1
|
Lewis TR, Klementieva NV, Phan S, Castillo CM, Kim KY, Cao LY, Ellisman MH, Arshavsky VY, Alekseev O. Human rod photoreceptor outer segments are supported by accessory inner segment structures. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.09.607370. [PMID: 39149258 PMCID: PMC11326293 DOI: 10.1101/2024.08.09.607370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
The first steps in vision take place in photoreceptor cells, which are highly compartmentalized neurons exhibiting significant structural variation across species. The light-sensitive ciliary compartment, called the outer segment, is located atop of the cell soma, called the inner segment. In this study, we present an ultrastructural analysis of human photoreceptors, which reveals that, in contrast to this classic arrangement, the inner segment of human rods extends alongside the outer segment to form a structure hereby termed the "accessory inner segment". While reminiscent of the actin-based microvilli known as "calyceal processes" observed in other species, the accessory inner segment is a unique structure: (1) it contains an extensive microtubule-based cytoskeleton, (2) it extends far alongside the outer segment, (3) its diameter is comparable to that of the outer segment, (4) it contains numerous mitochondria, and (5) it forms electron-dense structures that likely mediate adhesion to the outer segment. Given that the spacing of extrafoveal human photoreceptors is more sparse than in non-primate species, with vast amounts of interphotoreceptor matrix present between cells, the closely apposed accessory inner segment likely provides structural support to the outer segment. This discovery expands our understanding of the human retina and directs future studies of human photoreceptor function in health and disease.
Collapse
Affiliation(s)
- Tylor R. Lewis
- Department of Ophthalmology, Duke University, Durham, NC
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham, Birmingham, AL
| | | | - Sebastien Phan
- National Center for Microscopy and Imaging Research, Department of Neurosciences, School of Medicine, University of California San Diego, La Jolla, CA
| | | | - Keun-Young Kim
- National Center for Microscopy and Imaging Research, Department of Neurosciences, School of Medicine, University of California San Diego, La Jolla, CA
| | - Lauren Y. Cao
- Department of Ophthalmology, Duke University, Durham, NC
| | - Mark H. Ellisman
- National Center for Microscopy and Imaging Research, Department of Neurosciences, School of Medicine, University of California San Diego, La Jolla, CA
| | - Vadim Y. Arshavsky
- Department of Ophthalmology, Duke University, Durham, NC
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC
| | - Oleg Alekseev
- Department of Ophthalmology, Duke University, Durham, NC
| |
Collapse
|
2
|
Aljammal R, Saravanan T, Guan T, Rhodes S, Robichaux MA, Ramamurthy V. Excessive tubulin glutamylation leads to progressive cone-rod dystrophy and loss of outer segment integrity. Hum Mol Genet 2024; 33:802-817. [PMID: 38297980 DOI: 10.1093/hmg/ddae013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/29/2023] [Accepted: 01/09/2024] [Indexed: 02/02/2024] Open
Abstract
Mutations in Cytosolic Carboxypeptidase-like Protein 5 (CCP5) are associated with vision loss in humans. To decipher the mechanisms behind CCP5-associated blindness, we generated a novel mouse model lacking CCP5. In this model, we found that increased tubulin glutamylation led to progressive cone-rod dystrophy, with cones showing a more pronounced and earlier functional loss than rod photoreceptors. The observed functional reduction was not due to cell death, levels, or the mislocalization of major phototransduction proteins. Instead, the increased tubulin glutamylation caused shortened photoreceptor axonemes and the formation of numerous abnormal membranous whorls that disrupted the integrity of photoreceptor outer segments (OS). Ultimately, excessive tubulin glutamylation led to the progressive loss of photoreceptors, affecting cones more severely than rods. Our results highlight the importance of maintaining tubulin glutamylation for normal photoreceptor function. Furthermore, we demonstrate that murine cone photoreceptors are more sensitive to disrupted tubulin glutamylation levels than rods, suggesting an essential role for axoneme in the structural integrity of the cone outer segment. This study provides valuable insights into the mechanisms of photoreceptor diseases linked to excessive tubulin glutamylation.
Collapse
Affiliation(s)
- Rawaa Aljammal
- Department of Biochemistry and Molecular Medicine, School of Medicine, West Virginia University, 64 Medical Center Dr., Morgantown, WV 26506, United States
- Department of Ophthalmology and Visual Sciences, One Stadium Dr, West Virginia University, Morgantown, WV 26506, United States
| | - Thamaraiselvi Saravanan
- Department of Biochemistry and Molecular Medicine, School of Medicine, West Virginia University, 64 Medical Center Dr., Morgantown, WV 26506, United States
- Department of Ophthalmology and Visual Sciences, One Stadium Dr, West Virginia University, Morgantown, WV 26506, United States
| | - Tongju Guan
- Department of Biochemistry and Molecular Medicine, School of Medicine, West Virginia University, 64 Medical Center Dr., Morgantown, WV 26506, United States
- Department of Ophthalmology and Visual Sciences, One Stadium Dr, West Virginia University, Morgantown, WV 26506, United States
| | - Scott Rhodes
- Department of Biochemistry and Molecular Medicine, School of Medicine, West Virginia University, 64 Medical Center Dr., Morgantown, WV 26506, United States
- Department of Ophthalmology and Visual Sciences, One Stadium Dr, West Virginia University, Morgantown, WV 26506, United States
| | - Michael A Robichaux
- Department of Biochemistry and Molecular Medicine, School of Medicine, West Virginia University, 64 Medical Center Dr., Morgantown, WV 26506, United States
- Department of Ophthalmology and Visual Sciences, One Stadium Dr, West Virginia University, Morgantown, WV 26506, United States
| | - Visvanathan Ramamurthy
- Department of Biochemistry and Molecular Medicine, School of Medicine, West Virginia University, 64 Medical Center Dr., Morgantown, WV 26506, United States
- Department of Ophthalmology and Visual Sciences, One Stadium Dr, West Virginia University, Morgantown, WV 26506, United States
| |
Collapse
|
3
|
Perumal N, Yurugi H, Dahm K, Rajalingam K, Grus FH, Pfeiffer N, Manicam C. Proteome landscape and interactome of voltage-gated potassium channel 1.6 (Kv1.6) of the murine ophthalmic artery and neuroretina. Int J Biol Macromol 2024; 257:128464. [PMID: 38043654 DOI: 10.1016/j.ijbiomac.2023.128464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 11/14/2023] [Accepted: 11/25/2023] [Indexed: 12/05/2023]
Abstract
The voltage-gated potassium channel 1.6 (Kv1.6) plays a vital role in ocular neurovascular beds and exerts its modulatory functions via interaction with other proteins. However, the interactome and their potential roles remain unknown. Here, the global proteome landscape of the ophthalmic artery (OA) and neuroretina was mapped, followed by the determination of Kv1.6 interactome and validation of its functionality and cellular localization. Microfluorimetric analysis of intracellular [K+] and Western blot validated the native functionality and cellular expression of the recombinant Kv1.6 channel protein. A total of 54, 9 and 28 Kv1.6-interacting proteins were identified in the mouse OA and, retina of mouse and rat, respectively. The Kv1.6-protein partners in the OA, namely actin cytoplasmic 2, alpha-2-macroglobulin and apolipoprotein A-I, were implicated in the maintenance of blood vessel integrity by regulating integrin-mediated adhesion to extracellular matrix and Ca2+ flux. Many retinal protein interactors, particularly the ADP/ATP translocase 2 and cytoskeleton protein tubulin, were involved in endoplasmic reticulum stress response and cell viability. Three common interactors were found in all samples comprising heat shock cognate 71 kDa protein, Ig heavy constant gamma 1 and Kv1.6 channel. This foremost in-depth investigation enriched and identified the elusive Kv1.6 channel and, elucidated its complex interactome.
Collapse
Affiliation(s)
- Natarajan Perumal
- Department of Ophthalmology, University Medical Centre of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Hajime Yurugi
- Cell Biology Unit, University Medical Centre of the Johannes Gutenberg University Mainz, Germany
| | - Katrin Dahm
- Cell Biology Unit, University Medical Centre of the Johannes Gutenberg University Mainz, Germany
| | - Krishnaraj Rajalingam
- Cell Biology Unit, University Medical Centre of the Johannes Gutenberg University Mainz, Germany
| | - Franz H Grus
- Department of Ophthalmology, University Medical Centre of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Norbert Pfeiffer
- Department of Ophthalmology, University Medical Centre of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Caroline Manicam
- Department of Ophthalmology, University Medical Centre of the Johannes Gutenberg University Mainz, Mainz, Germany.
| |
Collapse
|
4
|
Lee H, Lee J, Shin M, Park S. ANKS1A-Deficiency Aberrantly Increases the Entry of the Protein Transport Machinery into the Ependymal Cilia. Mol Cells 2023; 46:757-763. [PMID: 38052491 PMCID: PMC10701301 DOI: 10.14348/molcells.2023.0153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/13/2023] [Accepted: 10/22/2023] [Indexed: 12/07/2023] Open
Abstract
In this study, we examine whether a change in the protein levels for FOP in Ankyrin repeat and SAM domain-containing protein 1A (ANKS1A)-deficient ependymal cells affects the intraflagellar transport (IFT) protein transport system in the multicilia. Three distinct abnormalities are observed in the multicilia of ANKS1A-deficient ependymal cells. First, there were a greater number of IFT88-positive trains along the cilia from ANKS1A deficiency. The results are similar to each isolated cilium as well. Second, each isolated cilium contains a significant increase in the number of extracellular vesicles (ECVs) due to the lack of ANKS1A. Third, Van Gogh-like 2 (Vangl2), a ciliary membrane protein, is abundantly detected along the cilia and in the ECVs attached to them for ANKS1A-deficient cells. We also use primary ependymal culture systems to obtain the ECVs released from the multicilia. Consequently, we find that ECVs from ANKS1A-deficient cells contain more IFT machinery and Vangl2. These results indicate that ANKS1A deficiency increases the entry of the protein transport machinery into the multicilia and as a result of these abnormal protein transports, excessive ECVs form along the cilia. We conclude that ependymal cells make use of the ECV-based disposal system in order to eliminate excessively transported proteins from basal bodies.
Collapse
Affiliation(s)
- Haeryung Lee
- Department of Biological Sciences, Sookmyung Women’s University, Seoul 04310, Korea
| | - Jiyeon Lee
- Department of Biological Sciences, Sookmyung Women’s University, Seoul 04310, Korea
| | - Miram Shin
- Department of Biological Sciences, Sookmyung Women’s University, Seoul 04310, Korea
| | - Soochul Park
- Department of Biological Sciences, Sookmyung Women’s University, Seoul 04310, Korea
| |
Collapse
|
5
|
Zhang X, Li X, Chen W, Wang Y, Diao L, Gao Y, Wang H, Bao L, Liang X, Wu HY. The distinct initiation sites and processing activities of TTLL4 and TTLL7 in glutamylation of brain tubulin. J Biol Chem 2023; 299:104923. [PMID: 37321451 PMCID: PMC10404701 DOI: 10.1016/j.jbc.2023.104923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/05/2023] [Accepted: 06/07/2023] [Indexed: 06/17/2023] Open
Abstract
Mammalian brain tubulins undergo a reversible posttranslational modification-polyglutamylation-which attaches a secondary polyglutamate chain to the primary sequence of proteins. Loss of its erasers can disrupt polyglutamylation homeostasis and cause neurodegeneration. Tubulin tyrosine ligase like 4 (TTLL4) and TTLL7 were known to modify tubulins, both with preference for the β-isoform, but differently contribute to neurodegeneration. However, differences in their biochemical properties and functions remain largely unknown. Here, using an antibody-based method, we characterized the properties of a purified recombinant TTLL4 and confirmed its sole role as an initiator, unlike TTLL7, which both initiates and elongates the side chains. Unexpectedly, TTLL4 produced stronger glutamylation immunosignals for α-isoform than β-isoform in brain tubulins. Contrarily, the recombinant TTLL7 raised comparable glutamylation immunoreactivity for two isoforms. Given the site selectivity of the glutamylation antibody, we analyzed modification sites of two enzymes. Tandem mass spectrometry analysis revealed their incompatible site selectivity on synthetic peptides mimicking carboxyl termini of α1- and β2-tubulins and a recombinant tubulin. Particularly, in the recombinant α1A-tubulin, a novel region was found glutamylated by TTLL4 and TTLL7, that again at distinct sites. These results pinpoint different site specificities between two enzymes. Moreover, TTLL7 exhibits less efficiency to elongate microtubules premodified by TTLL4, suggesting possible regulation of TTLL7 elongation activity by TTLL4-initiated sites. Finally, we showed that kinesin behaves differentially on microtubules modified by two enzymes. This study underpins the different reactivity, site selectivity, and function of TTLL4 and TTLL7 on brain tubulins and sheds light on their distinct role in vivo.
Collapse
Affiliation(s)
- Xinyue Zhang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Xiangxiao Li
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Wei Chen
- IDG/McGovern Institute for Brain Research, School of Life Sciences, Tsinghua University, Beijing, China
| | - Yujuan Wang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Lei Diao
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Yan Gao
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Heyi Wang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Lan Bao
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Xin Liang
- IDG/McGovern Institute for Brain Research, School of Life Sciences, Tsinghua University, Beijing, China
| | - Hui-Yuan Wu
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China.
| |
Collapse
|
6
|
Mill P, Christensen ST, Pedersen LB. Primary cilia as dynamic and diverse signalling hubs in development and disease. Nat Rev Genet 2023; 24:421-441. [PMID: 37072495 PMCID: PMC7615029 DOI: 10.1038/s41576-023-00587-9] [Citation(s) in RCA: 90] [Impact Index Per Article: 90.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/16/2023] [Indexed: 04/20/2023]
Abstract
Primary cilia, antenna-like sensory organelles protruding from the surface of most vertebrate cell types, are essential for regulating signalling pathways during development and adult homeostasis. Mutations in genes affecting cilia cause an overlapping spectrum of >30 human diseases and syndromes, the ciliopathies. Given the immense structural and functional diversity of the mammalian cilia repertoire, there is a growing disconnect between patient genotype and associated phenotypes, with variable severity and expressivity characteristic of the ciliopathies as a group. Recent technological developments are rapidly advancing our understanding of the complex mechanisms that control biogenesis and function of primary cilia across a range of cell types and are starting to tackle this diversity. Here, we examine the structural and functional diversity of primary cilia, their dynamic regulation in different cellular and developmental contexts and their disruption in disease.
Collapse
Affiliation(s)
- Pleasantine Mill
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, Scotland
| | | | - Lotte B Pedersen
- Department of Biology, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
7
|
Spencer WJ. Extracellular vesicles highlight many cases of photoreceptor degeneration. Front Mol Neurosci 2023; 16:1182573. [PMID: 37273908 PMCID: PMC10233141 DOI: 10.3389/fnmol.2023.1182573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 05/02/2023] [Indexed: 06/06/2023] Open
Abstract
The release of extracellular vesicles is observed across numerous cell types and serves a range of biological functions including intercellular communication and waste disposal. One cell type which stands out for its robust capacity to release extracellular vesicles is the vertebrate photoreceptor cell. For decades, the release of extracellular vesicles by photoreceptors has been documented in many different animal models of photoreceptor degeneration and, more recently, in wild type photoreceptors. Here, I review all studies describing extracellular vesicle release by photoreceptors and discuss the most unifying theme among them-a photoreceptor cell fully, or partially, diverts its light sensitive membrane material to extracellular vesicles when it has defects in the delivery or morphing of this material into the photoreceptor's highly organized light sensing organelle. Because photoreceptors generate an enormous amount of light sensitive membrane every day, the diversion of this material to extracellular vesicles can cause a massive accumulation of these membranes within the retina. Little is known about the uptake of photoreceptor derived extracellular vesicles, although in some cases the retinal pigment epithelial cells, microglia, Müller glia, and/or photoreceptor cells themselves have been shown to phagocytize them.
Collapse
|
8
|
Somilleda-Ventura SA, López-Mayorga RM, Meaney-Mendiolea E, Rubio-Gayosso AIO, Pérez-Cano HJ, Ceballos-Reyes GM, Lima-Gómez V. Ketorolac and (-)-Epicatechin change retinal GFAP and NRF2 expression on hyperglycemic CD1 mice. J Neuroimmunol 2023; 375:578018. [PMID: 36657373 DOI: 10.1016/j.jneuroim.2023.578018] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 01/08/2023] [Accepted: 01/09/2023] [Indexed: 01/15/2023]
Abstract
Our objective was to determine whether (-)-Epicatechin administered alone or simultaneously with topical Ketorolac decreased the relative expression of GFAP and modulated the response of Nrf2 in a mouse model with induced hyperglycemia. We found that GFAP and Nrf2 decreased in the groups that received treatments alone or simultaneous during 8 weeks; even when the effect on the Nrf2 was not pronounced, it showed a higher concentration when GFAP decreased. Our results suggest a protective effect of Ketorolac and (-) - Epicatechin, which seem to limit the preclinical retinal damage caused by inflammation in hyperglycemia.
Collapse
Affiliation(s)
- Selma Alin Somilleda-Ventura
- Postgraduate and Research Studies Section, Superior School of Medicine, National Polytechnic Institute, Mexico City, PC 11340, Mexico
| | - Ruth Mery López-Mayorga
- Postgraduate and Research Studies Section, Superior School of Medicine, National Polytechnic Institute, Mexico City, PC 11340, Mexico
| | - Eduardo Meaney-Mendiolea
- Postgraduate and Research Studies Section, Superior School of Medicine, National Polytechnic Institute, Mexico City, PC 11340, Mexico
| | - Angel Ivan Orlando Rubio-Gayosso
- Postgraduate and Research Studies Section, Superior School of Medicine, National Polytechnic Institute, Mexico City, PC 11340, Mexico
| | - Héctor Javier Pérez-Cano
- Biomedical Research Center, Fundación Hospital Nuestra Señora de la Luz, Mexico City, PC 06030, Mexico
| | - Guillermo Manuel Ceballos-Reyes
- Postgraduate and Research Studies Section, Superior School of Medicine, National Polytechnic Institute, Mexico City, PC 11340, Mexico
| | - Virgilio Lima-Gómez
- Ophthalmology Service, Hospital Juárez de México, Mexico City, PC 07760, Mexico.
| |
Collapse
|
9
|
Hotta T, Plemmons A, Gebbie M, Ziehm TA, Blasius TL, Johnson C, Verhey KJ, Pearring JN, Ohi R. Mechanistic Analysis of CCP1 in Generating ΔC2 α-Tubulin in Mammalian Cells and Photoreceptor Neurons. Biomolecules 2023; 13:357. [PMID: 36830726 PMCID: PMC9952995 DOI: 10.3390/biom13020357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/30/2023] [Accepted: 02/08/2023] [Indexed: 02/15/2023] Open
Abstract
An important post-translational modification (PTM) of α-tubulin is the removal of amino acids from its C-terminus. Removal of the C-terminal tyrosine residue yields detyrosinated α-tubulin, and subsequent removal of the penultimate glutamate residue produces ΔC2-α-tubulin. These PTMs alter the ability of the α-tubulin C-terminal tail to interact with effector proteins and are thereby thought to change microtubule dynamics, stability, and organization. The peptidase(s) that produces ΔC2-α-tubulin in a physiological context remains unclear. Here, we take advantage of the observation that ΔC2-α-tubulin accumulates to high levels in cells lacking tubulin tyrosine ligase (TTL) to screen for cytosolic carboxypeptidases (CCPs) that generate ΔC2-α-tubulin. We identify CCP1 as the sole peptidase that produces ΔC2-α-tubulin in TTLΔ HeLa cells. Interestingly, we find that the levels of ΔC2-α-tubulin are only modestly reduced in photoreceptors of ccp1-/- mice, indicating that other peptidases act synergistically with CCP1 to produce ΔC2-α-tubulin in post-mitotic cells. Moreover, the production of ΔC2-α-tubulin appears to be under tight spatial control in the photoreceptor cilium: ΔC2-α-tubulin persists in the connecting cilium of ccp1-/- but is depleted in the distal portion of the photoreceptor. This work establishes the groundwork to pinpoint the function of ΔC2-α-tubulin in proliferating and post-mitotic mammalian cells.
Collapse
Affiliation(s)
- Takashi Hotta
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Alexandra Plemmons
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Margo Gebbie
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Trevor A. Ziehm
- Department of Ophthalmology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Teresa Lynne Blasius
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Craig Johnson
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Kristen J. Verhey
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jillian N. Pearring
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Ophthalmology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Ryoma Ohi
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
10
|
Gerstner CD, Reed M, Dahl TM, Ying G, Frederick JM, Baehr W. Arf-like Protein 2 (ARL2) Controls Microtubule Neogenesis during Early Postnatal Photoreceptor Development. Cells 2022; 12:147. [PMID: 36611941 PMCID: PMC9818799 DOI: 10.3390/cells12010147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/12/2022] [Accepted: 12/21/2022] [Indexed: 12/31/2022] Open
Abstract
Arf-like protein 2 (ARL2) is a ubiquitously expressed small GTPase with multiple functions. In a cell culture, ARL2 participates with tubulin cofactor D (TBCD) in the neogenesis of tubulin αβ-heterodimers, the building blocks of microtubules. To evaluate this function in the retina, we conditionally deleted ARL2 in mouse retina at two distinct stages, either during the embryonic development (retArl2-/-) or after ciliogenesis specifically in rods (rodArl2-/-). retArl2-/- retina sections displayed distorted nuclear layers and a disrupted microtubule cytoskeleton (MTC) as early as postnatal day 6 (P6). Rod and cone outer segments (OS) did not form. By contrast, the rod ARL2 knockouts were stable at postnatal day 35 and revealed normal ERG responses. Cytoplasmic dynein is reduced in retArl2-/- inner segments (IS), suggesting that dynein may be unstable in the absence of a normal MTC. We investigated the microtubular stability in the absence of either ARL2 (retARL2-/-) or DYNC1H1 (retDync1h1-/-), the dynein heavy chain, and found that both the retArl2-/- and retDync1h1-/- retinas exhibited reduced microtubules and nuclear layer distortion. The results suggest that ARL2 and dynein depend on each other to generate a functional MTC during the early photoreceptor development.
Collapse
Affiliation(s)
- Cecilia D. Gerstner
- Department of Ophthalmology, University of Utah Health Science Center, Salt Lake City, UT 84132, USA
| | - Michelle Reed
- Department of Ophthalmology, University of Utah Health Science Center, Salt Lake City, UT 84132, USA
| | - Tiffanie M. Dahl
- Department of Ophthalmology, University of Utah Health Science Center, Salt Lake City, UT 84132, USA
| | - Guoxin Ying
- Department of Ophthalmology, University of Utah Health Science Center, Salt Lake City, UT 84132, USA
| | - Jeanne M. Frederick
- Department of Ophthalmology, University of Utah Health Science Center, Salt Lake City, UT 84132, USA
| | - Wolfgang Baehr
- Department of Ophthalmology, University of Utah Health Science Center, Salt Lake City, UT 84132, USA
- Department of Neurobiology & Anatomy, University of Utah, Salt Lake City, UT 84112, USA
- Department of Biology, University of Utah, Salt Lake City, UT 84112, USA
| |
Collapse
|
11
|
Lewis TR, Phan S, Kim KY, Jha I, Castillo CM, Ding JD, Sajdak BS, Merriman DK, Ellisman MH, Arshavsky VY. Microvesicle release from inner segments of healthy photoreceptors is a conserved phenomenon in mammalian species. Dis Model Mech 2022; 15:dmm049871. [PMID: 36420970 PMCID: PMC9796728 DOI: 10.1242/dmm.049871] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 11/01/2022] [Indexed: 11/25/2022] Open
Abstract
Many inherited visual diseases arise from mutations that affect the structure and function of photoreceptor cells. In some cases, the pathology is accompanied by a massive release of extracellular vesicles from affected photoreceptors. In this study, we addressed whether vesicular release is an exclusive response to ongoing pathology or a normal homeostatic phenomenon amplified in disease. We analyzed the ultrastructure of normal photoreceptors from both rod- and cone-dominant mammalian species and found that these cells release microvesicles budding from their inner segment compartment. Inner segment-derived microvesicles vary in their content, with some of them containing the visual pigment rhodopsin and others appearing to be interconnected with mitochondria. These data suggest the existence of a fundamental process whereby healthy mammalian photoreceptors release mistrafficked or damaged inner segment material as microvesicles into the interphotoreceptor space. This release may be greatly enhanced under pathological conditions associated with defects in protein targeting and trafficking. This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Tylor R. Lewis
- Department of Ophthalmology, Duke University Medical Center, Durham, NC 27710, USA
| | - Sebastien Phan
- National Center for Microscopy and Imaging Research, School of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Keun-Young Kim
- National Center for Microscopy and Imaging Research, School of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Isha Jha
- National Center for Microscopy and Imaging Research, School of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Carson M. Castillo
- Department of Ophthalmology, Duke University Medical Center, Durham, NC 27710, USA
| | - Jin-Dong Ding
- Department of Ophthalmology, Duke University Medical Center, Durham, NC 27710, USA
| | - Benjamin S. Sajdak
- Department of Biology, University of Wisconsin Oshkosh, Oshkosh, WI 54901, USA
- Fauna Bio Inc., Emeryville, CA 94608, USA
| | - Dana K. Merriman
- Department of Biology, University of Wisconsin Oshkosh, Oshkosh, WI 54901, USA
| | - Mark H. Ellisman
- National Center for Microscopy and Imaging Research, School of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Vadim Y. Arshavsky
- Department of Ophthalmology, Duke University Medical Center, Durham, NC 27710, USA
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
12
|
Nazlamova L, Villa Vasquez SS, Lord J, Karthik V, Cheung MK, Lakowski J, Wheway G. Microtubule modification defects underlie cilium degeneration in cell models of retinitis pigmentosa associated with pre-mRNA splicing factor mutations. Front Genet 2022; 13:1009430. [PMID: 36176300 PMCID: PMC9513239 DOI: 10.3389/fgene.2022.1009430] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 08/19/2022] [Indexed: 11/17/2022] Open
Abstract
Retinitis pigmentosa (RP) is the most common cause of hereditary blindness, and may occur in isolation as a non-syndromic condition or alongside other features in a syndromic presentation. Biallelic or monoallelic mutations in one of eight genes encoding pre-mRNA splicing factors are associated with non-syndromic RP. The molecular mechanism of disease remains incompletely understood, limiting opportunities for targeted treatment. Here we use CRISPR and base edited PRPF6 and PRPF31 mutant cell lines, and publicly-available data from human PRPF31+/− patient derived retinal organoids and PRPF31 siRNA-treated organotypic retinal cultures to confirm an enrichment of differential splicing of microtubule, centrosomal, cilium and DNA damage response pathway genes in these cells. We show that genes with microtubule/centrosome/centriole/cilium gene ontology terms are enriched for weak 3′ and 5′ splice sites, and that subtle defects in spliceosome activity predominantly affect efficiency of splicing of these exons. We suggest that the primary defect in PRPF6 or PRPF31 mutant cells is microtubule and centrosomal defects, leading to defects in cilium and mitotic spindle stability, with the latter leading to DNA damage, triggering differential splicing of DNA damage response genes to activate this pathway. Finally, we expand understanding of “splicing factor RP” by investigating the function of TTLL3, one of the most statistically differentially expressed genes in PRPF6 and PRPF31 mutant cells. We identify that TTLL3 is the only tubulin glycylase expressed in the human retina, essential for monoglycylation of microtubules of the cilium, including the retinal photoreceptor cilium, to prevent cilium degeneration and retinal degeneration. Our preliminary data suggest that rescue of tubulin glycylation through overexpression of TTLL3 is sufficient to rescue cilium number in PRPF6 and PRPF31 mutant cells, suggesting that this defect underlies the cellular defect and may represent a potential target for therapeutic intervention in this group of disorders.
Collapse
Affiliation(s)
- Liliya Nazlamova
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Suly Saray Villa Vasquez
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Jenny Lord
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Varshini Karthik
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Man-Kim Cheung
- Centre for Research in Biosciences, University of the West of England, Bristol, United Kingdom
| | - Jörn Lakowski
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Gabrielle Wheway
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
- *Correspondence: Gabrielle Wheway,
| |
Collapse
|
13
|
Karademir D, Todorova V, Ebner LJA, Samardzija M, Grimm C. Single-cell RNA sequencing of the retina in a model of retinitis pigmentosa reveals early responses to degeneration in rods and cones. BMC Biol 2022; 20:86. [PMID: 35413909 PMCID: PMC9006580 DOI: 10.1186/s12915-022-01280-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 03/12/2022] [Indexed: 11/18/2022] Open
Abstract
Background In inherited retinal disorders such as retinitis pigmentosa (RP), rod photoreceptor-specific mutations cause primary rod degeneration that is followed by secondary cone death and loss of high-acuity vision. Mechanistic studies of retinal degeneration are challenging because of retinal heterogeneity. Moreover, the detection of early cone responses to rod death is especially difficult due to the paucity of cones in the retina. To resolve heterogeneity in the degenerating retina and investigate events in both types of photoreceptors during primary rod degeneration, we utilized droplet-based single-cell RNA sequencing in an RP mouse model, rd10. Results Using trajectory analysis, we defined two consecutive phases of rod degeneration at P21, characterized by the early transient upregulation of Egr1 and the later induction of Cebpd. EGR1 was the transcription factor most significantly associated with the promoters of differentially regulated genes in Egr1-positive rods in silico. Silencing Egr1 affected the expression levels of two of these genes in vitro. Degenerating rods exhibited changes associated with metabolism, neuroprotection, and modifications to synapses and microtubules. Egr1 was also the most strongly upregulated transcript in cones. Its upregulation in cones accompanied potential early respiratory dysfunction and changes in signaling pathways. The expression pattern of EGR1 in the retina was dynamic during degeneration, with a transient increase of EGR1 immunoreactivity in both rods and cones during the early stages of their degenerative processes. Conclusion Our results identify early and late changes in degenerating rd10 rod photoreceptors and reveal early responses to rod degeneration in cones not expressing the disease-causing mutation, pointing to mechanisms relevant for secondary cone degeneration. In addition, our data implicate EGR1 as a potential key regulator of early degenerative events in rods and cones, providing a potential broad target for modulating photoreceptor degeneration. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-022-01280-9.
Collapse
Affiliation(s)
- Duygu Karademir
- Laboratory for Retinal Cell Biology, Department of Ophthalmology, University Hospital Zurich, University of Zurich, Zurich, Switzerland. .,Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland.
| | - Vyara Todorova
- Laboratory for Retinal Cell Biology, Department of Ophthalmology, University Hospital Zurich, University of Zurich, Zurich, Switzerland.,Neuroscience Center Zurich, University of Zurich, Zurich, Switzerland
| | - Lynn J A Ebner
- Laboratory for Retinal Cell Biology, Department of Ophthalmology, University Hospital Zurich, University of Zurich, Zurich, Switzerland.,Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | - Marijana Samardzija
- Laboratory for Retinal Cell Biology, Department of Ophthalmology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Christian Grimm
- Laboratory for Retinal Cell Biology, Department of Ophthalmology, University Hospital Zurich, University of Zurich, Zurich, Switzerland.,Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland.,Neuroscience Center Zurich, University of Zurich, Zurich, Switzerland
| |
Collapse
|
14
|
Rocha C, Prinos P. Post-transcriptional and Post-translational Modifications of Primary Cilia: How to Fine Tune Your Neuronal Antenna. Front Cell Neurosci 2022; 16:809917. [PMID: 35295905 PMCID: PMC8918543 DOI: 10.3389/fncel.2022.809917] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 01/19/2022] [Indexed: 12/27/2022] Open
Abstract
Primary cilia direct cellular signaling events during brain development and neuronal differentiation. The primary cilium is a dynamic organelle formed in a multistep process termed ciliogenesis that is tightly coordinated with the cell cycle. Genetic alterations, such as ciliary gene mutations, and epigenetic alterations, such as post-translational modifications and RNA processing of cilia related factors, give rise to human neuronal disorders and brain tumors such as glioblastoma and medulloblastoma. This review discusses the important role of genetics/epigenetics, as well as RNA processing and post-translational modifications in primary cilia function during brain development and cancer formation. We summarize mouse and human studies of ciliogenesis and primary cilia activity in the brain, and detail how cilia maintain neuronal progenitor populations and coordinate neuronal differentiation during development, as well as how cilia control different signaling pathways such as WNT, Sonic Hedgehog (SHH) and PDGF that are critical for neurogenesis. Moreover, we describe how post-translational modifications alter cilia formation and activity during development and carcinogenesis, and the impact of missplicing of ciliary genes leading to ciliopathies and cell cycle alterations. Finally, cilia genetic and epigenetic studies bring to light cellular and molecular mechanisms that underlie neurodevelopmental disorders and brain tumors.
Collapse
Affiliation(s)
- Cecilia Rocha
- Early Drug Discovery Unit, Montreal Neurological Institute-Hospital, McGill University, Montreal, QC, Canada
- *Correspondence: Cecilia Rocha,
| | - Panagiotis Prinos
- Structural Genomics Consortium, University of Toronto, Toronto, ON, Canada
- Panagiotis Prinos,
| |
Collapse
|
15
|
Baltanás FC, Berciano MT, Santos E, Lafarga M. The Childhood-Onset Neurodegeneration with Cerebellar Atrophy (CONDCA) Disease Caused by AGTPBP1 Gene Mutations: The Purkinje Cell Degeneration Mouse as an Animal Model for the Study of this Human Disease. Biomedicines 2021; 9:biomedicines9091157. [PMID: 34572343 PMCID: PMC8464709 DOI: 10.3390/biomedicines9091157] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/01/2021] [Accepted: 09/02/2021] [Indexed: 12/20/2022] Open
Abstract
Recent reports have identified rare, biallelic damaging variants of the AGTPBP1 gene that cause a novel and documented human disease known as childhood-onset neurodegeneration with cerebellar atrophy (CONDCA), linking loss of function of the AGTPBP1 protein to human neurodegenerative diseases. CONDCA patients exhibit progressive cognitive decline, ataxia, hypotonia or muscle weakness among other clinical features that may be fatal. Loss of AGTPBP1 in humans recapitulates the neurodegenerative course reported in a well-characterised murine animal model harbouring loss-of-function mutations in the AGTPBP1 gene. In particular, in the Purkinje cell degeneration (pcd) mouse model, mutations in AGTPBP1 lead to early cerebellar ataxia, which correlates with the massive loss of cerebellar Purkinje cells. In addition, neurodegeneration in the olfactory bulb, retina, thalamus and spinal cord were also reported. In addition to neurodegeneration, pcd mice show behavioural deficits such as cognitive decline. Here, we provide an overview of what is currently known about the structure and functional role of AGTPBP1 and discuss the various alterations in AGTPBP1 that cause neurodegeneration in the pcd mutant mouse and humans with CONDCA. The sequence of neuropathological events that occur in pcd mice and the mechanisms governing these neurodegenerative processes are also reported. Finally, we describe the therapeutic strategies that were applied in pcd mice and focus on the potential usefulness of pcd mice as a promising model for the development of new therapeutic strategies for clinical trials in humans, which may offer potential beneficial options for patients with AGTPBP1 mutation-related CONDCA.
Collapse
Affiliation(s)
- Fernando C. Baltanás
- Lab.1, CIC-IBMCC, University of Salamanca-CSIC and CIBERONC, 37007 Salamanca, Spain;
- Correspondence: ; Tel.: +34-923294801
| | - María T. Berciano
- Department of Molecular Biology and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), University of Cantabria-IDIVAL, 39011 Santander, Spain;
| | - Eugenio Santos
- Lab.1, CIC-IBMCC, University of Salamanca-CSIC and CIBERONC, 37007 Salamanca, Spain;
| | - Miguel Lafarga
- Department of Anatomy and Cell Biology and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), University of Cantabria-IDIVAL, 39011 Santander, Spain;
| |
Collapse
|
16
|
Li LX, Li X. Epigenetically Mediated Ciliogenesis and Cell Cycle Regulation, and Their Translational Potential. Cells 2021; 10:cells10071662. [PMID: 34359832 PMCID: PMC8307023 DOI: 10.3390/cells10071662] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/24/2021] [Accepted: 06/29/2021] [Indexed: 12/13/2022] Open
Abstract
Primary cilia biogenesis has been closely associated with cell cycle progression. Cilia assemble when cells exit the cell cycle and enter a quiescent stage at the post-mitosis phase, and disassemble before cells re-enter a new cell cycle. Studies have focused on how the cell cycle coordinates with the cilia assembly/disassembly process, and whether and how cilia biogenesis affects the cell cycle. Appropriate regulation of the functions and/or expressions of ciliary and cell-cycle-associated proteins is pivotal to maintaining bodily homeostasis. Epigenetic mechanisms, including DNA methylation and histone/chromatin modifications, are involved in the regulation of cell cycle progression and cilia biogenesis. In this review, first, we discuss how epigenetic mechanisms regulate cell cycle progression and cilia biogenesis through the regulation of DNA methylation and chromatin structures, to either promote or repress the transcription of genes associated with those processes and the modification of cytoskeleton network, including microtubule and actin. Next, we discuss the crosstalk between the cell cycle and ciliogenesis, and the involvement of epigenetic regulators in this process. In addition, we discuss cilia-dependent signaling pathways in cell cycle regulation. Understanding the mechanisms of how epigenetic regulators contribute to abnormal cell cycle regulation and ciliogenesis defects would lead to developing therapeutic strategies for the treatment of a wide variety of diseases, such as cancers, polycystic kidney disease (PKD), and other ciliopathy-associated disorders.
Collapse
Affiliation(s)
- Linda Xiaoyan Li
- Department of Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA;
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| | - Xiaogang Li
- Department of Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA;
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
- Correspondence: ; Tel.: +1-507-266-0110
| |
Collapse
|
17
|
MacTaggart B, Kashina A. Posttranslational modifications of the cytoskeleton. Cytoskeleton (Hoboken) 2021; 78:142-173. [PMID: 34152688 DOI: 10.1002/cm.21679] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 06/13/2021] [Accepted: 06/16/2021] [Indexed: 12/12/2022]
Abstract
The cytoskeleton plays important roles in many essential processes at the cellular and organismal levels, including cell migration and motility, cell division, and the establishment and maintenance of cell and tissue architecture. In order to facilitate these varied functions, the main cytoskeletal components-microtubules, actin filaments, and intermediate filaments-must form highly diverse intracellular arrays in different subcellular areas and cell types. The question of how this diversity is conferred has been the focus of research for decades. One key mechanism is the addition of posttranslational modifications (PTMs) to the major cytoskeletal proteins. This posttranslational addition of various chemical groups dramatically increases the complexity of the cytoskeletal proteome and helps facilitate major global and local cytoskeletal functions. Cytoskeletal proteins undergo many PTMs, most of which are not well understood. Recent technological advances in proteomics and cell biology have allowed for the in-depth study of individual PTMs and their functions in the cytoskeleton. Here, we provide an overview of the major PTMs that occur on the main structural components of the three cytoskeletal systems-tubulin, actin, and intermediate filament proteins-and highlight the cellular function of these modifications.
Collapse
Affiliation(s)
- Brittany MacTaggart
- School of Veterinary Medicine, Department of Biomedical Sciences, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Anna Kashina
- School of Veterinary Medicine, Department of Biomedical Sciences, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
18
|
Pérez-Martín E, Muñoz-Castañeda R, Moutin MJ, Ávila-Zarza CA, Muñoz-Castañeda JM, Del Pilar C, Alonso JR, Andrieux A, Díaz D, Weruaga E. Oleoylethanolamide Delays the Dysfunction and Death of Purkinje Cells and Ameliorates Behavioral Defects in a Mouse Model of Cerebellar Neurodegeneration. Neurotherapeutics 2021; 18:1748-1767. [PMID: 33829414 PMCID: PMC8609004 DOI: 10.1007/s13311-021-01044-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/16/2021] [Indexed: 02/04/2023] Open
Abstract
Oleoylethanolamide (OEA) is an endocannabinoid that has been proposed to prevent neuronal damage and neuroinflammation. In this study, we evaluated the effects of OEA on the disruption of both cerebellar structure and physiology and on the behavior of Purkinje cell degeneration (PCD) mutant mice. These mice exhibit cerebellar degeneration, displaying microtubule alterations that trigger the selective loss of Purkinje cells and consequent behavioral impairments. The effects of different doses (1, 5, and 10 mg/kg, i.p.) and administration schedules (chronic and acute) of OEA were assessed at the behavioral, histological, cellular, and molecular levels to determine the most effective OEA treatment regimen. Our in vivo results demonstrated that OEA treatment prior to the onset of the preneurodegenerative phase prevented morphological alterations in Purkinje neurons (the somata and dendritic arbors) and decreased Purkinje cell death. This effect followed an inverted U-shaped time-response curve, with acute administration on postnatal day 12 (10 mg/kg, i.p.) being the most effective treatment regimen tested. Indeed, PCD mice that received this specific OEA treatment regimen showed improvements in motor, cognitive and social functions, which were impaired in these mice. Moreover, these in vivo neuroprotective effects of OEA were mediated by the PPARα receptor, as pretreatment with the PPARα antagonist GW6471 (2.5 mg/kg, i.p.) abolished them. Finally, our in vitro results suggested that the molecular effect of OEA was related to microtubule stability and structure since OEA administration normalized some alterations in microtubule features in PCD-like cells. These findings provide strong evidence supporting the use of OEA as a pharmacological agent to limit severe cerebellar neurodegenerative processes.
Collapse
Affiliation(s)
- Ester Pérez-Martín
- Laboratory of Neuronal Plasticity and Neurorepair, Institute for Neurosciences of Castile and Leon (INCyL), University of Salamanca, 37007, Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), 37007, Salamanca, Spain
| | - Rodrigo Muñoz-Castañeda
- Laboratory of Neuronal Plasticity and Neurorepair, Institute for Neurosciences of Castile and Leon (INCyL), University of Salamanca, 37007, Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), 37007, Salamanca, Spain
| | - Marie-Jo Moutin
- GIN, Univ. Grenoble Alpes, CNRS, CEA, Grenoble Institute Neurosciences, Inserm, U121638000, Grenoble, France
| | - Carmelo A Ávila-Zarza
- Institute of Biomedical Research of Salamanca (IBSAL), 37007, Salamanca, Spain
- Department of Statistics, University of Salamanca, 37007, Salamanca, Spain
| | - José M Muñoz-Castañeda
- Department of Theoretical, Atomic and Optical Physics, University of Valladolid, 47071, Valladolid, Spain
| | - Carlos Del Pilar
- Laboratory of Neuronal Plasticity and Neurorepair, Institute for Neurosciences of Castile and Leon (INCyL), University of Salamanca, 37007, Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), 37007, Salamanca, Spain
| | - José R Alonso
- Laboratory of Neuronal Plasticity and Neurorepair, Institute for Neurosciences of Castile and Leon (INCyL), University of Salamanca, 37007, Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), 37007, Salamanca, Spain
- Universidad de Tarapacá, Arica, Chile
| | - Annie Andrieux
- GIN, Univ. Grenoble Alpes, CNRS, CEA, Grenoble Institute Neurosciences, Inserm, U121638000, Grenoble, France
| | - David Díaz
- Laboratory of Neuronal Plasticity and Neurorepair, Institute for Neurosciences of Castile and Leon (INCyL), University of Salamanca, 37007, Salamanca, Spain.
- Institute of Biomedical Research of Salamanca (IBSAL), 37007, Salamanca, Spain.
| | - Eduardo Weruaga
- Laboratory of Neuronal Plasticity and Neurorepair, Institute for Neurosciences of Castile and Leon (INCyL), University of Salamanca, 37007, Salamanca, Spain.
- Institute of Biomedical Research of Salamanca (IBSAL), 37007, Salamanca, Spain.
| |
Collapse
|
19
|
Yang WT, Hong SR, He K, Ling K, Shaiv K, Hu J, Lin YC. The Emerging Roles of Axonemal Glutamylation in Regulation of Cilia Architecture and Functions. Front Cell Dev Biol 2021; 9:622302. [PMID: 33748109 PMCID: PMC7970040 DOI: 10.3389/fcell.2021.622302] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 02/11/2021] [Indexed: 12/14/2022] Open
Abstract
Cilia, which either generate coordinated motion or sense environmental cues and transmit corresponding signals to the cell body, are highly conserved hair-like structures that protrude from the cell surface among diverse species. Disruption of ciliary functions leads to numerous human disorders, collectively referred to as ciliopathies. Cilia are mechanically supported by axonemes, which are composed of microtubule doublets. It has been recognized for several decades that tubulins in axonemes undergo glutamylation, a post-translational polymodification, that conjugates glutamic acid chains onto the C-terminal tail of tubulins. However, the physiological roles of axonemal glutamylation were not uncovered until recently. This review will focus on how cells modulate glutamylation on ciliary axonemes and how axonemal glutamylation regulates cilia architecture and functions, as well as its physiological importance in human health. We will also discuss the conventional and emerging new strategies used to manipulate glutamylation in cilia.
Collapse
Affiliation(s)
- Wen-Ting Yang
- Institute of Molecular Medicine, National Tsing Hua University, HsinChu City, Taiwan
| | - Shi-Rong Hong
- Institute of Molecular Medicine, National Tsing Hua University, HsinChu City, Taiwan
| | - Kai He
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, United States
| | - Kun Ling
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, United States
| | - Kritika Shaiv
- Institute of Molecular Medicine, National Tsing Hua University, HsinChu City, Taiwan
| | - JingHua Hu
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, United States
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, United States
- Mayo Clinic Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, United States
| | - Yu-Chun Lin
- Institute of Molecular Medicine, National Tsing Hua University, HsinChu City, Taiwan
- Department of Medical Science, National Tsing Hua University, HsinChu City, Taiwan
| |
Collapse
|
20
|
Gadadhar S, Alvarez Viar G, Hansen JN, Gong A, Kostarev A, Ialy-Radio C, Leboucher S, Whitfield M, Ziyyat A, Touré A, Alvarez L, Pigino G, Janke C. Tubulin glycylation controls axonemal dynein activity, flagellar beat, and male fertility. Science 2021; 371:371/6525/eabd4914. [PMID: 33414192 DOI: 10.1126/science.abd4914] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 10/13/2020] [Accepted: 11/18/2020] [Indexed: 12/30/2022]
Abstract
Posttranslational modifications of the microtubule cytoskeleton have emerged as key regulators of cellular functions, and their perturbations have been linked to a growing number of human pathologies. Tubulin glycylation modifies microtubules specifically in cilia and flagella, but its functional and mechanistic roles remain unclear. In this study, we generated a mouse model entirely lacking tubulin glycylation. Male mice were subfertile owing to aberrant beat patterns of their sperm flagella, which impeded the straight swimming of sperm cells. Using cryo-electron tomography, we showed that lack of glycylation caused abnormal conformations of the dynein arms within sperm axonemes, providing the structural basis for the observed dysfunction. Our findings reveal the importance of microtubule glycylation for controlled flagellar beating, directional sperm swimming, and male fertility.
Collapse
Affiliation(s)
- Sudarshan Gadadhar
- Institut Curie, Université PSL, CNRS UMR3348, F-91400 Orsay, France. .,Université Paris-Saclay, CNRS UMR3348, F-91400 Orsay, France
| | - Gonzalo Alvarez Viar
- Max Planck Institute of Molecular Cell Biology and Genetics, D-01307 Dresden, Germany
| | - Jan Niklas Hansen
- Institute of Innate Immunity, Medical Faculty, University of Bonn, D-53127 Bonn, Germany
| | - An Gong
- Center of Advanced European Studies and Research, D-53175 Bonn, Germany
| | - Aleksandr Kostarev
- Max Planck Institute of Molecular Cell Biology and Genetics, D-01307 Dresden, Germany
| | - Côme Ialy-Radio
- Université de Paris, Institut Cochin, INSERM, CNRS, F-75014 Paris, France
| | - Sophie Leboucher
- Institut Curie, Université PSL, CNRS UMR3348, F-91400 Orsay, France.,Université Paris-Saclay, CNRS UMR3348, F-91400 Orsay, France
| | - Marjorie Whitfield
- Université de Paris, Institut Cochin, INSERM, CNRS, F-75014 Paris, France
| | - Ahmed Ziyyat
- Université de Paris, Institut Cochin, INSERM, CNRS, F-75014 Paris, France.,Service d'histologie, d'embryologie, Biologie de la reproduction, Assistance Publique-Hôpitaux de Paris, Hôpital Cochin, F-75014 Paris, France
| | - Aminata Touré
- Université de Paris, Institut Cochin, INSERM, CNRS, F-75014 Paris, France
| | - Luis Alvarez
- Center of Advanced European Studies and Research, D-53175 Bonn, Germany.
| | - Gaia Pigino
- Max Planck Institute of Molecular Cell Biology and Genetics, D-01307 Dresden, Germany. .,Human Technopole, I-20157 Milan, Italy
| | - Carsten Janke
- Institut Curie, Université PSL, CNRS UMR3348, F-91400 Orsay, France. .,Université Paris-Saclay, CNRS UMR3348, F-91400 Orsay, France
| |
Collapse
|
21
|
Alteration of Neural Stem Cell Functions in Ataxia and Male Sterility Mice: A Possible Role of β-Tubulin Glutamylation in Neurodegeneration. Cells 2021; 10:cells10010155. [PMID: 33466875 PMCID: PMC7830091 DOI: 10.3390/cells10010155] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 01/09/2021] [Accepted: 01/11/2021] [Indexed: 12/20/2022] Open
Abstract
Ataxia and Male Sterility (AMS) is a mutant mouse strain that contains a missense mutation in the coding region of Nna1, a gene that encodes a deglutamylase. AMS mice exhibit early cerebellar Purkinje cell degeneration and an ataxic phenotype in an autosomal recessive manner. To understand the underlying mechanism, we generated neuronal stem cell (NSC) lines from wild-type (NMW7), Nna1 mutation heterozygous (NME), and Nna1 mutation homozygous (NMO1) mouse brains. The NNA1 levels were decreased, and the glutamylated tubulin levels were increased in NMO1 cultures as well as in the cerebellum of AMS mice at both 15 and 30 days of age. However, total β-tubulin protein levels were not altered in the AMS cerebellum. In NMO1 neurosphere cultures, β-tubulin protein levels were increased without changes at the transcriptional level. NMO1 grew faster than other NSC lines, and some of the neurospheres were attached to the plate after 3 days. Immunostaining revealed that SOX2 and nestin levels were decreased in NMO1 neurospheres and that the neuronal differentiation potentials were reduced in NMO1 cells compared to NME or NMW7 cells. These results demonstrate that the AMS mutation decreased the NNA1 levels and increased glutamylation in the cerebellum of AMS mice. The observed changes in glutamylation might alter NSC properties and the neuron maturation process, leading to Purkinje cell death in AMS mice.
Collapse
|
22
|
Sundar J, Matalkah F, Jeong B, Stoilov P, Ramamurthy V. The Musashi proteins MSI1 and MSI2 are required for photoreceptor morphogenesis and vision in mice. J Biol Chem 2021; 296:100048. [PMID: 33168629 PMCID: PMC7948980 DOI: 10.1074/jbc.ra120.015714] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 10/30/2020] [Accepted: 11/09/2020] [Indexed: 12/11/2022] Open
Abstract
The Musashi family of RNA-binding proteins is known for its role in stem-cell renewal and is a negative regulator of cell differentiation. Interestingly, in the retina, the Musashi proteins MSI1 and MSI2 are differentially expressed throughout the cycle of retinal development, with MSI2 protein displaying robust expression in the adult retinal tissue. In this study, we investigated the importance of Musashi proteins in the development and function of photoreceptor neurons in the retina. We generated a pan-retinal and rod photoreceptor neuron-specific conditional KO mouse lacking MSI1 and MSI2. Independent of the sex, photoreceptor neurons with simultaneous deletion of Msi1 and Msi2 were unable to respond to light and displayed severely disrupted photoreceptor outer segment morphology and ciliary defects. Mice lacking MSI1 and MSI2 in the retina exhibited neuronal degeneration, with complete loss of photoreceptors within 6 months. In concordance with our earlier studies that proposed a role for Musashi proteins in regulating alternative splicing, the loss of MSI1 and MSI2 prevented the use of photoreceptor-specific exons in transcripts critical for outer segment morphogenesis, ciliogenesis, and synaptic transmission. Overall, we demonstrate a critical role for Musashi proteins in the morphogenesis of terminally differentiated photoreceptor neurons. This role is in stark contrast with the canonical function of these two proteins in the maintenance and renewal of stem cells.
Collapse
Affiliation(s)
- Jesse Sundar
- Department of Biochemistry, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, West Virginia, USA
| | - Fatimah Matalkah
- Department of Biochemistry, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, West Virginia, USA
| | - Bohye Jeong
- Department of Biochemistry, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, West Virginia, USA
| | - Peter Stoilov
- Department of Biochemistry, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, West Virginia, USA.
| | - Visvanathan Ramamurthy
- Department of Biochemistry, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, West Virginia, USA; Department of Ophthalmology and Visual Sciences, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, West Virginia, USA; Department of Neuroscience, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, West Virginia, USA.
| |
Collapse
|
23
|
Khan AO, Slater A, Maclachlan A, Nicolson PLR, Pike JA, Reyat JS, Yule J, Stapley R, Rayes J, Thomas SG, Morgan NV. Post-translational polymodification of β1-tubulin regulates motor protein localisation in platelet production and function. Haematologica 2020; 107:243-259. [PMID: 33327716 PMCID: PMC8719104 DOI: 10.3324/haematol.2020.270793] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Indexed: 11/17/2022] Open
Abstract
In specialized cells, the expression of specific tubulin isoforms and their subsequent post-translational modifications drive and coordinate unique morphologies and behaviors. The mechanisms by which b1-tubulin, the platelet and megakaryocyte (MK) lineage restricted tubulin isoform, drives platelet production and function remains poorly understood. We investigated the roles of two key post-translational tubulin polymodifications (polyglutamylation and polyglycylation) on these processes using a cohort of thrombocytopenic patients, human induced pluripotent stem cell derived MK, and healthy human donor platelets. We find distinct patterns of polymodification in MK and platelets, mediated by the antagonistic activities of the cell specific expression of tubulin tyrosine ligase like enzymes and cytosolic carboxypeptidase enzymes. The resulting microtubule patterning spatially regulates motor proteins to drive proplatelet formation in megakaryocytes, and the cytoskeletal reorganization required for thrombus formation. This work is the first to show a reversible system of polymodification by which different cell specific functions are achieved.
Collapse
Affiliation(s)
- Abdullah O Khan
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, UK, B15 2TT.
| | - Alexandre Slater
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, UK, B15 2TT
| | - Annabel Maclachlan
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, UK, B15 2TT
| | - Phillip L R Nicolson
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, UK, B15 2TT
| | - Jeremy A Pike
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, UK, B15 2TT; Centre of Membrane and Protein and Receptors (COMPARE), University of Birmingham and University of Nottingham, Midlands
| | - Jasmeet S Reyat
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, UK, B15 2TT
| | - Jack Yule
- Centre of Membrane and Protein and Receptors (COMPARE), University of Birmingham and University of Nottingham, Midlands
| | - Rachel Stapley
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, UK, B15 2TT
| | - Julie Rayes
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, UK, B15 2TT
| | - Steven G Thomas
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, UK, B15 2TT; Centre of Membrane and Protein and Receptors (COMPARE), University of Birmingham and University of Nottingham, Midlands
| | - Neil V Morgan
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, UK, B15 2TT.
| |
Collapse
|
24
|
Wall KP, Hart H, Lee T, Page C, Hawkins TL, Hough LE. C-Terminal Tail Polyglycylation and Polyglutamylation Alter Microtubule Mechanical Properties. Biophys J 2020; 119:2219-2230. [PMID: 33137305 DOI: 10.1016/j.bpj.2020.09.040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 09/20/2020] [Accepted: 09/25/2020] [Indexed: 11/13/2022] Open
Abstract
Microtubules are biopolymers that perform diverse cellular functions. Microtubule behavior regulation occurs in part through post-translational modification of both the α- and β-subunits of tubulin. One class of modifications is the heterogeneous addition of glycine and/or glutamate residues to the disordered C-terminal tails (CTTs) of tubulin. Because of their prevalence in stable, high-stress cellular structures such as cilia, we sought to determine if these modifications alter microtubules' intrinsic stiffness. Here, we describe the purification and characterization of differentially modified pools of tubulin from Tetrahymena thermophila. We found that post-translational modifications do affect microtubule stiffness but do not affect the number of protofilaments incorporated into microtubules. We measured the spin dynamics of nuclei in the CTT backbone by NMR spectroscopy to explore the mechanism of this change. Our results show that the α-tubulin CTT does not protrude out from the microtubule surface, as is commonly depicted in models, but instead interacts with the dimer's surface. This suggests that the interactions of the α-tubulin CTT with the tubulin body contributes to the stiffness of the assembled microtubule, thus providing insight into the mechanism by which polyglycylation and polyglutamylation can alter microtubule mechanical properties.
Collapse
Affiliation(s)
- Kathryn P Wall
- Department of Biochemistry, University of Colorado Boulder, Boulder, Colorado; BioFrontiers Institute, University of Colorado Boulder, Boulder, Colorado
| | - Harold Hart
- Physics Department, University of Wisconsin La Crosse, La Crosse, Wisconsin
| | - Thomas Lee
- Department of Biochemistry, University of Colorado Boulder, Boulder, Colorado
| | - Cynthia Page
- Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, Colorado
| | - Taviare L Hawkins
- Physics Department, University of Wisconsin La Crosse, La Crosse, Wisconsin
| | - Loren E Hough
- BioFrontiers Institute, University of Colorado Boulder, Boulder, Colorado; Department of Physics, University of Colorado Boulder, Boulder, Colorado.
| |
Collapse
|
25
|
The emerging role of tubulin posttranslational modifications in cilia and ciliopathies. BIOPHYSICS REPORTS 2020. [DOI: 10.1007/s41048-020-00111-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
|
26
|
Collin GB, Gogna N, Chang B, Damkham N, Pinkney J, Hyde LF, Stone L, Naggert JK, Nishina PM, Krebs MP. Mouse Models of Inherited Retinal Degeneration with Photoreceptor Cell Loss. Cells 2020; 9:cells9040931. [PMID: 32290105 PMCID: PMC7227028 DOI: 10.3390/cells9040931] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 04/05/2020] [Accepted: 04/07/2020] [Indexed: 12/12/2022] Open
Abstract
Inherited retinal degeneration (RD) leads to the impairment or loss of vision in millions of individuals worldwide, most frequently due to the loss of photoreceptor (PR) cells. Animal models, particularly the laboratory mouse, have been used to understand the pathogenic mechanisms that underlie PR cell loss and to explore therapies that may prevent, delay, or reverse RD. Here, we reviewed entries in the Mouse Genome Informatics and PubMed databases to compile a comprehensive list of monogenic mouse models in which PR cell loss is demonstrated. The progression of PR cell loss with postnatal age was documented in mutant alleles of genes grouped by biological function. As anticipated, a wide range in the onset and rate of cell loss was observed among the reported models. The analysis underscored relationships between RD genes and ciliary function, transcription-coupled DNA damage repair, and cellular chloride homeostasis. Comparing the mouse gene list to human RD genes identified in the RetNet database revealed that mouse models are available for 40% of the known human diseases, suggesting opportunities for future research. This work may provide insight into the molecular players and pathways through which PR degenerative disease occurs and may be useful for planning translational studies.
Collapse
Affiliation(s)
- Gayle B. Collin
- The Jackson Laboratory, Bar Harbor, Maine, ME 04609, USA; (G.B.C.); (N.G.); (B.C.); (N.D.); (J.P.); (L.F.H.); (L.S.); (J.K.N.)
| | - Navdeep Gogna
- The Jackson Laboratory, Bar Harbor, Maine, ME 04609, USA; (G.B.C.); (N.G.); (B.C.); (N.D.); (J.P.); (L.F.H.); (L.S.); (J.K.N.)
| | - Bo Chang
- The Jackson Laboratory, Bar Harbor, Maine, ME 04609, USA; (G.B.C.); (N.G.); (B.C.); (N.D.); (J.P.); (L.F.H.); (L.S.); (J.K.N.)
| | - Nattaya Damkham
- The Jackson Laboratory, Bar Harbor, Maine, ME 04609, USA; (G.B.C.); (N.G.); (B.C.); (N.D.); (J.P.); (L.F.H.); (L.S.); (J.K.N.)
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
- Siriraj Center of Excellence for Stem Cell Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Jai Pinkney
- The Jackson Laboratory, Bar Harbor, Maine, ME 04609, USA; (G.B.C.); (N.G.); (B.C.); (N.D.); (J.P.); (L.F.H.); (L.S.); (J.K.N.)
| | - Lillian F. Hyde
- The Jackson Laboratory, Bar Harbor, Maine, ME 04609, USA; (G.B.C.); (N.G.); (B.C.); (N.D.); (J.P.); (L.F.H.); (L.S.); (J.K.N.)
| | - Lisa Stone
- The Jackson Laboratory, Bar Harbor, Maine, ME 04609, USA; (G.B.C.); (N.G.); (B.C.); (N.D.); (J.P.); (L.F.H.); (L.S.); (J.K.N.)
| | - Jürgen K. Naggert
- The Jackson Laboratory, Bar Harbor, Maine, ME 04609, USA; (G.B.C.); (N.G.); (B.C.); (N.D.); (J.P.); (L.F.H.); (L.S.); (J.K.N.)
| | - Patsy M. Nishina
- The Jackson Laboratory, Bar Harbor, Maine, ME 04609, USA; (G.B.C.); (N.G.); (B.C.); (N.D.); (J.P.); (L.F.H.); (L.S.); (J.K.N.)
- Correspondence: (P.M.N.); (M.P.K.); Tel.: +1-207-2886-383 (P.M.N.); +1-207-2886-000 (M.P.K.)
| | - Mark P. Krebs
- The Jackson Laboratory, Bar Harbor, Maine, ME 04609, USA; (G.B.C.); (N.G.); (B.C.); (N.D.); (J.P.); (L.F.H.); (L.S.); (J.K.N.)
- Correspondence: (P.M.N.); (M.P.K.); Tel.: +1-207-2886-383 (P.M.N.); +1-207-2886-000 (M.P.K.)
| |
Collapse
|
27
|
The tubulin code and its role in controlling microtubule properties and functions. Nat Rev Mol Cell Biol 2020; 21:307-326. [PMID: 32107477 DOI: 10.1038/s41580-020-0214-3] [Citation(s) in RCA: 421] [Impact Index Per Article: 105.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/14/2020] [Indexed: 02/07/2023]
Abstract
Microtubules are core components of the eukaryotic cytoskeleton with essential roles in cell division, shaping, motility and intracellular transport. Despite their functional heterogeneity, microtubules have a highly conserved structure made from almost identical molecular building blocks: the tubulin proteins. Alternative tubulin isotypes and a variety of post-translational modifications control the properties and functions of the microtubule cytoskeleton, a concept known as the 'tubulin code'. Here we review the current understanding of the molecular components of the tubulin code and how they impact microtubule properties and functions. We discuss how tubulin isotypes and post-translational modifications control microtubule behaviour at the molecular level and how this translates into physiological functions at the cellular and organism levels. We then go on to show how fine-tuning of microtubule function by some tubulin modifications can affect homeostasis and how perturbation of this fine-tuning can lead to a range of dysfunctions, many of which are linked to human disease.
Collapse
|
28
|
Bodakuntla S, Janke C, Magiera MM. Knocking Out Multiple Genes in Cultured Primary Neurons to Study Tubulin Posttranslational Modifications. Methods Mol Biol 2020; 2101:327-351. [PMID: 31879912 DOI: 10.1007/978-1-0716-0219-5_19] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Microtubules, as integral part of the eukaryotic cytoskeleton, exert numerous essential functions in cells. A mechanism to control these diverse functions are the posttranslational modifications of tubulin. Despite being known for decades, relatively little insight into the cellular functions of these modifications has been gained so far. The discovery of tubulin-modifying enzymes and a growing number of available knockout mice now allow working with primary cells from those mouse models to address biological functions and molecular mechanisms behind those modifications. However, a number of those mouse models show either lethality or sterility, making it difficult to impossible to obtain a sufficient number of animals for a systematic study with primary cells. Moreover, many of those modifications are controlled by several redundant enzymes, and it is often necessary to knock out several enzymes in parallel to obtain a significant change in a given tubulin modification. Here we describe a method to generate primary cells with combinatorial knockout genotypes using conditional knockout mice. The conditional alleles are converted into knockout in the cultured primary cells by transduction with a lentivirus encoding cre-recombinase. This approach has allowed us to knock out the two main brain deglutamylases in mouse primary neurons, which leads to strongly increased polyglutamylation in these cells. Our method can be applied to measure different cellular processes, such as axonal transport, for which it can be combined with the expression of different fluorescent reporters to label intracellular proteins. Using a panel of conditional knockout mice, our method can further be applied to study the functions of a variety of tubulin modifications that require simultaneous knockout of multiple genes.
Collapse
Affiliation(s)
- Satish Bodakuntla
- Institut Curie, PSL Research University, CNRS UMR3348, Centre Universitaire, Orsay, France
- Université Paris Sud, Université Paris-Saclay, CNRS UMR3348, Orsay, France
| | - Carsten Janke
- Institut Curie, PSL Research University, CNRS UMR3348, Centre Universitaire, Orsay, France.
- Université Paris Sud, Université Paris-Saclay, CNRS UMR3348, Orsay, France.
| | - Maria M Magiera
- Institut Curie, PSL Research University, CNRS UMR3348, Centre Universitaire, Orsay, France.
- Université Paris Sud, Université Paris-Saclay, CNRS UMR3348, Orsay, France.
| |
Collapse
|
29
|
Bodakuntla S, Magiera MM, Janke C. Measuring the Impact of Tubulin Posttranslational Modifications on Axonal Transport. Methods Mol Biol 2020; 2101:353-370. [PMID: 31879913 DOI: 10.1007/978-1-0716-0219-5_20] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Axonal transport is a process essential for neuronal function and survival that takes place on the cellular highways-the microtubules. It requires three major components: the microtubules that serve as tracks for the transport, the motor proteins that drive the movement, and the transported cargoes with their adaptor proteins. Axonal transport could be controlled by tubulin posttranslational modifications, which by decorating specific microtubule tracks could determine the specificity of cargo delivery inside neurons. However, it appears that the effects of tubulin modifications on transport can be rather subtle, and might thus be easily overlooked depending on which parameter of the transport process is analyzed. Here we propose an analysis paradigm that allows detecting rather subtle alterations in neuronal transport, as induced for instance by accumulation of posttranslational polyglutamylation. Analyzing mitochondria movements in axons, we found that neither the average speed nor the distance traveled were affected by hyperglutamylation, but we detected an about 50% reduction of the overall motility, suggesting that polyglutamylation controls the efficiency of mitochondria transport in axons. Our protocol can readily be expanded to the analysis of the impact of other tubulin modifications on the transport of a range of different neuronal cargoes.
Collapse
Affiliation(s)
- Satish Bodakuntla
- Institut Curie, PSL Research University, CNRS UMR3348, Centre Universitaire, Orsay, France.,Université Paris Sud, Université Paris-Saclay, CNRS UMR3348, Orsay, France
| | - Maria M Magiera
- Institut Curie, PSL Research University, CNRS UMR3348, Centre Universitaire, Orsay, France. .,Université Paris Sud, Université Paris-Saclay, CNRS UMR3348, Orsay, France.
| | - Carsten Janke
- Institut Curie, PSL Research University, CNRS UMR3348, Centre Universitaire, Orsay, France. .,Université Paris Sud, Université Paris-Saclay, CNRS UMR3348, Orsay, France.
| |
Collapse
|
30
|
Junker AD, Soh AWJ, O'Toole ET, Meehl JB, Guha M, Winey M, Honts JE, Gaertig J, Pearson CG. Microtubule glycylation promotes attachment of basal bodies to the cell cortex. J Cell Sci 2019; 132:jcs.233726. [PMID: 31243050 DOI: 10.1242/jcs.233726] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 06/18/2019] [Indexed: 12/13/2022] Open
Abstract
Motile cilia generate directed hydrodynamic flow that is important for the motility of cells and extracellular fluids. To optimize directed hydrodynamic flow, motile cilia are organized and oriented into a polarized array. Basal bodies (BBs) nucleate and position motile cilia at the cell cortex. Cytoplasmic BB-associated microtubules are conserved structures that extend from BBs. By using the ciliate, Tetrahymena thermophila, combined with EM-tomography and light microscopy, we show that BB-appendage microtubules assemble coincidently with new BB assembly and that they are attached to the cell cortex. These BB-appendage microtubules are specifically marked by post translational modifications of tubulin, including glycylation. Mutations that prevent glycylation shorten BB-appendage microtubules and disrupt BB positioning and cortical attachment. Consistent with the attachment of BB-appendage microtubules to the cell cortex to position BBs, mutations that disrupt the cellular cortical cytoskeleton disrupt the cortical attachment and positioning of BBs. In summary, BB-appendage microtubules promote the organization of ciliary arrays through attachment to the cell cortex.
Collapse
Affiliation(s)
- Anthony D Junker
- Department of Cell and Developmental Biology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Adam W J Soh
- Department of Cell and Developmental Biology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Eileen T O'Toole
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO 80302, USA
| | - Janet B Meehl
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO 80302, USA
| | - Mayukh Guha
- Department of Cellular Biology, University of Georgia, Athens, GA 30602, USA
| | - Mark Winey
- Department of Molecular and Cellular Biology, University of California, Davis, CA 95616, USA
| | - Jerry E Honts
- Department of Biology, Drake University, 2507 University Avenue, Des Moines, IA 50311, USA
| | - Jacek Gaertig
- Department of Cellular Biology, University of Georgia, Athens, GA 30602, USA
| | - Chad G Pearson
- Department of Cell and Developmental Biology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| |
Collapse
|
31
|
Williams LB, Javed A, Sabri A, Morgan DJ, Huff CD, Grigg JR, Heng XT, Khng AJ, Hollink IHIM, Morrison MA, Owen LA, Anderson K, Kinard K, Greenlees R, Novacic D, Nida Sen H, Zein WM, Rodgers GM, Vitale AT, Haider NB, Hillmer AM, Ng PC, Shankaracharya, Cheng A, Zheng L, Gillies MC, van Slegtenhorst M, van Hagen PM, Missotten TOAR, Farley GL, Polo M, Malatack J, Curtin J, Martin F, Arbuckle S, Alexander SI, Chircop M, Davila S, Digre KB, Jamieson RV, DeAngelis MM. ALPK1 missense pathogenic variant in five families leads to ROSAH syndrome, an ocular multisystem autosomal dominant disorder. Genet Med 2019; 21:2103-2115. [PMID: 30967659 PMCID: PMC6752478 DOI: 10.1038/s41436-019-0476-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 02/25/2019] [Indexed: 01/07/2023] Open
Abstract
Purpose To identify the molecular cause in five unrelated families with a distinct autosomal dominant ocular systemic disorder we called ROSAH syndrome due to clinical features of retinal dystrophy, optic nerve edema, splenomegaly, anhidrosis, and migraine headache. Methods Independent discovery exome and genome sequencing in families 1, 2, and 3, and confirmation in families 4 and 5. Expression of wild-type messenger RNA and protein in human and mouse tissues and cell lines. Ciliary assays in fibroblasts from affected and unaffected family members. Results We found the heterozygous missense variant in the ɑ-kinase gene, ALPK1, (c.710C>T, [p.Thr237Met]), segregated with disease in all five families. All patients shared the ROSAH phenotype with additional low-grade ocular inflammation, pancytopenia, recurrent infections, and mild renal impairment in some. ALPK1 was notably expressed in retina, retinal pigment epithelium, and optic nerve, with immunofluorescence indicating localization to the basal body of the connecting cilium of the photoreceptors, and presence in the sweat glands. Immunocytofluorescence revealed expression at the centrioles and spindle poles during metaphase, and at the base of the primary cilium. Affected family member fibroblasts demonstrated defective ciliogenesis. Conclusion Heterozygosity for ALPK1, p.Thr237Met leads to ROSAH syndrome, an autosomal dominant ocular systemic disorder.
Collapse
Affiliation(s)
- Lloyd B Williams
- Department of Ophthalmology and Visual Sciences, John A Moran Eye Center, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Asif Javed
- Genome Institute of Singapore, Singapore, Singapore.,School of Biomedical Sciences, The University of Hong Kong, Hong Kong, Hong Kong
| | - Amin Sabri
- Eye Genetics Research Unit, Children's Medical Research Institute, The Children's Hospital at Westmead, Save Sight Institute, University of Sydney, Sydney, NSW, Australia
| | - Denise J Morgan
- Department of Ophthalmology and Visual Sciences, John A Moran Eye Center, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Chad D Huff
- Department of Ophthalmology and Visual Sciences, John A Moran Eye Center, University of Utah School of Medicine, Salt Lake City, UT, USA.,Department of Epidemiology, Division of OVP, Cancer Prevention and Population Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - John R Grigg
- Eye Genetics Research Unit, Children's Medical Research Institute, The Children's Hospital at Westmead, Save Sight Institute, University of Sydney, Sydney, NSW, Australia.,Discipline of Ophthalmology, University of Sydney, Sydney, NSW, Australia
| | | | | | | | - Margaux A Morrison
- Department of Ophthalmology and Visual Sciences, John A Moran Eye Center, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Leah A Owen
- Department of Ophthalmology and Visual Sciences, John A Moran Eye Center, University of Utah School of Medicine, Salt Lake City, UT, USA
| | | | - Krista Kinard
- Department of Ophthalmology and Visual Sciences, John A Moran Eye Center, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Rebecca Greenlees
- Eye Genetics Research Unit, Children's Medical Research Institute, The Children's Hospital at Westmead, Save Sight Institute, University of Sydney, Sydney, NSW, Australia
| | - Danica Novacic
- National Institutes of Health, National Human Genome Research Institute, Undiagnosed Diseases Network, Bethesda, MD, USA
| | - H Nida Sen
- National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Wadih M Zein
- National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - George M Rodgers
- Department of Hematology, Utah Health Sciences Center, Salt Lake City, UT, USA
| | - Albert T Vitale
- Department of Ophthalmology and Visual Sciences, John A Moran Eye Center, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Neena B Haider
- Department of Ophthalmology, Schepens Eye Research Institute/Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
| | | | - Pauline C Ng
- Genome Institute of Singapore, Singapore, Singapore
| | - Shankaracharya
- Department of Epidemiology, Division of OVP, Cancer Prevention and Population Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Anson Cheng
- Eye Genetics Research Unit, Children's Medical Research Institute, The Children's Hospital at Westmead, Save Sight Institute, University of Sydney, Sydney, NSW, Australia
| | - Linda Zheng
- Eye Genetics Research Unit, Children's Medical Research Institute, The Children's Hospital at Westmead, Save Sight Institute, University of Sydney, Sydney, NSW, Australia
| | - Mark C Gillies
- Discipline of Ophthalmology, University of Sydney, Sydney, NSW, Australia
| | | | | | | | | | - Michael Polo
- Drs. Farley, Polo and Ho, Colonial Heights, VA, USA
| | - James Malatack
- Nemours/Alfred I. DuPont Hospital for Children, Wilmington, DE, USA
| | - Julie Curtin
- Department of Haematology, The Children's Hospital at Westmead, Sydney, NSW, Australia
| | - Frank Martin
- Department of Ophthalmology, The Children's Hospital at Westmead, Sydney, NSW, Australia
| | - Susan Arbuckle
- Department of Pathology, The Children's Hospital at Westmead, Sydney, NSW, Australia
| | - Stephen I Alexander
- Department of Nephrology, The Children's Hospital at Westmead, Sydney, NSW, Australia
| | - Megan Chircop
- Cell Cycle Unit, Children's Medical Research Institute, University of Sydney, Sydney, NSW, Australia
| | - Sonia Davila
- Genome Institute of Singapore, Singapore, Singapore
| | - Kathleen B Digre
- Department of Ophthalmology and Visual Sciences, John A Moran Eye Center, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Robyn V Jamieson
- Eye Genetics Research Unit, Children's Medical Research Institute, The Children's Hospital at Westmead, Save Sight Institute, University of Sydney, Sydney, NSW, Australia. .,Disciplines of Genomic Medicine, and Child and Adolescent Health, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia. .,Department of Clinical Genetics, Western Sydney Genetics Program, The Children's Hospital at Westmead, Sydney Children's Hospitals Network, Sydney, NSW, Australia.
| | - Margaret M DeAngelis
- Department of Ophthalmology and Visual Sciences, John A Moran Eye Center, University of Utah School of Medicine, Salt Lake City, UT, USA. .,Department of Pharmacotherapy, College of Pharmacy, University of Utah, Salt Lake City, UT, USA. .,Department of Population Health Sciences, University of Utah School of Medicine, Salt Lake City, UT, USA.
| |
Collapse
|
32
|
Wheway G, Nazlamova L, Turner D, Cross S. 661W Photoreceptor Cell Line as a Cell Model for Studying Retinal Ciliopathies. Front Genet 2019; 10:308. [PMID: 31024622 PMCID: PMC6459963 DOI: 10.3389/fgene.2019.00308] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 03/21/2019] [Indexed: 12/20/2022] Open
Abstract
The retina contains several ciliated cell types, including the retinal pigment epithelium (RPE) and photoreceptor cells. The photoreceptor cilium is one of the most highly modified sensory cilia in the human body. The outer segment of the photoreceptor is a highly elaborate primary cilium, containing stacks or folds of membrane where the photopigment molecules are located. Perhaps unsurprisingly, defects in cilia often lead to retinal phenotypes, either as part of syndromic conditions involving other organs, or in isolation in the so-called retinal ciliopathies. The study of retinal ciliopathies has been limited by a lack of retinal cell lines. RPE1 retinal pigment epithelial cell line is commonly used in such studies, but the existence of a photoreceptor cell line has largely been neglected in the retinal ciliopathy field. 661W cone photoreceptor cells, derived from mouse, have been widely used as a model for studying macular degeneration, but not described as a model for studying retinal ciliopathies such as retinitis pigmentosa. Here, we characterize the 661W cell line as a model for studying retinal ciliopathies. We fully characterize the expression profile of these cells, using whole transcriptome RNA sequencing, and provide this data on Gene Expression Omnibus for the advantage of the scientific community. We show that these cells express the majority of markers of cone cell origin. Using immunostaining and confocal microscopy, alongside scanning electron microscopy, we show that these cells grow long primary cilia, reminiscent of photoreceptor outer segments, and localize many cilium proteins to the axoneme, membrane and transition zone. We show that siRNA knockdown of cilia genes Ift88 results in loss of cilia, and that this can be assayed by high-throughput screening. We present evidence that the 661W cell line is a useful cell model for studying retinal ciliopathies.
Collapse
Affiliation(s)
- Gabrielle Wheway
- Centre for Research in Biosciences, University of the West of England, Bristol, Bristol, United Kingdom.,Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, United Kingdom.,Human Development and Health, Southampton General Hospital, Southampton, United Kingdom
| | - Liliya Nazlamova
- Centre for Research in Biosciences, University of the West of England, Bristol, Bristol, United Kingdom.,Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, United Kingdom.,Human Development and Health, Southampton General Hospital, Southampton, United Kingdom
| | - Dann Turner
- Centre for Research in Biosciences, University of the West of England, Bristol, Bristol, United Kingdom
| | - Stephen Cross
- Wolfson Bioimaging Facility, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
33
|
Dilan TL, Singh RK, Saravanan T, Moye A, Goldberg AFX, Stoilov P, Ramamurthy V. Bardet-Biedl syndrome-8 (BBS8) protein is crucial for the development of outer segments in photoreceptor neurons. Hum Mol Genet 2019; 27:283-294. [PMID: 29126234 DOI: 10.1093/hmg/ddx399] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 11/06/2017] [Indexed: 11/15/2022] Open
Abstract
Bardet-Biedl syndrome (BBS) is an autosomal recessive ciliopathy characterized by developmental abnormalities and vision loss. To date, mutations in 21 genes have been linked to BBS. The products of eight of these BBS genes form a stable octameric complex termed the BBSome. Mutations in BBS8, a component of the BBSome, cause early vision loss, but the role of BBS8 in supporting vision is not known. To understand the mechanisms by which BBS8 supports rod and cone photoreceptor function, we generated animal models lacking BBS8. The loss of BBS8 protein led to concomitant decrease in the levels of BBSome subunits, BBS2 and BBS5 and increase in the levels of the BBS1 and BBS4 subunits. BBS8 ablation was associated with severe reduction of rod and cone photoreceptor function and progressive degeneration of each photoreceptor subtype. We observed disorganized and shortened photoreceptor outer segments (OS) at post-natal day 10 as the OS elaborates. Interestingly, loss of BBS8 led to changes in the distribution of photoreceptor axonemal proteins and hyper-acetylation of ciliary microtubules. In contrast to properly localized phototransduction machinery, we observed OS accumulation of syntaxin3, a protein normally found in the cytoplasm and the synaptic termini. In conclusion, our studies demonstrate the requirement for BBS8 in early development and elaboration of ciliated photoreceptor OS, explaining the need for BBS8 in normal vision. The findings from our study also imply that early targeting of both rods and cones in BBS8 patients is crucial for successful restoration of vision.
Collapse
Affiliation(s)
- Tanya L Dilan
- Departments of Ophthalmology, West Virginia University, Morgantown, WA 26506, USA.,Biochemistry, West Virginia University, Morgantown, WA 26506, USA
| | - Ratnesh K Singh
- Departments of Ophthalmology, West Virginia University, Morgantown, WA 26506, USA.,Biochemistry, West Virginia University, Morgantown, WA 26506, USA
| | | | - Abigail Moye
- Departments of Ophthalmology, West Virginia University, Morgantown, WA 26506, USA.,Biochemistry, West Virginia University, Morgantown, WA 26506, USA
| | | | - Peter Stoilov
- Biochemistry, West Virginia University, Morgantown, WA 26506, USA
| | - Visvanathan Ramamurthy
- Departments of Ophthalmology, West Virginia University, Morgantown, WA 26506, USA.,Biochemistry, West Virginia University, Morgantown, WA 26506, USA.,Rockefeller Neurosciences Institute, West Virginia University, Morgantown, WA 26506, USA
| |
Collapse
|
34
|
Magiera MM, Bodakuntla S, Žiak J, Lacomme S, Marques Sousa P, Leboucher S, Hausrat TJ, Bosc C, Andrieux A, Kneussel M, Landry M, Calas A, Balastik M, Janke C. Excessive tubulin polyglutamylation causes neurodegeneration and perturbs neuronal transport. EMBO J 2018; 37:e100440. [PMID: 30420556 PMCID: PMC6276888 DOI: 10.15252/embj.2018100440] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 09/14/2018] [Accepted: 09/20/2018] [Indexed: 12/12/2022] Open
Abstract
Posttranslational modifications of tubulin are emerging regulators of microtubule functions. We have shown earlier that upregulated polyglutamylation is linked to rapid degeneration of Purkinje cells in mice with a mutation in the deglutamylating enzyme CCP1. How polyglutamylation leads to degeneration, whether it affects multiple neuron types, or which physiological processes it regulates in healthy neurons has remained unknown. Here, we demonstrate that excessive polyglutamylation induces neurodegeneration in a cell-autonomous manner and can occur in many parts of the central nervous system. Degeneration of selected neurons in CCP1-deficient mice can be fully rescued by simultaneous knockout of the counteracting polyglutamylase TTLL1. Excessive polyglutamylation reduces the efficiency of neuronal transport in cultured hippocampal neurons, suggesting that impaired cargo transport plays an important role in the observed degenerative phenotypes. We thus establish polyglutamylation as a cell-autonomous mechanism for neurodegeneration that might be therapeutically accessible through manipulation of the enzymes that control this posttranslational modification.
Collapse
Affiliation(s)
- Maria M Magiera
- Institut Curie, CNRS UMR3348, PSL Research University, Orsay, France
- Université Paris-Saclay, CNRS UMR3348, Université Paris Sud, Orsay, France
| | - Satish Bodakuntla
- Institut Curie, CNRS UMR3348, PSL Research University, Orsay, France
- Université Paris-Saclay, CNRS UMR3348, Université Paris Sud, Orsay, France
| | - Jakub Žiak
- Department of Molecular Neurobiology, Institute of Physiology, Czech Academy of Sciences, Prague 4, Czech Republic
- Faculty of Science, Charles University, Prague 2, Czech Republic
| | - Sabrina Lacomme
- Bordeaux Imaging Center, BIC, UMS 3420, Université Bordeaux, Bordeaux, France
| | - Patricia Marques Sousa
- Institut Curie, CNRS UMR3348, PSL Research University, Orsay, France
- Université Paris-Saclay, CNRS UMR3348, Université Paris Sud, Orsay, France
| | - Sophie Leboucher
- Institut Curie, CNRS UMR3348, PSL Research University, Orsay, France
- Université Paris-Saclay, CNRS UMR3348, Université Paris Sud, Orsay, France
| | - Torben J Hausrat
- Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christophe Bosc
- Grenoble Institut des Neurosciences, GIN, Université Grenoble Alpes, Grenoble, France
- Inserm U1216, Grenoble, France
| | - Annie Andrieux
- Grenoble Institut des Neurosciences, GIN, Université Grenoble Alpes, Grenoble, France
- Inserm U1216, Grenoble, France
| | - Matthias Kneussel
- Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Marc Landry
- Interdisciplinary Institute for Neuroscience, CNRS UMR5297, Université Bordeaux, Bordeaux, France
| | - André Calas
- Interdisciplinary Institute for Neuroscience, CNRS UMR5297, Université Bordeaux, Bordeaux, France
| | - Martin Balastik
- Department of Molecular Neurobiology, Institute of Physiology, Czech Academy of Sciences, Prague 4, Czech Republic
| | - Carsten Janke
- Institut Curie, CNRS UMR3348, PSL Research University, Orsay, France
- Université Paris-Saclay, CNRS UMR3348, Université Paris Sud, Orsay, France
| |
Collapse
|
35
|
He K, Ma X, Xu T, Li Y, Hodge A, Zhang Q, Torline J, Huang Y, Zhao J, Ling K, Hu J. Axoneme polyglutamylation regulated by Joubert syndrome protein ARL13B controls ciliary targeting of signaling molecules. Nat Commun 2018; 9:3310. [PMID: 30120249 PMCID: PMC6098020 DOI: 10.1038/s41467-018-05867-1] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 07/02/2018] [Indexed: 12/12/2022] Open
Abstract
Tubulin polyglutamylation is a predominant axonemal post-translational modification. However, if and how axoneme polyglutamylation is essential for primary cilia and contribute to ciliopathies are unknown. Here, we report that Joubert syndrome protein ARL13B controls axoneme polyglutamylation, which is marginally required for cilia stability but essential for cilia signaling. ARL13B interacts with RAB11 effector FIP5 to promote cilia import of glutamylase TTLL5 and TTLL6. Hypoglutamylation caused by a deficient ARL13B-RAB11-FIP5 trafficking pathway shows no effect on ciliogenesis, but promotes cilia disassembly and, importantly, impairs cilia signaling by disrupting the proper anchoring of sensory receptors and trafficking of signaling molecules. Remarkably, depletion of deglutamylase CCP5, the predominant cilia deglutamylase, effectively restores hypoglutamylation-induced cilia defects. Our study reveals a paradigm that tubulin polyglutamylation is a major contributor for cilia signaling and suggests a potential therapeutic strategy by targeting polyglutamylation machinery to promote ciliary targeting of signaling machineries and correct signaling defects in ciliopathies.
Collapse
Affiliation(s)
- Kai He
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, 55905, USA
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, 55905, USA
- Mayo Translational PKD Center, Mayo Clinic, Rochester, MN, 55905, USA
| | - Xiaoyu Ma
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, 55905, USA
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, 55905, USA
- Mayo Translational PKD Center, Mayo Clinic, Rochester, MN, 55905, USA
| | - Tao Xu
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, 55905, USA
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, 55905, USA
- Mayo Translational PKD Center, Mayo Clinic, Rochester, MN, 55905, USA
| | - Yan Li
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, 55905, USA
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, 55905, USA
- Mayo Translational PKD Center, Mayo Clinic, Rochester, MN, 55905, USA
| | - Allen Hodge
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Qing Zhang
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Julia Torline
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Yan Huang
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Jian Zhao
- Translational Medical Center for Stem Cell Therapy, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
| | - Kun Ling
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Jinghua Hu
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, 55905, USA.
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, 55905, USA.
- Mayo Translational PKD Center, Mayo Clinic, Rochester, MN, 55905, USA.
| |
Collapse
|
36
|
Cilium structure, assembly, and disassembly regulated by the cytoskeleton. Biochem J 2018; 475:2329-2353. [PMID: 30064990 PMCID: PMC6068341 DOI: 10.1042/bcj20170453] [Citation(s) in RCA: 120] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 07/02/2018] [Accepted: 07/04/2018] [Indexed: 12/17/2022]
Abstract
The cilium, once considered a vestigial structure, is a conserved, microtubule-based organelle critical for transducing extracellular chemical and mechanical signals that control cell polarity, differentiation, and proliferation. The cilium undergoes cycles of assembly and disassembly that are controlled by complex inter-relationships with the cytoskeleton. Microtubules form the core of the cilium, the axoneme, and are regulated by post-translational modifications, associated proteins, and microtubule dynamics. Although actin and septin cytoskeletons are not major components of the axoneme, they also regulate cilium organization and assembly state. Here, we discuss recent advances on how these different cytoskeletal systems affect cilium function, structure, and organization.
Collapse
|
37
|
Magiera MM, Singh P, Gadadhar S, Janke C. Tubulin Posttranslational Modifications and Emerging Links to Human Disease. Cell 2018; 173:1323-1327. [PMID: 29856952 DOI: 10.1016/j.cell.2018.05.018] [Citation(s) in RCA: 115] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
Tubulin posttranslational modifications are currently emerging as important regulators of the microtubule cytoskeleton and thus have a strong potential to be implicated in a number of disorders. Here, we review the latest advances in understanding the physiological roles of tubulin modifications and their links to a variety of pathologies.
Collapse
Affiliation(s)
- Maria M Magiera
- Institut Curie, PSL Research University, CNRS UMR3348, Orsay, France; Université Paris Sud, Université Paris-Saclay, CNRS UMR3348, Orsay, France.
| | - Puja Singh
- Institut Curie, PSL Research University, CNRS UMR3348, Orsay, France; Université Paris Sud, Université Paris-Saclay, CNRS UMR3348, Orsay, France
| | - Sudarshan Gadadhar
- Institut Curie, PSL Research University, CNRS UMR3348, Orsay, France; Université Paris Sud, Université Paris-Saclay, CNRS UMR3348, Orsay, France
| | - Carsten Janke
- Institut Curie, PSL Research University, CNRS UMR3348, Orsay, France; Université Paris Sud, Université Paris-Saclay, CNRS UMR3348, Orsay, France.
| |
Collapse
|
38
|
Muñoz-Castañeda R, Díaz D, Peris L, Andrieux A, Bosc C, Muñoz-Castañeda JM, Janke C, Alonso JR, Moutin MJ, Weruaga E. Cytoskeleton stability is essential for the integrity of the cerebellum and its motor- and affective-related behaviors. Sci Rep 2018; 8:3072. [PMID: 29449678 PMCID: PMC5814431 DOI: 10.1038/s41598-018-21470-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 01/29/2018] [Indexed: 01/06/2023] Open
Abstract
The cerebellum plays a key role in motor tasks, but its involvement in cognition is still being considered. Although there is an association of different psychiatric and cognitive disorders with cerebellar impairments, the lack of time-course studies has hindered the understanding of the involvement of cerebellum in cognitive and non-motor functions. Such association was here studied using the Purkinje Cell Degeneration mutant mouse, a model of selective and progressive cerebellar degeneration that lacks the cytosolic carboxypeptidase 1 (CCP1). The effects of the absence of this enzyme on the cerebellum of mutant mice were analyzed both in vitro and in vivo. These analyses were carried out longitudinally (throughout both the pre-neurodegenerative and neurodegenerative stages) and different motor and non-motor tests were performed. We demonstrate that the lack of CCP1 affects microtubule dynamics and flexibility, defects that contribute to the morphological alterations of the Purkinje cells (PCs), and to progressive cerebellar breakdown. Moreover, this degeneration led not only to motor defects but also to gradual cognitive impairments, directly related to the progression of cellular damage. Our findings confirm the cerebellar implication in non-motor tasks, where the formation of the healthy, typical PCs structure is necessary for normal cognitive and affective behavior.
Collapse
Affiliation(s)
- Rodrigo Muñoz-Castañeda
- Laboratory of Neural Plasticity and Neurorepair. Institute for Neurosciences of Castile and Leon (INCyL), University of Salamanca, E-37007, Salamanca, Spain.,Institute for Biomedical Research of Salamanca (IBSAL), E-37007, Salamanca, Spain
| | - David Díaz
- Laboratory of Neural Plasticity and Neurorepair. Institute for Neurosciences of Castile and Leon (INCyL), University of Salamanca, E-37007, Salamanca, Spain.,Institute for Biomedical Research of Salamanca (IBSAL), E-37007, Salamanca, Spain
| | - Leticia Peris
- Inserm, U1216, F-38000, Grenoble, France.,Université Grenoble Alpes, Grenoble Institut des Neurosciences, GIN, F-38000, Grenoble, France
| | - Annie Andrieux
- Inserm, U1216, F-38000, Grenoble, France.,Université Grenoble Alpes, Grenoble Institut des Neurosciences, GIN, F-38000, Grenoble, France.,CEA, BIG-GPC, F-38000, Grenoble, France
| | - Christophe Bosc
- Inserm, U1216, F-38000, Grenoble, France.,Université Grenoble Alpes, Grenoble Institut des Neurosciences, GIN, F-38000, Grenoble, France
| | - José M Muñoz-Castañeda
- Physics Department, Aeronautics Engineering School, Polytechnic University of Madrid, E-28040, Madrid, Spain
| | - Carsten Janke
- Institut Curie, F-91405, Orsay, France.,Paris Sciences et Lettres Research University, F-75005, Paris, France.,Centre National de la Recherche Scientifique, UMR3348, F-91405, Orsay, France
| | - José R Alonso
- Laboratory of Neural Plasticity and Neurorepair. Institute for Neurosciences of Castile and Leon (INCyL), University of Salamanca, E-37007, Salamanca, Spain.,Institute for Biomedical Research of Salamanca (IBSAL), E-37007, Salamanca, Spain.,Institute for Higher Research, University of Tarapaca, Arica, Chile
| | - Marie-Jo Moutin
- Inserm, U1216, F-38000, Grenoble, France.,Université Grenoble Alpes, Grenoble Institut des Neurosciences, GIN, F-38000, Grenoble, France
| | - Eduardo Weruaga
- Laboratory of Neural Plasticity and Neurorepair. Institute for Neurosciences of Castile and Leon (INCyL), University of Salamanca, E-37007, Salamanca, Spain. .,Institute for Biomedical Research of Salamanca (IBSAL), E-37007, Salamanca, Spain.
| |
Collapse
|
39
|
Werner S, Pimenta-Marques A, Bettencourt-Dias M. Maintaining centrosomes and cilia. J Cell Sci 2017; 130:3789-3800. [DOI: 10.1242/jcs.203505] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
ABSTRACT
Centrosomes and cilia are present in organisms from all branches of the eukaryotic tree of life. These structures are composed of microtubules and various other proteins, and are required for a plethora of cell processes such as structuring the cytoskeleton, sensing the environment, and motility. Deregulation of centrosome and cilium components leads to a wide range of diseases, some of which are incompatible with life. Centrosomes and cilia are thought to be very stable and can persist over long periods of time. However, these structures can disappear in certain developmental stages and diseases. Moreover, some centrosome and cilia components are quite dynamic. While a large body of knowledge has been produced regarding the biogenesis of these structures, little is known about how they are maintained. In this Review, we propose the existence of specific centrosome and cilia maintenance programs, which are regulated during development and homeostasis, and when deregulated can lead to disease.
Collapse
Affiliation(s)
- Sascha Werner
- Cell Cycle Regulation Lab, Instituto Gulbenkian de Ciência, Rua da Quinta Grande, 6, 2780-156 Oeiras, Portugal
| | - Ana Pimenta-Marques
- Cell Cycle Regulation Lab, Instituto Gulbenkian de Ciência, Rua da Quinta Grande, 6, 2780-156 Oeiras, Portugal
| | - Mónica Bettencourt-Dias
- Cell Cycle Regulation Lab, Instituto Gulbenkian de Ciência, Rua da Quinta Grande, 6, 2780-156 Oeiras, Portugal
| |
Collapse
|
40
|
Gadadhar S, Dadi H, Bodakuntla S, Schnitzler A, Bièche I, Rusconi F, Janke C. Tubulin glycylation controls primary cilia length. J Cell Biol 2017; 216:2701-2713. [PMID: 28687664 PMCID: PMC5584158 DOI: 10.1083/jcb.201612050] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 04/28/2017] [Accepted: 05/24/2017] [Indexed: 02/05/2023] Open
Abstract
In motile cilia and flagella, tubulin glycylation is involved in axoneme stabilization. Using a newly developed antibody, Gadadhar et al. now show that glycylation also accumulates in primary cilia, where it controls ciliary length. This suggests an important role for this PTM in primary cilia homeostasis. As essential components of the eukaryotic cytoskeleton, microtubules fulfill a variety of functions that can be temporally and spatially controlled by tubulin posttranslational modifications. Tubulin glycylation has so far been mostly found on motile cilia and flagella, where it is involved in the stabilization of the axoneme. In contrast, barely anything is known about the role of glycylation in primary cilia because of limitations in detecting this modification in these organelles. We thus developed novel glycylation-specific antibodies with which we detected glycylation in many primary cilia. Glycylation accumulates in primary cilia in a length-dependent manner, and depletion or overexpression of glycylating enzymes modulates the length of primary cilia in cultured cells. This strongly suggests that glycylation is essential for the homeostasis of primary cilia, which has important implications for human disorders related to primary cilia dysfunctions, such as ciliopathies and certain types of cancer.
Collapse
Affiliation(s)
- Sudarshan Gadadhar
- Institut Curie, Paris Sciences et Lettres Research University, Centre National de la Recherche Scientifique UMR3348, Orsay, France.,Université Paris Sud, Université Paris-Saclay, Centre National de la Recherche Scientifique UMR3348, Orsay, France
| | - Hala Dadi
- Université Paris Sud, Université Paris-Saclay, Centre National de la Recherche Scientifique UMR8000, Orsay, France
| | - Satish Bodakuntla
- Institut Curie, Paris Sciences et Lettres Research University, Centre National de la Recherche Scientifique UMR3348, Orsay, France.,Université Paris Sud, Université Paris-Saclay, Centre National de la Recherche Scientifique UMR3348, Orsay, France
| | - Anne Schnitzler
- Department of Genetics, Institut Curie, Paris Sciences et Lettres Research University, Paris, France
| | - Ivan Bièche
- Department of Genetics, Institut Curie, Paris Sciences et Lettres Research University, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Filippo Rusconi
- Université Paris Sud, Université Paris-Saclay, Centre National de la Recherche Scientifique UMR8000, Orsay, France
| | - Carsten Janke
- Institut Curie, Paris Sciences et Lettres Research University, Centre National de la Recherche Scientifique UMR3348, Orsay, France .,Université Paris Sud, Université Paris-Saclay, Centre National de la Recherche Scientifique UMR3348, Orsay, France
| |
Collapse
|
41
|
Natarajan K, Gadadhar S, Souphron J, Magiera MM, Janke C. Molecular interactions between tubulin tails and glutamylases reveal determinants of glutamylation patterns. EMBO Rep 2017; 18:1013-1026. [PMID: 28483842 DOI: 10.15252/embr.201643751] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 03/15/2017] [Accepted: 03/22/2017] [Indexed: 12/12/2022] Open
Abstract
Posttranslational modifications of tubulin currently emerge as key regulators of microtubule functions. Polyglutamylation generates a variety of modification patterns that are essential for controlling microtubule functions in different cell types and organelles, and deregulation of these patterns has been linked to ciliopathies, cancer and neurodegeneration. How the different glutamylating enzymes determine precise modification patterns has so far remained elusive. Using computational modelling, molecular dynamics simulations and mutational analyses we now show how the carboxy-terminal tails of tubulin bind into the active sites of glutamylases. Our models suggest that the glutamylation sites on α- and β-tubulins are determined by the positioning of the tails within the catalytic pocket. Moreover, we found that the binding modes of α- and β-tubulin tails are highly similar, implying that most enzymes could potentially modify both, α- and β-tubulin. This supports a model in which the binding of the enzymes to the entire microtubule lattice, but not the specificity of the C-terminal tubulin tails to their active sites, determines the catalytic specificities of glutamylases.
Collapse
Affiliation(s)
- Kathiresan Natarajan
- Institut Curie, CNRS, UMR 3348, PSL Research University, Orsay, France .,CNRS, UMR 3348, Universite Paris Sud, Universite Paris-Saclay, Orsay, France
| | - Sudarshan Gadadhar
- Institut Curie, CNRS, UMR 3348, PSL Research University, Orsay, France.,CNRS, UMR 3348, Universite Paris Sud, Universite Paris-Saclay, Orsay, France
| | - Judith Souphron
- Institut Curie, CNRS, UMR 3348, PSL Research University, Orsay, France.,CNRS, UMR 3348, Universite Paris Sud, Universite Paris-Saclay, Orsay, France
| | - Maria M Magiera
- Institut Curie, CNRS, UMR 3348, PSL Research University, Orsay, France.,CNRS, UMR 3348, Universite Paris Sud, Universite Paris-Saclay, Orsay, France
| | - Carsten Janke
- Institut Curie, CNRS, UMR 3348, PSL Research University, Orsay, France .,CNRS, UMR 3348, Universite Paris Sud, Universite Paris-Saclay, Orsay, France
| |
Collapse
|