hydrogen peroxide generated by NOX2 reaches the cytosol, what the signaling mediators are downstream of NOX2, and the role of NOX2 for different physiological and pathophysiological processes. Future Directions: Future research should utilize and expand the current redox-signaling toolbox to clarify the NOX2-dependent mechanisms in skeletal muscle and determine whether the proposed functions of NOX2 in cells and animal models are conserved into humans.
Collapse
Affiliation(s)
- Carlos Henríquez-Olguín
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports (NEXS), Faculty of Science, University of Copenhagen, Copenhagen, Denmark.,Muscle Cell Physiology Laboratory, Center for Exercise, Metabolism, and Cancer, Instituto de Ciencias Biomédicas, Universidad de Chile, Santiago, Chile
| | - Susanna Boronat
- Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra, Barcelona, Spain
| | - Claudio Cabello-Verrugio
- Laboratory of Muscle Pathology, Fragility and Aging, Department of Biological Sciences, Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile.,Millennium Institute on Immunology and Immunotherapy, Santiago, Chile.,Center for the Development of Nanoscience and Nanotechnology (CEDENNA), Universidad de Santiago de Chile, Santiago, Chile
| | - Enrique Jaimovich
- Muscle Cell Physiology Laboratory, Center for Exercise, Metabolism, and Cancer, Instituto de Ciencias Biomédicas, Universidad de Chile, Santiago, Chile
| | - Elena Hidalgo
- Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra, Barcelona, Spain
| | - Thomas E Jensen
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports (NEXS), Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
14
|
Su Z, Burchfield JG, Yang P, Humphrey SJ, Yang G, Francis D, Yasmin S, Shin SY, Norris DM, Kearney AL, Astore MA, Scavuzzo J, Fisher-Wellman KH, Wang QP, Parker BL, Neely GG, Vafaee F, Chiu J, Yeo R, Hogg PJ, Fazakerley DJ, Nguyen LK, Kuyucak S, James DE. Global redox proteome and phosphoproteome analysis reveals redox switch in Akt. Nat Commun 2019; 10:5486. [PMID: 31792197 PMCID: PMC6889415 DOI: 10.1038/s41467-019-13114-4] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 10/18/2019] [Indexed: 01/04/2023] Open
Abstract
Protein oxidation sits at the intersection of multiple signalling pathways, yet the magnitude and extent of crosstalk between oxidation and other post-translational modifications remains unclear. Here, we delineate global changes in adipocyte signalling networks following acute oxidative stress and reveal considerable crosstalk between cysteine oxidation and phosphorylation-based signalling. Oxidation of key regulatory kinases, including Akt, mTOR and AMPK influences the fidelity rather than their absolute activation state, highlighting an unappreciated interplay between these modifications. Mechanistic analysis of the redox regulation of Akt identified two cysteine residues in the pleckstrin homology domain (C60 and C77) to be reversibly oxidized. Oxidation at these sites affected Akt recruitment to the plasma membrane by stabilizing the PIP3 binding pocket. Our data provide insights into the interplay between oxidative stress-derived redox signalling and protein phosphorylation networks and serve as a resource for understanding the contribution of cellular oxidation to a range of diseases.
Collapse
Affiliation(s)
- Zhiduan Su
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, 2006, Australia
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, 2006, Australia
| | - James G Burchfield
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, 2006, Australia
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Pengyi Yang
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, 2006, Australia
- School of Mathematics and Statistics, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Sean J Humphrey
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, 2006, Australia
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Guang Yang
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, 2006, Australia
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Deanne Francis
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, 2006, Australia
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Sabina Yasmin
- School of Physics, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Sung-Young Shin
- Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Clayton, VIC, 3800, Australia
- Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia
| | - Dougall M Norris
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, 2006, Australia
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Alison L Kearney
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, 2006, Australia
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Miro A Astore
- School of Physics, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Jonathan Scavuzzo
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, 2006, Australia
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Kelsey H Fisher-Wellman
- Brody School of Medicine, Physiology Department, East Carolina University, Greenville, NC, USA
- East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC, USA
| | - Qiao-Ping Wang
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, 2006, Australia
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, 2006, Australia
- The Dr. John and Anne Chong Laboratory for Functional Genomics, Charles Perkins Centre and School of Life & Environmental Sciences, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Benjamin L Parker
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, 2006, Australia
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, 2006, Australia
| | - G Gregory Neely
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, 2006, Australia
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, 2006, Australia
- The Dr. John and Anne Chong Laboratory for Functional Genomics, Charles Perkins Centre and School of Life & Environmental Sciences, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Fatemeh Vafaee
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, 2006, Australia
- School of Mathematics and Statistics, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Joyce Chiu
- The Centenary Institute, Newtown, NSW, 2042, Australia
- National Health and Medical Research Council Clinical Trials Centre, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Reichelle Yeo
- The Centenary Institute, Newtown, NSW, 2042, Australia
- National Health and Medical Research Council Clinical Trials Centre, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Philip J Hogg
- The Centenary Institute, Newtown, NSW, 2042, Australia
- National Health and Medical Research Council Clinical Trials Centre, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Daniel J Fazakerley
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, 2006, Australia
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Lan K Nguyen
- Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Clayton, VIC, 3800, Australia
- Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia
| | - Serdar Kuyucak
- School of Physics, The University of Sydney, Sydney, NSW, 2006, Australia
| | - David E James
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, 2006, Australia.
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, 2006, Australia.
- Sydney Medical School, The University of Sydney, Sydney, NSW, 2006, Australia.
| |
Collapse
|
15
|
Torma F, Gombos Z, Jokai M, Takeda M, Mimura T, Radak Z. High intensity interval training and molecular adaptive response of skeletal muscle. SPORTS MEDICINE AND HEALTH SCIENCE 2019; 1:24-32. [PMID: 35782463 PMCID: PMC9219277 DOI: 10.1016/j.smhs.2019.08.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Increased cardiovascular fitness, V˙O2max, is associated with enhanced endurance capacity and a decreased rate of mortality. High intensity interval training (HIIT) is one of the best methods to increase V˙O2max and endurance capacity for top athletes and for the general public as well. Because of the high intensity of this type of training, the adaptive response is not restricted to Type I fibers, as found for moderate intensity exercise of long duration. Even with a short exercise duration, HIIT can induce activation of AMPK, PGC-1α, SIRT1 and ROS pathway as well as by the modulation of Ca2+ homeostasis, leading to enhanced mitochondrial biogenesis, and angiogenesis. The present review summarizes the current knowledge of the adaptive response of HIIT.
Collapse
Affiliation(s)
- Ferenc Torma
- Research Center of Molecular Exercise Science, University of Physical Education, Budapest, Hungary
| | - Zoltan Gombos
- Research Center of Molecular Exercise Science, University of Physical Education, Budapest, Hungary
| | - Matyas Jokai
- Research Center of Molecular Exercise Science, University of Physical Education, Budapest, Hungary
| | - Masaki Takeda
- Faculty of Health and Sports Science, Doshisha University, Kyotanabe, Japan
| | - Tatsuya Mimura
- Faculty of Sport and Health Sciences, Osaka Sangyo University, Osaka, Japan
| | - Zsolt Radak
- Research Center of Molecular Exercise Science, University of Physical Education, Budapest, Hungary
- Corresponding author. Alkotas u. 44, Budapest, H-1123, Hungary.
| |
Collapse
|
16
|
Zhao P, Tian D, Song G, Ming Q, Liu J, Shen J, Liu QH, Yang X. Neferine Promotes GLUT4 Expression and Fusion With the Plasma Membrane to Induce Glucose Uptake in L6 Cells. Front Pharmacol 2019; 10:999. [PMID: 31551792 PMCID: PMC6737894 DOI: 10.3389/fphar.2019.00999] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 08/06/2019] [Indexed: 11/21/2022] Open
Abstract
Glucose transporter 4 (GLUT4) is involved in regulating glucose uptake in striated muscle, liver, and adipose tissue. Neferine is a dibenzyl isoquinoline alkaloid derived from dietary lotus seeds and has multiple pharmacological effects. Therefore, this study investigated neferine’s role in glucose translocation to cell surface, glucose uptake, and GLUT4 expression. In our study, neferine upregulated GLUT4 expression, induced GLUT4 plasma membrane fusion, increased intracellular Ca2+, promoted glucose uptake, and alleviated insulin resistance in L6 cells. Furthermore, neferine significantly activated phosphorylation of AMP-activated protein kinase (AMPK) and protein kinase C (PKC). AMPK and PKC inhibitors blocked neferine-induced GLUT4 expression and increased intracellular Ca2+. While neferine-induced GLUT4 expression and intracellular Ca2+ were inhibited by G protein and PLC inhibitors, only intracellular Ca2+ was inhibited by inositol trisphosphate receptor (IP3R) inhibitors. Thus, neferine promoted GLUT4 expression via the G protein-PLC-PKC and AMPK pathways, inducing GLUT4 plasma membrane fusion and subsequent glucose uptake and increasing intracellular Ca2+ through the G protein-PLC-IP3-IP3R pathway. Treatment with 0 mM extracellular Ca2+ + Ca2+ chelator did not inhibit neferine-induced GLUT4 expression but blocked neferine-induced GLUT4 plasma membrane fusion and glucose uptake, suggesting the latter two are Ca2+-dependent. Therefore, we conclude that neferine is a potential treatment for type 2 diabetes.
Collapse
Affiliation(s)
- Ping Zhao
- Institute for Medical Biology & Hubei Provincial Key Laboratory for Protection and Application of Special Plants in the Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, Wuhan, China.,National Demonstration Center for Experimental Ethnopharmacology Education, South-Central University for Nationalities, Wuhan, China.,Hubei Medical Biology International Science and Technology Cooperation Base, Wuhan, China
| | - Di Tian
- Institute for Medical Biology & Hubei Provincial Key Laboratory for Protection and Application of Special Plants in the Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, Wuhan, China
| | - Guanjun Song
- Institute for Medical Biology & Hubei Provincial Key Laboratory for Protection and Application of Special Plants in the Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, Wuhan, China
| | - Qian Ming
- Institute for Medical Biology & Hubei Provincial Key Laboratory for Protection and Application of Special Plants in the Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, Wuhan, China
| | - Jia Liu
- Institute for Medical Biology & Hubei Provincial Key Laboratory for Protection and Application of Special Plants in the Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, Wuhan, China
| | - Jinhua Shen
- Institute for Medical Biology & Hubei Provincial Key Laboratory for Protection and Application of Special Plants in the Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, Wuhan, China.,Hubei Medical Biology International Science and Technology Cooperation Base, Wuhan, China
| | - Qing-Hua Liu
- Institute for Medical Biology & Hubei Provincial Key Laboratory for Protection and Application of Special Plants in the Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, Wuhan, China.,Hubei Medical Biology International Science and Technology Cooperation Base, Wuhan, China
| | - Xinzhou Yang
- National Demonstration Center for Experimental Ethnopharmacology Education, South-Central University for Nationalities, Wuhan, China.,School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, China
| |
Collapse
|
17
|
Zhao P, Ming Q, Qiu J, Tian D, Liu J, Shen J, Liu QH, Yang X. Ethanolic Extract of Folium Sennae Mediates the Glucose Uptake of L6 Cells by GLUT4 and Ca 2. Molecules 2018; 23:molecules23112934. [PMID: 30424024 PMCID: PMC6278344 DOI: 10.3390/molecules23112934] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 11/02/2018] [Accepted: 11/08/2018] [Indexed: 02/06/2023] Open
Abstract
In today’s world, diabetes mellitus (DM) is on the rise, especially type 2 diabetes mellitus (T2DM), which is characterized by insulin resistance. T2DM has high morbidity, and therapies with natural products have attracted much attention in the recent past. In this paper, we aimed to study the hypoglycemic effect and the mechanism of an ethanolic extract of Folium Sennae (FSE) on L6 cells. The glucose uptake of L6 cells was investigated using a glucose assay kit. We studied glucose transporter 4 (GLUT4) expression and AMP-activated protein kinase (AMPK), protein kinase B (PKB/Akt), and protein kinase C (PKC) phosphorylation levels using western blot analysis. GLUT4 trafficking and intracellular Ca2+ levels were monitored by laser confocal microscopy in L6 cells stably expressing IRAP-mOrange. GLUT4 fusion with plasma membrane (PM) was observed by myc-GLUT4-mOrange. FSE stimulated glucose uptake; GLUT4 expression and translocation; PM fusion; intracellular Ca2+ elevation; and the phosphorylation of AMPK, Akt, and PKC in L6 cells. GLUT4 translocation was weakened by the AMPK inhibitor compound C, PI3K inhibitor Wortmannin, PKC inhibitor Gö6983, G protein inhibitor PTX/Gallein, and PLC inhibitor U73122. Similarly, in addition to PTX/Gallein and U73122, the IP3R inhibitor 2-APB and a 0 mM Ca2+-EGTA solution partially inhibited the elevation of intracellular Ca2+ levels. BAPTA-AM had a significant inhibitory effect on FSE-mediated GLUT4 activities. In summary, FSE regulates GLUT4 expression and translocation by activating the AMPK, PI3K/Akt, and G protein–PLC–PKC pathways. FSE causes increasing Ca2+ concentration to complete the fusion of GLUT4 vesicles with PM, allowing glucose uptake. Therefore, FSE may be a potential drug for improving T2DM.
Collapse
Affiliation(s)
- Ping Zhao
- Institute for Medical Biology & Hubei Provincial Key Laboratory for Protection and Application of Special Plants in the Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, Wuhan 430074, China.
- National Demonstration Center for Experimental Ethnopharmacology Education, South-Central University for Nationalities, Wuhan 430074, China.
| | - Qian Ming
- Institute for Medical Biology & Hubei Provincial Key Laboratory for Protection and Application of Special Plants in the Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, Wuhan 430074, China.
| | - Junying Qiu
- Institute for Medical Biology & Hubei Provincial Key Laboratory for Protection and Application of Special Plants in the Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, Wuhan 430074, China.
| | - Di Tian
- Institute for Medical Biology & Hubei Provincial Key Laboratory for Protection and Application of Special Plants in the Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, Wuhan 430074, China.
| | - Jia Liu
- Institute for Medical Biology & Hubei Provincial Key Laboratory for Protection and Application of Special Plants in the Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, Wuhan 430074, China.
| | - Jinhua Shen
- Institute for Medical Biology & Hubei Provincial Key Laboratory for Protection and Application of Special Plants in the Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, Wuhan 430074, China.
| | - Qing-Hua Liu
- Institute for Medical Biology & Hubei Provincial Key Laboratory for Protection and Application of Special Plants in the Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, Wuhan 430074, China.
| | - Xinzhou Yang
- National Demonstration Center for Experimental Ethnopharmacology Education, South-Central University for Nationalities, Wuhan 430074, China.
- School of Pharmaceutical Sciences, South-Central University for Nationalities, 182 Min-Zu Road, Wuhan 430074, China.
| |
Collapse
|
18
|
Valladares D, Utreras-Mendoza Y, Campos C, Morales C, Diaz-Vegas A, Contreras-Ferrat A, Westermeier F, Jaimovich E, Marchi S, Pinton P, Lavandero S. IP 3 receptor blockade restores autophagy and mitochondrial function in skeletal muscle fibers of dystrophic mice. Biochim Biophys Acta Mol Basis Dis 2018; 1864:3685-3695. [PMID: 30251688 DOI: 10.1016/j.bbadis.2018.08.042] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Revised: 08/06/2018] [Accepted: 08/30/2018] [Indexed: 12/14/2022]
Abstract
Duchenne muscular dystrophy (DMD) is characterized by a severe and progressive destruction of muscle fibers associated with altered Ca2+ homeostasis. We have previously shown that the IP3 receptor (IP3R) plays a role in elevating basal cytoplasmic Ca2+ and that pharmacological blockade of IP3R restores muscle function. Moreover, we have shown that the IP3R pathway negatively regulates autophagy by controlling mitochondrial Ca2+ levels. Nevertheless, it remains unclear whether IP3R is involved in abnormal mitochondrial Ca2+ levels, mitochondrial dynamics, or autophagy and mitophagy observed in adult DMD skeletal muscle. Here, we show that the elevated basal autophagy and autophagic flux levels were normalized when IP3R was downregulated in mdx fibers. Pharmacological blockade of IP3R in mdx fibers restored both increased mitochondrial Ca2+ levels and mitochondrial membrane potential under resting conditions. Interestingly, mdx mitochondria changed from a fission to an elongated state after IP3R knockdown, and the elevated mitophagy levels in mdx fibers were normalized. To our knowledge, this is the first study associating IP3R1 activity with changes in autophagy, mitochondrial Ca2+ levels, mitochondrial membrane potential, mitochondrial dynamics, and mitophagy in adult mouse skeletal muscle. Moreover, these results suggest that increased IP3R activity in mdx fibers plays an important role in the pathophysiology of DMD. Overall, these results lead us to propose the use of specific IP3R blockers as a new pharmacological treatment for DMD, given their ability to restore both autophagy/mitophagy and mitochondrial function.
Collapse
Affiliation(s)
- Denisse Valladares
- Advanced Center for Chronic Diseases (ACCDiS), Facultad Ciencias Quimicas y Farmaceuticas & Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile; Center for Studies of Exercise, Metabolism and Cancer (CEMC), Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile; Escuela de Kinesiologia, Facultad de Medicina, Universidad Finis Terrae, Santiago, Chile.
| | - Yildy Utreras-Mendoza
- Center for Studies of Exercise, Metabolism and Cancer (CEMC), Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile
| | - Cristian Campos
- Center for Studies of Exercise, Metabolism and Cancer (CEMC), Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile
| | - Camilo Morales
- Center for Studies of Exercise, Metabolism and Cancer (CEMC), Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile
| | - Alexis Diaz-Vegas
- Advanced Center for Chronic Diseases (ACCDiS), Facultad Ciencias Quimicas y Farmaceuticas & Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile; Center for Studies of Exercise, Metabolism and Cancer (CEMC), Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile
| | - Ariel Contreras-Ferrat
- Advanced Center for Chronic Diseases (ACCDiS), Facultad Ciencias Quimicas y Farmaceuticas & Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile
| | - Francisco Westermeier
- Advanced Center for Chronic Diseases (ACCDiS), Facultad Ciencias Quimicas y Farmaceuticas & Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile
| | - Enrique Jaimovich
- Center for Studies of Exercise, Metabolism and Cancer (CEMC), Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile; Programa de Fisiología y Biofísica, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Chile
| | - Saverio Marchi
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Paolo Pinton
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Sergio Lavandero
- Advanced Center for Chronic Diseases (ACCDiS), Facultad Ciencias Quimicas y Farmaceuticas & Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile; Center for Studies of Exercise, Metabolism and Cancer (CEMC), Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile; Division of Cardiology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
19
|
Rashid CS, Bansal A, Simmons RA. Oxidative Stress, Intrauterine Growth Restriction, and Developmental Programming of Type 2 Diabetes. Physiology (Bethesda) 2018; 33:348-359. [PMID: 30109821 PMCID: PMC6230552 DOI: 10.1152/physiol.00023.2018] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 06/22/2018] [Accepted: 06/22/2018] [Indexed: 12/12/2022] Open
Abstract
Intrauterine growth restriction (IUGR) leads to reduced birth weight and the development of metabolic diseases such as Type 2 diabetes in adulthood. Mitochondria dysfunction and oxidative stress are commonly found in key tissues (pancreatic islets, liver, and skeletal muscle) of IUGR individuals. In this review, we explore the role of oxidative stress in IUGR-associated diabetes etiology.
Collapse
Affiliation(s)
- Cetewayo S Rashid
- Center for Research on Reproduction and Women's Health, Perelman School of Medicine, University of Pennsylvania , Philadelphia, Pennsylvania
| | - Amita Bansal
- Center for Research on Reproduction and Women's Health, Perelman School of Medicine, University of Pennsylvania , Philadelphia, Pennsylvania
| | - Rebecca A Simmons
- Center for Research on Reproduction and Women's Health, Perelman School of Medicine, University of Pennsylvania , Philadelphia, Pennsylvania
| |
Collapse
|
20
|
Madsen AB, Knudsen JR, Henriquez-Olguin C, Angin Y, Zaal KJ, Sylow L, Schjerling P, Ralston E, Jensen TE. β-Actin shows limited mobility and is required only for supraphysiological insulin-stimulated glucose transport in young adult soleus muscle. Am J Physiol Endocrinol Metab 2018; 315. [PMID: 29533739 PMCID: PMC6087721 DOI: 10.1152/ajpendo.00392.2017] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Studies in skeletal muscle cell cultures suggest that the cortical actin cytoskeleton is a major requirement for insulin-stimulated glucose transport, implicating the β-actin isoform, which in many cell types is the main actin isoform. However, it is not clear that β-actin plays such a role in mature skeletal muscle. Neither dependency of glucose transport on β-actin nor actin reorganization upon glucose transport have been tested in mature muscle. To investigate the role of β-actin in fully differentiated muscle, we performed a detailed characterization of wild type and muscle-specific β-actin knockout (KO) mice. The effects of the β-actin KO were subtle; however, we confirmed the previously reported decline in running performance of β-actin KO mice compared with wild type during repeated maximal running tests. We also found insulin-stimulated glucose transport into incubated muscles reduced in soleus but not in extensor digitorum longus muscle of young adult mice. Contraction-stimulated glucose transport trended toward the same pattern, but the glucose transport phenotype disappeared in soleus muscles from mature adult mice. No genotype-related differences were found in body composition or glucose tolerance or by indirect calorimetry measurements. To evaluate β-actin mobility in mature muscle, we electroporated green fluorescent protein (GFP)-β-actin into flexor digitorum brevis muscle fibers and measured fluorescence recovery after photobleaching. GFP-β-actin showed limited unstimulated mobility and no changes after insulin stimulation. In conclusion, β-actin is not required for glucose transport regulation in mature mouse muscle under the majority of the tested conditions. Thus, our work reveals fundamental differences in the role of the cortical β-actin cytoskeleton in mature muscle compared with cell culture.
Collapse
Affiliation(s)
- Agnete B Madsen
- Department of Nutrition, Exercise and Sports, University of Copenhagen , Copenhagen , Denmark
| | - Jonas R Knudsen
- Department of Nutrition, Exercise and Sports, University of Copenhagen , Copenhagen , Denmark
| | - Carlos Henriquez-Olguin
- Department of Nutrition, Exercise and Sports, University of Copenhagen , Copenhagen , Denmark
- Centro de Estudios Moleculares de la Célula, Instituto de Ciencias Biomédicas, Universidad de Chile ; Laboratory of Exercise Sciences, Clínica MEDS, Santiago , Chile
| | - Yeliz Angin
- Department of Nutrition, Exercise and Sports, University of Copenhagen , Copenhagen , Denmark
| | - Kristien J Zaal
- Light Imaging Section, Office of Science and Technology, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health , Bethesda, Maryland
| | - Lykke Sylow
- Department of Nutrition, Exercise and Sports, University of Copenhagen , Copenhagen , Denmark
| | - Peter Schjerling
- Institute of Sports Medicine, Department of Orthopedic Surgery, Bispebjerg Hospital , Copenhagen , Denmark
- Center of Healthy Aging, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark
| | - Evelyn Ralston
- Light Imaging Section, Office of Science and Technology, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health , Bethesda, Maryland
| | - Thomas E Jensen
- Department of Nutrition, Exercise and Sports, University of Copenhagen , Copenhagen , Denmark
| |
Collapse
|
21
|
Navarro-Marquez M, Torrealba N, Troncoso R, Vásquez-Trincado C, Rodriguez M, Morales PE, Villalobos E, Eura Y, Garcia L, Chiong M, Klip A, Jaimovich E, Kokame K, Lavandero S. Herpud1 impacts insulin-dependent glucose uptake in skeletal muscle cells by controlling the Ca2+-calcineurin-Akt axis. Biochim Biophys Acta Mol Basis Dis 2018; 1864:1653-1662. [DOI: 10.1016/j.bbadis.2018.02.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 02/17/2018] [Accepted: 02/20/2018] [Indexed: 01/08/2023]
|
22
|
Jaimovich E, Casas M. Evaluating the essential role of RONS in vivo in exercised human muscle. Acta Physiol (Oxf) 2018; 222. [PMID: 28887887 DOI: 10.1111/apha.12972] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- E. Jaimovich
- Muscle Cell Physiology Laboratory; Center of Molecular Studies of the Cell; Institute of Biomedical Sciences; Faculty of Medicine; Universidad de Chile; Santiago Chile
| | - M. Casas
- Muscle Cell Physiology Laboratory; Center of Molecular Studies of the Cell; Institute of Biomedical Sciences; Faculty of Medicine; Universidad de Chile; Santiago Chile
| |
Collapse
|
23
|
Lipko M, Debski B. Mechanism of insulin-like effect of chromium(III) ions on glucose uptake in C2C12 mouse myotubes involves ROS formation. J Trace Elem Med Biol 2018; 45:171-175. [PMID: 29173475 DOI: 10.1016/j.jtemb.2017.10.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 10/19/2017] [Accepted: 10/27/2017] [Indexed: 11/26/2022]
Abstract
Chromium is considered a trace element which improves glucose tolerance, but mechanism accounting for this insulin-like action is not recognized. The main purpose of this study was to examine the role of reactive oxygen species (ROS) in chromium and insulin stimulated glucose transport using antioxidants. Effect of chromium ions on phosphatases, enzymes involved in inhibition of insulin signaling was also investigated. Experiments were performed in vitro on C2C12 mouse myotubes. ROS level was measured with the use of confocal microscope and 2',7' dichlorodihydrofluorescein diacetate (DCFH-DA). Glucose metabolism was assayed by the measurement of 2-[3H]-deoxyglucose uptake. Cr3+ ions and insulin treatment caused significant increase of ROS formation and also stimulated glucose uptake in C2C12 cells in concentration dependent manner. Antioxidants (L-ascorbic acid and N-acetyl cysteine 100μM) and DPI (diphenyleneiodonium-NADPH oxidase inhibitor, 10μM) abolished insulin- and Cr-inducted glucose transport. Our results confirm the hypothesis that the ROS are integral part of insulin signaling pathway and that the insulin mimetic effect of Cr3+ ions depends on the antioxidant status of the cells. Surprisingly, chromium treatment resulted in increased activity of membrane phosphatases.
Collapse
Affiliation(s)
- Maciej Lipko
- Department of Physiological Science, Faculty of Veterinary Medicine, Warsaw Agricultural University, Poland.
| | - Bogdan Debski
- Department of Physiological Science, Faculty of Veterinary Medicine, Warsaw Agricultural University, Poland
| |
Collapse
|
24
|
Alcala M, Calderon-Dominguez M, Serra D, Herrero L, Ramos MP, Viana M. Short-term vitamin E treatment impairs reactive oxygen species signaling required for adipose tissue expansion, resulting in fatty liver and insulin resistance in obese mice. PLoS One 2017; 12:e0186579. [PMID: 29028831 PMCID: PMC5640231 DOI: 10.1371/journal.pone.0186579] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Accepted: 10/03/2017] [Indexed: 12/14/2022] Open
Abstract
Objectives The use of antioxidant therapy in the treatment of oxidative stress-related diseases such as cardiovascular disease, diabetes or obesity remains controversial. Our aim is to demonstrate that antioxidant supplementation may promote negative effects if used before the establishment of oxidative stress due to a reduced ROS generation under physiological levels, in a mice model of obesity. Methods C57BL/6J mice were fed with a high-fat diet for 14 weeks, with (OE group) or without (O group) vitamin E supplementation. Results O mice developed a mild degree of obesity, which was not enough to induce metabolic alterations or oxidative stress. These animals exhibited a healthy expansion of retroperitoneal white adipose tissue (rpWAT) and the liver showed no signs of lipotoxicity. Interestingly, despite achieving a similar body weight, OE mice were insulin resistant. In the rpWAT they presented a reduced generation of ROS, even below physiological levels (C: 1651.0 ± 212.0; O: 3113 ± 284.7; OE: 917.6 ±104.4 RFU/mg protein. C vs OE p< 0.01). ROS decay may impair their action as second messengers, which could account for the reduced adipocyte differentiation, lipid transport and adipogenesis compared to the O group. Together, these processes limited the expansion of this fat pad and as a consequence, lipid flux shifted towards the liver, causing steatosis and hepatomegaly, which may contribute to the marked insulin resistance. Conclusions This study provides in vivo evidence for the role of ROS as second messengers in adipogenesis, lipid metabolism and insulin signaling. Reducing ROS generation below physiological levels when the oxidative process has not yet been established may be the cause of the controversial results obtained by antioxidant therapy.
Collapse
Affiliation(s)
- Martin Alcala
- Department of Chemistry and Biochemistry, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Madrid, Spain
| | - Maria Calderon-Dominguez
- Department of Chemistry and Biochemistry, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Madrid, Spain
| | - Dolors Serra
- Department of Biochemistry and Physiology, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, Barcelona, Spain
- CIBER Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Laura Herrero
- Department of Biochemistry and Physiology, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, Barcelona, Spain
- CIBER Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Maria P. Ramos
- Department of Chemistry and Biochemistry, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Madrid, Spain
| | - Marta Viana
- Department of Chemistry and Biochemistry, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Madrid, Spain
- * E-mail:
| |
Collapse
|
25
|
Kellogg DL, McCammon KM, Hinchee-Rodriguez KS, Adamo ML, Roman LJ. Neuronal nitric oxide synthase mediates insulin- and oxidative stress-induced glucose uptake in skeletal muscle myotubes. Free Radic Biol Med 2017; 110:261-269. [PMID: 28666850 PMCID: PMC5554434 DOI: 10.1016/j.freeradbiomed.2017.06.018] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 06/13/2017] [Accepted: 06/26/2017] [Indexed: 10/19/2022]
Abstract
Previously published studies strongly suggested that insulin- and exercise-induced skeletal muscle glucose uptake require nitric oxide (NO) production. However, the signal transduction mechanisms by which insulin and contraction regulated NO production and subsequent glucose transport are not known. In the present study, we utilized the myotube cell lines treated with insulin or hydrogen peroxide, the latter to mimic contraction-induced oxidative stress, to characterize these mechanisms. We found that insulin stimulation of neuronal nitric oxide synthase (nNOS) phosphorylation, NO production, and GLUT4 translocation were all significantly reduced by inhibition of either nNOS or Akt2. Hydrogen peroxide (H2O2) induced phosphorylation of nNOS at the same residue as did insulin, and also stimulated NO production and GLUT4 translocation. nNOS inhibition prevented H2O2-induced GLUT4 translocation. AMP activated protein kinase (AMPK) inhibition prevented H2O2 activation and phosphorylation of nNOS, leading to reduced NO production and significantly attenuated GLUT4 translocation. We conclude that nNOS phosphorylation and subsequently increased NO production are required for both insulin- and H2O2-stimulated glucose transport. Although the two stimuli result in phosphorylation of the same residue on nNOS, they do so through distinct protein kinases. Thus, insulin and H2O2-activated signaling pathways converge on nNOS, which is a common mediator of glucose uptake in both pathways. However, the fact that different kinases are utilized provides a basis for the use of exercise to activate glucose transport in the face of insulin resistance.
Collapse
Affiliation(s)
- Dean L Kellogg
- Department of Biochemistry and Structural Biology, The University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Dr., San Antonio, TX 78229, United States
| | - Karen M McCammon
- Department of Biochemistry and Structural Biology, The University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Dr., San Antonio, TX 78229, United States
| | - Kathryn S Hinchee-Rodriguez
- Department of Biochemistry and Structural Biology, The University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Dr., San Antonio, TX 78229, United States
| | - Martin L Adamo
- Department of Biochemistry and Structural Biology, The University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Dr., San Antonio, TX 78229, United States
| | - Linda J Roman
- Department of Biochemistry and Structural Biology, The University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Dr., San Antonio, TX 78229, United States.
| |
Collapse
|
26
|
Jaldin-Fincati JR, Pavarotti M, Frendo-Cumbo S, Bilan PJ, Klip A. Update on GLUT4 Vesicle Traffic: A Cornerstone of Insulin Action. Trends Endocrinol Metab 2017; 28:597-611. [PMID: 28602209 DOI: 10.1016/j.tem.2017.05.002] [Citation(s) in RCA: 180] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 05/08/2017] [Accepted: 05/09/2017] [Indexed: 12/20/2022]
Abstract
Glucose transport is rate limiting for dietary glucose utilization by muscle and fat. The glucose transporter GLUT4 is dynamically sorted and retained intracellularly and redistributes to the plasma membrane (PM) by insulin-regulated vesicular traffic, or 'GLUT4 translocation'. Here we emphasize recent findings in GLUT4 translocation research. The application of total internal reflection fluorescence microscopy (TIRFM) has increased our understanding of insulin-regulated events beneath the PM, such as vesicle tethering and membrane fusion. We describe recent findings on Akt-targeted Rab GTPase-activating proteins (GAPs) (TBC1D1, TBC1D4, TBC1D13) and downstream Rab GTPases (Rab8a, Rab10, Rab13, Rab14, and their effectors) along with the input of Rac1 and actin filaments, molecular motors [myosinVa (MyoVa), myosin1c (Myo1c), myosinIIA (MyoIIA)], and membrane fusion regulators (syntaxin4, munc18c, Doc2b). Collectively these findings reveal novel events in insulin-regulated GLUT4 traffic.
Collapse
Affiliation(s)
| | - Martin Pavarotti
- Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5J 2L4, Canada; IHEM, Universidad Nacional de Cuyo, CONICET, Mendoza 5500, Argentina
| | - Scott Frendo-Cumbo
- Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5J 2L4, Canada; Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Philip J Bilan
- Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5J 2L4, Canada
| | - Amira Klip
- Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5J 2L4, Canada; Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada.
| |
Collapse
|
27
|
Oxidative stress and calcium dysregulation by palmitate in type 2 diabetes. Exp Mol Med 2017; 49:e291. [PMID: 28154371 PMCID: PMC5336562 DOI: 10.1038/emm.2016.157] [Citation(s) in RCA: 227] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 10/07/2016] [Accepted: 10/16/2016] [Indexed: 12/12/2022] Open
Abstract
Free fatty acids (FFAs) are important substrates for mitochondrial oxidative metabolism and ATP synthesis but also cause serious stress to various tissues, contributing to the development of metabolic diseases. CD36 is a major mediator of cellular FFA uptake. Inside the cell, saturated FFAs are able to induce the production of cytosolic and mitochondrial reactive oxygen species (ROS), which can be prevented by co-exposure to unsaturated FFAs. There are close connections between oxidative stress and organellar Ca2+ homeostasis. Highly oxidative conditions induced by palmitate trigger aberrant endoplasmic reticulum (ER) Ca2+ release and thereby deplete ER Ca2+ stores. The resulting ER Ca2+ deficiency impairs chaperones of the protein folding machinery, leading to the accumulation of misfolded proteins. This ER stress may further aggravate oxidative stress by augmenting ER ROS production. Secondary to ER Ca2+ release, cytosolic and mitochondrial matrix Ca2+ concentrations can also be altered. In addition, plasmalemmal ion channels operated by ER Ca2+ depletion mediate persistent Ca2+ influx, further impairing cytosolic and mitochondrial Ca2+ homeostasis. Mitochondrial Ca2+ overload causes superoxide production and functional impairment, culminating in apoptosis. This vicious cycle of lipotoxicity occurs in multiple tissues, resulting in β-cell failure and insulin resistance in target tissues, and further aggravates diabetic complications.
Collapse
|
28
|
Berridge MJ. The Inositol Trisphosphate/Calcium Signaling Pathway in Health and Disease. Physiol Rev 2016; 96:1261-96. [DOI: 10.1152/physrev.00006.2016] [Citation(s) in RCA: 377] [Impact Index Per Article: 41.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Many cellular functions are regulated by calcium (Ca2+) signals that are generated by different signaling pathways. One of these is the inositol 1,4,5-trisphosphate/calcium (InsP3/Ca2+) signaling pathway that operates through either primary or modulatory mechanisms. In its primary role, it generates the Ca2+ that acts directly to control processes such as metabolism, secretion, fertilization, proliferation, and smooth muscle contraction. Its modulatory role occurs in excitable cells where it modulates the primary Ca2+ signal generated by the entry of Ca2+ through voltage-operated channels that releases Ca2+ from ryanodine receptors (RYRs) on the internal stores. In carrying out this modulatory role, the InsP3/Ca2+ signaling pathway induces subtle changes in the generation and function of the voltage-dependent primary Ca2+ signal. Changes in the nature of both the primary and modulatory roles of InsP3/Ca2+ signaling are a contributory factor responsible for the onset of a large number human diseases.
Collapse
Affiliation(s)
- Michael J. Berridge
- Laboratory of Molecular Signalling, The Babraham Institute, Babraham Research Campus, Cambridge, CB22 3AT, United Kingdom
| |
Collapse
|
29
|
Reactive oxygen species and calcium signals in skeletal muscle: A crosstalk involved in both normal signaling and disease. Cell Calcium 2016; 60:172-9. [DOI: 10.1016/j.ceca.2016.02.010] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 02/16/2016] [Accepted: 02/17/2016] [Indexed: 01/06/2023]
|
30
|
Hord JM, Botchlett R, Lawler JM. Age-related alterations in the sarcolemmal environment are attenuated by lifelong caloric restriction and voluntary exercise. Exp Gerontol 2016; 83:148-57. [PMID: 27534381 DOI: 10.1016/j.exger.2016.08.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 07/25/2016] [Accepted: 08/10/2016] [Indexed: 10/21/2022]
Abstract
Age-related loss of skeletal muscle mass and function, referred to as sarcopenia, is mitigated by lifelong calorie restriction as well as exercise. In aged skeletal muscle fibers there is compromised integrity of the cell membrane that may contribute to sarcopenia. The purpose of this study was to determine if lifelong mild (8%) caloric restriction (CR) and lifelong CR+voluntary wheel running (WR) could ameliorate disruption of membrane scaffolding and signaling proteins during the aging process, thus maintaining a favorable, healthy membrane environment in plantaris muscle fibers. Fischer-344 rats were divided into four groups: 24-month old adults fed ad libitum (OAL); 24-month old on 8% caloric restriction (OCR); 24month old 8% caloric restriction+wheel running (OCRWR); and 6-month old sedentary adults fed ad libitum (YAL) were used to determine age-related changes. Aging resulted in discontinuous membrane expression of dystrophin glycoprotein complex (DGC) proteins: dystrophin and α-syntrophin. Older muscle also displayed decreased content of neuronal nitric oxide synthase (nNOS), a key DGC signaling protein. In contrast, OCR and OCRWR provided significant protection against age-related DGC disruption. In conjunction with the age-related decline in membrane DGC patency, key membrane repair proteins (MG53, dysferlin, annexin A6, and annexin A2) were significantly increased in the OAL plantaris. However, lifelong CR and CRWR interventions were effective at maintaining membrane repair proteins near YAL levels of. OAL fibers also displayed reduced protein content of NADPH oxidase isoform 2 (Nox2) subunits (p67phox and p47phox), consistent with a perturbed sarcolemmal environment. Loss of Nox2 subunits was prevented by lifelong CR and CRWR. Our results are therefore consistent with the hypothesis that lifelong CR and WR are effective countermeasures against age-related alterations in the myofiber membrane environment.
Collapse
Affiliation(s)
- Jeffrey M Hord
- Redox Biology & Cell Signaling Laboratory, Department of Health and Kinesiology, College of Education and Human Development, Texas A&M University, College Station, TX, United States
| | - Rachel Botchlett
- Department of Nutrition & Food Science, College of Agriculture and Life Sciences, Texas A&M University, College Station, TX, United States
| | - John M Lawler
- Redox Biology & Cell Signaling Laboratory, Department of Health and Kinesiology, College of Education and Human Development, Texas A&M University, College Station, TX, United States; Department of Nutrition & Food Science, College of Agriculture and Life Sciences, Texas A&M University, College Station, TX, United States.
| |
Collapse
|
31
|
Abstract
SIGNIFICANCE Hydrogen peroxide (H2O2) is not only a key mediator of oxidative stress but also one of the most important cellular second messengers. This small short-lived molecule is involved in the regulation of a wide range of different biological processes, including regulation of cellular signaling pathways. Studying the role of H2O2 in living systems would be challenging without modern approaches. A genetically encoded fluorescent biosensor, HyPer, is one of the most effective tools for this purpose. RECENT ADVANCES HyPer has been used by many investigators of redox signaling in various models of different scales: from cytoplasmic subcompartments and single cells to tissues of whole organisms. In many studies, the results obtained using HyPer have enabled a better understanding of the roles of H2O2 in these biological processes. However, much remains to be learned. CRITICAL ISSUES In this review, we focus on the uses of HyPer. We provide a general description of HyPer and its improved versions. Separate chapters are devoted to the results obtained by various groups who have used this biosensor for their experiments in living cells and organisms. FUTURE DIRECTIONS HyPer is an effective tool for H2O2 imaging in living systems as indicated by the increasing numbers of publications each year since its development. However, this biosensor requires further improvements. In particular, much brighter and more pH-stable versions of HyPer are necessary for imaging in mammalian tissues. Antioxid. Redox Signal. 24, 731-751.
Collapse
Affiliation(s)
- Dmitry S Bilan
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry , Moscow, Russia
| | | |
Collapse
|
32
|
Wen Z, Shimojima Y, Shirai T, Li Y, Ju J, Yang Z, Tian L, Goronzy JJ, Weyand CM. NADPH oxidase deficiency underlies dysfunction of aged CD8+ Tregs. J Clin Invest 2016; 126:1953-67. [PMID: 27088800 DOI: 10.1172/jci84181] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 02/18/2016] [Indexed: 12/13/2022] Open
Abstract
Immune aging results in progressive loss of both protective immunity and T cell-mediated suppression, thereby conferring susceptibility to a combination of immunodeficiency and chronic inflammatory disease. Here, we determined that older individuals fail to generate immunosuppressive CD8+CCR7+ Tregs, a defect that is even more pronounced in the age-related vasculitic syndrome giant cell arteritis. In young, healthy individuals, CD8+CCR7+ Tregs are localized in T cell zones of secondary lymphoid organs, suppress activation and expansion of CD4 T cells by inhibiting the phosphorylation of membrane-proximal signaling molecules, and effectively inhibit proliferative expansion of CD4 T cells in vitro and in vivo. We identified deficiency of NADPH oxidase 2 (NOX2) as the molecular underpinning of CD8 Treg failure in the older individuals and in patients with giant cell arteritis. CD8 Tregs suppress by releasing exosomes that carry preassembled NOX2 membrane clusters and are taken up by CD4 T cells. Overexpression of NOX2 in aged CD8 Tregs promptly restored suppressive function. Together, our data support NOX2 as a critical component of the suppressive machinery of CD8 Tregs and suggest that repairing NOX2 deficiency in these cells may protect older individuals from tissue-destructive inflammatory disease, such as large-vessel vasculitis.
Collapse
|
33
|
Kiselyov K, Muallem S. ROS and intracellular ion channels. Cell Calcium 2016; 60:108-14. [PMID: 26995054 DOI: 10.1016/j.ceca.2016.03.004] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 03/03/2016] [Accepted: 03/04/2016] [Indexed: 12/15/2022]
Abstract
Oxidative stress is a well-known driver of numerous pathological processes involving protein and lipid peroxidation and DNA damage. The resulting increase of pro-apoptotic pressure drives tissue damage in a host of conditions, including ischemic stroke and reperfusion injury, diabetes, death in acute pancreatitis and neurodegenerative diseases. Somewhat less frequently discussed, but arguably as important, is the signaling function of oxidative stress stemming from the ability of oxidative stress to modulate ion channel activity. The evidence for the modulation of the intracellular ion channels and transporters by oxidative stress is constantly emerging and such evidence suggests new regulatory and pathological circuits that can be explored towards new treatments for diseases in which oxidative stress is an issue. In this review we summarize the current knowledge on the effects of oxidative stress on the intracellular ion channels and transporters and their role in cell function.
Collapse
Affiliation(s)
- Kirill Kiselyov
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, United States; Epithelial Signaling and Transport Section, Molecular Physiology and Therapeutics Branch NIH, NIDCR, Bethesda, MD 20892, United States.
| | - Shmuel Muallem
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, United States; Epithelial Signaling and Transport Section, Molecular Physiology and Therapeutics Branch NIH, NIDCR, Bethesda, MD 20892, United States.
| |
Collapse
|
34
|
Ursini F, Maiorino M, Forman HJ. Redox homeostasis: The Golden Mean of healthy living. Redox Biol 2016; 8:205-15. [PMID: 26820564 PMCID: PMC4732014 DOI: 10.1016/j.redox.2016.01.010] [Citation(s) in RCA: 274] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 01/15/2016] [Accepted: 01/18/2016] [Indexed: 12/20/2022] Open
Abstract
The notion that electrophiles serve as messengers in cell signaling is now widely accepted. Nonetheless, major issues restrain acceptance of redox homeostasis and redox signaling as components of maintenance of a normal physiological steady state. The first is that redox signaling requires sudden switching on of oxidant production and bypassing of antioxidant mechanisms rather than a continuous process that, like other signaling mechanisms, can be smoothly turned up or down. The second is the misperception that reactions in redox signaling involve “reactive oxygen species” rather than reaction of specific electrophiles with specific protein thiolates. The third is that hormesis provides protection against oxidants by increasing cellular defense or repair mechanisms rather than by specifically addressing the offset of redox homeostasis. Instead, we propose that both oxidant and antioxidant signaling are main features of redox homeostasis. As the redox shift is rapidly reversed by feedback reactions, homeostasis is maintained by continuous signaling for production and elimination of electrophiles and nucleophiles. Redox homeostasis, which is the maintenance of nucleophilic tone, accounts for a healthy physiological steady state. Electrophiles and nucleophiles are not intrinsically harmful or protective, and redox homeostasis is an essential feature of both the response to challenges and subsequent feedback. While the balance between oxidants and nucleophiles is preserved in redox homeostasis, oxidative stress provokes the establishment of a new radically altered redox steady state. The popular belief that scavenging free radicals by antioxidants has a beneficial effect is wishful thinking. We propose, instead, that continuous feedback preserves nucleophilic tone and that this is supported by redox active nutritional phytochemicals. These nonessential compounds, by activating Nrf2, mimic the effect of endogenously produced electrophiles (parahormesis). In summary, while hormesis, although globally protective, results in setting up of a new phenotype, parahormesis contributes to health by favoring maintenance of homeostasis. Redox homeostasis is the continuously challenged oxidative/nucleophilic balance. Rheostatic redox signaling enzymes maintain oxidative/nucleophilic homeostasis. Phytochemicals assist redox homeostasis through oxidative feedback (parahormesis). Adaptation and hormesis while protective establish a new phenotype and set point.
Collapse
Affiliation(s)
- Fulvio Ursini
- Department of Molecular Medicine, University of Padova, Viale G. Colombo 3, I-35121 Padova, Italy
| | - Matilde Maiorino
- Department of Molecular Medicine, University of Padova, Viale G. Colombo 3, I-35121 Padova, Italy
| | - Henry Jay Forman
- Andrus Gerontology Center of the Davis School of Gerontology, University of Southern, California, 3715 McClintock Ave, Los Angeles, CA 90089-0191, USA
| |
Collapse
|
35
|
Wilson C, González-Billault C. Regulation of cytoskeletal dynamics by redox signaling and oxidative stress: implications for neuronal development and trafficking. Front Cell Neurosci 2015; 9:381. [PMID: 26483635 PMCID: PMC4588006 DOI: 10.3389/fncel.2015.00381] [Citation(s) in RCA: 159] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 09/11/2015] [Indexed: 01/10/2023] Open
Abstract
A proper balance between chemical reduction and oxidation (known as redox balance) is essential for normal cellular physiology. Deregulation in the production of oxidative species leads to DNA damage, lipid peroxidation and aberrant post-translational modification of proteins, which in most cases induces injury, cell death and disease. However, physiological concentrations of oxidative species are necessary to support important cell functions, such as chemotaxis, hormone synthesis, immune response, cytoskeletal remodeling, Ca2+ homeostasis and others. Recent evidence suggests that redox balance regulates actin and microtubule dynamics in both physiological and pathological contexts. Microtubules and actin microfilaments contain certain amino acid residues that are susceptible to oxidation, which reduces the ability of microtubules to polymerize and causes severing of actin microfilaments in neuronal and non-neuronal cells. In contrast, inhibited production of reactive oxygen species (ROS; e.g., due to NOXs) leads to aberrant actin polymerization, decreases neurite outgrowth and affects the normal development and polarization of neurons. In this review, we summarize emerging evidence suggesting that both general and specific enzymatic sources of redox species exert diverse effects on cytoskeletal dynamics. Considering the intimate relationship between cytoskeletal dynamics and trafficking, we also discuss the potential effects of redox balance on intracellular transport via regulation of the components of the microtubule and actin cytoskeleton as well as cytoskeleton-associated proteins, which may directly impact localization of proteins and vesicles across the soma, dendrites and axon of neurons.
Collapse
Affiliation(s)
- Carlos Wilson
- Department of Biology, Faculty of Sciences, Universidad de Chile Santiago, Chile
| | | |
Collapse
|
36
|
Díaz-Vegas A, Campos CA, Contreras-Ferrat A, Casas M, Buvinic S, Jaimovich E, Espinosa A. ROS Production via P2Y1-PKC-NOX2 Is Triggered by Extracellular ATP after Electrical Stimulation of Skeletal Muscle Cells. PLoS One 2015; 10:e0129882. [PMID: 26053483 PMCID: PMC4460042 DOI: 10.1371/journal.pone.0129882] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2014] [Accepted: 05/15/2015] [Indexed: 01/15/2023] Open
Abstract
During exercise, skeletal muscle produces reactive oxygen species (ROS) via NADPH oxidase (NOX2) while inducing cellular adaptations associated with contractile activity. The signals involved in this mechanism are still a matter of study. ATP is released from skeletal muscle during electrical stimulation and can autocrinely signal through purinergic receptors; we searched for an influence of this signal in ROS production. The aim of this work was to characterize ROS production induced by electrical stimulation and extracellular ATP. ROS production was measured using two alternative probes; chloromethyl-2,7- dichlorodihydrofluorescein diacetate or electroporation to express the hydrogen peroxide-sensitive protein Hyper. Electrical stimulation (ES) triggered a transient ROS increase in muscle fibers which was mimicked by extracellular ATP and was prevented by both carbenoxolone and suramin; antagonists of pannexin channel and purinergic receptors respectively. In addition, transient ROS increase was prevented by apyrase, an ecto-nucleotidase. MRS2365, a P2Y1 receptor agonist, induced a large signal while UTPyS (P2Y2 agonist) elicited a much smaller signal, similar to the one seen when using ATP plus MRS2179, an antagonist of P2Y1. Protein kinase C (PKC) inhibitors also blocked ES-induced ROS production. Our results indicate that physiological levels of electrical stimulation induce ROS production in skeletal muscle cells through release of extracellular ATP and activation of P2Y1 receptors. Use of selective NOX2 and PKC inhibitors suggests that ROS production induced by ES or extracellular ATP is mediated by NOX2 activated by PKC.
Collapse
Affiliation(s)
- Alexis Díaz-Vegas
- Departamento de Tecnología Médica, Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Centro de Estudios Moleculares de la Célula, ICBM, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Cristian A. Campos
- Departamento de Tecnología Médica, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Ariel Contreras-Ferrat
- Centro de Estudios Moleculares de la Célula, ICBM, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Mariana Casas
- Centro de Estudios Moleculares de la Célula, ICBM, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Sonja Buvinic
- Instituto de Investigación en Ciencias Odontológicas, Facultad de Odontología, Universidad de Chile, Santiago, Chile
| | - Enrique Jaimovich
- Centro de Estudios Moleculares de la Célula, ICBM, Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Programa de Fisiología y Biofísica, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Alejandra Espinosa
- Departamento de Tecnología Médica, Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Centro de Estudios Moleculares de la Célula, ICBM, Facultad de Medicina, Universidad de Chile, Santiago, Chile
- * E-mail:
| |
Collapse
|
37
|
Pedrozo Z, Criollo A, Battiprolu PK, Morales CR, Contreras-Ferrat A, Fernández C, Jiang N, Luo X, Caplan MJ, Somlo S, Rothermel BA, Gillette TG, Lavandero S, Hill JA. Polycystin-1 Is a Cardiomyocyte Mechanosensor That Governs L-Type Ca2+ Channel Protein Stability. Circulation 2015; 131:2131-42. [PMID: 25888683 DOI: 10.1161/circulationaha.114.013537] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Accepted: 04/10/2015] [Indexed: 11/16/2022]
Abstract
BACKGROUND L-type calcium channel activity is critical to afterload-induced hypertrophic growth of the heart. However, the mechanisms governing mechanical stress-induced activation of L-type calcium channel activity are obscure. Polycystin-1 (PC-1) is a G protein-coupled receptor-like protein that functions as a mechanosensor in a variety of cell types and is present in cardiomyocytes. METHODS AND RESULTS We subjected neonatal rat ventricular myocytes to mechanical stretch by exposing them to hypo-osmotic medium or cyclic mechanical stretch, triggering cell growth in a manner dependent on L-type calcium channel activity. RNAi-dependent knockdown of PC-1 blocked this hypertrophy. Overexpression of a C-terminal fragment of PC-1 was sufficient to trigger neonatal rat ventricular myocyte hypertrophy. Exposing neonatal rat ventricular myocytes to hypo-osmotic medium resulted in an increase in α1C protein levels, a response that was prevented by PC-1 knockdown. MG132, a proteasomal inhibitor, rescued PC-1 knockdown-dependent declines in α1C protein. To test this in vivo, we engineered mice harboring conditional silencing of PC-1 selectively in cardiomyocytes (PC-1 knockout) and subjected them to mechanical stress in vivo (transverse aortic constriction). At baseline, PC-1 knockout mice manifested decreased cardiac function relative to littermate controls, and α1C L-type calcium channel protein levels were significantly lower in PC-1 knockout hearts. Whereas control mice manifested robust transverse aortic constriction-induced increases in cardiac mass, PC-1 knockout mice showed no significant growth. Likewise, transverse aortic constriction-elicited increases in hypertrophic markers and interstitial fibrosis were blunted in the knockout animals CONCLUSION PC-1 is a cardiomyocyte mechanosensor that is required for cardiac hypertrophy through a mechanism that involves stabilization of α1C protein.
Collapse
Affiliation(s)
- Zully Pedrozo
- From Division of Cardiology, Department of Internal Medicine (Z.P., A.C., P.K.B., C.R.M., N.J., X.L., B.A.R., T.G.G., S.L., J.A.H.) and Department of Molecular Biology (B.A.R., J.A.H.), UT Southwestern Medical Center, Dallas, TX; Advanced Center for Chronic Diseases and Centro de Estudios Moleculares de la Célula, Facultad de Medicina & Facultad de Ciencias Químicas y Farmacéuticas, Santiago, Chile (Z.P., A.C.-F., C.F., S.L.); Instituto de Ciencias Biomédicas, Facultad de Medicina (Z.P., S.L.) and Instituto de Investigación en Ciencias Odontológicas, Facultad de Odontología (A.C.), Universidad de Chile, Santiago; and Departments of Cellular and Molecular Physiology (M.J.C.), Internal Medicine (S.S.), and Genetics (S.S.), Yale University School of Medicine, New Haven, CT
| | - Alfredo Criollo
- From Division of Cardiology, Department of Internal Medicine (Z.P., A.C., P.K.B., C.R.M., N.J., X.L., B.A.R., T.G.G., S.L., J.A.H.) and Department of Molecular Biology (B.A.R., J.A.H.), UT Southwestern Medical Center, Dallas, TX; Advanced Center for Chronic Diseases and Centro de Estudios Moleculares de la Célula, Facultad de Medicina & Facultad de Ciencias Químicas y Farmacéuticas, Santiago, Chile (Z.P., A.C.-F., C.F., S.L.); Instituto de Ciencias Biomédicas, Facultad de Medicina (Z.P., S.L.) and Instituto de Investigación en Ciencias Odontológicas, Facultad de Odontología (A.C.), Universidad de Chile, Santiago; and Departments of Cellular and Molecular Physiology (M.J.C.), Internal Medicine (S.S.), and Genetics (S.S.), Yale University School of Medicine, New Haven, CT
| | - Pavan K Battiprolu
- From Division of Cardiology, Department of Internal Medicine (Z.P., A.C., P.K.B., C.R.M., N.J., X.L., B.A.R., T.G.G., S.L., J.A.H.) and Department of Molecular Biology (B.A.R., J.A.H.), UT Southwestern Medical Center, Dallas, TX; Advanced Center for Chronic Diseases and Centro de Estudios Moleculares de la Célula, Facultad de Medicina & Facultad de Ciencias Químicas y Farmacéuticas, Santiago, Chile (Z.P., A.C.-F., C.F., S.L.); Instituto de Ciencias Biomédicas, Facultad de Medicina (Z.P., S.L.) and Instituto de Investigación en Ciencias Odontológicas, Facultad de Odontología (A.C.), Universidad de Chile, Santiago; and Departments of Cellular and Molecular Physiology (M.J.C.), Internal Medicine (S.S.), and Genetics (S.S.), Yale University School of Medicine, New Haven, CT
| | - Cyndi R Morales
- From Division of Cardiology, Department of Internal Medicine (Z.P., A.C., P.K.B., C.R.M., N.J., X.L., B.A.R., T.G.G., S.L., J.A.H.) and Department of Molecular Biology (B.A.R., J.A.H.), UT Southwestern Medical Center, Dallas, TX; Advanced Center for Chronic Diseases and Centro de Estudios Moleculares de la Célula, Facultad de Medicina & Facultad de Ciencias Químicas y Farmacéuticas, Santiago, Chile (Z.P., A.C.-F., C.F., S.L.); Instituto de Ciencias Biomédicas, Facultad de Medicina (Z.P., S.L.) and Instituto de Investigación en Ciencias Odontológicas, Facultad de Odontología (A.C.), Universidad de Chile, Santiago; and Departments of Cellular and Molecular Physiology (M.J.C.), Internal Medicine (S.S.), and Genetics (S.S.), Yale University School of Medicine, New Haven, CT
| | - Ariel Contreras-Ferrat
- From Division of Cardiology, Department of Internal Medicine (Z.P., A.C., P.K.B., C.R.M., N.J., X.L., B.A.R., T.G.G., S.L., J.A.H.) and Department of Molecular Biology (B.A.R., J.A.H.), UT Southwestern Medical Center, Dallas, TX; Advanced Center for Chronic Diseases and Centro de Estudios Moleculares de la Célula, Facultad de Medicina & Facultad de Ciencias Químicas y Farmacéuticas, Santiago, Chile (Z.P., A.C.-F., C.F., S.L.); Instituto de Ciencias Biomédicas, Facultad de Medicina (Z.P., S.L.) and Instituto de Investigación en Ciencias Odontológicas, Facultad de Odontología (A.C.), Universidad de Chile, Santiago; and Departments of Cellular and Molecular Physiology (M.J.C.), Internal Medicine (S.S.), and Genetics (S.S.), Yale University School of Medicine, New Haven, CT
| | - Carolina Fernández
- From Division of Cardiology, Department of Internal Medicine (Z.P., A.C., P.K.B., C.R.M., N.J., X.L., B.A.R., T.G.G., S.L., J.A.H.) and Department of Molecular Biology (B.A.R., J.A.H.), UT Southwestern Medical Center, Dallas, TX; Advanced Center for Chronic Diseases and Centro de Estudios Moleculares de la Célula, Facultad de Medicina & Facultad de Ciencias Químicas y Farmacéuticas, Santiago, Chile (Z.P., A.C.-F., C.F., S.L.); Instituto de Ciencias Biomédicas, Facultad de Medicina (Z.P., S.L.) and Instituto de Investigación en Ciencias Odontológicas, Facultad de Odontología (A.C.), Universidad de Chile, Santiago; and Departments of Cellular and Molecular Physiology (M.J.C.), Internal Medicine (S.S.), and Genetics (S.S.), Yale University School of Medicine, New Haven, CT
| | - Nan Jiang
- From Division of Cardiology, Department of Internal Medicine (Z.P., A.C., P.K.B., C.R.M., N.J., X.L., B.A.R., T.G.G., S.L., J.A.H.) and Department of Molecular Biology (B.A.R., J.A.H.), UT Southwestern Medical Center, Dallas, TX; Advanced Center for Chronic Diseases and Centro de Estudios Moleculares de la Célula, Facultad de Medicina & Facultad de Ciencias Químicas y Farmacéuticas, Santiago, Chile (Z.P., A.C.-F., C.F., S.L.); Instituto de Ciencias Biomédicas, Facultad de Medicina (Z.P., S.L.) and Instituto de Investigación en Ciencias Odontológicas, Facultad de Odontología (A.C.), Universidad de Chile, Santiago; and Departments of Cellular and Molecular Physiology (M.J.C.), Internal Medicine (S.S.), and Genetics (S.S.), Yale University School of Medicine, New Haven, CT
| | - Xiang Luo
- From Division of Cardiology, Department of Internal Medicine (Z.P., A.C., P.K.B., C.R.M., N.J., X.L., B.A.R., T.G.G., S.L., J.A.H.) and Department of Molecular Biology (B.A.R., J.A.H.), UT Southwestern Medical Center, Dallas, TX; Advanced Center for Chronic Diseases and Centro de Estudios Moleculares de la Célula, Facultad de Medicina & Facultad de Ciencias Químicas y Farmacéuticas, Santiago, Chile (Z.P., A.C.-F., C.F., S.L.); Instituto de Ciencias Biomédicas, Facultad de Medicina (Z.P., S.L.) and Instituto de Investigación en Ciencias Odontológicas, Facultad de Odontología (A.C.), Universidad de Chile, Santiago; and Departments of Cellular and Molecular Physiology (M.J.C.), Internal Medicine (S.S.), and Genetics (S.S.), Yale University School of Medicine, New Haven, CT
| | - Michael J Caplan
- From Division of Cardiology, Department of Internal Medicine (Z.P., A.C., P.K.B., C.R.M., N.J., X.L., B.A.R., T.G.G., S.L., J.A.H.) and Department of Molecular Biology (B.A.R., J.A.H.), UT Southwestern Medical Center, Dallas, TX; Advanced Center for Chronic Diseases and Centro de Estudios Moleculares de la Célula, Facultad de Medicina & Facultad de Ciencias Químicas y Farmacéuticas, Santiago, Chile (Z.P., A.C.-F., C.F., S.L.); Instituto de Ciencias Biomédicas, Facultad de Medicina (Z.P., S.L.) and Instituto de Investigación en Ciencias Odontológicas, Facultad de Odontología (A.C.), Universidad de Chile, Santiago; and Departments of Cellular and Molecular Physiology (M.J.C.), Internal Medicine (S.S.), and Genetics (S.S.), Yale University School of Medicine, New Haven, CT
| | - Stefan Somlo
- From Division of Cardiology, Department of Internal Medicine (Z.P., A.C., P.K.B., C.R.M., N.J., X.L., B.A.R., T.G.G., S.L., J.A.H.) and Department of Molecular Biology (B.A.R., J.A.H.), UT Southwestern Medical Center, Dallas, TX; Advanced Center for Chronic Diseases and Centro de Estudios Moleculares de la Célula, Facultad de Medicina & Facultad de Ciencias Químicas y Farmacéuticas, Santiago, Chile (Z.P., A.C.-F., C.F., S.L.); Instituto de Ciencias Biomédicas, Facultad de Medicina (Z.P., S.L.) and Instituto de Investigación en Ciencias Odontológicas, Facultad de Odontología (A.C.), Universidad de Chile, Santiago; and Departments of Cellular and Molecular Physiology (M.J.C.), Internal Medicine (S.S.), and Genetics (S.S.), Yale University School of Medicine, New Haven, CT
| | - Beverly A Rothermel
- From Division of Cardiology, Department of Internal Medicine (Z.P., A.C., P.K.B., C.R.M., N.J., X.L., B.A.R., T.G.G., S.L., J.A.H.) and Department of Molecular Biology (B.A.R., J.A.H.), UT Southwestern Medical Center, Dallas, TX; Advanced Center for Chronic Diseases and Centro de Estudios Moleculares de la Célula, Facultad de Medicina & Facultad de Ciencias Químicas y Farmacéuticas, Santiago, Chile (Z.P., A.C.-F., C.F., S.L.); Instituto de Ciencias Biomédicas, Facultad de Medicina (Z.P., S.L.) and Instituto de Investigación en Ciencias Odontológicas, Facultad de Odontología (A.C.), Universidad de Chile, Santiago; and Departments of Cellular and Molecular Physiology (M.J.C.), Internal Medicine (S.S.), and Genetics (S.S.), Yale University School of Medicine, New Haven, CT
| | - Thomas G Gillette
- From Division of Cardiology, Department of Internal Medicine (Z.P., A.C., P.K.B., C.R.M., N.J., X.L., B.A.R., T.G.G., S.L., J.A.H.) and Department of Molecular Biology (B.A.R., J.A.H.), UT Southwestern Medical Center, Dallas, TX; Advanced Center for Chronic Diseases and Centro de Estudios Moleculares de la Célula, Facultad de Medicina & Facultad de Ciencias Químicas y Farmacéuticas, Santiago, Chile (Z.P., A.C.-F., C.F., S.L.); Instituto de Ciencias Biomédicas, Facultad de Medicina (Z.P., S.L.) and Instituto de Investigación en Ciencias Odontológicas, Facultad de Odontología (A.C.), Universidad de Chile, Santiago; and Departments of Cellular and Molecular Physiology (M.J.C.), Internal Medicine (S.S.), and Genetics (S.S.), Yale University School of Medicine, New Haven, CT
| | - Sergio Lavandero
- From Division of Cardiology, Department of Internal Medicine (Z.P., A.C., P.K.B., C.R.M., N.J., X.L., B.A.R., T.G.G., S.L., J.A.H.) and Department of Molecular Biology (B.A.R., J.A.H.), UT Southwestern Medical Center, Dallas, TX; Advanced Center for Chronic Diseases and Centro de Estudios Moleculares de la Célula, Facultad de Medicina & Facultad de Ciencias Químicas y Farmacéuticas, Santiago, Chile (Z.P., A.C.-F., C.F., S.L.); Instituto de Ciencias Biomédicas, Facultad de Medicina (Z.P., S.L.) and Instituto de Investigación en Ciencias Odontológicas, Facultad de Odontología (A.C.), Universidad de Chile, Santiago; and Departments of Cellular and Molecular Physiology (M.J.C.), Internal Medicine (S.S.), and Genetics (S.S.), Yale University School of Medicine, New Haven, CT.
| | - Joseph A Hill
- From Division of Cardiology, Department of Internal Medicine (Z.P., A.C., P.K.B., C.R.M., N.J., X.L., B.A.R., T.G.G., S.L., J.A.H.) and Department of Molecular Biology (B.A.R., J.A.H.), UT Southwestern Medical Center, Dallas, TX; Advanced Center for Chronic Diseases and Centro de Estudios Moleculares de la Célula, Facultad de Medicina & Facultad de Ciencias Químicas y Farmacéuticas, Santiago, Chile (Z.P., A.C.-F., C.F., S.L.); Instituto de Ciencias Biomédicas, Facultad de Medicina (Z.P., S.L.) and Instituto de Investigación en Ciencias Odontológicas, Facultad de Odontología (A.C.), Universidad de Chile, Santiago; and Departments of Cellular and Molecular Physiology (M.J.C.), Internal Medicine (S.S.), and Genetics (S.S.), Yale University School of Medicine, New Haven, CT.
| |
Collapse
|
38
|
Llanos P, Contreras-Ferrat A, Georgiev T, Osorio-Fuentealba C, Espinosa A, Hidalgo J, Hidalgo C, Jaimovich E. The cholesterol-lowering agent methyl-β-cyclodextrin promotes glucose uptake via GLUT4 in adult muscle fibers and reduces insulin resistance in obese mice. Am J Physiol Endocrinol Metab 2015; 308:E294-305. [PMID: 25491723 DOI: 10.1152/ajpendo.00189.2014] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Insulin stimulates glucose uptake in adult skeletal muscle by promoting the translocation of GLUT4 glucose transporters to the transverse tubule (T-tubule) membranes, which have particularly high cholesterol levels. We investigated whether T-tubule cholesterol content affects insulin-induced glucose transport. Feeding mice a high-fat diet (HFD) for 8 wk increased by 30% the T-tubule cholesterol content of triad-enriched vesicular fractions from muscle tissue compared with triads from control mice. Additionally, isolated muscle fibers (flexor digitorum brevis) from HFD-fed mice showed a 40% decrease in insulin-stimulated glucose uptake rates compared with fibers from control mice. In HFD-fed mice, four subcutaneous injections of MβCD, an agent reported to extract membrane cholesterol, improved their defective glucose tolerance test and normalized their high fasting glucose levels. The preincubation of isolated muscle fibers with relatively low concentrations of MβCD increased both basal and insulin-induced glucose uptake in fibers from controls or HFD-fed mice and decreased Akt phosphorylation without altering AMPK-mediated signaling. In fibers from HFD-fed mice, MβCD improved insulin sensitivity even after Akt or CaMK II inhibition and increased membrane GLUT4 content. Indinavir, a GLUT4 antagonist, prevented the stimulatory effects of MβCD on glucose uptake. Addition of MβCD elicited ryanodine receptor-mediated calcium signals in isolated fibers, which were essential for glucose uptake. Our findings suggest that T-tubule cholesterol content exerts a critical regulatory role on insulin-stimulated GLUT4 translocation and glucose transport and that partial cholesterol removal from muscle fibers may represent a useful strategy to counteract insulin resistance.
Collapse
Affiliation(s)
- Paola Llanos
- Center for Molecular Studies of the Cell, Facultad de Medicina, Universidad de Chile, Santiago, Chile; Institute for Research in Dental Sciences, Facultad de Odontología, Universidad de Chile, Santiago, Chile;
| | - Ariel Contreras-Ferrat
- Center for Molecular Studies of the Cell, Facultad de Medicina, Universidad de Chile, Santiago, Chile; Institute for Research in Dental Sciences, Facultad de Odontología, Universidad de Chile, Santiago, Chile
| | - Tihomir Georgiev
- Medical Biophysics, Institute of Physiology und Pathophysiology, Ruprecht Karls Universität, Heidelberg, Germany
| | | | - Alejandra Espinosa
- Center for Molecular Studies of the Cell, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Jorge Hidalgo
- Center for Molecular Studies of the Cell, Facultad de Medicina, Universidad de Chile, Santiago, Chile; Physiology and Biophysics Program, Institute of Biomedical Sciences (ICBM), Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Cecilia Hidalgo
- Center for Molecular Studies of the Cell, Facultad de Medicina, Universidad de Chile, Santiago, Chile; Physiology and Biophysics Program, Institute of Biomedical Sciences (ICBM), Facultad de Medicina, Universidad de Chile, Santiago, Chile; Biomedical Neuroscience Institute, Facultad de Medicina, Universidad de Chile, Santiago, Chile; and
| | - Enrique Jaimovich
- Center for Molecular Studies of the Cell, Facultad de Medicina, Universidad de Chile, Santiago, Chile; Cell and Molecular Biology Program, ICBM, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| |
Collapse
|
39
|
Brandes RP, Weissmann N, Schröder K. Nox family NADPH oxidases: Molecular mechanisms of activation. Free Radic Biol Med 2014; 76:208-26. [PMID: 25157786 DOI: 10.1016/j.freeradbiomed.2014.07.046] [Citation(s) in RCA: 495] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Revised: 07/29/2014] [Accepted: 07/30/2014] [Indexed: 11/21/2022]
Abstract
NADPH oxidases of the Nox family are important enzymatic sources of reactive oxygen species (ROS). Numerous homologue-specific mechanisms control the activity of this enzyme family involving calcium, free fatty acids, protein-protein interactions, intracellular trafficking, and posttranslational modifications such as phosphorylation, acetylation, or sumoylation. After a brief review on the classic pathways of Nox activation, this article will focus on novel mechanisms of homologue-specific activity control and on cell-specific aspects which govern Nox activity. From these findings of the recent years it must be concluded that the activity control of Nox enzymes is much more complex than anticipated. Moreover, depending on the cellular activity state, Nox enzymes are selectively activated or inactivated. The complex upstream signaling aspects of these events make the development of "intelligent" Nox inhibitors plausible, which selectively attenuate disease-related Nox-mediated ROS formation without altering physiological signaling ROS. This approach might be of relevance for Nox-mediated tissue injury in ischemia-reperfusion and inflammation and also for chronic Nox overactivation as present in cancer initiation and cardiovascular disease.
Collapse
Affiliation(s)
- Ralf P Brandes
- Institut für Kardiovaskuläre Physiologie, Goethe-Universität Frankfurt, Frankfurt, Germany.
| | - Norbert Weissmann
- ECCPS, Justus-Liebig-Universität, Member of the DZL, Giessen, Germany
| | - Katrin Schröder
- Institut für Kardiovaskuläre Physiologie, Goethe-Universität Frankfurt, Frankfurt, Germany
| |
Collapse
|
40
|
Contreras-Ferrat A, Lavandero S, Jaimovich E, Klip A. Calcium signaling in insulin action on striated muscle. Cell Calcium 2014; 56:390-6. [PMID: 25224502 DOI: 10.1016/j.ceca.2014.08.012] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2014] [Revised: 08/24/2014] [Accepted: 08/26/2014] [Indexed: 02/07/2023]
Abstract
Striated muscles (skeletal and cardiac) are major physiological targets of insulin and this hormone triggers complex signaling pathways regulating cell growth and energy metabolism. Insulin increases glucose uptake into muscle cells by stimulating glucose transporter (GLUT4) translocation from intracellular compartments to the cell surface. The canonical insulin-triggered signaling cascade controlling this process is constituted by well-mapped tyrosine, lipid and serine/threonine phosphorylation reactions. In parallel to these signals, recent findings reveal insulin-dependent Ca(2+) mobilization in skeletal muscle cells and cardiomyocytes. Specifically, insulin activates the sarco-endoplasmic reticulum (SER) channels that release Ca(2+) into the cytosol i.e., the Ryanodine Receptor (RyR) and the inositol 1,4,5-triphosphate receptor (IP3R). In skeletal muscle cells, a rapid, insulin-triggered Ca(2+) release occurs through RyR, that is brought about upon S-glutathionylation of cysteine residues in the channel by reactive oxygen species (ROS) produced by the early activation of the NADPH oxidase (NOX2). In cardiomyocytes insulin induces a fast and transient increase in cytoplasmic [Ca(2+)]i trough L-type Ca(2+) channels activation. In both cell types, a relatively slower Ca(2+) release also occurs through IP3R activation, and is required for GLUT4 translocation and glucose uptake. The insulin-dependent Ca(2+) released from IP3R of skeletal muscle also promotes mitochondrial Ca(2+) uptake. We review here these actions of insulin on intracellular Ca(2+) channel activation and their impact on GLUT4 traffic in muscle cells, as well as other implications of insulin-dependent Ca(2+) release from the SER.
Collapse
Affiliation(s)
- A Contreras-Ferrat
- Center for Molecular Studies of the Cell (CEMC), Faculty of Medicine, Chile; Advanced Center for Chronic Disease (ACCDiS), Faculty of Chemical and Pharmaceutical Sciences & Faculty of Medicine, Chile; Institute for Research in Dental Sciences, Faculty of Dentistry, University of Chile, Santiago 8380492, Chile.
| | - S Lavandero
- Center for Molecular Studies of the Cell (CEMC), Faculty of Medicine, Chile; Advanced Center for Chronic Disease (ACCDiS), Faculty of Chemical and Pharmaceutical Sciences & Faculty of Medicine, Chile
| | - E Jaimovich
- Center for Molecular Studies of the Cell (CEMC), Faculty of Medicine, Chile
| | - A Klip
- The Hospital for Sick Children, Toronto, Ontario, Canada M5G 1X8
| |
Collapse
|
41
|
Klip A, Sun Y, Chiu TT, Foley KP. Signal transduction meets vesicle traffic: the software and hardware of GLUT4 translocation. Am J Physiol Cell Physiol 2014; 306:C879-86. [DOI: 10.1152/ajpcell.00069.2014] [Citation(s) in RCA: 124] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Skeletal muscle is the major tissue disposing of dietary glucose, a function regulated by insulin-elicited signals that impart mobilization of GLUT4 glucose transporters to the plasma membrane. This phenomenon, also central to adipocyte biology, has been the subject of intense and productive research for decades. We focus on muscle cell studies scrutinizing insulin signals and vesicle traffic in a spatiotemporal manner. Using the analogy of an integrated circuit to approach the intersection between signal transduction and vesicle mobilization, we identify signaling relays (“software”) that engage structural/mechanical elements (“hardware”) to enact the rapid mobilization and incorporation of GLUT4 into the cell surface. We emphasize how insulin signal transduction switches from tyrosine through lipid and serine phosphorylation down to activation of small G proteins of the Rab and Rho families, describe key negative regulation step of Rab GTPases through the GTPase-activating protein activity of the Akt substrate of 160 kDa (AS160), and focus on the mechanical effectors engaged by Rabs 8A and 10 (the molecular motor myosin Va), and the Rho GTPase Rac1 (actin filament branching and severing through Arp2/3 and cofilin). Finally, we illustrate how actin filaments interact with myosin 1c and α-Actinin4 to promote vesicle tethering as preamble to fusion with the membrane.
Collapse
Affiliation(s)
- Amira Klip
- Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada; and
- Department of Biochemistry, The University of Toronto, Ontario, Canada
| | - Yi Sun
- Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada; and
| | - Tim Ting Chiu
- Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada; and
- Department of Biochemistry, The University of Toronto, Ontario, Canada
| | - Kevin P. Foley
- Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada; and
- Department of Biochemistry, The University of Toronto, Ontario, Canada
| |
Collapse
|