1
|
Piot E, Hippauf L, Charlanne L, Picard B, Badaut J, Gilbert C, Guinet C. From land to ocean: One month for southern elephant seal pups to acquire aquatic skills prior to their first departure to sea. Physiol Behav 2024; 279:114525. [PMID: 38531424 DOI: 10.1016/j.physbeh.2024.114525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 03/18/2024] [Accepted: 03/21/2024] [Indexed: 03/28/2024]
Abstract
Weaned southern elephant seals (SES) quickly transition from terrestrial to aquatic life after a 5- to 6-week post-weaning period. At sea, juveniles and adult elephant seals present extreme, continuous diving behaviour. Previous studies have highlighted the importance of the post-weaning period for weanlings to prepare for the physiological challenges of their future sea life. However, very little is known about how their body condition during this period may influence the development of their behaviour and brain activities. To characterise changes in the behavioural and brain activity of weanlings prior to ocean departure, we implemented a multi-logger approach combining measurements of movements (related to behaviour), pressure (related to diving), and brain electrical activity. As pups age, the amount of time allocated to resting decreases in favour of physical activity. Most resting (9.6 ± 1.2 h/day) takes place during daytime, with periods of slow-wave sleep representing 4.9 ± 0.9 h/day during the first 2 weeks. Furthermore, an increasing proportion of physical activity transitions from land to shore. Additionally, pups in poorer condition (lean group) are more active earlier than those in better condition (corpulent group). Finally, at weaning, clear circadian activity with two peaks at dawn and dusk is observed, and this pattern remains unchanged during the 4 weeks on land. This circadian pattern matches the one observed in adults at sea, with more prey catches at dawn and dusk, raising the question of whether it is endogenous or triggered by the mother during lactation.
Collapse
Affiliation(s)
- Erwan Piot
- Laboratoire MECADEV, UMR 7179 CNRS/MNHN, 1 Avenue du Petit Château, 91800 Brunoy, France; CNRS UMR 5536, Université de Bordeaux, 33076 Bordeaux, France.
| | - Lea Hippauf
- CNRS UMR 5536, Université de Bordeaux, 33076 Bordeaux, France
| | - Laura Charlanne
- Université de Strasbourg, CNRS, IPHC, Département d'Ecologie, Physiologie et Ethologie, 23 rue Becquerel, 67087 Strasbourg, France
| | - Baptiste Picard
- Centre d'Études Biologiques de Chizé-Centre National de la Recherche Scientifique (CEBC-CNRS), UMR 7372 CNRS/Université de La Rochelle, 79360 Villiers-en-Bois, France
| | - Jérôme Badaut
- CNRS UMR 5536, Université de Bordeaux, 33076 Bordeaux, France
| | - Caroline Gilbert
- Laboratoire MECADEV, UMR 7179 CNRS/MNHN, 1 Avenue du Petit Château, 91800 Brunoy, France; École Nationale Vétérinaire d'Alfort, 7 Avenue du Général de Gaulle, 94704 Maisons-Alfort cedex, France
| | - Christophe Guinet
- Centre d'Études Biologiques de Chizé-Centre National de la Recherche Scientifique (CEBC-CNRS), UMR 7372 CNRS/Université de La Rochelle, 79360 Villiers-en-Bois, France
| |
Collapse
|
2
|
Chevallay M, Guinet C, Goulet-Tran D, Jeanniard du Dot T. Sealing the deal - Antarctic fur seals' active hunting tactics to capture small evasive prey revealed by miniature sonar tags. J Exp Biol 2024; 227:jeb246937. [PMID: 38634142 DOI: 10.1242/jeb.246937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 04/04/2024] [Indexed: 04/19/2024]
Abstract
The ability of predators to adopt hunting tactics that minimise escape reactions from prey is crucial for efficient foraging, and depends on detection capabilities and locomotor performance of both predators and prey. Here, we investigated the efficiency of a small pinniped, the Antarctic fur seal (Arctocephalus gazella) at exploiting their small prey by describing for the first time their fine-scale predator-prey interactions. We compared these with those from another diving predator, the southern elephant seal (Mirounga leonina) that forage on the same prey type. We used data recorded by a newly developed sonar tag that combines active acoustics with ultrahigh-resolution movement sensors to study simultaneously the fine-scale behaviour of both Antarctic fur seals and prey during predator-prey interactions in more than 1200 prey capture events for eight female Antarctic fur seals. Our results showed that Antarctic fur seals and their prey detect each other at the same time, i.e. 1-2 s before the strike, forcing Antarctic fur seals to display reactive fast-moving chases to capture their prey. In contrast, southern elephant seals detect their prey up to 10 s before the strike, allowing them to approach their prey stealthily without triggering an escape reaction. The active hunting tactics used by Antarctic fur seals is probably very energy consuming compared with the stalking tactics used by southern elephant seals but might be compensated for by the consumption of faster-moving larger prey. We suggest that differences in manoeuvrability, locomotor performance and detection capacities and in pace of life between Antarctic fur seals and southern elephant seals might explain these differences in hunting styles.
Collapse
Affiliation(s)
- Mathilde Chevallay
- Centre d'Etudes Biologiques de Chizé, Centre National de la Recherche Scientifique, 79360 Villiers-en-Bois, France
| | - Christophe Guinet
- Centre d'Etudes Biologiques de Chizé, Centre National de la Recherche Scientifique, 79360 Villiers-en-Bois, France
| | - Didier Goulet-Tran
- Centre d'Etudes Biologiques de Chizé, Centre National de la Recherche Scientifique, 79360 Villiers-en-Bois, France
| | - Tiphaine Jeanniard du Dot
- Centre d'Etudes Biologiques de Chizé, Centre National de la Recherche Scientifique, 79360 Villiers-en-Bois, France
| |
Collapse
|
3
|
Motani R, Pyenson ND. Downsizing a heavyweight: factors and methods that revise weight estimates of the giant fossil whale Perucetus colossus. PeerJ 2024; 12:e16978. [PMID: 38436015 PMCID: PMC10909350 DOI: 10.7717/peerj.16978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 01/29/2024] [Indexed: 03/05/2024] Open
Abstract
Extremes in organismal size have broad interest in ecology and evolution because organismal size dictates many traits of an organism's biology. There is particular fascination with identifying upper size extremes in the largest vertebrates, given the challenges and difficulties of measuring extant and extinct candidates for the largest animal of all time, such as whales, terrestrial non-avian dinosaurs, and extinct marine reptiles. The discovery of Perucetus colossus, a giant basilosaurid whale from the Eocene of Peru, challenged many assumptions about organismal extremes based on reconstructions of its body weight that exceeded reported values for blue whales (Balaenoptera musculus). Here we present an examination of a series of factors and methodological approaches to assess reconstructing body weight in Perucetus, including: data sources from large extant cetaceans; fitting published body mass estimates to body outlines; testing the assumption of isometry between skeletal and body masses, even with extrapolation; examining the role of pachyostosis in body mass reconstructions; addressing method-dependent error rates; and comparing Perucetus with known physiological and ecological limits for living whales, and Eocene oceanic productivity. We conclude that Perucetus did not exceed the body mass of today's blue whales. Depending on assumptions and methods, we estimate that Perucetus weighed 60-70 tons assuming a length 17 m. We calculated larger estimates potentially as much as 98-114 tons at 20 m in length, which is far less than the direct records of blue whale weights, or the 270 ton estimates that we calculated for body weights of the largest blue whales measured by length.
Collapse
Affiliation(s)
- Ryosuke Motani
- Department of Earth and Planetary Sciences, University of California, Davis, Davis, California, United States
| | - Nicholas D. Pyenson
- Department of Paleobiology, National Museum of Natural History, Smithsonian Institution, District of Columbia, United States
| |
Collapse
|
4
|
Cole MR, Ware C, McHuron EA, Costa DP, Ponganis PJ, McDonald BI. Deep dives and high tissue density increase mean dive costs in California sea lions (Zalophus californianus). J Exp Biol 2023; 226:jeb246059. [PMID: 37345474 DOI: 10.1242/jeb.246059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 06/14/2023] [Indexed: 06/23/2023]
Abstract
Diving is central to the foraging strategies of many marine mammals and seabirds. Still, the effect of dive depth on foraging cost remains elusive because energy expenditure is difficult to measure at fine temporal scales in wild animals. We used depth and acceleration data from eight lactating California sea lions (Zalophus californianus) to model body density and investigate the effect of dive depth and tissue density on rates of energy expenditure. We calculated body density in 5 s intervals from the rate of gliding descent. We modeled body density across depth in each dive, revealing high tissue densities and diving lung volumes (DLVs). DLV increased with dive depth in four individuals. We used the buoyancy calculated from dive-specific body-density models and drag calculated from swim speed to estimate metabolic power and cost of transport in 5 s intervals during descents and ascents. Deeper dives required greater mean power for round-trip vertical transit, especially in individuals with higher tissue density. These trends likely follow from increased mean swim speed and buoyant hinderance that increasingly outweighs buoyant aid in deeper dives. This suggests that deep diving is either a 'high-cost, high-reward' strategy or an energetically expensive option to access prey when prey in shallow waters are limited, and that poor body condition may increase the energetic costs of deep diving. These results add to our mechanistic understanding of how foraging strategy and body condition affect energy expenditure in wild breath-hold divers.
Collapse
Affiliation(s)
- Mason R Cole
- Moss Landing Marine Laboratories, San Jose State University, 8272 Moss Landing Rd, Moss Landing, CA 95039, USA
| | - Colin Ware
- Center for Coastal and Ocean Mapping, University of New Hampshire, Durham, NH 03924, USA
| | - Elizabeth A McHuron
- Cooperative Institute for Climate, Ocean, and Ecosystem Studies, University of Washington, Seattle, WA 98105, USA
| | - Daniel P Costa
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, CA 95064, USA
| | - Paul J Ponganis
- Scripps Institution of Oceanography, University of California San Diego, Center for Marine Biodiversity and Biomedicine, 8655 Kennel Way, La Jolla, CA 92037, USA
| | - Birgitte I McDonald
- Moss Landing Marine Laboratories, San Jose State University, 8272 Moss Landing Rd, Moss Landing, CA 95039, USA
| |
Collapse
|
5
|
Adachi T, Lovell P, Turnbull J, Fedak MA, Picard B, Guinet C, Biuw M, Keates TR, Holser RR, Costa DP, Crocker DE, Miller PJO. Body condition changes at sea: Onboard calculation and telemetry of body density in diving animals. Methods Ecol Evol 2023. [DOI: 10.1111/2041-210x.14089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
Affiliation(s)
- Taiki Adachi
- Sea Mammal Research Unit University of St Andrews St Andrews UK
- Department of Ecology and Evolutionary Biology University of California Santa Cruz Santa Cruz California USA
| | - Philip Lovell
- Sea Mammal Research Unit University of St Andrews St Andrews UK
| | - James Turnbull
- Sea Mammal Research Unit University of St Andrews St Andrews UK
| | - Mike A. Fedak
- Sea Mammal Research Unit University of St Andrews St Andrews UK
| | - Baptiste Picard
- CNRS Centre of Biology Studies of Chizé Villiers‐en‐Bois France
| | | | | | - Theresa R. Keates
- Department of Ocean Sciences University of California Santa Cruz Santa Cruz California USA
| | - Rachel R. Holser
- Institute of Marine Sciences, University of California Santa Cruz Santa Cruz California USA
| | - Daniel P. Costa
- Department of Ecology and Evolutionary Biology University of California Santa Cruz Santa Cruz California USA
- Institute of Marine Sciences, University of California Santa Cruz Santa Cruz California USA
| | - Daniel E. Crocker
- Department of Biology Sonoma State University Rohnert Park California USA
| | | |
Collapse
|
6
|
Allegue H, Réale D, Picard B, Guinet C. Track and dive-based movement metrics do not predict the number of prey encountered by a marine predator. MOVEMENT ECOLOGY 2023; 11:3. [PMID: 36681811 PMCID: PMC9862577 DOI: 10.1186/s40462-022-00361-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 12/17/2022] [Indexed: 06/08/2023]
Abstract
BACKGROUND Studying animal movement in the context of the optimal foraging theory has led to the development of simple movement metrics for inferring feeding activity. Yet, the predictive capacity of these metrics in natural environments has been given little attention, raising serious questions of the validity of these metrics. The aim of this study is to test whether simple continuous movement metrics predict feeding intensity in a marine predator, the southern elephant seal (SES; Mirounga leonine), and investigate potential factors influencing the predictive capacity of these metrics. METHODS We equipped 21 female SES from the Kerguelen Archipelago with loggers and recorded their movements during post-breeding foraging trips at sea. From accelerometry, we estimated the number of prey encounter events (nPEE) and used it as a reference for feeding intensity. We also extracted several track- and dive-based movement metrics and evaluated how well they explain and predict the variance in nPEE. We conducted our analysis at two temporal scales (dive and day), with two dive profile resolutions (high at 1 Hz and low with five dive segments), and two types of models (linear models and regression trees). RESULTS We found that none of the movement metrics predict nPEE with satisfactory power. The vertical transit rates (primarily the ascent rate) during dives had the best predictive performance among all metrics. Dive metrics performed better than track metrics and all metrics performed on average better at the scale of days than the scale of dives. However, the performance of the models at the scale of days showed higher variability among individuals suggesting distinct foraging tactics. Dive-based metrics performed better when computed from high-resolution dive profiles than low-resolution dive profiles. Finally, regression trees produced more accurate predictions than linear models. CONCLUSIONS Our study reveals that simple movement metrics do not predict feeding activity in free-ranging marine predators. This could emerge from differences between individuals, temporal scales, and the data resolution used, among many other factors. We conclude that these simple metrics should be avoided or carefully tested a priori with the studied species and the ecological context to account for significant influencing factors.
Collapse
Affiliation(s)
- Hassen Allegue
- Département des Sciences Biologiques, Université du Québec à Montréal, Montréal, QC, Canada.
| | - Denis Réale
- Département des Sciences Biologiques, Université du Québec à Montréal, Montréal, QC, Canada
| | - Baptiste Picard
- Centre d'Etudes Biologiques de Chizé, UMR7372 CNRS-La Rochelle Université, Villiers en Bois, France
| | - Christophe Guinet
- Centre d'Etudes Biologiques de Chizé, UMR7372 CNRS-La Rochelle Université, Villiers en Bois, France
| |
Collapse
|
7
|
Arce F, Hindell MA, McMahon CR, Wotherspoon SJ, Guinet C, Harcourt RG, Bestley S. Elephant seal foraging success is enhanced in Antarctic coastal polynyas. Proc Biol Sci 2022; 289:20212452. [PMID: 35078353 PMCID: PMC8790345 DOI: 10.1098/rspb.2021.2452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 12/02/2021] [Indexed: 01/28/2023] Open
Abstract
Antarctic polynyas are persistent open water areas which enable early and large seasonal phytoplankton blooms. This high primary productivity, boosted by iron supply from coastal glaciers, attracts organisms from all trophic levels to form a rich and diverse community. How the ecological benefit of polynya productivity is translated to the highest trophic levels remains poorly resolved. We studied 119 southern elephant seals feeding over the Antarctic shelf and demonstrated that: (i) 96% of seals foraging here used polynyas, with individuals spending on average 62% of their time there; (ii) the seals exhibited more area-restricted search behaviour when in polynyas; and (iii) these seals gained more energy (indicated by increased buoyancy from greater fat stores) when inside polynyas. This higher-quality foraging existed even when ice was not present in the study area, indicating that these are important and predictable foraging grounds year-round. Despite these energetic advantages from using polynyas, not all the seals used them extensively. Factors other than food supply may influence an individual's choice in their use of feeding grounds, such as exposure to predation or the probability of being able to return to distant sub-Antarctic breeding sites.
Collapse
Affiliation(s)
- Fernando Arce
- Institute for Marine and Antarctic Studies, University of Tasmania, Private Bag 129 Hobart, TAS 7001, Australia
- Australian Antarctic Division, 203 Channel Highway, Kingston, TAS 7050, Australia
| | - Mark A. Hindell
- Institute for Marine and Antarctic Studies, University of Tasmania, Private Bag 129 Hobart, TAS 7001, Australia
| | - Clive R. McMahon
- Institute for Marine and Antarctic Studies, University of Tasmania, Private Bag 129 Hobart, TAS 7001, Australia
- IMOS Animal Tagging, Sydney Institute of Marine Science, Mosman, NSW 2088, Australia
- Department of Biological Sciences, Macquarie University, North Ryde, NSW 2113, Australia
| | - Simon J. Wotherspoon
- Institute for Marine and Antarctic Studies, University of Tasmania, Private Bag 129 Hobart, TAS 7001, Australia
- Australian Antarctic Division, 203 Channel Highway, Kingston, TAS 7050, Australia
| | - Christophe Guinet
- Centre d'Etudes Biologiques de Chizé, CNRS, Villiers en Bois 79360, France
| | - Robert G. Harcourt
- Department of Biological Sciences, Macquarie University, North Ryde, NSW 2113, Australia
| | - Sophie Bestley
- Institute for Marine and Antarctic Studies, University of Tasmania, Private Bag 129 Hobart, TAS 7001, Australia
| |
Collapse
|
8
|
Williams CL, Ponganis PJ. Diving physiology of marine mammals and birds: the development of biologging techniques. Philos Trans R Soc Lond B Biol Sci 2021; 376:20200211. [PMID: 34121464 PMCID: PMC8200650 DOI: 10.1098/rstb.2020.0211] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/14/2021] [Indexed: 11/12/2022] Open
Abstract
In the 1940s, Scholander and Irving revealed fundamental physiological responses to forced diving of marine mammals and birds, setting the stage for the study of diving physiology. Since then, diving physiology research has moved from the laboratory to the field. Modern biologging, with the development of microprocessor technology, recorder memory capacity and battery life, has advanced and expanded investigations of the diving physiology of marine mammals and birds. This review describes a brief history of the start of field diving physiology investigations, including the invention of the time depth recorder, and then tracks the use of biologging studies in four key diving physiology topics: heart rate, blood flow, body temperature and oxygen store management. Investigations of diving heart rates in cetaceans and O2 store management in diving emperor penguins are highlighted to emphasize the value of diving physiology biologging research. The review concludes with current challenges, remaining diving physiology questions and what technologies are needed to advance the field. This article is part of the theme issue 'Measuring physiology in free-living animals (Part I)'.
Collapse
Affiliation(s)
- Cassondra L. Williams
- National Marine Mammal Foundation, 2240 Shelter Island Drive, Suite 200, San Diego, CA 92106, USA
| | - Paul J. Ponganis
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA 92093-0204, USA
| |
Collapse
|
9
|
Gavrilchuk K, Lesage V, Fortune SME, Trites AW, Plourde S. Foraging habitat of North Atlantic right whales has declined in the Gulf of St. Lawrence, Canada, and may be insufficient for successful reproduction. ENDANGER SPECIES RES 2021. [DOI: 10.3354/esr01097] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Climate-induced changes in calanoid copepod (Calanus spp.) availability in traditional feeding areas might explain why a large proportion of the North Atlantic right whale Eubalaena glacialis population has fed in the Gulf of St. Lawrence (Canada) in recent years. However, little is known about the distribution of copepods in the gulf, and whether their abundance is sufficient to energetically sustain right whales. We used a mechanistic modelling approach to predict areas within the gulf that have foraging potential for adult female right whales, based on the annual energetic needs of resting, pregnant and lactating females, and their theoretical prey density requirements. We identified suitable foraging areas for right whales by coupling a foraging bioenergetics model with a 12 yr data set (2006-2017) describing the abundance and 3-dimensional distribution of late-stage Calanus spp. in the gulf. Prey densities in the southern gulf (from Shediac Valley to the Magdalen Islands) supported all 3 reproductive states in most (≥6) years. However, foraging habitat became progressively sparse in the southern gulf over time, with noticeably less suitable habitat available after 2014. Few other potentially suitable foraging areas were identified elsewhere in the gulf. Overall, the availability of foraging habitat in the gulf varied considerably between years, and was higher for resting females than for pregnant and lactating females. Our findings are consistent with the recent low calving rates, and indicate that prey biomass in the Gulf of St. Lawrence may be insufficient in most years to support successful reproduction of North Atlantic right whales.
Collapse
Affiliation(s)
- K Gavrilchuk
- Fisheries and Oceans Canada, Mont-Joli, QC G5H 3Z4, Canada
| | - V Lesage
- Fisheries and Oceans Canada, Mont-Joli, QC G5H 3Z4, Canada
| | - SME Fortune
- Marine Mammal Research Unit, Institute for the Oceans and Fisheries, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - AW Trites
- Marine Mammal Research Unit, Institute for the Oceans and Fisheries, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - S Plourde
- Fisheries and Oceans Canada, Mont-Joli, QC G5H 3Z4, Canada
| |
Collapse
|
10
|
Aoki K, Isojunno S, Bellot C, Iwata T, Kershaw J, Akiyama Y, Martín López LM, Ramp C, Biuw M, Swift R, Wensveen PJ, Pomeroy P, Narazaki T, Hall A, Sato K, Miller PJO. Aerial photogrammetry and tag-derived tissue density reveal patterns of lipid-store body condition of humpback whales on their feeding grounds. Proc Biol Sci 2021; 288:20202307. [PMID: 33499785 PMCID: PMC7893258 DOI: 10.1098/rspb.2020.2307] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Monitoring the body condition of free-ranging marine mammals at different life-history stages is essential to understand their ecology as they must accumulate sufficient energy reserves for survival and reproduction. However, assessing body condition in free-ranging marine mammals is challenging. We cross-validated two independent approaches to estimate the body condition of humpback whales (Megaptera novaeangliae) at two feeding grounds in Canada and Norway: animal-borne tags (n = 59) and aerial photogrammetry (n = 55). Whales that had a large length-standardized projected area in overhead images (i.e. whales looked fatter) had lower estimated tissue body density (TBD) (greater lipid stores) from tag data. Linking both measurements in a Bayesian hierarchical model to estimate the true underlying (hidden) tissue body density (uTBD), we found uTBD was lower (-3.5 kg m-3) in pregnant females compared to adult males and resting females, while in lactating females it was higher (+6.0 kg m-3). Whales were more negatively buoyant (+5.0 kg m-3) in Norway than Canada during the early feeding season, possibly owing to a longer migration from breeding areas. While uTBD decreased over the feeding season across life-history traits, whale tissues remained negatively buoyant (1035.3 ± 3.8 kg m-3) in the late feeding season. This study adds confidence to the effectiveness of these independent methods to estimate the body condition of free-ranging whales.
Collapse
Affiliation(s)
- Kagari Aoki
- Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, Chiba 2778564, Japan
| | - Saana Isojunno
- Sea Mammal Research Unit, School of Biology, University of St Andrews, St Andrews, Fife KY16 8LB, UK
| | - Charlotte Bellot
- Department of Marine Biology, University of Neuchâtel, Neuchâtel 2000, Switzerland
| | - Takashi Iwata
- Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, Chiba 2778564, Japan
| | - Joanna Kershaw
- Sea Mammal Research Unit, School of Biology, University of St Andrews, St Andrews, Fife KY16 8LB, UK
| | - Yu Akiyama
- Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, Chiba 2778564, Japan
| | - Lucía M Martín López
- Sea Mammal Research Unit, School of Biology, University of St Andrews, St Andrews, Fife KY16 8LB, UK.,Asociación Ipar Perspective, Sopela 48600, Spain
| | - Christian Ramp
- Sea Mammal Research Unit, School of Biology, University of St Andrews, St Andrews, Fife KY16 8LB, UK.,Mingan Island Cetacean Study (MICS), St. Lambert, Quebec, Canada G0G 1V0
| | - Martin Biuw
- Fram Centre, Institute of Marine Research, Tromsø N-9296, Norway
| | - René Swift
- Sea Mammal Research Unit, School of Biology, University of St Andrews, St Andrews, Fife KY16 8LB, UK
| | - Paul J Wensveen
- Sea Mammal Research Unit, School of Biology, University of St Andrews, St Andrews, Fife KY16 8LB, UK.,Faculty of Life and Environmental Sciences, University of Iceland, 102 Reykjavik, Iceland
| | - Patrick Pomeroy
- Sea Mammal Research Unit, School of Biology, University of St Andrews, St Andrews, Fife KY16 8LB, UK
| | - Tomoko Narazaki
- Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, Chiba 2778564, Japan
| | - Ailsa Hall
- Sea Mammal Research Unit, School of Biology, University of St Andrews, St Andrews, Fife KY16 8LB, UK
| | - Katsufumi Sato
- Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, Chiba 2778564, Japan
| | - Patrick J O Miller
- Sea Mammal Research Unit, School of Biology, University of St Andrews, St Andrews, Fife KY16 8LB, UK
| |
Collapse
|
11
|
Larramendi A, Paul GS, Hsu SY. A review and reappraisal of the specific gravities of present and past multicellular organisms, with an emphasis on tetrapods. Anat Rec (Hoboken) 2020; 304:1833-1888. [PMID: 33258532 DOI: 10.1002/ar.24574] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 11/13/2020] [Accepted: 11/17/2020] [Indexed: 11/09/2022]
Abstract
The density, or specific gravity (SG), of organisms has numerous important implications for their form, function, ecology, and other facets of beings living and dead, and it is especially necessary to apply SG values that are as accurate as practical when estimating their masses which is itself a critical aspect of living things. Yet a comprehensive review and analysis of this notable subject of anatomy has never been conducted and published. This is such an effort, being as extensive as possible with the data on hand, bolstered by some additional observations, and new work focusing on extinct animals who densities are least unknown: pterosaurs and dinosaurs with extensive pneumatic complexes, including the most sophisticated effort to date for a sauropod. Often difficult to determine even via direct observation, techniques for obtaining the best possible SG data are explained and utilized, including observations of floating animals. Neutral specific gravity (NSG) is proposed as the most important value for tetrapods with respiratory tracts of fluctuating volume. SGs of organisms range from 0.08 to 2.6, plant tissues from 0.08 to 1.39, and vertebrates from about 0.75 (some giant pterosaurs) to 1.2 (those with heavy armor and/or skeletons). Tetrapod NSGs tend to be somewhat higher than widely thought, especially those theropod and sauropod dinosaurs and pterosaurs with air-sacs because respiratory system volume is usually measured at maximum inhalation in birds. Also discussed is evidence that the ratio of the mass of skeletons relative to total body mass has not been properly assayed in the past.
Collapse
Affiliation(s)
- Asier Larramendi
- Eofauna Scientific Research, Errondo 6, 10c, Donostia, Basque Country, 20010, Spain
| | | | - Shu-Yu Hsu
- Eofauna Scientific Research, Errondo 6, 10c, Donostia, Basque Country, 20010, Spain
| |
Collapse
|
12
|
Development and Experiments of an Electrothermal Driven Deep-Sea Buoyancy Control Module. MICROMACHINES 2020; 11:mi11111017. [PMID: 33228256 PMCID: PMC7699493 DOI: 10.3390/mi11111017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 11/17/2020] [Accepted: 11/17/2020] [Indexed: 11/16/2022]
Abstract
Due to the extremely high pressures in the deep sea, heavy ballast tanks and pressure compensating hydraulic tanks are typically required to support the operation of classic buoyancy controls. Buoyancy control systems driven by phase-change materials (PCM) have unique advantages over conventional hydraulically actuated buoyancy control systems, including high adaptability for deep-sea exploration and simple, lightweight, and compact structures. Inspired by this, a buoyancy control module (BCM) was designed with flexible material as the shell. Instead of a conventional mechanical system, the device uses an electric heating drive to control buoyancy by heating and cooling the PCM. Based on the principle of pressure compensation, this device can adjust the buoyancy of a small underwater vehicle in a deep-sea high-pressure environment. The BCM successfully adjusts the buoyancy to lift itself up and down in the South China Sea at a depth of 3223 m. The performance of the phase-change BCM to control buoyancy under high pressure is validated by systematic experiments and theoretical analysis. Our work proposes a flexible scheme for the design of a deep-sea phase-change-driven BCM and highlights its potential application in deep-sea micro-mechanical systems, especially soft robots.
Collapse
|
13
|
Andrzejaczek S, Gleiss AC, Lear KO, Pattiaratchi C, Chapple TK, Meekan MG. Depth-dependent dive kinematics suggest cost-efficient foraging strategies by tiger sharks. ROYAL SOCIETY OPEN SCIENCE 2020; 7:200789. [PMID: 32968529 PMCID: PMC7481696 DOI: 10.1098/rsos.200789] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Accepted: 07/27/2020] [Indexed: 06/11/2023]
Abstract
Tiger sharks, Galeocerdo cuvier, are a keystone, top-order predator that are assumed to engage in cost-efficient movement and foraging patterns. To investigate the extent to which oscillatory diving by tiger sharks conform to these patterns, we used a biologging approach to model their cost of transport. High-resolution biologging tags with tri-axial sensors were deployed on 21 tiger sharks at Ningaloo Reef for durations of 5-48 h. Using overall dynamic body acceleration as a proxy for energy expenditure, we modelled the cost of transport of oscillatory movements of varying geometries in both horizontal and vertical planes for tiger sharks. The cost of horizontal transport was minimized by descending at the smallest possible angle and ascending at an angle of 5-14°, meaning that vertical oscillations conserved energy compared to swimming at a level depth. The reduction of vertical travel costs occurred at steeper angles. The absolute dive angles of tiger sharks increased between inshore and offshore zones, presumably to reduce the cost of transport while continuously hunting for prey in both benthic and surface habitats. Oscillatory movements of tiger sharks conform to strategies of cost-efficient foraging, and shallow inshore habitats appear to be an important habitat for both hunting prey and conserving energy while travelling.
Collapse
Affiliation(s)
- Samantha Andrzejaczek
- Oceans Graduate School and The UWA Oceans Institute, The University of Western Australia, Crawley, Western Australia 6009, Australia
- The Australian Institute of Marine Science, Crawley, Western Australia 6009, Australia
| | - Adrian C. Gleiss
- Centre for Sustainable Aquatic Ecosystems, Harry Butler Institute, Murdoch University, Murdoch, Western Australia 6150, Australia
| | - Karissa O. Lear
- Centre for Sustainable Aquatic Ecosystems, Harry Butler Institute, Murdoch University, Murdoch, Western Australia 6150, Australia
| | - Charitha Pattiaratchi
- Oceans Graduate School and The UWA Oceans Institute, The University of Western Australia, Crawley, Western Australia 6009, Australia
| | - Taylor K. Chapple
- Coastal Oregon Marine Experiment Station, Oregon State University, Newport, OR 97365, USA
- Hopkins Marine Station, Stanford University, Pacific Grove, CA, 93950, USA
| | - Mark G. Meekan
- The Australian Institute of Marine Science, Crawley, Western Australia 6009, Australia
| |
Collapse
|
14
|
Narazaki T, Isojunno S, Nowacek DP, Swift R, Friedlaender AS, Ramp C, Smout S, Aoki K, Deecke VB, Sato K, Miller PJO. Body density of humpback whales (Megaptera novaengliae) in feeding aggregations estimated from hydrodynamic gliding performance. PLoS One 2018; 13:e0200287. [PMID: 30001369 PMCID: PMC6042725 DOI: 10.1371/journal.pone.0200287] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 06/22/2018] [Indexed: 02/04/2023] Open
Abstract
Many baleen whales undertake annual fasting and feeding cycles, resulting in substantial changes in their body condition, an important factor affecting fitness. As a measure of lipid-store body condition, tissue density of a few deep diving marine mammals has been estimated using a hydrodynamic glide model of drag and buoyancy forces. Here, we applied the method to shallow-diving humpback whales (Megaptera novaeangliae) in North Atlantic and Antarctic feeding aggregations. High-resolution 3-axis acceleration, depth and speed data were collected from 24 whales. Measured values of acceleration during 5 s glides were fitted to a hydrodynamic glide model to estimate unknown parameters (tissue density, drag term and diving gas volume) in a Bayesian framework. Estimated species-average tissue density (1031.6 ± 2.1 kg m-3, ±95% credible interval) indicates that humpback whale tissue is typically negatively buoyant although there was a large inter-individual variation ranging from 1025.2 to 1043.1 kg m-3. The precision of the individual estimates was substantially finer than the variation across different individual whales, demonstrating a progressive decrease in tissue density throughout the feeding season and comparably high lipid-store in pregnant females. The drag term (CDAm-1) was estimated to be relatively high, indicating a large effect of lift-related induced drag for humpback whales. Our results show that tissue density of shallow diving baleen whales can be estimated using the hydrodynamic gliding model, although cross-validation with other techniques is an essential next step. This method for estimating body condition is likely to be broadly applicable across a range of aquatic animals and environments.
Collapse
Affiliation(s)
- Tomoko Narazaki
- Sea Mammal Research Unit, University of St Andrews, Fife, United Kingdom
- Atmosphere and Ocean Research Institute, University of Tokyo, Kashiwa, Chiba, Japan
- * E-mail:
| | - Saana Isojunno
- Sea Mammal Research Unit, University of St Andrews, Fife, United Kingdom
| | - Douglas P. Nowacek
- Nicholas School of the Environment and Pratt School of Engineering, Duke University Marine Laboratory, Beaufort, North Carolina, United States of America
| | - Rene Swift
- Sea Mammal Research Unit, University of St Andrews, Fife, United Kingdom
| | - Ari S. Friedlaender
- Institute of Marine Sciences, University of California Santa Cruz, Santa Cruz, California, United States of America
| | - Christian Ramp
- Sea Mammal Research Unit, University of St Andrews, Fife, United Kingdom
- Mingan Island Cetacean Study, Longue-Pointe-de-Mingan, Québec, Canada
| | - Sophie Smout
- Sea Mammal Research Unit, University of St Andrews, Fife, United Kingdom
| | - Kagari Aoki
- Sea Mammal Research Unit, University of St Andrews, Fife, United Kingdom
- Atmosphere and Ocean Research Institute, University of Tokyo, Kashiwa, Chiba, Japan
| | - Volker B. Deecke
- Department of Science, Natural Resources and Outdoor Studies, University of Cumbria, Ambleside, United Kingdom
| | - Katsufumi Sato
- Atmosphere and Ocean Research Institute, University of Tokyo, Kashiwa, Chiba, Japan
| | | |
Collapse
|
15
|
Aoki K, Sato K, Isojunno S, Narazaki T, Miller PJO. High diving metabolic rate indicated by high-speed transit to depth in negatively buoyant long-finned pilot whales. ACTA ACUST UNITED AC 2018; 220:3802-3811. [PMID: 29046419 DOI: 10.1242/jeb.158287] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 08/10/2017] [Indexed: 11/20/2022]
Abstract
To maximize foraging duration at depth, diving mammals are expected to use the lowest cost optimal speed during descent and ascent transit and to minimize the cost of transport by achieving neutral buoyancy. Here, we outfitted 18 deep-diving long-finned pilot whales with multi-sensor data loggers and found indications that their diving strategy is associated with higher costs than those of other deep-diving toothed whales. Theoretical models predict that optimal speed is proportional to (basal metabolic rate/drag)1/3 and therefore to body mass0.05 The transit speed of tagged animals (2.7±0.3 m s-1) was substantially higher than the optimal speed predicted from body mass (1.4-1.7 m s-1). According to the theoretical models, this choice of high transit speed, given a similar drag coefficient (median, 0.0035) to that in other cetaceans, indicated greater basal metabolic costs during diving than for other cetaceans. This could explain the comparatively short duration (8.9±1.5 min) of their deep dives (maximum depth, 444±85 m). Hydrodynamic gliding models indicated negative buoyancy of tissue body density (1038.8±1.6 kg m-3, ±95% credible interval, CI) and similar diving gas volume (34.6±0.6 ml kg-1, ±95% CI) to those in other deep-diving toothed whales. High diving metabolic rate and costly negative buoyancy imply a 'spend more, gain more' strategy of long-finned pilot whales, differing from that in other deep-diving toothed whales, which limits the costs of locomotion during foraging. We also found that net buoyancy affected the optimal speed: high transit speeds gradually decreased during ascent as the whales approached neutral buoyancy owing to gas expansion.
Collapse
Affiliation(s)
- Kagari Aoki
- Sea Mammal Research Unit, University of St Andrews, St Andrews, Fife KY16 8LB, UK .,Department of Marine Bioscience, Atmosphere and Ocean Research Institute, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8564, Japan
| | - Katsufumi Sato
- Department of Marine Bioscience, Atmosphere and Ocean Research Institute, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8564, Japan
| | - Saana Isojunno
- Sea Mammal Research Unit, University of St Andrews, St Andrews, Fife KY16 8LB, UK
| | - Tomoko Narazaki
- Department of Marine Bioscience, Atmosphere and Ocean Research Institute, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8564, Japan
| | - Patrick J O Miller
- Sea Mammal Research Unit, University of St Andrews, St Andrews, Fife KY16 8LB, UK
| |
Collapse
|
16
|
Cox SL, Orgeret F, Gesta M, Rodde C, Heizer I, Weimerskirch H, Guinet C, O'Hara RB. Processing of acceleration and dive data on-board satellite relay tags to investigate diving and foraging behaviour in free-ranging marine predators. Methods Ecol Evol 2018; 9:64-77. [PMID: 29456829 PMCID: PMC5812097 DOI: 10.1111/2041-210x.12845] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 06/06/2017] [Indexed: 11/29/2022]
Abstract
Biologging technologies are changing the way in which the marine environment is observed and monitored. However, because device retrieval is typically required to access the high-resolution data they collect, their use is generally restricted to those animals that predictably return to land. Data abstraction and transmission techniques aim to address this, although currently these are limited in scope and do not incorporate, for example, acceleration measurements which can quantify animal behaviours and movement patterns over fine-scales.In this study, we present a new method for the collection, abstraction and transmission of accelerometer data from free-ranging marine predators via the Argos satellite system. We test run the technique on 20 juvenile southern elephant seals Mirounga leonina from the Kerguelen Islands during their first months at sea following weaning. Using retrieved archival data from nine individuals that returned to the colony, we compare and validate abstracted transmissions against outputs from established accelerometer processing procedures.Abstracted transmissions included estimates, across five segments of a dive profile, of time spent in prey catch attempt (PrCA) behaviours, swimming effort and pitch. These were then summarised and compared to archival outputs across three dive phases: descent, bottom and ascent. Correlations between the two datasets were variable but generally good (dependent on dive phase, marginal R2 values of between .45 and .6 to >.9) and consistent between individuals. Transmitted estimates of PrCA behaviours and swimming effort were positively biased to those from archival processing.Data from this study represent some of the first remotely transmitted quantifications from accelerometers. The methods presented and analysed can be used to provide novel insight towards the behaviours and movements of free-ranging marine predators, such as juvenile southern elephant seals, from whom logger retrieval is challenging. Future applications could however benefit from some adaption, particularly to reduce positive bias in transmitted PrCA behaviours and swimming effort, for which this study provides useful insight.
Collapse
Affiliation(s)
- Sam L. Cox
- Centre d'Etudes Biologique de ChizéU.M.R. 7372 – CNRS & Universitié de La RochelleVilliers‐en‐BoisFrance
| | - Florian Orgeret
- Centre d'Etudes Biologique de ChizéU.M.R. 7372 – CNRS & Universitié de La RochelleVilliers‐en‐BoisFrance
| | - Mathieu Gesta
- Centre d'Etudes Biologique de ChizéU.M.R. 7372 – CNRS & Universitié de La RochelleVilliers‐en‐BoisFrance
| | - Charles Rodde
- Centre d'Etudes Biologique de ChizéU.M.R. 7372 – CNRS & Universitié de La RochelleVilliers‐en‐BoisFrance
| | | | - Henri Weimerskirch
- Centre d'Etudes Biologique de ChizéU.M.R. 7372 – CNRS & Universitié de La RochelleVilliers‐en‐BoisFrance
| | - Christophe Guinet
- Centre d'Etudes Biologique de ChizéU.M.R. 7372 – CNRS & Universitié de La RochelleVilliers‐en‐BoisFrance
| | | |
Collapse
|
17
|
Bras YL, Jouma’a J, Guinet C. Three-dimensional space use during the bottom phase of southern elephant seal dives. MOVEMENT ECOLOGY 2017; 5:18. [PMID: 28861272 PMCID: PMC5577837 DOI: 10.1186/s40462-017-0108-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 08/18/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND In marine pelagic ecosystems, the spatial distribution of biomass is heterogeneous and dynamic. At large scales, physical processes are the main driving forces of biomass distribution. At fine scales, both biotic and abiotic parameters are likely to be key determinants in the horizontal and vertical distribution of biomass, with direct consequences on the foraging behaviour of diving predators. However, fine scale three-dimensional (3D) spatial interactions between diving predators and their prey are still poorly known. RESULTS We reconstructed and examined the patterns of southern elephant seals 3D path during the bottom phase of their dives, and related them to estimated prey encounter density. We found that southern elephant seal tracks at bottom are strongly dominated by a single horizontal direction. In high prey density areas, seals travelled shorter distances but their track remained strongly orientated according to a main linear direction. Horizontal, and more importantly, vertical deviations from this main direction, were related negatively to the estimated prey density. We found that prey encounter density decreased with diving depth but tended to be more predictable. CONCLUSION Southern elephant seal behaviour during the bottom phase of their dives suggest that the prey are dispersed and distributed into layers in which their density relates to the vertical spread of the layer. The linear trajectories performed by the elephant seals would allow to explore the largest volume of water, maximizing the opportunities of prey encounter, while travelling great horizontal distances.
Collapse
Affiliation(s)
- Yves Le Bras
- Centre d’Études Biologiques de Chizé, UMR 7372, CNRS-ULR, Villiers-en-bois, 79360 France
| | - Joffrey Jouma’a
- Centre d’Études Biologiques de Chizé, UMR 7372, CNRS-ULR, Villiers-en-bois, 79360 France
| | - Christophe Guinet
- Centre d’Études Biologiques de Chizé, UMR 7372, CNRS-ULR, Villiers-en-bois, 79360 France
| |
Collapse
|
18
|
van der Hoop JM, Nowacek DP, Moore MJ, Triantafyllou MS. Swimming kinematics and efficiency of entangled North Atlantic right whales. ENDANGER SPECIES RES 2017. [DOI: 10.3354/esr00781] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
19
|
Le Bras Y, Jouma’a J, Picard B, Guinet C. How Elephant Seals (Mirounga leonina) Adjust Their Fine Scale Horizontal Movement and Diving Behaviour in Relation to Prey Encounter Rate. PLoS One 2016; 11:e0167226. [PMID: 27973587 PMCID: PMC5156345 DOI: 10.1371/journal.pone.0167226] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 11/10/2016] [Indexed: 12/02/2022] Open
Abstract
Understanding the diving behaviour of diving predators in relation to concomitant prey distribution could have major practical applications in conservation biology by allowing the assessment of how changes in fine scale prey distribution impact foraging efficiency and ultimately population dynamics. The southern elephant seal (Mirounga leonina, hereafter SES), the largest phocid, is a major predator of the southern ocean feeding on myctophids and cephalopods. Because of its large size it can carry bio-loggers with minimal disturbance. Moreover, it has great diving abilities and a wide foraging habitat. Thus, the SES is a well suited model species to study predator diving behaviour and the distribution of ecologically important prey species in the Southern Ocean. In this study, we examined how SESs adjust their diving behaviour and horizontal movements in response to fine scale prey encounter densities using high resolution accelerometers, magnetometers, pressure sensors and GPS loggers. When high prey encounter rates were encountered, animals responded by (1) diving and returning to the surface with steeper angles, reducing the duration of transit dive phases (thus improving dive efficiency), and (2) exhibiting more horizontally and vertically sinuous bottom phases. In these cases, the distance travelled horizontally at the surface was reduced. This behaviour is likely to counteract horizontal displacement from water currents, as they try to remain within favourable prey patches. The prey encounter rate at the bottom of dives decreased with increasing diving depth, suggesting a combined effect of decreased accessibility and prey density with increasing depth. Prey encounter rate also decreased when the bottom phases of dives were spread across larger vertical extents of the water column. This result suggests that the vertical aggregation of prey can regulate prey density, and as a consequence impact the foraging success of SESs. To our knowledge, this is one of only a handful of studies showing how the vertical distributions and structure of prey fields influence the prey encounter rates of a diving predator.
Collapse
Affiliation(s)
- Yves Le Bras
- Centre d'Etude Biologiques de Chizé, UMR, CNRS-ULR, France
- * E-mail:
| | | | | | | |
Collapse
|
20
|
van der Hoop J, Corkeron P, Moore M. Entanglement is a costly life-history stage in large whales. Ecol Evol 2016; 7:92-106. [PMID: 28070278 PMCID: PMC5213775 DOI: 10.1002/ece3.2615] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 10/13/2016] [Accepted: 10/25/2016] [Indexed: 11/29/2022] Open
Abstract
Individuals store energy to balance deficits in natural cycles; however, unnatural events can also lead to unbalanced energy budgets. Entanglement in fishing gear is one example of an unnatural but relatively common circumstance that imposes energetic demands of a similar order of magnitude and duration of life‐history events such as migration and pregnancy in large whales. We present two complementary bioenergetic approaches to estimate the energy associated with entanglement in North Atlantic right whales, and compare these estimates to the natural energetic life history of individual whales. Differences in measured blubber thicknesses and estimated blubber volumes between normal and entangled, emaciated whales indicate between 7.4 × 1010 J and 1.2 × 1011 J of energy are consumed during the course to death of a lethal entanglement. Increased thrust power requirements to overcome drag forces suggest that when entangled, whales require 3.95 × 109 to 4.08 × 1010 J more energy to swim. Individuals who died from their entanglements performed significantly more work (energy expenditure × time) than those that survived; entanglement duration is therefore critical in determining whales’ survival. Significant sublethal energetic impacts also occur, especially in reproductive females. Drag from fishing gear contributes up to 8% of the 4‐year female reproductive energy budget, delaying time of energetic equilibrium (to restore energy lost by a particular entanglement) for reproduction by months to years. In certain populations, chronic entanglement in fishing gear can be viewed as a costly unnatural life‐history stage, rather than a rare or short‐term incident.
Collapse
Affiliation(s)
- Julie van der Hoop
- Massachusetts Institute of Technology-Woods Hole Oceanographic Institution Joint Program in Oceanography/Applied Ocean Science and Engineering Cambridge MA USA; Biology Department Woods Hole Oceanographic Institution Woods Hole MA USA
| | - Peter Corkeron
- NOAA Fisheries Northeast Fisheries Science Center Woods Hole MA USA
| | - Michael Moore
- Biology Department Woods Hole Oceanographic Institution Woods Hole MA USA
| |
Collapse
|
21
|
Southern Elephant Seals Replenish Their Lipid Reserves at Different Rates According to Foraging Habitat. PLoS One 2016; 11:e0166747. [PMID: 27902786 PMCID: PMC5130208 DOI: 10.1371/journal.pone.0166747] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2016] [Accepted: 11/03/2016] [Indexed: 11/19/2022] Open
Abstract
Assessing energy gain and expenditure in free ranging marine predators is difficult. However, such measurements are critical if we are to understand how variation in foraging efficiency, and in turn individual body condition, is impacted by environmentally driven changes in prey abundance and/or accessibility. To investigate the influence of oceanographic habitat type on foraging efficiency, ten post-breeding female southern elephant seals Mirounga leonina (SES) were equipped and tracked with bio-loggers to give continuous information of prey catch attempts, body density and body activity. Variations in these indices of foraging efficiency were then compared between three different oceanographic habitats, delineated by the main frontal structures of the Southern Ocean. Results show that changes in body density are related not only to the number of previous prey catch attempts and to the body activity (at a 6 day lag), but also foraging habitat type. For example, despite a lower daily prey catch attempt rate, SESs foraging north of the sub-Antarctic front improve their body density at a higher rate than individuals foraging south of the sub-Antarctic and polar fronts, suggesting that they may forage on easier to catch and/or more energetically rich prey in this area. Our study highlights a need to understand the influence of habitat type on top predator foraging behaviour and efficiency when attempting a better comprehension of marine ecosystems.
Collapse
|
22
|
Jeanniard-du-Dot T, Trites AW, Arnould JPY, Speakman JR, Guinet C. Flipper strokes can predict energy expenditure and locomotion costs in free-ranging northern and Antarctic fur seals. Sci Rep 2016; 6:33912. [PMID: 27658718 PMCID: PMC5034273 DOI: 10.1038/srep33912] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 09/06/2016] [Indexed: 11/28/2022] Open
Abstract
Flipper strokes have been proposed as proxies to estimate the energy expended by marine vertebrates while foraging at sea, but this has never been validated on free-ranging otariids (fur seals and sea lions). Our goal was to investigate how well flipper strokes correlate with energy expenditure in 33 foraging northern and Antarctic fur seals equipped with accelerometers, GPS, and time-depth recorders. We concomitantly measured field metabolic rates with the doubly-labelled water method and derived activity-specific energy expenditures using fine-scale time-activity budgets for each seal. Flipper strokes were detected while diving or surface transiting using dynamic acceleration. Despite some inter-species differences in flipper stroke dynamics or frequencies, both species of fur seals spent 3.79 ± 0.39 J/kg per stroke and had a cost of transport of ~1.6–1.9 J/kg/m while diving. Also, flipper stroke counts were good predictors of energy spent while diving (R2 = 0.76) and to a lesser extent while transiting (R2 = 0.63). However, flipper stroke count was a poor predictor overall of total energy spent during a full foraging trip (R2 = 0.50). Amplitude of flipper strokes (i.e., acceleration amplitude × number of strokes) predicted total energy expenditure (R2 = 0.63) better than flipper stroke counts, but was not as accurate as other acceleration-based proxies, i.e. Overall Dynamic Body Acceleration.
Collapse
Affiliation(s)
- Tiphaine Jeanniard-du-Dot
- Department of Zoology and Marine Mammal Research Unit, Institute for the Oceans and Fisheries, 2202 Main Mall, AERL, University of British Columbia, Vancouver, BC, V6T1Z4, Canada.,Centre d'Etudes Biologiques de Chizé, CNRS, 79360 Villiers en Bois, France
| | - Andrew W Trites
- Department of Zoology and Marine Mammal Research Unit, Institute for the Oceans and Fisheries, 2202 Main Mall, AERL, University of British Columbia, Vancouver, BC, V6T1Z4, Canada
| | - John P Y Arnould
- Deakin University, School of Life and Environmental Sciences (Burwood Campus), Geelong, Australia
| | - John R Speakman
- The Institute of Biological and Environmental Sciences, Zoology Bldg, Tillydrone Avenue, Aberdeen, AB24 2TZ, UK
| | - Christophe Guinet
- Centre d'Etudes Biologiques de Chizé, CNRS, 79360 Villiers en Bois, France
| |
Collapse
|
23
|
Miller P, Narazaki T, Isojunno S, Aoki K, Smout S, Sato K. Body density and diving gas volume of the northern bottlenose whale (Hyperoodon ampullatus). J Exp Biol 2016; 219:2458-68. [PMID: 27296044 PMCID: PMC5004977 DOI: 10.1242/jeb.137349] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 05/31/2016] [Indexed: 11/27/2022]
Abstract
Diving lung volume and tissue density, reflecting lipid store volume, are important physiological parameters that have only been estimated for a few breath-hold diving species. We fitted 12 northern bottlenose whales with data loggers that recorded depth, 3-axis acceleration and speed either with a fly-wheel or from change of depth corrected by pitch angle. We fitted measured values of the change in speed during 5 s descent and ascent glides to a hydrodynamic model of drag and buoyancy forces using a Bayesian estimation framework. The resulting estimate of diving gas volume was 27.4±4.2 (95% credible interval, CI) ml kg(-1), closely matching the measured lung capacity of the species. Dive-by-dive variation in gas volume did not correlate with dive depth or duration. Estimated body densities of individuals ranged from 1028.4 to 1033.9 kg m(-3) at the sea surface, indicating overall negative tissue buoyancy of this species in seawater. Body density estimates were highly precise with ±95% CI ranging from 0.1 to 0.4 kg m(-3), which would equate to a precision of <0.5% of lipid content based upon extrapolation from the elephant seal. Six whales tagged near Jan Mayen (Norway, 71°N) had lower body density and were closer to neutral buoyancy than six whales tagged in the Gully (Nova Scotia, Canada, 44°N), a difference that was consistent with the amount of gliding observed during ascent versus descent phases in these animals. Implementation of this approach using longer-duration tags could be used to track longitudinal changes in body density and lipid store body condition of free-ranging cetaceans.
Collapse
Affiliation(s)
- Patrick Miller
- Sea Mammal Research Unit, University of St Andrews, St Andrews, Fife KY16 9QQ, UK Atmosphere and Ocean Research Institute, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8564, Japan
| | - Tomoko Narazaki
- Sea Mammal Research Unit, University of St Andrews, St Andrews, Fife KY16 9QQ, UK Atmosphere and Ocean Research Institute, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8564, Japan
| | - Saana Isojunno
- Sea Mammal Research Unit, University of St Andrews, St Andrews, Fife KY16 9QQ, UK
| | - Kagari Aoki
- Sea Mammal Research Unit, University of St Andrews, St Andrews, Fife KY16 9QQ, UK Atmosphere and Ocean Research Institute, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8564, Japan
| | - Sophie Smout
- Sea Mammal Research Unit, University of St Andrews, St Andrews, Fife KY16 9QQ, UK
| | - Katsufumi Sato
- Atmosphere and Ocean Research Institute, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8564, Japan
| |
Collapse
|
24
|
Diving physiology of seabirds and marine mammals: Relevance, challenges and some solutions for field studies. Comp Biochem Physiol A Mol Integr Physiol 2016; 202:38-52. [PMID: 27421239 DOI: 10.1016/j.cbpa.2016.07.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 07/06/2016] [Accepted: 07/06/2016] [Indexed: 11/20/2022]
Abstract
To fully understand how diving seabirds and marine mammals balance the potentially conflicting demands of holding their breath while living their lives underwater (and maintaining physiological homeostasis during exercise, feeding, growth, and reproduction), physiological studies must be conducted with animals in their natural environments. The purpose of this article is to review the importance of making physiological measurements on diving animals in field settings, while acknowledging the challenges and highlighting some solutions. The most extreme divers are great candidates for study, especially in a comparative and mechanistic context. However, physiological data are also required of a wide range of species for problems relating to other disciplines, in particular ecology and conservation biology. Physiological data help with understanding and predicting the outcomes of environmental change, and the direct impacts of anthropogenic activities. Methodological approaches that have facilitated the development of field-based diving physiology include the isolated diving hole protocol and the translocation paradigm, and while there are many techniques for remote observation, animal-borne biotelemetry, or "biologging", has been critical. We discuss issues related to the attachment of instruments, the retrieval of data and sensing of physiological variables, while also considering negative impacts of tagging. This is illustrated with examples from a variety of species, and an in-depth look at one of the best studied and most extreme divers, the emperor penguin (Aptenodytes forsteri). With a variety of approaches and high demand for data on the physiology of diving seabirds and marine mammals, the future of field studies is bright.
Collapse
|
25
|
Trassinelli M. Energy cost and optimisation in breath-hold diving. J Theor Biol 2016; 396:42-52. [PMID: 26896829 DOI: 10.1016/j.jtbi.2016.02.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2015] [Revised: 02/04/2016] [Accepted: 02/08/2016] [Indexed: 10/22/2022]
Abstract
We present a new model for calculating locomotion costs in breath-hold divers. Starting from basic mechanics principles, we calculate the work that the diver must provide through propulsion to counterbalance the action of drag, the buoyant force and weight during immersion. Compared to those in previous studies, the model presented here accurately analyses breath-hold divers which alternate active swimming with prolonged glides during the dive (as is the case in mammals). The energy cost of the dive is strongly dependent on these prolonged gliding phases. Here we investigate the length and impacts on energy cost of these glides with respect to the diver characteristics, and compare them with those observed in different breath-hold diving species. Taking into account the basal metabolic rate and chemical energy to propulsion transformation efficiency, we calculate optimal swim velocity and the corresponding total energy cost (including metabolic rate) and compare them with observations. Energy cost is minimised when the diver passes through neutral buoyancy conditions during the dive. This generally implies the presence of prolonged gliding phases in both ascent and descent, where the buoyancy (varying with depth) is best used against the drag, reducing energy cost. This is in agreement with past results (Miller et al., 2012; Sato et al., 2013) where, when the buoyant force is considered constant during the dive, the energy cost was minimised for neutral buoyancy. In particular, our model confirms the good physical adaption of dolphins for diving, compared to other breath-hold diving species which are mostly positively buoyant (penguins for example). The presence of prolonged glides implies a non-trivial dependency of optimal speed on maximal depth of the dive. This extends previous findings (Sato et al., 2010; Watanabe et al., 2011) which found no dependency of optimal speed on dive depth for particular conditions. The energy cost of the dive can be further diminished by reducing the volume of gas-filled body parts in divers close to neutral buoyancy. This provides a possible additional explanation for the observed exhalation of air before diving in phocid seals to minimise dive energy cost. Until now the only explanation for this phenomenon has been a reduction in the risk of decompression sickness.
Collapse
Affiliation(s)
- M Trassinelli
- Institut des NanoSciences de Paris, CNRS-UMR 7588, Sorbonne Universités, UPMC Univ Paris 06, 75005 Paris, France.
| |
Collapse
|
26
|
Gordine SA, Fedak M, Boehme L. Fishing for drifts: detecting buoyancy changes of a top marine predator using a step-wise filtering method. J Exp Biol 2015; 218:3816-24. [PMID: 26486362 PMCID: PMC4712810 DOI: 10.1242/jeb.118109] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Accepted: 10/04/2015] [Indexed: 11/20/2022]
Abstract
In southern elephant seals (Mirounga leonina), fasting- and foraging-related fluctuations in body composition are reflected by buoyancy changes. Such buoyancy changes can be monitored by measuring changes in the rate at which a seal drifts passively through the water column, i.e. when all active swimming motion ceases. Here, we present an improved knowledge-based method for detecting buoyancy changes from compressed and abstracted dive profiles received through telemetry. By step-wise filtering of the dive data, the developed algorithm identifies fragments of dives that correspond to times when animals drift. In the dive records of 11 southern elephant seals from South Georgia, this filtering method identified 0.8-2.2% of all dives as drift dives, indicating large individual variation in drift diving behaviour. The obtained drift rate time series exhibit that, at the beginning of each migration, all individuals were strongly negatively buoyant. Over the following 75-150 days, the buoyancy of all individuals peaked close to or at neutral buoyancy, indicative of a seal's foraging success. Independent verification with visually inspected detailed high-resolution dive data confirmed that this method is capable of reliably detecting buoyancy changes in the dive records of drift diving species using abstracted data. This also affirms that abstracted dive profiles convey the geometric shape of drift dives in sufficient detail for them to be identified. Further, it suggests that, using this step-wise filtering method, buoyancy changes could be detected even in old datasets with compressed dive information, for which conventional drift dive classification previously failed.
Collapse
Affiliation(s)
- Samantha Alex Gordine
- Sea Mammal Research Unit, Scottish Oceans Institute, University of St Andrews, St Andrews, Fife KY16 8LB, UK
| | - Michael Fedak
- Sea Mammal Research Unit, Scottish Oceans Institute, University of St Andrews, St Andrews, Fife KY16 8LB, UK
| | - Lars Boehme
- Sea Mammal Research Unit, Scottish Oceans Institute, University of St Andrews, St Andrews, Fife KY16 8LB, UK
| |
Collapse
|
27
|
Maresh JL, Adachi T, Takahashi A, Naito Y, Crocker DE, Horning M, Williams TM, Costa DP. Summing the strokes: energy economy in northern elephant seals during large-scale foraging migrations. MOVEMENT ECOLOGY 2015; 3:22. [PMID: 26380090 PMCID: PMC4570705 DOI: 10.1186/s40462-015-0049-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 08/26/2015] [Indexed: 06/01/2023]
Abstract
BACKGROUND The energy requirements of free-ranging marine mammals are challenging to measure due to cryptic and far-ranging feeding habits, but are important to quantify given the potential impacts of high-level predators on ecosystems. Given their large body size and carnivorous lifestyle, we would predict that northern elephant seals (Mirounga angustirostris) have elevated field metabolic rates (FMRs) that require high prey intake rates, especially during pregnancy. Disturbance associated with climate change or human activity is predicted to further elevate energy requirements due to an increase in locomotor costs required to accommodate a reduction in prey or time available to forage. In this study, we determined the FMRs, total energy requirements, and energy budgets of adult, female northern elephant seals. We also examined the impact of increased locomotor costs on foraging success in this species. RESULTS Body size, time spent at sea and reproductive status strongly influenced FMR. During the short foraging migration, FMR averaged 90.1 (SE = 1.7) kJ kg(-1)d(-1) - only 36 % greater than predicted basal metabolic rate. During the long migration, when seals were pregnant, FMRs averaged 69.4 (±3.0) kJ kg(-1)d(-1) - values approaching those predicted to be necessary to support basal metabolism in mammals of this size. Low FMRs in pregnant seals were driven by hypometabolism coupled with a positive feedback loop between improving body condition and reduced flipper stroking frequency. In contrast, three additional seals carrying large, non-streamlined instrumentation saw a four-fold increase in energy partitioned toward locomotion, resulting in elevated FMRs and only half the mass gain of normally-swimming study animals. CONCLUSIONS These results highlight the importance of keeping locomotion costs low for successful foraging in this species. In preparation for lactation and two fasting periods with high demands on energy reserves, migrating elephant seals utilize an economical foraging strategy whereby energy savings from reduced locomotion costs are shuttled towards somatic growth and fetal gestation. Remarkably, the energy requirements of this species, particularly during pregnancy, are 70-80 % lower than expected for mammalian carnivores, approaching or even falling below values predicted to be necessary to support basal metabolism in mammals of this size.
Collapse
Affiliation(s)
- JL Maresh
- />University of California Center for Ocean Health/Long Marine Lab, 100 Shaffer Rd., Santa Cruz, CA 95060 USA
| | - T. Adachi
- />Department of Polar Science, Graduate University for Advanced Studies, Midoricho Tachikawa, Japan
| | - A. Takahashi
- />Department of Polar Science, Graduate University for Advanced Studies, Midoricho Tachikawa, Japan
- />National Institute of Polar Research, Midoricho Tachikawa, Japan
| | - Y. Naito
- />National Institute of Polar Research, Midoricho Tachikawa, Japan
| | - DE Crocker
- />Department of Biology, Sonoma State University, Rohnert Park, USA
| | - M. Horning
- />Department of Fisheries & Wildlife, Marine Mammal Institute, Oregon State University, Newport, USA
| | - TM Williams
- />Department of Ecology & Evolutionary Biology, University of California, Santa Cruz, USA
| | - DP Costa
- />Department of Ecology & Evolutionary Biology, University of California, Santa Cruz, USA
| |
Collapse
|
28
|
Adachi T, Maresh JL, Robinson PW, Peterson SH, Costa DP, Naito Y, Watanabe YY, Takahashi A. The foraging benefits of being fat in a highly migratory marine mammal. Proc Biol Sci 2015; 281:rspb.2014.2120. [PMID: 25377461 DOI: 10.1098/rspb.2014.2120] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Foraging theory predicts that breath-hold divers adjust the time spent foraging at depth relative to the energetic cost of swimming, which varies with buoyancy (body density). However, the buoyancy of diving animals varies as a function of their body condition, and the effects of these changes on swimming costs and foraging behaviour have been poorly examined. A novel animal-borne accelerometer was developed that recorded the number of flipper strokes, which allowed us to monitor the number of strokes per metre swam (hereafter, referred to as strokes-per-metre) by female northern elephant seals over their months-long, oceanic foraging migrations. As negatively buoyant seals increased their fat stores and buoyancy, the strokes-per-metre increased slightly in the buoyancy-aided direction (descending), but decreased significantly in the buoyancy-hindered direction (ascending), with associated changes in swim speed and gliding duration. Overall, the round-trip strokes-per-metre decreased and reached a minimum value when seals achieved neutral buoyancy. Consistent with foraging theory, seals stayed longer at foraging depths when their round-trip strokes-per-metre was less. Therefore, neutrally buoyant divers gained an energetic advantage via reduced swimming costs, which resulted in an increase in time spent foraging at depth, suggesting a foraging benefit of being fat.
Collapse
Affiliation(s)
- Taiki Adachi
- Department of Polar Science, The Graduate University for Advanced Studies (SOKENDAI), Tachikawa, Tokyo, Japan
| | - Jennifer L Maresh
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, CA, USA
| | - Patrick W Robinson
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, CA, USA
| | - Sarah H Peterson
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, CA, USA
| | - Daniel P Costa
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, CA, USA
| | - Yasuhiko Naito
- National Institute of Polar Research, Tachikawa, Tokyo, Japan
| | - Yuuki Y Watanabe
- Department of Polar Science, The Graduate University for Advanced Studies (SOKENDAI), Tachikawa, Tokyo, Japan National Institute of Polar Research, Tachikawa, Tokyo, Japan
| | - Akinori Takahashi
- Department of Polar Science, The Graduate University for Advanced Studies (SOKENDAI), Tachikawa, Tokyo, Japan National Institute of Polar Research, Tachikawa, Tokyo, Japan
| |
Collapse
|
29
|
Thometz NM, Murray MJ, Williams TM. Ontogeny of Oxygen Storage Capacity and Diving Ability in the Southern Sea Otter (Enhydra lutris nereis): Costs and Benefits of Large Lungs. Physiol Biochem Zool 2015; 88:311-27. [DOI: 10.1086/681019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
30
|
Drift diving by hooded seals (Cystophora cristata) in the Northwest Atlantic Ocean. PLoS One 2014; 9:e103072. [PMID: 25051251 PMCID: PMC4106908 DOI: 10.1371/journal.pone.0103072] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Accepted: 06/26/2014] [Indexed: 11/19/2022] Open
Abstract
Many pinniped species perform a specific dive type, referred to as a 'drift dive', where they drift passively through the water column. This dive type has been suggested to function as a resting/sleeping or food processing dive, and can be used as an indication of feeding success by calculating the daily change in vertical drift rates over time, which reflects the relative fluctuations in buoyancy of the animal as the proportion of lipids in the body change. Northwest Atlantic hooded seals perform drift dives at regular intervals throughout their annual migration across the Northwest Atlantic Ocean. We found that the daily change in drift rate varied with geographic location and the time of year and that this differed between sexes. Positive changes in buoyancy (reflecting increased lipid stores) were evident throughout their migration range and although overlapping somewhat, they were not statistically associated with high use areas as indicated by First Passage Time (FPT). Differences in the seasonal fluctuations of buoyancy between males and females suggest that they experience a difference in patterns of energy gain and loss during winter and spring, associated with breeding. The fluctuations in buoyancy around the moulting period were similar between sexes.
Collapse
|
31
|
Suzuki I, Sato K, Fahlman A, Naito Y, Miyazaki N, Trites AW. Drag, but not buoyancy, affects swim speed in captive Steller sea lions. Biol Open 2014; 3:379-86. [PMID: 24771620 PMCID: PMC4021360 DOI: 10.1242/bio.20146130] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Swimming at an optimal speed is critical for breath-hold divers seeking to maximize the time they can spend foraging underwater. Theoretical studies have predicted that the optimal swim speed for an animal while transiting to and from depth is independent of buoyancy, but is dependent on drag and metabolic rate. However, this prediction has never been experimentally tested. Our study assessed the effects of buoyancy and drag on the swim speed of three captive Steller sea lions (Eumetopias jubatus) that made 186 dives. Our study animals were trained to dive to feed at fixed depths (10–50 m) under artificially controlled buoyancy and drag conditions. Buoyancy and drag were manipulated using a pair of polyvinyl chloride (PVC) tubes attached to harnesses worn by the sea lions, and buoyancy conditions were designed to fall within the natural range of wild animals (∼12–26% subcutaneous fat). Drag conditions were changed with and without the PVC tubes, and swim speeds were recorded and compared during descent and ascent phases using an accelerometer attached to the harnesses. Generalized linear mixed-effect models with the animal as the random variable and five explanatory variables (body mass, buoyancy, dive depth, dive phase, and drag) showed that swim speed was best predicted by two variables, drag and dive phase (AIC = −139). Consistent with a previous theoretical prediction, the results of our study suggest that the optimal swim speed of Steller sea lions is a function of drag, and is independent of dive depth and buoyancy.
Collapse
Affiliation(s)
- Ippei Suzuki
- Atmosphere and Ocean Research Institute, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8564, Japan Department of Natural Environmental Study, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8564, Japan
| | - Katsufumi Sato
- Atmosphere and Ocean Research Institute, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8564, Japan
| | - Andreas Fahlman
- Department of Life Science, Texas A&M University-Corpus Christi, 6300 Ocean Drive, Corpus Christi, TX 78412, USA Department of Zoology and Marine Mammal Research Unit, Fisheries Center, University of British Columbia, 2204 Main Mall, Vancouver, BC V6T 1Z4, Canada
| | - Yasuhiko Naito
- National Institute of Polar Research, 10-3 Midoricho, Tachikawa, Tokyo 190-8518, Japan
| | - Nobuyuki Miyazaki
- Atmosphere and Ocean Research Institute, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8564, Japan
| | - Andrew W Trites
- Department of Zoology and Marine Mammal Research Unit, Fisheries Center, University of British Columbia, 2204 Main Mall, Vancouver, BC V6T 1Z4, Canada
| |
Collapse
|
32
|
Shero MR, Pearson LE, Costa DP, Burns JM. Improving the precision of our ecosystem calipers: a modified morphometric technique for estimating marine mammal mass and body composition. PLoS One 2014; 9:e91233. [PMID: 24614685 PMCID: PMC3948782 DOI: 10.1371/journal.pone.0091233] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2013] [Accepted: 02/11/2014] [Indexed: 12/04/2022] Open
Abstract
Mass and body composition are indices of overall animal health and energetic balance and are often used as indicators of resource availability in the environment. This study used morphometric models and isotopic dilution techniques, two commonly used methods in the marine mammal field, to assess body composition of Weddell seals (Leptonychotes weddellii, N = 111). Findings indicated that traditional morphometric models that use a series of circular, truncated cones to calculate marine mammal blubber volume and mass overestimated the animal’s measured body mass by 26.9±1.5% SE. However, we developed a new morphometric model that uses elliptical truncated cones, and estimates mass with only −2.8±1.7% error (N = 10). Because this elliptical truncated cone model can estimate body mass without the need for additional correction factors, it has the potential to be a broadly applicable method in marine mammal species. While using elliptical truncated cones yielded significantly smaller blubber mass estimates than circular cones (10.2±0.8% difference; or 3.5±0.3% total body mass), both truncated cone models significantly underestimated total body lipid content as compared to isotopic dilution results, suggesting that animals have substantial internal lipid stores (N = 76). Multiple linear regressions were used to determine the minimum number of morphometric measurements needed to reliably estimate animal mass and body composition so that future animal handling times could be reduced. Reduced models estimated body mass and lipid mass with reasonable accuracy using fewer than five morphometric measurements (root-mean-square-error: 4.91% for body mass, 10.90% for lipid mass, and 10.43% for % lipid). This indicates that when test datasets are available to create calibration coefficients, regression models also offer a way to improve body mass and condition estimates in situations where animal handling times must be short and efficient.
Collapse
Affiliation(s)
- Michelle R. Shero
- Department of Biological Sciences, University of Alaska Anchorage, Anchorage, Alaska, United States of America
- School of Fisheries and Ocean Sciences, University of Alaska Fairbanks, Fairbanks, Alaska, United States of America
- * E-mail:
| | - Linnea E. Pearson
- Department of Biological Sciences, University of Alaska Anchorage, Anchorage, Alaska, United States of America
- School of Fisheries and Ocean Sciences, University of Alaska Fairbanks, Fairbanks, Alaska, United States of America
| | - Daniel P. Costa
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, California, United States of America
| | - Jennifer M. Burns
- Department of Biological Sciences, University of Alaska Anchorage, Anchorage, Alaska, United States of America
| |
Collapse
|
33
|
Sato K, Aoki K, Watanabe YY, Miller PJO. Neutral buoyancy is optimal to minimize the cost of transport in horizontally swimming seals. Sci Rep 2014; 3:2205. [PMID: 23857645 PMCID: PMC3712316 DOI: 10.1038/srep02205] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Accepted: 06/28/2013] [Indexed: 11/30/2022] Open
Abstract
Flying and terrestrial animals should spend energy to move while supporting their weight against gravity. On the other hand, supported by buoyancy, aquatic animals can minimize the energy cost for supporting their body weight and neutral buoyancy has been considered advantageous for aquatic animals. However, some studies suggested that aquatic animals might use non-neutral buoyancy for gliding and thereby save energy cost for locomotion. We manipulated the body density of seals using detachable weights and floats, and compared stroke efforts of horizontally swimming seals under natural conditions using animal-borne recorders. The results indicated that seals had smaller stroke efforts to swim a given speed when they were closer to neutral buoyancy. We conclude that neutral buoyancy is likely the best body density to minimize the cost of transport in horizontal swimming by seals.
Collapse
Affiliation(s)
- Katsufumi Sato
- International Coastal Research Center, Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa City, Chiba Prefecture, Japan.
| | | | | | | |
Collapse
|
34
|
Richard G, Vacquié-Garcia J, Jouma'a J, Picard B, Génin A, Arnould JPY, Bailleul F, Guinet C. Variation in body condition during the post-moult foraging trip of southern elephant seals and its consequences on diving behaviour. J Exp Biol 2014; 217:2609-19. [DOI: 10.1242/jeb.088542] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Abstract
Mature female southern elephant seals come ashore only in October to breed and in January to moult, spending the rest of the year foraging at sea. Mature females may lose as much as 50% of their body mass, mostly in lipid stores, during the breeding season due to fasting and lactation. When departing to sea, post-breeding females are negatively buoyant and the relative change in body condition (i.e. density) during the foraging trip has previously been assessed by monitoring descent rate during drift dives. However, relatively few drift dives are performed resulting in low resolution of the temporal reconstruction of body condition change. In this study, six post-breeding females were instrumented with time-depth recorders and accelerometers to investigate whether changes in active swimming effort and speed could be used as an alternative method of monitoring density variations throughout the foraging trip. In addition, we assessed consequences of density change on the swimming effort of individuals while diving and effects on dive duration. Both descent swimming speed and ascent swimming effort were found to be strongly correlated to descent rate during drift dives, enabling the fine-scale monitoring of seal density change over the whole trip. Negatively buoyant seals minimized swimming effort during descents, gliding down at slower speeds, and reduced their ascent swimming effort to maintain a nearly constant swimming speed as their buoyancy increased. One percent of seal density variation over time was found to induce a 20% variation in swimming effort during dives with direct consequences on dive duration.
Collapse
|
35
|
van der Hoop JM, Fahlman A, Hurst T, Rocho-Levine J, Shorter KA, Petrov V, Moore MJ. Bottlenose dolphins modify behavior to reduce metabolic effect of tag attachment. J Exp Biol 2014; 217:4229-36. [DOI: 10.1242/jeb.108225] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Abstract
Attaching bio-telemetry or -logging devices ('tags') to marine animals for research and monitoring adds drag to streamlined bodies, affecting posture, swimming gaits and energy balance. These costs have never been measured in free-swimming cetaceans. To examine the effect of drag from a tag on metabolic rate, cost of transport, and swimming behavior, four captive male dolphins (Tursiops truncatus) were trained to swim a set course, either non-instrumented (n = 7) or instrumented with a tag (DTAG2; n = 12), and surface exclusively in a flow-through respirometer where oxygen consumption (V̇O2) and carbon dioxide production (V̇CO2; mL kg-1 min-1) rates were measured and respiratory exchange ratio (V̇O2/V̇CO2) was calculated. Tags did not significantly affect individual mass-specific oxygen consumption, Physical Activity Ratios (exercise V̇O2/resting V̇O2), total or net cost of transport (COT, J m-1 kg-1) or locomotor costs during swimming or two-minute recovery phases. However, individuals swam significantly slower when tagged (by ~11%; mean±s.d. 3.31±0.35 m s-1) compared to when non-instrumented (3.73±0.41 m s-1). A combined theoretical and Computational Fluid Dynamics (CFD) model estimating drag forces and power exertion during swimming suggests drag loading and energy consumption are reduced at lower swimming speeds. Bottlenose dolphins in the specific swimming task in this experiment slowed to the point where the tag yielded no increases in drag or power, while showing no difference in metabolic parameters when instrumented with a DTAG2. These results, and our observations, suggest that animals modify their behavior to maintain metabolic output and energy expenditure when faced with tag-induced drag.
Collapse
Affiliation(s)
| | | | - Thomas Hurst
- Woods Hole Oceanographic Institution, United States
| | | | | | | | | |
Collapse
|
36
|
Chicco AJ, Le CH, Schlater AE, Nguyen AD, Kaye SD, Beals JW, Scalzo RL, Bell C, Gnaiger E, Costa DP, Crocker DE, Kanatous SB. High fatty acid oxidation capacity and phosphorylation control despite elevated leak and reduced respiratory capacity in northern elephant seal muscle mitochondria. J Exp Biol 2014; 217:2947-55. [DOI: 10.1242/jeb.105916] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Abstract
Northern elephant seals (Mirounga angustirostris) are extreme, hypoxia-adapted endotherms that rely largely on aerobic metabolism during extended breath-hold dives in near freezing water temperatures. While many aspects of their physiology have been characterized to account for these remarkable feats, the contribution of adaptations in the aerobic powerhouses of muscle cells, the mitochondria, are unknown. In the present study, the ontogeny and comparative physiology of elephant seal muscle mitochondrial respiratory function was investigated under a variety of substrate conditions and respiratory states. Intact mitochondrial networks were studied by high-resolution respirometry in saponin-permeabilized fiber bundles obtained from primary swimming muscles of pup, juvenile, and adult seals, and compared to fibers from adult human vastus laterais. Results indicate that seal muscle maintains a high capacity for fatty acid oxidation despite a progressive decrease in total respiratory capacity as animals mature from pups to adults. This is explained by a progressive increase in phosphorylation control and fatty acid utilization over pyruvate in adult seals compared to humans and seal pups. Interestingly, despite higher indices of oxidative phosphorylation efficiency, juvenile and adult seals also exhibit a ~50% greater capacity for respiratory leak compared to humans and pups. The ontogeny of this phenotype suggests it is an adaptation of muscle to the prolonged breath-hold exercise and highly variable ambient temperatures experienced by mature elephant seals. These studies highlight the remarkable plasticity of mammalian mitochondria to meet the demands for both efficient ATP production and endothermy in a cold, oxygen-limited environment.
Collapse
|
37
|
Nousek-McGregor AE, Miller CA, Moore MJ, Nowacek DP. Effects of body condition on buoyancy in endangered North Atlantic right whales. Physiol Biochem Zool 2013; 87:160-71. [PMID: 24457930 DOI: 10.1086/671811] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Buoyancy is an important consideration for diving marine animals, resulting in specific ecologically relevant adaptations. Marine mammals use blubber as an energy reserve, but because this tissue is also positively buoyant, nutritional demands have the potential to cause considerable variation in buoyancy. North Atlantic right whales Eubalaena glacialis are known to be positively buoyant as a result of their blubber, and the thickness of this layer varies considerably, but the effect of this variation on buoyancy has not been explored. This study compared the duration and rate of ascending and descending glides, recorded with an archival tag, with blubber thickness, measured with an ultrasound device, in free-swimming right whales. Ascending whales with thicker blubber had shorter portions of active propulsion and longer passive glides than whales with thinner blubber, suggesting that blubber thickness influences buoyancy because the buoyant force is acting in the same direction as the animal's movement during this phase. Whales with thinner layers also used similar body angles and velocities when traveling to and from depth, while those with thicker layers used shallower ascent angles but achieved higher ascent velocities. Such alterations in body angle may help to reduce the cost of transport when swimming against the force of buoyancy in a state of augmented positive buoyancy, which represents a dynamic response to reduce the energetic consequences of physiological changes. These results have considerable implications for any diving marine animal during periods of nutritional stress, such as during seasonal migrations and annual variations in prey availability.
Collapse
Affiliation(s)
- Anna E Nousek-McGregor
- Nicholas School for the Environment and Earth Sciences, Duke University Marine Laboratory, Beaufort, North Carolina 28516; 2Biology Department, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543; 3Department of Electrical and Computer Engineering, Pratt School of Engineering, Duke University, Durham, North Carolina 27708
| | | | | | | |
Collapse
|
38
|
Schick RS, New LF, Thomas L, Costa DP, Hindell MA, McMahon CR, Robinson PW, Simmons SE, Thums M, Harwood J, Clark JS. Estimating resource acquisition and at-sea body condition of a marine predator. J Anim Ecol 2013; 82:1300-15. [PMID: 23869551 PMCID: PMC4028992 DOI: 10.1111/1365-2656.12102] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Accepted: 05/13/2013] [Indexed: 02/03/2023]
Abstract
1. Body condition plays a fundamental role in many ecological and evolutionary processes at a variety of scales and across a broad range of animal taxa. An understanding of how body condition changes at fine spatial and temporal scales as a result of interaction with the environment provides necessary information about how animals acquire resources. 2. However, comparatively little is known about intra- and interindividual variation of condition in marine systems. Where condition has been studied, changes typically are recorded at relatively coarse time-scales. By quantifying how fine-scale interaction with the environment influences condition, we can broaden our understanding of how animals acquire resources and allocate them to body stores. 3. Here we used a hierarchical Bayesian state-space model to estimate the body condition as measured by the size of an animal's lipid store in two closely related species of marine predator that occupy different hemispheres: northern elephant seals (Mirounga angustirostris) and southern elephant seals (Mirounga leonina). The observation model linked drift dives to lipid stores. The process model quantified daily changes in lipid stores as a function of the physiological condition of the seal (lipid:lean tissue ratio, departure lipid and departure mass), its foraging location, two measures of behaviour and environmental covariates. 4. We found that physiological condition significantly impacted lipid gain at two time-scales - daily and at departure from the colony - that foraging location was significantly associated with lipid gain in both species of elephant seals and that long-term behavioural phase was associated with positive lipid gain in northern and southern elephant seals. In northern elephant seals, the occurrence of short-term behavioural states assumed to represent foraging were correlated with lipid gain. Lipid gain was a function of covariates in both species. Southern elephant seals performed fewer drift dives than northern elephant seals and gained lipids at a lower rate. 5. We have demonstrated a new way to obtain time series of body condition estimates for a marine predator at fine spatial and temporal scales. This modelling approach accounts for uncertainty at many levels and has the potential to integrate physiological and movement ecology of top predators. The observation model we used was specific to elephant seals, but the process model can readily be applied to other species, providing an opportunity to understand how animals respond to their environment at a fine spatial scale.
Collapse
Affiliation(s)
- Robert S Schick
- Nicholas School of the Environment, Duke University, Durham, NC, 27708, USA; Centre for Research into Ecological and Environmental Modelling, The Observatory, University of St Andrews, St Andrews, KY16 9LZ, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Miller PJO, Biuw M, Watanabe YY, Thompson D, Fedak MA. Sink fast and swim harder! Round-trip cost-of-transport for buoyant divers. J Exp Biol 2012; 215:3622-30. [DOI: 10.1242/jeb.070128] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARY
Efficient locomotion between prey resources at depth and oxygen at the surface is crucial for breath-hold divers to maximize time spent in the foraging layer, and thereby net energy intake rates. The body density of divers, which changes with body condition, determines the apparent weight (buoyancy) of divers, which may affect round-trip cost-of-transport (COT) between the surface and depth. We evaluated alternative predictions from external-work and actuator-disc theory of how non-neutral buoyancy affects round-trip COT to depth, and the minimum COT speed for steady-state vertical transit. Not surprisingly, the models predict that one-way COT decreases (increases) when buoyancy aids (hinders) one-way transit. At extreme deviations from neutral buoyancy, gliding at terminal velocity is the minimum COT strategy in the direction aided by buoyancy. In the transit direction hindered by buoyancy, the external-work model predicted that minimum COT speeds would not change at greater deviations from neutral buoyancy, but minimum COT speeds were predicted to increase under the actuator disc model. As previously documented for grey seals, we found that vertical transit rates of 36 elephant seals increased in both directions as body density deviated from neutral buoyancy, indicating that actuator disc theory may more closely predict the power requirements of divers affected by gravity than an external work model. For both models, minor deviations from neutral buoyancy did not affect minimum COT speed or round-trip COT itself. However, at body-density extremes, both models predict that savings in the aided direction do not fully offset the increased COT imposed by the greater thrusting required in the hindered direction.
Collapse
Affiliation(s)
- Patrick J. O. Miller
- Sea Mammal Research Unit, School of Biology, University of St Andrews, Fife KY16 9QQ, UK
| | - Martin Biuw
- Sea Mammal Research Unit, School of Biology, University of St Andrews, Fife KY16 9QQ, UK
| | - Yuuki Y. Watanabe
- National Institute of Polar Research, 10-3, Midori-cho, Tachikawa, Tokyo 190-8518, Japan
| | - Dave Thompson
- Sea Mammal Research Unit, School of Biology, University of St Andrews, Fife KY16 9QQ, UK
| | - Mike A. Fedak
- Sea Mammal Research Unit, School of Biology, University of St Andrews, Fife KY16 9QQ, UK
| |
Collapse
|
40
|
Robinson PW, Costa DP, Crocker DE, Gallo-Reynoso JP, Champagne CD, Fowler MA, Goetsch C, Goetz KT, Hassrick JL, Hückstädt LA, Kuhn CE, Maresh JL, Maxwell SM, McDonald BI, Peterson SH, Simmons SE, Teutschel NM, Villegas-Amtmann S, Yoda K. Foraging behavior and success of a mesopelagic predator in the northeast Pacific Ocean: insights from a data-rich species, the northern elephant seal. PLoS One 2012; 7:e36728. [PMID: 22615801 PMCID: PMC3352920 DOI: 10.1371/journal.pone.0036728] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Accepted: 04/05/2012] [Indexed: 11/19/2022] Open
Abstract
The mesopelagic zone of the northeast Pacific Ocean is an important foraging habitat for many predators, yet few studies have addressed the factors driving basin-scale predator distributions or inter-annual variability in foraging and breeding success. Understanding these processes is critical to reveal how conditions at sea cascade to population-level effects. To begin addressing these challenging questions, we collected diving, tracking, foraging success, and natality data for 297 adult female northern elephant seal migrations from 2004 to 2010. During the longer post-molting migration, individual energy gain rates were significant predictors of pregnancy. At sea, seals focused their foraging effort along a narrow band corresponding to the boundary between the sub-arctic and sub-tropical gyres. In contrast to shallow-diving predators, elephant seals target the gyre-gyre boundary throughout the year rather than follow the southward winter migration of surface features, such as the Transition Zone Chlorophyll Front. We also assessed the impact of added transit costs by studying seals at a colony near the southern extent of the species’ range, 1,150 km to the south. A much larger proportion of seals foraged locally, implying plasticity in foraging strategies and possibly prey type. While these findings are derived from a single species, the results may provide insight to the foraging patterns of many other meso-pelagic predators in the northeast Pacific Ocean.
Collapse
Affiliation(s)
- Patrick W Robinson
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, California, United States of America.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|