1
|
Naidoo K, Oliver SV. Gene drives: an alternative approach to malaria control? Gene Ther 2024:10.1038/s41434-024-00468-8. [PMID: 39039203 DOI: 10.1038/s41434-024-00468-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 07/14/2024] [Accepted: 07/18/2024] [Indexed: 07/24/2024]
Abstract
Genetic modification for the control of mosquitoes is frequently touted as a solution for a variety of vector-borne diseases. There has been some success using non-insecticidal methods like sterile or incompatible insect techniques to control arbovirus diseases. However, control by genetic modifications to reduce mosquito populations or create mosquitoes that are refractory to infection with pathogens are less developed. The advent of CRISPR-Cas9-mediated gene drives may advance this mechanism of control. In this review, use and progress of gene drives for vector control, particularly for malaria, is discussed. A brief history of population suppression and replacement gene drives in mosquitoes, rapid advancement of the field over the last decade and how genetic modification fits into the current scope of vector control are described. Mechanisms of alternative vector control by genetic modification to modulate mosquitoes' immune responses and anti-parasite effector molecules as part of a combinational strategy to combat malaria are considered. Finally, the limitations and ethics of using gene drives for mosquito control are discussed.
Collapse
Affiliation(s)
- Kubendran Naidoo
- SAMRC/Wits Antiviral Gene Therapy Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.
- National Health Laboratory Service, Johannesburg, South Africa.
- Wits Research Institute for Malaria, Faculty of Health Sciences, National Health Laboratory Service, University of the Witwatersrand, Johannesburg, South Africa.
- Infectious Diseases and Oncology Research Institute (IDORI), Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.
| | - Shüné V Oliver
- Wits Research Institute for Malaria, Faculty of Health Sciences, National Health Laboratory Service, University of the Witwatersrand, Johannesburg, South Africa
- Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa
| |
Collapse
|
2
|
Gnambani EJ, Bilgo E, Sanou A, Dabiré RK, Diabaté A. Infection of highly insecticide-resistant malaria vector Anopheles coluzzii with entomopathogenic bacteria Chromobacterium violaceum reduces its survival, blood feeding propensity and fecundity. Malar J 2020; 19:352. [PMID: 33008454 PMCID: PMC7530970 DOI: 10.1186/s12936-020-03420-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 09/17/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND This is now a concern that malaria eradication will not be achieved without the introduction of novel control tools. Microbiological control might be able to make a greater contribution to vector control in the future. The interactions between bacteria and mosquito make mosquito microbiota really promising from a disease control perspective. Here, the impact of Chromobacterium violaceum infections, isolated from both larvae and adult of wild-caught Anopheles gambiae sensu lato mosquitoes in Burkina Faso, was evaluated on mosquito survival, blood feeding and fecundity. METHODS To assess entomopathogenic effects of C. violaceum infection on mosquitoes, three different types of bioassays were performed in laboratory. These bioassays aimed to evaluate the impact of C. violaceum infection on mosquito survival, blood feeding and fecundity, respectively. During bioassays mosquitoes were infected through the well-established system of cotton ball soaked with 6% glucose containing C. violaceum. RESULTS Chromobacterium violaceum kills pyrethroid resistant Anopheles coluzzii (LT80 of 8.78 days ± 0.18 at 108 bacteria cell/ml of sugar meal). Interestingly, this bacterium had other negative effects on mosquito lifespan by significantly reducing (~ 59%, P < 0.001) the mosquito feeding willingness from day 4-post infection (~ 81% would seek a host to blood feed) to 9- day post infection (22 ± 4.62% would seek a host to blood feed). Moreover, C. violaceum considerably jeopardized the egg laying (~ 16 eggs laid/mosquito with C. violaceum infected mosquitoes vs ~ 129 eggs laid/mosquito with control mosquitoes) and hatching of mosquitoes (a reduction of ~ 22% of hatching rate with C. violaceum infected mosquitoes). Compared to the bacterial uninfected mosquitoes, mosquitoes infected with C. violaceum showed significantly higher retention rates of immature eggs and follicles. CONCLUSION These data showed important properties of Burkina Faso C. violaceum strains, which are highly virulent against insecticide-resistant An. coluzzii, and reduce both mosquito blood feeding and fecundity propensities. However, additional studies as the sequencing of C. violaceum genome and the potential toxins secreted will provide useful information render it a potential candidate for the biological control strategies of malaria and other disease vectors.
Collapse
Affiliation(s)
- Edounou Jacques Gnambani
- Institut de Recherche en Sciences de La Santé (IRSS) / Centre Muraz, Bobo Dioulasso, Burkina Faso.,Université Nazi Boni / Centre Muraz, Bobo-Dioulasso, Burkina Faso
| | - Etienne Bilgo
- Institut de Recherche en Sciences de La Santé (IRSS) / Centre Muraz, Bobo Dioulasso, Burkina Faso.
| | - Adama Sanou
- Université Nazi Boni / Centre Muraz, Bobo-Dioulasso, Burkina Faso
| | - Roch K Dabiré
- Institut de Recherche en Sciences de La Santé (IRSS) / Centre Muraz, Bobo Dioulasso, Burkina Faso
| | - Abdoulaye Diabaté
- Institut de Recherche en Sciences de La Santé (IRSS) / Centre Muraz, Bobo Dioulasso, Burkina Faso.
| |
Collapse
|
3
|
Tavalire HF, Blouin MS, Steinauer ML. Genotypic variation in host response to infection affects parasite reproductive rate. Int J Parasitol 2015; 46:123-31. [PMID: 26552016 DOI: 10.1016/j.ijpara.2015.10.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 09/15/2015] [Accepted: 10/15/2015] [Indexed: 12/20/2022]
Abstract
Parasite fitness is largely influenced by a variation in host response due to the host's genetic background. Here we investigated the impact of host genotype on pathogen success in the snail vector of its castrating parasite, Schistosoma mansoni. We infected five inbred lines of Biomphalaria glabrata with two infection doses and followed their growth, reproductive output and parasite production throughout the course of infection. There was no difference in resistance to infection among inbred lines, but lines varied in their responses to infection and the numbers of parasites produced. Snails did not compensate for castration by increasing their fecundity during the early phase of infection (fecundity compensation). However, some lines were able to delay parasite shedding for up to 30 weeks, thus prolonging reproduction before the onset of castration. Here we propose this strategy as a novel defense against castrating pathogens in snails. Gigantism, a predicted outcome of castration due to energy reallocation, occurred early in infection (<15 weeks) and was not universal among the snail lines. Lines that did not show gigantism were also characterised by a high parasite production rate and low survivorship, perhaps indicating energy reallocation into parasite production and costly immune defense. We observed no differences in total parasite production among lines throughout the entire course of infection, although lines differed in their parasite reproductive rate. The average rate of parasite production varied among lines from 1300 to 2450 cercariae within a single 2h shedding period, resulting in a total production of 6981-29,509 cercariae over the lifetime of a single snail. Regardless of genetic background, snail size was a strong predictor of parasite reproduction: each millimetre increase in snail size at the time of the first shed resulted in up to 3500 more cercariae over the lifetime of the snail. The results of this study provide a detailed picture of variation in hosts' responses to infection and the resulting impacts on parasite fitness, further defining the intricacies of snail-schistosome compatibility.
Collapse
Affiliation(s)
- Hannah F Tavalire
- Department of Integrative Biology, 3029 Cordley Hall, Oregon State University, Corvallis, OR 97330, USA.
| | - Michael S Blouin
- Department of Integrative Biology, 3029 Cordley Hall, Oregon State University, Corvallis, OR 97330, USA
| | - Michelle L Steinauer
- Department of Basic Medical Sciences, 200 Mullins Dr., Western University of Health Sciences, COMP-NW, Lebanon, OR 97355, USA
| |
Collapse
|
4
|
Pimenta PFP, Orfano AS, Bahia AC, Duarte APM, Ríos-Velásquez CM, Melo FF, Pessoa FAC, Oliveira GA, Campos KMM, Villegas LM, Rodrigues NB, Nacif-Pimenta R, Simões RC, Monteiro WM, Amino R, Traub-Cseko YM, Lima JBP, Barbosa MGV, Lacerda MVG, Tadei WP, Secundino NFC. An overview of malaria transmission from the perspective of Amazon Anopheles vectors. Mem Inst Oswaldo Cruz 2015; 110:23-47. [PMID: 25742262 PMCID: PMC4371216 DOI: 10.1590/0074-02760140266] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Accepted: 12/18/2014] [Indexed: 02/07/2023] Open
Abstract
In the Americas, areas with a high risk of malaria transmission are mainly located in the Amazon Forest, which extends across nine countries. One keystone step to understanding the Plasmodium life cycle in Anopheles species from the Amazon Region is to obtain experimentally infected mosquito vectors. Several attempts to colonise Anopheles species have been conducted, but with only short-lived success or no success at all. In this review, we review the literature on malaria transmission from the perspective of its Amazon vectors. Currently, it is possible to develop experimental Plasmodium vivax infection of the colonised and field-captured vectors in laboratories located close to Amazonian endemic areas. We are also reviewing studies related to the immune response to P. vivax infection of Anopheles aquasalis, a coastal mosquito species. Finally, we discuss the importance of the modulation of Plasmodium infection by the vector microbiota and also consider the anopheline genomes. The establishment of experimental mosquito infections with Plasmodium falciparum, Plasmodium yoelii and Plasmodium berghei parasites that could provide interesting models for studying malaria in the Amazonian scenario is important. Understanding the molecular mechanisms involved in the development of the parasites in New World vectors is crucial in order to better determine the interaction process and vectorial competence.
Collapse
Affiliation(s)
- Paulo FP Pimenta
- Centro de Pesquisas René Rachou-Fiocruz, Belo Horizonte, MG,
Brasil
- Fundação de Medicina Tropical Dr Heitor Vieira Dourado, Manaus, AM,
Brasil
| | | | - Ana C Bahia
- Instituto Oswaldo Cruz-Fiocruz, Rio de Janeiro, RJ, Brasil
| | - Ana PM Duarte
- Centro de Pesquisas René Rachou-Fiocruz, Belo Horizonte, MG,
Brasil
| | | | - Fabrício F Melo
- Centro de Pesquisas René Rachou-Fiocruz, Belo Horizonte, MG,
Brasil
| | | | | | - Keillen MM Campos
- Fundação de Medicina Tropical Dr Heitor Vieira Dourado, Manaus, AM,
Brasil
| | | | | | | | - Rejane C Simões
- Instituto Nacional de Pesquisas da Amazônia, Manaus, AM, Brasil
| | - Wuelton M Monteiro
- Fundação de Medicina Tropical Dr Heitor Vieira Dourado, Manaus, AM,
Brasil
| | - Rogerio Amino
- Unité de Biologie et Génétique du Paludisme, Institut Pasteur, Paris,
France
| | | | - José BP Lima
- Fundação de Medicina Tropical Dr Heitor Vieira Dourado, Manaus, AM,
Brasil
- Instituto Oswaldo Cruz-Fiocruz, Rio de Janeiro, RJ, Brasil
| | - Maria GV Barbosa
- Fundação de Medicina Tropical Dr Heitor Vieira Dourado, Manaus, AM,
Brasil
| | - Marcus VG Lacerda
- Fundação de Medicina Tropical Dr Heitor Vieira Dourado, Manaus, AM,
Brasil
- Instituto Leônidas e Maria Deane-Fiocruz, Manaus, AM, Brasil
| | | | | |
Collapse
|
5
|
Gendrin M, Rodgers FH, Yerbanga RS, Ouédraogo JB, Basáñez MG, Cohuet A, Christophides GK. Antibiotics in ingested human blood affect the mosquito microbiota and capacity to transmit malaria. Nat Commun 2015; 6:5921. [PMID: 25562286 PMCID: PMC4338536 DOI: 10.1038/ncomms6921] [Citation(s) in RCA: 125] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Accepted: 11/21/2014] [Indexed: 02/01/2023] Open
Abstract
Malaria reduction is most efficiently achieved by vector control whereby human populations at high risk of contracting and transmitting the disease are protected from mosquito bites. Here, we identify the presence of antibiotics in the blood of malaria-infected people as a new risk of increasing disease transmission. We show that antibiotics in ingested blood enhance the susceptibility of Anopheles gambiae mosquitoes to malaria infection by disturbing their gut microbiota. This effect is confirmed in a semi-natural setting by feeding mosquitoes with blood of children naturally infected with Plasmodium falciparum. Antibiotic exposure additionally increases mosquito survival and fecundity, which are known to augment vectorial capacity. These findings suggest that malaria transmission may be exacerbated in areas of high antibiotic usage, and that regions targeted by mass drug administration programs against communicable diseases may necessitate increased vector control. The gut microbiota of malaria-transmitting mosquitoes contributes to the insects’ resistance to the parasite. Here, Gendrin et al. show that antibiotics in ingested human blood alter the mosquito gut microbiota and increase the insect’s survival, fecundity and susceptibility to the parasites.
Collapse
Affiliation(s)
- Mathilde Gendrin
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| | - Faye H Rodgers
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| | - Rakiswendé S Yerbanga
- Institut de Recherche en Sciences de la Santé, 01 BP 545, Bobo-Dioulasso 01, Burkina Faso
| | - Jean Bosco Ouédraogo
- Institut de Recherche en Sciences de la Santé, 01 BP 545, Bobo-Dioulasso 01, Burkina Faso
| | - María-Gloria Basáñez
- Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, London W2 1PG, UK
| | - Anna Cohuet
- 1] Institut de Recherche en Sciences de la Santé, 01 BP 545, Bobo-Dioulasso 01, Burkina Faso [2] Institut de Recherche pour le Développement, Unité MIVEGEC, 34394 Montpellier, France
| | - George K Christophides
- 1] Department of Life Sciences, Imperial College London, London SW7 2AZ, UK [2] The Cyprus Institute, 2121 Nicosia, Cyprus
| |
Collapse
|
6
|
Torres KJ, Castrillon CE, Moss EL, Saito M, Tenorio R, Molina DM, Davies H, Neafsey DE, Felgner P, Vinetz JM, Gamboa D. Genome-level determination of Plasmodium falciparum blood-stage targets of malarial clinical immunity in the Peruvian Amazon. J Infect Dis 2014; 211:1342-51. [PMID: 25381370 DOI: 10.1093/infdis/jiu614] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Persons with blood-stage Plasmodium falciparum parasitemia in the absence of symptoms are considered to be clinically immune. We hypothesized that asymptomatic subjects with P. falciparum parasitemia would differentially recognize a subset of P. falciparum proteins on a genomic scale. METHODS AND FINDINGS Compared with symptomatic subjects, sera from clinically immune, asymptomatically infected individuals differentially recognized 51 P. falciparum proteins, including the established vaccine candidate PfMSP1. Novel, hitherto unstudied hypothetical proteins and other proteins not previously recognized as potential vaccine candidates were also differentially recognized. Genes encoding the proteins differentially recognized by the Peruvian clinically immune individuals exhibited a significant enrichment of nonsynonymous nucleotide variation, an observation consistent with these genes undergoing immune selection. CONCLUSIONS A limited set of P. falciparum protein antigens was associated with the development of naturally acquired clinical immunity in the low-transmission setting of the Peruvian Amazon. These results imply that, even in a low-transmission setting, an asexual blood-stage vaccine designed to reduce clinical malaria symptoms will likely need to contain large numbers of often-polymorphic proteins, a finding at odds with many current efforts in the design of vaccines against asexual blood-stage P. falciparum.
Collapse
Affiliation(s)
- Katherine J Torres
- Laboratorio de Malaria, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía
| | - Carlos E Castrillon
- Laboratorio de Malaria, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía
| | - Eli L Moss
- Genome Sequencing and Analysis Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - Mayuko Saito
- Laboratorio de Malaria, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía Division of Infectious Diseases, Department of Medicine, University of California-San Diego, La Jolla
| | - Roy Tenorio
- Laboratorio de Malaria, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía Laboratorio Satelital, Universidad Peruana Cayetano Heredia, Iquitos, Perú
| | | | - Huw Davies
- Division of Infectious Diseases, Department of Medicine, University of California-Irvine
| | - Daniel E Neafsey
- Genome Sequencing and Analysis Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - Philip Felgner
- Division of Infectious Diseases, Department of Medicine, University of California-Irvine
| | - Joseph M Vinetz
- Laboratorio de Malaria, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía Institute de Medicina Tropical, Universidad Peruana Cayetano Heredia, Lima Division of Infectious Diseases, Department of Medicine, University of California-San Diego, La Jolla
| | - Dionicia Gamboa
- Laboratorio de Malaria, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía Institute de Medicina Tropical, Universidad Peruana Cayetano Heredia, Lima
| |
Collapse
|
7
|
Pitts RJ, Mozūraitis R, Gauvin-Bialecki A, Lempérière G. The roles of kairomones, synomones and pheromones in the chemically-mediated behaviour of male mosquitoes. Acta Trop 2014; 132 Suppl:S26-34. [PMID: 24055544 DOI: 10.1016/j.actatropica.2013.09.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Revised: 09/07/2013] [Accepted: 09/07/2013] [Indexed: 12/30/2022]
Abstract
Despite decades of intensive study of the chemical ecology of female mosquitoes, relatively little is known about the chemical ecology of males. This short review summarizes the current state of knowledge of the chemicals that mediate male mosquito behaviour. Various trophic interactions including insect-plant, insect-host, and insect-insect responses are emphasized. The relevance of the chemical ecology of male mosquitoes in the context of vector control programmes is discussed.
Collapse
|
8
|
Nyasembe VO, Tchouassi DP, Kirwa HK, Foster WA, Teal PEA, Borgemeister C, Torto B. Development and assessment of plant-based synthetic odor baits for surveillance and control of malaria vectors. PLoS One 2014; 9:e89818. [PMID: 24587059 PMCID: PMC3933673 DOI: 10.1371/journal.pone.0089818] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Accepted: 01/26/2014] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Recent malaria vector control measures have considerably reduced indoor biting mosquito populations. However, reducing the outdoor biting populations remains a challenge because of the unavailability of appropriate lures to achieve this. This study sought to test the efficacy of plant-based synthetic odor baits in trapping outdoor populations of malaria vectors. METHODOLOGY AND PRINCIPAL FINDING Three plant-based lures ((E)-linalool oxide [LO], (E)-linalool oxide and (E)-β-ocimene [LO + OC], and a six-component blend comprising (E)-linalool oxide, (E)-β-ocimene, hexanal, β-pinene, limonene, and (E)-β-farnesene [Blend C]), were tested alongside an animal/human-based synthetic lure (comprising heptanal, octanal, nonanal, and decanal [Blend F]) and worn socks in a malaria endemic zone in the western part of Kenya. Mosquito Magnet-X (MM-X) and lightless Centre for Disease Control (CDC) light traps were used. Odor-baited traps were compared with traps baited with either solvent alone or solvent + carbon dioxide (controls) for 18 days in a series of randomized incomplete-block designs of days × sites × treatments. The interactive effect of plant and animal/human odor was also tested by combining LO with either Blend F or worn socks. Our results show that irrespective of trap type, traps baited with synthetic plant odors compared favorably to the same traps baited with synthetic animal odors and worn socks in trapping malaria vectors, relative to the controls. Combining LO and worn socks enhanced trap captures of Anopheles species while LO + Blend F recorded reduced trap capture. Carbon dioxide enhanced total trap capture of both plant- and animal/human-derived odors. However, significantly higher proportions of male and engorged female Anopheles gambiae s.l. were caught when the odor treatments did not include carbon dioxide. CONCLUSION AND SIGNIFICANCE The results highlight the potential of plant-based odors and specifically linalool oxide, with or without carbon dioxide, for surveillance and mass trapping of malaria vectors.
Collapse
Affiliation(s)
- Vincent O. Nyasembe
- Behavioral and Chemical Ecology Department, International Centre of Insect Physiology and Ecology (icipe), Nairobi, Kenya
| | - David P. Tchouassi
- Behavioral and Chemical Ecology Department, International Centre of Insect Physiology and Ecology (icipe), Nairobi, Kenya
| | - Hillary K. Kirwa
- Behavioral and Chemical Ecology Department, International Centre of Insect Physiology and Ecology (icipe), Nairobi, Kenya
| | - Woodbridge A. Foster
- Department of Ecology and Organismal Biology, The Ohio State University, Columbus, Ohio, United States of America
| | - Peter E. A. Teal
- Center for Medical, Agricultural, and Veterinary Entomology, U.S. Department of Agriculture, Agricultural Research Service, Gainesville, Florida, United States of America
| | - Christian Borgemeister
- Behavioral and Chemical Ecology Department, International Centre of Insect Physiology and Ecology (icipe), Nairobi, Kenya
- Center for Development Research, University of Bonn, Bonn, Germany
| | - Baldwyn Torto
- Behavioral and Chemical Ecology Department, International Centre of Insect Physiology and Ecology (icipe), Nairobi, Kenya
| |
Collapse
|
9
|
Carter V, Underhill A, Baber I, Sylla L, Baby M, Larget-Thiery I, Zettor A, Bourgouin C, Langel Ü, Faye I, Otvos L, Wade JD, Coulibaly MB, Traore SF, Tripet F, Eggleston P, Hurd H. Killer bee molecules: antimicrobial peptides as effector molecules to target sporogonic stages of Plasmodium. PLoS Pathog 2013; 9:e1003790. [PMID: 24278025 PMCID: PMC3836994 DOI: 10.1371/journal.ppat.1003790] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Accepted: 09/27/2013] [Indexed: 11/18/2022] Open
Abstract
A new generation of strategies is evolving that aim to block malaria transmission by employing genetically modified vectors or mosquito pathogens or symbionts that express anti-parasite molecules. Whilst transgenic technologies have advanced rapidly, there is still a paucity of effector molecules with potent anti-malaria activity whose expression does not cause detrimental effects on mosquito fitness. Our objective was to examine a wide range of antimicrobial peptides (AMPs) for their toxic effects on Plasmodium and anopheline mosquitoes. Specifically targeting early sporogonic stages, we initially screened AMPs for toxicity against a mosquito cell line and P. berghei ookinetes. Promising candidate AMPs were fed to mosquitoes to monitor adverse fitness effects, and their efficacy in blocking rodent malaria infection in Anopheles stephensi was assessed. This was followed by tests to determine their activity against P. falciparum in An. gambiae, initially using laboratory cultures to infect mosquitoes, then culminating in preliminary assays in the field using gametocytes and mosquitoes collected from the same area in Mali, West Africa. From a range of 33 molecules, six AMPs able to block Plasmodium development were identified: Anoplin, Duramycin, Mastoparan X, Melittin, TP10 and Vida3. With the exception of Anoplin and Mastoparan X, these AMPs were also toxic to an An. gambiae cell line at a concentration of 25 µM. However, when tested in mosquito blood feeds, they did not reduce mosquito longevity or egg production at concentrations of 50 µM. Peptides effective against cultured ookinetes were less effective when tested in vivo and differences in efficacy against P. berghei and P. falciparum were seen. From the range of molecules tested, the majority of effective AMPs were derived from bee/wasp venoms.
Collapse
Affiliation(s)
- Victoria Carter
- Centre for Applied Entomology and Parasitology, School of Life Sciences, Keele University, Keele, Staffordshire, United Kingdom
| | - Ann Underhill
- Centre for Applied Entomology and Parasitology, School of Life Sciences, Keele University, Keele, Staffordshire, United Kingdom
| | - Ibrahima Baber
- Malaria Research and Training Centre (MRTC), Université des Sciences, des Techniques et des Technologies de Bamako, Bamako, Mali
| | - Lakamy Sylla
- Malaria Research and Training Centre (MRTC), Université des Sciences, des Techniques et des Technologies de Bamako, Bamako, Mali
| | - Mounirou Baby
- Centre National de Transfusion Sanguine, Bamako, Mali
| | - Isabelle Larget-Thiery
- Institut Pasteur, Centre for Production and Infection of Anopheles (CEPIA), Parasitology and Mycology Department, Paris, France
| | - Agnès Zettor
- Institut Pasteur, Centre for Production and Infection of Anopheles (CEPIA), Parasitology and Mycology Department, Paris, France
| | - Catherine Bourgouin
- Institut Pasteur, Centre for Production and Infection of Anopheles (CEPIA), Parasitology and Mycology Department, Paris, France
| | - Ülo Langel
- Department of Neurochemistry Svante Arrhenius v. 21A, Stockholm University, Stockholm, Sweden
| | - Ingrid Faye
- Department of Molecular Bioscience, the Wenner-Gren Institute, Svante Arrhenius v. 20C, Stockholm University, Stockholm, Sweden
| | - Laszlo Otvos
- Temple University Department of Biology, Philadelphia, Pennsylvania, United States of America
| | - John D. Wade
- Howard Florey Research Laboratories, Florey Institute for Neuroscience and Mental Health, University of Melbourne, Melbourne, Victoria, Australia
| | - Mamadou B. Coulibaly
- Malaria Research and Training Centre (MRTC), Université des Sciences, des Techniques et des Technologies de Bamako, Bamako, Mali
| | - Sekou F. Traore
- Malaria Research and Training Centre (MRTC), Université des Sciences, des Techniques et des Technologies de Bamako, Bamako, Mali
| | - Frederic Tripet
- Centre for Applied Entomology and Parasitology, School of Life Sciences, Keele University, Keele, Staffordshire, United Kingdom
| | - Paul Eggleston
- Centre for Applied Entomology and Parasitology, School of Life Sciences, Keele University, Keele, Staffordshire, United Kingdom
- * E-mail:
| | - Hilary Hurd
- Centre for Applied Entomology and Parasitology, School of Life Sciences, Keele University, Keele, Staffordshire, United Kingdom
| |
Collapse
|
10
|
Matsuoka H, Sano GI, Hattori R, Tomita H, Yamamoto DS, Hirai M. One Injection of DsRed Followed by Bites from Transgenic Mosquitoes Producing DsRed in the Saliva Elicits a High Titer of Antibody in Mice. Trop Med Health 2012; 40:47-52. [PMID: 23097619 PMCID: PMC3473083 DOI: 10.2149/tmh.2011-10] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Accepted: 04/23/2012] [Indexed: 01/07/2023] Open
Abstract
It has been proposed that transgenic mosquitoes can be used as a “flying syringe” for infectious disease control. We succeeded in generating a transgenic (TG) mosquito, Anopheles stephensi, excreting and discharging DsRed in saliva. DsRed was deposited on the membrane where the TG mosquito probed with its proboscis. Repeated feeding by the TG mosquitoes induced anti-DeRed as well as anti-SG antibodies in mice. This indicates that the TG mosquitoes can immunize the animal. Moreover, in this report, we employed a pre-immunization method before exposing mice to the TG mosquitoes. We injected DsRed to mice to prepare memory B cells and exposed the mice to bites by the TG mosquitoes excreting DsRed. The mice produced a higher titer of antibody to DsRed, suggesting that the bites from TG mosquitoes act as a booster and that primary immunization with a vaccine protein and exposure to TG mosquitoes excreting the vaccine protein in the saliva produces a synergistic effect.
Collapse
Affiliation(s)
- Hiroyuki Matsuoka
- Division of Medical Zoology, Department of Infection and Immunity, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi 329-0498, Japan
| | | | | | | | | | | |
Collapse
|
11
|
|
12
|
Kim BH, Kim HK, Lee SJ. Experimental analysis of the blood-sucking mechanism of female mosquitoes. ACTA ACUST UNITED AC 2011; 214:1163-9. [PMID: 21389202 DOI: 10.1242/jeb.048793] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Pioneering studies have been conducted to reveal the functional characteristics of the two-pump system of the female mosquito. Mosquitoes are equipped with two pumping organs located in the head: the cibarial (CP) and the pharyngeal (PP) pumps. To analyze the functional relationship of these pumps during the blood-sucking process, micro-particle image velocimetry (PIV) and synchrotron X-ray micro-imaging were employed. The two pumps were found to be well coordinated with a phase shift (α) and time shift (β) but to have distinct functions in the liquid-sucking process. The first pump (CP) starts to expand first, and then the second pump (PP) expands in advance with a time shift (β) before the first pump (CP) begins to contract, playing a key role in improving pumping performance. The systaltic motion of the two pumps works systematically in a well-coordinated manner. In addition, the pumping performance of blood-sucking female mosquitoes is demonstrated to be superior to that of nectar-eating male mosquitoes. Intake flow rate is maximized by reducing the relaxation time of the CP and increasing the pumping frequency.
Collapse
Affiliation(s)
- Bo Heum Kim
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, Pohang Gyeongbuk 790-784, Republic of Korea
| | | | | |
Collapse
|
13
|
Isaacs AT, Li F, Jasinskiene N, Chen X, Nirmala X, Marinotti O, Vinetz JM, James AA. Engineered resistance to Plasmodium falciparum development in transgenic Anopheles stephensi. PLoS Pathog 2011; 7:e1002017. [PMID: 21533066 PMCID: PMC3080844 DOI: 10.1371/journal.ppat.1002017] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2010] [Accepted: 02/10/2011] [Indexed: 01/16/2023] Open
Abstract
Transposon-mediated transformation was used to produce Anopheles
stephensi that express single-chain antibodies (scFvs) designed to
target the human malaria parasite, Plasmodium falciparum. The
scFvs, m1C3, m4B7, and m2A10, are derived from mouse monoclonal antibodies that
inhibit either ookinete invasion of the midgut or sporozoite invasion of
salivary glands. The scFvs that target the parasite surface, m4B7 and m2A10,
were fused to an Anopheles gambiae antimicrobial peptide,
Cecropin A. Previously-characterized Anopheles cis-acting DNA
regulatory elements were included in the transgenes to coordinate scFv
production with parasite development. Gene amplification and immunoblot analyses
showed promoter-specific increases in transgene expression in blood-fed females.
Transgenic mosquito lines expressing each of the scFv genes had significantly
lower infection levels than controls when challenged with P.
falciparum. Malaria eradication will require vector-control strategies that are both
self-sustaining and not affected by migration of infected humans and mosquitoes.
Replacement of wild malaria-susceptible mosquito populations with transgenic
strains refractory to parasite development could interrupt the cycle of disease
transmission and support eradication efforts. Production of P.
falciparum-resistant mosquitoes is a necessary first step towards
investigating the population replacement strategy. Here we show that An.
stephensi engineered to produce P.
falciparum-targeting effector molecules are resistant to this important
human malaria parasite. Two of the three effector molecules represent a novel
combination of components derived from the immune systems of mosquitoes and
mice. An important feature of these molecules is that they are unlikely to
significantly harm the mosquito, as the mosquito component is an
Anopheles antimicrobial peptide with activity against
Plasmodium, while the other component is based on a murine
antibody selected for its ability to bind specifically to a parasite protein.
Transgenes with this design coupled with a gene-drive system could be used
alongside vaccines and drugs to provide sustainable local elimination of malaria
as part of a long-term strategy for eradication.
Collapse
Affiliation(s)
- Alison T. Isaacs
- Department of Microbiology and Molecular Genetics, School of Medicine,
University of California, Irvine, California, United States of
America
| | - Fengwu Li
- Division of Infectious Diseases, Department of Medicine, University of
California-San Diego School of Medicine, La Jolla, California, United States of
America
| | - Nijole Jasinskiene
- Department of Molecular Biology and Biochemistry, University of
California, Irvine, California, United States of America
| | - Xiaoguang Chen
- Department of Parasitology, School of Public Health and Tropical
Medicine, Southern Medical University, Guang Zhou, GD, China
| | - Xavier Nirmala
- Department of Entomology and Nematology, University of Florida,
Gainesville, Florida, United States of America
- USDA/ARS, Center for Medical, Agricultural and Veterinary Entomology,
Gainesville, Florida, United States of America
| | - Osvaldo Marinotti
- Department of Molecular Biology and Biochemistry, University of
California, Irvine, California, United States of America
| | - Joseph M. Vinetz
- Division of Infectious Diseases, Department of Medicine, University of
California-San Diego School of Medicine, La Jolla, California, United States of
America
| | - Anthony A. James
- Department of Microbiology and Molecular Genetics, School of Medicine,
University of California, Irvine, California, United States of
America
- Department of Molecular Biology and Biochemistry, University of
California, Irvine, California, United States of America
- * E-mail:
| |
Collapse
|
14
|
Malaria vector control: from past to future. Parasitol Res 2011; 108:757-79. [PMID: 21229263 DOI: 10.1007/s00436-010-2232-0] [Citation(s) in RCA: 120] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2010] [Accepted: 10/06/2010] [Indexed: 01/17/2023]
Abstract
Malaria is one of the most common vector-borne diseases widespread in the tropical and subtropical regions. Despite considerable success of malaria control programs in the past, malaria still continues as a major public health problem in several countries. Vector control is an essential part for reducing malaria transmission and became less effective in recent years, due to many technical and administrative reasons, including poor or no adoption of alternative tools. Of the different strategies available for vector control, the most successful are indoor residual spraying and insecticide-treated nets (ITNs), including long-lasting ITNs and materials. Earlier DDT spray has shown spectacular success in decimating disease vectors but resulted in development of insecticide resistance, and to control the resistant mosquitoes, organophosphates, carbamates, and synthetic pyrethroids were introduced in indoor residual spraying with needed success but subsequently resulted in the development of widespread multiple insecticide resistance in vectors. Vector control in many countries still use insecticides in the absence of viable alternatives. Few developments for vector control, using ovitraps, space spray, biological control agents, etc., were encouraging when used in limited scale. Likewise, recent introduction of safer vector control agents, such as insect growth regulators, biocontrol agents, and natural plant products have yet to gain the needed scale of utility for vector control. Bacterial pesticides are promising and are effective in many countries. Environmental management has shown sufficient promise for vector control and disease management but still needs advocacy for inter-sectoral coordination and sometimes are very work-intensive. The more recent genetic manipulation and sterile insect techniques are under development and consideration for use in routine vector control and for these, standardized procedures and methods are available but need thorough understanding of biology, ethical considerations, and sufficiently trained manpower for implementation being technically intensive methods. All the methods mentioned in the review that are being implemented or proposed for implementation needs effective inter-sectoral coordination and community participation. The latest strategy is evolution-proof insecticides that include fungal biopesticides, Wolbachia, and Denso virus that essentially manipulate the life cycle of the mosquitoes were found effective but needs more research. However, for effective vector control, integrated vector management methods, involving use of combination of effective tools, is needed and is also suggested by Global Malaria Control Strategy. This review article raises issues associated with the present-day vector control strategies and state opportunities with a focus on ongoing research and recent advances to enable to sustain the gains achieved so far.
Collapse
|
15
|
Koenraadt CJ, Kormaksson M, Harrington LC. Effects of inbreeding and genetic modification on Aedes aegypti larval competition and adult energy reserves. Parasit Vectors 2010; 3:92. [PMID: 20925917 PMCID: PMC2967506 DOI: 10.1186/1756-3305-3-92] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2010] [Accepted: 10/06/2010] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Genetic modification of mosquitoes offers a promising strategy for the prevention and control of mosquito-borne diseases. For such a strategy to be effective, it is critically important that engineered strains are competitive enough to serve their intended function in population replacement or reduction of wild mosquitoes in nature. Thus far, fitness evaluations of genetically modified strains have not addressed the effects of competition among the aquatic stages and its consequences for adult fitness. We therefore tested the competitive success of combinations of wild, inbred and transgenic (created in the inbred background) immature stages of the dengue vector Aedes aegypti in the presence of optimal and sub-optimal larval diets. RESULTS The wild strain of Ae. aegypti demonstrated greater performance (based on a composite index of survival, development rate and size) than the inbred strain, which in turn demonstrated greater performance than the genetically modified strain. Moreover, increasing competition through lowering the amount of diet available per larva affected fitness disproportionately: transgenic larvae had a reduced index of performance (95-119%) compared to inbred (50-88%) and wild type larvae (38-54%). In terms of teneral energy reserves (glycogen, lipid and sugar), adult wild type mosquitoes had more reserves directly available for flight, dispersal and basic metabolic functions than transgenic and inbred mosquitoes. CONCLUSIONS Our study provides a detailed assessment of inter- and intra-strain competition across aquatic stages of wild type, inbred, and transgenic mosquitoes and the impact of these conditions on adult energy reserves. Although it is not clear what competitive level is adequate for success of transgenic strains in nature, strong gene drive mechanisms are likely to be necessary in order to overcome competitive disadvantages in the larval stage that carryover to affect adult fitness.
Collapse
|
16
|
Carter V, Hurd H. Choosing anti-Plasmodium molecules for genetically modifying mosquitoes: focus on peptides. Trends Parasitol 2010; 26:582-90. [PMID: 20800543 DOI: 10.1016/j.pt.2010.07.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2010] [Revised: 07/20/2010] [Accepted: 07/21/2010] [Indexed: 11/27/2022]
Abstract
In the wake of the development of insecticide resistance in mosquitoes, novel strategies for halting malaria transmission are being developed. These include the genetic modification (GM) of mosquitoes to become incompetent vectors. Although mosquito GM technologies are progressing rapidly, the rationale behind choosing anti-parasite molecules to be expressed by mosquitoes has received less attention. Here, questions are explored that that should be addressed during the strategic selection of these anti-Plasmodium molecules, focusing on antimicrobial peptides. Properties that will enhance the likelihood of success are discussed, and the need to plan an initial strategy to eliminate molecules that cause fitness costs to the mosquito is considered. Effector molecules with proven anti-sporogonic stage activity are reviewed, and the activity of a selection of these molecules is detailed.
Collapse
Affiliation(s)
- Victoria Carter
- School of Life Sciences, Institute for Science and Technology in Medicine (ISTM), Keele University, Staffordshire, UK
| | | |
Collapse
|
17
|
Aboagye-Antwi F, Guindo A, Traoré AS, Hurd H, Coulibaly M, Traoré S, Tripet F. Hydric stress-dependent effects of Plasmodium falciparum infection on the survival of wild-caught Anopheles gambiae female mosquitoes. Malar J 2010; 9:243. [PMID: 20796288 PMCID: PMC2939621 DOI: 10.1186/1475-2875-9-243] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2010] [Accepted: 08/26/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Whether Plasmodium falciparum, the agent of human malaria responsible for over a million deaths per year, causes fitness costs in its mosquito vectors is a burning question that has not yet been adequately resolved. Understanding the evolutionary forces responsible for the maintenance of susceptibility and refractory alleles in natural mosquito populations is critical for understanding malaria transmission dynamics. METHODS In natural mosquito populations, Plasmodium fitness costs may only be expressed in combination with other environmental stress factors hence this hypothesis was tested experimentally. Wild-caught blood-fed Anopheles gambiae s.s. females of the M and S molecular form from an area endemic for malaria in Mali, West Africa, were brought to the laboratory and submitted to a 7-day period of mild hydric stress or kept with water ad-libitum. At the end of this experiment all females were submitted to intense desiccation until death. The survival of all females throughout both stress episodes, as well as their body size and infection status was recorded. The importance of stress, body size and molecular form on infection prevalence and female survival was investigated using Logistic Regression and Proportional-Hazard analysis. RESULTS Females subjected to mild stress exhibited patterns of survival and prevalence of infection compatible with increased parasite-induced mortality compared to non-stressed females. Fitness costs seemed to be linked to ookinetes and early oocyst development but not the presence of sporozoites. In addition, when females were subjected to intense desiccation stress, those carrying oocysts exhibited drastically reduced survival but those carrying sporozoites were unaffected. No significant differences in prevalence of infection and infection-induced mortality were found between the M and S molecular forms of Anopheles gambiae. CONCLUSIONS Because these results suggest that infected mosquitoes may incur fitness costs under natural-like conditions, they are particularly relevant to vector control strategies aiming at boosting naturally occurring refractoriness or spreading natural or foreign genes for refractoriness using genetic drive systems in vector populations.
Collapse
Affiliation(s)
- Fred Aboagye-Antwi
- Center for Applied Entomology and Parasitology, School of Life Sciences, Keele University, Keele, Staffordshire ST5 5BG, UK
| | | | | | | | | | | | | |
Collapse
|
18
|
Schaffer WM, Bronnikova TV. Controlling malaria: competition, seasonality and 'slingshotting' transgenic mosquitoes into natural populations. JOURNAL OF BIOLOGICAL DYNAMICS 2009; 3:286-304. [PMID: 22880835 DOI: 10.1080/17513750802582621] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Forty years after the World Health Organization abandoned its eradication campaign, malaria remains a public health problem of the first magnitude with worldwide infection rates on the order of 300 million souls. The present paper reviews potential control strategies from the viewpoint of mathematical epidemiology. Following MacDonald and others, we argue in Section 1 that the use of imagicides, i.e., killing, or at least repelling, adult mosquitoes, is inherently the most effective way of combating the pandemic. In Section 2, we model competition between wild-type (WT) and plasmodium-resistant, genetically modified (GM) mosquitoes. Under the assumptions of inherent cost and prevalence-dependant benefit to transgenics, GM introduction can never eradicate malaria save by stochastic extinction of WTs. Moreover, alternative interventions that reduce prevalence have the undesirable consequence of reducing the likelihood of successful GM introduction. Section 3 considers the possibility of using seasonal fluctuations in mosquito abundance and disease prevalence to 'slingshot' GM mosquitoes into natural populations. By introducing GM mosquitoes when natural populations are about to expand, one can 'piggyback' on the yearly cycle. Importantly, this effect is only significant when transgene cost is small, in which case the non-trivial equilibrium is a focus (damped oscillations), and piggybacking is amplified by the system's inherent tendency to oscillate. By way of contrast, when transgene cost is large, the equilibrium is a node and no such amplification is obtained.
Collapse
Affiliation(s)
- W M Schaffer
- Department of Ecology and Evolutionary Biology, The University of Arizona, AZ, USA.
| | | |
Collapse
|
19
|
Takken W, Knols BGJ. Malaria vector control: current and future strategies. Trends Parasitol 2009; 25:101-4. [PMID: 19168392 DOI: 10.1016/j.pt.2008.12.002] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2008] [Revised: 11/21/2008] [Accepted: 12/02/2008] [Indexed: 11/20/2022]
Abstract
The recently announced call for malaria eradication represents a new page in the history of this disease. This has been triggered by remarkable reductions in malaria resulting from combined application of effective drugs and vector control. However, this strategy is threatened by development of insecticide resistance. Efforts to develop alternative tools to complement or even replace insecticide-based vector-control strategies must continue. Here, an overview is presented of the novel vector-control tools expected to contribute to malaria eradication.
Collapse
Affiliation(s)
- Willem Takken
- Laboratory of Entomology, Wageningen University and Research Centre, PO Box 8031, 6700 EH Wageningen, The Netherlands.
| | | |
Collapse
|
20
|
Malaria: some considerations regarding parasite productivity. Trends Parasitol 2008; 24:487-91. [PMID: 18805735 DOI: 10.1016/j.pt.2008.07.009] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2008] [Revised: 07/17/2008] [Accepted: 07/31/2008] [Indexed: 11/20/2022]
Abstract
The complicated life cycle of Plasmodium is characterized by proliferative stages in each of its hosts--mosquito and vertebrate--that are interrupted by restrictive steps as it moves from one to the other. Productivity at each stage affects not only pathology but also the probability for successful transmission. This Opinion article briefly assesses what is known about productivity at each step and attempts, with limited success, to put each in the context of an entire cycle, sporozoite to sporozoite.
Collapse
|
21
|
Yoshida S, Shimada Y, Kondoh D, Kouzuma Y, Ghosh AK, Jacobs-Lorena M, Sinden RE. Hemolytic C-type lectin CEL-III from sea cucumber expressed in transgenic mosquitoes impairs malaria parasite development. PLoS Pathog 2008; 3:e192. [PMID: 18159942 PMCID: PMC2151087 DOI: 10.1371/journal.ppat.0030192] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2007] [Accepted: 10/30/2007] [Indexed: 12/14/2022] Open
Abstract
The midgut environment of anopheline mosquitoes plays an important role in the development of the malaria parasite. Using genetic manipulation of anopheline mosquitoes to change the environment in the mosquito midgut may inhibit development of the malaria parasite, thus blocking malaria transmission. Here we generate transgenic Anopheles stephensi mosquitoes that express the C-type lectin CEL-III from the sea cucumber, Cucumaria echinata, in a midgut-specific manner. CEL-III has strong and rapid hemolytic activity toward human and rat erythrocytes in the presence of serum. Importantly, CEL-III binds to ookinetes, leading to strong inhibition of ookinete formation in vitro with an IC50 of 15 nM. Thus, CEL-III exhibits not only hemolytic activity but also cytotoxicity toward ookinetes. In these transgenic mosquitoes, sporogonic development of Plasmodium berghei is severely impaired. Moderate, but significant inhibition was found against Plasmodium falciparum. To our knowledge, this is the first demonstration of stably engineered anophelines that affect the Plasmodium transmission dynamics of human malaria. Although our laboratory-based research does not have immediate applications to block natural malaria transmission, these findings have significant implications for the generation of refractory mosquitoes to all species of human Plasmodium and elucidation of mosquito–parasite interactions. Malaria is arguably the most important vector-borne disease worldwide, affecting 300 million people and killing 1–2 million people every year. The lack of an effective vaccine and the emergence of the parasites' resistance to many existing anti-malarial drugs have aggravated the situation. Clearly, development of novel strategies for control of the disease is urgently needed. Mosquitoes are obligatory vectors for the disease and inhibition of parasite development in the mosquito has considerable promise as a new approach in the fight against malaria. Based on recent advances in the genetic engineering of mosquitoes, the concept of generating genetically modified (GM) mosquitoes that hinder transmission by either killing or interfering with parasite development is a potential means of controlling the disease. To generate these GM mosquitoes, the authors focused on a unique lectin isolated from the sea cucumber, which has both hemolytic and cytotoxic activities, as an anti-parasite effector molecule. A transgenic mosquito expressing the lectin effectively caused erythrocyte lysis in the midgut after ingestion of an infectious blood meal and severely impaired parasite development. This laboratory-acquired finding may provide significant implications for future malaria control using GM mosquitoes refractory to the parasites.
Collapse
Affiliation(s)
- Shigeto Yoshida
- Division of Medical Zoology, Department of Infection and Immunity, Jichi Medical University, Tochigi, Japan.
| | | | | | | | | | | | | |
Collapse
|
22
|
Abstract
Vector-borne diseases such as malaria and dengue fever continue to be a major health concern through much of the world. The emergence of chloroquine-resistant strains of malaria and insecticide-resistant mosquitoes emphasize the need for novel methods of disease control. Recently, there has been much interest in the use of transposable elements to drive resistance genes into vector populations as a means of disease control. One concern that must be addressed before a release is performed is the potential loss of linkage between a transposable element and a resistance gene. Transposable elements such as P and hobo have been shown to produce internal deletion derivatives at a significant rate, and there is concern that a similar process could lead to loss of the resistance gene from the drive system following a transgenic release. Additionally, transposable elements such as Himar1 have been shown to transpose significantly more frequently when free of exogenous DNA. Here, we show that any transposon-mediated gene drive strategy must have an exceptionally low rate of dissociation if it is to be effective. Additionally, the resistance gene must confer a large selective advantage to the vector to surmount the effects of a moderate dissociation rate and transpositional handicap.
Collapse
|
23
|
Sperança MA, Capurro ML. Perspectives in the control of infectious diseases by transgenic mosquitoes in the post-genomic era--a review. Mem Inst Oswaldo Cruz 2008; 102:425-33. [PMID: 17612761 DOI: 10.1590/s0074-02762007005000054] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2006] [Accepted: 04/10/2007] [Indexed: 12/14/2022] Open
Abstract
Arthropod-borne diseases caused by a variety of microorganisms such as dengue virus and malaria parasites afflict billions of people worldwide imposing major economic and social burdens. Despite many efforts, vaccines against diseases transmitted by mosquitoes, with the exception of yellow fever, are not available. Control of such infectious pathogens is mainly performed by vector management and treatment of affected individuals with drugs. However, the numbers of insecticide-resistant insects and drug-resistant parasites are increasing. Therefore, inspired in recent years by a lot of new data produced by genomics and post-genomics research, several scientific groups have been working on different strategies to control infectious arthropod-borne diseases. This review focuses on recent advances and perspectives towards construction of transgenic mosquitoes refractory to malaria parasites and dengue virus transmission.
Collapse
|
24
|
Huho BJ, Ng'habi KR, Killeen GF, Nkwengulila G, Knols BGJ, Ferguson HM. Nature beats nurture: a case study of the physiological fitness of free-living and laboratory-reared male Anopheles gambiae s.l. ACTA ACUST UNITED AC 2007; 210:2939-47. [PMID: 17690243 DOI: 10.1242/jeb.005033] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Laboratory experimentation forms the basis for most of our knowledge of the biology of many organisms, in particular insects. However, the accuracy with which laboratory-derived estimates of insect life history and behaviour can predict their fitness and population dynamics in the wild is rarely validated. Such comparison is especially important in cases where laboratory-derived information is used to formulate and implement strategies for the genetic control of insects in nature. We have conducted a comparative study of the reproductive potential and life history of male Anopheles gambiae Gilies sensu lato mosquitoes from both standardized laboratory conditions and from natural field settings. We measured three indirect indicators of male mosquito fitness: energetic reserves, body size and survival, in a bid to determine whether the demographics and energetic limitations of wild males can be correctly predicted from their laboratory counterparts. Crucially, the body size and lipid reserves of wild males were substantially greater than those reared under standard laboratory conditions. We caution that the energetic limitations of insects as identified in the laboratory may underestimate their resilience in the wild, and discuss the implications of this phenomenon with respect to vector-borne disease control programmes based on genetic control of mosquitoes.
Collapse
Affiliation(s)
- B J Huho
- Public Health Entomology Unit, Ifakara Health Research and Development Centre, PO Box 53, Off Mlabani Passage Ifakara, Tanzania.
| | | | | | | | | | | |
Collapse
|
25
|
Arino J, Bowman C, Gumel A, Portet S. Effect of pathogen-resistant vectors on the transmission dynamics of a vector-borne disease. JOURNAL OF BIOLOGICAL DYNAMICS 2007; 1:320-346. [PMID: 22876820 DOI: 10.1080/17513750701605614] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
A model is introduced for the transmission dynamics of a vector-borne disease with two vector strains, one wild and one pathogen-resistant; resistance comes at the cost of reduced reproductive fitness. The model, which assumes that vector reproduction can lead to the transmission or loss of resistance (reversion), is analyzed in a particular case with specified forms for the birth and force of infection functions. The vector component can have, in the absence of disease, a coexistence equilibrium where both strains survive. In the case where reversion is possible, this coexistence equilibrium is globally asymptotically stable when it exists. This equilibrium is still present in the full vector-host system, leading to a reduction of the associated reproduction number, thereby making elimination of the disease more feasible. When reversion is not possible, there can exist an additional equilibrium with only resistant vectors.
Collapse
Affiliation(s)
- Julien Arino
- Department of Mathematics, University of Manitoba, Winnipeg, Manitoba, Canada R3T 2N2.
| | | | | | | |
Collapse
|
26
|
Gouagna LC, van der Kolk M, Roeffen W, Verhave JP, Eling W, Sauerwein R, Boudin C. Role of heat-labile serum factor or host complement in the inhibition of Plasmodium falciparum sporogonic stages in Anopheles stephensi by gametocyte carriers' serological factors. Parasitology 2007; 134:1315-27. [PMID: 17645813 DOI: 10.1017/s0031182007002685] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
This study investigated the significance of serum complement on transmission-reducing activity (TRA) of field sera from 24 infected Plasmodium falciparum gametocyte carriers (from Cameroon) against cultured NF54 P. falciparum. Laboratory-reared Anopheles stephensi were given infectious blood meals prepared either with sera from naïve Dutch donor (AB type) or pair-matched field serum samples, both with and without active complement. TRA of serum factors and host complement on mosquito infection rate and oocyst intensity were divided into the various components involved in the early stages of sporogony. The majority (>80%) of sera tested showed positive antibody titres to Pfs230, the relevant complement-dependent target of transmission-reducing mechanisms. Regardless of the presence of active complement, bloodmeals with field sera exhibited significantly lower infection rates and oocyst intensity than the control group. Serological reactivity in Capture-ELISA against Pfs230 was significantly correlated with the reduction of parasite infectivity. Contrary to our expectation, the presence of active complement in the mosquito bloodmeal did not increase parasite losses and therefore the magnitude of transmission reduction by individual immune sera. Our findings on P. falciparum are consistent with previous studies on animal hosts of Plasmodium, indicating that early P. falciparum sporogonic stages may be insensitive to the antibody-dependent pathways of complement in human serum.
Collapse
Affiliation(s)
- L C Gouagna
- Organisation de Coordination pour la lutte contre les Endémies en Afrique Centrale (OCEAC), Laboratoire de Recherche sur le Paludisme, Yaoundé, Cameroon.
| | | | | | | | | | | | | |
Collapse
|
27
|
Lobo NF, Clayton JR, Fraser MJ, Kafatos FC, Collins FH. High efficiency germ-line transformation of mosquitoes. Nat Protoc 2007; 1:1312-7. [PMID: 17406416 DOI: 10.1038/nprot.2006.221] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The ability to manipulate the mosquito genome through germ-line transformation provides us with a powerful tool for investigating gene structure and function. It is also a valuable method for the development of novel approaches to combating the spread of mosquito-vectored diseases. To date, germ-line transformation has been demonstrated in several mosquito species. Transgenes are introduced into pre-blastocyst mosquito embryos using microinjection techniques that take a few hours, and progeny are screened for the presence of a marker gene. The microinjection protocol presented here can be applied to most mosquitoes and contains several improvements over other published methods that increase the survival of injected embryos and, therefore, the number of transformants. Transgenic lines can be established in approximately 1 month using this technique.
Collapse
Affiliation(s)
- Neil F Lobo
- Center for Global Health and Infectious Diseases, Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | | | | | | | | |
Collapse
|
28
|
Moreira CK, Rodrigues FG, Ghosh A, de P. Varotti F, Miranda A, Daffre S, Jacobs-Lorena M, Moreira LA. Effect of the antimicrobial peptide gomesin against different life stages of Plasmodium spp. Exp Parasitol 2007; 116:346-53. [PMID: 17376436 PMCID: PMC1978196 DOI: 10.1016/j.exppara.2007.01.022] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2006] [Revised: 01/25/2007] [Accepted: 01/31/2007] [Indexed: 10/23/2022]
Abstract
While seeking strategies for interfering with Plasmodium development in vertebrate/invertebrate hosts, we tested the activity of gomesin, an antimicrobial peptide isolated from the hemocytes of the spider Acanthoscurria gomesiana. Gomesin was tested against asexual, sexual and pre-sporogonic forms of Plasmodium falciparum and Plasmodium berghei parasites. The peptide inhibited the in vitro growth of intraerythrocytic forms of P. falciparum. When gomesin was added to in vitro culture of P. berghei mature gametocytes, it significantly inhibited the exflagellation of male gametes and the formation of ookinetes. In vivo, the peptide reduced the number of oocysts of both Plasmodium species in Anopheles stephensi mosquitoes, and did not appear to affect the mosquitoes. These properties make gomesin an excellent candidate as a transmission blocking agent for the genetic engineering of mosquitoes.
Collapse
Affiliation(s)
- Cristina K. Moreira
- Department of Molecular Microbiology and Immunology, John Hopkins Bloomberg School of Public Health, Malaria Research Institute, 615 North Wolfe Street, Baltimore, MD 21205
| | - Flávia G. Rodrigues
- Laboratório de Malária, Centro de Pesquisas René Rachou, Fundação Oswaldo Cruz, Av. Augusto de Lima, 1715, Belo Horizonte-MG, Brasil, CEP 30190-002
| | - Anil Ghosh
- Department of Molecular Microbiology and Immunology, John Hopkins Bloomberg School of Public Health, Malaria Research Institute, 615 North Wolfe Street, Baltimore, MD 21205
| | - Fernando de P. Varotti
- Laboratório de Malária, Centro de Pesquisas René Rachou, Fundação Oswaldo Cruz, Av. Augusto de Lima, 1715, Belo Horizonte-MG, Brasil, CEP 30190-002
| | - Antonio Miranda
- Departamento de Biofísica, Universidade Federal de São Paulo, Rua Três de Maio, 100, São Paulo-SP, Brasil, CEP 04044-020
| | - Sirlei Daffre
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, Av. Prof. Lineu Prestes, 1374, São Paulo-SP, Brasil, CEP 05508-900
| | - Marcelo Jacobs-Lorena
- Department of Molecular Microbiology and Immunology, John Hopkins Bloomberg School of Public Health, Malaria Research Institute, 615 North Wolfe Street, Baltimore, MD 21205
| | - Luciano A. Moreira
- Laboratório de Malária, Centro de Pesquisas René Rachou, Fundação Oswaldo Cruz, Av. Augusto de Lima, 1715, Belo Horizonte-MG, Brasil, CEP 30190-002
- * Corresponding author. Mailing address: Laboratório de Malária, Centro de Pesquisas René Rachou, Fundação Oswaldo Cruz, Av. Augusto de Lima, 1715, Belo Horizonte-MG, Brasil, CEP 30190-002. Phone: 55 31 3349 7772. Fax: 55 31 3295 3115. E-mail:
| |
Collapse
|
29
|
Lambrechts L, Chavatte JM, Snounou G, Koella JC. Environmental influence on the genetic basis of mosquito resistance to malaria parasites. Proc Biol Sci 2006; 273:1501-6. [PMID: 16777744 PMCID: PMC1560309 DOI: 10.1098/rspb.2006.3483] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The genetic basis of a host's resistance to parasites has important epidemiological and evolutionary consequences. Understanding this genetic basis can be complicated by non-genetic factors, such as environmental quality, which may influence the expression of genetic resistance and profoundly alter patterns of disease and the host's response to selection. In particular, understanding the environmental influence on the genetic resistance of mosquitoes to malaria gives valuable knowledge concerning the use of malaria-resistant transgenic mosquitoes as a measure of malaria control. We made a step towards this understanding by challenging eight isofemale lines of the malaria vector Anopheles stephensi with the rodent malaria parasite Plasmodium yoelii yoelii and by feeding the mosquitoes with different concentrations of glucose. The isofemale lines differed in infection loads (the numbers of oocysts), corroborating earlier studies showing a genetic basis of resistance. In contrast, the proportion of infected mosquitoes did not differ among lines, suggesting that the genetic component underlying infection load differs from the genetic component underlying infection rate. In addition, the mean infection load and, in particular, its heritable variation in mosquitoes depended on the concentration of glucose, which suggests that the environment affects the expression and the evolution of the mosquitoes' resistance in nature. We found no evidence of genotype-by-environment interactions, i.e. the lines responded similarly to environmental variation. Overall, these results indicate that environmental variation can significantly reduce the importance of genes in determining the resistance of mosquitoes to malaria infection.
Collapse
Affiliation(s)
- Louis Lambrechts
- CNRS UMR 7103, Université Pierre et Marie Curie-Paris, Parasitologie Evolutive, CC 237, CP52, 7 quai St Bernard, 75252 Paris Cedex 05, France.
| | | | | | | |
Collapse
|
30
|
Le Rouzic A, Capy P. Reversible introduction of transgenes in natural populations of insects. INSECT MOLECULAR BIOLOGY 2006; 15:227-34. [PMID: 16640733 DOI: 10.1111/j.1365-2583.2006.00631.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The most serious challenge concerning genetically modified insects remains their invasion ability. Indeed, transgenic insects often show lower fitness than wild individuals, and the transgene does not seem able to spread through a natural population without a driving system. The use of remobilizable vectors, based on the invading properties of transposable elements, has been frequently suggested. Simulations show that this strategy can be efficient. Moreover, if the transgene is designed to use transposition machinery already present in the genome, the transgene invasion appears to be potentially reversible after a few hundred generations, leading to new experimental perspectives.
Collapse
Affiliation(s)
- A Le Rouzic
- Laboratoire Populations, Génétique, Evolution, CNRS, Gif sur Yvette, France
| | | |
Collapse
|
31
|
Beaty BJ. Control of arbovirus diseases: is the vector the weak link? ARCHIVES OF VIROLOGY. SUPPLEMENTUM 2006:73-88. [PMID: 16358423 DOI: 10.1007/3-211-29981-5_7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Arthropod-borne virus (arbovirus) diseases (ABVDs) remain major threats to human health and well-being and, as an epidemiologic group, inflict an unacceptable health and economic burden on humans and animals, including livestock. The developed world has been fortunate to have escaped much of the burden that arboviruses and their arthropod vectors inflict on humans in disease endemic countries, but the introduction and rapid spread of West Nile virus in the Western Hemisphere demonstrated that we can no longer be complacent in the face of these emerging and resurging vector-borne diseases. Unfortunately, as the burdens and threats of ABVDs have increased, the U.S. and international public health capacity to address them has decreased. Vaccines are not available for most of these agents. Previously successful strategies to control ABVDs emphasized vector control, but source reduction and vector control strategies using pesticides have not been sustainable. New insights into vector biology and vector pathogen interactions, and the novel targets that likely will be forthcoming in the vector post-genomics era, provide new targets and opportunities for vector control and disease reduction programs. These findings and approaches must be incorporated into existing strategies if we are to control these important pathogens.
Collapse
Affiliation(s)
- B J Beaty
- Department of Microbiology, Immunology, and Pathology, Arthropod-Borne and Infectious Diseases Laboratory, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA.
| |
Collapse
|
32
|
Ng'habi KR, John B, Nkwengulila G, Knols BGJ, Killeen GF, Ferguson HM. Effect of larval crowding on mating competitiveness of Anopheles gambiae mosquitoes. Malar J 2005; 4:49. [PMID: 16197541 PMCID: PMC1260028 DOI: 10.1186/1475-2875-4-49] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2005] [Accepted: 09/30/2005] [Indexed: 11/10/2022] Open
Abstract
Background The success of sterile or transgenic Anopheles for malaria control depends on their mating competitiveness within wild populations. Current evidence suggests that transgenic mosquitoes have reduced fitness. One means of compensating for this fitness deficit would be to identify environmental conditions that increase their mating competitiveness, and incorporate them into laboratory rearing regimes. Methods Anopheles gambiae larvae were allocated to three crowding treatments with the same food input per larva. Emerged males were competed against one another for access to females, and their corresponding longevity and energetic reserves measured. Results Males from the low-crowding treatment were much more likely to acquire the first mating. They won the first female approximately 11 times more often than those from the high-crowding treatment (Odds ratio = 11.17) and four times more often than those from the medium-crowding treatment (Odds ratio = 3.51). However, there was no overall difference in the total number of matings acquired by males from different treatments (p = 0.08). The survival of males from the low crowding treatment was lower than those from other treatments. The body size and teneral reserves of adult males did not differ between crowding treatments, but larger males were more likely to acquire mates than small individuals. Conclusion Larval crowding and body size have strong, independent effects on the mating competitiveness of adult male An. gambiae. Thus manipulation of larval crowding during mass rearing could provide a simple technique for boosting the competitiveness of sterile or transgenic male mosquitoes prior to release.
Collapse
Affiliation(s)
- Kija R Ng'habi
- Ifakara Health Research and Development Centre (IHRDC), P. O. Box 53, Ifakara, Tanzania
- University of Dar es Salaam, P. O. Box 35064 Dar es Salaam, Tanzania
| | - Bernadette John
- Ifakara Health Research and Development Centre (IHRDC), P. O. Box 53, Ifakara, Tanzania
- University of Dar es Salaam, P. O. Box 35064 Dar es Salaam, Tanzania
| | - Gamba Nkwengulila
- University of Dar es Salaam, P. O. Box 35064 Dar es Salaam, Tanzania
| | - Bart GJ Knols
- International Atomic Energy Agency (IAEA), Agency's Laboratories Seibersdorf, Seibersdorf A-2444, Austria
- Laboratory of Entomology. P.O. Box 8031, 6700 EH, Wageningen University, Wageningen, The Netherlands
| | - Gerry F Killeen
- Ifakara Health Research and Development Centre (IHRDC), P. O. Box 53, Ifakara, Tanzania
- Department of Public Health and Epidemiology, Swiss Tropical Institute, Basel, Switzerland
| | - Heather M Ferguson
- Ifakara Health Research and Development Centre (IHRDC), P. O. Box 53, Ifakara, Tanzania
- Laboratory of Entomology. P.O. Box 8031, 6700 EH, Wageningen University, Wageningen, The Netherlands
| |
Collapse
|
33
|
Coates CJ, Kaminski JM, Summers JB, Segal DJ, Miller AD, Kolb AF. Site-directed genome modification: derivatives of DNA-modifying enzymes as targeting tools. Trends Biotechnol 2005; 23:407-19. [PMID: 15993503 DOI: 10.1016/j.tibtech.2005.06.009] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2004] [Revised: 04/14/2005] [Accepted: 06/14/2005] [Indexed: 01/11/2023]
Abstract
The modification of mammalian genomes is an important goal in gene therapy and animal transgenesis. To generate stable genetic and biochemical changes, the therapeutic genes or transgenes need to be incorporated into the host genome. Ideally, the integration of the foreign gene should occur at sites that ensure their continual expression in the absence of any unwanted side effects on cellular metabolism. In this article, we discuss the opportunities provided by natural DNA-modifying enzymes, such as transposases, recombinases and integrases, to mediate the stable integration of foreign genes into host genomes. In addition, we discuss the approaches that have been taken to improve the efficiency and to modify the site-specificity of these enzymes.
Collapse
Affiliation(s)
- Craig J Coates
- Department of Entomology, Texas A&M University, College Station, TX 77843, USA
| | | | | | | | | | | |
Collapse
|
34
|
Riehle MA, Jacobs-Lorena M. Using bacteria to express and display anti-parasite molecules in mosquitoes: current and future strategies. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2005; 35:699-707. [PMID: 15894187 DOI: 10.1016/j.ibmb.2005.02.008] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/11/2005] [Indexed: 05/02/2023]
Abstract
Vector-borne diseases impose enormous health and economical burdens throughout the world. Unfortunately, as insecticide and drug resistance spread, these burdens will increase unless new control measures are developed. Genetically modifying vectors to be incapable of transmitting parasites is one possible control strategy and much progress has been made towards this goal. Numerous effector molecules have been identified that interfere with parasite development in its insect vectors, and techniques for transforming the vectors with genes encoding these molecules have been established. While the ability to generate refractory vectors is close at hand, a mechanism for replacing a wild vector population with a refractory one remains elusive. This review examines the feasibility of using bacteria to deliver the anti-parasitic effector molecules to wild vector populations. The first half briefly examines paratransgenic approaches currently being tested in both the triatomine bug and tsetse fly. The second half explores the possibility of using midgut bacteria to control malaria transmission by Anopheles mosquitoes.
Collapse
Affiliation(s)
- Michael A Riehle
- Department of Molecular Microbiology & Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | | |
Collapse
|
35
|
Abraham EG, Donnelly-Doman M, Fujioka H, Ghosh A, Moreira L, Jacobs-Lorena M. Driving midgut-specific expression and secretion of a foreign protein in transgenic mosquitoes with AgAper1 regulatory elements. INSECT MOLECULAR BIOLOGY 2005; 14:271-9. [PMID: 15926896 DOI: 10.1111/j.1365-2583.2004.00557.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
The Anopheles gambiae adult peritrophic matrix protein 1 (AgAper1) regulatory elements were used to drive the expression of phospholipase A2 (PLA2), a protein known to disrupt malaria parasite development in mosquitoes. These AgAper1 regulatory elements were sufficient to promote the accumulation of PLA2 in midgut epithelial cells before a blood meal and its release into the lumen upon blood ingestion. Plasmodium berghei oocyst formation was reduced by approximately 80% (74-91% range) in transgenic mosquitoes. Blood-seeking behaviour and survival of AgAper1-PLA2 transgenic mosquitoes were comparable to sibling wild-type mosquitoes, while fertility was substantially lower. Ultrastructural studies suggest that decreased fitness is a consequence of internal damage to midgut epithelial cells.
Collapse
Affiliation(s)
- E G Abraham
- Department of Molecular Microbiology and Immunology, John Hopkins Bloomberg School of Public Health, Malaria Research Institute, Baltimore, MD 21205, USA
| | | | | | | | | | | |
Collapse
|
36
|
Lambrechts L, Halbert J, Durand P, Gouagna LC, Koella JC. Host genotype by parasite genotype interactions underlying the resistance of anopheline mosquitoes to Plasmodium falciparum. Malar J 2005; 4:3. [PMID: 15644136 PMCID: PMC548507 DOI: 10.1186/1475-2875-4-3] [Citation(s) in RCA: 136] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2004] [Accepted: 01/11/2005] [Indexed: 02/07/2023] Open
Abstract
Background Most studies on the resistance of mosquitoes to their malaria parasites focus on the response of a mosquito line or colony against a single parasite genotype. In natural situations, however, it may be expected that mosquito-malaria relationships are based, as are many other host-parasite systems, on host genotype by parasite genotype interactions. In such systems, certain hosts are resistant to one subset of the parasite's genotypes, while other hosts are resistant to a different subset. Methods To test for genotype by genotype interactions between malaria parasites and their anopheline vectors, different genetic backgrounds (families consisting of the F1 offspring of individual females) of the major African vector Anopheles gambiae were challenged with several isolates of the human malaria parasite Plasmodium falciparum (obtained from naturally infected children in Kenya). Results Averaged across all parasites, the proportion of infected mosquitoes and the number of oocysts found in their midguts were similar in all mosquito families. Both indices of resistance, however, differed considerably among isolates of the parasite. In particular, no mosquito family was most resistant to all parasites, and no parasite isolate was most infectious to all mosquitoes. Conclusions These results suggest that the level of mosquito resistance depends on the interaction between its own and the parasite's genotype. This finding thus emphasizes the need to take into account the range of genetic diversity exhibited by mosquito and malaria field populations in ideas and studies concerning the control of malaria.
Collapse
Affiliation(s)
- Louis Lambrechts
- Laboratoire de Parasitologie Evolutive, CNRS UMR 7103, Université P. & M. Curie, CC 237, 7 quai St Bernard, 75252 Paris cedex 05, France
| | - Jean Halbert
- Laboratoire de Parasitologie Evolutive, CNRS UMR 7103, Université P. & M. Curie, CC 237, 7 quai St Bernard, 75252 Paris cedex 05, France
| | - Patrick Durand
- Génétique et Evolution des Maladies Infectieuses, UMR CNRS-IRD 2724, Centre de Recherche IRD, 911 Avenue Agropolis, BP 64501, 34394 Montpellier Cedex 5, France
| | - Louis C Gouagna
- Mbita Point Research and Training Centre, International Centre for Insect Physiology and Ecology, PO Box 30, Mbita, Kenya
| | - Jacob C Koella
- Laboratoire de Parasitologie Evolutive, CNRS UMR 7103, Université P. & M. Curie, CC 237, 7 quai St Bernard, 75252 Paris cedex 05, France
| |
Collapse
|
37
|
Nirmala X, Marinotti O, James AA. The accumulation of specific mRNAs following multiple blood meals in Anopheles gambiae. INSECT MOLECULAR BIOLOGY 2005; 14:95-103. [PMID: 15663779 DOI: 10.1111/j.1365-2583.2005.00535.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
One approach to genetic control of transmission of the parasites that cause human malaria is based on expressing effector genes in mosquitoes that disable the pathogens. Endogenous mosquito promoter and other cis-acting DNA sequences are needed to direct the optimal tissue-, stage- and sex-specific expression of the effector molecules. The mRNA accumulation profiles of eight different genes expressed specifically in the midgut, salivary glands or fat body tissues of the malaria vector, Anopheles gambiae, were characterized as a measure of their suitability to direct the expression of effector molecules designed to disable specific stages of the parasites. RT-PCR techniques were used to determine the abundance of the gene products and their duration following multiple blood meals. Transcription from the midgut-expressed carboxypeptidase-encoding gene, AgCP, follows a cyclical, blood-inducible expression pattern with maximum accumulation every 3 h post blood meal. Other midgut-expressed genes encoding a trypsin and chymotrypsin, Antryp2 and Anchym1, respectively, and the fat body-expressed genes, Vg1 and Cathepsin, also show a blood-inducible pattern of expression with maximum accumulation 24 h after every blood meal. Expression of the Lipophorin gene in the fat body and apyrase and D7-related genes (AgApy and D7r2) in the salivary glands is constitutive and not significantly affected by blood meals. Promoters of the midgut- and fat body-expressed genes may lead to maximum accumulation of antiparasite effector molecule transcripts after multiple blood meals. The multiple feeding behaviour of An. gambiae thus can be an advantage to express high levels of antiparasite effector molecules to counteract the parasites throughout most of adult development.
Collapse
Affiliation(s)
- X Nirmala
- Department of Molecular Biology & Biochemistry, University of California, Irvine, CA 92697-3900, USA
| | | | | |
Collapse
|
38
|
Christophides GK, Vlachou D, Kafatos FC. Comparative and functional genomics of the innate immune system in the malaria vector Anopheles gambiae. Immunol Rev 2004; 198:127-48. [PMID: 15199960 DOI: 10.1111/j.0105-2896.2004.0127.x] [Citation(s) in RCA: 179] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In much of Africa, the mosquito Anopheles gambiae is the major vector of human malaria, a devastating infectious disease caused by Plasmodium parasites. Vector and parasite interact at multiple stages and locations, and the nature and effectiveness of this reciprocal interaction determines the success of transmission. Many of the interactions engage the mosquito's innate immunity, a primitive but very effective defense system. In some cases, the mosquito kills the parasite, thus blocking the transmission cycle. However, not all interactions are antagonistic; some represent immune evasion. The sequence of the A. gambiae genome revealed numerous potential components of the innate immune system, and it established that they evolve rapidly, as summarized in the present review. Their rapid evolution by gene family expansion diversification as well as the prevalence of haplotype alleles in the best-studied families may reflect selective adaptation of the immune system to the exigencies of multiple immune challenges in a variety of ecologic niches. As a follow-up to the comparative genomic analysis, the development of functional genomic methodologies has provided novel opportunities for understanding the immune system and the nature of its interactions with the parasite. In this context, identification of both Plasmodium antagonists and protectors in the mosquito represents a significant conceptual advance. In addition to providing fundamental understanding of primitive immune systems, studies of mosquito interactions with the parasite open unprecedented opportunities for novel interventions against malaria transmission. The generation of transgenic mosquitoes that resist malaria infection in the wild and the development of antimalarial 'smart sprays' capable of disrupting interactions that are protective of the parasite, or reinforcing others that are antagonistic, represent technical challenges but also immense opportunities for improvement of global health.
Collapse
|
39
|
|
40
|
Siden-Kiamos I, Louis C. Interactions between malaria parasites and their mosquito hosts in the midgut. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2004; 34:679-685. [PMID: 15242709 DOI: 10.1016/j.ibmb.2004.03.026] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2004] [Accepted: 03/18/2004] [Indexed: 05/24/2023]
Abstract
This review examines what is presently known of the molecular interactions between Plasmodium and Anopheles that take place in the latter's midgut upon ingestion of the parasites with an infectious blood meal. In order to become 'established' in the gut and to transform into a sporozoite-producing oocyst, the malaria parasite needs to undergo different developmental steps that are often characterized by the use of selected resources provided by the mosquito vector. Moreover, some of these resources may be used by the parasite in order to overcome the insect host's defence mechanisms. The molecular partners of this interplay are now in the process of being defined and analyzed for both Plasmodium and mosquito and, thus, understood; these will be presented here in some detail.
Collapse
Affiliation(s)
- Inga Siden-Kiamos
- Institute of Molecular Biology and Biotechnology, FORTH, 71110 Heraklion, Greece
| | | |
Collapse
|