1
|
Arokiasamy S, Balderstone MJM, Shaik F, Cristante E, Moseley TC, Madoo A, Rizzi M, Bainbridge JW, Tsoyi K, Rosas IO, Whiteford JR, De Rossi G. QM107, a novel CD148 (RTP Type J) activating peptide therapy for treating neovascular age-related macular degeneration. Br J Pharmacol 2025; 182:951-968. [PMID: 39428594 DOI: 10.1111/bph.17362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/29/2024] [Accepted: 09/05/2024] [Indexed: 10/22/2024] Open
Abstract
BACKGROUND AND PURPOSE Angiogenesis is a pathological component of neovascular age-related macular degeneration. Current therapies, although successful, are prone to high levels of patient non-response and a loss of efficacy over time, indicating the need to explore other therapeutic avenues. We have shown that an interaction between syndecan-2 and the tyrosine phosphatase receptor CD148 (RTP Type J) results in the ablation of angiogenesis. Here we exploit this pathway to develop a peptide activator of CD148 as a therapy for neovascular age-related macular degeneration. EXPERIMENTAL APPROACH We tested a peptide (QM107) derived from syndecan-2 in a variety of angiogenesis models and a pre-clinical model of neovascular age-related macular degeneration. We assessed the toxicological and inflammatory profiles of QM107 and its stability in vitreous humour. KEY RESULTS QM107 inhibits angiogenesis in ex vivo sprouting assays and disrupts endothelial microcapillary formation via inhibition of cell migration. QM107 acts through CD148, leading to changes in GSK3A phosphorylation and β1 integrin activation. QM107 elicits a negligible inflammatory response and exhibits limited toxicity in cultured cells, and is stable in vitreous humour. Finally, we show proof of concept that QM107 blocks angiogenesis in vivo using a model of neovascular age-related macular degeneration. CONCLUSION AND IMPLICATIONS We have developed a CD148 activating peptide which shows promise in inhibiting angiogenesis in models of neovascular age-related macular degeneration. This treatment could either represent an alternative or augment existing therapies, and owing to its distinct mode of action be used in patients who do not respond to existing treatments.
Collapse
Affiliation(s)
- Samantha Arokiasamy
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Michaela J M Balderstone
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Faheem Shaik
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Enrico Cristante
- Institute of Ophthalmology, University College London, London, UK
| | - Thomas C Moseley
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Akshay Madoo
- Institute of Ophthalmology, University College London, London, UK
| | - Matteo Rizzi
- Institute of Ophthalmology, University College London, London, UK
| | - James W Bainbridge
- Institute of Ophthalmology, University College London, London, UK
- NIHR Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust, London, UK
| | - Konstantin Tsoyi
- Section of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - Ivan O Rosas
- Section of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - James R Whiteford
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Giulia De Rossi
- Institute of Ophthalmology, University College London, London, UK
| |
Collapse
|
2
|
Manouchehri JM, Datta J, Marcho LM, Reardon JJ, Stover D, Wesolowski R, Borate U, Cheng TYD, Schnell PM, Ramaswamy B, Sizemore GM, Rubinstein MP, Cherian MA. The role of heparan sulfate in enhancing the chemotherapeutic response in triple-negative breast cancer. Breast Cancer Res 2024; 26:153. [PMID: 39506780 PMCID: PMC11539583 DOI: 10.1186/s13058-024-01906-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 10/17/2024] [Indexed: 11/08/2024] Open
Abstract
BACKGROUND Breast cancer, one of the most common forms of cancer, is associated with the highest cancer-related mortality among women worldwide. In comparison to other types of breast cancer, patients diagnosed with the triple-negative breast cancer (TNBC) subtype have the worst outcome because current therapies do not produce long-lasting responses. Hence, innovative therapies that produce persisting responses are a critical need. We previously discovered that hyperactivating purinergic receptors (P2RXs) by increasing extracellular adenosine triphosphate (eATP) concentrations enhances TNBC cell lines' response to chemotherapy. Heparan sulfate inhibits multiple extracellular ATPases, so it is a molecule of interest in this regard. In turn, heparanase degrades polysulfated polysaccharide heparan sulfate. Importantly, previous work suggests that breast cancer and other cancers express heparanase at high levels. Hence, as heparan sulfate can inhibit extracellular ATPases to facilitate eATP accumulation, it may intensify responses to chemotherapy. We postulated that heparanase inhibitors would exacerbate chemotherapy-induced decreases in TNBC cell viability by increasing heparan sulfate in the cellular microenvironment and hence, augmenting eATP. METHODS We treated TNBC cell lines MDA-MB 231, Hs 578t, and MDA-MB 468 and non-tumorigenic immortal mammary epithelial MCF-10A cells with paclitaxel (cytotoxic chemotherapeutic) with or without the heparanase inhibitor OGT 2115 and/or supplemental heparan sulfate. We evaluated cell viability and the release of eATP. Also, we compared the expression of heparanase protein in cell lines and tissues by immunoblot and immunohistochemistry, respectively. In addition, we examined breast-cancer-initiating cell populations using tumorsphere formation efficiency assays on treated cells. RESULTS We found that combining heparanase inhibitor OGT 2115 with chemotherapy decreased TNBC cell viability and tumorsphere formation through increases in eATP and activation of purinergic receptors as compared to TNBC cells treated with single-agent paclitaxel. CONCLUSION Our data shows that by preventing heparan sulfate breakdown, heparanase inhibitors make TNBC cells more susceptible to chemotherapy by enhancing eATP concentrations.
Collapse
Affiliation(s)
- Jasmine M Manouchehri
- Division of Medical Oncology, The Ohio State University Comprehensive Cancer Center, 410 W 10th Ave., Columbus, OH, 43210, USA
| | - Jharna Datta
- Division of Medical Oncology, The Ohio State University Comprehensive Cancer Center, 410 W 10th Ave., Columbus, OH, 43210, USA
| | - Lynn M Marcho
- Division of Medical Oncology, The Ohio State University Comprehensive Cancer Center, 410 W 10th Ave., Columbus, OH, 43210, USA
| | - Jesse J Reardon
- Department of Radiation Oncology, The Ohio State University Comprehensive Cancer Center, 410 W 10th Ave., Columbus, OH, 43210, USA
| | - Daniel Stover
- Division of Medical Oncology, The Ohio State University Comprehensive Cancer Center, 410 W 10th Ave., Columbus, OH, 43210, USA
| | - Robert Wesolowski
- Division of Medical Oncology, The Ohio State University Comprehensive Cancer Center, 410 W 10th Ave., Columbus, OH, 43210, USA
| | - Uma Borate
- Division of Hematology, The Ohio State University Comprehensive Cancer Center, 410 W 10th Ave., Columbus, OH, 43210, USA
| | - Ting-Yuan David Cheng
- Division of Cancer Prevention and Control, Department of Internal Medicine, The Ohio State University, Suite 525, 1590 North High St., Columbus, OH, 43201, USA
| | - Patrick M Schnell
- Division of Biostatistics, The Ohio State University College of Public Health, 1841 Neil Ave., Columbus, OH, 43210, USA
| | - Bhuvaneswari Ramaswamy
- Division of Medical Oncology, The Ohio State University Comprehensive Cancer Center, 410 W 10th Ave., Columbus, OH, 43210, USA
| | - Gina M Sizemore
- Department of Radiation Oncology, The Ohio State University Comprehensive Cancer Center, 410 W 10th Ave., Columbus, OH, 43210, USA
| | - Mark P Rubinstein
- Division of Medical Oncology, The Ohio State University Comprehensive Cancer Center, 410 W 10th Ave., Columbus, OH, 43210, USA
| | - Mathew A Cherian
- Division of Medical Oncology, The Ohio State University Comprehensive Cancer Center, 410 W 10th Ave., Columbus, OH, 43210, USA.
- Division of Medical Oncology, 460 W 12th Ave., 888 BRT, Columbus, OH, 43210, USA.
| |
Collapse
|
3
|
Zalewski D, Chmiel P, Kołodziej P, Kocki M, Feldo M, Kocki J, Bogucka-Kocka A. Key Regulators of Angiogenesis and Inflammation Are Dysregulated in Patients with Varicose Veins. Int J Mol Sci 2024; 25:6785. [PMID: 38928491 PMCID: PMC11204110 DOI: 10.3390/ijms25126785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/14/2024] [Accepted: 06/18/2024] [Indexed: 06/28/2024] Open
Abstract
Varicose veins (VVs) are the most common manifestation of chronic venous disease (CVD) and appear as abnormally enlarged and tortuous superficial veins. VVs result from functional abnormalities in the venous circulation of the lower extremities, such as venous hypertension, venous valve incompetence, and venous reflux. Previous studies indicate that enhanced angiogenesis and inflammation contribute to the progression and onset of VVs; however, dysregulations in signaling pathways associated with these processes in VVs patients are poorly understood. Therefore, in our study, we aimed to identify key regulators of angiogenesis and inflammation that are dysregulated in patients with VVs. Expression levels of 18 genes were analyzed in peripheral blood mononuclear cells (PBMC) using real-time PCR, as well as plasma levels of 6 proteins were investigated using ELISA. Higher levels of CCL5, PDGFA, VEGFC, TGF-alpha, TGF-beta 1, and VEGF-A, as well as lower levels of VEGFB and VEGF-C, were found to be statistically significant in the VV group compared to the control subjects without VVs. None of the analyzed factors was associated with the venous localization of the varicosities. The presented study identified dysregulations in key angiogenesis- and inflammation-related factors in PBMC and plasma from VVs patients, providing new insight into molecular mechanisms that could contribute to the development of VVs and point out promising candidates for circulatory biomarkers of this disease.
Collapse
Affiliation(s)
- Daniel Zalewski
- Chair and Department of Biology and Genetics, Medical University of Lublin, 4a Chodźki St., 20-093 Lublin, Poland; (P.C.); (A.B.-K.)
| | - Paulina Chmiel
- Chair and Department of Biology and Genetics, Medical University of Lublin, 4a Chodźki St., 20-093 Lublin, Poland; (P.C.); (A.B.-K.)
| | - Przemysław Kołodziej
- Laboratory of Diagnostic Parasitology, Chair and Department of Biology and Genetics, Medical University of Lublin, 4a Chodźki St., 20-093 Lublin, Poland;
| | - Marcin Kocki
- Department of Neonatology and Neonatal Intensive Care, Independent Public Hospital No. 4 in Lublin, 8 Jaczewski St., 20-954 Lublin, Poland;
| | - Marcin Feldo
- Chair and Department of Vascular Surgery and Angiology, Medical University of Lublin, 11 Staszica St., 20-081 Lublin, Poland;
| | - Janusz Kocki
- Department of Clinical Genetics, Chair of Medical Genetics, Medical University of Lublin, 11 Radziwiłłowska St., 20-080 Lublin, Poland;
| | - Anna Bogucka-Kocka
- Chair and Department of Biology and Genetics, Medical University of Lublin, 4a Chodźki St., 20-093 Lublin, Poland; (P.C.); (A.B.-K.)
| |
Collapse
|
4
|
Kaur G, Harris NR. Endothelial glycocalyx in retina, hyperglycemia, and diabetic retinopathy. Am J Physiol Cell Physiol 2023; 324:C1061-C1077. [PMID: 36939202 PMCID: PMC10125029 DOI: 10.1152/ajpcell.00188.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 02/28/2023] [Accepted: 03/16/2023] [Indexed: 03/21/2023]
Abstract
The endothelial glycocalyx (EG) is a meshlike network present on the apical surface of the endothelium. Membrane-bound proteoglycans, the major backbone molecules of the EG, consist of glycosaminoglycans attached to core proteins. In addition to maintaining the integrity of the endothelial barrier, the EG regulates inflammation and perfusion and acts as a mechanosensor. The loss of the EG can cause endothelial dysfunction and drive the progression of vascular diseases including diabetic retinopathy. Therefore, the EG presents a novel therapeutic target for treatment of vascular complications. In this review article, we provide an overview of the structure and function of the EG in the retina. Our particular focus is on hyperglycemia-induced perturbations in the glycocalyx structure in the retina, potential underlying mechanisms, and clinical trials studying protective treatments against degradation of the EG.
Collapse
Affiliation(s)
- Gaganpreet Kaur
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana, United States
| | - Norman R Harris
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana, United States
| |
Collapse
|
5
|
Kizhakkeppurath Kumaran A, Sahu A, Singh A, Aynikkattil Ravindran N, Sekhar Chatterjee N, Mathew S, Verma S. Proteoglycans in breast cancer, identification and characterization by LC-MS/MS assisted proteomics approach: A review. Proteomics Clin Appl 2023:e2200046. [PMID: 36598116 DOI: 10.1002/prca.202200046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 11/24/2022] [Accepted: 01/02/2023] [Indexed: 01/05/2023]
Abstract
PURPOSE Proteoglycans (PGs) are negatively charged macromolecules containing a core protein and single or several glycosaminoglycan chains attached by covalent bond. They are distributed in all tissues, including extracellular matrix (ECM), cell surface, and basement membrane. They are involved in major pathways and cell signalling cascades which modulate several vital physiological functions of the body. They have also emerged as a target molecule for cancer treatment and as possible biomarkers for early cancer detection. Among cancers, breast cancer is a highly invasive and heterogenous type and has become the major cause of mortality especially among women. So, this review revisits the studies on PGs characterization in breast cancer using LC-MS/MS-based proteomics approach, which will be further helpful for identification of potential PGs-based biomarkers or therapeutic targets. EXPERIMENTAL DESIGN There is a lack of comprehensive knowledge on the use of LC-MS/MS-based proteomics approaches to identify and characterize PGs in breast cancer. RESULTS LC-MS/MS assisted PGs characterization in breast cancer revealed the vital PGs in breast cancer invasion and progression. In addition, comprehensive profiling and characterization of PGs in breast cancer are efficiently carried out by this approach. CONCLUSIONS Proteomics techniques including LC-MS/MS-based identification of proteoglycans is effectively carried out in breast cancer research. Identification of expression at different stages of breast cancer is a major challenge, and LC-MS/MS-based profiling of PGs can boost novel strategies to treat breast cancer, which involve targeting PGs, and also aid early diagnosis using PGs as biomarkers.
Collapse
Affiliation(s)
| | - Ankita Sahu
- Tumor Biology Lab, ICMR-National Institute of Pathology, New Delhi, India
| | - Astha Singh
- Tumor Biology Lab, ICMR-National Institute of Pathology, New Delhi, India
| | - Nisha Aynikkattil Ravindran
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary and Animal Sciences, Kerala Veterinary and Animal Sciences University, Thrissur, India
| | | | - Suseela Mathew
- Biochemistry and Nutrition Division, ICAR-Central Institute of Fisheries Technology, Kochi, India
| | - Saurabh Verma
- Tumor Biology Lab, ICMR-National Institute of Pathology, New Delhi, India
| |
Collapse
|
6
|
Stueven NA, Beauvais DM, Hu R, Kimple RJ, Rapraeger AC. Inhibiting IGF1R-mediated Survival Signaling in Head and Neck Cancer with the Peptidomimetic SSTN IGF1R. CANCER RESEARCH COMMUNICATIONS 2023; 3:97-108. [PMID: 36968227 PMCID: PMC10035507 DOI: 10.1158/2767-9764.crc-22-0274] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 10/26/2022] [Accepted: 01/03/2023] [Indexed: 01/07/2023]
Abstract
Previous studies have shown that the type I IGFR (IGF1R) suppresses apoptosis when it is autoactivated by coupling its extracellular domain to a matrix adhesion receptor complex consisting of syndecan-1 (Sdc1) and αvβ3 or αvβ5 integrin. We now report that head and neck squamous cell carcinoma (HNSCC) relies on this receptor complex. Disruption of the complex in HNSCC cells in vitro with a peptide mimetic of the organizer site in Sdc1 (called SSTNIGF1R) inactivates IGF1R, even in the presence of IGF1, and relieves the suppression of apoptosis signal-regulating kinase-1 (ASK1), dramatically reducing tumor cell survival. Normal epithelial cells do not assemble this receptor complex, require IGF1 to activate the IGF1R, and are refractory to SSTNIGF1R. In vivo, SSTNIGF1R reduced the growth of patient-derived HNSCC tumors in immunodeficient mice by 85%-95%. IGF1R's assimilation into the matrix receptor complex, which is detected in these tumors using the proximity ligation assay (PLA), is quantitatively disrupted by SSTNIGF1R, coinciding with ASK1 activation. PLA also detects the IGF1R-containing receptor complex in the archival sections of tonsil carcinomas, whereas the adjacent benign epithelium is negative. Likewise, PLA screening of oropharyngeal and adenoid cystic tumor microarrays demonstrated that over 95% of the tumors contained this unique receptor complex with no detectable expression in benign tissue. These findings suggest that HNSCC upregulates and is highly dependent on IGF1R signaling via this adhesion receptor complex. Targeting this mechanism with novel therapeutics, including highly specific SSTNIGF1R, is likely to offer promising outcomes for patients with carcinoma. Significance A newly developed biomarker reveals upregulation of an antiapoptotic IGF1R-integrin-syndecan receptor complex in head and neck cancer and documents disruption of the complex in patient-derived tumor xenografts (PDX) treated with the inhibitor SSTNIGF1R. A corresponding blockade in PDX growth in the presence of this inhibitor demonstrates that therapies designed to target this mechanism will likely offer promising outcomes for patients with head and neck cancer.
Collapse
Affiliation(s)
- Noah A. Stueven
- Department of Human Oncology, University of Wisconsin–Madison, Madison, Wisconsin
| | | | - Rong Hu
- Department of Pathology and Laboratory Medicine, School of Medicine and Public Health, University of Wisconsin–Madison, Madison, Wisconsin
| | - Randall J. Kimple
- Department of Human Oncology, University of Wisconsin–Madison, Madison, Wisconsin
| | - Alan C. Rapraeger
- Department of Human Oncology, University of Wisconsin–Madison, Madison, Wisconsin
| |
Collapse
|
7
|
Li L, Cook C, Liu Y, Li J, Jiang J, Li S. Endothelial glycocalyx in hepatopulmonary syndrome: An indispensable player mediating vascular changes. Front Immunol 2022; 13:1039618. [PMID: 36618396 PMCID: PMC9815560 DOI: 10.3389/fimmu.2022.1039618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 12/06/2022] [Indexed: 12/24/2022] Open
Abstract
Hepatopulmonary syndrome (HPS) is a serious pulmonary vascular complication that causes respiratory insufficiency in patients with chronic liver diseases. HPS is characterized by two central pathogenic features-intrapulmonary vascular dilatation (IPVD) and angiogenesis. Endothelial glycocalyx (eGCX) is a gel-like layer covering the luminal surface of blood vessels which is involved in a variety of physiological and pathophysiological processes including controlling vascular tone and angiogenesis. In terms of lung disorders, it has been well established that eGCX contributes to dysregulated vascular contraction and impaired blood-gas barrier and fluid clearance, and thus might underlie the pathogenesis of HPS. Additionally, pharmacological interventions targeting eGCX are dramatically on the rise. In this review, we aim to elucidate the potential role of eGCX in IPVD and angiogenesis and describe the possible degradation-reconstitution equilibrium of eGCX during HPS through a highlight of recent literature. These studies strongly underscore the therapeutic rationale in targeting eGCX for the treatment of HPS.
Collapse
Affiliation(s)
- Liang Li
- Department of Thoracic Surgery, the Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China,*Correspondence: Liang Li, ; Shaomin Li,
| | - Christopher Cook
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, United States
| | - Yale Liu
- Department of Dermatology, the Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Jianzhong Li
- Department of Thoracic Surgery, the Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Jiantao Jiang
- Department of Thoracic Surgery, the Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Shaomin Li
- Department of Thoracic Surgery, the Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China,*Correspondence: Liang Li, ; Shaomin Li,
| |
Collapse
|
8
|
Mead TJ, Bhutada S, Martin DR, Apte SS. Proteolysis: a key post-translational modification regulating proteoglycans. Am J Physiol Cell Physiol 2022; 323:C651-C665. [PMID: 35785985 PMCID: PMC9448339 DOI: 10.1152/ajpcell.00215.2022] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/28/2022] [Accepted: 06/28/2022] [Indexed: 11/22/2022]
Abstract
Proteoglycans are composite molecules comprising a protein backbone, i.e., the core protein, with covalently attached glycosaminoglycan chains of distinct chemical types. Most proteoglycans are secreted or attached to the cell membrane. Their specialized structures, binding properties, and biophysical attributes underlie diverse biological roles, which include modulation of tissue mechanics, cell adhesion, and the sequestration and regulated release of morphogens, growth factors, and cytokines. As an irreversible post-translational modification, proteolysis has a profound impact on proteoglycan function, abundance, and localization. Proteolysis is required for molecular maturation of some proteoglycans, clearance of extracellular matrix proteoglycans during tissue remodeling, generation of bioactive fragments from proteoglycans, and ectodomain shedding of cell-surface proteoglycans. Genetic evidence shows that proteoglycan core protein proteolysis is essential for diverse morphogenetic events during embryonic development. In contrast, dysregulated proteoglycan proteolysis contributes to osteoarthritis, cardiovascular disorders, cancer, and inflammation. Proteolytic fragments of perlecan, versican, aggrecan, brevican, collagen XVIII, and other proteoglycans are associated with independent biological activities as so-called matrikines. Yet, proteoglycan proteolysis has been investigated to only a limited extent to date. Here, we review the actions of proteases on proteoglycans and illustrate their functional impact with several examples. We discuss the applications and limitations of strategies used to define cleavage sites in proteoglycans and explain how proteoglycanome-wide proteolytic mapping, which is desirable to fully understand the impact of proteolysis on proteoglycans, can be facilitated by integrating classical proteoglycan isolation methods with mass spectrometry-based proteomics.
Collapse
Affiliation(s)
- Timothy J Mead
- Department of Biomedical Engineering, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio
| | - Sumit Bhutada
- Department of Biomedical Engineering, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio
| | - Daniel R Martin
- Department of Biomedical Engineering, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio
| | - Suneel S Apte
- Department of Biomedical Engineering, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio
| |
Collapse
|
9
|
Shaik F, Balderstone MJM, Arokiasamy S, Whiteford JR. Roles of Syndecan-4 in cardiac injury and repair. Int J Biochem Cell Biol 2022; 146:106196. [PMID: 35331918 DOI: 10.1016/j.biocel.2022.106196] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/17/2022] [Accepted: 03/18/2022] [Indexed: 11/30/2022]
Abstract
The heparan sulphate proteoglycan Syndecan-4 belongs to a 4-member family of transmembrane receptors. Genetic deletion of Syndecan-4 in mice causes negligible developmental abnormalities however when challenged these animals show distinct phenotypes. Synedcan-4 is expressed in many cell types in the heart and its expression is elevated in response to cardiac injury and recent studies have suggested roles for Syndecan-4 in repair mechanisms within the damaged heart. The purpose of this review is to explore these biological insights into the role of Syndecan-4 in both the injured heart and later during cardiac repair and remodeling.
Collapse
Affiliation(s)
- Faheem Shaik
- William Harvey Research Institute, Centre for Microvascular Research, Faculty of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, EC1M 6BQ, UK
| | - Michaela J M Balderstone
- William Harvey Research Institute, Centre for Microvascular Research, Faculty of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, EC1M 6BQ, UK
| | - Samantha Arokiasamy
- William Harvey Research Institute, Centre for Microvascular Research, Faculty of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, EC1M 6BQ, UK.
| | - James R Whiteford
- William Harvey Research Institute, Centre for Microvascular Research, Faculty of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, EC1M 6BQ, UK.
| |
Collapse
|
10
|
Hurysz B, Bottini N. Emerging proteoglycans and proteoglycan-targeted therapies in rheumatoid arthritis. Am J Physiol Cell Physiol 2022; 322:C1061-C1067. [PMID: 35476502 DOI: 10.1152/ajpcell.00086.2022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Rheumatoid arthritis (RA) is a common auto-immune disease-causing inflammation of the joints and damage of the cartilage and bone. The pathogenesis of RA is characterized in many patients by the presence of antibodies against citrullinated proteins. In the joints, proteoglycans are key structural elements of extracellular matrix in the articular cartilage and synovium and are secreted as lubricants in the synovial fluid. Alterations of proteoglycans contribute to mechanism of disease in RA. Proteoglycans such as aggrecan can be citrullinated and become potential targets of the rheumatoid auto-immune response. Proteoglycans are also up-regulated in RA joints and/or undergo alterations of their regulatory functions over cytokines and chemokines, which promotes inflammation and bone damage. Recent studies have aimed to not only clarify these mechanisms but also develop novel proteoglycan-modulating therapeutics. These include agents altering the function and signaling of proteoglycans as well as tolerizing agents based on citrullinated aggrecan. This mini-review summarizes the most recent findings regarding the dysregulation of proteoglycans that contributes to RA pathogenesis and the potential for proteoglycan-modulating agents to improve RA therapy.
Collapse
Affiliation(s)
- Brianna Hurysz
- Department of Medicine, University of California, San Diego, San Diego, California, United States
| | - Nunzio Bottini
- Department of Medicine, University of California, San Diego, San Diego, California, United States
| |
Collapse
|
11
|
Jang B, Song HK, Hwang J, Lee S, Park E, Oh A, Hwang ES, Sung JY, Kim YN, Park K, Lee YM, Oh ES. Shed syndecan-2 enhances colon cancer progression by increasing cooperative angiogenesis in the tumor microenvironment. Matrix Biol 2022; 107:40-58. [DOI: 10.1016/j.matbio.2022.02.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 01/12/2022] [Accepted: 02/02/2022] [Indexed: 12/24/2022]
|
12
|
Prognostic Bone Metastasis-Associated Immune-Related Genes Regulated by Transcription Factors in Mesothelioma. BIOMED RESEARCH INTERNATIONAL 2022; 2022:9940566. [PMID: 35127947 PMCID: PMC8813231 DOI: 10.1155/2022/9940566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 09/30/2021] [Accepted: 11/30/2021] [Indexed: 11/17/2022]
Abstract
Mesothelioma (MESO) is a mesothelial originate neoplasm with high morbidity and mortality. Despite advancement in technology, early diagnosis still lacks effectivity and is full of pitfalls. Approaches of cancer diagnosis and therapy utilizing immune biomarkers and transcription factors (TFs) have attracted more and more attention. But the molecular mechanism of these features in MESO bone metastasis has not been thoroughly studied. Utilizing high-throughput genome sequencing data and lists of specific gene subsets, we performed several data mining algorithm. Single-sample Gene Set Enrichment Analysis (ssGSEA) was applied to identify downstream immune cells. Potential pathways involved in MESO bone metastasis were identified using Gene Oncology (GO) analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, Gene Set Variation Analysis (GSVA), Gene Set Enrichment Analysis (GSEA), and Cox regression analysis. Ultimately, a model to help early diagnosis and to predict prognosis was constructed based on differentially expressed immune-related genes between bone metastatic and nonmetastatic MESO groups. In conclusion, immune-related gene SDC2, regulated by TFs TCF7L1 and POLR3D, had an important role on immune cell function and infiltration, providing novel biomarkers and therapeutic targets for metastatic MESO.
Collapse
|
13
|
He L, Takahashi K, Pasic L, Narui C, Ellinger P, Grundmann M, Takahashi T. The effects of CD148 Q276P/R326Q polymorphisms in A431D epidermoid cancer cell proliferation and epidermal growth factor receptor signaling. Cancer Rep (Hoboken) 2021; 5:e1566. [PMID: 34791835 PMCID: PMC9458507 DOI: 10.1002/cnr2.1566] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 08/16/2021] [Accepted: 09/21/2021] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND CD148 is a transmembrane protein tyrosine phosphatase that is expressed in multiple cell types. Previous studies have shown that CD148 dephosphorylates growth factor receptors and their signaling molecules, including EGFR and ERK1/2, and negatively regulates cancer cell growth. Furthermore, research of clinical patients has shown that highly linked CD148 gene polymorphisms, Gln276Pro (Q276P) and Arg326Gln (R326Q), are associated with an increased risk of several types of cancer. However, the biological effects of these missense mutations have not been studied. AIM We aimed to determine the biological effects of CD148 Q276P/R326Q mutations in cancer cell proliferation and growth factor signaling, with emphasis on EGFR signaling. METHODS CD148 forms, wild-type (WT) or Q276P/R326Q, were retrovirally introduced into A431D epidermoid carcinoma cells that lacks CD148 expression. The stable cells that express comparable levels of CD148 were sorted by flow cytometry. A431D cells infected with empty retrovirus was used as a control. CD148 localization, cell proliferation rate, EGFR signaling, and the response to thrombospondin-1 (TSP1), a CD148 ligand, were assessed by immunostaining, cell proliferation assay, enzyme-linked immunosorbent assay, and Western blotting. RESULTS Both CD148 forms (WT, Q276P/R326Q) were distributed to cell surface and all three cell lines expressed same level of EGFR. Compared to control cells, the A431D cells that express CD148 forms showed significantly lower cell proliferation rates. EGF-induced EGFR and ERK1/2 phosphorylation as well as cell proliferation were also significantly reduced in these cells. Furthermore, TSP1 inhibited cell proliferation in CD148 (WT, Q276P/R326Q)-expressing A431D cells, while it showed no effects in control cells. However, significant differences were not observed between CD148 WT and Q276P/R326Q cells. CONCLUSION Our data demonstrates that Q276P/R326Q mutations do not have major effects on TSP1-CD148 interaction as well as on CD148's cellular localization and activity to inhibit EGFR signaling and cell proliferation.
Collapse
Affiliation(s)
- Lilly He
- Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Keiko Takahashi
- Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Lejla Pasic
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee, USA
| | - Chikage Narui
- Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Philipp Ellinger
- Bayer AG Research & Development, Pharmaceuticals, Wuppertal, Germany
| | - Manuel Grundmann
- Bayer AG Research & Development, Pharmaceuticals, Wuppertal, Germany
| | - Takamune Takahashi
- Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
14
|
Haouari W, Dubail J, Poüs C, Cormier-Daire V, Bruneel A. Inherited Proteoglycan Biosynthesis Defects-Current Laboratory Tools and Bikunin as a Promising Blood Biomarker. Genes (Basel) 2021; 12:genes12111654. [PMID: 34828260 PMCID: PMC8625474 DOI: 10.3390/genes12111654] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/11/2021] [Accepted: 10/17/2021] [Indexed: 12/15/2022] Open
Abstract
Proteoglycans consist of proteins linked to sulfated glycosaminoglycan chains. They constitute a family of macromolecules mainly involved in the architecture of organs and tissues as major components of extracellular matrices. Some proteoglycans also act as signaling molecules involved in inflammatory response as well as cell proliferation, adhesion, and differentiation. Inborn errors of proteoglycan metabolism are a group of orphan diseases with severe and irreversible skeletal abnormalities associated with multiorgan impairments. Identifying the gene variants that cause these pathologies proves to be difficult because of unspecific clinical symptoms, hardly accessible functional laboratory tests, and a lack of convenient blood biomarkers. In this review, we summarize the molecular pathways of proteoglycan biosynthesis, the associated inherited syndromes, and the related biochemical screening techniques, and we focus especially on a circulating proteoglycan called bikunin and on its potential as a new biomarker of these diseases.
Collapse
Affiliation(s)
- Walid Haouari
- INSERM UMR1193, Paris-Saclay University, Faculté de Pharmacie, 5 rue Jean-Baptiste Clément, 92220 Châtenay-Malabry, France; (W.H.); (C.P.)
| | - Johanne Dubail
- INSERM UMR1163, French Reference Center for Skeletal Dysplasia, Imagine Institute, Paris University, 24 Boulevard du Montparnasse, 75015 Paris, France; (J.D.); (V.C.-D.)
- AP-HP, Necker Enfants Malades Hospital, 149 rue de Sèvres, 75015 Paris, France
| | - Christian Poüs
- INSERM UMR1193, Paris-Saclay University, Faculté de Pharmacie, 5 rue Jean-Baptiste Clément, 92220 Châtenay-Malabry, France; (W.H.); (C.P.)
| | - Valérie Cormier-Daire
- INSERM UMR1163, French Reference Center for Skeletal Dysplasia, Imagine Institute, Paris University, 24 Boulevard du Montparnasse, 75015 Paris, France; (J.D.); (V.C.-D.)
- AP-HP, Necker Enfants Malades Hospital, 149 rue de Sèvres, 75015 Paris, France
| | - Arnaud Bruneel
- INSERM UMR1193, Paris-Saclay University, Faculté de Pharmacie, 5 rue Jean-Baptiste Clément, 92220 Châtenay-Malabry, France; (W.H.); (C.P.)
- AP-HP, Biochimie Métabolique et Cellulaire, Hôpital Bichat-Claude Bernard, 46 rue Henri Huchard, 75018 Paris, France
- Correspondence:
| |
Collapse
|
15
|
Gondelaud F, Bouakil M, Le Fèvre A, Miele AE, Chirot F, Duclos B, Liwo A, Ricard-Blum S. Extended disorder at the cell surface: The conformational landscape of the ectodomains of syndecans. Matrix Biol Plus 2021; 12:100081. [PMID: 34505054 PMCID: PMC8416954 DOI: 10.1016/j.mbplus.2021.100081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 07/11/2021] [Accepted: 07/12/2021] [Indexed: 10/26/2022] Open
Abstract
Syndecans are membrane proteoglycans regulating extracellular matrix assembly, cell adhesion and signaling. Their ectodomains can be shed from the cell surface, and act as paracrine and autocrine effectors or as competitors of full-length syndecans. We report the first biophysical characterization of the recombinant ectodomains of the four human syndecans using biophysical techniques, and show that they behave like flexible random-coil intrinsically disordered proteins, and adopt several conformation ensembles in solution. We have characterized their conformational landscapes using native mass spectrometry (MS) and ion-mobility MS, and demonstrated that the syndecan ectodomains explore the majority of their conformational landscape, from minor compact, globular-like, conformations to extended ones. We also report that the ectodomain of syndecan-4, corresponding to a natural isoform, is able to dimerize via a disulfide bond. We have generated a three-dimensional model of the C-terminus of this dimer, which supports the dimerization via a disulfide bond. Furthermore, we have mapped the NXIP adhesion motif of syndecans and their sequences involved in the formation of ternary complexes with integrins and growth factor receptors on the major conformations of their ectodomains, and shown that these sequences are not accessible in all the conformations, suggesting that only some of them are biologically active. Lastly, although the syndecan ectodomains have a far lower number of amino acid residues than their membrane partners, their intrinsic disorder and flexibility allow them to adopt extended conformations, which have roughly the same size as the cell surface receptors (e.g., integrins and growth factor receptors) they bind to.
Collapse
Key Words
- CCS, collision cross section
- CD, circular dichroism
- CSD, charge state distribution
- Cell-matrix interactions
- Conformations
- DLS, dynamic light scattering
- DTT, dithiothreitol
- ED, ectodomain
- ESI-IM-MS, electrospray ionization - ion mobility - mass spectrometry
- ESI-MS, electrospray ionization - mass spectrometry
- GAG, glycosaminoglycan
- IDP, intrinsically disordered protein
- Intrinsically disordered proteins
- MoRF, molecular recognition feature
- PAGE, polyacrylamide gel electrophoresis
- PMG, pre-molten globule
- RC, random-coil
- SASA, solvent accessible surface area
- SAXS, small angle X-ray scattering
- SDC, syndecan
- SDS, sodium dodecyl sulfate
- SEC, size exclusion chromatography
- Syndecans
- TFE, trifluoroethanol
Collapse
Affiliation(s)
- Frank Gondelaud
- Univ Lyon, University Claude Bernard Lyon 1, CNRS, INSA Lyon, CPE, Institute of Molecular and Supramolecular Chemistry and Biochemistry (ICBMS), UMR 5246, F-69622 Villeurbanne cedex, France
| | - Mathilde Bouakil
- Univ Lyon, University Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, UMR 5306, Cité Lyonnaise de l'Environnement et de l'Analyse, 5 rue de la Doua, 69100 Villeurbanne, France
| | - Aurélien Le Fèvre
- Univ Lyon, University Claude Bernard Lyon 1, CNRS, Institut des Sciences Analytiques, UMR 5280, 5 Rue de la Doua, 69100 Villeurbanne, France
| | - Adriana Erica Miele
- Univ Lyon, University Claude Bernard Lyon 1, CNRS, INSA Lyon, CPE, Institute of Molecular and Supramolecular Chemistry and Biochemistry (ICBMS), UMR 5246, F-69622 Villeurbanne cedex, France
| | - Fabien Chirot
- Univ Lyon, University Claude Bernard Lyon 1, CNRS, Institut des Sciences Analytiques, UMR 5280, 5 Rue de la Doua, 69100 Villeurbanne, France
| | - Bertrand Duclos
- Univ Lyon, University Claude Bernard Lyon 1, CNRS, INSA Lyon, CPE, Institute of Molecular and Supramolecular Chemistry and Biochemistry (ICBMS), UMR 5246, F-69622 Villeurbanne cedex, France
| | - Adam Liwo
- Laboratory of Molecular Modeling, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland
| | - Sylvie Ricard-Blum
- Univ Lyon, University Claude Bernard Lyon 1, CNRS, INSA Lyon, CPE, Institute of Molecular and Supramolecular Chemistry and Biochemistry (ICBMS), UMR 5246, F-69622 Villeurbanne cedex, France
| |
Collapse
|
16
|
Hu Z, Cano I, D’Amore PA. Update on the Role of the Endothelial Glycocalyx in Angiogenesis and Vascular Inflammation. Front Cell Dev Biol 2021; 9:734276. [PMID: 34532323 PMCID: PMC8438194 DOI: 10.3389/fcell.2021.734276] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 08/12/2021] [Indexed: 12/21/2022] Open
Abstract
The endothelial glycocalyx is a negatively charged, carbohydrate-rich structure that arises from the luminal surface of the vascular endothelium and is comprised of proteoglycans, glycoproteins, and glycolipids. The glycocalyx, which sits at the interface between the endothelium and the blood, is involved in a wide array of physiological and pathophysiological processes, including as a mechanotransducer and as a regulator of inflammation. Most recently, components of the glycocalyx have been shown to play a key role in controlling angiogenesis. In this review, we briefly summarize the structure and function of the endothelial glycocalyx. We focus on its role and functions in vascular inflammation and angiogenesis and discuss the important unanswered questions in this field.
Collapse
Affiliation(s)
- Zhengping Hu
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Boston, MA, United States
- Department of Ophthalmology, Harvard Medical School, Boston, MA, United States
| | - Issahy Cano
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Boston, MA, United States
- Department of Ophthalmology, Harvard Medical School, Boston, MA, United States
| | - Patricia A. D’Amore
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Boston, MA, United States
- Department of Ophthalmology, Harvard Medical School, Boston, MA, United States
- Department of Pathology, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
17
|
Redente EF. How Do We Know What We Are Missing? Loss of Signaling through CD148 Drives Fibroblast Activation in Pulmonary Fibrosis. Am J Respir Crit Care Med 2021; 204:249-251. [PMID: 33891825 PMCID: PMC8513589 DOI: 10.1164/rccm.202103-0737ed] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
- Elizabeth F Redente
- Department of Pediatrics National Jewish Health Denver, Colorado and.,Department of Medicine University of Colorado School of Medicine Aurora, Colorado
| |
Collapse
|
18
|
Tsoyi K, Liang X, De Rossi G, Ryter SW, Xiong K, Chu SG, Liu X, Ith B, Celada LJ, Romero F, Robertson MJ, Esposito AJ, Poli S, El-Chemaly S, Perrella MA, Shi Y, Whiteford J, Rosas IO. CD148 Deficiency in Fibroblasts Promotes the Development of Pulmonary Fibrosis. Am J Respir Crit Care Med 2021; 204:312-325. [PMID: 33784491 DOI: 10.1164/rccm.202008-3100oc] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Rationale: CD148/PTRJ (receptor-like protein tyrosine phosphatase η) exerts antifibrotic effects in experimental pulmonary fibrosis via interactions with its ligand syndecan-2; however, the role of CD148 in human pulmonary fibrosis remains incompletely characterized.Objectives: We investigated the role of CD148 in the profibrotic phenotype of fibroblasts in idiopathic pulmonary fibrosis (IPF).Methods: Conditional CD148 fibroblast-specific knockout mice were generated and exposed to bleomycin and then assessed for pulmonary fibrosis. Lung fibroblasts (mouse lung and human IPF lung), and precision-cut lung slices from human patients with IPF were isolated and subjected to experimental treatments. A CD148-activating 18-aa mimetic peptide (SDC2-pep) derived from syndecan-2 was evaluated for its therapeutic potential.Measurements and Main Results: CD148 expression was downregulated in IPF lungs and fibroblasts. In human IPF lung fibroblasts, silencing of CD148 increased extracellular matrix production and resistance to apoptosis, whereas overexpression of CD148 reversed the profibrotic phenotype. CD148 fibroblast-specific knockout mice displayed increased pulmonary fibrosis after bleomycin challenge compared with control mice. CD148-deficient fibroblasts exhibited hyperactivated PI3K/Akt/mTOR signaling, reduced autophagy, and increased p62 accumulation, which induced NF-κB activation and profibrotic gene expression. SDC2-pep reduced pulmonary fibrosis in vivo and inhibited IPF-derived fibroblast activation. In precision-cut lung slices from patients with IPF and control patients, SDC2-pep attenuated profibrotic gene expression in IPF and normal lungs stimulated with profibrotic stimuli.Conclusions: Lung fibroblast CD148 activation reduces p62 accumulation, which exerts antifibrotic effects by inhibiting NF-κB-mediated profibrotic gene expression. Targeting the CD148 phosphatase with activating ligands such as SDC2-pep may represent a potential therapeutic strategy in IPF.
Collapse
Affiliation(s)
- Konstantin Tsoyi
- Section of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - Xiaoliang Liang
- Section of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - Giulia De Rossi
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Stefan W Ryter
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Weill Cornell Medicine, New York, New York
| | - Kevin Xiong
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts; and
| | - Sarah G Chu
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts; and
| | - Xiaoli Liu
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts; and
| | - Bonna Ith
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts; and
| | - Lindsay J Celada
- Section of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - Freddy Romero
- Section of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - Matthew J Robertson
- Section of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - Anthony J Esposito
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts; and
| | - Sergio Poli
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts; and
| | - Souheil El-Chemaly
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts; and
| | - Mark A Perrella
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts; and
| | - YuanYuan Shi
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - James Whiteford
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Ivan O Rosas
- Section of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Baylor College of Medicine, Houston, Texas.,Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts; and
| |
Collapse
|
19
|
Pappritz K, Dong F, Miteva K, Kovacs A, El-Shafeey M, Kerim B, O'Flynn L, Elliman SJ, O'Brien T, Hamdani N, Tschöpe C, Van Linthout S. Impact of Syndecan-2-Selected Mesenchymal Stromal Cells on the Early Onset of Diabetic Cardiomyopathy in Diabetic db/db Mice. Front Cardiovasc Med 2021; 8:632728. [PMID: 34095245 PMCID: PMC8175674 DOI: 10.3389/fcvm.2021.632728] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 03/02/2021] [Indexed: 01/09/2023] Open
Abstract
Background: Mesenchymal stromal cells (MSCs) are an attractive cell type for cell therapy given their immunomodulatory, anti-fibrotic, and endothelial-protective features. The heparin sulfate proteoglycan, syndecan-2/CD362, has been identified as a functional marker for MSC isolation, allowing one to obtain a homogeneous cell product that meets regulatory requirements for clinical use. We previously assessed the impact of wild-type (WT), CD362-, and CD362+ MSCs on local changes in protein distribution in left ventricular (LV) tissue and on LV function in an experimental model of early-onset diabetic cardiomyopathy. The present study aimed to further explore their impact on mechanisms underlying diastolic dysfunction in this model. Materials: For this purpose, 1 × 106 WT, CD362-, or CD362+ MSCs were intravenously (i.v.) injected into 20-week-old diabetic BKS.Cg-m+/+Leprdb/BomTac, i.e., db/db mice. Control animals (db+/db) were injected with the equivalent volume of phosphate-buffered saline (PBS) alone. After 4 weeks, mice were sacrificed for further analysis. Results: Treatment with all three MSC populations had no impact on blood glucose levels in db/db mice. WT, CD362-, and CD362+ MSC application restored LV nitric oxide (NO) and cyclic guanosine monophosphate (cGMP) levels in db/db mice, which correlated with a reduction in cardiomyocyte stiffness. Furthermore, all stromal cells were able to increase arteriole density in db/db mice. The effect of CD362+ MSCs on NO and cGMP levels, cardiomyocyte stiffness, and arteriole density was less pronounced than in mice treated with WT or CD362- MSCs. Analysis of collagen I and III protein expression revealed that fibrosis had not yet developed at this stage of experimental diabetic cardiomyopathy. All MSCs reduced the number of cardiac CD3+ and CD68+ cells in db/db mice, whereas only splenocytes from CD362-- and CD362+-db/db mice exhibited a lower pro-fibrotic potential compared to splenocytes from db/db mice. Conclusion: CD362+ MSC application decreased cardiomyocyte stiffness, increased myocardial NO and cGMP levels, and increased arteriole density, although to a lesser extent than WT and CD362- MSCs in an experimental model of early-onset diabetic cardiomyopathy without cardiac fibrosis. These findings suggest that the degree in improvement of cardiomyocyte stiffness following CD362+ MSC application was insufficient to improve diastolic function.
Collapse
Affiliation(s)
- Kathleen Pappritz
- Berlin Institute of Health at Charité - Universitätmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), Berlin, Germany.,Berlin-Brandenburg Center for Regenerative Therapies, Charité, Universitätsmedizin Berlin, Berlin, Germany.,German Center for Cardiovascular Research (DZHK), Partner site Berlin, Berlin, Germany
| | - Fengquan Dong
- Berlin-Brandenburg Center for Regenerative Therapies, Charité, Universitätsmedizin Berlin, Berlin, Germany
| | - Kapka Miteva
- Berlin-Brandenburg Center for Regenerative Therapies, Charité, Universitätsmedizin Berlin, Berlin, Germany.,Division of Cardiology, Foundation for Medical Research, Department of Medicine Specialized Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Arpad Kovacs
- Institute of Physiology, Ruhr University Bochum, Bochum, Germany
| | - Muhammad El-Shafeey
- Berlin Institute of Health at Charité - Universitätmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), Berlin, Germany.,Berlin-Brandenburg Center for Regenerative Therapies, Charité, Universitätsmedizin Berlin, Berlin, Germany.,German Center for Cardiovascular Research (DZHK), Partner site Berlin, Berlin, Germany.,Medical Biotechnology Research Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications, Alexandria, Egypt
| | - Bahtiyar Kerim
- Berlin-Brandenburg Center for Regenerative Therapies, Charité, Universitätsmedizin Berlin, Berlin, Germany
| | - Lisa O'Flynn
- Orbsen Therapeutics, National University of Ireland Galway, Galway, Ireland
| | | | - Timothy O'Brien
- Regenerative Medicine Institute and Department of Medicine, National University of Ireland Galway, Galway, Ireland
| | - Nazha Hamdani
- Institute of Physiology, Ruhr University Bochum, Bochum, Germany.,Molecular and Experimental Cardiology, Ruhr University Bochum, Bochum, Germany.,Department of Cardiology, St. Josef-Hospital, Ruhr University Bochum, Bochum, Germany
| | - Carsten Tschöpe
- Berlin Institute of Health at Charité - Universitätmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), Berlin, Germany.,Berlin-Brandenburg Center for Regenerative Therapies, Charité, Universitätsmedizin Berlin, Berlin, Germany.,German Center for Cardiovascular Research (DZHK), Partner site Berlin, Berlin, Germany.,Department of Cardiology, Charité - Universitätsmedizin Berlin, Campus Virchow Klinikum, Berlin, Germany
| | - Sophie Van Linthout
- Berlin Institute of Health at Charité - Universitätmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), Berlin, Germany.,Berlin-Brandenburg Center for Regenerative Therapies, Charité, Universitätsmedizin Berlin, Berlin, Germany.,German Center for Cardiovascular Research (DZHK), Partner site Berlin, Berlin, Germany
| |
Collapse
|
20
|
Li Z, Bratlie KM. The Influence of Polysaccharides-Based Material on Macrophage Phenotypes. Macromol Biosci 2021; 21:e2100031. [PMID: 33969643 DOI: 10.1002/mabi.202100031] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Indexed: 02/03/2023]
Abstract
Macrophage polarization is a key factor in determining the success of implanted tissue engineering scaffolds. Polysaccharides (derived from plants, animals, and microorganisms) are known to modulate macrophage phenotypes by recognizing cell membrane receptors. Numerous studies have developed polysaccharide-based materials into functional biomaterial substrates for tissue regeneration and pharmaceutical application due to their immunostimulatory activities and anti-inflammatory response. They are used as hydrogel substrates, surface coatings, and drug delivery carriers. In addition to their innate immunological functions, the newly endowed physical and chemical properties, including substrate modulus, pore size/porosity, surface binding chemistry, and the mole ratio of polysaccharides in hybrid materials may regulate macrophage phenotypes more precisely. Growing evidence indicates that the sulfation pattern of glycosaminoglycans and proteoglycans expressed on polarized macrophages leads to the changes in protein binding, which may alter macrophage phenotype and influence the immune response. A comprehensive understanding of how different types of polysaccharide-based materials alter macrophage phenotypic changes can be beneficial to predict transplantation/implantation outcomes. This review focuses on recent advances in promoting wound healing and balancing macrophage phenotypes using polysaccharide-based substrates/coatings and new directions to address the limitations in the current understanding of macrophage responses to polysaccharides.
Collapse
Affiliation(s)
- Zhuqing Li
- Department of Materials Science & Engineering, Iowa State University, Ames, IA, 50011, USA
| | - Kaitlin M Bratlie
- Department of Materials Science & Engineering, Iowa State University, Ames, IA, 50011, USA.,Department of Chemical & Biological Engineering, Iowa State University, Ames, IA, 50011, USA
| |
Collapse
|
21
|
Karampoor S, Zahednasab H, Farahmand M, Mirzaei R, Zamani F, Tabibzadeh A, Bouzari B, Ajdarkosh H, Nikkhah M, Hashemi MR, Laali A, Keyvani H. A possible pathogenic role of Syndecan-1 in the pathogenesis of coronavirus disease 2019 (COVID-19). Int Immunopharmacol 2021; 97:107684. [PMID: 33932696 PMCID: PMC8052477 DOI: 10.1016/j.intimp.2021.107684] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/13/2021] [Accepted: 04/13/2021] [Indexed: 02/08/2023]
Abstract
A cell-surface heparan proteoglycan called Syndecan-1 (SDC-1) has multiple roles in healthy and pathogenic conditions, including respiratory viral infection. In this study, we explore the dynamic alternation in the levels of SDC-1 in cases with COVID-19. A total of 120 cases definitely diagnosed with COVID-19 were admitted to the Firoozgar Hospital, Tehran, Iran, from December 1, 2020, to January 29, 2021, and included in our study. Also, 58 healthy subjects (HS) were chosen as the control group. Patients were classified into two groups: 1) ICU patients and (63 cases) 2) non-ICU patients (57 cases). The dynamic changes of serum SCD-1, CRP, IL-6, IL-10, IL-18, and Vit D levels a well as the disease activity were investigated in three-time points (T1-T3). Our results indicated that the COVID-19 patients had significantly increased SCD-1, CRP, IL-6, IL-10, and IL-18 levels than in HS, while the Vit D levels in COVID-19 patients were significantly lower than HS. Further analysis demonstrated that the SCD-1, CRP, IL-6, IL-10, and IL-18 levels in ICU patients were significantly higher than in non-ICU patients. Tracking dynamic changes in the above markers indicated that on the day of admission, the SCD-1, CRP, IL-6, IL-10, and IL-18 levels were gradually increased on day 5 (T2) and then gradually decreased on day 10 (T3). ROC curve analysis suggests that markers mentioned above, SDC-1, IL-6, and IL-18 are valuable indicators in evaluating the activity of COVID-19. All in all, it seems that the serum SDC-1 levels alone or combined with other markers might be a good candidate for disease activity monitoring.
Collapse
Affiliation(s)
- Sajad Karampoor
- Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Hamid Zahednasab
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Mohammad Farahmand
- Department of Medical Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Rasoul Mirzaei
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Farhad Zamani
- Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Alireza Tabibzadeh
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Behnaz Bouzari
- Department of Pathology, Firouzgar Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Hossein Ajdarkosh
- Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mehdi Nikkhah
- Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Melika Razavi Hashemi
- Department of Pathology, Firouzgar Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Azadeh Laali
- Department of Infectious Disease, School of Medicine, Firoozgar General Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Hossein Keyvani
- Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
22
|
Logsdon AF, Rhea EM, Reed M, Banks WA, Erickson MA. The neurovascular extracellular matrix in health and disease. Exp Biol Med (Maywood) 2021; 246:835-844. [PMID: 33302738 PMCID: PMC8719034 DOI: 10.1177/1535370220977195] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The blood-brain barrier (BBB) is a vital interface that supports normal brain functions. Endothelial cells (ECs) are the main component of the BBB and are highly specialized to govern the transfer of substances into brain. The EC lumen is enmeshed with an extracellular matrix (ECM), known as the endothelial glycocalyx layer (EGL). The lumen-facing EGL is primarily comprised of proteoglycans (PGs) and glycosaminoglycans (GAGs), which function as the first line of defense for blood-to-brain transfer of substances. Circulating factors must first penetrate the EGL before interacting with the EC. The abundance and composition of the PG and GAGs can dictate EGL function, and determine which circulating substances communicate with the ECs. The EGL can interact with circulating factors through physio-chemical interactions with the EC. Some disease states reveal a "thinning" of the EGL that may increase EC interactions with components of the systemic circulation and alter BBB function. EGL changes may also contribute to the cognitive complications of systemic diseases, such as sepsis and diabetes. For decades, researchers have measured how genetic and environmental factors influence the peripheral EGL constituents; however, much less is known about the neurovascular EGL. In this mini-review, we introduce components of the EGL and innovative ways to measure their abundance and composition that may contribute to BBB dysfunction.
Collapse
Affiliation(s)
- Aric F Logsdon
- Geriatrics Research Education and Clinical Center,
Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108,
USA
- Division of Gerontology and Geriatric Medicine,
Department of Medicine, University of Washington School of Medicine,
Seattle, WA 98159, USA
| | - Elizabeth M Rhea
- Geriatrics Research Education and Clinical Center,
Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108,
USA
- Division of Gerontology and Geriatric Medicine,
Department of Medicine, University of Washington School of Medicine,
Seattle, WA 98159, USA
| | - May Reed
- Geriatrics Research Education and Clinical Center,
Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108,
USA
- Division of Gerontology and Geriatric Medicine,
Department of Medicine, University of Washington School of Medicine,
Seattle, WA 98159, USA
| | - William A Banks
- Geriatrics Research Education and Clinical Center,
Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108,
USA
- Division of Gerontology and Geriatric Medicine,
Department of Medicine, University of Washington School of Medicine,
Seattle, WA 98159, USA
| | - Michelle A Erickson
- Geriatrics Research Education and Clinical Center,
Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108,
USA
- Division of Gerontology and Geriatric Medicine,
Department of Medicine, University of Washington School of Medicine,
Seattle, WA 98159, USA
| |
Collapse
|
23
|
Loftus PG, Watson L, Deedigan LM, Camarillo‐Retamosa E, Dwyer RM, O'Flynn L, Alagesan S, Griffin M, O'Brien T, Kerin MJ, Elliman SJ, Barkley LR. Targeting stromal cell Syndecan-2 reduces breast tumour growth, metastasis and limits immune evasion. Int J Cancer 2021; 148:1245-1259. [PMID: 33152121 PMCID: PMC7839764 DOI: 10.1002/ijc.33383] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 09/10/2020] [Accepted: 10/16/2020] [Indexed: 01/09/2023]
Abstract
Tumour stromal cells support tumourigenesis. We report that Syndecan-2 (SDC2) is expressed on a nonepithelial, nonhaematopoietic, nonendothelial stromal cell population within breast cancer tissue. In vitro, syndecan-2 modulated TGFβ signalling (SMAD7, PAI-1), migration and immunosuppression of patient-derived tumour-associated stromal cells (TASCs). In an orthotopic immunocompromised breast cancer model, overexpression of syndecan-2 in TASCs significantly enhanced TGFβ signalling (SMAD7, PAI-1), tumour growth and metastasis, whereas reducing levels of SDC2 in TASCs attenuated TGFβ signalling (SMAD7, PAI-1, CXCR4), tumour growth and metastasis. To explore the potential for therapeutic application, a syndecan-2-peptide was generated that inhibited the migratory and immunosuppressive properties of TASCs in association with reduced expression of TGFβ-regulated immunosuppressive genes, such as CXCR4 and PD-L1. Moreover, using an orthotopic syngeneic breast cancer model, overexpression of syndecan-2-peptide in TASCs reduced tumour growth and immunosuppression within the TME. These data provide evidence that targeting stromal syndecan-2 within the TME inhibits tumour growth and metastasis due to decreased TGFβ signalling and increased immune control.
Collapse
Affiliation(s)
- Paul G. Loftus
- Lambe Institute for Translational ResearchNational University of IrelandGalwayIreland
- Orbsen TherapeuticsNational University of IrelandGalwayIreland
| | - Luke Watson
- Lambe Institute for Translational ResearchNational University of IrelandGalwayIreland
| | | | | | - Róisín M. Dwyer
- Lambe Institute for Translational ResearchNational University of IrelandGalwayIreland
| | - Lisa O'Flynn
- Orbsen TherapeuticsNational University of IrelandGalwayIreland
- Lisa O'Flynn, Avectas Ltd, Maynooth UniversityCo KildareIreland
| | | | - Matthew Griffin
- Lambe Institute for Translational ResearchNational University of IrelandGalwayIreland
| | - Timothy O'Brien
- Lambe Institute for Translational ResearchNational University of IrelandGalwayIreland
| | - Michael J. Kerin
- Lambe Institute for Translational ResearchNational University of IrelandGalwayIreland
| | | | - Laura R. Barkley
- Lambe Institute for Translational ResearchNational University of IrelandGalwayIreland
| |
Collapse
|
24
|
Betriu N, Bertran-Mas J, Andreeva A, Semino CE. Syndecans and Pancreatic Ductal Adenocarcinoma. Biomolecules 2021; 11:biom11030349. [PMID: 33669066 PMCID: PMC7996579 DOI: 10.3390/biom11030349] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/21/2021] [Accepted: 02/22/2021] [Indexed: 01/18/2023] Open
Abstract
Pancreatic Ductal Adenocarcinoma (PDAC) is a fatal disease with poor prognosis because patients rarely express symptoms in initial stages, which prevents early detection and diagnosis. Syndecans, a subfamily of proteoglycans, are involved in many physiological processes including cell proliferation, adhesion, and migration. Syndecans are physiologically found in many cell types and their interactions with other macromolecules enhance many pathways. In particular, extracellular matrix components, growth factors, and integrins collect the majority of syndecans associations acting as biochemical, physical, and mechanical transducers. Syndecans are transmembrane glycoproteins, but occasionally their extracellular domain can be released from the cell surface by the action of matrix metalloproteinases, converting them into soluble molecules that are capable of binding distant molecules such as extracellular matrix (ECM) components, growth factor receptors, and integrins from other cells. In this review, we explore the role of syndecans in tumorigenesis as well as their potential as therapeutic targets. Finally, this work reviews the contribution of syndecan-1 and syndecan-2 in PDAC progression and illustrates its potential to be targeted in future treatments for this devastating disease.
Collapse
|
25
|
Soe ZY, Park EJ, Shimaoka M. Integrin Regulation in Immunological and Cancerous Cells and Exosomes. Int J Mol Sci 2021; 22:2193. [PMID: 33672100 PMCID: PMC7926977 DOI: 10.3390/ijms22042193] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 02/10/2021] [Accepted: 02/17/2021] [Indexed: 02/07/2023] Open
Abstract
Integrins represent the biologically and medically significant family of cell adhesion molecules that govern a wide range of normal physiology. The activities of integrins in cells are dynamically controlled via activation-dependent conformational changes regulated by the balance of intracellular activators, such as talin and kindlin, and inactivators, such as Shank-associated RH domain interactor (SHARPIN) and integrin cytoplasmic domain-associated protein 1 (ICAP-1). The activities of integrins are alternatively controlled by homotypic lateral association with themselves to induce integrin clustering and/or by heterotypic lateral engagement with tetraspanin and syndecan in the same cells to modulate integrin adhesiveness. It has recently emerged that integrins are expressed not only in cells but also in exosomes, important entities of extracellular vesicles secreted from cells. Exosomal integrins have received considerable attention in recent years, and they are clearly involved in determining the tissue distribution of exosomes, forming premetastatic niches, supporting internalization of exosomes by target cells and mediating exosome-mediated transfer of the membrane proteins and associated kinases to target cells. A growing body of evidence shows that tumor and immune cell exosomes have the ability to alter endothelial characteristics (proliferation, migration) and gene expression, some of these effects being facilitated by vesicle-bound integrins. As endothelial metabolism is now thought to play a key role in tumor angiogenesis, we also discuss how tumor cells and their exosomes pleiotropically modulate endothelial functions in the tumor microenvironment.
Collapse
Affiliation(s)
- Zay Yar Soe
- Department of Physiology, University of Medicine, Magway, 7th Mile, Natmauk Road, Magway City 04012, Magway Region, Myanmar
| | - Eun Jeong Park
- Department of Molecular Pathobiology and Cell Adhesion Biology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu-City 514-8507, Mie, Japan;
| | - Motomu Shimaoka
- Department of Molecular Pathobiology and Cell Adhesion Biology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu-City 514-8507, Mie, Japan;
| |
Collapse
|
26
|
Syndecans in cancer: A review of function, expression, prognostic value, and therapeutic significance. Cancer Treat Res Commun 2021; 27:100312. [PMID: 33485180 DOI: 10.1016/j.ctarc.2021.100312] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 01/10/2021] [Accepted: 01/11/2021] [Indexed: 12/11/2022]
Abstract
While our understanding of tumors and how to treat them has advanced significantly since the days of Aminopterin and the radical mastectomy, cancer remains among the leading causes of death worldwide. Despite innumerable advancements in medical technology the non-static and highly heterogeneous nature of a tumor can make characterization and treatment exceedingly difficult. Because of this complexity, the identification of new cellular constituents that can be used for diagnostic, prognostic, and therapeutic purposes is crucial in improving patient outcomes worldwide. Growing evidence has demonstrated that among the myriad of changes seen in cancer cells, the Syndecan family of proteins has been observed to undergo drastic alterations in expression. Syndecans are transmembrane heparan sulfate proteoglycans that are responsible for cell signaling, proliferation, and adhesion, and many studies have shed light on their unique involvement in both tumor progression and suppression. This review seeks to discuss Syndecan expression levels in various cancers, whether they make reliable biomarkers for detection and prognosis, and whether they may be viable targets for future cancer therapies. The conclusions drawn from the literature reviewed in this article indicate that changes in expression of Syndecan protein can have profound effects on tumor size, metastatic capability, and overall patient survival rate. Further, while data regarding the therapeutic targeting of Syndecan proteins is sparse, the available literature does demonstrate promise for their use in cancer treatment going forward.
Collapse
|
27
|
Pappritz K, Klein O, Dong F, Hamdani N, Kovacs A, O'Flynn L, Elliman S, O'Brien T, Tschöpe C, Van Linthout S. MALDI-IMS as a Tool to Determine the Myocardial Response to Syndecan-2-Selected Mesenchymal Stromal Cell Application in an Experimental Model of Diabetic Cardiomyopathy. Proteomics Clin Appl 2021; 15:e2000050. [PMID: 33068073 DOI: 10.1002/prca.202000050] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 10/12/2020] [Indexed: 01/08/2023]
Abstract
PURPOSE Mesenchymal stromal cells (MSC) are an attractive tool for treatment of diabetic cardiomyopathy. Syndecan-2/CD362 has been identified as a functional marker for MSC isolation. Imaging mass spectrometry (IMS) allows for the characterization of therapeutic responses in the left ventricle. This study aims to investigate whether IMS can assess the therapeutic effect of CD362+ -selected MSC on early onset experimental diabetic cardiomyopathy. EXPERIMENTAL DESIGN 1 × 106 wild type (WT), CD362- , or CD362+ MSC are intravenously injected into db/db mice. Four weeks later, mice are hemodynamically characterized and subsequently sacrificed for IMS combined with bottom-up mass spectrometry, and isoform and phosphorylation analyses of cardiac titin. RESULTS Overall alterations of the cardiac proteome signatures, especially titin, are observed in db/db compared to control mice. Interestingly, only CD362+ MSC can overcome the reduced titin intensity distribution and shifts the isoform ratio toward the more compliant N2BA form. In contrast, WT and CD362- MSCs improve all-titin phosphorylation and protein kinase G activity, which is reflected in an improvement in diastolic performance. CONCLUSIONS AND CLINICAL RELEVANCE IMS enables the characterization of differences in titin intensity distribution following MSC application. However, further analysis of titin phosphorylation is needed to allow for the assessment of the therapeutic efficacy of MSC.
Collapse
Affiliation(s)
- Kathleen Pappritz
- Berlin-Brandenburg Center for Regenerative Therapies and Berlin Institute of Health Center for Regenerative Therapies (BCRT), Charité - Universitätsmedizin Berlin, Campus Virchow Klinikum (CVK), Berlin, 13353 and 10178, Germany
- German Center for Cardiovascular Research (DZHK), Partner site Berlin, Berlin, 13347, Germany
| | - Oliver Klein
- Berlin-Brandenburg Center for Regenerative Therapies and Berlin Institute of Health Center for Regenerative Therapies (BCRT), Charité - Universitätsmedizin Berlin, Campus Virchow Klinikum (CVK), Berlin, 13353 and 10178, Germany
- German Center for Cardiovascular Research (DZHK), Partner site Berlin, Berlin, 13347, Germany
| | - Fengquan Dong
- Berlin-Brandenburg Center for Regenerative Therapies and Berlin Institute of Health Center for Regenerative Therapies (BCRT), Charité - Universitätsmedizin Berlin, Campus Virchow Klinikum (CVK), Berlin, 13353 and 10178, Germany
| | - Nazha Hamdani
- Department of Physiology, Institute of Physiology, Ruhr University Bochum, Bochum, 44780, Germany
| | - Arpad Kovacs
- Department of Physiology, Institute of Physiology, Ruhr University Bochum, Bochum, 44780, Germany
| | - Lisa O'Flynn
- Orbsen Therapeutics, National University of Ireland (NUIG), Galway, H91 TK33, Ireland
| | - Steve Elliman
- Orbsen Therapeutics, National University of Ireland (NUIG), Galway, H91 TK33, Ireland
| | - Timothy O'Brien
- Regenerative Medicine Institute and Department of Medicine, NUIG, Galway, H91 TK33, Ireland
| | - Carsten Tschöpe
- Berlin-Brandenburg Center for Regenerative Therapies and Berlin Institute of Health Center for Regenerative Therapies (BCRT), Charité - Universitätsmedizin Berlin, Campus Virchow Klinikum (CVK), Berlin, 13353 and 10178, Germany
- German Center for Cardiovascular Research (DZHK), Partner site Berlin, Berlin, 13347, Germany
- Department of Cardiology, Charité - Universitätsmedizin Berlin, CVK, Berlin, 13353, Germany
| | - Sophie Van Linthout
- Berlin-Brandenburg Center for Regenerative Therapies and Berlin Institute of Health Center for Regenerative Therapies (BCRT), Charité - Universitätsmedizin Berlin, Campus Virchow Klinikum (CVK), Berlin, 13353 and 10178, Germany
- German Center for Cardiovascular Research (DZHK), Partner site Berlin, Berlin, 13347, Germany
| |
Collapse
|
28
|
Jang B, Kim A, Hwang J, Song HK, Kim Y, Oh ES. Emerging Role of Syndecans in Extracellular Matrix Remodeling in Cancer. J Histochem Cytochem 2020; 68:863-870. [PMID: 32623937 PMCID: PMC7711240 DOI: 10.1369/0022155420930112] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 05/06/2020] [Indexed: 12/20/2022] Open
Abstract
The extracellular matrix (ECM) offers a structural basis for regulating cell functions while also acting as a collection point for bioactive molecules and connective tissue cells. To perform pathological functions under a pathological condition, the involved cells need to regulate the ECM to support their altered functions. This is particularly common in the development of cancer. The ECM has been recognized as a key driver of cancer development and progression, and ECM remodeling occurs at all stages of cancer progression. Thus, cancer cells need to change the ECM to support relevant cell surface adhesion receptor-mediated cell functions. In this context, it is interesting to examine how cancer cells regulate ECM remodeling, which is critical to tumor malignancy and metastatic progression. Here, we review how the cell surface adhesion receptor, syndecan, regulates ECM remodeling as cancer progresses, and explore how this can help us better understand ECM remodeling under these pathological conditions.
Collapse
Affiliation(s)
- Bohee Jang
- Department of Life Sciences, Ewha Womans University, Seoul, Republic of Korea
| | - Ayoung Kim
- Department of Life Sciences, Ewha Womans University, Seoul, Republic of Korea
| | - Jisun Hwang
- Department of Life Sciences, Ewha Womans University, Seoul, Republic of Korea
| | - Hyun-Kuk Song
- Department of Life Sciences, Ewha Womans University, Seoul, Republic of Korea
| | - Yunjeon Kim
- Department of Life Sciences, Ewha Womans University, Seoul, Republic of Korea
| | - Eok-Soo Oh
- Department of Life Sciences, Ewha Womans University, Seoul, Republic of Korea
| |
Collapse
|
29
|
Barkovskaya A, Buffone A, Žídek M, Weaver VM. Proteoglycans as Mediators of Cancer Tissue Mechanics. Front Cell Dev Biol 2020; 8:569377. [PMID: 33330449 PMCID: PMC7734320 DOI: 10.3389/fcell.2020.569377] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 11/04/2020] [Indexed: 12/16/2022] Open
Abstract
Proteoglycans are a diverse group of molecules which are characterized by a central protein backbone that is decorated with a variety of linear sulfated glycosaminoglycan side chains. Proteoglycans contribute significantly to the biochemical and mechanical properties of the interstitial extracellular matrix where they modulate cellular behavior by engaging transmembrane receptors. Proteoglycans also comprise a major component of the cellular glycocalyx to influence transmembrane receptor structure/function and mechanosignaling. Through their ability to initiate biochemical and mechanosignaling in cells, proteoglycans elicit profound effects on proliferation, adhesion and migration. Pathologies including cancer and cardiovascular disease are characterized by perturbed expression of proteoglycans where they compromise cell and tissue behavior by stiffening the extracellular matrix and increasing the bulkiness of the glycocalyx. Increasing evidence indicates that a bulky glycocalyx and proteoglycan-enriched extracellular matrix promote malignant transformation, increase cancer aggression and alter anti-tumor therapy response. In this review, we focus on the contribution of proteoglycans to mechanobiology in the context of normal and transformed tissues. We discuss the significance of proteoglycans for therapy response, and the current experimental strategies that target proteoglycans to sensitize cancer cells to treatment.
Collapse
Affiliation(s)
- Anna Barkovskaya
- Center for Bioengineering & Tissue Regeneration, Department of Surgery, University of California, San Francisco, San Francisco, CA, United States
| | - Alexander Buffone
- Center for Bioengineering & Tissue Regeneration, Department of Surgery, University of California, San Francisco, San Francisco, CA, United States
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, United States
| | - Martin Žídek
- Center for Bioengineering & Tissue Regeneration, Department of Surgery, University of California, San Francisco, San Francisco, CA, United States
| | - Valerie M. Weaver
- Center for Bioengineering & Tissue Regeneration, Department of Surgery, University of California, San Francisco, San Francisco, CA, United States
- Department of Radiation Oncology, Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, United States
- Department of Bioengineering, Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, United States
- Department of Therapeutic Sciences, Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, United States
- UCSF Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
30
|
The Glycocalyx and Its Role in Vascular Physiology and Vascular Related Diseases. Cardiovasc Eng Technol 2020; 12:37-71. [PMID: 32959164 PMCID: PMC7505222 DOI: 10.1007/s13239-020-00485-9] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 09/02/2020] [Indexed: 02/08/2023]
Abstract
Purpose In 2007 the two senior authors wrote a review on the structure and function of the endothelial glycocalyx layer (Weinbaum in Annu Rev Biomed Eng 9:121–167, 2007). Since then there has been an explosion of interest in this hydrated gel-like structure that coats the luminal surface of endothelial cells that line our vasculature due to its important functions in (A) basic vascular physiology and (B) vascular related diseases. This review will highlight the major advances that have occurred since our 2007 paper. Methods A literature search mainly focusing on the role of the glycocalyx in the two major areas described above was performed using electronic databases. Results In part (A) of this review, the new formulation of the century old Starling principle, now referred to as the Michel–Weinbaum glycoclayx model or revised Starling hypothesis, is described including new subtleties and physiological ramifications. New insights into mechanotransduction and release of nitric oxide due to fluid shear stress sensed by the glycocalyx are elaborated. Major advances in understanding the organization and function of glycocalyx components, and new techniques for measuring both its thickness and spatio-chemical organization based on super resolution, stochastic optical reconstruction microscopy (STORM) are presented. As discussed in part (B) of this review, it is now recognized that artery wall stiffness associated with hypertension and aging induces glycocalyx degradation, endothelial dysfunction and vascular disease. In addition to atherosclerosis and cardiovascular diseases, the glycocalyx plays an important role in lifestyle related diseases (e.g., diabetes) and cancer. Infectious diseases including sepsis, Dengue, Zika and Corona viruses, and malaria also involve the glycocalyx. Because of increasing recognition of the role of the glycocalyx in a wide range of diseases, there has been a vigorous search for methods to protect the glycocalyx from degradation or to enhance its synthesis in disease environments. Conclusion As we have seen in this review, many important developments in our basic understanding of GCX structure, function and role in diseases have been described since the 2007 paper. The future is wide open for continued GCX research.
Collapse
|
31
|
Adhesion and growth factor receptor crosstalk mechanisms controlling cell migration. Essays Biochem 2020; 63:553-567. [PMID: 31551325 DOI: 10.1042/ebc20190025] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 09/04/2019] [Accepted: 09/06/2019] [Indexed: 12/30/2022]
Abstract
Cell migration requires cells to sense and interpret an array of extracellular signals to precisely co-ordinate adhesion dynamics, local application of mechanical force, polarity signalling and cytoskeletal dynamics. Adhesion receptors and growth factor receptors (GFRs) exhibit functional and signalling characteristics that individually contribute to cell migration. Integrins transmit bidirectional mechanical forces and transduce long-range intracellular signals. GFRs are fast acting and highly sensitive signalling machines that initiate signalling cascades to co-ordinate global cellular processes. Syndecans are microenvironment sensors that regulate GTPases to control receptor trafficking, cytoskeletal remodelling and adhesion dynamics. However, an array of crosstalk mechanisms exists, which co-ordinate and integrate the functions of the different receptor families. Here we discuss the nature of adhesion receptor and GFR crosstalk mechanisms. The unifying theme is that efficient cell migration requires precise spatial and temporal co-ordination of receptor crosstalk. However, a higher order of complexity emerges; whereby multiple crosstalk mechanisms are integrated and subject to both positive and negative feedbacks. Exquisite and sensitive control of these mechanisms ensures that mechanical forces and pro-migratory signals are triggered in the right place and at the right time during cell migration. Finally, we discuss the challenges, and potential therapeutic benefits, associated with deciphering this complexity.
Collapse
|
32
|
Extracellular matrix: the gatekeeper of tumor angiogenesis. Biochem Soc Trans 2020; 47:1543-1555. [PMID: 31652436 DOI: 10.1042/bst20190653] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 08/22/2019] [Accepted: 09/23/2019] [Indexed: 12/13/2022]
Abstract
The extracellular matrix is a network of secreted macromolecules that provides a harmonious meshwork for the growth and homeostatic development of organisms. It conveys multiple signaling cascades affecting specific surface receptors that impact cell behavior. During cancer growth, this bioactive meshwork is remodeled and enriched in newly formed blood vessels, which provide nutrients and oxygen to the growing tumor cells. Remodeling of the tumor microenvironment leads to the formation of bioactive fragments that may have a distinct function from their parent molecules, and the balance among these factors directly influence cell viability and metastatic progression. Indeed, the matrix acts as a gatekeeper by regulating the access of cancer cells to nutrients. Here, we will critically evaluate the role of selected matrix constituents in regulating tumor angiogenesis and provide up-to-date information concerning their primary mechanisms of action.
Collapse
|
33
|
Abstract
Syndecans are transmembrane proteoglycans with heparan and chondroitin sulfate chains attached to their extracellular domain. Like many proteoglycans, they interact with a large number of ligands, such as growth factors, adhesion receptors, soluble small molecules, proteinases, and other extracellular matrix proteins to initiate downstream signaling pathways. Syndecans play a major role in inflammation, mainly by regulating leukocyte extravasation and cytokine function. At the same time, syndecans can undergo cytokine mediated changes in their expression levels during inflammation. The function of syndecans during inflammation appears to depend on the stage of inflammation, sulfation of heparan/chondroitin sulfate chains, the rate of ectodomain shedding and the solubility of the ectodomains. From the current literature, it is clear that syndecans are not only involved in the initial recruitment of pro-inflammatory molecules but also in establishing a balanced progression of inflammation. This review will summarize how cell surface and soluble syndecans regulate multiple aspects of inflammation.
Collapse
Affiliation(s)
- Sandeep Gopal
- Development and Stem Cells Program, Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
34
|
Tsoyi K, Osorio JC, Chu SG, Fernandez IE, De Frias SP, Sholl L, Cui Y, Tellez CS, Siegfried JM, Belinsky SA, Perrella MA, El-Chemaly S, Rosas IO. Lung Adenocarcinoma Syndecan-2 Potentiates Cell Invasiveness. Am J Respir Cell Mol Biol 2020; 60:659-666. [PMID: 30562054 DOI: 10.1165/rcmb.2018-0118oc] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Altered expression of syndecan-2 (SDC2), a heparan sulfate proteoglycan, has been associated with diverse types of human cancers. However, the mechanisms by which SDC2 may contribute to the pathobiology of lung adenocarcinoma have not been previously explored. SDC2 levels were measured in human lung adenocarcinoma samples and lung cancer tissue microarrays using immunohistochemistry and real-time PCR. To understand the role of SDC2 in vitro, SDC2 was silenced or overexpressed in A549 lung adenocarcinoma cells. The invasive capacity of cells was assessed using Matrigel invasion assays and measuring matrix metalloproteinase (MMP) 9 expression. Finally, we assessed tumor growth and metastasis of SDC2-deficient A549 cells in a xenograft tumor model. SDC2 expression was upregulated in malignant epithelial cells and macrophages obtained from human lung adenocarcinomas. Silencing of SDC2 decreased MMP9 expression and attenuated the invasive capacity of A549 lung adenocarcinoma cells. The inhibitory effect of SDC2 silencing on MMP9 expression and cell invasion was reversed by overexpression of MMP9 and syntenin-1. SDC2 silencing attenuated NF-κB p65 subunit nuclear translocation and its binding to the MMP9 promoter, which were restored by overexpression of syntenin-1. SDC2 silencing in vivo reduced tumor mass volume and metastasis. These findings suggest that SDC2 plays an important role in the invasive properties of lung adenocarcinoma cells and that its effects are mediated by syntenin-1. Thus, inhibiting SDC2 expression or activity could serve as a potential therapeutic target to treat lung adenocarcinoma.
Collapse
Affiliation(s)
| | - Juan C Osorio
- 1 Division of Pulmonary and Critical Care Medicine, and.,2 Department of Medicine, New York Presbyterian Hospital, Weill Cornell Medical College, New York, New York
| | - Sarah G Chu
- 1 Division of Pulmonary and Critical Care Medicine, and
| | - Isis E Fernandez
- 3 Comprehensive Pneumology Centre, Hospital of the Ludwig-Maximilians University of Munich, Munich, Germany
| | | | - Lynette Sholl
- 4 Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Ye Cui
- 1 Division of Pulmonary and Critical Care Medicine, and
| | | | - Jill M Siegfried
- 6 Department of Pharmacology, University of Minnesota, Minneapolis, Minnesota
| | | | | | | | - Ivan O Rosas
- 1 Division of Pulmonary and Critical Care Medicine, and.,7 Pulmonary Fibrosis Group, Lovelace Respiratory Research Institute, Albuquerque, New Mexico; and
| |
Collapse
|
35
|
The Challenge of Modulating Heparan Sulfate Turnover by Multitarget Heparin Derivatives. Molecules 2020; 25:molecules25020390. [PMID: 31963505 PMCID: PMC7024324 DOI: 10.3390/molecules25020390] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 01/12/2020] [Accepted: 01/14/2020] [Indexed: 12/12/2022] Open
Abstract
This review comes as a part of the special issue "Emerging frontiers in GAGs and mimetics". Our interest is in the manipulation of heparan sulfate (HS) turnover by employing HS mimetics/heparin derivatives that exert pleiotropic effects and are interesting for interfering at multiple levels with pathways in which HS is implicated. Due to the important role of heparanase in HS post-biosynthetic modification and catabolism, we focus on the possibility to target heparanase, at both extracellular and intracellular levels, a strategy that can be applied to many conditions, from inflammation to cancer and neurodegeneration.
Collapse
|
36
|
Kohli N, Sawadkar P, Ho S, Sharma V, Snow M, Powell S, Woodruff MA, Hook L, García-Gareta E. Pre-screening the intrinsic angiogenic capacity of biomaterials in an optimised ex ovo chorioallantoic membrane model. J Tissue Eng 2020; 11:2041731420901621. [PMID: 32110373 PMCID: PMC7000866 DOI: 10.1177/2041731420901621] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 12/23/2019] [Indexed: 12/12/2022] Open
Abstract
Biomaterial development for clinical applications is currently on the rise. This necessitates adequate in vitro testing, where the structure and composition of biomaterials must be specifically tailored to withstand in situ repair and regeneration responses for a successful clinical outcome. The chorioallantoic membrane of chicken embryos has been previously used to study angiogenesis, a prerequisite for most tissue repair and regeneration. In this study, we report an optimised ex ovo method using a glass-cling film set-up that yields increased embryo survival rates and has an improved protocol for harvesting biomaterials. Furthermore, we used this method to examine the intrinsic angiogenic capacity of a variety of biomaterials categorised as natural, synthetic, natural/synthetic and natural/natural composites with varying porosities. We detected significant differences in biomaterials' angiogenesis with natural polymers and polymers with a high overall porosity showing a greater vascularisation compared to synthetic polymers. Therefore, our proposed ex ovo chorioallantoic membrane method can be effectively used to pre-screen biomaterials intended for clinical application.
Collapse
Affiliation(s)
- Nupur Kohli
- Regenerative Biomaterials Group, RAFT
Institute, Mount Vernon Hospital, Northwood, UK
- Department of Mechanical Engineering,
Imperial College London, London, UK
| | - Prasad Sawadkar
- Regenerative Biomaterials Group, RAFT
Institute, Mount Vernon Hospital, Northwood, UK
| | - Sonia Ho
- Regenerative Biomaterials Group, RAFT
Institute, Mount Vernon Hospital, Northwood, UK
| | - Vaibhav Sharma
- Regenerative Biomaterials Group, RAFT
Institute, Mount Vernon Hospital, Northwood, UK
| | - Martyn Snow
- Royal Orthopaedic Hospital NHS
Foundation Trust, Birmingham, UK
| | - Sean Powell
- Institute of Health and Biomedical
Innovation, Queensland University of Technology, Brisbane, Australia
| | - Maria A Woodruff
- Institute of Health and Biomedical
Innovation, Queensland University of Technology, Brisbane, Australia
| | - Lilian Hook
- Smart Matrix Limited, Leopold Muller
Building, Mount Vernon Hospital, Northwood, UK
| | - Elena García-Gareta
- Regenerative Biomaterials Group, RAFT
Institute, Mount Vernon Hospital, Northwood, UK
| |
Collapse
|
37
|
Hua R, Yu J, Yan X, Ni Q, Zhi X, Li X, Jiang B, Zhu J. Syndecan-2 in colorectal cancer plays oncogenic role via epithelial-mesenchymal transition and MAPK pathway. Biomed Pharmacother 2019; 121:109630. [PMID: 31707342 DOI: 10.1016/j.biopha.2019.109630] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 11/01/2019] [Accepted: 11/01/2019] [Indexed: 12/21/2022] Open
Abstract
PURPOSE In this study, we aimed to elucidate the biological roles of Syndecan-2 (SDC2) in colorectal cancer (CRC), thereby further understanding its clinical role. METHODS The expression of SDC2 was assessed by qRT-PCR and Western blot analysis. To understand the potential biological role of SDC2, we also explored the correlation between its expression level and clinicopathologic parameters. By using MTT, plate colony formation assay, Transwell invasion assays, and flow cytometry in vitro, the biological impact of SDC2 on CRC cell proliferation, migration, invasion, and apoptosis. In addition, the related signaling pathways were investigated. RESULTS SDC2 expression was significantly upregulated in CRC tissues. The expression of SDC2 was highly associated with four parameters, i.e., stage (P < 0.01), vascular invasion (P = 0.0045), lymph node metastasis (P=0.0018), and distant metastasis (P = 0.0019). Knockdown of SDC2 significantly reduced proliferation, migration, and invasion of HCT116 and SW480 cells, and induced cell apoptosis. Moreover, SDC2 promoted epithelial-mesenchymal transition (EMT) in CRC cells, whereas the ratio of p-MEK/MEK and p-ERK/ERK markedly reduced after depleting SDC2. CONCLUSION During CRC development, overexpression of SDC2 plays a carcinogenic role in CRC. Therapeutic solutions targeting SDC2 may provide potential insights into CRC prevention and treatment.
Collapse
Affiliation(s)
- Ruheng Hua
- Department of General Surgery, Affiliated Hospital of Nantong University, Nantong 226021, Jiangsu, PR China
| | - Jiawei Yu
- Department of General Surgery, Affiliated Hospital of Nantong University, Nantong 226021, Jiangsu, PR China
| | - Xiyue Yan
- Department of Hematology, Affiliated Hospital of Nantong University, Nantong 226021, Jiangsu, PR China
| | - Qingfeng Ni
- Department of General Surgery, Affiliated Hospital of Nantong University, Nantong 226021, Jiangsu, PR China
| | - Xiaofei Zhi
- Department of General Surgery, Affiliated Hospital of Nantong University, Nantong 226021, Jiangsu, PR China
| | - Xiaolong Li
- Department of General Surgery, Affiliated Hospital of Nantong University, Nantong 226021, Jiangsu, PR China
| | - Bin Jiang
- Department of General Surgery, Xinghua First People's Hospital, Taizhou 225300, Jiangsu, PR China
| | - Jianwei Zhu
- Department of General Surgery, Affiliated Hospital of Nantong University, Nantong 226021, Jiangsu, PR China.
| |
Collapse
|
38
|
Jannaway M, Yang X, Meegan JE, Coleman DC, Yuan SY. Thrombin-cleaved syndecan-3/-4 ectodomain fragments mediate endothelial barrier dysfunction. PLoS One 2019; 14:e0214737. [PMID: 31091226 PMCID: PMC6519803 DOI: 10.1371/journal.pone.0214737] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 03/19/2019] [Indexed: 01/25/2023] Open
Abstract
Objective The endothelial glycocalyx constitutes part of the endothelial barrier but its degradation leaves endothelial cells exposed to transmigrating cells and circulating mediators that can damage the barrier or promote intercellular gaps. Syndecan proteins are key components of the endothelial glycocalyx and are shed during disease states where expression and activity of proteases such as thrombin are elevated. We tested the ability of thrombin to cleave the ectodomains of syndecans and whether the products could act directly on endothelial cells to alter barrier function. Approach and results Using transmission electron microscopy, we illustrated the presence of glycocalyx in human lung microvasculature. We confirmed expression of all syndecan subtypes on the endothelial surface of agarose-inflated human lungs. ELISA and western blot analysis suggested that thrombin can cleave syndecan-3/-4 ectodomains to produce fragments. In vivo, syndecan-3 ectodomain fragments increased extravasation of albumin-bound Evans blue in mouse lung, indicative of plasma protein leakage into the surrounding tissue. Syndecan-3/-4 ectodomain fragments decreased transendothelial electrical resistance, a measure of cell-cell adhesive barrier integrity, in a manner sensitive to a Rho kinase inhibitor. These effects were independent of glycosylation and thrombin receptor PAR1. Moreover, these cleavage products caused rapid VE-cadherin-based adherens junction disorganization and increased F-actin stress fibers, supporting their direct effect on endothelial paracellular permeability. Conclusions We suggest that thrombin can cleave syndecan-3/4 ectodomain into fragments which interact with endothelial cells causing paracellular hyperpermeability. This may have important implications in the pathogenesis of vascular dysfunction during sepsis or thrombotic disease states where thrombin is activated.
Collapse
Affiliation(s)
- Melanie Jannaway
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, Florida, United States of America
| | - Xiaoyuan Yang
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, Florida, United States of America
| | - Jamie E. Meegan
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, Florida, United States of America
| | - Danielle C. Coleman
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, Florida, United States of America
| | - Sarah Y. Yuan
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, Florida, United States of America
- Department of Surgery, Morsani College of Medicine, University of South Florida, Tampa, Florida, United States of America
- * E-mail:
| |
Collapse
|
39
|
Corti F, Wang Y, Rhodes JM, Atri D, Archer-Hartmann S, Zhang J, Zhuang ZW, Chen D, Wang T, Wang Z, Azadi P, Simons M. N-terminal syndecan-2 domain selectively enhances 6-O heparan sulfate chains sulfation and promotes VEGFA 165-dependent neovascularization. Nat Commun 2019; 10:1562. [PMID: 30952866 PMCID: PMC6450910 DOI: 10.1038/s41467-019-09605-z] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 03/19/2019] [Indexed: 01/26/2023] Open
Abstract
The proteoglycan Syndecan-2 (Sdc2) has been implicated in regulation of cytoskeleton organization, integrin signaling and developmental angiogenesis in zebrafish. Here we report that mice with global and inducible endothelial-specific deletion of Sdc2 display marked angiogenic and arteriogenic defects and impaired VEGFA165 signaling. No such abnormalities are observed in mice with deletion of the closely related Syndecan-4 (Sdc4) gene. These differences are due to a significantly higher 6-O sulfation level in Sdc2 versus Sdc4 heparan sulfate (HS) chains, leading to an increase in VEGFA165 binding sites and formation of a ternary Sdc2-VEGFA165-VEGFR2 complex which enhances VEGFR2 activation. The increased Sdc2 HS chains 6-O sulfation is driven by a specific N-terminal domain sequence; the insertion of this sequence in Sdc4 N-terminal domain increases 6-O sulfation of its HS chains and promotes Sdc2-VEGFA165-VEGFR2 complex formation. This demonstrates the existence of core protein-determined HS sulfation patterns that regulate specific biological activities.
Collapse
Affiliation(s)
- Federico Corti
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, 300 George Street, New Haven, CT, 06511, USA
| | - Yingdi Wang
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, 300 George Street, New Haven, CT, 06511, USA
| | - John M Rhodes
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, 300 George Street, New Haven, CT, 06511, USA
| | - Deepak Atri
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, 300 George Street, New Haven, CT, 06511, USA
| | - Stephanie Archer-Hartmann
- Complex Carbohydrate Research Center, The University of Georgia, 315 Riverbend Road, Athens, GA, 30602, USA
| | - Jiasheng Zhang
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, 300 George Street, New Haven, CT, 06511, USA
| | - Zhen W Zhuang
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, 300 George Street, New Haven, CT, 06511, USA
| | - Dongying Chen
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, 300 George Street, New Haven, CT, 06511, USA
| | - Tianyun Wang
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, 300 George Street, New Haven, CT, 06511, USA
| | - Zhirui Wang
- Complex Carbohydrate Research Center, The University of Georgia, 315 Riverbend Road, Athens, GA, 30602, USA
| | - Parastoo Azadi
- Complex Carbohydrate Research Center, The University of Georgia, 315 Riverbend Road, Athens, GA, 30602, USA
| | - Michael Simons
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, 300 George Street, New Haven, CT, 06511, USA.
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, 06520, USA.
| |
Collapse
|
40
|
Post A, Wang E, Cosgriff-Hernandez E. A Review of Integrin-Mediated Endothelial Cell Phenotype in the Design of Cardiovascular Devices. Ann Biomed Eng 2018; 47:366-380. [PMID: 30488311 DOI: 10.1007/s10439-018-02171-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 11/20/2018] [Indexed: 12/14/2022]
Abstract
Sustained biomaterial thromboresistance has long been a goal and challenge in blood-contacting device design. Endothelialization is one of the most successful strategies to achieve long-term thromboresistance of blood-contacting devices, with the endothelial cell layer providing dynamic hemostatic regulation. It is well established that endothelial cell behavior is influenced by interactions with the underlying extracellular matrix (ECM). Numerous researchers have sought to exploit these interactions to generate improved blood-contacting devices by investigating the expression of hemostatic regulators in endothelial cells on various ECM coatings. The ability to select substrates that promote endothelial cell-mediated thromboresistance is crucial to advancing material design strategies to improve cardiovascular device outcomes. This review provides an overview of endothelial cell regulation of hemostasis, the major components found within the cardiovascular basal lamina, and the interactions of endothelial cells with prominent ECM components of the basement membrane. A summary of ECM-mimetic strategies used in cardiovascular devices is provided with a focus on the effects of key adhesion modalities on endothelial cell regulators of hemostasis.
Collapse
Affiliation(s)
- Allison Post
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, 77843, USA
| | - Ellen Wang
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, 77843, USA
| | - Elizabeth Cosgriff-Hernandez
- Department of Biomedical Engineering, University of Texas, 107 W. Dean Keaton, BME 3.503D, 1 University Station, C0800, Austin, TX, 78712, USA.
| |
Collapse
|
41
|
Swart M, Troeberg L. Effect of Polarization and Chronic Inflammation on Macrophage Expression of Heparan Sulfate Proteoglycans and Biosynthesis Enzymes. J Histochem Cytochem 2018; 67:9-27. [PMID: 30205019 DOI: 10.1369/0022155418798770] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Heparan sulfate (HS) proteoglycans on immune cells have the ability to bind to and regulate the bioactivity more than 400 bioactive protein ligands, including many chemokines, cytokines, and growth factors. This makes them important regulators of the phenotype and behavior of immune cells. Here we review how HS biosynthesis in macrophages is regulated during polarization and in chronic inflammatory diseases such as rheumatoid arthritis, atherosclerosis, asthma, chronic obstructive pulmonary disease and obesity, by analyzing published micro-array data and mechanistic studies in this area. We describe that macrophage expression of many HS biosynthesis and core proteins is strongly regulated by macrophage polarization, and that these expression patterns are recapitulated in chronic inflammation. Such changes in HS biosynthetic enzyme expression are likely to have a significant impact on the phenotype of macrophages in chronic inflammatory diseases by altering their interactions with chemokines, cytokines, and growth factors.
Collapse
Affiliation(s)
- Maarten Swart
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, United Kingdom
| | - Linda Troeberg
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
42
|
Bertrand J, Bollmann M. Soluble syndecans: biomarkers for diseases and therapeutic options. Br J Pharmacol 2018; 176:67-81. [PMID: 29931674 DOI: 10.1111/bph.14397] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 06/01/2018] [Accepted: 06/08/2018] [Indexed: 12/30/2022] Open
Abstract
Syndecans are important mediators of signalling by transmitting external stimuli into the cells. This role in signal transduction has been attributed mainly to the membrane-bound syndecans. In the last years, however, the soluble ectodomain of syndecans generated by shedding has come into the focus of research as this process has been show to modulate the syndecan-dependent signalling pathways, as well as other pathways. This review summarizes the current knowledge about the induction of syndecan shedding and the different pathways modulated by shed syndecan proteins. This review summarizes the known and putative sheddases for each syndecan and describes the exemplary conditions of sheddase activity for some syndecans. This review summarizes the proposed use of shed syndecans as biomarkers for various diseases, as the shedding process of syndecans depends crucially on tissue- and disease-specific activation of the sheddases. Furthermore, the potential use of soluble syndecans as a therapeutic option is discussed, on the basis of the current literature. LINKED ARTICLES: This article is part of a themed section on Translating the Matrix. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.1/issuetoc.
Collapse
Affiliation(s)
- Jessica Bertrand
- Department of Orthopaedic Surgery, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Miriam Bollmann
- Department of Orthopaedic Surgery, Otto von Guericke University Magdeburg, Magdeburg, Germany
| |
Collapse
|
43
|
Agere SA, Kim EY, Akhtar N, Ahmed S. Syndecans in chronic inflammatory and autoimmune diseases: Pathological insights and therapeutic opportunities. J Cell Physiol 2018; 233:6346-6358. [PMID: 29226950 DOI: 10.1002/jcp.26388] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 12/04/2017] [Indexed: 12/20/2022]
Abstract
Syndecans (SDCs) are a family of heparan sulfate proteoglycans (HSPGs) glycoproteins ubiquitously expressed on the cell surfaces and extracellular matrix of all mammalian tissues. There are four mammalian syndecans, SDC-1 thorough 4, which play a critical role in cell adhesion, migration, proliferation, differentiation, and angiogenesis through independent and growth factor mediated signaling. An altered expression of SDCs is often observed in autoimmune disorders, cancer, HIV infection, and many other pathological conditions. SDCs modulate disease progression by interacting with a diverse array of ligands, receptors, and other proteins, including extracellular matrix, glycoproteins, integrins, morphogens, and various growth factors and chemokines, along with their receptors and kinases. Specifically, SDCs present on cell surface can bind directly to chemokines to enhance their binding to receptors, downstream signaling, and migration. Alternatively, SDCs can be cleaved and shed to mediate negative regulation of chemokine and growth factor signaling pathways and ligand sequestration. Importantly, SDC shedding may be a biomarker of inflammation, especially in chronic inflammatory diseases. While the current therapies for cancer and several autoimmune disorders have revolutionized treatment outcomes, understanding the pathophysiological role of SDCs and the use of HSPG mimetic or antagonists on cytokine signaling networks may uncover potentially novel targeted therapeutic approaches. This review mainly summarizes the current findings on the role of individual SDCs in disease processes, mechanisms through which SDCs mediate their biological functions, and the possibility of targeting SDCs as future potential therapeutic approaches.
Collapse
Affiliation(s)
- Solomon A Agere
- Department of Pharmaceutical Sciences, Washington State University College of Pharmacy, Spokane, Washington
| | - Eugene Y Kim
- Department of Pharmaceutical Sciences, Washington State University College of Pharmacy, Spokane, Washington
| | - Nahid Akhtar
- Department of Pharmaceutical Sciences, Washington State University College of Pharmacy, Spokane, Washington
| | - Salahuddin Ahmed
- Department of Pharmaceutical Sciences, Washington State University College of Pharmacy, Spokane, Washington.,Division of Rheumatology, University of Washington School of Medicine, Seattle, Washington
| |
Collapse
|
44
|
Tsoyi K, Chu SG, Patino-Jaramillo NG, Wilder J, Villalba J, Doyle-Eisele M, McDonald J, Liu X, El-Chemaly S, Perrella MA, Rosas IO. Syndecan-2 Attenuates Radiation-induced Pulmonary Fibrosis and Inhibits Fibroblast Activation by Regulating PI3K/Akt/ROCK Pathway via CD148. Am J Respir Cell Mol Biol 2018; 58:208-215. [PMID: 28886261 DOI: 10.1165/rcmb.2017-0088oc] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Radiation-induced pulmonary fibrosis is a severe complication of patients treated with thoracic irradiation. We have previously shown that syndecan-2 reduces fibrosis by exerting alveolar epithelial cytoprotective effects. Here, we investigate whether syndecan-2 attenuates radiation-induced pulmonary fibrosis by inhibiting fibroblast activation. C57BL/6 wild-type mice and transgenic mice that overexpress human syndecan-2 in alveolar macrophages were exposed to 14 Gy whole-thoracic radiation. At 24 weeks after irradiation, lungs were collected for histological, protein, and mRNA evaluation of pulmonary fibrosis, profibrotic gene expression, and α-smooth muscle actin (α-SMA) expression. Mouse lung fibroblasts were activated with transforming growth factor (TGF)-β1 in the presence or absence of syndecan-2. Cell proliferation, migration, and gel contraction were assessed at different time points. Irradiation resulted in significantly increased mortality and pulmonary fibrosis in wild-type mice that was associated with elevated lung expression of TGF-β1 downstream target genes and cell death compared with irradiated syndecan-2 transgenic mice. In mouse lung fibroblasts, syndecan-2 inhibited α-SMA expression, cell contraction, proliferation, and migration induced by TGF-β1. Syndecan-2 attenuated phosphoinositide 3-kinase/serine/threonine kinase/Rho-associated coiled-coil kinase signaling and serum response factor binding to the α-SMA promoter. Syndecan-2 attenuates pulmonary fibrosis in mice exposed to radiation and inhibits TGF-β1-induced fibroblast-myofibroblast differentiation, migration, and proliferation by down-regulating phosphoinositide 3-kinase/serine/threonine kinase/Rho-associated coiled-coil kinase signaling and blocking serum response factor binding to the α-SMA promoter via CD148. These findings suggest that syndecan-2 has potential as an antifibrotic therapy in radiation-induced lung fibrosis.
Collapse
Affiliation(s)
- Konstantin Tsoyi
- 1 Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts; and
| | - Sarah G Chu
- 1 Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts; and
| | | | - Julie Wilder
- 2 Pulmonary Fibrosis Program, Lovelace Respiratory Research Institute, Albuquerque, New Mexico
| | - Julian Villalba
- 1 Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts; and.,2 Pulmonary Fibrosis Program, Lovelace Respiratory Research Institute, Albuquerque, New Mexico
| | - Melanie Doyle-Eisele
- 2 Pulmonary Fibrosis Program, Lovelace Respiratory Research Institute, Albuquerque, New Mexico
| | - Jacob McDonald
- 2 Pulmonary Fibrosis Program, Lovelace Respiratory Research Institute, Albuquerque, New Mexico
| | - Xiaoli Liu
- 1 Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts; and
| | - Souheil El-Chemaly
- 1 Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts; and
| | - Mark A Perrella
- 1 Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts; and
| | - Ivan O Rosas
- 1 Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts; and.,2 Pulmonary Fibrosis Program, Lovelace Respiratory Research Institute, Albuquerque, New Mexico
| |
Collapse
|
45
|
Liakouli V, Cipriani P, Di Benedetto P, Ruscitti P, Carubbi F, Berardicurti O, Panzera N, Giacomelli R. The role of extracellular matrix components in angiogenesis and fibrosis: Possible implication for Systemic Sclerosis. Mod Rheumatol 2018; 28:922-932. [DOI: 10.1080/14397595.2018.1431004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Vasiliki Liakouli
- Department of Biotechnological and Applied Clinical Science, Rheumatology Unit, School of Medicine, University of L’Aquila, L’Aquila, Italy
| | - Paola Cipriani
- Department of Biotechnological and Applied Clinical Science, Rheumatology Unit, School of Medicine, University of L’Aquila, L’Aquila, Italy
| | - Paola Di Benedetto
- Department of Biotechnological and Applied Clinical Science, Rheumatology Unit, School of Medicine, University of L’Aquila, L’Aquila, Italy
| | - Piero Ruscitti
- Department of Biotechnological and Applied Clinical Science, Rheumatology Unit, School of Medicine, University of L’Aquila, L’Aquila, Italy
| | - Francesco Carubbi
- Department of Biotechnological and Applied Clinical Science, Rheumatology Unit, School of Medicine, University of L’Aquila, L’Aquila, Italy
| | - Onorina Berardicurti
- Department of Biotechnological and Applied Clinical Science, Rheumatology Unit, School of Medicine, University of L’Aquila, L’Aquila, Italy
| | - Noemi Panzera
- Department of Biotechnological and Applied Clinical Science, Rheumatology Unit, School of Medicine, University of L’Aquila, L’Aquila, Italy
| | - Roberto Giacomelli
- Department of Biotechnological and Applied Clinical Science, Rheumatology Unit, School of Medicine, University of L’Aquila, L’Aquila, Italy
| |
Collapse
|
46
|
The Role of Endothelial Surface Glycocalyx in Mechanosensing and Transduction. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1097:1-27. [PMID: 30315537 DOI: 10.1007/978-3-319-96445-4_1] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The endothelial cells (ECs) forming the inner wall of every blood vessel are constantly exposed to the mechanical forces generated by blood flow. The EC responses to these hemodynamic forces play a critical role in the homeostasis of the circulatory system. A variety of mechanosensors and transducers, locating on the EC surface, intra- and trans-EC membrane, and within the EC cytoskeleton, have thus been identified to ensure proper functions of ECs. Among them, the most recent candidate is the endothelial surface glycocalyx (ESG), which is a matrix-like thin layer covering the luminal surface of the EC. It consists of various proteoglycans, glycosaminoglycans, and plasma proteins and is close to other prominent EC mechanosensors and transducers. This chapter summarizes the ESG composition, thickness, and structure observed by different labeling and visualization techniques and in different types of vessels. It also presents the literature in determining the ESG mechanical properties by atomic force microscopy and optical tweezers. The molecular mechanisms by which the ESG plays the role in EC mechanosensing and transduction are described as well as the ESG remodeling by shear stress, the actin cytoskeleton, the membrane rafts, the angiogenic factors, and the sphingosine-1-phosphate.
Collapse
|
47
|
Oshima K, Haeger SM, Hippensteel JA, Herson PS, Schmidt EP. More than a biomarker: the systemic consequences of heparan sulfate fragments released during endothelial surface layer degradation (2017 Grover Conference Series). Pulm Circ 2017; 8:2045893217745786. [PMID: 29199903 PMCID: PMC5731723 DOI: 10.1177/2045893217745786] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Advances in tissue fixation and imaging techniques have yielded increasing appreciation for the glycosaminoglycan-rich endothelial glycocalyx and its in vivo manifestation, the endothelial surface layer (ESL). Pathological loss of the ESL during critical illness promotes local endothelial dysfunction and, consequently, organ injury. Glycosaminoglycan fragments, such as heparan sulfate, are released into the plasma of animals and humans after ESL degradation and have thus served as a biomarker of endothelial injury. The development of state-of-the-art glycomic techniques, however, has revealed that these circulating heparan sulfate fragments are capable of influencing growth factor and other signaling pathways distant to the site of ESL injury. This review summarizes the current state of knowledge concerning the local (i.e. endothelial injury) and systemic (i.e. para- or endocrine) consequences of ESL degradation and identifies opportunities for future, novel investigations.
Collapse
Affiliation(s)
- Kaori Oshima
- 1 129263 Department of Medicine, University of Colorado Denver, Aurora, CO, USA
| | - Sarah M Haeger
- 1 129263 Department of Medicine, University of Colorado Denver, Aurora, CO, USA
| | | | - Paco S Herson
- 2 129263 Department of Anesthesiology, University of Colorado Denver, Aurora, CO, USA
| | - Eric P Schmidt
- 1 129263 Department of Medicine, University of Colorado Denver, Aurora, CO, USA.,3 Department of Medicine, Denver Health Medical Center, Denver, CO, USA
| |
Collapse
|
48
|
Ricard-Blum S, Vallet SD. Fragments generated upon extracellular matrix remodeling: Biological regulators and potential drugs. Matrix Biol 2017; 75-76:170-189. [PMID: 29133183 DOI: 10.1016/j.matbio.2017.11.005] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 11/05/2017] [Accepted: 11/07/2017] [Indexed: 12/13/2022]
Abstract
The remodeling of the extracellular matrix (ECM) by several protease families releases a number of bioactive fragments, which regulate numerous biological processes such as autophagy, angiogenesis, adipogenesis, fibrosis, tumor growth, metastasis and wound healing. We review here the proteases which generate bioactive ECM fragments, their ECM substrates, the major bioactive ECM fragments, together with their biological properties and their receptors. The translation of ECM fragments into drugs is challenging and would take advantage of an integrative approach to optimize the design of pre-clinical and clinical studies. This could be done by building the contextualized interaction network of the ECM fragment repertoire including their parent proteins, remodeling proteinases, and their receptors, and by using mathematical disease models.
Collapse
Affiliation(s)
- Sylvie Ricard-Blum
- Univ Lyon, University Claude Bernard Lyon 1, CNRS, INSA Lyon, CPE, Institute of Molecular and Supramolecular Chemistry and Biochemistry, UMR 5246, F-69622 Villeurbanne cedex, France.
| | - Sylvain D Vallet
- Univ Lyon, University Claude Bernard Lyon 1, CNRS, INSA Lyon, CPE, Institute of Molecular and Supramolecular Chemistry and Biochemistry, UMR 5246, F-69622 Villeurbanne cedex, France.
| |
Collapse
|
49
|
Theocharis AD, Karamanos NK. Proteoglycans remodeling in cancer: Underlying molecular mechanisms. Matrix Biol 2017; 75-76:220-259. [PMID: 29128506 DOI: 10.1016/j.matbio.2017.10.008] [Citation(s) in RCA: 146] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 10/23/2017] [Accepted: 10/24/2017] [Indexed: 02/07/2023]
Abstract
Extracellular matrix is a highly dynamic macromolecular network. Proteoglycans are major components of extracellular matrix playing key roles in its structural organization and cell signaling contributing to the control of numerous normal and pathological processes. As multifunctional molecules, proteoglycans participate in various cell functions during morphogenesis, wound healing, inflammation and tumorigenesis. Their interactions with matrix effectors, cell surface receptors and enzymes enable them with unique properties. In malignancy, extensive remodeling of tumor stroma is associated with marked alterations in proteoglycans' expression and structural variability. Proteoglycans exert diverse functions in tumor stroma in a cell-specific and context-specific manner and they mainly contribute to the formation of a permissive provisional matrix for tumor growth affecting tissue organization, cell-cell and cell-matrix interactions and tumor cell signaling. Proteoglycans also modulate cancer cell phenotype and properties, the development of drug resistance and tumor stroma angiogenesis. This review summarizes the proteoglycans remodeling and their novel biological roles in malignancies with particular emphasis to the underlying molecular mechanisms.
Collapse
Affiliation(s)
- Achilleas D Theocharis
- Biochemistry, Biochemical Analysis & Matrix Pathobiochemistry Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, 26500 Patras, Greece.
| | - Nikos K Karamanos
- Biochemistry, Biochemical Analysis & Matrix Pathobiochemistry Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, 26500 Patras, Greece.
| |
Collapse
|
50
|
Processing of syndecan-2 by matrix metalloproteinase-14 and effect of its cleavage on VEGF-induced tube formation of HUVECs. Biochem J 2017; 474:3719-3732. [PMID: 28972070 DOI: 10.1042/bcj20170340] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Revised: 09/15/2017] [Accepted: 09/25/2017] [Indexed: 11/17/2022]
Abstract
Syndecans (SDCs) are transmembrane proteoglycans that are involved in cell adhesion and cell communication. Specifically, SDC2 plays a key role in tumorigenesis, metastasis, and angiogenesis. Previously, we found that rat SDC2 is shed by matrix metalloproteinase-7 (MMP-7) in colon cancer cells. Here, we analyzed the susceptibility of rat SDC2 to various MMPs. We found that the rat SDC2 ectodomain (ECD) fused to the C-terminal Fc region, which was expressed in mammalian cells, was cleaved more efficiently by MMP-14 than MMP-7. Likewise, when anchored on the surface of HeLa cells, rat SDC2 was cleaved more efficiently by the treatment of MMP-14 than MMP-7 and was shed more readily by membrane-anchored MMP-14 than soluble MMP-14. Furthermore, MMP-14 cleaved recombinant SDC2-ECD expressed in Escherichia coli into multiple fragments. Using N-terminal amino acid sequencing and the top-down proteomics approach, we determined that the major cleavage sites were S88↓L89, T98↓M99, T100↓L101, D132↓P133, and N148↓L149 for rat SDC2-ECD and S55↓G56, S65↓P66, P75↓K76, N92↓I93 D122↓P123, and S138↓L139 for human SDC2-ECD. Finally, the rat and human SDC2-ECD lost the ability to suppress vascular endothelial growth factor-induced formation of capillary-like tubes by human umbilical vein endothelial cells following cleavage by MMP-14, but its major cleavage-site mutant of rat SDC2-ECD did not. These results suggest that MMP-14 is a novel enzyme responsible for degrading SDC2 and impairing its physiological roles including angiogenesis.
Collapse
|