1
|
Yeung SHS, Lee RHS, Cheng GWY, Ma IWT, Kofler J, Kent C, Ma F, Herrup K, Fornage M, Arai K, Tse KH. White matter hyperintensity genetic risk factor TRIM47 regulates autophagy in brain endothelial cells. FASEB J 2024; 38:e70059. [PMID: 39331575 DOI: 10.1096/fj.202400689rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 08/27/2024] [Accepted: 09/05/2024] [Indexed: 09/29/2024]
Abstract
White matter hyperintensity (WMH) is strongly correlated with age-related dementia and hypertension, but its pathogenesis remains obscure. Genome-wide association studies identified TRIM47 at the 17q25 locus as a top genetic risk factor for WMH formation. TRIM family is a class of E3 ubiquitin ligase with pivotal functions in autophagy, which is critical for brain endothelial cell (ECs) remodeling during hypertension. We hypothesize that TRIM47 regulates autophagy and its loss-of-function disturbs cerebrovasculature. Based on transcriptomics and immunohistochemistry, TRIM47 is found highly expressed by brain ECs in human and mouse, and its transcription is upregulated by artificially induced autophagy while downregulated in hypertension-like conditions. Using in silico simulation, immunocytochemistry and super-resolution microscopy, we predicted a highly conserved binding site between TRIM47 and the LIR (LC3-interacting region) motif of LC3B. Importantly, pharmacological autophagy induction increased Trim47 expression on mouse ECs (b.End3) culture, while silencing Trim47 significantly increased autophagy with ULK1 phosphorylation induction, transcription, and vacuole formation. Together, we demonstrate that TRIM47 is an endogenous inhibitor of autophagy in brain ECs, and such TRIM47-mediated regulation connects genetic and physiological risk factors for WMH formation but warrants further investigation.
Collapse
Affiliation(s)
- Sunny Hoi-Sang Yeung
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Ralph Hon-Sun Lee
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Gerald Wai-Yeung Cheng
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Iris Wai-Ting Ma
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Julia Kofler
- Division of Neuropathology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Candice Kent
- Department of Neurobiology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Fulin Ma
- Department of Neurobiology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Karl Herrup
- Department of Neurobiology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Myriam Fornage
- Human Genetics Center, Division of Epidemiology, School of Public Health, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Ken Arai
- Neuroprotection Research Laboratories, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts, USA
| | - Kai-Hei Tse
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Kowloon, Hong Kong
- Brain and Mind Centre, University of Sydney, Camperdown, New South Wales, Australia
- Department of Neuropathology, Royal Prince Alfred Hospital, Camperdown, New South Wales, Australia
| |
Collapse
|
2
|
Eckhart L, Gruber F, Sukseree S. Autophagy-Mediated Cellular Remodeling during Terminal Differentiation of Keratinocytes in the Epidermis and Skin Appendages. Cells 2024; 13:1675. [PMID: 39451193 PMCID: PMC11506049 DOI: 10.3390/cells13201675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 09/28/2024] [Accepted: 10/09/2024] [Indexed: 10/26/2024] Open
Abstract
The epidermis of the skin and skin appendages, such as nails, hair and sebaceous glands, depend on a balance of cell proliferation and terminal differentiation in order to fulfill their functions at the interface of the body and the environment. The differentiation of epithelial cells of the skin, commonly referred to as keratinocytes, involves major remodeling processes that generate metabolically inactive cell remnants serving as building blocks of the epidermal stratum corneum, nail plates and hair shafts. Only sebaceous gland differentiation results in cell disintegration and holocrine secretion. A series of studies performed in the past decade have revealed that the lysosome-dependent intracellular degradation mechanism of autophagy is active during keratinocyte differentiation, and the blockade of autophagy significantly alters the properties of the differentiation products. Here, we present a model for the autophagy-mediated degradation of organelles and cytosolic proteins as an important contributor to cellular remodeling in keratinocyte differentiation. The roles of autophagy are discussed in comparison to alternative intracellular degradation mechanisms and in the context of programmed cell death as an integral end point of epithelial differentiation.
Collapse
Affiliation(s)
- Leopold Eckhart
- Department of Dermatology, Medical University of Vienna, 1090 Vienna, Austria
| | - Florian Gruber
- Department of Dermatology, Medical University of Vienna, 1090 Vienna, Austria
- Christian Doppler Laboratory for Skin Multimodal Imaging of Aging and Senescence—SKINMAGINE, 1090 Vienna, Austria
| | - Supawadee Sukseree
- Department of Dermatology, Medical University of Vienna, 1090 Vienna, Austria
- Center for Anatomy and Cell Biology, Medical University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
3
|
Jacob R, Gorek LS. Intracellular galectin interactions in health and disease. Semin Immunopathol 2024; 46:4. [PMID: 38990375 PMCID: PMC11239732 DOI: 10.1007/s00281-024-01010-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 03/07/2024] [Indexed: 07/12/2024]
Abstract
In the galectin family, a group of lectins is united by their evolutionarily conserved carbohydrate recognition domains. These polypeptides play a role in various cellular processes and are implicated in disease mechanisms such as cancer, fibrosis, infection, and inflammation. Following synthesis in the cytosol, manifold interactions of galectins have been described both extracellularly and intracellularly. Extracellular galectins frequently engage with glycoproteins or glycolipids in a carbohydrate-dependent manner. Intracellularly, galectins bind to non-glycosylated proteins situated in distinct cellular compartments, each with multiple cellular functions. This diversity complicates attempts to form a comprehensive understanding of the role of galectin molecules within the cell. This review enumerates intracellular galectin interaction partners and outlines their involvement in cellular processes. The intricate connections between galectin functions and pathomechanisms are illustrated through discussions of intracellular galectin assemblies in immune and cancer cells. This underscores the imperative need to fully comprehend the interplay of galectins with the cellular machinery and to devise therapeutic strategies aimed at counteracting the establishment of galectin-based disease mechanisms.
Collapse
Affiliation(s)
- Ralf Jacob
- Department of Cell Biology and Cell Pathology, Philipps University of Marburg, Karl-von-Frisch-Str. 14, D-35043, Marburg, Germany.
| | - Lena-Sophie Gorek
- Department of Cell Biology and Cell Pathology, Philipps University of Marburg, Karl-von-Frisch-Str. 14, D-35043, Marburg, Germany
| |
Collapse
|
4
|
Yu Y, Li S, Sun J, Wang Y, Xie L, Guo Y, Li J, Han F. Overexpression of TRIM44 mediates the NF-κB pathway to promote the progression of ovarian cancer. Genes Genomics 2024; 46:689-699. [PMID: 38691326 DOI: 10.1007/s13258-024-01517-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 04/15/2024] [Indexed: 05/03/2024]
Abstract
BACKGROUND Ovarian cancer (OC) is the second most commonly seen cancer in the US, and patients with OC are commonly diagnosed in the advanced stage. Research into the molecular mechanisms and potential therapeutic targets of OC is becoming increasingly urgent. In our study, we worked to discover the role of TRIM44 in OC development. OBJECTIVE This study explored whether the overexpression of TRIM44 mediates the NF-kB pathway to promote the progression of OC. METHODS A TRIM44 overexpression model was constructed in SKOV3 cells, and the proliferation ability of the cells was detected using the CCK-8 assay. The migration healing ability of cells was detected using cell scratch assay. Cell migration and invasion were detected using Transwell nesting. TUNEL was applied to detect apoptosis, and ELISA and western blot were used to detect the expression of NF-κB signaling pathway proteins. The pathological changes of the tumor tissues were observed using HE staining in a mouse ovarian cancer xenograft model. Immunofluorescence double staining, RT-PCR, and western blot were used to determine the expression of relevant factors in tumour tissues. RESULTS TRIM44 overexpression promoted the proliferation, migration, and invasion of SKOV3 cells in vitro and inhibited apoptosis while enhancing the growth of tumours in vivo. TRIM44 regulated the NF-κB signaling pathway. CONCLUSIONS TRIM44 overexpression can regulate the NF-κB signaling pathway to promote the progression of OC, and TRIM44 may be a potential therapeutic target for OC.
Collapse
Affiliation(s)
- Yang Yu
- Department of Obstetrics and Gynecology, Postdoctoral Mobile Station of Heilongjiang University of Traditional Chinese Medicine, Harbin, 150040, China
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Heilongjiang University of Traditional Chinese Medicine, 150040, Harbin, China
| | - ShiYing Li
- Department of Obstetrics and Gynecology, Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - Jialin Sun
- Biological Science and Technology Department, Heilongjiang Vocational College for Nationalities, Harbin, 150066, China
| | - Yu Wang
- Department of Obstetrics and Gynecology, Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - LiangZhen Xie
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Heilongjiang University of Traditional Chinese Medicine, 150040, Harbin, China
| | - Ying Guo
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Heilongjiang University of Traditional Chinese Medicine, 150040, Harbin, China
| | - Jia Li
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Heilongjiang University of Traditional Chinese Medicine, 150040, Harbin, China
| | - FengJuan Han
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Heilongjiang University of Traditional Chinese Medicine, 150040, Harbin, China.
| |
Collapse
|
5
|
Schreurs RRCE, Koulis A, Booiman T, Boeser-Nunnink B, Cloherty APM, Rader AG, Patel KS, Kootstra NA, Ribeiro CMS. Autophagy-enhancing ATG16L1 polymorphism is associated with improved clinical outcome and T-cell immunity in chronic HIV-1 infection. Nat Commun 2024; 15:2465. [PMID: 38548722 PMCID: PMC10979031 DOI: 10.1038/s41467-024-46606-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 03/04/2024] [Indexed: 04/01/2024] Open
Abstract
Chronic HIV-1 infection is characterized by T-cell dysregulation that is partly restored by antiretroviral therapy. Autophagy is a critical regulator of T-cell function. Here, we demonstrate a protective role for autophagy in HIV-1 disease pathogenesis. Targeted analysis of genetic variation in core autophagy gene ATG16L1 reveals the previously unidentified rs6861 polymorphism, which correlates functionally with enhanced autophagy and clinically with improved survival of untreated HIV-1-infected individuals. T-cells carrying ATG16L1 rs6861(TT) genotype display improved antiviral immunity, evidenced by increased proliferation, revamped immune responsiveness, and suppressed exhaustion/immunosenescence features. In-depth flow-cytometric and transcriptional profiling reveal T-helper-cell-signatures unique to rs6861(TT) individuals with enriched regulation of pro-inflammatory networks and skewing towards immunoregulatory phenotype. Therapeutic enhancement of autophagy recapitulates the rs6861(TT)-associated T-cell traits in non-carriers. These data underscore the in vivo relevance of autophagy for longer-lasting T-cell-mediated HIV-1 control, with implications towards development of host-directed antivirals targeting autophagy to restore immune function in chronic HIV-1 infection.
Collapse
Affiliation(s)
- Renée R C E Schreurs
- Amsterdam UMC location University of Amsterdam, Experimental Immunology, Meibergdreef 9, Amsterdam, The Netherlands
- Amsterdam institute for Immunology & Infectious Diseases, Amsterdam, The Netherlands
| | - Athanasios Koulis
- Amsterdam UMC location University of Amsterdam, Experimental Immunology, Meibergdreef 9, Amsterdam, The Netherlands
- Amsterdam institute for Immunology & Infectious Diseases, Amsterdam, The Netherlands
| | - Thijs Booiman
- Amsterdam UMC location University of Amsterdam, Experimental Immunology, Meibergdreef 9, Amsterdam, The Netherlands
- Amsterdam institute for Immunology & Infectious Diseases, Amsterdam, The Netherlands
| | - Brigitte Boeser-Nunnink
- Amsterdam UMC location University of Amsterdam, Experimental Immunology, Meibergdreef 9, Amsterdam, The Netherlands
- Amsterdam institute for Immunology & Infectious Diseases, Amsterdam, The Netherlands
| | - Alexandra P M Cloherty
- Amsterdam UMC location University of Amsterdam, Experimental Immunology, Meibergdreef 9, Amsterdam, The Netherlands
- Amsterdam institute for Immunology & Infectious Diseases, Amsterdam, The Netherlands
| | - Anusca G Rader
- Amsterdam UMC location University of Amsterdam, Experimental Immunology, Meibergdreef 9, Amsterdam, The Netherlands
- Amsterdam institute for Immunology & Infectious Diseases, Amsterdam, The Netherlands
| | - Kharishma S Patel
- Amsterdam UMC location University of Amsterdam, Experimental Immunology, Meibergdreef 9, Amsterdam, The Netherlands
- Amsterdam institute for Immunology & Infectious Diseases, Amsterdam, The Netherlands
| | - Neeltje A Kootstra
- Amsterdam UMC location University of Amsterdam, Experimental Immunology, Meibergdreef 9, Amsterdam, The Netherlands
- Amsterdam institute for Immunology & Infectious Diseases, Amsterdam, The Netherlands
| | - Carla M S Ribeiro
- Amsterdam UMC location University of Amsterdam, Experimental Immunology, Meibergdreef 9, Amsterdam, The Netherlands.
- Amsterdam institute for Immunology & Infectious Diseases, Amsterdam, The Netherlands.
| |
Collapse
|
6
|
Yeung SHS, Lee RHS, Cheng GWY, Ma IWT, Kofler J, Kent C, Ma F, Herrup K, Fornage M, Arai K, Tse KH. White matter hyperintensity genetic risk factor TRIM47 regulates autophagy in brain endothelial cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.18.566359. [PMID: 38187529 PMCID: PMC10769267 DOI: 10.1101/2023.12.18.566359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
White matter hyperintensity (WMH) is strongly correlated with age-related dementia and hypertension, but its pathogenesis remains obscure. GWAS identified TRIM47 at 17q25 locus as a top genetic risk factor for WMH formation. TRIM family is a class of E3 ubiquitin ligase with pivotal functions in autophagy, which is critical for brain endothelial cell (ECs) remodeling during hypertension. We hypothesize that TRIM47 regulates autophagy and its loss-of-function disturbs cerebrovasculature. Based on transcriptomics and immunohistochemistry, TRIM47 is found selectively expressed by brain ECs in human and mouse, and its transcription is upregulated by artificially-induced autophagy while downregulated in hypertension-like conditions. Using in silico simulation, immunocytochemistry and super-resolution microscopy, we identified the highly conserved binding site between TRIM47 and the LIR (LC3-interacting region) motif of LC3B. Importantly, pharmacological autophagy induction increased Trim47 expression on mouse ECs (b.End3) culture, while silencing Trim47 significantly increased autophagy with ULK1 phosphorylation induction, transcription and vacuole formation. Together, we confirm that TRIM47 is an endogenous inhibitor of autophagy in brain ECs, and such TRIM47-mediated regulation connects genetic and physiological risk factors for WMH formation but warrants further investigation. SUMMARY STATEMENT TRIM47, top genetic risk factor for white matter hyperintensity formation, is a negative regulator of autophagy in brain endothelial cells and implicates a novel cellular mechanism for age-related cerebrovascular changes.
Collapse
|
7
|
Lin YW, Lin TT, Chen CH, Wang RH, Lin YH, Tseng TY, Zhuang YJ, Tang SY, Lin YC, Pang JY, Chakravarthy RD, Lin HC, Tzou SC, Chao JI. Enhancing Efficacy of Albumin-Bound Paclitaxel for Human Lung and Colorectal Cancers through Autophagy Receptor Sequestosome 1 (SQSTM1)/p62-Mediated Nanodrug Delivery and Cancer therapy. ACS NANO 2023; 17:19033-19051. [PMID: 37737568 DOI: 10.1021/acsnano.3c04739] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/23/2023]
Abstract
Selective autophagy is a defense mechanism by which foreign pathogens and abnormal substances are processed to maintain cellular homeostasis. Sequestosome 1 (SQSTM1)/p62, a vital selective autophagy receptor, recruits ubiquitinated cargo to form autophagosomes for lysosomal degradation. Nab-PTX is an albumin-bound paclitaxel nanoparticle used in clinical cancer therapy. However, the role of SQSTM1 in regulating the delivery and efficacy of nanodrugs remains unclear. Here we showed that SQSTM1 plays a crucial role in Nab-PTX drug delivery and efficacy in human lung and colorectal cancers. Nab-PTX induces SQSTM1 phosphorylation at Ser403, which facilitates its incorporation into the selective autophagy of nanoparticles, known as nanoparticulophagy. Nab-PTX increased LC3-II protein expression, which triggered autophagosome formation. SQSTM1 enhanced Nab-PTX recognition to form autophagosomes, which were delivered to lysosomes for albumin degradation, thereby releasing PTX to induce mitotic catastrophe and apoptosis. Knockout of SQSTM1 downregulated Nab-PTX-induced mitotic catastrophe, apoptosis, and tumor inhibition in vitro and in vivo and inhibited Nab-PTX-induced caspase 3 activation via a p53-independent pathway. Ectopic expression of SQSTM1 by transfection of an SQSTM1-GFP vector restored the drug efficacy of Nab-PTX. Importantly, SQSTM1 is highly expressed in advanced lung and colorectal tumors and is associated with poor overall survival in clinical patients. Targeting SQSTM1 may provide an important strategy to improve nanodrug efficacy in clinical cancer therapy. This study demonstrates the enhanced efficacy of Nab-PTX for human lung and colorectal cancers via SQSTM1-mediated nanodrug delivery.
Collapse
Affiliation(s)
- Yu-Wei Lin
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu 30068, Taiwan
| | - Tzu-Ting Lin
- Institute of Molecular Medicine and Bioengineering, National Yang Ming Chiao Tung University, Hsinchu 30068, Taiwan
| | - Chien-Hung Chen
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu 30068, Taiwan
| | - Rou-Hsin Wang
- Institute of Molecular Medicine and Bioengineering, National Yang Ming Chiao Tung University, Hsinchu 30068, Taiwan
| | - Ya-Hui Lin
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu 30068, Taiwan
| | - Tzu-Yen Tseng
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu 30068, Taiwan
| | - Yan-Jun Zhuang
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu 30068, Taiwan
| | - Sheng-Yueh Tang
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu 30068, Taiwan
| | - Yen-Cheng Lin
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu 30068, Taiwan
| | - Jiun-Yu Pang
- Institute of Molecular Medicine and Bioengineering, National Yang Ming Chiao Tung University, Hsinchu 30068, Taiwan
| | - Rajan Deepan Chakravarthy
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu 300093, Taiwan
| | - Hsin-Chieh Lin
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu 300093, Taiwan
| | - Shey-Cherng Tzou
- Institute of Molecular Medicine and Bioengineering, National Yang Ming Chiao Tung University, Hsinchu 30068, Taiwan
| | - Jui-I Chao
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu 30068, Taiwan
- Institute of Molecular Medicine and Bioengineering, National Yang Ming Chiao Tung University, Hsinchu 30068, Taiwan
- Center For Intelligent Drug Systems and Smart Bio-devices, National Yang Ming Chiao Tung University, Hsinchu 30068, Taiwan
| |
Collapse
|
8
|
Regulation of Epstein-Barr Virus Minor Capsid Protein BORF1 by TRIM5α. Int J Mol Sci 2022; 23:ijms232315340. [PMID: 36499678 PMCID: PMC9735550 DOI: 10.3390/ijms232315340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 11/16/2022] [Accepted: 11/28/2022] [Indexed: 12/12/2022] Open
Abstract
TRIM5α is a host anti-retroviral restriction factor that destroys human immunodeficiency virus (HIV) virions and triggers innate immune signaling. TRIM5α also mediates the autophagic degradation of target proteins via TRIMosome formation. We previously showed that TRIM5α promotes Epstein-Barr virus (EBV) Rta ubiquitination and attenuates EBV lytic progression. In this study, we sought to elucidate whether TRIM5α can interact with and induce the degradation of EBV capsid proteins. Glutathione S-transferase (GST) pulldown and immunoprecipitation assays were conducted to identify interacting proteins, and mutants were generated to investigate key binding domains and ubiquitination sites. Results showed that TRIM5α binds directly with BORF1, an EBV capsid protein with a nuclear localization signal (NLS) that enables the transport of EBV capsid proteins into the host nucleus to facilitate capsid assembly. TRIM5α promotes BORF1 ubiquitination, which requires the surface patch region in the TRIM5α PRY/SPRY domain. TRIM5α expression also decreases the stability of BORF1(6KR), a mutant with all lysine residues mutated to arginine. However, chloroquine treatment restores the stability of BORF1(6KR), suggesting that TRIM5α destabilizes BORF1 via direct recognition of its substrate for autophagic degradation. These results reveal novel insights into the antiviral impact of TRIM5α beyond retroviruses.
Collapse
|
9
|
Zhang Y, Liu X, Klionsky DJ, Lu B, Zhong Q. Manipulating autophagic degradation in human diseases: from mechanisms to interventions. LIFE MEDICINE 2022; 1:120-148. [PMID: 39871921 PMCID: PMC11749641 DOI: 10.1093/lifemedi/lnac043] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 10/08/2022] [Indexed: 01/29/2025]
Abstract
Targeted degradation, having emerged as a powerful and promising strategy in drug discovery in the past two decades, has provided a solution for many once undruggable targets involved in various diseases. While earlier targeted degradation tools, as exemplified by PROteolysis-TArgeting Chimera (PROTAC), focused on harnessing the ubiquitin-proteasome system, novel approaches that aim to utilize autophagy, a potent, lysosome-dependent degradation pathway, have also surfaced recently as promising modalities. In this review, we first introduce the mechanisms that establish selectivity in autophagy, which provides the rationales for autophagy-based targeted degradation; we also provide an overview on the panoply of cellular machinery involved in this process, an arsenal that could be potentially harnessed. On this basis, we propose four strategies for designing autophagy-based targeted degraders, including Tagging Targets, Directly Engaging Targets, Initiating Autophagy at Targets, and Phagophore-Tethering to Targets. We introduce the current frontiers in this field, including AUtophagy-TArgeting Chimera (AUTAC), Targeted Protein Autophagy (TPA), AUTOphagy-TArgeting Chimera (AUTOTAC, not to be confused with AUTAC), AuTophagosome TEthering Compound (ATTEC), and other experimental approaches as case studies for each strategy. Finally, we put forward a workflow for generating autophagy-based degraders and some important questions that may guide and inspire the process.
Collapse
Affiliation(s)
- Yiqing Zhang
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai 20025, China
| | - Xiaoxia Liu
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai 20025, China
| | - Daniel J Klionsky
- Department of Molecular, Cellular, and Developmental Biology, and the Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109-2216, USA
| | - Boxun Lu
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Huashan Hospital, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Qing Zhong
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai 20025, China
| |
Collapse
|
10
|
Wang S, Atkinson GRS, Hayes WB. SANA: cross-species prediction of Gene Ontology GO annotations via topological network alignment. NPJ Syst Biol Appl 2022; 8:25. [PMID: 35859153 PMCID: PMC9300714 DOI: 10.1038/s41540-022-00232-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 05/20/2022] [Indexed: 12/31/2022] Open
Abstract
Topological network alignment aims to align two networks node-wise in order to maximize the observed common connection (edge) topology between them. The topological alignment of two protein-protein interaction (PPI) networks should thus expose protein pairs with similar interaction partners allowing, for example, the prediction of common Gene Ontology (GO) terms. Unfortunately, no network alignment algorithm based on topology alone has been able to achieve this aim, though those that include sequence similarity have seen some success. We argue that this failure of topology alone is due to the sparsity and incompleteness of the PPI network data of almost all species, which provides the network topology with a small signal-to-noise ratio that is effectively swamped when sequence information is added to the mix. Here we show that the weak signal can be detected using multiple stochastic samples of "good" topological network alignments, which allows us to observe regions of the two networks that are robustly aligned across multiple samples. The resulting network alignment frequency (NAF) strongly correlates with GO-based Resnik semantic similarity and enables the first successful cross-species predictions of GO terms based on topology-only network alignments. Our best predictions have an AUPR of about 0.4, which is competitive with state-of-the-art algorithms, even when there is no observable sequence similarity and no known homology relationship. While our results provide only a "proof of concept" on existing network data, we hypothesize that predicting GO terms from topology-only network alignments will become increasingly practical as the volume and quality of PPI network data increase.
Collapse
Affiliation(s)
- Siyue Wang
- Department of Computer Science, University of California, Irvine, CA, 92697-3435, USA
| | - Giles R S Atkinson
- Department of Computer Science, University of California, Irvine, CA, 92697-3435, USA
| | - Wayne B Hayes
- Department of Computer Science, University of California, Irvine, CA, 92697-3435, USA.
| |
Collapse
|
11
|
Deretic V, Lazarou M. A guide to membrane atg8ylation and autophagy with reflections on immunity. J Cell Biol 2022; 221:e202203083. [PMID: 35699692 PMCID: PMC9202678 DOI: 10.1083/jcb.202203083] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/16/2022] [Accepted: 05/26/2022] [Indexed: 12/11/2022] Open
Abstract
The process of membrane atg8ylation, defined herein as the conjugation of the ATG8 family of ubiquitin-like proteins to membrane lipids, is beginning to be appreciated in its broader manifestations, mechanisms, and functions. Classically, membrane atg8ylation with LC3B, one of six mammalian ATG8 family proteins, has been viewed as the hallmark of canonical autophagy, entailing the formation of characteristic double membranes in the cytoplasm. However, ATG8s are now well described as being conjugated to single membranes and, most recently, proteins. Here we propose that the atg8ylation is coopted by multiple downstream processes, one of which is canonical autophagy. We elaborate on these biological outputs, which impact metabolism, quality control, and immunity, emphasizing the context of inflammation and immunological effects. In conclusion, we propose that atg8ylation is a modification akin to ubiquitylation, and that it is utilized by different systems participating in membrane stress responses and membrane remodeling activities encompassing autophagy and beyond.
Collapse
Affiliation(s)
- Vojo Deretic
- Autophagy, Inflammation and Metabolism Center of Biochemical Research Excellence, University of New Mexico Health Sciences Center, Albuquerque, NM
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, NM
| | - Michael Lazarou
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
12
|
Kang S, Dai A, Wang H, Ding PH. Interaction Between Autophagy and Porphyromonas gingivalis-Induced Inflammation. Front Cell Infect Microbiol 2022; 12:892610. [PMID: 35846745 PMCID: PMC9283780 DOI: 10.3389/fcimb.2022.892610] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 06/06/2022] [Indexed: 11/13/2022] Open
Abstract
Autophagy is an immune homeostasis process induced by multiple intracellular and extracellular signals. Inflammation is a protective response to harmful stimuli such as pathogen microbial infection and body tissue damage. Porphyromonas gingivalis infection elicits both autophagy and inflammation, and dysregulation of autophagy and inflammation promotes pathology. This review focuses on the interaction between autophagy and inflammation caused by Porphyromonas gingivalis infection, aiming to elaborate on the possible mechanism involved in the interaction.
Collapse
|
13
|
Zhang J, Gan Y, Li H, Yin J, He X, Lin L, Xu S, Fang Z, Kim BW, Gao L, Ding L, Zhang E, Ma X, Li J, Li L, Xu Y, Horne D, Xu R, Yu H, Gu Y, Huang W. Inhibition of the CDK2 and Cyclin A complex leads to autophagic degradation of CDK2 in cancer cells. Nat Commun 2022; 13:2835. [PMID: 35595767 PMCID: PMC9122913 DOI: 10.1038/s41467-022-30264-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 04/23/2022] [Indexed: 12/20/2022] Open
Abstract
Cyclin-dependent kinase 2 (CDK2) complex is significantly over-activated in many cancers. While it makes CDK2 an attractive target for cancer therapy, most inhibitors against CDK2 are ATP competitors that are either nonspecific or highly toxic, and typically fail clinical trials. One alternative approach is to develop non-ATP competitive inhibitors; they disrupt interactions between CDK2 and either its partners or substrates, resulting in specific inhibition of CDK2 activities. In this report, we identify two potential druggable pockets located in the protein-protein interaction interface (PPI) between CDK2 and Cyclin A. To target the potential druggable pockets, we perform a LIVS in silico screening of a library containing 1925 FDA approved drugs. Using this approach, homoharringtonine (HHT) shows high affinity to the PPI and strongly disrupts the interaction between CDK2 and cyclins. Further, we demonstrate that HHT induces autophagic degradation of the CDK2 protein via tripartite motif 21 (Trim21) in cancer cells, which is confirmed in a leukemia mouse model and in human primary leukemia cells. These results thus identify an autophagic degradation mechanism of CDK2 protein and provide a potential avenue towards treating CDK2-dependent cancers. CDK2 can drive the proliferation of cancer cells. Here, the authors screened for a non-ATP competitive inhibitor of the CDK2/cylinA complex and find that Homoharringtonine can disrupt the complex and promote the degradation of CDK2.
Collapse
Affiliation(s)
- Jiawei Zhang
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), Second Affiliated Hospital, School of Medicine, Zhejiang University, 310009, Hangzhou, China.,Molecular and Cellular Biology of Cancer Program & Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes & Metabolism Research Institute, Beckman Research Institute, City of Hope, Duarte, CA, 91010, USA
| | - Yichao Gan
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), Second Affiliated Hospital, School of Medicine, Zhejiang University, 310009, Hangzhou, China.,Institute of Genetics, Zhejiang University and Department of Human Genetics, Zhejiang University School of Medicine, 310058, Hangzhou, Zhejiang, China
| | - Hongzhi Li
- Department of Molecular Medicine, Beckman Research Institute, City of Hope, Duarte, CA, 91010, USA
| | - Jie Yin
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), Second Affiliated Hospital, School of Medicine, Zhejiang University, 310009, Hangzhou, China.,Institute of Genetics, Zhejiang University and Department of Human Genetics, Zhejiang University School of Medicine, 310058, Hangzhou, Zhejiang, China
| | - Xin He
- Division of Hematopoietic Stem Cell & Leukemia Research, Beckman Research Institute, City of Hope, Duarte, CA, 91010, USA
| | - Liming Lin
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), Second Affiliated Hospital, School of Medicine, Zhejiang University, 310009, Hangzhou, China.,Department of Hematology, Second Affiliated Hospital, School of Medicine, Zhejiang University, 310009, Hangzhou, China
| | - Senlin Xu
- Molecular and Cellular Biology of Cancer Program & Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes & Metabolism Research Institute, Beckman Research Institute, City of Hope, Duarte, CA, 91010, USA.,Irell & Manella Graduate School of Biological Sciences, Beckman Research Institute, City of Hope, Duarte, CA, 91010, USA
| | - Zhipeng Fang
- Molecular and Cellular Biology of Cancer Program & Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes & Metabolism Research Institute, Beckman Research Institute, City of Hope, Duarte, CA, 91010, USA
| | - Byung-Wook Kim
- Molecular and Cellular Biology of Cancer Program & Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes & Metabolism Research Institute, Beckman Research Institute, City of Hope, Duarte, CA, 91010, USA
| | - Lina Gao
- Molecular and Cellular Biology of Cancer Program & Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes & Metabolism Research Institute, Beckman Research Institute, City of Hope, Duarte, CA, 91010, USA
| | - Lili Ding
- Molecular and Cellular Biology of Cancer Program & Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes & Metabolism Research Institute, Beckman Research Institute, City of Hope, Duarte, CA, 91010, USA
| | - Eryun Zhang
- Molecular and Cellular Biology of Cancer Program & Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes & Metabolism Research Institute, Beckman Research Institute, City of Hope, Duarte, CA, 91010, USA
| | - Xiaoxiao Ma
- Molecular and Cellular Biology of Cancer Program & Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes & Metabolism Research Institute, Beckman Research Institute, City of Hope, Duarte, CA, 91010, USA
| | - Junfeng Li
- Department of Translational Research & Cellular Therapeutics, Beckman Research Institute of the City of Hope, Duarte, CA, 91010, USA
| | - Ling Li
- Division of Hematopoietic Stem Cell & Leukemia Research, Beckman Research Institute, City of Hope, Duarte, CA, 91010, USA
| | - Yang Xu
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), Second Affiliated Hospital, School of Medicine, Zhejiang University, 310009, Hangzhou, China.,Department of Hematology, Second Affiliated Hospital, School of Medicine, Zhejiang University, 310009, Hangzhou, China
| | - David Horne
- Department of Molecular Medicine, Beckman Research Institute, City of Hope, Duarte, CA, 91010, USA
| | - Rongzhen Xu
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), Second Affiliated Hospital, School of Medicine, Zhejiang University, 310009, Hangzhou, China.,Department of Hematology, Second Affiliated Hospital, School of Medicine, Zhejiang University, 310009, Hangzhou, China
| | - Hua Yu
- Department of Immuno-Oncology, Beckman Research Institute of the City of Hope, Duarte, CA, 91010, USA
| | - Ying Gu
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), Second Affiliated Hospital, School of Medicine, Zhejiang University, 310009, Hangzhou, China. .,Institute of Genetics, Zhejiang University and Department of Human Genetics, Zhejiang University School of Medicine, 310058, Hangzhou, Zhejiang, China. .,Zhejiang Provincial Key Lab of Genetic and Developmental Disorder, 310058, Hangzhou, Zhejiang, China. .,Liangzhu Laboratory, Zhejiang University Medical Center, 311121, Hangzhou, Zhejiang, China.
| | - Wendong Huang
- Molecular and Cellular Biology of Cancer Program & Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes & Metabolism Research Institute, Beckman Research Institute, City of Hope, Duarte, CA, 91010, USA. .,Irell & Manella Graduate School of Biological Sciences, Beckman Research Institute, City of Hope, Duarte, CA, 91010, USA.
| |
Collapse
|
14
|
Fan W, Liu X, Zhang J, Qin L, Du J, Li X, Qian S, Chen H, Qian P. TRIM67 Suppresses TNFalpha-Triggered NF-kB Activation by Competitively Binding Beta-TrCP to IkBa. Front Immunol 2022; 13:793147. [PMID: 35273593 PMCID: PMC8901487 DOI: 10.3389/fimmu.2022.793147] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 01/31/2022] [Indexed: 12/22/2022] Open
Abstract
The transcription factor NF-κB plays an important role in modulation of inflammatory pathways, which are associated with inflammatory diseases, neurodegeneration, apoptosis, immune responses, and cancer. Increasing evidence indicates that TRIM proteins are crucial role in the regulation of NF-κB signaling pathways. In this study, we identified TRIM67 as a negative regulator of TNFα-triggered NF-κB activation. Ectopic expression of TRIM67 significantly represses TNFα-induced NF-κB activation and the expression of pro-inflammatory cytokines TNFα and IL-6. In contrast, Trim67 depletion promotes TNFα-induced expression of TNFα, IL-6, and Mcp-1 in primary mouse embryonic fibroblasts. Mechanistically, we found that TRIM67 competitively binding β-transducin repeat-containing protein (β-TrCP) to IκBα results inhibition of β-TrCP-mediated degradation of IκBα, which finally caused inhibition of TNFα-triggered NF-κB activation. In summary, our findings revealed that TRIM67 function as a novel negative regulator of NF-κB signaling pathway, implying TRIM67 might exert an important role in regulation of inflammation disease and pathogen infection caused inflammation.
Collapse
Affiliation(s)
- Wenchun Fan
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,Division of Animal Infectious Diseases, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Xueyan Liu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,Division of Animal Infectious Diseases, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Jinyan Zhang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,Division of Animal Infectious Diseases, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Liuxing Qin
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,Division of Animal Infectious Diseases, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Jian Du
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,Division of Animal Infectious Diseases, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Xiangmin Li
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,Division of Animal Infectious Diseases, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China
| | - Suhong Qian
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,Division of Animal Infectious Diseases, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Huanchun Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,Division of Animal Infectious Diseases, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China
| | - Ping Qian
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,Division of Animal Infectious Diseases, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
15
|
Wang XY, Mao HW, Guan XH, Huang QM, Yu ZP, Wu J, Tan HL, Zhang F, Huang X, Deng KY, Xin HB. TRIM65 Promotes Cervical Cancer Through Selectively Degrading p53-Mediated Inhibition of Autophagy and Apoptosis. Front Oncol 2022; 12:853935. [PMID: 35402260 PMCID: PMC8987532 DOI: 10.3389/fonc.2022.853935] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 03/01/2022] [Indexed: 12/25/2022] Open
Abstract
Tripartite motif containing 65 (TRIM65) is an E3 ubiquitin ligase that has been implicated in a variety of cellular processes as well as tumor progression, but its biological role and the underlying mechanism in cervical cancer is unclear. Here, we reported that TRIM65 expression in human cervical cancer tissues was significantly higher than that in the adjacent normal cervical tissues, and TRIM65 knockdown enhanced autophagic flux and cell apoptosis, but not cell cycle, to dramatically inhibit the proliferation and migration of cervical cancer cells. Furthermore, our experiments showed that TRIM65 exhibited oncogenic activities via directly targeting p53, a tumor suppressor and a common upsteam regulator between autophagy and apoptosis, promoting ubiquitination and proteasomal degradation of p53. Taken together, our studies demonstrated that TRIM65 knockdown promotes cervical cancer cell death through enhancing autophagy and apoptosis, suggesting that TRIM65 may be a potential therapeutic target for cervical cancer clinically.
Collapse
Affiliation(s)
- Xiao-Yu Wang
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, China
- College of Life Science, Nanchang University, Nanchang, China
- Institute of Geriatrics, Jiangxi Provincial People’s Hospital, Nanchang, China
| | - Hai-Wei Mao
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, China
- Outpatient Department, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xiao-Hui Guan
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, China
| | - Qi-Ming Huang
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, China
- College of Life Science, Nanchang University, Nanchang, China
| | - Zhen-Ping Yu
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, China
- College of Life Science, Nanchang University, Nanchang, China
| | - Jie Wu
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, China
- College of Life Science, Nanchang University, Nanchang, China
| | - Hui-Lan Tan
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, China
- College of Life Science, Nanchang University, Nanchang, China
| | - Feng Zhang
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, China
| | - Xuan Huang
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, China
| | - Ke-Yu Deng
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, China
- College of Life Science, Nanchang University, Nanchang, China
- *Correspondence: Hong-Bo Xin, ; Ke-Yu Deng,
| | - Hong-Bo Xin
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, China
- College of Life Science, Nanchang University, Nanchang, China
- *Correspondence: Hong-Bo Xin, ; Ke-Yu Deng,
| |
Collapse
|
16
|
Polani S, Dean M, Lichter-Peled A, Hendrickson S, Tsang S, Fang X, Feng Y, Qiao W, Avni G, Kahila Bar-Gal G. Sequence Variant in the TRIM39-RPP21 Gene Readthrough is Shared Across a Cohort of Arabian Foals Diagnosed with Juvenile Idiopathic Epilepsy. JOURNAL OF GENETIC MUTATION DISORDERS 2022; 1:103. [PMID: 35465405 PMCID: PMC9031527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Juvenile idiopathic epilepsy (JIE) is a self-limiting neurological disorder with a suspected genetic predisposition affecting young Arabian foals of the Egyptian lineage. The condition is characterized by tonic-clonic seizures with intermittent post-ictal blindness, in which most incidents are sporadic and unrecognized. This study aimed to identify genetic components shared across a local cohort of Arabian foals diagnosed with JIE via a combined whole genome and targeted resequencing approach: Initial whole genome comparisons between a small cohort of nine diagnosed foals (cases) and 27 controls from other horse breeds identified variants uniquely shared amongst the case cohort. Further validation via targeted resequencing of these variants, that pertain to non-intergenic regions, on additional eleven case individuals revealed a single 19bp deletion coupled with a triple-C insertion (Δ19InsCCC) within the TRIM39-RPP21 gene readthrough that was uniquely shared across all case individuals, and absent from three additional Arabian controls. Furthermore, we have confirmed recent findings refuting potential linkage between JIE and other inherited diseases in the Arabian lineage, and refuted the potential linkage between JIE and genes predisposing a similar disorder in human newborns. This is the first study to report a genetic variant to be shared in a sub-population cohort of Arabian foals diagnosed with JIE. Further evaluation of the sensitivity and specificity of the Δ19InsCCC allele within additional cohorts of the Arabian horse is warranted in order to validate its credibility as a marker for JIE, and to ascertain whether it has been introduced into other horse breeds by Arabian ancestry.
Collapse
Affiliation(s)
- S Polani
- Koret School of Veterinary Medicine, The Robert H. Smith Faculty of Agriculture, Food and Environmental Sciences, The Hebrew University of Jerusalem, Rehovot, Israel
| | - M Dean
- National Cancer Institute, Division of Cancer Epidemiology & Genetics, Laboratory of Translational Genomics, USA
| | - A Lichter-Peled
- Koret School of Veterinary Medicine, The Robert H. Smith Faculty of Agriculture, Food and Environmental Sciences, The Hebrew University of Jerusalem, Rehovot, Israel
| | - S Hendrickson
- Department of Biology, Shepherd University, Shepherdstown, USA
| | | | - X Fang
- BGI-Shenzhen, Shenzhen, China
| | - Y Feng
- BGI-Shenzhen, Shenzhen, China
| | - W Qiao
- BGI-Shenzhen, Shenzhen, China
| | - G Avni
- Medisoos Equine Clinic, Kibutz Magal, Israel
| | - G Kahila Bar-Gal
- Koret School of Veterinary Medicine, The Robert H. Smith Faculty of Agriculture, Food and Environmental Sciences, The Hebrew University of Jerusalem, Rehovot, Israel
| |
Collapse
|
17
|
Roy M, Singh R. TRIMs: selective recruitment at different steps of the NF-κB pathway-determinant of activation or resolution of inflammation. Cell Mol Life Sci 2021; 78:6069-6086. [PMID: 34283248 PMCID: PMC11072854 DOI: 10.1007/s00018-021-03900-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 07/04/2021] [Accepted: 07/13/2021] [Indexed: 12/25/2022]
Abstract
TNF-α-induced NF-κB pathway is an essential component of innate and adaptive immune pathway, and it is tightly regulated by various post-translational modifications including ubiquitination. Oscillations in NF-κB activation and temporal gene expression are emerging as critical determinants of inflammatory response, however, the regulators of unique outcomes in different patho-physiological conditions are not well understood. Tripartite Motif-containing proteins (TRIMs) are RING domain-containing E3 ligases involved in the regulation of cellular homeostasis, metabolism, cell death, inflammation, and host defence. Emerging reports suggest that TRIMs are recruited at different steps of TNF-α-induced NF-κB pathway and modulate via their E3 ligase activity. TRIMs show synergy and antagonism in the regulation of the NF-κB pathway and also regulate it in a feedback manner. TRIMs also regulate pattern recognition receptors (PRRs) mediated inflammatory pathways and may have evolved to directly regulate a specific arm of immune signalling. The review emphasizes TRIM-mediated ubiquitination and modulation of TNF-α-regulated temporal and NF-κB signaling and its possible impact on unique transcriptional and functional outcomes.
Collapse
Affiliation(s)
- Milton Roy
- Department of Biochemistry, Faculty of Science, The MS University of Baroda, Vadodara, Gujarat, 390002, India
- Institute for Cell Engineering, The Johns Hopkins University School of Medicine, 733 North Broadway, MRB 731, Baltimore, MD, 21205, USA
| | - Rajesh Singh
- Department of Biochemistry, Faculty of Science, The MS University of Baroda, Vadodara, Gujarat, 390002, India.
| |
Collapse
|
18
|
Deretic V, Kroemer G. Autophagy in metabolism and quality control: opposing, complementary or interlinked functions? Autophagy 2021; 18:283-292. [PMID: 34036900 DOI: 10.1080/15548627.2021.1933742] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The sensu stricto autophagy, macroautophagy, is considered to be both a metabolic process as well as a bona fide quality control process. The question as to how these two aspects of autophagy are coordinated and whether and why they overlap has implications for fundamental aspects, pathophysiological effects, and pharmacological manipulation of autophagy. At the top of the regulatory cascade controlling autophagy are master regulators of cellular metabolism, such as MTOR and AMPK, which render the system responsive to amino acid and glucose starvation. At the other end exists a variety of specific autophagy receptors, engaged in the selective removal of a diverse array of intracellular targets, from protein aggregates/condensates to whole organelles such as mitochondria, ER, peroxisomes, lysosomes and lipid droplets. Are the roles of autophagy in metabolism and quality control mutually exclusive, independent or interlocked? How are priorities established? What are the molecular links between both phenomena? This article will provide a starting point to formulate these questions, the responses to which should be taken into consideration in future autophagy-based interventions.
Collapse
Affiliation(s)
- Vojo Deretic
- Autophagy Inflammation and Metabolism Center of Biomedical Research Excellence, University of New Mexico Health Sciences Center, Albuquerque, NM, USA.,Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Guido Kroemer
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France.,Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France.,Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France.,Suzhou Institute for Systems Medicine, Chinese Academy of Medical Sciences, Suzhou, China.,Karolinska Institute, Department of Women's and Children's Health, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
19
|
Abstract
Selective autophagy is the lysosomal degradation of specific intracellular components sequestered into autophagosomes, late endosomes, or lysosomes through the activity of selective autophagy receptors (SARs). SARs interact with autophagy-related (ATG)8 family proteins via sequence motifs called LC3-interacting region (LIR) motifs in vertebrates and Atg8-interacting motifs (AIMs) in yeast and plants. SARs can be divided into two broad groups: soluble or membrane bound. Cargo or substrate selection may be independent or dependent of ubiquitin labeling of the cargo. In this review, we discuss mechanisms of mammalian selective autophagy with a focus on the unifying principles employed in substrate recognition, interaction with the forming autophagosome via LIR-ATG8 interactions, and the recruitment of core autophagy components for efficient autophagosome formation on the substrate. Expected final online publication date for the Annual Review of Cell and Developmental Biology, Volume 37 is October 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Trond Lamark
- Molecular Cancer Research Group, Department of Medical Biology, University of Tromsø - The Arctic University of Norway, 9037 Tromsø, Norway; ,
| | - Terje Johansen
- Molecular Cancer Research Group, Department of Medical Biology, University of Tromsø - The Arctic University of Norway, 9037 Tromsø, Norway; ,
| |
Collapse
|
20
|
Gubas A, Dikic I. A guide to the regulation of selective autophagy receptors. FEBS J 2021; 289:75-89. [PMID: 33730405 DOI: 10.1111/febs.15824] [Citation(s) in RCA: 114] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 03/04/2021] [Accepted: 03/16/2021] [Indexed: 12/13/2022]
Abstract
Autophagy is a highly conserved catabolic process cells use to maintain their homeostasis by degrading misfolded, damaged and excessive proteins, nonfunctional organelles, foreign pathogens and other cellular components. Hence, autophagy can be nonselective, where bulky portions of the cytoplasm are degraded upon stress, or a highly selective process, where preselected cellular components are degraded. To distinguish between different cellular components, autophagy employs selective autophagy receptors, which will link the cargo to the autophagy machinery, thereby sequestering it in the autophagosome for its subsequent degradation in the lysosome. Autophagy receptors undergo post-translational and structural modifications to fulfil their role in autophagy, or upon executing their role, for their own degradation. We highlight the four most prominent protein modifications - phosphorylation, ubiquitination, acetylation and oligomerisation - that are essential for autophagy receptor recruitment, function and turnover. Understanding the regulation of selective autophagy receptors will provide deeper insights into the pathway and open up potential therapeutic avenues.
Collapse
Affiliation(s)
- Andrea Gubas
- Institute of Biochemistry II, Faculty of Medicine, Goethe University Frankfurt, Germany
| | - Ivan Dikic
- Institute of Biochemistry II, Faculty of Medicine, Goethe University Frankfurt, Germany.,Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Germany.,Max Planck Institute of Biophysics, Frankfurt, Germany
| |
Collapse
|
21
|
Deretic V. Autophagy in inflammation, infection, and immunometabolism. Immunity 2021; 54:437-453. [PMID: 33691134 PMCID: PMC8026106 DOI: 10.1016/j.immuni.2021.01.018] [Citation(s) in RCA: 415] [Impact Index Per Article: 103.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/05/2020] [Accepted: 01/25/2021] [Indexed: 12/21/2022]
Abstract
Autophagy is a quality-control, metabolic, and innate immunity process. Normative autophagy affects many cell types, including hematopoietic as well as non-hematopoietic, and promotes health in model organisms and humans. When autophagy is perturbed, this has repercussions on diseases with inflammatory components, including infections, autoimmunity and cancer, metabolic disorders, neurodegeneration, and cardiovascular and liver diseases. As a cytoplasmic degradative pathway, autophagy protects from exogenous hazards, including infection, and from endogenous sources of inflammation, including molecular aggregates and damaged organelles. The focus of this review is on the role of autophagy in inflammation, including type I interferon responses and inflammasome outputs, from molecules to immune cells. A special emphasis is given to the intersections of autophagy with innate immunity, immunometabolism, and functions of organelles such as mitochondria and lysosomes that act as innate immunity and immunometabolic signaling platforms.
Collapse
Affiliation(s)
- Vojo Deretic
- Autophagy Inflammation and Metabolism (AIM) Center of Biomedical Research Excellence, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA; Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA.
| |
Collapse
|
22
|
Human TRIM5α: Autophagy Connects Cell-Intrinsic HIV-1 Restriction and Innate Immune Sensor Functioning. Viruses 2021; 13:v13020320. [PMID: 33669846 PMCID: PMC7923229 DOI: 10.3390/v13020320] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 02/12/2021] [Accepted: 02/13/2021] [Indexed: 12/12/2022] Open
Abstract
Human immunodeficiency virus-1 (HIV-1) persists as a global health concern, with an incidence rate of approximately 2 million, and estimated global prevalence of over 35 million. Combination antiretroviral treatment is highly effective, but HIV-1 patients that have been treated still suffer from chronic inflammation and residual viral replication. It is therefore paramount to identify therapeutically efficacious strategies to eradicate viral reservoirs and ultimately develop a cure for HIV-1. It has been long accepted that the restriction factor tripartite motif protein 5 isoform alpha (TRIM5α) restricts HIV-1 infection in a species-specific manner, with rhesus macaque TRIM5α strongly restricting HIV-1, and human TRIM5α having a minimal restriction capacity. However, several recent studies underscore human TRIM5α as a cell-dependent HIV-1 restriction factor. Here, we present an overview of the latest research on human TRIM5α and propose a novel conceptualization of TRIM5α as a restriction factor with a varied portfolio of antiviral functions, including mediating HIV-1 degradation through autophagy- and proteasome-mediated mechanisms, and acting as a viral sensor and effector of antiviral signaling. We have also expanded on the protective antiviral roles of autophagy and outline the therapeutic potential of autophagy modulation to intervene in chronic HIV-1 infection.
Collapse
|
23
|
Eberhardt W, Haeussler K, Nasrullah U, Pfeilschifter J. Multifaceted Roles of TRIM Proteins in Colorectal Carcinoma. Int J Mol Sci 2020; 21:ijms21207532. [PMID: 33066016 PMCID: PMC7590211 DOI: 10.3390/ijms21207532] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 10/06/2020] [Accepted: 10/07/2020] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer (CRC) is one of the most frequently diagnosed tumor in humans and one of the most common causes of cancer-related death worldwide. The pathogenesis of CRC follows a multistage process which together with somatic gene mutations is mainly attributed to the dysregulation of signaling pathways critically involved in the maintenance of homeostasis of epithelial integrity in the intestine. A growing number of studies has highlighted the critical impact of members of the tripartite motif (TRIM) protein family on most types of human malignancies including CRC. In accordance, abundant expression of many TRIM proteins has been observed in CRC tissues and is frequently correlating with poor survival of patients. Notably, some TRIM members can act as tumor suppressors depending on the context and the type of cancer which has been assessed. Mechanistically, most cancer-related TRIMs have a critical impact on cell cycle control, apoptosis, epithelial–mesenchymal transition (EMT), metastasis, and inflammation mainly through directly interfering with diverse oncogenic signaling pathways. In addition, some recent publications have emphasized the emerging role of some TRIM members to act as transcription factors and RNA-stabilizing factors thus adding a further level of complexity to the pleiotropic biological activities of TRIM proteins. The current review focuses on oncogenic signaling processes targeted by different TRIMs and their particular role in the development of CRC. A better understanding of the crosstalk of TRIMs with these signaling pathways relevant for CRC development is an important prerequisite for the validation of TRIM proteins as novel biomarkers and as potential targets of future therapies for CRC.
Collapse
|
24
|
Pradel B, Robert-Hebmann V, Espert L. Regulation of Innate Immune Responses by Autophagy: A Goldmine for Viruses. Front Immunol 2020; 11:578038. [PMID: 33123162 PMCID: PMC7573147 DOI: 10.3389/fimmu.2020.578038] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 09/04/2020] [Indexed: 12/19/2022] Open
Abstract
Autophagy is a lysosomal degradation pathway for intracellular components and is highly conserved across eukaryotes. This process is a key player in innate immunity and its activation has anti-microbial effects by directly targeting pathogens and also by regulating innate immune responses. Autophagy dysfunction is often associated with inflammatory diseases. Many studies have shown that it can also play a role in the control of innate immunity by preventing exacerbated inflammation and its harmful effects toward the host. The arms race between hosts and pathogens has led some viruses to evolve strategies that enable them to benefit from autophagy, either by directly hijacking the autophagy pathway for their life cycle, or by using its regulatory functions in innate immunity. The control of viral replication and spread involves the production of anti-viral cytokines. Controlling the signals that lead to production of these cytokines is a perfect way for viruses to escape from innate immune responses and establish successful infection. Published reports related to this last viral strategy have extensively grown in recent years. In this review we describe several links between autophagy and regulation of innate immune responses and we provide an overview of how viruses exploit these links for their own benefit.
Collapse
Affiliation(s)
- Baptiste Pradel
- IRIM, University of Montpellier, CNRS UMR 9004, Montpellier, France
| | | | - Lucile Espert
- IRIM, University of Montpellier, CNRS UMR 9004, Montpellier, France
| |
Collapse
|
25
|
TRIM Proteins and Their Roles in the Influenza Virus Life Cycle. Microorganisms 2020; 8:microorganisms8091424. [PMID: 32947942 PMCID: PMC7565951 DOI: 10.3390/microorganisms8091424] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 09/12/2020] [Accepted: 09/15/2020] [Indexed: 12/11/2022] Open
Abstract
The ubiquitin-proteasome system (UPS) has been recognized for regulating fundamental cellular processes, followed by induction of proteasomal degradation of target proteins, and triggers multiple signaling pathways that are crucial for numerous aspects of cellular physiology. Especially tripartite motif (TRIM) proteins, well-known E3 ubiquitin ligases, emerge as having critical roles in several antiviral signaling pathways against varying viral infections. Here we highlight recent advances in the study of antiviral roles of TRIM proteins toward influenza virus infection in terms of the modulation of pathogen recognition receptor (PRR)-mediated innate immune sensing, direct obstruction of influenza viral propagation, and participation in virus-induced autophagy.
Collapse
|
26
|
Stitham J, Rodriguez-Velez A, Zhang X, Jeong SJ, Razani B. Inflammasomes: a preclinical assessment of targeting in atherosclerosis. Expert Opin Ther Targets 2020; 24:825-844. [PMID: 32757967 PMCID: PMC7554266 DOI: 10.1080/14728222.2020.1795831] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 07/12/2020] [Indexed: 01/07/2023]
Abstract
INTRODUCTION Inflammasomes are central to atherosclerotic vascular dysfunction with regulatory effects on inflammation, immune modulation, and lipid metabolism. The NLRP3 inflammasome is a critical catalyst for atherogenesis thus highlighting its importance in understanding the pathophysiology of atherosclerosis and for the identification of novel therapeutic targets and biomarkers for the treatment of cardiovascular disease. AREAS COVERED This review includes an overview of macrophage lipid metabolism and the role of NLRP3 inflammasome activity in cardiovascular inflammation and atherosclerosis. We highlight key activators, signal transducers and major regulatory components that are being considered as putative therapeutic targets for inhibition of NLRP3-mediated cardiovascular inflammation and atherosclerosis. EXPERT OPINION NLRP3 inflammasome activity lies at the nexus between inflammation and cholesterol metabolism; it offers unique opportunities for understanding atherosclerotic pathophysiology and identifying novel modes of treatment. As such, a host of NLRP3 signaling cascade components have been identified as putative targets for drug development. We catalog these current discoveries in therapeutic targeting of the NLRP3 inflammasome and, utilizing the CANTOS trial as the translational (bench-to-bedside) archetype, we examine the complexities, challenges, and ultimate goals facing the field of atherosclerosis research.
Collapse
Affiliation(s)
- Jeremiah Stitham
- Department of Medicine, Division of Endocrinology, Metabolism, and Lipid Research, Washington University School of Medicine, St. Louis, MO
| | - Astrid Rodriguez-Velez
- Department of Medicine, Cardiovascular Division, Washington University School of Medicine, St. Louis, MO
| | - Xiangyu Zhang
- Department of Medicine, Cardiovascular Division, Washington University School of Medicine, St. Louis, MO
- John Cochran VA Medical Center, St. Louis, MO
| | - Se-Jin Jeong
- Department of Medicine, Cardiovascular Division, Washington University School of Medicine, St. Louis, MO
- John Cochran VA Medical Center, St. Louis, MO
| | - Babak Razani
- Department of Medicine, Cardiovascular Division, Washington University School of Medicine, St. Louis, MO
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO
- John Cochran VA Medical Center, St. Louis, MO
| |
Collapse
|
27
|
Raj EN, Lin Y, Chen C, Liu K, Chao J. Selective Autophagy Pathway of Nanoparticles and Nanodrugs: Drug Delivery and Pathophysiological Effects. ADVANCED THERAPEUTICS 2020. [DOI: 10.1002/adtp.202000085] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Emmanuel Naveen Raj
- Institute of Molecular Medicine and Bioengineering National Chiao Tung University Hsinchu 30068 Taiwan
- Department of Biological Science and Technology National Chiao Tung University Hsinchu 30068 Taiwan
| | - Yu‐Wei Lin
- Department of Biological Science and Technology National Chiao Tung University Hsinchu 30068 Taiwan
| | - Chien‐Hung Chen
- Department of Biological Science and Technology National Chiao Tung University Hsinchu 30068 Taiwan
| | - Kuang‐Kai Liu
- Department of Biological Science and Technology National Chiao Tung University Hsinchu 30068 Taiwan
| | - Jui‐I Chao
- Institute of Molecular Medicine and Bioengineering National Chiao Tung University Hsinchu 30068 Taiwan
- Department of Biological Science and Technology National Chiao Tung University Hsinchu 30068 Taiwan
- Center For Intelligent Drug Systems and Smart Bio‐devices National Chiao Tung University Hsinchu 30068 Taiwan
| |
Collapse
|
28
|
Mandell MA, Saha B, Thompson TA. The Tripartite Nexus: Autophagy, Cancer, and Tripartite Motif-Containing Protein Family Members. Front Pharmacol 2020; 11:308. [PMID: 32226386 PMCID: PMC7081753 DOI: 10.3389/fphar.2020.00308] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 03/02/2020] [Indexed: 12/12/2022] Open
Abstract
Autophagy is a cellular degradative process that has multiple important actions in cancer. Autophagy modulation is under consideration as a promising new approach to cancer therapy. However, complete autophagy dysregulation is likely to have substantial undesirable side effects. Thus, more targeted approaches to autophagy modulation may prove clinically beneficial. One potential avenue to achieving this goal is to focus on the actions of tripartite motif-containing protein family members (TRIMs). TRIMs have key roles in an array of cellular processes, and their dysregulation has been extensively linked to cancer risk and prognosis. As detailed here, emerging data shows that TRIMs can play important yet context-dependent roles in controlling autophagy and in the selective targeting of autophagic substrates. This review covers how the autophagy-related actions of TRIM proteins contribute to cancer and the possibility of targeting TRIM-directed autophagy in cancer therapy.
Collapse
Affiliation(s)
- Michael A Mandell
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, NM, United States.,Autophagy, Inflammation and Metabolism Center of Biomedical Research Excellence, University of New Mexico Health Sciences Center, Albuquerque, NM, United States
| | - Bhaskar Saha
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, NM, United States
| | - Todd A Thompson
- Autophagy, Inflammation and Metabolism Center of Biomedical Research Excellence, University of New Mexico Health Sciences Center, Albuquerque, NM, United States.,Department of Pharmaceutical Sciences, University of New Mexico College of Pharmacy, Albuquerque, NM, United States
| |
Collapse
|
29
|
Turco E, Fracchiolla D, Martens S. Recruitment and Activation of the ULK1/Atg1 Kinase Complex in Selective Autophagy. J Mol Biol 2020; 432:123-134. [PMID: 31351898 PMCID: PMC6971721 DOI: 10.1016/j.jmb.2019.07.027] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 07/19/2019] [Accepted: 07/21/2019] [Indexed: 01/26/2023]
Abstract
Autophagy is a major cellular degradation pathway, which mediates the delivery of cytoplasmic cargo material into lysosomes. This is achieved by the specific sequestration of the cargo within double-membrane vesicles, the autophagosomes, which form de novo around this material. Autophagosome formation requires the action of a conserved set of factors, which act in hierarchical manner. The ULK1/Atg1 kinase complex is one of the most upstream acting components of the autophagy machinery. Here we discuss recent insights into the mechanisms of ULK1/Atg1 recruitment and activation at the cargo during selective autophagy. In particular, we will focus on the role of cargo receptors such as p62 and NDP52 during this process and discuss the emerging concept that cargo receptors act upstream of the autophagy machinery during cargo-induced selective autophagy.
Collapse
Affiliation(s)
- Eleonora Turco
- Department of Biochemistry and Cell Biology, Max Perutz Labs, University of Vienna, Vienna BioCenter, Dr. Bohr-Gasse 9/5, 1030 Vienna, Austria.
| | - Dorotea Fracchiolla
- Department of Biochemistry and Cell Biology, Max Perutz Labs, University of Vienna, Vienna BioCenter, Dr. Bohr-Gasse 9/5, 1030 Vienna, Austria.
| | - Sascha Martens
- Department of Biochemistry and Cell Biology, Max Perutz Labs, University of Vienna, Vienna BioCenter, Dr. Bohr-Gasse 9/5, 1030 Vienna, Austria.
| |
Collapse
|
30
|
Johansen T, Lamark T. Selective Autophagy: ATG8 Family Proteins, LIR Motifs and Cargo Receptors. J Mol Biol 2020; 432:80-103. [DOI: 10.1016/j.jmb.2019.07.016] [Citation(s) in RCA: 203] [Impact Index Per Article: 40.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 07/05/2019] [Accepted: 07/05/2019] [Indexed: 12/21/2022]
|
31
|
Yang W, Gu Z, Zhang H, Hu H. To TRIM the Immunity: From Innate to Adaptive Immunity. Front Immunol 2020; 11:02157. [PMID: 33117334 PMCID: PMC7578260 DOI: 10.3389/fimmu.2020.02157] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 08/07/2020] [Indexed: 02/05/2023] Open
Abstract
The tripartite motif (TRIM) proteins have been intensively studied as essential modulators in various biological processes, especially in regulating a wide range of signaling pathways involved in immune responses. Most TRIM proteins have E3 ubiquitin ligase activity, mediating polyubiquitination of target proteins. Emerging evidence demonstrates that TRIM proteins play important roles in innate immunity by regulating pattern recognition receptors, vital adaptor proteins, kinases, and transcription factors in innate immune signaling pathways. Additionally, the critical roles of TRIM proteins in adaptive immunity, especially in T cell development and activation, are increasingly appreciated. In this review, we aim to summarize the studies on TRIMs in both innate and adaptive immunity, focusing on their E3 ubiquitin ligase functions in pattern recognition receptor signaling pathways and T cell functions, shedding light on the developing new strategies for modulating innate and adaptive immune responses against invading pathogens and avoiding autoimmunity.
Collapse
Affiliation(s)
| | | | | | - Hongbo Hu
- *Correspondence: Huiyuan Zhang, ; Hongbo Hu,
| |
Collapse
|
32
|
Lassot I, Mora S, Lesage S, Zieba BA, Coque E, Condroyer C, Bossowski JP, Mojsa B, Marelli C, Soulet C, Tesson C, Carballo-Carbajal I, Laguna A, Mangone G, Vila M, Brice A, Desagher S. The E3 Ubiquitin Ligases TRIM17 and TRIM41 Modulate α-Synuclein Expression by Regulating ZSCAN21. Cell Rep 2019; 25:2484-2496.e9. [PMID: 30485814 DOI: 10.1016/j.celrep.2018.11.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 10/01/2018] [Accepted: 10/30/2018] [Indexed: 01/06/2023] Open
Abstract
Although accumulating data indicate that increased α-synuclein expression is crucial for Parkinson disease (PD), mechanisms regulating the transcription of its gene, SNCA, are largely unknown. Here, we describe a pathway regulating α-synuclein expression. Our data show that ZSCAN21 stimulates SNCA transcription in neuronal cells and that TRIM41 is an E3 ubiquitin ligase for ZSCAN21. In contrast, TRIM17 decreases the TRIM41-mediated degradation of ZSCAN21. Silencing of ZSCAN21 and TRIM17 consistently reduces SNCA expression, whereas TRIM41 knockdown increases it. The mRNA levels of TRIM17, ZSCAN21, and SNCA are simultaneously increased in the midbrains of mice following MPTP treatment. In addition, rare genetic variants in ZSCAN21, TRIM17, and TRIM41 genes occur in patients with familial forms of PD. Expression of variants in ZSCAN21 and TRIM41 genes results in the stabilization of the ZSCAN21 protein. Our data thus suggest that deregulation of the TRIM17/TRIM41/ZSCAN21 pathway may be involved in the pathogenesis of PD.
Collapse
Affiliation(s)
- Iréna Lassot
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France.
| | - Stéphan Mora
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France
| | - Suzanne Lesage
- Sorbonne Universités, UPMC Université de Paris 06, UMR S 1127, Institut du Cerveau et de la Moelle épinière (ICM), Paris, France; INSERM U 1127, CNRS UMR 7225, AP-HP, Pitié-Salpêtrière Hospital, Paris, France
| | - Barbara A Zieba
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France
| | - Emmanuelle Coque
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France
| | - Christel Condroyer
- Sorbonne Universités, UPMC Université de Paris 06, UMR S 1127, Institut du Cerveau et de la Moelle épinière (ICM), Paris, France; INSERM U 1127, CNRS UMR 7225, AP-HP, Pitié-Salpêtrière Hospital, Paris, France
| | - Jozef Piotr Bossowski
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France
| | - Barbara Mojsa
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France
| | - Cecilia Marelli
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France
| | - Caroline Soulet
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France
| | - Christelle Tesson
- Sorbonne Universités, UPMC Université de Paris 06, UMR S 1127, Institut du Cerveau et de la Moelle épinière (ICM), Paris, France; INSERM U 1127, CNRS UMR 7225, AP-HP, Pitié-Salpêtrière Hospital, Paris, France
| | - Iria Carballo-Carbajal
- Neurodegenerative Diseases Research Group, Vall d'Hebron Research Institute (VHIR)-Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), 08035 Barcelona, Spain
| | - Ariadna Laguna
- Neurodegenerative Diseases Research Group, Vall d'Hebron Research Institute (VHIR)-Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), 08035 Barcelona, Spain
| | - Graziella Mangone
- Sorbonne Universités, UPMC Université de Paris 06, UMR S 1127, Institut du Cerveau et de la Moelle épinière (ICM), Paris, France; INSERM U 1127, CNRS UMR 7225, AP-HP, Pitié-Salpêtrière Hospital, Paris, France
| | - Miquel Vila
- Neurodegenerative Diseases Research Group, Vall d'Hebron Research Institute (VHIR)-Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), 08035 Barcelona, Spain; Department of Biochemistry and Molecular Biology, Autonomous University of Barcelona, 08193 Barcelona, Spain; Catalan Institution for Research and Advanced Studies (ICREA), 08010 Barcelona, Spain
| | - Alexis Brice
- Sorbonne Universités, UPMC Université de Paris 06, UMR S 1127, Institut du Cerveau et de la Moelle épinière (ICM), Paris, France; INSERM U 1127, CNRS UMR 7225, AP-HP, Pitié-Salpêtrière Hospital, Paris, France
| | - Solange Desagher
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France
| |
Collapse
|
33
|
Galectin-3 Coordinates a Cellular System for Lysosomal Repair and Removal. Dev Cell 2019; 52:69-87.e8. [PMID: 31813797 DOI: 10.1016/j.devcel.2019.10.025] [Citation(s) in RCA: 216] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 07/13/2019] [Accepted: 10/25/2019] [Indexed: 12/14/2022]
Abstract
Endomembrane damage elicits homeostatic responses including ESCRT-dependent membrane repair and autophagic removal of damaged organelles. Previous studies have suggested that these systems may act separately. Here, we show that galectin-3 (Gal3), a β-galactoside-binding cytosolic lectin, unifies and coordinates ESCRT and autophagy responses to lysosomal damage. Gal3 and its capacity to recognize damage-exposed glycans were required for efficient recruitment of the ESCRT component ALIX during lysosomal damage. Both Gal3 and ALIX were required for restoration of lysosomal function. Gal3 promoted interactions between ALIX and the downstream ESCRT-III effector CHMP4 during lysosomal repair. At later time points following lysosomal injury, Gal3 controlled autophagic responses. When this failed, as in Gal3 knockout cells, lysosomal replacement program took over through TFEB. Manifestations of this staged response, which includes membrane repair, removal, and replacement, were detected in model systems of lysosomal damage inflicted by proteopathic tau and during phagosome parasitism by Mycobacterium tuberculosis.
Collapse
|
34
|
Overå KS, Garcia-Garcia J, Bhujabal Z, Jain A, Øvervatn A, Larsen KB, Deretic V, Johansen T, Lamark T, Sjøttem E. TRIM32, but not its muscular dystrophy-associated mutant, positively regulates and is targeted to autophagic degradation by p62/SQSTM1. J Cell Sci 2019; 132:jcs.236596. [PMID: 31685529 DOI: 10.1242/jcs.236596] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 10/28/2019] [Indexed: 12/16/2022] Open
Abstract
The tripartite motif (TRIM) proteins constitute a family of ubiquitin E3 ligases involved in a multitude of cellular processes, including protein homeostasis and autophagy. TRIM32 is characterized by six protein-protein interaction domains termed NHL, various point mutations in which are associated with limb-girdle-muscular dystrophy 2H (LGMD2H). Here, we show that TRIM32 is an autophagy substrate. Lysosomal degradation of TRIM32 was dependent on ATG7 and blocked by knockout of the five autophagy receptors p62 (also known as SQSTM1), NBR1, NDP52 (also known as CALCOCO2), TAX1BP1 and OPTN, pointing towards degradation by selective autophagy. p62 directed TRIM32 to lysosomal degradation, while TRIM32 mono-ubiquitylated p62 on lysine residues involved in regulation of p62 activity. Loss of TRIM32 impaired p62 sequestration, while reintroduction of TRIM32 facilitated p62 dot formation and its autophagic degradation. A TRIM32LGMD2H disease mutant was unable to undergo autophagic degradation and to mono-ubiquitylate p62, and its reintroduction into the TRIM32-knockout cells did not affect p62 dot formation. In light of the important roles of autophagy and p62 in muscle cell proteostasis, our results point towards impaired TRIM32-mediated regulation of p62 activity as a pathological mechanisms in LGMD2H.
Collapse
Affiliation(s)
- Katrine Stange Overå
- Molecular Cancer Research Group, Department of Medical Biology, University of Tromsø -The Arctic University of Norway, 9037 Tromsø, Norway
| | - Juncal Garcia-Garcia
- Molecular Cancer Research Group, Department of Medical Biology, University of Tromsø -The Arctic University of Norway, 9037 Tromsø, Norway
| | - Zambarlal Bhujabal
- Molecular Cancer Research Group, Department of Medical Biology, University of Tromsø -The Arctic University of Norway, 9037 Tromsø, Norway
| | - Ashish Jain
- Molecular Cancer Research Group, Department of Medical Biology, University of Tromsø -The Arctic University of Norway, 9037 Tromsø, Norway
| | - Aud Øvervatn
- Molecular Cancer Research Group, Department of Medical Biology, University of Tromsø -The Arctic University of Norway, 9037 Tromsø, Norway
| | - Kenneth Bowitz Larsen
- Molecular Cancer Research Group, Department of Medical Biology, University of Tromsø -The Arctic University of Norway, 9037 Tromsø, Norway
| | - Vojo Deretic
- Autophagy Inflammation and Metabolism Center of Biomedical Research Excellence, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA.,Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| | - Terje Johansen
- Molecular Cancer Research Group, Department of Medical Biology, University of Tromsø -The Arctic University of Norway, 9037 Tromsø, Norway
| | - Trond Lamark
- Molecular Cancer Research Group, Department of Medical Biology, University of Tromsø -The Arctic University of Norway, 9037 Tromsø, Norway
| | - Eva Sjøttem
- Molecular Cancer Research Group, Department of Medical Biology, University of Tromsø -The Arctic University of Norway, 9037 Tromsø, Norway
| |
Collapse
|
35
|
Ehrlichia chaffeensis Outer Membrane Protein 1-Specific Human Antibody-Mediated Immunity Is Defined by Intracellular TRIM21-Dependent Innate Immune Activation and Extracellular Neutralization. Infect Immun 2019; 87:IAI.00383-19. [PMID: 31548319 PMCID: PMC6867850 DOI: 10.1128/iai.00383-19] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 09/18/2019] [Indexed: 01/05/2023] Open
Abstract
Antibodies are essential for immunity against Ehrlichia chaffeensis, and protective mechanisms involve blocking of ehrlichial attachment or complement and Fcγ-receptor-dependent destruction. In this study, we determined that major outer membrane protein 1 (OMP-19) hypervariable region 1 (HVR1)-specific human monoclonal antibodies (huMAbs) are protective through conventional extracellular neutralization and, more significantly, through a novel intracellular TRIM21-mediated mechanism. Antibodies are essential for immunity against Ehrlichia chaffeensis, and protective mechanisms involve blocking of ehrlichial attachment or complement and Fcγ-receptor-dependent destruction. In this study, we determined that major outer membrane protein 1 (OMP-19) hypervariable region 1 (HVR1)-specific human monoclonal antibodies (huMAbs) are protective through conventional extracellular neutralization and, more significantly, through a novel intracellular TRIM21-mediated mechanism. Addition of OMP-1-specific huMAb EHRL-15 (IgG1) prevented infection by blocking attachment/entry, a mechanism previously reported; conversely, OMP-1-specific huMAb EHRL-4 (IgG3) engaged intracellular TRIM21 and initiated an immediate innate immune response and rapid intracellular degradation of ehrlichiae. EHRL-4-TRIM21-mediated inhibition was significantly impaired in TRIM21 knockout THP-1 cells. EHRL-4 interacted with cytosolic Fc receptor TRIM21, observed by confocal microscopy and confirmed by co-immunoprecipitation. E. chaffeensis-EHRL-4-TRIM21 complexes caused significant upregulation of proinflammatory cytokine/chemokine transcripts and resulted in rapid (<30 min) nuclear accumulation of NF-κB and TRIM21 and ehrlichial destruction. We investigated the role of TRIM21 in the autophagic clearance of ehrlichiae in the presence of EHRL-4. Colocalization between EHRL-4-opsonized ehrlichiae, polyubiquitinated TRIM21, autophagy regulators (ULK1 and beclin 1) and effectors (LC3 and p62), and lysosome-associated membrane protein 2 (LAMP2) was observed. Moreover, autophagic flux defined by conversion of LC3I to LC3II and accumulation and degradation of p62 was detected, and EHRL-4-mediated degradation of E. chaffeensis was abrogated by the autophagy inhibitor 3-methyladenine. Our results demonstrate that huMAbs are capable of inhibiting E. chaffeensis infection by distinct effector mechanisms: extracellularly by neutralization and intracellularly by engaging TRIM21, which mediates a rapid innate immune response that mobilizes the core autophagy components, triggering localized selective autophagic degradation of ehrlichiae.
Collapse
|
36
|
Gu Y, Princely Abudu Y, Kumar S, Bissa B, Choi SW, Jia J, Lazarou M, Eskelinen E, Johansen T, Deretic V. Mammalian Atg8 proteins regulate lysosome and autolysosome biogenesis through
SNARE
s. EMBO J 2019; 38. [DOI: https:/doi.org/10.15252/embj.2019101994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 09/13/2019] [Indexed: 12/19/2023] Open
Affiliation(s)
- Yuexi Gu
- Autophagy, Inflammation and Metabolism (AIM) Center of Biomedical Research Excellence University of New Mexico Health Sciences Center Albuquerque NM USA
- Department of Molecular Genetics and Microbiology University of New Mexico Health Sciences Center Albuquerque NM USA
| | - Yakubu Princely Abudu
- Molecular Cancer Research Group Institute of Medical Biology University of Tromsø‐The Arctic University of Norway Tromsø Norway
| | - Suresh Kumar
- Autophagy, Inflammation and Metabolism (AIM) Center of Biomedical Research Excellence University of New Mexico Health Sciences Center Albuquerque NM USA
- Department of Molecular Genetics and Microbiology University of New Mexico Health Sciences Center Albuquerque NM USA
| | - Bhawana Bissa
- Autophagy, Inflammation and Metabolism (AIM) Center of Biomedical Research Excellence University of New Mexico Health Sciences Center Albuquerque NM USA
- Department of Molecular Genetics and Microbiology University of New Mexico Health Sciences Center Albuquerque NM USA
| | - Seong Won Choi
- Department of Molecular Genetics and Microbiology University of New Mexico Health Sciences Center Albuquerque NM USA
| | - Jingyue Jia
- Autophagy, Inflammation and Metabolism (AIM) Center of Biomedical Research Excellence University of New Mexico Health Sciences Center Albuquerque NM USA
- Department of Molecular Genetics and Microbiology University of New Mexico Health Sciences Center Albuquerque NM USA
| | - Michael Lazarou
- Department of Biochemistry and Molecular Biology Biomedicine Discovery Institute Monash University Melbourne Australia
| | | | - Terje Johansen
- Molecular Cancer Research Group Institute of Medical Biology University of Tromsø‐The Arctic University of Norway Tromsø Norway
| | - Vojo Deretic
- Autophagy, Inflammation and Metabolism (AIM) Center of Biomedical Research Excellence University of New Mexico Health Sciences Center Albuquerque NM USA
- Department of Molecular Genetics and Microbiology University of New Mexico Health Sciences Center Albuquerque NM USA
| |
Collapse
|
37
|
Gu Y, Princely Abudu Y, Kumar S, Bissa B, Choi SW, Jia J, Lazarou M, Eskelinen E, Johansen T, Deretic V. Mammalian Atg8 proteins regulate lysosome and autolysosome biogenesis through SNAREs. EMBO J 2019; 38:e101994. [PMID: 31625181 PMCID: PMC6856626 DOI: 10.15252/embj.2019101994] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 09/07/2019] [Accepted: 09/13/2019] [Indexed: 12/14/2022] Open
Abstract
Mammalian homologs of yeast Atg8 protein (mAtg8s) are important in autophagy, but their exact mode of action remains ill-defined. Syntaxin 17 (Stx17), a SNARE with major roles in autophagy, was recently shown to bind mAtg8s. Here, we identified LC3-interacting regions (LIRs) in several SNAREs that broaden the landscape of the mAtg8-SNARE interactions. We found that Syntaxin 16 (Stx16) and its cognate SNARE partners all have LIR motifs and bind mAtg8s. Knockout of Stx16 caused defects in lysosome biogenesis, whereas a Stx16 and Stx17 double knockout completely blocked autophagic flux and decreased mitophagy, pexophagy, xenophagy, and ribophagy. Mechanistic analyses revealed that mAtg8s and Stx16 control several properties of lysosomal compartments including their function as platforms for active mTOR. These findings reveal a broad direct interaction of mAtg8s with SNAREs with impact on membrane remodeling in eukaryotic cells and expand the roles of mAtg8s to lysosome biogenesis.
Collapse
Affiliation(s)
- Yuexi Gu
- Autophagy, Inflammation and Metabolism (AIM) Center of Biomedical Research ExcellenceUniversity of New Mexico Health Sciences CenterAlbuquerqueNMUSA
- Department of Molecular Genetics and MicrobiologyUniversity of New Mexico Health Sciences CenterAlbuquerqueNMUSA
| | - Yakubu Princely Abudu
- Molecular Cancer Research GroupInstitute of Medical BiologyUniversity of Tromsø‐The Arctic University of NorwayTromsøNorway
| | - Suresh Kumar
- Autophagy, Inflammation and Metabolism (AIM) Center of Biomedical Research ExcellenceUniversity of New Mexico Health Sciences CenterAlbuquerqueNMUSA
- Department of Molecular Genetics and MicrobiologyUniversity of New Mexico Health Sciences CenterAlbuquerqueNMUSA
| | - Bhawana Bissa
- Autophagy, Inflammation and Metabolism (AIM) Center of Biomedical Research ExcellenceUniversity of New Mexico Health Sciences CenterAlbuquerqueNMUSA
- Department of Molecular Genetics and MicrobiologyUniversity of New Mexico Health Sciences CenterAlbuquerqueNMUSA
| | - Seong Won Choi
- Department of Molecular Genetics and MicrobiologyUniversity of New Mexico Health Sciences CenterAlbuquerqueNMUSA
| | - Jingyue Jia
- Autophagy, Inflammation and Metabolism (AIM) Center of Biomedical Research ExcellenceUniversity of New Mexico Health Sciences CenterAlbuquerqueNMUSA
- Department of Molecular Genetics and MicrobiologyUniversity of New Mexico Health Sciences CenterAlbuquerqueNMUSA
| | - Michael Lazarou
- Department of Biochemistry and Molecular BiologyBiomedicine Discovery InstituteMonash UniversityMelbourneAustralia
| | | | - Terje Johansen
- Molecular Cancer Research GroupInstitute of Medical BiologyUniversity of Tromsø‐The Arctic University of NorwayTromsøNorway
| | - Vojo Deretic
- Autophagy, Inflammation and Metabolism (AIM) Center of Biomedical Research ExcellenceUniversity of New Mexico Health Sciences CenterAlbuquerqueNMUSA
- Department of Molecular Genetics and MicrobiologyUniversity of New Mexico Health Sciences CenterAlbuquerqueNMUSA
| |
Collapse
|
38
|
Israel S, Casser E, Drexler HCA, Fuellen G, Boiani M. A framework for TRIM21-mediated protein depletion in early mouse embryos: recapitulation of Tead4 null phenotype over three days. BMC Genomics 2019; 20:755. [PMID: 31638890 PMCID: PMC6805607 DOI: 10.1186/s12864-019-6106-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 09/13/2019] [Indexed: 12/17/2022] Open
Abstract
Background While DNA and RNA methods are routine to disrupt the expression of specific genes, complete understanding of developmental processes requires also protein methods, because: oocytes and early embryos accumulate proteins and these are not directly affected by DNA and RNA methods. When proteins in the oocyte encounter a specific antibody and the TRIpartite Motiv-containing 21 (TRIM21) ubiquitin-protein ligase, they can be committed to degradation in the proteasome, producing a transient functional knock-out that reveals the role of the protein. However, there are doubts about whether this targeted proteolysis could be successfully used to study mammalian development, because duration of the transient effect is unknown, and also because amounts of reagents delivered must be adequate in relation to the amount of target protein, which is unknown, too. Results We show that the mouse egg contains up to 1E-02 picomoles/protein, as estimated by mass spectrometry using the intensity-based absolute quantification (iBAQ) algorithm. However, the egg can only accommodate ≈1E-04 picomoles of antibody or TRIM21 without incurring toxic effects. Within this framework, we demonstrate that TRIM21-mediated protein depletion efficiently disrupts the embryonic process of trophectoderm formation, which critically depends on the TEA domain family member 4 (Tead4) gene. TEAD4 depletion starting at the 1-cell stage lasts for 3 days prior to a return of gene and protein expression to baseline. This time period is long enough to result in a phenotype entirely consistent with that of the published null mutation and RNA interference studies: significant underexpression of trophectodermal genes Cdx2 and Gata3 and strongly impaired ability of embryos to cavitate and implant in the uterus. Omics data are available via ProteomeXchange (PXD012613) and GEO (GSE124844). Conclusions TRIM21-mediated protein depletion can be an effective means to disrupt gene function in mouse development, provided the target gene is chosen carefully and the method is tuned accurately. The knowledge gathered in this study provides the basic know-how (prerequisites, requirements, limitations) to expedite the protein depletion of other genes besides Tead4.
Collapse
Affiliation(s)
- Steffen Israel
- Max Planck Institute for Molecular Biomedicine, Roentgenstrasse 20, 48149, Muenster, Germany
| | - Ellen Casser
- Max Planck Institute for Molecular Biomedicine, Roentgenstrasse 20, 48149, Muenster, Germany
| | - Hannes C A Drexler
- Max Planck Institute for Molecular Biomedicine, Roentgenstrasse 20, 48149, Muenster, Germany
| | - Georg Fuellen
- Rostock University Medical Center, Institute for Biostatistics and Informatics in Medicine and Aging Research (IBIMA), Ernst-Heydemann-Strasse 8, 18057, Rostock, Germany
| | - Michele Boiani
- Max Planck Institute for Molecular Biomedicine, Roentgenstrasse 20, 48149, Muenster, Germany.
| |
Collapse
|
39
|
Liu X, Wang S, Sun Y, Zhang T, Wang Z. The suppressed autophagy induced by carbon disulfide could be rescued by N-carbamoyl glutamate during the window of embryo implantation in mice. Chem Biol Interact 2019; 312:108751. [PMID: 31369747 DOI: 10.1016/j.cbi.2019.108751] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 06/18/2019] [Accepted: 07/15/2019] [Indexed: 12/01/2022]
Abstract
OBJECTIVES To explore the effects of carbon disulfide (CS2) and N-carbamoyl glutamate (NCG) on autophagy during the window of embryo implantation in mice and whether dietary NCG supplementation can promote embryo implantation in case of CS2 exposure. METHODS Pregnant mice that received single intraperitoneal injection of CS2 on Gestational day (GD)4 were fed basal diet with or without NCG supplementation from GD1 to endpoints. The control mice were injected solvents. There were four endpoints (GD5, GD6, GD7 and GD9 endpoints) in each group. The uterus was collected on endpoints to detect autophagy-related markers by using the methods of transmission electron microscopy (TEM), immunohistochemistry (IHC), quantitative real-time polymerase chain reaction (qRT-PCR) and ELISA. RESULTS The P62 brown punctate staining increased in CS2 exposure group and reduced after dietary NCG supplementation, which was opposite with LC3B, Beclin1 and ATG5 on GD5 endpoint. Simultaneously, P62 protein expression raised 43.33% on GD5 endpoint (p < 0.01) when exposed to CS2 and descended to the control level after NCG supplementation. The rate of decline of LC3B and Beclin1 proteins were 27.04% (p < 0.01) and 23.27% (p < 0.05) on GD5 endpoint, 20.20% (p < 0.05) and 11.30% on GD7 endpoint in CS2 exposure group, respectively, then NCG supplementation caused the LC3B and Beclin1 protein expression to rise in different degrees. Comparatively, the mRNA expression of all autophagy-related gene changed more apparently on three endpoints than the protein expression. The images of TEM showed that nearly no autophagosome could be seen in CS2 exposure group, while dietary NCG supplementation increased the number of autophagosome obviously on GD5 endpoint. The number of implanted embryos which declined due to CS2 exposure returned to normal in NCG supplementation group. CONCLUSIONS Dietary NCG supplementation could rescue the suppressed autophagy induced by CS2 in the window of implantation and increase the number of implanted embryos.
Collapse
Affiliation(s)
- Xiaojing Liu
- School of Public Health, Shandong University, 44 Wenhua Xi Road, Jinan, Shandong, 250012, PR China
| | - Shuting Wang
- School of Public Health, Shandong University, 44 Wenhua Xi Road, Jinan, Shandong, 250012, PR China
| | - Yuan Sun
- School of Public Health, Shandong University, 44 Wenhua Xi Road, Jinan, Shandong, 250012, PR China
| | - Tongchao Zhang
- School of Public Health, Shandong University, 44 Wenhua Xi Road, Jinan, Shandong, 250012, PR China
| | - Zhiping Wang
- School of Public Health, Shandong University, 44 Wenhua Xi Road, Jinan, Shandong, 250012, PR China.
| |
Collapse
|
40
|
Kehl SR, Soos BA, Saha B, Choi SW, Herren AW, Johansen T, Mandell MA. TAK1 converts Sequestosome 1/p62 from an autophagy receptor to a signaling platform. EMBO Rep 2019; 20:e46238. [PMID: 31347268 PMCID: PMC6726904 DOI: 10.15252/embr.201846238] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 06/14/2019] [Accepted: 07/02/2019] [Indexed: 12/19/2022] Open
Abstract
The protein p62/Sequestosome 1 (p62) has been described as a selective autophagy receptor and independently as a platform for pro-inflammatory and other intracellular signaling. How these seemingly disparate functional roles of p62 are coordinated has not been resolved. Here, we show that TAK1, a kinase involved in immune signaling, negatively regulates p62 action in autophagy. TAK1 reduces p62 localization to autophagosomes, dampening the autophagic degradation of both p62 and p62-directed autophagy substrates. TAK1 also relocalizes p62 into dynamic cytoplasmic bodies, a phenomenon that accompanies the stabilization of TAK1 complex components. On the other hand, p62 facilitates the assembly and activation of TAK1 complexes, suggesting a connection between p62's signaling functions and p62 body formation. Thus, TAK1 governs p62 action, switching it from an autophagy receptor to a signaling platform. This ability of TAK1 to disable p62 as an autophagy receptor may allow certain autophagic substrates to accumulate when needed for cellular functions.
Collapse
Affiliation(s)
- Stephanie R Kehl
- Department of Molecular Genetics and MicrobiologyUniversity of New Mexico Health Sciences CenterAlbuquerqueNMUSA
- Biomedical Sciences Graduate ProgramUniversity of New Mexico Health Sciences CenterAlbuquerqueNMUSA
| | - Brandy‐Lee A Soos
- Department of Molecular Genetics and MicrobiologyUniversity of New Mexico Health Sciences CenterAlbuquerqueNMUSA
- Present address:
Biochemistry and Molecular Biology Graduate ProgramUniversity of MaineOronoMEUSA
| | - Bhaskar Saha
- Department of Molecular Genetics and MicrobiologyUniversity of New Mexico Health Sciences CenterAlbuquerqueNMUSA
| | - Seong Won Choi
- Department of Molecular Genetics and MicrobiologyUniversity of New Mexico Health Sciences CenterAlbuquerqueNMUSA
| | | | - Terje Johansen
- Molecular Cancer Research GroupInstitute of Medical BiologyUniversity of Tromsø ‐ The Arctic University of NorwayTromsøNorway
| | - Michael A Mandell
- Department of Molecular Genetics and MicrobiologyUniversity of New Mexico Health Sciences CenterAlbuquerqueNMUSA
- Autophagy, Inflammation and Metabolism Center of Biomedical Research ExcellenceUniversity of New Mexico Health Sciences CenterAlbuquerqueNMUSA
| |
Collapse
|
41
|
Jeong SJ, Zhang X, Rodriguez-Velez A, Evans TD, Razani B. p62/ SQSTM1 and Selective Autophagy in Cardiometabolic Diseases. Antioxid Redox Signal 2019; 31:458-471. [PMID: 30588824 PMCID: PMC6653798 DOI: 10.1089/ars.2018.7649] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Significance: p62/SQSTM1 is a multifunctional scaffolding protein involved in the regulation of various signaling pathways as well as autophagy. In particular, p62/SQSTM1 serves as an essential adaptor to identify and deliver specific organelles and protein aggregates to autophagosomes for degradation, a process known as selective autophagy. Critical Issues: With the emergence of autophagy as a critical process in cellular metabolism and the development of cardiometabolic diseases, it is increasingly important to understand p62's role in the integration of signaling and autophagic pathways. Recent Advances: This review first discusses the features that make p62/SQSTM1 an ideal chaperone in integrating signaling pathways with autophagy and details the current understanding of its diverse roles in selective autophagy processes. Distinct and overlapping roles of other chaperones with similar functions are then discussed in the context of p62/SQSTM1. Finally, the recent literature focusing on p62 and selective autophagy in metabolism and the spectrum of cardiometabolic diseases including atherosclerosis, fatty liver disease, and obesity is evaluated. Future Directions: A comprehensive understanding of the nuanced roles p62/SQSTM1 plays in mediating distinct autophagy pathways would provide new insights into the mechanisms of this critical degradative pathway. This will, in turn, facilitate our understanding of cardiovascular and cardiometabolic disease pathology and the development of novel autophagy-modulating therapeutic strategies.
Collapse
Affiliation(s)
- Se-Jin Jeong
- 1 Cardiovascular Division, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Xiangyu Zhang
- 1 Cardiovascular Division, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Astrid Rodriguez-Velez
- 1 Cardiovascular Division, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Trent D Evans
- 1 Cardiovascular Division, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Babak Razani
- 1 Cardiovascular Division, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri.,2 Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri.,3 John Cochran VA Medical Center, St. Louis, Missouri
| |
Collapse
|
42
|
Yin F, Yan J, Zhao Y, Guo KJ, Zhang ZL, Li AP, Meng CY, Guo L. Bone marrow mesenchymal stem cells repair Cr (VI)- injured kidney by regulating mitochondria-mediated apoptosis and mitophagy mediated via the MAPK signaling pathway. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 176:234-241. [PMID: 30939403 DOI: 10.1016/j.ecoenv.2019.03.093] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 03/20/2019] [Accepted: 03/22/2019] [Indexed: 06/09/2023]
Abstract
The present study aimed to explore the repair effect and mechanism of bone marrow mesenchymal stem cells (BMSCs) transplantation on injured kidneys caused by hexavalent chromium (Cr (VI)). Wistar rats were intraperitoneally injected with 0.4 mg/kg•bw Cr (VI) ion solution. After 30 days, 1 × 107 BMSCs were transplanted into rats. After cell transplantation for 2 weeks, there was no significant difference in the chromium content between the model and BMSCs-therapy group by atomic absorption spectrometry. In BMSCs-therapy group, the renal organ index, the serum levels of blood urea nitrogen (BUN) and creatinine (CRE), malonaldehyde (MDA) content were significantly decreased, superoxide dismutase (SOD) activity was significantly elevated, and the pathological changes were improved compared with the model group. The results of immunohistochemical and western blot assays showed that the expressions of apoptosis-related proteins Bax, Cytochrome c, and Caspase-3, as well as autophagy-associated proteins Beclin 1, PINK1, Parkin, p-Parkin, LC3B, and the MAPK signaling pathway, including the ratio of p-p38 to p38 and p-JNK to JNK were all significantly decreased, Bcl-2 and p62 expressions, and the ratio of p-ERK to ERK were significantly elevated in BMSCs-therapy group compared with the model group. These results suggested that BMSCs repaired Cr (VI)-injured kidney through decreasing mitochondria-mediated apoptosis and mitophagy mediated by downregulating phosphorylation of p38 and JNK, upregulating phosphorylation of ERK.
Collapse
Affiliation(s)
- Fei Yin
- Department of Orthopaedics, China-Japan Union Hospital, Jilin University, Changchun, China.
| | - Jun Yan
- Department of Toxicology, School of Public Health, Jilin University, Changchun, China.
| | - Yue Zhao
- Department of Toxicology, School of Public Health, Jilin University, Changchun, China.
| | - Ke-Jun Guo
- Department of Toxicology, School of Public Health, Jilin University, Changchun, China.
| | - Zhi-Li Zhang
- Department of Toxicology, School of Public Health, Jilin University, Changchun, China.
| | - An-Pei Li
- Department of Toxicology, School of Public Health, Jilin University, Changchun, China.
| | - Chun-Yang Meng
- Department of Orthopaedics, China-Japan Union Hospital, Jilin University, Changchun, China.
| | - Li Guo
- Department of Toxicology, School of Public Health, Jilin University, Changchun, China.
| |
Collapse
|
43
|
Di Rienzo M, Antonioli M, Fusco C, Liu Y, Mari M, Orhon I, Refolo G, Germani F, Corazzari M, Romagnoli A, Ciccosanti F, Mandriani B, Pellico MT, De La Torre R, Ding H, Dentice M, Neri M, Ferlini A, Reggiori F, Kulesz-Martin M, Piacentini M, Merla G, Fimia GM. Autophagy induction in atrophic muscle cells requires ULK1 activation by TRIM32 through unanchored K63-linked polyubiquitin chains. SCIENCE ADVANCES 2019; 5:eaau8857. [PMID: 31123703 PMCID: PMC6527439 DOI: 10.1126/sciadv.aau8857] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 03/21/2019] [Indexed: 05/03/2023]
Abstract
Optimal autophagic activity is crucial to maintain muscle integrity, with either reduced or excessive levels leading to specific myopathies. LGMD2H is a muscle dystrophy caused by mutations in the ubiquitin ligase TRIM32, whose function in muscles remains not fully understood. Here, we show that TRIM32 is required for the induction of muscle autophagy in atrophic conditions using both in vitro and in vivo mouse models. Trim32 inhibition results in a defective autophagy response to muscle atrophy, associated with increased ROS and MuRF1 levels. The proautophagic function of TRIM32 relies on its ability to bind the autophagy proteins AMBRA1 and ULK1 and stimulate ULK1 activity via unanchored K63-linked polyubiquitin. LGMD2H-causative mutations impair TRIM32's ability to bind ULK1 and induce autophagy. Collectively, our study revealed a role for TRIM32 in the regulation of muscle autophagy in response to atrophic stimuli, uncovering a previously unidentified mechanism by which ubiquitin ligases activate autophagy regulators.
Collapse
Affiliation(s)
- M. Di Rienzo
- National Institute for Infectious Diseases IRCCS, Lazzaro Spallanzani, 00149 Rome, Italy
- Department of Biology, University of Rome, Tor Vergata, 00133 Rome, Italy
| | - M. Antonioli
- National Institute for Infectious Diseases IRCCS, Lazzaro Spallanzani, 00149 Rome, Italy
| | - C. Fusco
- Division of Medical Genetics, IRCCS, Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, Italy
| | - Y. Liu
- Department of Dermatology, Oregon Health and Science University, Portland, OR 97239, USA
| | - M. Mari
- Department of Biomedical Sciences of Cells and Systems, University of Groningen, University Medical Center Groningen, 9713 AV Groningen, Netherlands
| | - I. Orhon
- Department of Biomedical Sciences of Cells and Systems, University of Groningen, University Medical Center Groningen, 9713 AV Groningen, Netherlands
| | - G. Refolo
- National Institute for Infectious Diseases IRCCS, Lazzaro Spallanzani, 00149 Rome, Italy
| | - F. Germani
- National Institute for Infectious Diseases IRCCS, Lazzaro Spallanzani, 00149 Rome, Italy
| | - M. Corazzari
- Department of Health Sciences, University of Piemonte Orientale “A. Avogadro”, Novara, Novara, Italy
| | - A. Romagnoli
- National Institute for Infectious Diseases IRCCS, Lazzaro Spallanzani, 00149 Rome, Italy
| | - F. Ciccosanti
- National Institute for Infectious Diseases IRCCS, Lazzaro Spallanzani, 00149 Rome, Italy
| | - B. Mandriani
- Division of Medical Genetics, IRCCS, Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, Italy
| | - M. T. Pellico
- Division of Medical Genetics, IRCCS, Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, Italy
| | - R. De La Torre
- Department of Dermatology, Oregon Health and Science University, Portland, OR 97239, USA
| | - H. Ding
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, Manitoba, Canada
| | - M. Dentice
- Department of Clinical Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy
| | - M. Neri
- Section of Medical Genetics, Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy
| | - A. Ferlini
- Section of Medical Genetics, Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy
| | - F. Reggiori
- Department of Biomedical Sciences of Cells and Systems, University of Groningen, University Medical Center Groningen, 9713 AV Groningen, Netherlands
| | - M. Kulesz-Martin
- Department of Dermatology, Oregon Health and Science University, Portland, OR 97239, USA
- Department of Cell, Developmental and Cancer Biology, Oregon Health and Science University, Portland, OR 97239, USA
| | - M. Piacentini
- National Institute for Infectious Diseases IRCCS, Lazzaro Spallanzani, 00149 Rome, Italy
- Department of Biology, University of Rome, Tor Vergata, 00133 Rome, Italy
| | - G. Merla
- Division of Medical Genetics, IRCCS, Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, Italy
| | - G. M. Fimia
- National Institute for Infectious Diseases IRCCS, Lazzaro Spallanzani, 00149 Rome, Italy
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Lecce 73100, Italy
| |
Collapse
|
44
|
Kimura T. Reverse translational research of autophagy and metabolism in kidney disease: Oshima Award Address 2018. Clin Exp Nephrol 2019; 23:733-738. [PMID: 30826979 PMCID: PMC6511362 DOI: 10.1007/s10157-019-01717-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 02/13/2019] [Indexed: 11/30/2022]
Abstract
The management of chronic kidney disease (CKD) has been a great challenge. Focusing on the difficulty to predict the prognosis of CKD, we initially conducted a series of observational studies, and evaluated the prognostic impacts of cardiac, diabetic, kidney, as well as senescent profiles, on CKD. Aiming to protect tubular inflammatory lesions, we studied the roles of autophagy, a process of auto-degradation for cellular homeostasis, in kidney diseases. After having determined its protective role, the proceedings of our autophagy studies are now revealing the mechanisms whereby autophagy protects kidney; autophagy protects kidney from DNA damage, and oxidative and metabolic stress. These emerging roles of autophagy converged on the concept that quality control of organelles (mitochondria and lysosomes), as well as the regulation of metabolism, are the key to protect kidney from diseases, ranging from CKD, acute kidney injury (AKI) to aging kidney. To broaden the clinical potential of autophagy, some cellular and molecular studies were followed up to identify the specific targets of autophagy. Having encountered the critical roles of metabolism in kidney diseases, we conducted a subset of clinical studies, and found that d-amino acids, the chiral derivatives of l-amino acids, can predict the prognosis of CKD. d-Amino acids, normally present in only trace amounts in humans, would be potential candidates for the biomarkers in CKD. The intersections between clinical and basic research provided us a potential approach for the better kidney management, reconfirming the aspects that the reverse translational study is an excellent method for the kidney research.
Collapse
Affiliation(s)
- Tomonori Kimura
- Reverse Translational Research Project, Center for Rare Disease Research, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Osaka, Japan. .,KAGAMI Project, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Osaka, Japan. .,Department of Nephrology, Osaka University Graduate School of Medicine, Osaka, Japan.
| |
Collapse
|
45
|
Abstract
Vunjak and Versteeg introduce the TRIM family of post-translational modifiers and the roles of these proteins in viral restriction, immune signaling and autophagy.
Collapse
Affiliation(s)
- Milica Vunjak
- Department of Microbiology, Immunobiology, and Genetics, Max F. Perutz Laboratories (MFPL), University of Vienna, Vienna Biocenter (VBC), Dr. Bohr-Gasse 9, 1030, Vienna, Austria
| | - Gijs A Versteeg
- Department of Microbiology, Immunobiology, and Genetics, Max F. Perutz Laboratories (MFPL), University of Vienna, Vienna Biocenter (VBC), Dr. Bohr-Gasse 9, 1030, Vienna, Austria.
| |
Collapse
|
46
|
Tsapras P, Jacomin AC, Nezis IP. Assays to Monitor Mitophagy in Drosophila. Methods Mol Biol 2019; 1880:643-653. [PMID: 30610728 DOI: 10.1007/978-1-4939-8873-0_42] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Autophagy is a central pathway utilized by many eukaryotic cells in order to recycle intracellular constituents, particularly under periods of nutrient scarcity or cellular damage. The process is evolutionarily conserved from yeast to mammals and can be highly selective with regard to the contents that are targeted for degradation. The availability of Drosophila transgenic lines and fluorophore-labeled autophagic markers allows nowadays for the more effortless visualization of the process within cells. Herein, we provide two protocols to prepare Drosophila samples for confocal and transmission electron microscopy for in vivo monitoring of mitophagy, a specific type of autophagy for the clearance of damaged or superfluous mitochondria from cells.
Collapse
MESH Headings
- Animals
- Animals, Genetically Modified
- Biological Assay/instrumentation
- Biological Assay/methods
- Drosophila/physiology
- Drosophila Proteins/genetics
- Drosophila Proteins/metabolism
- Fat Body/metabolism
- Female
- Fluorescent Dyes/chemistry
- Intravital Microscopy/instrumentation
- Intravital Microscopy/methods
- Larva/physiology
- Male
- Microscopy, Confocal/instrumentation
- Microscopy, Confocal/methods
- Microscopy, Electron, Transmission/instrumentation
- Microscopy, Electron, Transmission/methods
- Microscopy, Fluorescence/instrumentation
- Microscopy, Fluorescence/methods
- Mitochondria/metabolism
- Mitophagy/physiology
- Models, Animal
Collapse
Affiliation(s)
| | | | - Ioannis P Nezis
- School of Life Sciences, University of Warwick, Coventry, UK.
| |
Collapse
|
47
|
Iida T, Yokoyama Y, Wagatsuma K, Hirayama D, Nakase H. Impact of Autophagy of Innate Immune Cells on Inflammatory Bowel Disease. Cells 2018; 8:cells8010007. [PMID: 30583538 PMCID: PMC6356773 DOI: 10.3390/cells8010007] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 12/18/2018] [Accepted: 12/18/2018] [Indexed: 12/13/2022] Open
Abstract
Autophagy, an intracellular degradation mechanism, has many immunological functions and is a constitutive process necessary for maintaining cellular homeostasis and organ structure. One of the functions of autophagy is to control the innate immune response. Many studies conducted in recent years have revealed the contribution of autophagy to the innate immune response, and relationships between this process and various diseases have been reported. Inflammatory bowel disease is an intractable disorder with unknown etiology; however, immunological abnormalities in the intestines are known to be involved in the pathology of inflammatory bowel disease, as is dysfunction of autophagy. In Crohn's disease, many associations with autophagy-related genes, such as ATG16L1, IRGM, NOD2, and others, have been reported. Abnormalities in the ATG16L1 gene, in particular, have been reported to cause autophagic dysfunction, resulting in enhanced production of inflammatory cytokines by macrophages as well as abnormal function of Paneth cells, which are important in intestinal innate immunity. In this review, we provide an overview of the autophagy mechanism in innate immune cells in inflammatory bowel disease.
Collapse
Affiliation(s)
- Tomoya Iida
- Department of Gastroenterology and Hepatology, Sapporo Medical University School of Medicine, Sapporo 060-8543, Japan.
| | - Yoshihiro Yokoyama
- Department of Gastroenterology and Hepatology, Sapporo Medical University School of Medicine, Sapporo 060-8543, Japan.
| | - Kohei Wagatsuma
- Department of Gastroenterology and Hepatology, Sapporo Medical University School of Medicine, Sapporo 060-8543, Japan.
| | - Daisuke Hirayama
- Department of Gastroenterology and Hepatology, Sapporo Medical University School of Medicine, Sapporo 060-8543, Japan.
| | - Hiroshi Nakase
- Department of Gastroenterology and Hepatology, Sapporo Medical University School of Medicine, Sapporo 060-8543, Japan.
| |
Collapse
|
48
|
Tan P, Ye Y, He L, Xie J, Jing J, Ma G, Pan H, Han L, Han W, Zhou Y. TRIM59 promotes breast cancer motility by suppressing p62-selective autophagic degradation of PDCD10. PLoS Biol 2018; 16:e3000051. [PMID: 30408026 PMCID: PMC6245796 DOI: 10.1371/journal.pbio.3000051] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 11/20/2018] [Accepted: 10/23/2018] [Indexed: 12/12/2022] Open
Abstract
Cancer cells adopt various modes of migration during metastasis. How the ubiquitination machinery contributes to cancer cell motility remains underexplored. Here, we report that tripartite motif (TRIM) 59 is frequently up-regulated in metastatic breast cancer, which is correlated with advanced clinical stages and reduced survival among breast cancer patients. TRIM59 knockdown (KD) promoted apoptosis and inhibited tumor growth, while TRIM59 overexpression led to the opposite effects. Importantly, we uncovered TRIM59 as a key regulator of cell contractility and adhesion to control the plasticity of metastatic tumor cells. At the molecular level, we identified programmed cell death protein 10 (PDCD10) as a target of TRIM59. TRIM59 stabilized PDCD10 by suppressing RING finger and transmembrane domain-containing protein 1 (RNFT1)-induced lysine 63 (K63) ubiquitination and subsequent phosphotyrosine-independent ligand for the Lck SH2 domain of 62 kDa (p62)-selective autophagic degradation. TRIM59 promoted PDCD10-mediated suppression of Ras homolog family member A (RhoA)-Rho-associated coiled-coil kinase (ROCK) 1 signaling to control the transition between amoeboid and mesenchymal invasiveness. PDCD10 overexpression or administration of a ROCK inhibitor reversed TRIM59 loss-induced contractile phenotypes, thereby accelerating cell migration, invasion, and tumor formation. These findings establish the rationale for targeting deregulated TRIM59/PDCD10 to treat breast cancer.
Collapse
Affiliation(s)
- Peng Tan
- Department of Medical Oncology and Biomedical Research Center, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, China
- Center for Translational Cancer Research, Institute of Biosciences and Technology, College of Medicine, Texas A&M University, Houston, Texas, United States of America
| | - Youqiong Ye
- Department of Biochemistry and Molecular Biology, University of Texas Health Science Center at Houston McGovern Medical School, Houston, Texas, United States of America
| | - Lian He
- Center for Translational Cancer Research, Institute of Biosciences and Technology, College of Medicine, Texas A&M University, Houston, Texas, United States of America
| | - Jiansheng Xie
- Department of Medical Oncology and Biomedical Research Center, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Ji Jing
- Center for Translational Cancer Research, Institute of Biosciences and Technology, College of Medicine, Texas A&M University, Houston, Texas, United States of America
| | - Guolin Ma
- Center for Translational Cancer Research, Institute of Biosciences and Technology, College of Medicine, Texas A&M University, Houston, Texas, United States of America
| | - Hongming Pan
- Department of Medical Oncology and Biomedical Research Center, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Leng Han
- Department of Biochemistry and Molecular Biology, University of Texas Health Science Center at Houston McGovern Medical School, Houston, Texas, United States of America
| | - Weidong Han
- Department of Medical Oncology and Biomedical Research Center, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Yubin Zhou
- Center for Translational Cancer Research, Institute of Biosciences and Technology, College of Medicine, Texas A&M University, Houston, Texas, United States of America
- Department of Medical Physiology, College of Medicine, Texas A&M University, Temple, Texas, United States of America
| |
Collapse
|
49
|
Keown JR, Black MM, Ferron A, Yap M, Barnett MJ, Pearce FG, Stoye JP, Goldstone DC. A helical LC3-interacting region mediates the interaction between the retroviral restriction factor Trim5α and mammalian autophagy-related ATG8 proteins. J Biol Chem 2018; 293:18378-18386. [PMID: 30282803 PMCID: PMC6254359 DOI: 10.1074/jbc.ra118.004202] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 09/10/2018] [Indexed: 11/28/2022] Open
Abstract
The retroviral restriction factor tripartite motif–containing 5α (Trim5α) acts during the early postentry stages of the retroviral life cycle to block infection by a broad range of retroviruses, disrupting reverse transcription and integration. The mechanism of this restriction is poorly understood, but it has recently been suggested to involve recruitment of components of the autophagy machinery, including members of the mammalian autophagy-related 8 (ATG8) family involved in targeting proteins to the autophagosome. To better understand the molecular details of this interaction, here we utilized analytical ultracentrifugation to characterize the binding of six ATG8 isoforms and determined the crystal structure of the Trim5α Bbox coiled-coil region in complex with one member of the mammalian ATG8 proteins, autophagy-related protein LC3 B (LC3B). We found that Trim5α binds all mammalian ATG8s and that, unlike the typical LC3-interacting region (LIR) that binds to mammalian ATG8s through a β-strand motif comprising approximately six residues, LC3B binds to Trim5α via the α-helical coiled-coil region. The orientation of the structure demonstrated that LC3B could be accommodated within a Trim5α assembly that can bind the retroviral capsid. However, mutation of the binding interface does not affect retroviral restriction. Comparison of the typical linear β-strand LIR with our atypical helical LIR reveals a conservation of the presentation of residues that are required for the interaction with LC3B. This observation expands the range of LC3B-binding proteins to include helical binding motifs and demonstrates a link between Trim5α and components of the autophagosome.
Collapse
Affiliation(s)
- Jeremy R Keown
- From the School of Biological Sciences, University of Auckland, Auckland 1010, New Zealand
| | - Moyra M Black
- From the School of Biological Sciences, University of Auckland, Auckland 1010, New Zealand
| | - Aaron Ferron
- the Francis Crick Institute, London NW1 1ST, United Kingdom
| | - Melvyn Yap
- the Francis Crick Institute, London NW1 1ST, United Kingdom
| | - Michael J Barnett
- From the School of Biological Sciences, University of Auckland, Auckland 1010, New Zealand
| | - F Grant Pearce
- the School of Biological Sciences, University of Canterbury, Christchurch 8041, New Zealand, and
| | | | - David C Goldstone
- From the School of Biological Sciences, University of Auckland, Auckland 1010, New Zealand,; the Maurice Wilkins Centre for Molecular Biodiscovery, Auckland 1010, New Zealand.
| |
Collapse
|
50
|
Günther J, Seyfert HM. The first line of defence: insights into mechanisms and relevance of phagocytosis in epithelial cells. Semin Immunopathol 2018; 40:555-565. [PMID: 30182191 PMCID: PMC6223882 DOI: 10.1007/s00281-018-0701-1] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 08/09/2018] [Indexed: 12/16/2022]
Abstract
Epithelial tissues cover most of the external and internal surfaces of the body and its organs. Inevitably, these tissues serve as first line of defence against inorganic, organic, and microbial intruders. Epithelial cells are the main cell type of these tissues. Besides their function as cellular barrier, there is growing evidence that epithelial cells are of particular relevance as initial sensors of danger and also as executers of adequate defence responses. These cells feature various essential functions to maintain tissue integrity in health and disease. In this review, we survey some of the different innate immune functions of epithelial cells in mucosal tissues being constantly exposed to a plethora of harmless contaminants but also of pathogens. We discuss how epithelial cells avoid inadequate immune responses in such conditions. In particular, we will focus on the diverse types and mechanisms of phagocytosis used by epithelial cells to not only maintain homeostasis but to also harness the host response against invading pathogens.
Collapse
Affiliation(s)
- Juliane Günther
- Institute for Genome Biology, Leibniz Institute for Farm Animal Biology, 18196, Dummerstorf, Germany.
| | - Hans-Martin Seyfert
- Institute for Genome Biology, Leibniz Institute for Farm Animal Biology, 18196, Dummerstorf, Germany
| |
Collapse
|