1
|
Yang J, Li X, Chen S, Li G, Pu P, Yang Y, Wu W, Geng Y, Liu Y. GPRC5A promotes gallbladder cancer metastasis by upregulating TNS4 via the JAK2-STAT3 pathway. Cancer Lett 2024; 598:217067. [PMID: 38942137 DOI: 10.1016/j.canlet.2024.217067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/28/2024] [Accepted: 06/12/2024] [Indexed: 06/30/2024]
Abstract
Aberrant expression of G protein-coupled receptor class C group 5 member A (GPRC5A) has been reported in multiple cancers and is closely related to patient prognosis. However, the mechanistic role of GPRC5A in gallbladder cancer (GBC) remains unclear. Here, we determined tumor expression levels of GPRC5A and the molecular mechanisms by which GPRC5A regulates gallbladder cancer metastasis. We found that GPRC5A was significantly upregulated in GBC, correlating with poorer patient survival. Knocking down GPRC5A inhibited GBC cell metastasis both in vitro and in vivo. GRPRC5A knockdown resulted in downregulation of TNS4 expression through the JAK2-STAT3 axis. Clinically, GPRC5A expression positively correlated with TNS4. Finally, STAT3 bound to TNS4's promoter region, inducing its expression. Overall, GPRC5A showed high expression in GBC tissues, associated with poor patient prognosis. Our findings first demonstrate that the GPRC5A-JAK2-STAT3-TNS4 pathway promotes GBC cell metastasis, suggesting potential therapy targets.
Collapse
Affiliation(s)
- Jiahua Yang
- Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China; Shanghai Key Laboratory of Systems Regulation and Clinical Translation for Cancer, Shanghai, 200127, China; State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Shanghai, 200127, China
| | - Xuechuan Li
- Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China; Shanghai Key Laboratory of Systems Regulation and Clinical Translation for Cancer, Shanghai, 200127, China; State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Shanghai, 200127, China
| | - Shili Chen
- Shanghai Key Laboratory of Biliary Tract Disease Research, Department of General Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guoqiang Li
- Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China; Shanghai Key Laboratory of Systems Regulation and Clinical Translation for Cancer, Shanghai, 200127, China; State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Shanghai, 200127, China
| | - Peng Pu
- Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China; Shanghai Key Laboratory of Systems Regulation and Clinical Translation for Cancer, Shanghai, 200127, China; State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Shanghai, 200127, China
| | - Yang Yang
- Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China; Shanghai Key Laboratory of Systems Regulation and Clinical Translation for Cancer, Shanghai, 200127, China; State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Shanghai, 200127, China.
| | - Wenguang Wu
- Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China; Shanghai Key Laboratory of Systems Regulation and Clinical Translation for Cancer, Shanghai, 200127, China; State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Shanghai, 200127, China.
| | - Yajun Geng
- Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China; Shanghai Key Laboratory of Systems Regulation and Clinical Translation for Cancer, Shanghai, 200127, China; State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Shanghai, 200127, China.
| | - Yingbin Liu
- Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China; Department of General Surgery, Jiading Branch, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 201800, China; Shanghai Key Laboratory of Systems Regulation and Clinical Translation for Cancer, Shanghai, 200127, China; State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Shanghai, 200127, China.
| |
Collapse
|
2
|
Turkki P, Chowdhury I, Öhman T, Azizi L, Varjosalo M, Hytönen VP. Tensin-2 interactomics reveals interaction with GAPDH and a phosphorylation-mediated regulatory role in glycolysis. Sci Rep 2024; 14:19862. [PMID: 39191795 PMCID: PMC11350193 DOI: 10.1038/s41598-024-65787-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 06/24/2024] [Indexed: 08/29/2024] Open
Abstract
Integrin adaptor proteins, like tensin-2, are crucial for cell adhesion and signaling. However, the function of tensin-2 beyond localizing to focal adhesions remain poorly understood. We utilized proximity-dependent biotinylation and Strep-tag affinity proteomics to identify interaction partners of tensin-2 in Flp-In 293 T-REx cells. Interactomics linked tensin-2 to known focal adhesion proteins and the dystrophin glycoprotein complex, while also uncovering novel interaction with the glycolytic enzyme GAPDH. We demonstrated that Y483-phosphorylation of tensin-2 regulates the glycolytic rate in Flp-In 293 T-REx and MEF cells and found that pY483 tensin-2 is enriched in adhesions in MEF cells. Our study unveils novel interaction partners for tensin-2 and further solidifies its speculated role in cell energy metabolism. These findings shed fresh insight on the functions of tensin-2, highlighting its potential as a therapeutic target for diseases associated with impaired cell adhesion and metabolism.
Collapse
Affiliation(s)
- Paula Turkki
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Fimlab Laboratories, Tampere, Finland
| | | | - Tiina Öhman
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Latifeh Azizi
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Markku Varjosalo
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Vesa P Hytönen
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.
- Fimlab Laboratories, Tampere, Finland.
| |
Collapse
|
3
|
Wang Y, Lu Y, Xu C. Tensin 4 facilitates aerobic glycolysis, migration and invasion of colorectal cancer cells through the β‑catenin/c‑Myc signaling pathway. Oncol Lett 2024; 28:356. [PMID: 38881712 PMCID: PMC11176887 DOI: 10.3892/ol.2024.14489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 05/08/2024] [Indexed: 06/18/2024] Open
Abstract
Tensin 4 (TNS4) is overexpressed in multiple cancers, including colorectal cancer (CRC), and is associated with a poor prognosis of patients with CRC. However, the role and underlying mechanisms of TNS4 in CRC have yet to be elucidated. The expression of TNS4 in CRC tissues were analyzed by immunohistochemistry. Cell migration and invasion were assessed in vitro using Transwell assay. Western blot and reverse transcription (RT)-quantitative (q)PCR were used to investigate the molecular mechanisms by which TNS4 regulates aerobic glycolysis, migration and invasion of CRC cells. The present study demonstrated that TNS4 was highly expressed in the cancer tissues of patients with CRC and significantly associated with the tumor-node-metastasis stages. TNS4 silencing led to a significant decrease in glucose consumption and lactate production in CRC cells, and knockdown of TNS4 suppressed the migration and invasion of CRC cells via aerobic glycolysis through the β-catenin/c-Myc pathway. Notably, treatment with DASA-58, an activator of glycolysis, or SKL2001, an activator of β-catenin/c-Myc signaling, significantly reversed the effect of TNS4 knockdown on aerobic glycolysis, migration and invasion of CRC cells. Collectively, these results suggest that TNS4 may act as a novel regulator of aerobic glycolysis, migration and invasion of CRC cells by modulating β-catenin/c-Myc signaling, providing a new potential biomarker and therapeutic target in CRC.
Collapse
Affiliation(s)
- Yan Wang
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, P.R. China
| | - Yongda Lu
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, P.R. China
| | - Chunfang Xu
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, P.R. China
| |
Collapse
|
4
|
Ebegboni VJ, Jones TL, Brownmiller T, Zhao PX, Pehrsson EC, Rajan SS, Caplen NJ. ETS1, a Target Gene of the EWSR1::FLI1 Fusion Oncoprotein, Regulates the Expression of the Focal Adhesion Protein TENSIN3. Mol Cancer Res 2024; 22:625-641. [PMID: 38588446 PMCID: PMC11219265 DOI: 10.1158/1541-7786.mcr-23-1090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 03/25/2024] [Accepted: 04/08/2024] [Indexed: 04/10/2024]
Abstract
The mechanistic basis for the metastasis of Ewing sarcomas remains poorly understood, as these tumors harbor few mutations beyond the chromosomal translocation that initiates the disease. Instead, the epigenome of Ewing sarcoma cells reflects the regulatory state of genes associated with the DNA-binding activity of the fusion oncoproteins EWSR1::FLI1 or EWSR1::ERG. In this study, we examined the EWSR1::FLI1/ERG's repression of transcription factor genes, concentrating on those that exhibit a broader range of expression in tumors than in Ewing sarcoma cell lines. Focusing on one of these target genes, ETS1, we detected EWSR1::FLI1 binding and an H3K27me3-repressive mark at this locus. Depletion of EWSR1::FLI1 results in ETS1's binding of promoter regions, substantially altering the transcriptome of Ewing sarcoma cells, including the upregulation of the gene encoding TENSIN3 (TNS3), a focal adhesion protein. Ewing sarcoma cell lines expressing ETS1 (CRISPRa) exhibited increased TNS3 expression and enhanced movement compared with control cells. Visualization of control Ewing sarcoma cells showed a distributed vinculin signal and a network-like organization of F-actin; in contrast, ETS1-activated Ewing sarcoma cells showed an accumulation of vinculin and F-actin toward the plasma membrane. Interestingly, the phenotype of ETS1-activated Ewing sarcoma cell lines depleted of TNS3 resembled the phenotype of the control cells. Critically, these findings have clinical relevance as TNS3 expression in Ewing sarcoma tumors positively correlates with that of ETS1. Implications: ETS1's transcriptional regulation of the gene encoding the focal adhesion protein TENSIN3 in Ewing sarcoma cells promotes cell movement, a critical step in the evolution of metastasis.
Collapse
Affiliation(s)
- Vernon Justice Ebegboni
- Functional Genetics Section, Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Tamara L. Jones
- Functional Genetics Section, Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Tayvia Brownmiller
- Functional Genetics Section, Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Patrick X. Zhao
- Omics Bioinformatics Facility, Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
- Advanced Biomedical Computational Science, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Erica C. Pehrsson
- Omics Bioinformatics Facility, Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
- Advanced Biomedical Computational Science, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Soumya Sundara Rajan
- Functional Genetics Section, Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Natasha J. Caplen
- Functional Genetics Section, Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
5
|
Kang M, Senatore AJ, Naughton H, McTigue M, Beltman RJ, Herppich AA, Pflum MKH, Howe AK. Protein kinase A is a functional component of focal adhesions. J Biol Chem 2024; 300:107234. [PMID: 38552737 PMCID: PMC11044056 DOI: 10.1016/j.jbc.2024.107234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 03/06/2024] [Accepted: 03/17/2024] [Indexed: 04/09/2024] Open
Abstract
Focal adhesions (FAs) form the junction between extracellular matrix (ECM)-bound integrins and the actin cytoskeleton and also transmit signals that regulate cell adhesion, cytoskeletal dynamics, and cell migration. While many of these signals are rooted in reversible tyrosine phosphorylation, phosphorylation of FA proteins on Ser/Thr residues is far more abundant yet its mechanisms and consequences are far less understood. The cAMP-dependent protein kinase (protein kinase A; PKA) has important roles in cell adhesion and cell migration and is both an effector and regulator of integrin-mediated adhesion to the ECM. Importantly, subcellular localization plays a critically important role in specifying PKA function. Here, we show that PKA is present in isolated FA-cytoskeleton complexes and active within FAs in live cells. Furthermore, using kinase-catalyzed biotinylation of isolated FA-cytoskeleton complexes, we identify 53 high-stringency candidate PKA substrates within FAs. From this list, we validate tensin-3 (Tns3)-a well-established molecular scaffold, regulator of cell migration, and a component of focal and fibrillar adhesions-as a novel direct substrate for PKA. These observations identify a new pathway for phospho-regulation of Tns3 and, importantly, establish a new and important niche for localized PKA signaling and thus provide a foundation for further investigation of the role of PKA in the regulation of FA dynamics and signaling.
Collapse
Affiliation(s)
- Mingu Kang
- Department of Pharmacology, Larner College of Medicine, University of Vermont Cancer Center, Burlington, Vermont, USA; Department of Molecular Physiology & Biophysics, Larner College of Medicine, University of Vermont, Burlington, Vermont, USA
| | - Amanda J Senatore
- Department of Pharmacology, Larner College of Medicine, University of Vermont Cancer Center, Burlington, Vermont, USA; Department of Molecular Physiology & Biophysics, Larner College of Medicine, University of Vermont, Burlington, Vermont, USA
| | - Hannah Naughton
- Department of Pharmacology, Larner College of Medicine, University of Vermont Cancer Center, Burlington, Vermont, USA; Department of Molecular Physiology & Biophysics, Larner College of Medicine, University of Vermont, Burlington, Vermont, USA
| | - Madeline McTigue
- Department of Pharmacology, Larner College of Medicine, University of Vermont Cancer Center, Burlington, Vermont, USA; Department of Molecular Physiology & Biophysics, Larner College of Medicine, University of Vermont, Burlington, Vermont, USA
| | - Rachel J Beltman
- Department of Chemistry, Wayne State University, Detroit, Michigan, USA
| | - Andrew A Herppich
- Department of Chemistry, Wayne State University, Detroit, Michigan, USA
| | - Mary Kay H Pflum
- Department of Chemistry, Wayne State University, Detroit, Michigan, USA
| | - Alan K Howe
- Department of Pharmacology, Larner College of Medicine, University of Vermont Cancer Center, Burlington, Vermont, USA; Department of Molecular Physiology & Biophysics, Larner College of Medicine, University of Vermont, Burlington, Vermont, USA.
| |
Collapse
|
6
|
Kang M, Otani Y, Guo Y, Yan J, Goult BT, Howe AK. The focal adhesion protein talin is a mechanically gated A-kinase anchoring protein. Proc Natl Acad Sci U S A 2024; 121:e2314947121. [PMID: 38513099 PMCID: PMC10990152 DOI: 10.1073/pnas.2314947121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 02/22/2024] [Indexed: 03/23/2024] Open
Abstract
Protein kinase A (PKA) is a ubiquitous, promiscuous kinase whose activity is specified through subcellular localization mediated by A-kinase anchoring proteins (AKAPs). PKA has complex roles as both an effector and a regulator of integrin-mediated cell adhesion to extracellular matrix (ECM). Recent observations demonstrate that PKA is an active component of focal adhesions (FA), suggesting the existence of one or more FA AKAPs. Using a promiscuous biotin ligase fused to PKA type-IIα regulatory (RIIα) subunits and subcellular fractionation, we identify the archetypal FA protein talin1 as an AKAP. Talin is a large, mechanosensitive scaffold that directly links integrins to actin filaments and promotes FA assembly by recruiting additional components in a force-dependent manner. The rod region of talin1 consists of 62 α-helices bundled into 13 rod domains, R1 to R13. Direct binding assays and NMR spectroscopy identify helix41 in the R9 subdomain of talin as the PKA binding site. PKA binding to helix41 requires unfolding of the R9 domain, which requires the linker region between R9 and R10. Experiments with single molecules and in cells manipulated to alter actomyosin contractility demonstrate that the PKA-talin interaction is regulated by mechanical force across the talin molecule. Finally, talin mutations that disrupt PKA binding also decrease levels of total and phosphorylated PKA RII subunits as well as phosphorylation of VASP, a known PKA substrate, within FA. These observations identify a mechanically gated anchoring protein for PKA, a force-dependent binding partner for talin1, and a potential pathway for adhesion-associated mechanotransduction.
Collapse
Affiliation(s)
- Mingu Kang
- Department of Pharmacology, University of Vermont Larner College of Medicine, Burlington, VT05405
- Department of Molecular Physiology and Biophysics, University of Vermont Larner College of Medicine, Burlington, VT05405
- University of Vermont Cancer Center, Burlington, VT05405
| | - Yasumi Otani
- School of Biosciences, University of Kent, Canterbury, KentCT2 7NJ, United Kingdom
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, LiverpoolL69 7ZB, United Kingdom
| | - Yanyu Guo
- Department of Physics, Mechanobiology Institute, National University of Singapore, Singapore117542, Singapore
| | - Jie Yan
- Department of Physics, Mechanobiology Institute, National University of Singapore, Singapore117542, Singapore
| | - Benjamin T. Goult
- School of Biosciences, University of Kent, Canterbury, KentCT2 7NJ, United Kingdom
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, LiverpoolL69 7ZB, United Kingdom
| | - Alan K. Howe
- Department of Pharmacology, University of Vermont Larner College of Medicine, Burlington, VT05405
- Department of Molecular Physiology and Biophysics, University of Vermont Larner College of Medicine, Burlington, VT05405
- University of Vermont Cancer Center, Burlington, VT05405
| |
Collapse
|
7
|
Kang M, Senatore AJ, Naughton H, McTigue M, Beltman RJ, Herppich AA, Pflum MKH, Howe AK. Protein Kinase A is a Functional Component of Focal Adhesions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.08.18.553932. [PMID: 37645771 PMCID: PMC10462105 DOI: 10.1101/2023.08.18.553932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Focal adhesions (FAs) form the junction between extracellular matrix (ECM)-bound integrins and the actin cytoskeleton and also transmit signals that regulate cell adhesion, cytoskeletal dynamics, and cell migration. While many of these signals are rooted in reversible tyrosine phosphorylation, phosphorylation of FA proteins on Ser/Thr residues is far more abundant yet its mechanisms and consequences are far less understood. The cAMP-dependent protein kinase (protein kinase A; PKA) has important roles in cell adhesion and cell migration and is both an effector and regulator of integrin-mediated adhesion to the ECM. Importantly, subcellular localization plays a critically important role in specifying PKA function. Here, we show that PKA is present in isolated FA-cytoskeleton complexes and active within FAs in live cells. Furthermore, using kinase-catalyzed biotinylation of isolated FA-cytoskeleton complexes, we identify fifty-three high-stringency candidate PKA substrates within FAs. From this list, we validate tensin-3 (Tns3) - a well-established molecular scaffold, regulator of cell migration, and component of focal and fibrillar adhesions - as a novel direct substrate for PKA. These observations identify a new pathway for phospho-regulation of Tns3 and, importantly, establish a new and important niche for localized PKA signaling and thus provide a foundation for further investigation of the role of PKA in the regulation of FA dynamics and signaling.
Collapse
|
8
|
Li N, Zhang E, Li Z, Lv S, Zhao X, Ke Q, Zou Q, Li W, Wang Y, Guo H, Song T, Sun L. The P53-P21-RB1 pathway promotes BRD4 degradation in liver cancer through USP1. J Biol Chem 2024; 300:105707. [PMID: 38309505 PMCID: PMC10907170 DOI: 10.1016/j.jbc.2024.105707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 01/10/2024] [Accepted: 01/17/2024] [Indexed: 02/05/2024] Open
Abstract
Liver cancer is notoriously refractory to conventional therapeutics. Tumor progression is governed by the interplay between tumor-promoting genes and tumor-suppressor genes. BRD4, an acetyl lysine-binding protein, is overexpressed in many cancer types, which promotes activation of a pro-tumor gene network. But the underlying mechanism for BRD4 overexpression remains incompletely understood. In addition, understanding the regulatory mechanism of BRD4 protein level will shed insight into BRD4-targeting therapeutics. In this study, we investigated the potential relation between BRD4 protein level and P53, the most frequently dysregulated tumor suppressor. By analyzing the TCGA datasets, we first identify a strong negative correlation between protein levels of P53 and BRD4 in liver cancer. Further investigation shows that P53 promotes BRD4 protein degradation. Mechanistically, P53 indirectly represses the transcription of USP1, a deubiquitinase, through the P21-RB1 axis. USP1 itself is also overexpressed in liver cancer and we show USP1 deubiquitinates BRD4 in vivo and in vitro, which increases BRD4 stability. With cell proliferation assays and xenograft model, we show the pro-tumor role of USP1 is partially mediated by BRD4. With functional transcriptomic analysis, we find the USP1-BRD4 axis upholds expression of a group of cancer-related genes. In summary, we identify a functional P53-P21-RB1-USP1-BRD4 axis in liver cancer.
Collapse
Affiliation(s)
- Neng Li
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Erlei Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, Hubei, China
| | - Zhenyong Li
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Suli Lv
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xuefeng Zhao
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qian Ke
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qingli Zou
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wensheng Li
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yifei Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Haocheng Guo
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tanjing Song
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Cell Architecture Research Institute, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | - Lidong Sun
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Cell Architecture Research Institute, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
9
|
Soundararajan A, Wang T, Pattabiraman PP. Proteomic analysis uncovers clusterin-mediated disruption of actin-based contractile machinery in the trabecular meshwork to lower intraocular pressure. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.16.580757. [PMID: 38405803 PMCID: PMC10888873 DOI: 10.1101/2024.02.16.580757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Glaucoma, a major cause of blindness, is characterized by elevated intraocular pressure (IOP) due to improper drainage of aqueous humor via the trabecular meshwork (TM) outflow pathway. Our recent work identified that loss of clusterin resulted in elevated IOP. This study delves deeper to elucidate the role of clusterin in IOP regulation. Employing an ex vivo human anterior segment perfusion model, we established that constitutive expression and secretion as well as exogenous addition of clusterin can significantly lower IOP. Interestingly, clusterin significantly lowered transforming growth factor β2 (TGFβ2)-induced IOP elevation. This effect was linked to the suppression of extracellular matrix (ECM) deposition and, highlighting the crucial role of clusterin in maintaining ECM equilibrium. A comprehensive global proteomic approach revealed the broad impact of clusterin on TM cell structure and function by identifying alterations in protein expression related to cytoskeletal organization, protein processing, and cellular mechanics, following clusterin induction. These findings underscore the beneficial modulation of TM cell structure and functionality by clusterin. Specifically, clusterin influences the actin-cytoskeleton and focal adhesion dynamics, which are instrumental in cell contractility and adhesion processes. Additionally, it suppresses the activity of proteins critical in TGFβ2, G-protein, and JAK-STAT signaling pathways, which are vital for the regulation of ocular pressure. By delineating these targeted effects of clusterin within the TM outflow pathway, our findings pave the way for novel treatment strategies aimed at mitigating the progression of ocular hypertension and glaucoma through targeted molecular interventions.
Collapse
|
10
|
Ebegboni VJ, Jones TL, Brownmiller T, Zhao PX, Pehrsson EC, Rajan SS, Caplen NJ. ETS1, a target gene of the EWSR1::FLI1 fusion oncoprotein, regulates the expression of the focal adhesion protein TENSIN3. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.21.572864. [PMID: 38187702 PMCID: PMC10769395 DOI: 10.1101/2023.12.21.572864] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
The mechanistic basis for the metastasis of Ewing sarcomas remains poorly understood, as these tumors harbor few mutations beyond the chromosomal translocation that initiates the disease. Instead, the epigenome of Ewing sarcoma (EWS) cells reflects the regulatory state of genes associated with the DNA binding activity of the fusion oncoproteins EWSR1::FLI1 or EWSR1::ERG. In this study, we examined the EWSR1::FLI1/ERG's repression of transcription factor genes, concentrating on those that exhibit a broader range of expression in tumors than in EWS cell lines. Focusing on one of these target genes, ETS1, we detected EWSR1::FLI1 binding and an H3K27me3 repressive mark at this locus. Depletion of EWSR1::FLI1 results in ETS1's binding of promoter regions, substantially altering the transcriptome of EWS cells, including the upregulation of the gene encoding TENSIN3 (TNS3), a focal adhesion protein. EWS cell lines expressing ETS1 (CRISPRa) exhibited increased TNS3 expression and enhanced movement compared to control cells. The cytoskeleton of control cells and ETS1-activated EWS cell lines also differed. Specifically, control cells exhibited a distributed vinculin signal and a network-like organization of F-actin. In contrast, ETS1-activated EWS cells showed an accumulation of vinculin and F-actin towards the plasma membrane. Interestingly, the phenotype of ETS1-activated EWS cell lines depleted of TNS3 resembled the phenotype of the control cells. Critically, these findings have clinical relevance as TNS3 expression in EWS tumors positively correlates with that of ETS1.
Collapse
Affiliation(s)
- Vernon Justice Ebegboni
- Functional Genetics Section, Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Tamara L Jones
- Functional Genetics Section, Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Tayvia Brownmiller
- Functional Genetics Section, Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Patrick X Zhao
- Omics Bioinformatics Facility, Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
- Advanced Biomedical Computational Science, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Erica C Pehrsson
- Omics Bioinformatics Facility, Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
- Advanced Biomedical Computational Science, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Soumya Sundara Rajan
- Functional Genetics Section, Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Natasha J Caplen
- Functional Genetics Section, Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
11
|
Zhou H, Wang F. Tensin 1 regulated by hepatic leukemia factor represses the progression of prostate cancer. Mutagenesis 2023; 38:295-304. [PMID: 37712764 DOI: 10.1093/mutage/gead027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 09/14/2023] [Indexed: 09/16/2023] Open
Abstract
Hepatic leukemia factor (HLF), a transcription factor, is dysregulated in many cancers. This study investigates the function of HLF in prostate cancer (PCa) and its relation to tensin 1 (TNS1). Clinical tissues were collected from 24 PCa patients. Duke University 145 (DU145) and PC3 cells overexpressing HLF were established. HLF signaling was downregulated in PCa tissues compared to adjacent tissues and in DU145 and PC3 cells compared to prostate epithelial cells RWPE-1 or prostate stromal cells (WPMY-1). PCa cell lines with overexpression of HLF had reduced proliferative, migratory, and invasive activity, increased apoptosis, and cell mitosis mostly in the G0/G1 phase. HLF induced the TNS1 transcription to activate the p53 pathway. Depletion of TNS1 reversed the anti-tumor effects of HLF on PCa cells and tumor growth and metastasis in vivo. In summary, our findings suggest that HLF suppressed PCa progression by upregulating TNS1 expression and inducing the p53 pathway activation, which might provide insights into novel strategies for combating PCa.
Collapse
Affiliation(s)
- Hao Zhou
- Department of Urology, The Second Affiliated Hospital of Hunan University of Chinese Medicine, Changsha 410001, Hunan, P.R. China
| | - Fang Wang
- Medical College, Changsha Social Work College, Changsha 410004, Hunan, P.R. China
| |
Collapse
|
12
|
Espinosa-Ruíz C, Esteban MÁ. Modulation of cell migration and cell tracking of the gilthead seabream (Sparus aurata) SAF-1 cells by probiotics. FISH & SHELLFISH IMMUNOLOGY 2023; 142:109149. [PMID: 37858786 DOI: 10.1016/j.fsi.2023.109149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 02/18/2023] [Accepted: 10/06/2023] [Indexed: 10/21/2023]
Abstract
Cell migration is an essential process in immunity and wound healing. The in vitro scratch assay was optimized for the SAF-1 cell line, obtained from gilthead seabream (Sparus aurata) fin. In addition, selected cells from the cell front were tracked for detailed individual cell movement and morphological analysis. Modulation of migration and cell tracking of the SAF-1 cell line by probiotics was evaluated. Cells were cultured and incubated for 24 h with three species of extremophilic yeasts [Yarrowia lipolytica (D1 and N6) and Debaryomyces hansenii (CBS004)] and the bacterium Shewanella putrefaciens (known as SpPdp11) and then scratch and cell tracking assays were performed. The results indicated that the forward velocity was significantly (p < 0.05) increased in SAF-1 cells incubated with CBS004 or SpPdp11. However, cell velocity, cumulative distance and Euclidean distance were only significantly increased in SAF-1 cells incubated with SpPdp11. Furthermore, to increase our understanding of the genes involved in cell movement, the expression profile of ten structural proteins (α-1β tubulin, vinculin, focal adhesion kinase type, alpha-2 integrin, tetraspanin, integrin-linked kinase 1, tensin 3, tensin 4, paxillin, and light chain 2) was studied by real time-PCR. The expression of these genes was modulated as a function of the probiotic tested and the results indicate that CBS004 and SpPdp11 increase the movement of SAF-1 cells.
Collapse
Affiliation(s)
- Cristóbal Espinosa-Ruíz
- Immunobiology for Aquaculture Group, Department of Cell Biology and Histology, Faculty of Biology, University of Murcia, 30100, Murcia, Spain
| | - Ma Ángeles Esteban
- Immunobiology for Aquaculture Group, Department of Cell Biology and Histology, Faculty of Biology, University of Murcia, 30100, Murcia, Spain.
| |
Collapse
|
13
|
Zhang S, van de Peppel J, Koedam M, van Leeuwen JPTM, van der Eerden BCJ. Tensin-3 is involved in osteogenic versus adipogenic fate of human bone marrow stromal cells. Cell Mol Life Sci 2023; 80:277. [PMID: 37668682 PMCID: PMC10480249 DOI: 10.1007/s00018-023-04930-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 07/25/2023] [Accepted: 08/21/2023] [Indexed: 09/06/2023]
Abstract
BACKGROUND The tightly controlled balance between osteogenic and adipogenic differentiation of human bone marrow-derived stromal cells (BMSCs) is critical to maintain bone homeostasis. Age-related osteoporosis is characterized by low bone mass with excessive infiltration of adipose tissue in the bone marrow compartment. The shift of BMSC differentiation from osteoblasts to adipocytes could result in bone loss and adiposity. METHODS TNS3 gene expression during osteogenic and adipogenic differentiation of BMSCs was evaluated by qPCR and Western blot analyses. Lentiviral-mediated knockdown or overexpression of TNS3 was used to assess its function. The organization of cytoskeleton was examined by immunofluorescent staining at multiple time points. The role of TNS3 and its domain function in osteogenic differentiation were evaluated by ALP activity, calcium assay, and Alizarin Red S staining. The expression of Rho-GTP was determined using the RhoA pull-down activation assay. RESULTS Loss of TNS3 impaired osteogenic differentiation of BMSCs but promoted adipogenic differentiation. Conversely, TNS3 overexpression hampered adipogenesis while enhancing osteogenesis. The expression level of TNS3 determined cell shape and cytoskeletal reorganization during osteogenic differentiation. TNS3 truncation experiments revealed that for optimal osteogenesis to occur, all domains proved essential. Pull-down and immunocytochemical experiments suggested that TNS3 mediates osteogenic differentiation through RhoA. CONCLUSIONS Here, we identify TNS3 to be involved in BMSC fate decision. Our study links the domain structure in TNS3 to RhoA activity via actin dynamics and implicates an important role for TNS3 in regulating osteogenesis and adipogenesis from BMSCs. Furthermore, it supports the critical involvement of cytoskeletal reorganization in BMSC differentiation.
Collapse
Affiliation(s)
- Shuang Zhang
- Laboratory for Calcium and Bone Metabolism, Department of Internal Medicine, Erasmus MC, Erasmus University Medical Center, Doctor Molewaterplein 40, 3015GD, Rotterdam, The Netherlands
| | - Jeroen van de Peppel
- Laboratory for Calcium and Bone Metabolism, Department of Internal Medicine, Erasmus MC, Erasmus University Medical Center, Doctor Molewaterplein 40, 3015GD, Rotterdam, The Netherlands
| | - Marijke Koedam
- Laboratory for Calcium and Bone Metabolism, Department of Internal Medicine, Erasmus MC, Erasmus University Medical Center, Doctor Molewaterplein 40, 3015GD, Rotterdam, The Netherlands
| | - Johannes P T M van Leeuwen
- Laboratory for Calcium and Bone Metabolism, Department of Internal Medicine, Erasmus MC, Erasmus University Medical Center, Doctor Molewaterplein 40, 3015GD, Rotterdam, The Netherlands
| | - Bram C J van der Eerden
- Laboratory for Calcium and Bone Metabolism, Department of Internal Medicine, Erasmus MC, Erasmus University Medical Center, Doctor Molewaterplein 40, 3015GD, Rotterdam, The Netherlands.
| |
Collapse
|
14
|
Martínez-Abarca Millán A, Soler Beatty J, Valencia Expósito A, Martín-Bermudo MD. Drosophila as Model System to Study Ras-Mediated Oncogenesis: The Case of the Tensin Family of Proteins. Genes (Basel) 2023; 14:1502. [PMID: 37510408 PMCID: PMC10379045 DOI: 10.3390/genes14071502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 07/14/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
Oncogenic mutations in the small GTPase Ras contribute to ~30% of human cancers. However, tissue growth induced by oncogenic Ras is restrained by the induction of cellular senescence, and additional mutations are required to induce tumor progression. Therefore, identifying cooperating cancer genes is of paramount importance. Recently, the tensin family of focal adhesion proteins, TNS1-4, have emerged as regulators of carcinogenesis, yet their role in cancer appears somewhat controversial. Around 90% of human cancers are of epithelial origin. We have used the Drosophila wing imaginal disc epithelium as a model system to gain insight into the roles of two orthologs of human TNS2 and 4, blistery (by) and PVRAP, in epithelial cancer progression. We have generated null mutations in PVRAP and found that, as is the case for by and mammalian tensins, PVRAP mutants are viable. We have also found that elimination of either PVRAP or by potentiates RasV12-mediated wing disc hyperplasia. Furthermore, our results have unraveled a mechanism by which tensins may limit Ras oncogenic capacity, the regulation of cell shape and growth. These results demonstrate that Drosophila tensins behave as suppressors of Ras-driven tissue hyperplasia, suggesting that the roles of tensins as modulators of cancer progression might be evolutionarily conserved.
Collapse
Affiliation(s)
- Ana Martínez-Abarca Millán
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide/CSIC/JA, Ctra Utrera Km1, 41013 Sevilla, Spain
| | - Jennifer Soler Beatty
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide/CSIC/JA, Ctra Utrera Km1, 41013 Sevilla, Spain
| | - Andrea Valencia Expósito
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide/CSIC/JA, Ctra Utrera Km1, 41013 Sevilla, Spain
| | - María D Martín-Bermudo
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide/CSIC/JA, Ctra Utrera Km1, 41013 Sevilla, Spain
| |
Collapse
|
15
|
Mainsiouw L, Ryan ME, Hafizi S, Fleming JC. The molecular and clinical role of Tensin 1/2/3 in cancer. J Cell Mol Med 2023. [PMID: 37296531 DOI: 10.1111/jcmm.17714] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 02/07/2023] [Accepted: 02/10/2023] [Indexed: 06/12/2023] Open
Abstract
Tensin 1 was originally described as a focal adhesion adaptor protein, playing a role in extracellular matrix and cytoskeletal interactions. Three other Tensin proteins were subsequently discovered, and the family was grouped as Tensin. It is now recognized that these proteins interact with multiple cell signalling cascades that are implicated in tumorigenesis. To understand the role of Tensin 1-3 in neoplasia, current molecular evidence is categorized by the hallmarks of cancer model. Additionally, clinical data involving Tensin 1-3 are reviewed to investigate the correlation between cellular effects and clinical phenotype. Tensin proteins commonly interact with the tumour suppressor, DLC1. The ability of Tensin to promote tumour progression is directly correlated with DLC1 expression. Members of the Tensin family appear to have tumour subtype-dependent effects on oncogenesis; despite numerous data evidencing a tumour suppressor role for Tensin 2, association of Tensins 1-3 with an oncogenic role notably in colorectal carcinoma and pancreatic ductal adenocarcinoma is of potential clinical relevance. The complex interplay between these focal adhesion adaptor proteins and signalling pathways are discussed to provide an up to date review of their role in cancer biology.
Collapse
Affiliation(s)
| | - Matthew Edward Ryan
- Department of Molecular and Clinical Cancer Medicine, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, UK
- Liverpool Head and Neck Centre, University of Liverpool, Liverpool, UK
| | - Sassan Hafizi
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, UK
| | - Jason C Fleming
- Department of Molecular and Clinical Cancer Medicine, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, UK
- Liverpool Head and Neck Centre, University of Liverpool, Liverpool, UK
| |
Collapse
|
16
|
Heo H, Kim HJ, Haam K, Sohn HA, Shin YJ, Go H, Jung HJ, Kim JH, Lee SI, Song KS, Kim MJ, Lee H, Kwon ES, Kim SY, Kim YS, Kim M. Epigenetic Activation of Tensin 4 Promotes Gastric Cancer Progression. Mol Cells 2023; 46:298-308. [PMID: 36896596 PMCID: PMC10183796 DOI: 10.14348/molcells.2023.2148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 12/18/2022] [Accepted: 12/18/2022] [Indexed: 03/11/2023] Open
Abstract
Gastric cancer (GC) is a complex disease influenced by multiple genetic and epigenetic factors. Chronic inflammation caused by Helicobacter pylori infection and dietary risk factors can result in the accumulation of aberrant DNA methylation in gastric mucosa, which promotes GC development. Tensin 4 (TNS4), a member of the Tensin family of proteins, is localized to focal adhesion sites, which connect the extracellular matrix and cytoskeletal network. We identified upregulation of TNS4 in GC using quantitative reverse transcription PCR with 174 paired samples of GC tumors and adjacent normal tissues. Transcriptional activation of TNS4 occurred even during the early stage of tumor development. TNS4 depletion in GC cell lines that expressed high to moderate levels of TNS4, i.e., SNU-601, KATO III, and MKN74, reduced cell proliferation and migration, whereas ectopic expression of TNS4 in those lines that expressed lower levels of TNS4, i.e., SNU-638, MKN1, and MKN45 increased colony formation and cell migration. The promoter region of TNS4 was hypomethylated in GC cell lines that showed upregulation of TNS4. We also found a significant negative correlation between TNS4 expression and CpG methylation in 250 GC tumors based on The Cancer Genome Atlas (TCGA) data. This study elucidates the epigenetic mechanism of TNS4 activation and functional roles of TNS4 in GC development and progression and suggests a possible approach for future GC treatments.
Collapse
Affiliation(s)
- Haejeong Heo
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea
- Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon 34113, Korea
| | - Hee-Jin Kim
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea
| | - Keeok Haam
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea
| | - Hyun Ahm Sohn
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea
| | - Yang-Ji Shin
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea
- Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon 34113, Korea
| | - Hanyong Go
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea
- Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon 34113, Korea
| | - Hyo-Jung Jung
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea
| | - Jong-Hwan Kim
- Korea Bioinformation Center, KRIBB, Daejeon 34141, Korea
| | - Sang-Il Lee
- Department of Surgery, College of Medicine, Chungnam National University, Daejeon 35015, Korea
| | - Kyu-Sang Song
- Department of Pathology, College of Medicine, Chungnam National University, Daejeon 35015, Korea
| | - Min-Ju Kim
- Department of Pharmacy, College of Pharmacy, Pusan National University, Busan 46241, Korea
| | - Haeseung Lee
- Department of Pharmacy, College of Pharmacy, Pusan National University, Busan 46241, Korea
| | - Eun-Soo Kwon
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea
- Department of Biomolecular Science, KRIBB School of Bioscience, UST, Daejeon 34113, Korea
| | - Seon-Young Kim
- Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon 34113, Korea
- Korea Bioinformation Center, KRIBB, Daejeon 34141, Korea
| | - Yong Sung Kim
- Functional Genomics Institute, PDXen Biosystems Co., Daejeon 34129, Korea
- Personalized Genomic Medicine Research Center, KRIBB, Daejeon 34141, Korea
| | - Mirang Kim
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea
- Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon 34113, Korea
- Personalized Genomic Medicine Research Center, KRIBB, Daejeon 34141, Korea
| |
Collapse
|
17
|
Huang CW, Lo SH. Tensins in Kidney Function and Diseases. Life (Basel) 2023; 13:1244. [PMID: 37374025 PMCID: PMC10305691 DOI: 10.3390/life13061244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/11/2023] [Accepted: 05/23/2023] [Indexed: 06/29/2023] Open
Abstract
Tensins are focal adhesion proteins that regulate various biological processes, such as mechanical sensing, cell adhesion, migration, invasion, and proliferation, through their multiple binding activities that transduce critical signals across the plasma membrane. When these molecular interactions and/or mediated signaling are disrupted, cellular activities and tissue functions are compromised, leading to disease development. Here, we focus on the significance of the tensin family in renal function and diseases. The expression pattern of each tensin in the kidney, their roles in chronic kidney diseases, renal cell carcinoma, and their potentials as prognostic markers and/or therapeutic targets are discussed in this review.
Collapse
Affiliation(s)
- Chien-Wei Huang
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California-Davis, Sacramento, CA 95817, USA
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Veterans General Hospital, Kaohsiung 81362, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
| | - Su Hao Lo
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California-Davis, Sacramento, CA 95817, USA
| |
Collapse
|
18
|
Chiu CL, Hong SY, Tan Y, Lee YRJ, Shih YP, Tepper CG, Lo SH. C-terminal tensin-like ( CTEN) knockin alleviates cystic kidney defects in Tensin-1 knockout mice. Genes Dis 2023; 10:643-646. [PMID: 37396551 PMCID: PMC10308109 DOI: 10.1016/j.gendis.2022.05.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 04/08/2022] [Accepted: 05/30/2022] [Indexed: 11/26/2022] Open
Affiliation(s)
- Chun-Lung Chiu
- Department of Biochemistry and Molecular Medicine, University of California-Davis, Sacramento, CA 95817, USA
| | - Shiao-Ya Hong
- Department of Biochemistry and Molecular Medicine, University of California-Davis, Sacramento, CA 95817, USA
| | - Ying Tan
- Department of Biochemistry and Molecular Medicine, University of California-Davis, Sacramento, CA 95817, USA
| | - Yuh-Ru Julie Lee
- Department of Plant Biology, University of California-Davis, Davis, CA 95616, USA
| | - Yi-Ping Shih
- Department of Biochemistry and Molecular Medicine, University of California-Davis, Sacramento, CA 95817, USA
| | - Clifford G. Tepper
- Department of Biochemistry and Molecular Medicine, University of California-Davis, Sacramento, CA 95817, USA
| | - Su Hao Lo
- Department of Plant Biology, University of California-Davis, Davis, CA 95616, USA
| |
Collapse
|
19
|
Ma W, Xu L, Sun X, Qi Y, Chen S, Li D, Jin Y, Chen N, Zhu X, Luo J, Li C, Zhao K, Zheng Y, Yu D. Using a human bronchial epithelial cell-based malignant transformation model to explore the function of hsa-miR-200 family in the progress of PM 2.5-induced lung cancer development. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 319:120981. [PMID: 36587786 DOI: 10.1016/j.envpol.2022.120981] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 12/26/2022] [Accepted: 12/28/2022] [Indexed: 06/17/2023]
Abstract
Numerous studies have revealed that ambient long-term exposure to fine particulate matter (PM2.5) is significantly related to the development of lung cancer, but the molecular mechanisms of PM2.5 exposure-induced lung cancer remains unknown. As an important epigenetic regulator, microRNAs (miRNAs) play vital roles in responding to environment exposure and various diseases including lung cancer development. Here we constructed a PM2.5-induced malignant transformed cell model and found that miR-200 family, especially miR-200a-3p, was involved in the process of PM2.5 induced lung cancer. Further investigation of the function of miR-200 family (miR-200a-3p as a representative revealed that miR-200a-3p promoted cell migration by directly suppressing TNS3 expression. These results suggested that ambient PM2.5 exposure may increase the expression of miR-200 family and then promote the proliferation and migration of lung cancer cells. Our study provided novel model and insights into the molecular mechanism of ambient PM2.5 exposure-induced lung cancer.
Collapse
Affiliation(s)
- Wanli Ma
- Department of Toxicology, School of Public Health, Qingdao University, Qingdao, China
| | - Lin Xu
- Department of Toxicology, School of Public Health, Qingdao University, Qingdao, China
| | - Xueying Sun
- Department of Toxicology, School of Public Health, Qingdao University, Qingdao, China
| | - Yuan Qi
- Department of Toxicology, School of Public Health, Qingdao University, Qingdao, China
| | - Shen Chen
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Daochuan Li
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Yuan Jin
- Department of Toxicology, School of Public Health, Qingdao University, Qingdao, China
| | - Ningning Chen
- Department of Toxicology, School of Public Health, Qingdao University, Qingdao, China
| | - Xiaoxiao Zhu
- Department of Toxicology, School of Public Health, Qingdao University, Qingdao, China
| | - Jiao Luo
- Department of Toxicology, School of Public Health, Qingdao University, Qingdao, China
| | - Chuanhai Li
- Department of Toxicology, School of Public Health, Qingdao University, Qingdao, China
| | - Kunming Zhao
- Department of Toxicology, School of Public Health, Qingdao University, Qingdao, China
| | - Yuxin Zheng
- Department of Toxicology, School of Public Health, Qingdao University, Qingdao, China
| | - Dianke Yu
- Department of Toxicology, School of Public Health, Qingdao University, Qingdao, China.
| |
Collapse
|
20
|
Wang YX, Huang CY, Chiu HJ, Huang PH, Chien HT, Jwo SH, Liao YC. Nuclear-localized CTEN is a novel transcriptional regulator and promotes cancer cell migration through its downstream target CDC27. J Physiol Biochem 2023; 79:163-174. [PMID: 36399312 DOI: 10.1007/s13105-022-00932-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 11/11/2022] [Indexed: 11/21/2022]
Abstract
C-terminal tensin-like (CTEN) is a tensin family protein typically localized to the cytoplasmic side of focal adhesions, and primarily contributes to cell adhesion and migration. Elevated expression and nuclear accumulation of CTEN have been reported in several types of cancers and found to be associated with malignant behaviors. However, the function of nuclear CTEN remains elusive. In this study, we report for the first time that nuclear CTEN associates with chromatin DNA and occupies the region proximal to the transcription start site in several genes. The mRNA expression level of CTEN positively correlates with that of one of its putative target genes, cell division cycle protein 27 (CDC27), in a clinical colorectal cancer dataset, suggesting that CTEN may play a role in the regulation of CDC27 gene expression. Furthermore, we demonstrated that CTEN is recruited to the promoter region of the CDC27 gene and that the mRNA expression and promoter activity of CDC27 are both reduced when CTEN is downregulated. In addition, we found that enhanced nuclear accumulation of CTEN in HCT116 cells by overexpression of CTEN fused with nuclear localization signals increases CDC27 transcript levels and promoter activity. The increased nuclear-localized CTEN also significantly promotes cell migration, and the migratory ability is suppressed when CDC27 is knocked down. These results demonstrate that nuclear CTEN regulates CDC27 expression transcriptionally and promotes cell migration through CDC27. Our findings provide new insights into CTEN moonlighting in the nucleus as a DNA-associated protein and transcriptional regulator involved in modulating cancer cell migration.
Collapse
Affiliation(s)
- Yi-Xuan Wang
- Department of Biochemical Science and Technology, National Taiwan University, Taipei, 10617, Taiwan
| | - Chun-Yang Huang
- Department of Biochemical Science and Technology, National Taiwan University, Taipei, 10617, Taiwan
| | - Hsiao-Ju Chiu
- Department of Biochemical Science and Technology, National Taiwan University, Taipei, 10617, Taiwan
| | - Po-Han Huang
- Department of Biochemical Science and Technology, National Taiwan University, Taipei, 10617, Taiwan
| | - Hung-Ting Chien
- Department of Biochemical Science and Technology, National Taiwan University, Taipei, 10617, Taiwan
| | - Si-Han Jwo
- Department of Biochemical Science and Technology, National Taiwan University, Taipei, 10617, Taiwan
| | - Yi-Chun Liao
- Department of Biochemical Science and Technology, National Taiwan University, Taipei, 10617, Taiwan.
| |
Collapse
|
21
|
Liu F, Gao X, Liu W, Xue W. Mining TCGA and GEO databases for the prediction of poor prognosis in lung adenocarcinoma based on up-regulated expression of TNS4. Medicine (Baltimore) 2022; 101:e31120. [PMID: 36281194 PMCID: PMC9592303 DOI: 10.1097/md.0000000000031120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
To investigate the clinical significance of Tensin4 (TNS4) in human cancers, particularly lung cancer, we mined the Cancer Genome Atlas database for lung adenocarcinoma (TCGA-LUAD) and the Gene Expression Omnibus database to predict poor prognosis based on the up-regulated expression of TNS4 in LUAD. The correlation between the clinical pathologic features of patients and TNS4 gene expression was analyzed using the Wilcoxon signed-rank test. Cox regression analysis was used to evaluate the association of clinicopathologic characteristics with the overall survival (OS) of cancer patients using TCGA data. The relationship between TNS4 expression and cancer patient survival was evaluated with Kaplan-Meier survival curves and meta-analyses. GO and KEGG were also included in the data mining methods. The expression level of TNS4 in LUAD tissue was higher than that in adjacent normal tissue (P < .001). According to the Kaplan-Meier survival curve, LUAD patients with high TNS4 expression had worse prognosis than those with low TNS4 expression (P < .001 for OS; P = .028 for progression-free survival). A positive correlation between TNS4 expression and poor OS was found with both univariate and multivariate analyses. Increased TNS4 expression in LUAD was closely correlated with a higher disease stage (P = .007), positive lymph nodes (P = .005), and larger tumor size (P = .002). Moreover, meta-analysis including seven independent datasets showed LUAD patients with higher TNS4 had poorer OS (combined hazard ratio = 1.27, 95% confidence interval 1.16-1.39). In the high-TNS4 population, regulation of the actin cytoskeleton, extracellular matrix receptor interactions, and focal adhesion were differentially enriched. Integrin α6β4 and laminin-5 genes were also associated with TNS4. TNS4 expression may be a potential biomarker for predicting poor survival in LUAD. Moreover, the correlation between TNS4 and integrin α6β4 may be attributed to the role of TNS4 in LUAD.
Collapse
Affiliation(s)
- Feng Liu
- Department of Kidney Transplantation, Nephropathy Hospital, the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, PR China
- Department of Thoracic Surgery, Wuxi People’s Hospital Affiliated to Nanjing Medical University, Wuxi, PR China
| | - Xinliang Gao
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, PR China
| | - Wei Liu
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, PR China
| | - Wujun Xue
- Department of Kidney Transplantation, Nephropathy Hospital, the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, PR China
- * Correspondence: Wujun Xue, Department of Kidney Transplantation, Nephropathy Hospital, the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, PR China (e-mail: )
| |
Collapse
|
22
|
Atherton P, Konstantinou R, Neo SP, Wang E, Balloi E, Ptushkina M, Bennett H, Clark K, Gunaratne J, Critchley D, Barsukov I, Manser E, Ballestrem C. Tensin3 interaction with talin drives the formation of fibronectin-associated fibrillar adhesions. J Biophys Biochem Cytol 2022; 221:213452. [PMID: 36074065 PMCID: PMC9462884 DOI: 10.1083/jcb.202107022] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 05/30/2022] [Accepted: 08/05/2022] [Indexed: 12/11/2022] Open
Abstract
The formation of healthy tissue involves continuous remodeling of the extracellular matrix (ECM). Whilst it is known that this requires integrin-associated cell-ECM adhesion sites (CMAs) and actomyosin-mediated forces, the underlying mechanisms remain unclear. Here, we examine how tensin3 contributes to the formation of fibrillar adhesions (FBs) and fibronectin fibrillogenesis. Using BioID mass spectrometry and a mitochondrial targeting assay, we establish that tensin3 associates with the mechanosensors such as talin and vinculin. We show that the talin R11 rod domain binds directly to a helical motif within the central intrinsically disordered region (IDR) of tensin3, whilst vinculin binds indirectly to tensin3 via talin. Using CRISPR knock-out cells in combination with defined tensin3 mutations, we show (i) that tensin3 is critical for the formation of α5β1-integrin FBs and for fibronectin fibrillogenesis, and (ii) the talin/tensin3 interaction drives this process, with vinculin acting to potentiate it.
Collapse
Affiliation(s)
- Paul Atherton
- Wellcome Trust Centre for Cell-Matrix Research, University of Manchester, Manchester, UK.,Division of Cell Biology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Rafaella Konstantinou
- Wellcome Trust Centre for Cell-Matrix Research, University of Manchester, Manchester, UK.,sGSK Group, Institute of Molecular and Cell Biology, A*STAR (Agency for Science, Technology and Research), Singapore, Singapore
| | - Suat Peng Neo
- Quantitative Proteomics Group, Institute of Molecular and Cell Biology, A*STAR (Agency for Science, Technology and Research), Singapore, Singapore
| | - Emily Wang
- Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| | - Eleonora Balloi
- Wellcome Trust Centre for Cell-Matrix Research, University of Manchester, Manchester, UK
| | - Marina Ptushkina
- Wellcome Trust Centre for Cell-Matrix Research, University of Manchester, Manchester, UK
| | - Hayley Bennett
- Genome Editing Unit, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Kath Clark
- Department of Biochemistry, University of Leicester, Leicester, UK
| | - Jayantha Gunaratne
- Quantitative Proteomics Group, Institute of Molecular and Cell Biology, A*STAR (Agency for Science, Technology and Research), Singapore, Singapore
| | - David Critchley
- Department of Biochemistry, University of Leicester, Leicester, UK
| | - Igor Barsukov
- Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| | - Edward Manser
- sGSK Group, Institute of Molecular and Cell Biology, A*STAR (Agency for Science, Technology and Research), Singapore, Singapore
| | - Christoph Ballestrem
- Wellcome Trust Centre for Cell-Matrix Research, University of Manchester, Manchester, UK
| |
Collapse
|
23
|
Sasaki H, Sasaki N. Tensin 2-deficient nephropathy - mechanosensitive nephropathy, genetic susceptibility. Exp Anim 2022; 71:252-263. [PMID: 35444113 PMCID: PMC9388341 DOI: 10.1538/expanim.22-0031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Tensin 2 (TNS2), a focal adhesion protein, is considered to anchor focal adhesion proteins to β integrin as an integrin adaptor protein and/or serve as a scaffold to facilitate the
interactions of these proteins. In the kidney, TNS2 localizes to the basolateral surface of glomerular epithelial cells, i.e., podocytes. Loss of TNS2 leads to the development of glomerular
basement membrane lesions and abnormal accumulation of extracellular matrix in maturing glomeruli during the early postnatal stages. It subsequently results in podocyte foot process
effacement, eventually leading to glomerulosclerosis. Histopathological features of the affected glomeruli in the middle stage of the disease include expansion of the mesangial matrix
without mesangial cell proliferation. In this review, we provide an overview of TNS2-deficient nephropathy and discuss the potential mechanism underlying this mechanosensitive nephropathy,
which may be applicable to other glomerulonephropathies, such as CD151-deficient nephropathy and Alport syndrome. The onset of TNS2-deficient nephropathy strictly depends on the genetic
background, indicating the presence of critical modifier genes. A better understanding of molecular mechanisms of mechanosensitive nephropathy may open new avenues for the management of
patients with glomerulonephropathies.
Collapse
Affiliation(s)
- Hayato Sasaki
- Laboratory of Laboratory Animal Science and Medicine, School of Veterinary Medicine, Kitasato University
| | - Nobuya Sasaki
- Laboratory of Laboratory Animal Science and Medicine, School of Veterinary Medicine, Kitasato University
| |
Collapse
|
24
|
Nizioł M, Zińczuk J, Zaręba K, Guzińska-Ustymowicz K, Pryczynicz A. Increased tensin 4 expression is related to the histological type of gastric cancer. World J Clin Oncol 2021; 12:1202-1214. [PMID: 35070739 PMCID: PMC8716987 DOI: 10.5306/wjco.v12.i12.1202] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 06/29/2021] [Accepted: 11/18/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Gastric cancer (GC) is one of the most common malignant tumors worldwide. Tensin 4 (TNS4) is an adhesive protein belonging to the tensin family. This protein is located in focal adhesion sites. The TNS4 gene is considered an oncogene in numerous cancers. This protein plays an important role in adhesion, migration and proliferation of cells.
AIM To evaluate expression of TNS4 protein in GC tissues and analysis of the clinical and histopathological parameters as well as the overall survival rate of patients.
METHODS The expression of TNS4 was assessed in 89 patients using immunohistochemistry.
RESULTS Positive expression of TNS4 was observed in 49 of 89 patients (55.06%). Higher TNS4 expression was more common in GC tumors with a diameter ≥ 5 cm (P = 0.040). We demonstrated that an increase in TNS4 expression was more frequent in tumors of the histological type without mucinous components than in tumors from mucosal cancers (P = 0.023). Furthermore, TNS4 expression was higher in moderately differentiated tumors than in poorly differentiated and non-differentiated tumors (P = 0.002). Increased TNS4 expression was also noted in the intestinal type of GC according to Lauren’s classification (P = 0.020). No statistically significant correlation was found between the expression of TNS4 and the overall survival rate of patients.
CONCLUSION TNS4 expression was significantly higher in tumors with a diameter ≥ 5 cm of the moderately differentiated intestinal type (according to Lauren’s classification) of GC without a mucinous component. Therefore, increased TNS4 expression is related to the histological type of GC with a better prognosis.
Collapse
Affiliation(s)
- Marcin Nizioł
- Department of General Pathomorphology, Medical University of Bialystok, Białystok 15-089, Poland
| | - Justyna Zińczuk
- Department of Clinical Laboratory Diagnostics, Medical University of Białystok, Bialystok 15-089, Poland
| | - Konrad Zaręba
- The Second Clinical Department of General and Gastroenterological Surgery, Medical University of Bialystok, Białystok 15-089, Poland
| | | | - Anna Pryczynicz
- Department of General Pathomorphology, Medical University of Bialystok, Białystok 15-089, Poland
| |
Collapse
|
25
|
van Andel MM, Groenink M, van den Berg MP, Timmermans J, Scholte AJHA, Mulder BJM, Zwinderman AH, de Waard V. Genome-wide methylation patterns in Marfan syndrome. Clin Epigenetics 2021; 13:217. [PMID: 34895303 PMCID: PMC8665617 DOI: 10.1186/s13148-021-01204-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 11/27/2021] [Indexed: 12/29/2022] Open
Abstract
Background Marfan syndrome (MFS) is a connective tissue disorder caused by mutations in the Fibrillin-1 gene (FBN1). Here, we undertook the first epigenome-wide association study (EWAS) in patients with MFS aiming at identifying DNA methylation loci associated with MFS phenotypes that may shed light on the disease process. Methods The Illumina 450 k DNA-methylation array was used on stored peripheral whole-blood samples of 190 patients with MFS originally included in the COMPARE trial. An unbiased genome-wide approach was used, and methylation of CpG-sites across the entire genome was evaluated. Additionally, we investigated CpG-sites across the FBN1-locus (15q21.1) more closely, since this is the gene defective in MFS. Differentially Methylated Positions (DMPs) and Differentially Methylated Regions (DMRs) were identified through regression analysis. Associations between methylation levels and aortic diameters and presence or absence of 21 clinical features of MFS at baseline were analyzed. Moreover, associations between aortic diameter change, and the occurrence of clinical events (death any cause, type-A or -B dissection/rupture, or aortic surgery) and methylation levels were analyzed. Results We identified 28 DMPs that are significantly associated with aortic diameters in patients with MFS. Seven of these DMPs (25%) could be allocated to a gene that was previously associated with cardiovascular diseases (HDAC4, IGF2BP3, CASZ1, SDK1, PCDHGA1, DIO3, PTPRN2). Moreover, we identified seven DMPs that were significantly associated with aortic diameter change and five DMP’s that associated with clinical events. No significant associations at p < 10–8 or p < 10–6 were found with any of the non-cardiovascular phenotypic MFS features. Investigating DMRs, clusters were seen mostly on X- and Y, and chromosome 18–22. The remaining DMRs indicated involvement of a large family of protocadherins on chromosome 5, which were not reported in MFS before. Conclusion This EWAS in patients with MFS has identified a number of methylation loci significantly associated with aortic diameters, aortic dilatation rate and aortic events. Our findings add to the slowly growing literature on the regulation of gene expression in MFS patients. Supplementary Information The online version contains supplementary material available at 10.1186/s13148-021-01204-4.
Collapse
Affiliation(s)
- Mitzi M van Andel
- Department of Cardiology, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.
| | - Maarten Groenink
- Department of Cardiology, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.,Department of Radiology, Amsterdam UMC, Amsterdam, The Netherlands
| | - Maarten P van den Berg
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Janneke Timmermans
- Department of Cardiology, Radboud University Hospital, Nijmegen, The Netherlands
| | - Arthur J H A Scholte
- Department of Cardiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Barbara J M Mulder
- Department of Cardiology, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Aeilko H Zwinderman
- Department of Clinical Epidemiology, Biostatistics and Bioinformatics, Amsterdam UMC, Amsterdam, The Netherlands
| | - Vivian de Waard
- Department of Medical Biochemistry, Amsterdam UMC, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
| |
Collapse
|
26
|
Soler Beatty J, Molnar C, Luque CM, de Celis JF, Martín-Bermudo MD. EGFRAP encodes a new negative regulator of the EGFR acting in both normal and oncogenic EGFR/Ras-driven tissue morphogenesis. PLoS Genet 2021; 17:e1009738. [PMID: 34411095 PMCID: PMC8407591 DOI: 10.1371/journal.pgen.1009738] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 08/31/2021] [Accepted: 07/23/2021] [Indexed: 12/27/2022] Open
Abstract
Activation of Ras signaling occurs in ~30% of human cancers. However, activated Ras alone is insufficient to produce malignancy. Thus, it is imperative to identify those genes cooperating with activated Ras in driving tumoral growth. In this work, we have identified a novel EGFR inhibitor, which we have named EGFRAP, for EGFR adaptor protein. Elimination of EGFRAP potentiates activated Ras-induced overgrowth in the Drosophila wing imaginal disc. We show that EGFRAP interacts physically with the phosphorylated form of EGFR via its SH2 domain. EGFRAP is expressed at high levels in regions of maximal EGFR/Ras pathway activity, such as at the presumptive wing margin. In addition, EGFRAP expression is up-regulated in conditions of oncogenic EGFR/Ras activation. Normal and oncogenic EGFR/Ras-mediated upregulation of EGRAP levels depend on the Notch pathway. We also find that elimination of EGFRAP does not affect overall organogenesis or viability. However, simultaneous downregulation of EGFRAP and its ortholog PVRAP results in defects associated with increased EGFR function. Based on these results, we propose that EGFRAP is a new negative regulator of the EGFR/Ras pathway, which, while being required redundantly for normal morphogenesis, behaves as an important modulator of EGFR/Ras-driven tissue hyperplasia. We suggest that the ability of EGFRAP to functionally inhibit the EGFR pathway in oncogenic cells results from the activation of a feedback loop leading to increase EGFRAP expression. This could act as a surveillance mechanism to prevent excessive EGFR activity and uncontrolled cell growth. Activation of Ras signalling occurs in ~30% of human cancers. However, activated Ras alone is insufficient to produce malignancy. Thus, the discovery of genes cooperating with Ras in cancer is imperative to understand tumoral growth driven by Ras activating mutations. A key output of over-activated EGFR/Ras signalling is the induction of a complex and dynamic set of transcriptional networks leading to changes in gene expression. As a result of these changes, the normal function of some genes can become adjusted in a tumorigenic context. In this work, using the Drosophila wing imaginal disc as model system, we have identified a new EGFR inhibitor, EGFRAP, which function is redundant for proper morphogenesis, yet becomes an important limiter of the overgrowth driven by oncogenic EGFR/Ras activity. We show that the specificity of EGFRAP in cells with high levels of EGFR activity arises from activation of a negative feedback loop resulting in increased EGFRAP levels. This could act to prevent excessive EGFR activity and uncontrolled cell growth. We believe the identification of other factors behaving like EGFRAP, will help in our fight against cancer, as it might lead to the identification of new therapeutic drugs affecting cancer but not normal cells, a top priority in cancer research.
Collapse
Affiliation(s)
- Jennifer Soler Beatty
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide/CSIC/JA, Sevilla, Spain
| | - Cristina Molnar
- Centro de Biología Molecular Severo Ochoa (UAM/CSIC), Univ. Autónoma de Madrid, Madrid, Spain
| | - Carlos M. Luque
- Centro de Biología Molecular Severo Ochoa (UAM/CSIC), Univ. Autónoma de Madrid, Madrid, Spain
| | - Jose F. de Celis
- Centro de Biología Molecular Severo Ochoa (UAM/CSIC), Univ. Autónoma de Madrid, Madrid, Spain
| | - María D. Martín-Bermudo
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide/CSIC/JA, Sevilla, Spain
- * E-mail:
| |
Collapse
|
27
|
Ohki K, Kiyokawa N, Watanabe S, Iwafuchi H, Nakazawa A, Ishiwata K, Ogata-Kawata H, Nakabayashi K, Okamura K, Tanaka F, Fukano R, Hata K, Mori T, Moriya Saito A, Hayashi Y, Taga T, Sekimizu M, Kobayashi R. Characteristics of genetic alterations of peripheral T-cell lymphoma in childhood including identification of novel fusion genes: the Japan Children's Cancer Group (JCCG). Br J Haematol 2021; 194:718-729. [PMID: 34258755 DOI: 10.1111/bjh.17639] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 05/16/2021] [Accepted: 05/21/2021] [Indexed: 12/12/2022]
Abstract
Peripheral T-cell lymphoma (PTCL) is a group of heterogeneous non-Hodgkin lymphomas showing a mature T-cell or natural killer cell phenotype, but its molecular abnormalities in paediatric patients remain unclear. By employing next-generation sequencing and multiplex ligation-dependent probe amplification of tumour samples from 26 patients, we identified somatic alterations in paediatric PTCL including Epstein-Barr virus (EBV)-negative (EBV- ) and EBV-positive (EBV+ ) patients. As recurrent mutational targets for PTCL, we identified several previously unreported genes, including TNS1, ZFHX3, LRP2, NCOA2 and HOXA1, as well as genes previously reported in adult patients, e.g. TET2, CDKN2A, STAT3 and TP53. However, for other reported mutations, VAV1-related abnormalities were absent and mutations of NRAS, GATA3 and JAK3 showed a low frequency in our cohort. Concerning the association of EBV infection, two novel fusion genes: STAG2-AFF2 and ITPR2-FSTL4, and deletion and alteration of CDKN2A/2B, LMO1 and HOXA1 were identified in EBV- PTCL, but not in EBV+ PTCL. Conversely, alterations of PCDHGA4, ADAR, CUL9 and TP53 were identified only in EBV+ PTCL. Our observations suggest a clear difference in the molecular mechanism of onset between paediatric and adult PTCL and a difference in the characteristics of genetic alterations between EBV- and EBV+ paediatric PTCL.
Collapse
Affiliation(s)
- Kentaro Ohki
- Department of Pediatric Hematology and Oncology Research, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Nobutaka Kiyokawa
- Department of Pediatric Hematology and Oncology Research, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Satoru Watanabe
- Department of Pediatric Hematology and Oncology Research, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Hideto Iwafuchi
- Department of Pediatric Hematology and Oncology Research, National Research Institute for Child Health and Development, Tokyo, Japan.,Department of Pathology, Shizuoka Children's Hospital, Shizuoka, Japan
| | - Astuko Nakazawa
- Department of Clinical Research, Saitama Children's Medical Center, Saitama, Japan
| | - Keisuke Ishiwata
- Department of Maternal-Fetal Biology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Hiroko Ogata-Kawata
- Department of Maternal-Fetal Biology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Kazuhiko Nakabayashi
- Department of Maternal-Fetal Biology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Kohji Okamura
- Department of Systems BioMedicine, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Fumiko Tanaka
- Department of Pediatrics, Saiseikai Yokohamashi Nanbu Hospital, Kanagawa, Japan
| | - Reiji Fukano
- Department of Pediatrics, Yamaguchi University Graduate School of Medicine, Yamaguchi, Japan
| | - Kenichiro Hata
- Department of Maternal-Fetal Biology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Tetsuya Mori
- Department of Pediatrics, St. Marianna University School of Medicine, Kanagawa, Japan
| | - Akiko Moriya Saito
- Clinical Research Center, National Hospital Organization Nagoya Medical Center, Nagoya, Japan
| | - Yasuhide Hayashi
- Institute of Physiology and Medicine, Jobu University, Takasaki, Japan
| | - Takashi Taga
- Department of Pediatrics, Shiga University of Medical Science, Shiga, Japan
| | - Masahiro Sekimizu
- Department of Pediatrics, National Hospital Organization Nagoya Medical Center, Nagoya, Japan
| | - Ryoji Kobayashi
- Department of Hematology/Oncology for Children and Adolescents, Sapporo Hokuyu Hospital, Hokkaido, Japan
| | | |
Collapse
|