1
|
Sancho Santos ME, Horký P, Grabicová K, Steinbach C, Hubená P, Šálková E, Slavík O, Grabic R, Randák T. From metabolism to behaviour - Multilevel effects of environmental methamphetamine concentrations on fish. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 878:163167. [PMID: 37003339 DOI: 10.1016/j.scitotenv.2023.163167] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 03/18/2023] [Accepted: 03/26/2023] [Indexed: 05/13/2023]
Abstract
Methamphetamine (METH) is a concerning drug of abuse that produces strong psychostimulant effects. The use of this substance, along with the insufficient removal in the sewage treatment plants, leads to its occurrence in the environment at low concentrations. In this study, brown trout (Salmo trutta fario) were exposed to 1 μg/L of METH as environmental relevant concentration for 28 days in order to elucidate the complex effects resulting from the drug, including behaviour, energetics, brain and gonad histology, brain metabolomics, and their relations. Trout exposed to METH displayed lowered activity as well as metabolic rate (MR), an altered morphology of brain and gonads as well as changes in brain metabolome when compared to controls. Increased activity and MR were correlated to an increased incidence of histopathology in gonads (females - vascular fluid and gonad staging; males - apoptotic spermatozoa and peritubular cells) in exposed trout compared to controls. Higher amounts of melatonin in brain were detected in exposed fish compared to controls. Tyrosine hydroxylase expression in locus coeruleus was related to the MR in exposed fish, but not in the control. Brain metabolomics indicated significant differences in 115 brain signals between control and METH exposed individuals, described by the coordinates within the principal component analyses (PCA) axes. These coordinates were subsequently used as indicators of a direct link between brain metabolomics, physiology, and behaviour - as activity and MR varied according to their values. Exposed fish showed an increased MR correlated with the metabolite position in PC1 axes, whereas the control had proportionately lower MR and PC1 coordinates. Our findings emphasize the possible complex disturbances in aquatic fauna on multiple interconnected levels (metabolism, physiology, behaviour) as a result of the presence of METH in aquatic environments. Thus, these outcomes can be useful in the development of AOP's (Adverse Outcome Pathways).
Collapse
Affiliation(s)
- Maria Eugenia Sancho Santos
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 389 25 Vodňany, Czech Republic.
| | - Pavel Horký
- Department of Zoology and Fisheries, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Prague 6, Czech Republic
| | - Kateřina Grabicová
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 389 25 Vodňany, Czech Republic
| | - Christoph Steinbach
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 389 25 Vodňany, Czech Republic
| | - Pavla Hubená
- Behavioural Neuroendocrinology, Department of Medical Cell Biology, Uppsala University, 751 23 Uppsala, Sweden
| | - Eva Šálková
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 389 25 Vodňany, Czech Republic
| | - Ondřej Slavík
- Department of Zoology and Fisheries, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Prague 6, Czech Republic
| | - Roman Grabic
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 389 25 Vodňany, Czech Republic
| | - Tomáš Randák
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 389 25 Vodňany, Czech Republic
| |
Collapse
|
2
|
Godin JGJ, Le Roy A, Burns AL, Seebacher F, Ward AJ. Pace-of-life syndrome: linking personality, metabolism and colour ornamentation in male guppies. Anim Behav 2022. [DOI: 10.1016/j.anbehav.2022.09.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
3
|
Harrison LM, Jennions MD. Revisiting and interpreting the role of female dominance in male mate choice: the importance of replication in ecology and evolution. Evol Ecol 2022. [DOI: 10.1007/s10682-022-10214-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
AbstractIn many species females prefer to mate with socially dominant males, often because it elevates their fecundity by providing greater access to material resources or lowers offspring mortality due to superior male defence. Far fewer studies have tested whether males prefer socially dominant females. Intriguingly, an earlier study showed that when the sexes freely interact, male mosquitofish (Gambusia holbrooki) preferentially attempt to mate with dominant females. Here we replicate this study using a slightly modified experimental design to test the generality of its finding. In addition, we conducted standard, two-choice male mate choice trials to test directly whether males prefer dominant over subordinate females. Corroborating the previous study, we found that when a male and two females freely interact, males more often attempt to mate with the dominant female. However, males did not prefer to associate with (i.e., choose) dominant females in two-choice trials where females could not interact. We discuss whether greater access to males is a benefit of female social dominance, or an epiphenomenon of other benefits of dominance.
Collapse
|
4
|
Liao SS, Liu W, Cao J, Zhao ZJ. Territory aggression and energy budget in food-restricted striped hamsters. Physiol Behav 2022; 254:113897. [PMID: 35788009 DOI: 10.1016/j.physbeh.2022.113897] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 06/27/2022] [Accepted: 06/28/2022] [Indexed: 10/17/2022]
Abstract
Food resource availability is one of the most important factors affecting interindividual competition in a variety of animal species. However, the energy budget and territory aggression strategy of small mammals during periods of food restriction remain uncertain. In this study, metabolic rate, body temperature, territory aggression behavior, and fat deposit were measured in male striped hamster (Cricetulus barabensis) restricted by 20% of ad libitum food intake with or without supplementary methimazole. Serum thyroid hormone (tri-iodothyronine, T3 and thyroxine, T4), and cytochrome c oxidase (COX) activity in liver, brown adipose tissue, and skeletal muscle, were also measured. Attack latency, total attack times and duration, and the interval duration between attacks of resident hamsters were not significantly changed during food restriction, which was not significantly affected by supplementary methimazole. Metabolic rate and body temperature was significantly increased in food-restricted hamsters following introduction of an intruder, which was not completely blocked by supplementary methimazole. Serum T3 and T4 levels and BAT COX activity were not significantly changed following aggression, and were significantly decreased by supplementary methimazole. These findings suggest that striped hamsters increase energy expenditure for territory aggression during food restriction, and consequently lead to excessive energy depletion. Territory aggression behavior may decrease the capacity to cope with food shortage, which may be independent of thyroid hormone.
Collapse
Affiliation(s)
- Sha-Sha Liao
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Wei Liu
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Jing Cao
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Zhi-Jun Zhao
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China.
| |
Collapse
|
5
|
Moffett ER, Fryxell DC, Benavente JN, Kinnison MT, Palkovacs EP, Symons CC, Simon KS. The effect of pregnancy on metabolic scaling and population energy demand in the viviparous fish Gambusia affinis. Integr Comp Biol 2022; 62:icac099. [PMID: 35767874 DOI: 10.1093/icb/icac099] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Metabolism is a fundamental attribute of all organisms that influences how species affect and are affected by their natural environment. Differences between sexes in ectothermic species may substantially alter metabolic scaling patterns, particularly in viviparous or live-bearing species where females must support their basal metabolic costs and that of their embryos. Indeed, if pregnancy is associated with marked increases in metabolic demand and alters scaling patterns between sexes, this could in turn interact with natural sex ratio variation in nature to affect population-level energy demand. Here, we aimed to understand how sex and pregnancy influence metabolic scaling and how differences between sexes affect energy demand in Gambusia affinis (Western mosquitofish). Using the same method, we measured routine metabolic rate in the field on reproductively active fish and in the laboratory on virgin fish. Our data suggest that changes in energy expenditure related to pregnancy may lead to steeper scaling coefficients in females (b = 0.750) compared to males (b = 0.595). In contrast, virgin females and males had similar scaling coefficients, suggesting negligible sex differences in metabolic costs in reproductively inactive fish. Further, our data suggest that incorporating sex differences in allometric scaling may alter population-level energy demand by as much as 20-28%, with the most pronounced changes apparent in male-biased populations due to the lower scaling coefficient of males. Overall, our data suggest that differences in energy investment in reproduction between sexes driven by pregnancy may alter allometric scaling and population-level energy demand.
Collapse
Affiliation(s)
- Emma R Moffett
- Ecology and Evolutionary Biology, University of California, Irvine, USA
| | - David C Fryxell
- School of Environment, The University of Auckland, New Zealand
- Ecology and Evolutionary Biology, The University of California, Santa Cruz, USA
| | - J N Benavente
- School of Environment, The University of Auckland, New Zealand
| | - M T Kinnison
- School of Biology and Ecology,The University of Maine, USA
| | - E P Palkovacs
- Ecology and Evolutionary Biology, The University of California, Santa Cruz, USA
| | - C C Symons
- Ecology and Evolutionary Biology, University of California, Irvine, USA
| | - K S Simon
- School of Environment, The University of Auckland, New Zealand
| |
Collapse
|
6
|
Bernal MA, Ravasi T, Rodgers GG, Munday PL, Donelson JM. Plasticity to ocean warming is influenced by transgenerational, reproductive, and developmental exposure in a coral reef fish. Evol Appl 2022; 15:249-261. [PMID: 35233246 PMCID: PMC8867710 DOI: 10.1111/eva.13337] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 12/10/2021] [Indexed: 11/28/2022] Open
Abstract
Global warming is expected to drive some ectothermic species beyond their thermal tolerance in upcoming decades. Phenotypic plasticity, via developmental or transgenerational acclimation, is a critical mechanism for compensation in the face of environmental change. Yet, it remains to be determined if the activation of beneficial phenotypes requires direct exposure throughout development, or if compensation can be obtained just through the experience of previous generations. In this study, we exposed three generations of a tropical damselfish to combinations of current-day (Control) and projected future (+1.5°C) water temperatures. Acclimation was evaluated with phenotypic (oxygen consumption, hepatosomatic index, physical condition) and molecular (liver gene expression) measurements of third-generation juveniles. Exposure of grandparents/parents to warm conditions improved the aerobic capacity of fish regardless of thermal conditions experienced afterwards, representing a true transgenerational effect. This coincided with patterns of gene expression related to inflammation and immunity seen in the third generation. Parental effects due to reproductive temperature significantly affected the physical condition and routine metabolic rate (oxygen consumption) of offspring, but had little impact on gene expression of the F3. Developmental temperature of juveniles, and whether they matched conditions during parental reproduction, had the largest influence on the liver transcriptional program. Using a combination of both phenotypic and molecular approaches, this study highlights how the conditions experienced by both previous and current generations can influence plasticity to global warming in upcoming decades.
Collapse
Affiliation(s)
- Moisés A. Bernal
- Department of Biological SciencesAuburn UniversityAuburnAlabamaUSA
| | - Timothy Ravasi
- Marine Climate Change UnitOkinawa Institute of Science and Technology Graduate UniversityOnna‐son, OkinawaJapan
- ARC Centre of Excellence for Coral Reef StudiesJames Cook UniversityTownsvilleQLDAustralia
| | - Giverny G. Rodgers
- College of Science and EngineeringJames Cook UniversityTownsvilleQLDAustralia
| | - Philip L. Munday
- ARC Centre of Excellence for Coral Reef StudiesJames Cook UniversityTownsvilleQLDAustralia
| | - Jennifer M. Donelson
- ARC Centre of Excellence for Coral Reef StudiesJames Cook UniversityTownsvilleQLDAustralia
| |
Collapse
|
7
|
A resource-poor developmental diet reduces adult aggression in male Drosophila melanogaster. Behav Ecol Sociobiol 2021; 75:110. [PMID: 34720349 PMCID: PMC8549984 DOI: 10.1007/s00265-021-03050-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 06/26/2021] [Accepted: 06/30/2021] [Indexed: 12/01/2022]
Abstract
Aggressive behaviours occur throughout the animal kingdom and agonistic contests often govern access to resources. Nutrition experienced during development has the potential to influence aggressive behaviours in adults through effects on growth, energy budgets and an individual’s internal state. In particular, resource-poor developmental nutrition might decrease adult aggression by limiting growth and energy budgets, or alternatively might increase adult aggression by enhancing motivation to compete for resources. However, the direction of this relationship—and effects of developmental nutrition experienced by rivals—remains unknown in most species, limiting understanding of how early-life environments contribute to variation in aggression. We investigated these alternative hypotheses by assessing male-male aggression in adult fruit flies, Drosophila melanogaster, that developed on a low-, medium- or high-resource diet, manipulated via yeast content. We found that a low-resource developmental diet reduced the probability of aggressive lunges in adults, as well as threat displays against rivals that developed on a low-resource diet. These effects appeared to be independent of diet-related differences in body mass. Males performed relatively more aggression on a central food patch when facing rivals of a low-resource diet, suggesting that developmental diet affects aggressive interactions through social effects in addition to individual effects. Our finding that resource-poor developmental diets reduce male-male aggression in D. melanogaster is consistent with the idea that resource budgets mediate aggression and in a mass-independent manner. Our study improves understanding of the links between nutrition and aggression. Significance statement Early-life nutrition can influence social behaviours in adults. Aggression is a widespread social behaviour with important consequences for fitness. Using the fruit fly, Drosophila melanogaster, we show that a poor developmental diet reduces aspects of adult aggressive behaviour in males. Furthermore, males perform more aggression near food patches when facing rivals of poor nutrition. This suggests that early-life nutrition affects aggressive interactions through social effects in addition to individual effects.
Collapse
|
8
|
Harrison ND, Maag N, Haverkamp PJ, Ganswindt A, Manser MB, Clutton-Brock TH, Ozgul A, Cozzi G. Behavioural change during dispersal and its relationship to survival and reproduction in a cooperative breeder. J Anim Ecol 2021; 90:2637-2650. [PMID: 34258771 PMCID: PMC8597146 DOI: 10.1111/1365-2656.13569] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 07/07/2021] [Indexed: 12/12/2022]
Abstract
The ability of dispersing individuals to adjust their behaviour to changing conditions is instrumental in overcoming challenges and reducing dispersal costs, consequently increasing overall dispersal success. Understanding how dispersers' behaviour and physiology change during the dispersal process, and how they differ from resident individuals, can shed light on the mechanisms by which dispersers increase survival and maximise reproduction. By analysing individual behaviour and concentrations of faecal glucocorticoid metabolites (fGCM), a stress‐associated biomarker, we sought to identify the proximate causes behind differences in survival and reproduction between dispersing and resident meerkats Suricata suricatta. We used data collected on 67 dispersing and 108 resident females to investigate (a) which individual, social and environmental factors are correlated to foraging and vigilance, and whether the role of such factors differs among dispersal phases, and between dispersers and residents; (b) how time allocated to either foraging or vigilance correlated to survival in dispersers and residents and (c) the link between aggression and change in fGCM concentration, and their relationship with reproductive rates in dispersing groups and resident groups with either long‐established or newly established dominant females. Time allocated to foraging increased across dispersal phases, whereas time allocated to vigilance decreased. Time allocated to foraging and vigilance correlated positively and negatively, respectively, with dispersers' group size. We did not find a group size effect for residents. High proportions of time allocated to foraging correlated with high survival, and more so in dispersers, suggesting that maintaining good physical condition may reduce mortality during dispersal. Furthermore, while subordinate individuals rarely reproduced in resident groups, the conception rate of subordinates in newly formed dispersing groups was equal to that of their dominant individuals. Mirroring conception rates, in resident groups, fGCM concentrations were lower in subordinates than in dominants, whereas in disperser groups, fGCM concentrations did not differ between subordinates and dominants. Our results, which highlight the relationship between behavioural and physiological factors and demographic rates, provide insights into some of the mechanisms that individuals of a cooperative species can use to increase overall dispersal success.
Collapse
Affiliation(s)
- Natasha D Harrison
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland.,Kalahari Research Centre, Kuruman River Reserve, Van Zylsrus, South Africa
| | - Nino Maag
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland.,Kalahari Research Centre, Kuruman River Reserve, Van Zylsrus, South Africa
| | - Paul J Haverkamp
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| | - André Ganswindt
- Mammal Research Institute, University of Pretoria, Hatfield, South Africa
| | - Marta B Manser
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland.,Kalahari Research Centre, Kuruman River Reserve, Van Zylsrus, South Africa
| | - Tim H Clutton-Brock
- Kalahari Research Centre, Kuruman River Reserve, Van Zylsrus, South Africa.,Mammal Research Institute, University of Pretoria, Hatfield, South Africa.,Department of Zoology, University of Cambridge, Cambridge, UK
| | - Arpat Ozgul
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland.,Kalahari Research Centre, Kuruman River Reserve, Van Zylsrus, South Africa
| | - Gabriele Cozzi
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland.,Kalahari Research Centre, Kuruman River Reserve, Van Zylsrus, South Africa
| |
Collapse
|
9
|
Bao MH, Xu XM, Huo DL, Cao J, Zhao ZJ. The effect of aggression II: Acclimation to a high ambient temperature reduces territorial aggression in male striped hamsters (Cricetulus barabensis). Horm Behav 2021; 132:104993. [PMID: 33991799 DOI: 10.1016/j.yhbeh.2021.104993] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 05/02/2021] [Accepted: 05/03/2021] [Indexed: 12/01/2022]
Abstract
Thyroid hormones have a profound influence on development, cellular differentiation and metabolism, and are also suspected of playing a role in aggression. We measured territorial aggression, body temperature (Tb) and serum thyroid hormones levels of male striped hamsters (Cricetulus barabensis) acclimated to either cold (5 °C), cool (21 °C) or hot (34 °C) ambient temperatures. The effects of methimazole on territorial aggression, food intake, metabolic rate and serum thyroid hormone levels, were also examined. Territorial aggression was significantly lower in male hamsters acclimated to the hot temperature compared to those acclimated to the cool or cold temperatures. Tb significantly increased during aggressive territorial interactions with intruders but did not significantly differ among the three temperature treatments. Serum T3, T4 and cortisol levels of hamsters acclimated to 34 °C were significantly lower than those acclimated to 21 °C. In addition to significantly reducing territorial aggression, treatment with methimazole also significantly reduced serum T3 and T4 levels, Tb and metabolic rate. These results suggest that exposure to high temperatures reduces the capacity of hamsters to dissipate heat causing them to lower their metabolic rate, which, in turn, causes them to reduce territorial aggression to prevent hyperthermia. The lower metabolic rate mediated by down-regulated thyroid hormones inhibits territorial aggression and could thereby determine the outcome of territorial conflicts.
Collapse
Affiliation(s)
- Meng-Huan Bao
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Xiao-Ming Xu
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Da-Liang Huo
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Jing Cao
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Zhi-Jun Zhao
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China.
| |
Collapse
|
10
|
Bath E, Edmunds D, Norman J, Atkins C, Harper L, Rostant WG, Chapman T, Wigby S, Perry JC. Sex ratio and the evolution of aggression in fruit flies. Proc Biol Sci 2021; 288:20203053. [PMID: 33726599 PMCID: PMC8059548 DOI: 10.1098/rspb.2020.3053] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Aggressive behaviours are among the most striking displayed by animals, and aggression strongly impacts fitness in many species. Aggression varies plastically in response to the social environment, but we lack direct tests of how aggression evolves in response to intra-sexual competition. We investigated how aggression in both sexes evolves in response to the competitive environment, using populations of Drosophila melanogaster that we experimentally evolved under female-biased, equal, and male-biased sex ratios. We found that after evolution in a female-biased environment—with less male competition for mates—males fought less often on food patches, although the total frequency and duration of aggressive behaviour did not change. In females, evolution in a female-biased environment—where female competition for resources is higher—resulted in more frequent aggressive interactions among mated females, along with a greater increase in post-mating aggression. These changes in female aggression could not be attributed solely to evolution either in females or in male stimulation of female aggression, suggesting that coevolved interactions between the sexes determine female post-mating aggression. We found evidence consistent with a positive genetic correlation for aggression between males and females, suggesting a shared genetic basis. This study demonstrates the experimental evolution of a behaviour strongly linked to fitness, and the potential for the social environment to shape the evolution of contest behaviours.
Collapse
Affiliation(s)
- Eleanor Bath
- Department of Zoology, University of Oxford, 11a Mansfield Road, Oxford OX1 3SZ, UK
| | - Danielle Edmunds
- Department of Zoology, University of Oxford, 11a Mansfield Road, Oxford OX1 3SZ, UK
| | - Jessica Norman
- Department of Zoology, University of Oxford, 11a Mansfield Road, Oxford OX1 3SZ, UK
| | - Charlotte Atkins
- Department of Zoology, University of Oxford, 11a Mansfield Road, Oxford OX1 3SZ, UK
| | - Lucy Harper
- Department of Zoology, University of Oxford, 11a Mansfield Road, Oxford OX1 3SZ, UK
| | - Wayne G Rostant
- School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, UK
| | - Tracey Chapman
- School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, UK
| | - Stuart Wigby
- Department of Zoology, University of Oxford, 11a Mansfield Road, Oxford OX1 3SZ, UK.,Department of Evolution, Ecology, and Behaviour, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Jennifer C Perry
- Department of Zoology, University of Oxford, 11a Mansfield Road, Oxford OX1 3SZ, UK.,School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, UK
| |
Collapse
|
11
|
Liu J, Huang S, Li G, Zhao J, Lu W, Zhang Z. High housing density increases stress hormone- or disease-associated fecal microbiota in male Brandt's voles (Lasiopodomys brandtii). Horm Behav 2020; 126:104838. [PMID: 32791065 DOI: 10.1016/j.yhbeh.2020.104838] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 08/03/2020] [Accepted: 08/04/2020] [Indexed: 12/31/2022]
Abstract
Density-dependence is an important mechanism in the population regulation of small mammals. Stressors induced by high-density (e.g., crowding and aggression) can cause physiological and neurological disorders, and are hypothesized to be associated with alterations in gut microbiota, which may in turn reduce the fitness of animals by increasing stress- or disease-associated microbes. In this study, we examined the effects of housing density on the hormone levels, immunity, and composition of gut microbiota in male Brandt's voles (Lasiopodomys brandtii) by conducting two specific housing density experiments with or without physical contact between voles. Voles in high density groups exhibited higher serum corticosterone (CORT), serotonin (5-HT), and immunoglobulin G (IgG) levels, as well as higher testosterone (T) levels only in the experiment with physical contact. Meanwhile, high-density treatments induced significant changes in the composition of gut microbiota by increasing disease-associated microbes. The levels of hormones and immunity (i.e., CORT, 5-HT, and IgG) elevated by the high density treatment were significantly correlated with some specific microbes. These results imply that high-density-induced stress may shape the fitness of animals under natural conditions by altering their gut microbiota. Our study provides novel insights into the potential roles of gut microbiota in the density-dependent population regulation of small rodents as well as the potential mechanisms underlying psychological disorders in humans and animals under crowded conditions.
Collapse
Affiliation(s)
- Jing Liu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuli Huang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guoliang Li
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jidong Zhao
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Lu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhibin Zhang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
12
|
Archer LC, Hutton SA, Harman L, Poole WR, Gargan P, McGinnity P, Reed TE. Metabolic traits in brown trout ( Salmo trutta) vary in response to food restriction and intrinsic factors. CONSERVATION PHYSIOLOGY 2020; 8:coaa096. [PMID: 33093959 PMCID: PMC7566963 DOI: 10.1093/conphys/coaa096] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 09/15/2020] [Accepted: 09/30/2020] [Indexed: 06/11/2023]
Abstract
Metabolic rates vary hugely within and between populations, yet we know relatively little about factors causing intraspecific variation. Since metabolic rate determines the energetic cost of life, uncovering these sources of variation is important to understand and forecast responses to environmental change. Moreover, few studies have examined factors causing intraspecific variation in metabolic flexibility. We explore how extrinsic environmental conditions and intrinsic factors contribute to variation in metabolic traits in brown trout, an iconic and polymorphic species that is threatened across much of its native range. We measured metabolic traits in offspring from two wild populations that naturally show life-history variation in migratory tactics (one anadromous, i.e. sea-migratory, one non-anadromous) that we reared under either optimal food or experimental conditions of long-term food restriction (lasting between 7 and 17 months). Both populations showed decreased standard metabolic rates (SMR-baseline energy requirements) under low food conditions. The anadromous population had higher maximum metabolic rate (MMR) than the non-anadromous population, and marginally higher SMR. The MMR difference was greater than SMR and consequently aerobic scope (AS) was higher in the anadromous population. MMR and AS were both higher in males than females. The anadromous population also had higher AS under low food compared to optimal food conditions, consistent with population-specific effects of food restriction on AS. Our results suggest different components of metabolic rate can vary in their response to environmental conditions, and according to intrinsic (population-background/sex) effects. Populations might further differ in their flexibility of metabolic traits, potentially due to intrinsic factors related to life history (e.g. migratory tactics). More comparisons of populations/individuals with divergent life histories will help to reveal this. Overall, our study suggests that incorporating an understanding of metabolic trait variation and flexibility and linking this to life history and demography will improve our ability to conserve populations experiencing global change.
Collapse
Affiliation(s)
- Louise C Archer
- School of Biological, Earth and Environmental Sciences, University College Cork, Distillery Fields, North Mall, Cork T23 TK30, Ireland
- Environmental Research Institute, University College Cork, Lee Road, Cork T23 XE10, Ireland
| | - Stephen A Hutton
- School of Biological, Earth and Environmental Sciences, University College Cork, Distillery Fields, North Mall, Cork T23 TK30, Ireland
- Environmental Research Institute, University College Cork, Lee Road, Cork T23 XE10, Ireland
| | - Luke Harman
- School of Biological, Earth and Environmental Sciences, University College Cork, Distillery Fields, North Mall, Cork T23 TK30, Ireland
- Environmental Research Institute, University College Cork, Lee Road, Cork T23 XE10, Ireland
| | - W Russell Poole
- Marine Institute, Furnace, Newport, Co. Mayo F28 PF65, Ireland
| | - Patrick Gargan
- Inland Fisheries Ireland, 3044 Lake Drive, Citywest Business Campus, Dublin D24 Y265, Ireland
| | - Philip McGinnity
- School of Biological, Earth and Environmental Sciences, University College Cork, Distillery Fields, North Mall, Cork T23 TK30, Ireland
- Marine Institute, Furnace, Newport, Co. Mayo F28 PF65, Ireland
| | - Thomas E Reed
- School of Biological, Earth and Environmental Sciences, University College Cork, Distillery Fields, North Mall, Cork T23 TK30, Ireland
- Environmental Research Institute, University College Cork, Lee Road, Cork T23 XE10, Ireland
| |
Collapse
|
13
|
Tkaczynski PJ, Mielke A, Samuni L, Preis A, Wittig RM, Crockford C. Long-term repeatability in social behaviour suggests stable social phenotypes in wild chimpanzees. ROYAL SOCIETY OPEN SCIENCE 2020; 7:200454. [PMID: 32968512 PMCID: PMC7481694 DOI: 10.1098/rsos.200454] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 07/09/2020] [Indexed: 05/07/2023]
Abstract
Consistent individual differences in social phenotypes have been observed in many animal species. Changes in demographics, dominance hierarchies or ecological factors, such as food availability or disease prevalence, are expected to influence decision-making processes regarding social interactions. Therefore, it should be expected that individuals show flexibility rather than stability in social behaviour over time to maximize the fitness benefits of social living. Understanding the processes that create and maintain social phenotypes requires data encompassing a range of socioecological settings and variation in intrinsic state or life-history stage or strategy. Using observational data spanning up to 19 years for some individuals, we demonstrate that multiple types of social behaviour are repeatable over the long term in wild chimpanzees, a long-lived species with complex fission-fusion societies. We controlled for temporal, ecological and demographic changes, limiting pseudo-repeatability. We conclude that chimpanzees living in natural ecological settings have relatively stable long-term social phenotypes over years that may be independent of life-history or reproductive strategies. Our results add to the growing body of the literature suggesting consistent individual differences in social tendencies are more likely the rule rather than the exception in group-living animals.
Collapse
Affiliation(s)
- Patrick J. Tkaczynski
- Department of Human Behaviour, Ecology and Culture, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Alexander Mielke
- School of Anthropology and Museum Ethnography, University of Oxford, Oxford, UK
| | - Liran Samuni
- Department of Human Behaviour, Ecology and Culture, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA
- Taï Chimpanzee Project, Centre Suisse de Recherches Scientifiques, Abidjan, Côte d'Ivoire
| | - Anna Preis
- Wild Chimpanzee Foundation, Conakry, Guinea
| | - Roman M. Wittig
- Department of Human Behaviour, Ecology and Culture, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Taï Chimpanzee Project, Centre Suisse de Recherches Scientifiques, Abidjan, Côte d'Ivoire
| | - Catherine Crockford
- Department of Human Behaviour, Ecology and Culture, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Taï Chimpanzee Project, Centre Suisse de Recherches Scientifiques, Abidjan, Côte d'Ivoire
| |
Collapse
|
14
|
Liss KCM, Lopez LK, Donelson JM, Wong MYL. Predator–prey interactions and metabolic rates are altered in stable and unstable groups in a social fish. OIKOS 2020. [DOI: 10.1111/oik.06690] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Katharina C. M. Liss
- Centre for Sustainable Ecosystems Solutions, School of Earth, Atmospheric and Life Sciences, Univ. of Wollongong Wollongong NSW 2522 Australia
| | - Laura K. Lopez
- LSA Ecology and Evolutionary Biology, Univ. of Michigan MI USA
| | - Jennifer M. Donelson
- ARC Centre of Excellence for Coral Reef Studies, James Cook Univ. Townsville QLD Australia
| | - Marian Y. L. Wong
- Centre for Sustainable Ecosystems Solutions, School of Earth, Atmospheric and Life Sciences, Univ. of Wollongong Wollongong NSW 2522 Australia
| |
Collapse
|
15
|
Temporal and genetic variation in female aggression after mating. PLoS One 2020; 15:e0229633. [PMID: 32348317 PMCID: PMC7190144 DOI: 10.1371/journal.pone.0229633] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 03/31/2020] [Indexed: 12/19/2022] Open
Abstract
Aggression between individuals of the same sex is almost ubiquitous across the animal kingdom. Winners of intrasexual contests often garner considerable fitness benefits, through greater access to mates, food, or social dominance. In females, aggression is often tightly linked to reproduction, with females displaying increases in aggressive behavior when mated, gestating or lactating, or when protecting dependent offspring. In the fruit fly, Drosophila melanogaster, females spend twice as long fighting over food after mating as when they are virgins. However, it is unknown when this increase in aggression begins or whether it is consistent across genotypes. Here we show that aggression in females increases between 2 to 4 hours after mating and remains elevated for at least a week after a single mating. In addition, this increase in aggression 24 hours after mating is consistent across three diverse genotypes, suggesting this may be a universal response to mating in the species. We also report here the first use of automated tracking and classification software to study female aggression in Drosophila and assess its accuracy for this behavior. Dissecting the genetic diversity and temporal patterns of female aggression assists us in better understanding its generality and adaptive function, and will facilitate the identification of its underlying mechanisms.
Collapse
|
16
|
Chun H, Leung C, Wen SW, McDonald J, Shin HH. Maternal exposure to air pollution and risk of autism in children: A systematic review and meta-analysis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 256:113307. [PMID: 31733973 DOI: 10.1016/j.envpol.2019.113307] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 08/22/2019] [Accepted: 09/24/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND The number of children diagnosed with autism spectrum disorder (ASD) has been increasing. Previous studies suggested potential association between pregnancy air pollution exposure and ASD. This systematic review and meta-analysis is intended to summarize the association between maternal exposure to outdoor air pollution and ASD in children by trimester based on recent studies. METHODS A systematic literature search in 3 databases (Medline, Embase, and Web of Science) was performed using subject headings related to ASD and air pollution since 2007. Eligible studies were screened and evaluated based on predetermined criteria. For meta-analyses, the studies were grouped by air pollutant and exposure time (prenatal period and trimesters). Within-group studies were standardized by log odds ratio (OR) and then combined by three meta-analysis methods: frequentist fixed and random effects models, and Bayesian random effects model. RESULTS Initial search identified 1564 papers, of which 25 studies remained for final analysis after duplicates and ineligible studies were removed. Of the 25 studies, 13, 14, 12, and 7 studies investigated ASD in children associated with PM2.5, PM10, NO2, and ozone, respectively. The frequentist and Bayesian random effects models resulted in different statistical significance. For prenatal period, frequentist meta-analysis returned significant pooled ORs with 95% confidence intervals, 1.06(1.01,1.11) for PM2.5 and 1.02(1.01,1.04) for NO2, whereas Bayesian meta-analysis showed similar ORs with wider 95% posterior intervals, 1.06(1.00,1.13) for PM2.5 and 1.02(1.00,1.05) for NO2. Third trimester appeared to have higher pooled ORs for PM2.5, PM10, and ozone, but patterns in the time-varying associations over the trimester were inconsistent. CONCLUSIONS For positive association between maternal exposure to ambient air pollution and ASD in children, there is some evidence for PM2.5, weak evidence for NO2 and little evidence for PM10 and ozone. However, patterns in associations over trimesters were inconsistent among studies and among air pollutants.
Collapse
Affiliation(s)
- HeeKyoung Chun
- Jiann-Ping Hsu College of Public Health, Georgia Southern University, GA, USA
| | - Cheryl Leung
- Department of Obstetrics, Gynecology, and Newborn Care, University of Ottawa, Ottawa, ON, Canada
| | - Shi Wu Wen
- Department of Obstetrics, Gynecology, and Newborn Care, University of Ottawa, Ottawa, ON, Canada; Ottawa Hospital Research Institute Clinical Epidemiology, Ottawa, ON, Canada; School of Epidemiology and Public Health, University of Ottawa, Ottawa, ON, Canada
| | - Judy McDonald
- McLaughlin Centre for Population Health Risk Assessment, University of Ottawa, Ottawa, ON, Canada
| | - Hwashin H Shin
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, Canada; Department of Mathematics and Statistics, Queen's University, Kingston, ON, Canada.
| |
Collapse
|
17
|
The role of social network behavior, swimming performance, and fish size in the determination of angling vulnerability in bluegill. Behav Ecol Sociobiol 2019. [DOI: 10.1007/s00265-019-2754-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
18
|
The effects of water temperature on the juvenile performance of two tropical damselfishes expatriating to temperate reefs. Sci Rep 2019; 9:13937. [PMID: 31558794 PMCID: PMC6763422 DOI: 10.1038/s41598-019-50303-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 08/29/2019] [Indexed: 12/19/2022] Open
Abstract
Ocean warming associated with global climate change is already inducing geographic range shifts of marine species. Juvenile coral reef fishes transported into temperate latitudes (termed ‘vagrant’ fishes) can experience winter water temperatures below their normal thermal minimum. Such environmental extremes may increase energetic costs for such fishes, resulting in reduced performance, which may be the governing factor that limits the potential for poleward range expansion of such fishes. This study compared the juvenile physiological performance and behaviour of two congeneric tropical damselfishes which settle during austral summer months within temperate eastern Australia: Abudefduf vaigiensis have an extended southern range, and lower threshold survival temperature than the congeneric A. whitleyi. Physiological and behavioural performance parameters that may be affected by cooler temperature regimes at higher latitudes were measured in aquaria. Lower water temperature resulted in reduced growth rates, feeding rates, burst escape speed and metabolic rates of both species, with significantly reduced performance (up to six-fold reductions) for fishes reared at 18 °C relative to 22 °C and 26 °C. However, A. whitleyi exhibited lower growth rates than A. vaigiensis across all temperatures, and lower aerobic capacity at the lowest temperature (18 °C). This difference between species in growth and metabolic capacity suggests that the extended southern distribution and greater overwintering success of A. vaigiensis, in comparison to A. whitleyi is related to thermal performance parameters which are critical in maintaining individual health and survival. Our results support previous findings in the region that water temperature below 22 °C represents a critical physiological threshold for tropical Abudefduf species expatriating into temperate south-eastern Australia.
Collapse
|
19
|
Wu Y, Whiting MJ, Fu J, Qi Y. The driving forces behind female-female aggression and its fitness consequence in an Asian agamid lizard. Behav Ecol Sociobiol 2019. [DOI: 10.1007/s00265-019-2686-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
20
|
Bath E, Morimoto J, Wigby S. The developmental environment modulates mating-induced aggression and fighting success in adult female Drosophila. Funct Ecol 2018; 32:2542-2552. [PMID: 31007331 PMCID: PMC6472669 DOI: 10.1111/1365-2435.13214] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 08/31/2018] [Indexed: 12/23/2022]
Abstract
Competition over access to resources early in life can influence development, and, in turn, affect competitive phenotypes in reproductive adults. Theory predicts that competition between adult females should be especially context-dependent, because of constraints imposed by high costs of reproduction. However, the potential impact of developmental environments on competition in adult females remains little understood.In Drosophila melanogaster, the developmental environment can strongly influence adult condition, and prime adult competitive behaviour. In this species, female-female aggression is dependent on reproductive state and increases after mating due to the receipt of sperm and seminal fluid components. However, the effects of the developmental environment on adult female aggression, and any potential interactions with mating status, are unknown.To address this problem, we first raised flies at low and high larval density, which altered competition over limited resources, produced large and small adult females, respectively, and potentially primed them for differing levels of adult competition. We then fought the resulting adult females, either as virgins, or after receiving aggression-stimulating ejaculates at mating, to test for interacting effects.We found, as expected, that mating elevated contest duration. However, this mating-induced boost in aggression was strongly exacerbated for high density (small) females. Low density (large) females won more contests overall, but were not more successful in fights after mating. In contrast, mating increased the fighting success in females raised in high density environments.Our results suggest that individuals who experience competitive, resource-limited, rearing conditions are more sensitive to the aggression-stimulating effects of the male ejaculate. This finding highlights the importance of the developmental environment in mediating adult social interactions and provides support for the theory that female-female aggression should be highly context-dependent. A http://onlinelibrary.wiley.com/doi/10.1111/1365-2435.13214/suppinfo is available for this article.
Collapse
Affiliation(s)
- Eleanor Bath
- Department of Zoology, Edward Grey InstituteUniversity of OxfordOxfordUK
- Christ Church CollegeUniversity of OxfordOxfordUK
| | - Juliano Morimoto
- Department of Biological SciencesMacquarie UniversityNorth RydeNSWAustralia
- Programa de Pós‐Graduação em Ecologia e ConservaçãoFederal University of ParanáCuritibaBrazil
| | - Stuart Wigby
- Department of Zoology, Edward Grey InstituteUniversity of OxfordOxfordUK
| |
Collapse
|
21
|
Bernal MA, Donelson JM, Veilleux HD, Ryu T, Munday PL, Ravasi T. Phenotypic and molecular consequences of stepwise temperature increase across generations in a coral reef fish. Mol Ecol 2018; 27:4516-4528. [PMID: 30267545 DOI: 10.1111/mec.14884] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 09/04/2018] [Accepted: 09/14/2018] [Indexed: 12/12/2022]
Abstract
Global warming will have far-reaching consequences for marine species over coming decades, yet the magnitude of these effects may depend on the rate of warming across generations. Recent experiments show coral reef fishes can compensate the metabolic challenges of elevated temperature when warm conditions are maintained across generations. However, the effects of a gradual temperature increase across generations remain unknown. In the present study, we analysed metabolic and molecular traits in the damselfish Acanthochromis polyacanthus that were exposed to +1.5°C in the first generation and +3.0°C in the second (Step +3.0°C). This treatment of stepwise warming was compared to fish reared at current-day temperatures (Control), second-generation fish of control parents reared at +3.0°C (Developmental +3.0°C) and fish exposed to elevated temperatures for two generations (Transgenerational +1.5°C and Transgenerational +3.0°C). Hepatosomatic index, oxygen consumption and liver gene expression were compared in second-generation fish of the multiple treatments. Hepatosomatic index increased in fish that developed at +3.0°C, regardless of the parental temperature. Routine oxygen consumption of Step +3.0°C fish was significantly higher than Control; however, their aerobic scope recovered to the same level as Control fish. Step +3.0°C fish exhibited significant upregulation of genes related to mitochondrial activity and energy production, which could be associated with their increased metabolic rates. These results indicate that restoration of aerobic scope is possible when fish experience gradual thermal increase across multiple generations, but the metabolic and molecular responses are different from fish reared at the same elevated thermal conditions in successive generations.
Collapse
Affiliation(s)
- Moisés A Bernal
- KAUST Environmental Epigenetics Program (KEEP), Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia
| | - Jennifer M Donelson
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland, Australia
| | - Heather D Veilleux
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland, Australia
| | - Taewoo Ryu
- APEC Climate Center (APCC), Busan, Republic of Korea
| | - Philip L Munday
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland, Australia
| | - Timothy Ravasi
- KAUST Environmental Epigenetics Program (KEEP), Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia
| |
Collapse
|
22
|
Xu XM, Chi QS, Cao J, Zhao ZJ. The effect of aggression I: The increases of metabolic cost and mobilization of fat reserves in male striped hamsters. Horm Behav 2018; 98:55-62. [PMID: 29288636 DOI: 10.1016/j.yhbeh.2017.12.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2017] [Revised: 12/14/2017] [Accepted: 12/24/2017] [Indexed: 10/18/2022]
Abstract
Aggression can benefit individuals by enhancing their dominance and thereby their ability to acquire and retain resources that increase survival or fitness. Engaging in aggressive behavior costs energy and how animals manage their energy budget to accommodate aggression remains unclear. We conducted three experiments to examine changes in physiological, behavioral and hormonal markers indicative of energy budget in male striped hamsters subject to resident-intruder aggression tests. Body temperature, metabolic rate and serum corticosterone levels significantly increased in resident hamsters immediately after the introduction of intruders. Energy intake did not change, but the metabolic rate of residents increased by 16.1% after 42-days of repeated encounters with intruders. Residents had significantly decreased body fat content and serum thyroxine (T4) levels, and a considerably elevated tri-iodothyronine (T3)/T4 ratio compared to a control group that had no intruders. Attack latency considerably shortened, and the number of attack bouts and total duration of attacks, significantly increased in residents on day 42 compared to day 1 of experiments. These findings may suggest that the conversion of T4 to T3 is involved in defensive aggression behavior. The mobilization of fat reserves resulting in lean body mass is probably common response to the increased metabolic cost of aggression in small mammals. Aggressive behavior, which is important for the successful acquisition and defense of resources, may be of significance for adaptation and evolution of metabolic rate.
Collapse
Affiliation(s)
- Xiao-Ming Xu
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Qing-Sheng Chi
- State Key Laboratory of Integrated Management for Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100080, China
| | - Jing Cao
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Zhi-Jun Zhao
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China.
| |
Collapse
|
23
|
Ward AJW, Herbert-Read JE, Schaerf TM, Seebacher F. The physiology of leadership in fish shoals: leaders have lower maximal metabolic rates and lower aerobic scope. J Zool (1987) 2018. [DOI: 10.1111/jzo.12534] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- A. J. W. Ward
- School of Life and Environmental Sciences; University of Sydney; Sydney NSW Australia
| | - J. E. Herbert-Read
- Zoologiska institutionen: Etologi; Stockholm University; Stockholm Sweden
| | - T. M. Schaerf
- School of Life and Environmental Sciences; University of Sydney; Sydney NSW Australia
- School of Science and Technology; University of New England; Armidale NSW Australia
| | - F. Seebacher
- School of Life and Environmental Sciences; University of Sydney; Sydney NSW Australia
| |
Collapse
|
24
|
Riddell EA, McPhail J, Damm JD, Sears MW. Trade‐offs between water loss and gas exchange influence habitat suitability of a woodland salamander. Funct Ecol 2018. [DOI: 10.1111/1365-2435.13030] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Eric A. Riddell
- Department of Biological Sciences Clemson University Clemson SC USA
| | - Jared McPhail
- Department of Biological Sciences Clemson University Clemson SC USA
- Carnegie Melon University Pittsburgh PA USA
| | - Jason D. Damm
- Department of Biological Sciences Clemson University Clemson SC USA
| | - Michael W. Sears
- Department of Biological Sciences Clemson University Clemson SC USA
| |
Collapse
|
25
|
|
26
|
Ghanizadeh-Kazerouni E, Franklin CE, Seebacher F. Living in flowing water increases resistance to ultraviolet B radiation. ACTA ACUST UNITED AC 2017; 220:582-587. [PMID: 28202648 DOI: 10.1242/jeb.151019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 11/24/2016] [Indexed: 01/09/2023]
Abstract
Ultraviolet B radiation (UV-B) is an important environmental driver that can affect locomotor performance negatively by inducing production of reactive oxygen species (ROS). Prolonged regular exercise increases antioxidant activities, which may alleviate the negative effects of UV-B-induced ROS. Animals naturally performing exercise, such as humans performing regular exercise or fish living in flowing water, may therefore be more resilient to the negative effects of UV-B. We tested this hypothesis in a fully factorial experiment, where we exposed mosquitofish (Gambusia holbrooki) to UV-B and control (no UV-B) conditions in flowing and still water. We show that fish exposed to UV-B and kept in flowing water had increased sustained swimming performance (Ucrit), increased antioxidant defences (catalase activity and glutathione concentrations) and reduced cellular damage (lipid peroxidation and protein carbonyl concentrations) compared with fish in still water. There was no effect of UV-B or water flow on resting or maximal rates of oxygen consumption. Our results show that environmental water flow can alleviate the negative effects of UV-B-induced ROS by increasing defence mechanisms. The resultant reduction in ROS-induced damage may contribute to maintain locomotor performance. Hence, the benefits of regular exercise are 'transferred' to improve resilience to the negative impacts of UV-B. Ecologically, the mechanistic link between responses to different habitat characteristics can determine the success of animals. These dynamics have important ecological connotations when river or stream flow changes as a result of weather patterns, climate or human modifications.
Collapse
Affiliation(s)
| | - Craig E Franklin
- School of Biological Sciences, University of Queensland, St Lucia, QLD 4072, Australia
| | - Frank Seebacher
- School of Life and Environmental Sciences A08, University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
27
|
Killen SS, Calsbeek R, Williams TD. The Ecology of Exercise: Mechanisms Underlying Individual Variation in Behavior, Activity, and Performance: An Introduction to Symposium. Integr Comp Biol 2017; 57:185-194. [PMID: 28859409 PMCID: PMC5886314 DOI: 10.1093/icb/icx083] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
SYNOPSIS Wild animals often engage in intense physical activity while performing tasks vital for their survival and reproduction associated with foraging, avoiding predators, fighting, providing parental care, and migrating. In this theme issue we consider how viewing these tasks as "exercise"-analogous to that performed by human athletes-may help provide insight into the mechanisms underlying individual variation in these types of behaviors and the importance of physical activity in an ecological context. In this article and throughout this issue, we focus on four key questions relevant to the study of behavioral ecology that may be addressed by studying wild animal behavior from the perspective of exercise physiology: (1) How hard do individual animals work in response to ecological (or evolutionary) demands?; (2) Do lab-based studies of activity provide good models for understanding activity in free-living animals and individual variation in traits?; (3) Can animals work too hard during "routine" activities?; and (4) Can paradigms of "exercise" and "training" be applied to free-living animals? Attempts to address these issues are currently being facilitated by rapid technological developments associated with physiological measurements and the remote tracking of wild animals, to provide mechanistic insights into the behavior of free-ranging animals at spatial and temporal scales that were previously impossible. We further suggest that viewing the behaviors of non-human animals in terms of the physical exercise performed will allow us to fully take advantage of these technological advances, draw from knowledge and conceptual frameworks already in use by human exercise physiologists, and identify key traits that constrain performance and generate variation in performance among individuals. It is our hope that, by highlighting mechanisms of behavior and performance, the articles in this issue will spur on further synergies between physiologists and ecologists, to take advantage of emerging cross-disciplinary perspectives and technologies.
Collapse
Affiliation(s)
- Shaun S. Killen
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Graham Kerr Building, Glasgow, G12 8QQ, UK
| | - Ryan Calsbeek
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire 03755, USA
| | - Tony D. Williams
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| |
Collapse
|
28
|
Flood CE, Wong MY. Social stability in times of change: effects of group fusion and water depth on sociality in a globally invasive fish. Anim Behav 2017. [DOI: 10.1016/j.anbehav.2017.05.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
29
|
Le Roy A, Loughland I, Seebacher F. Differential effects of developmental thermal plasticity across three generations of guppies (Poecilia reticulata): canalization and anticipatory matching. Sci Rep 2017; 7:4313. [PMID: 28659598 PMCID: PMC5489511 DOI: 10.1038/s41598-017-03300-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 04/26/2017] [Indexed: 12/22/2022] Open
Abstract
Developmental plasticity can match offspring phenotypes to environmental conditions experienced by parents. Such epigenetic modifications are advantageous when parental conditions anticipate offspring environments. Here we show firstly, that developmental plasticity manifests differently in males and females. Secondly, that under stable conditions, phenotypic responses (metabolism and locomotion) accumulate across several generations. Metabolic scope in males was greater at warmer test temperatures (26–36 °C) in offspring bred at warm temperatures (29–30 °C) compared to those bred at cooler temperatures (22–23 °C), lending support to the predictive adaptive hypothesis. However, this transgenerational matching was not established until the second (F2) generation. For other responses, e.g. swimming performance in females, phenotypes of offspring bred in different thermal environments were different in the first (F1) generation, but became more similar across three generations, implying canalization. Thirdly, when environments changed across generations, the grandparental environment affected offspring phenotypes. In females, the mode of the swimming thermal performance curve shifted to coincide with the grandparental rather than the parental or offspring developmental environments, and this lag in response may represent a cost of plasticity. These findings show that the effects of developmental plasticity differ between traits, and may be modulated by the different life histories of males and females.
Collapse
Affiliation(s)
- Amélie Le Roy
- School of Life and Environmental Sciences A08, University of Sydney, NSW, 2006, Camperdown, Australia
| | - Isabella Loughland
- School of Life and Environmental Sciences A08, University of Sydney, NSW, 2006, Camperdown, Australia
| | - Frank Seebacher
- School of Life and Environmental Sciences A08, University of Sydney, NSW, 2006, Camperdown, Australia.
| |
Collapse
|
30
|
Bath E, Bowden S, Peters C, Reddy A, Tobias JA, Easton-Calabria E, Seddon N, Goodwin SF, Wigby S. Sperm and sex peptide stimulate aggression in female Drosophila. Nat Ecol Evol 2017; 1:0154. [PMID: 28580431 PMCID: PMC5447820 DOI: 10.1038/s41559-017-0154] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Female aggression towards other females is associated with reproduction in many taxa, and traditionally thought to be related to the protection or provisioning of offspring, such as through increased resource acquisition. However, the underlying reproductive factors causing aggressive behaviour in females remain unknown. Here we show that female aggression in the fruit fly Drosophila melanogaster is strongly stimulated by the receipt of sperm at mating, and in part by an associated seminal fluid protein, the sex peptide. We further show that the post-mating increase in female aggression is decoupled from the costs of egg production and from post-mating decreases in sexual receptivity. Our results suggest that male ejaculates can have a surprisingly direct influence on aggression in recipient females. Male ejaculate traits thus influence the female social competitive environment with potentially far-reaching ecological and evolutionary consequences.
Collapse
Affiliation(s)
- Eleanor Bath
- Edward Grey Institute, Department of Zoology, University of Oxford, Oxford, UK OX1 3PS
| | - Samuel Bowden
- Edward Grey Institute, Department of Zoology, University of Oxford, Oxford, UK OX1 3PS
| | - Carla Peters
- Edward Grey Institute, Department of Zoology, University of Oxford, Oxford, UK OX1 3PS
| | - Anjali Reddy
- Edward Grey Institute, Department of Zoology, University of Oxford, Oxford, UK OX1 3PS
| | - Joseph A Tobias
- Edward Grey Institute, Department of Zoology, University of Oxford, Oxford, UK OX1 3PS.,Faculty of Natural Sciences, Department of Life Sciences, Imperial College, London, UK SW7 2AZ
| | - Evan Easton-Calabria
- Department of International Development, University of Oxford, Oxford, UK OX1 3TB
| | - Nathalie Seddon
- Edward Grey Institute, Department of Zoology, University of Oxford, Oxford, UK OX1 3PS
| | - Stephen F Goodwin
- Centre for Neural Circuits and Behaviour, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK OX1 3SR
| | - Stuart Wigby
- Edward Grey Institute, Department of Zoology, University of Oxford, Oxford, UK OX1 3PS
| |
Collapse
|
31
|
Hewes ME, Delventhal K, Chaves-Campos J. Behavioral plasticity and consistency in the naked-footed mouse (Peromyscus nudipes) with habitat disturbance. J ETHOL 2017. [DOI: 10.1007/s10164-017-0517-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
32
|
Dang HM, Inagaki Y, Yamauchi Y, Kurihara T, Vo CH, Sakakibara Y. Acute Exposure to 17α-Ethinylestradiol Alters Aggressive Behavior of Mosquitofish (Gambusia affinis) Toward Japanese Medaka (Oryzias latipes). BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2017; 98:643-648. [PMID: 28160040 DOI: 10.1007/s00128-016-2016-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 12/20/2016] [Indexed: 06/06/2023]
Abstract
Behavior of the mosquitofish (Gambusia affinis) toward the Japanese medaka (Oryzias latipes) was tested under exposure to environmental 17α-ethinylestradiol (EE2), a synthetic derivative of natural estrogen, estradiol. The mosquitofish were exposed to EE2 at different concentrations-0, 0.5, 5.0, and 50.0 ng/L-for 2 days, before their behavioral changes toward the medaka were observed. Results indicate that female mosquitofish became more aggressive at the high level of EE2 (50 ng/L), in terms of how persistently they attempted to approach the medaka. The males showed increased aggressive behavior toward the medaka, by significantly increasing the number and persistence of approach attempts at the low (0.5 and 5 ng/L) levels of EE2. At the highest EE2 concentration (50 ng/L), however, the number of attempts decreased, while the persistence increased in the males showing the same pattern as in the females. All behavioral changes were reversed once EE2 was removed from the environment.
Collapse
Affiliation(s)
- Hieu M Dang
- School of Biotechnology and Food Technology, Hanoi University of Science and Technology, 1 Dai Co Viet Street, Hanoi, Vietnam
| | - Yoshihiko Inagaki
- Department of Civil and Environmental Engineering, Graduate School of Creative Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo, 169-8555, Japan
| | - Yuta Yamauchi
- Faculty of Environment, Vietnam National University of Agriculture, Ngo Xuan Quang Street, Trauquy, Hanoi, Vietnam
| | - Takaaki Kurihara
- Department of Civil and Environmental Engineering, Graduate School of Creative Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo, 169-8555, Japan
| | - Cong H Vo
- Faculty of Environment, Vietnam National University of Agriculture, Ngo Xuan Quang Street, Trauquy, Hanoi, Vietnam
| | - Yutaka Sakakibara
- Department of Civil and Environmental Engineering, Graduate School of Creative Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo, 169-8555, Japan.
| |
Collapse
|
33
|
Seebacher F, Tallis J, McShea K, James RS. Obesity-induced decreases in muscle performance are not reversed by weight loss. Int J Obes (Lond) 2017; 41:1271-1278. [PMID: 28337027 DOI: 10.1038/ijo.2017.81] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 02/22/2017] [Accepted: 03/14/2017] [Indexed: 02/06/2023]
Abstract
BACKGROUND/OBJECTIVES Obesity can affect muscle phenotypes, and may thereby constrain movement and energy expenditure. Weight loss is a common and intuitive intervention for obesity, but it is not known whether the effects of obesity on muscle function are reversible by weight loss. Here we tested whether obesity-induced changes in muscle metabolic and contractile phenotypes are reversible by weight loss. SUBJECTS/METHODS We used zebrafish (Danio rerio) in a factorial design to compare energy metabolism, locomotor capacity, muscle isometric force and work-loop power output, and myosin heavy chain (MHC) composition between lean fish, diet-induced obese fish, and fish that were obese and then returned to lean body mass following diet restriction. RESULTS Obesity increased resting metabolic rates (P<0.001) and decreased maximal metabolic rates (P=0.030), but these changes were reversible by weight loss, and were not associated with changes in muscle citrate synthase activity. In contrast, obesity-induced decreases in locomotor performance (P=0.0034), and isolated muscle isometric stress (P=0.01), work-loop power output (P<0.001) and relaxation rates (P=0.012) were not reversed by weight loss. Similarly, obesity-induced decreases in concentrations of fast and slow MHCs, and a shift toward fast MHCs were not reversed by weight loss. CONCLUSION Obesity-induced changes in locomotor performance and muscle contractile function were not reversible by weight loss. These results show that weight loss alone may not be a sufficient intervention.
Collapse
Affiliation(s)
- F Seebacher
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, Australia
| | - J Tallis
- Centre for Applied Biological and Exercise Sciences, Coventry University, Coventry, UK
| | - K McShea
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, Australia
| | - R S James
- Centre for Applied Biological and Exercise Sciences, Coventry University, Coventry, UK
| |
Collapse
|
34
|
Ghanizadeh Kazerouni E, Franklin CE, Seebacher F. Parental exposure modulates the effects of
UV
‐B on offspring in guppies. Funct Ecol 2017. [DOI: 10.1111/1365-2435.12817] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | - Craig E. Franklin
- School of Biological Sciences The University of Queensland St. Lucia QLD4072 Australia
| | - Frank Seebacher
- School of Life and Environmental Sciences A08 The University of Sydney Sydney NSW2006 Australia
| |
Collapse
|
35
|
Treberg JR, Killen SS, MacCormack TJ, Lamarre SG, Enders EC. Estimates of metabolic rate and major constituents of metabolic demand in fishes under field conditions: Methods, proxies, and new perspectives. Comp Biochem Physiol A Mol Integr Physiol 2016; 202:10-22. [DOI: 10.1016/j.cbpa.2016.04.022] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 04/26/2016] [Accepted: 04/26/2016] [Indexed: 01/19/2023]
|
36
|
Bonneaud C, Wilson RS, Seebacher F. Immune-Challenged Fish Up-Regulate Their Metabolic Scope to Support Locomotion. PLoS One 2016; 11:e0166028. [PMID: 27851769 PMCID: PMC5113038 DOI: 10.1371/journal.pone.0166028] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 10/22/2016] [Indexed: 12/24/2022] Open
Abstract
Energy-based trade-offs occur when investment in one fitness-related trait diverts energy away from other traits. The extent to which such trade-offs are shaped by limits on the rate of conversion of energy ingested in food (e.g. carbohydrates) into chemical energy (ATP) by oxidative metabolism rather than by the amount of food ingested in the first place is, however, unclear. Here we tested whether the ATP required for mounting an immune response will lead to a trade-off with ATP available for physical activity in mosquitofish (Gambusia holbrooki). To this end, we challenged fish either with lipopolysaccharide (LPS) from E. coli or with Sheep Red Blood Cells (SRBC), and measured oxygen consumption at rest and during swimming at maximum speed 24h, 48h and 7 days post-challenge in order to estimate metabolic rates. Relative to saline-injected controls, only LPS-injected fish showed a significantly greater resting metabolic rate two days post-challenge and significantly higher maximal metabolic rates two and seven days post-challenge. This resulted in a significantly greater metabolic scope two days post-challenge, with LPS-fish transiently overcompensating by increasing maximal ATP production more than would be required for swimming in the absence of an immune challenge. LPS-challenged fish therefore increased their production of ATP to compensate physiologically for the energetic requirements of immune functioning. This response would avoid ATP shortages and allow fish to engage in an aerobically-challenging activity (swimming) even when simultaneously mounting an immune response. Nevertheless, relative to controls, both LPS- and SRBC-fish displayed reduced body mass gain one week post-injection, and LPS-fish actually lost mass. The concomitant increase in metabolic scope and reduced body mass gain of LPS-challenged fish indicates that immune-associated trade-offs are not likely to be shaped by limited oxidative metabolic capacities, but may instead result from limitations in the acquisition, assimilation or efficient use of resources.
Collapse
Affiliation(s)
- Camille Bonneaud
- Centre for Ecology & Conservation, University of Exeter Penryn Campus, Penryn TR10 9FE, Cornwall, United Kingdom
- Station d’Ecologie Expérimentale du CNRS, USR 2936, 09200 Moulis, France
- * E-mail:
| | - Robbie S. Wilson
- School of Biological Sciences, University of Queensland, Brisbane St Lucia QLD 4072, Australia
| | - Frank Seebacher
- School of Biological Sciences, University of Sydney, Sydney NSW 2006, Australia
| |
Collapse
|
37
|
Rodgers GG, Tenzing P, Clark TD. Experimental methods in aquatic respirometry: the importance of mixing devices and accounting for background respiration. JOURNAL OF FISH BIOLOGY 2016; 88:65-80. [PMID: 26768972 DOI: 10.1111/jfb.12848] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 10/18/2015] [Indexed: 06/05/2023]
Abstract
In light of an increasing trend in fish biology towards using static respirometry techniques without the inclusion of a mixing mechanism and without accurately accounting for the influence of microbial (background) respiration, this paper quantifies the effect of these approaches on the oxygen consumption rates (ṀO2 ) measured from juvenile barramundi Lates calcarifer (mean ± s.e. mass = 20·31 ± 0·81 g) and adult spiny chromis damselfish Acanthochromis polyacanthus (22·03 ± 2·53 g). Background respiration changed consistently and in a sigmoidal manner over time in the treatment with a mixing device (inline recirculation pump), whereas attempts to measure background respiration in the non-mixed treatment yielded highly variable estimates of ṀO2 that were probably artefacts due to the lack of water movement over the oxygen sensor during measurement periods. This had clear consequences when accounting for background respiration in the calculations of fish ṀO2 . Exclusion of a mixing device caused a significantly lower estimate of ṀO2 in both species and reduced the capacity to detect differences between individuals as well as differences within an individual over time. There was evidence to suggest that the magnitude of these effects was dependent on the spontaneous activity levels of the fish, as the difference between mixed and non-mixed treatments was more pronounced for L. calcarifer (sedentary) than for A. polyacanthus (more spontaneously active). It is clear that respirometry set-ups for sedentary species must contain a mixing device to prevent oxygen stratification inside the respirometer. While more active species may provide a higher level of water mixing during respirometry measurements and theoretically reduce the need for a mixing device, the level of mixing cannot be quantified and may change with diurnal cycles in activity. To ensure consistency across studies without relying on fish activity levels, and to enable accurate assessments of background respiration, it is recommended that all respirometry systems should include an appropriate mixing device.
Collapse
Affiliation(s)
- G G Rodgers
- ARC Centre of Excellence for Coral Reef Studies, and College of Marine and Environmental Sciences, James Cook University, Townsville, QLD 4811, Australia
| | - P Tenzing
- AIMS@JCU Research Program, Townsville, QLD 4811, Australia
- Australian Institute of Marine Science, PMB 3, Townsville MC, Townsville, QLD 4810, Australia
| | - T D Clark
- AIMS@JCU Research Program, Townsville, QLD 4811, Australia
- Australian Institute of Marine Science, PMB 3, Townsville MC, Townsville, QLD 4810, Australia
| |
Collapse
|
38
|
Metcalfe NB, Van Leeuwen TE, Killen SS. Does individual variation in metabolic phenotype predict fish behaviour and performance? JOURNAL OF FISH BIOLOGY 2016; 88:298-321. [PMID: 26577442 PMCID: PMC4991269 DOI: 10.1111/jfb.12699] [Citation(s) in RCA: 198] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 03/16/2015] [Indexed: 05/03/2023]
Abstract
There is increasing interest in documenting and explaining the existence of marked intraspecific variation in metabolic rate in animals, with fishes providing some of the best-studied examples. After accounting for variation due to other factors, there can typically be a two to three-fold variation among individual fishes for both standard and maximum metabolic rate (SMR and MMR). This variation is reasonably consistent over time (provided that conditions remain stable), and its underlying causes may be influenced by both genes and developmental conditions. In this paper, current knowledge of the extent and causes of individual variation in SMR, MMR and aerobic scope (AS), collectively its metabolic phenotype, is reviewed and potential links among metabolism, behaviour and performance are described. Intraspecific variation in metabolism has been found to be related to other traits: fishes with a relatively high SMR tend to be more dominant and grow faster in high food environments, but may lose their advantage and are more prone to risk-taking when conditions deteriorate. In contrast to the wide body of research examining links between SMR and behavioural traits, very little work has been directed towards understanding the ecological consequences of individual variation in MMR and AS. Although AS can differ among populations of the same species in response to performance demands, virtually nothing is known about the effects of AS on individual behaviours such as those associated with foraging or predator avoidance. Further, while factors such as food availability, temperature, hypoxia and the fish's social environment are known to alter resting and MMRs in fishes, there is a paucity of studies examining how these effects vary among individuals, and how this variation relates to behaviour. Given the observed links between metabolism and measures of performance, understanding the metabolic responses of individuals to changing environments will be a key area for future research because the environment will have a strong influence on which animals survive predation, become dominant and ultimately have the highest reproductive success. Although current evidence suggests that variation in SMR may be maintained within populations via context-dependent fitness benefits, it is suggested that a more integrative approach is now required to fully understand how the environment can modulate individual performance via effects on metabolic phenotypes encompassing SMR, MMR and AS.
Collapse
Affiliation(s)
- N B Metcalfe
- Institute of Biodiversity, Animal Health & Comparative Medicine, Graham Kerr Building, University of Glasgow, Glasgow G12 8QQ, U.K
| | - T E Van Leeuwen
- Institute of Biodiversity, Animal Health & Comparative Medicine, Graham Kerr Building, University of Glasgow, Glasgow G12 8QQ, U.K
- Scottish Centre for Ecology and the Natural Environment (SCENE), University of Glasgow, Rowardennan, Loch Lomond, Glasgow G63 0AW, U.K
| | - S S Killen
- Institute of Biodiversity, Animal Health & Comparative Medicine, Graham Kerr Building, University of Glasgow, Glasgow G12 8QQ, U.K
| |
Collapse
|
39
|
Dijkstra PD, Pierotti ME, Seehausen O, Metcalfe NB. Metabolism, oxidative stress and territorial behaviour in a female colour polymorphic cichlid fish. Behav Ecol Sociobiol 2015. [DOI: 10.1007/s00265-015-2028-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
40
|
Ghanizadeh Kazerouni E, Franklin CE, Seebacher F. UV‐B radiation interacts with temperature to determine animal performance. Funct Ecol 2015. [DOI: 10.1111/1365-2435.12520] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
| | - Craig E. Franklin
- School of Biological Sciences University of Queensland St. Lucia Queensland 4072 Australia
| | - Frank Seebacher
- School of Biological Sciences A08 University of Sydney Sydney New South Wales 2006 Australia
| |
Collapse
|
41
|
Makowicz AM, Schlupp I. Effects of Female-Female Aggression in a Sexual/Unisexual Species Complex. Ethology 2015. [DOI: 10.1111/eth.12406] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
42
|
Bath E, Wigby S, Vincent C, Tobias JA, Seddon N. Condition, not eyespan, predicts contest outcome in female stalk-eyed flies, Teleopsis dalmanni. Ecol Evol 2015; 5:1826-36. [PMID: 26140199 PMCID: PMC4485964 DOI: 10.1002/ece3.1467] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Revised: 02/12/2015] [Accepted: 02/16/2015] [Indexed: 11/06/2022] Open
Abstract
In contests among males, body condition is often the key determinant of a successful outcome, with fighting ability signaled by so-called armaments, that is, exaggerated, condition-dependent traits. However, it is not known whether condition and exaggerated traits function in the same way in females. Here, we manipulated adult condition by varying larval nutrition in the stalk-eyed fly, Teleopsis dalmanni, a species in which eyespan is exaggerated in both sexes, and we measured the outcome of contests between females of similar or different body condition and relative eyespan. We found that females in higher condition, with both larger bodies and eyespan, won a higher proportion of encounters when competing against rivals of lower condition. However, when females were of equal condition, neither eyespan nor body length had an effect on the outcome of a contest. An analysis of previously published data revealed a similar pattern in males: individuals with large relative eyespan did not win significantly more encounters when competing with individuals of a similar body size. Contrary to expectations, and to previous findings in males, there was no clear effect of differences in body size or eyespan affecting contest duration in females. Taken together, our findings suggest that although eyespan can provide an honest indicator of condition, large eyespans provide no additional benefit to either sex in intrasexual aggressive encounters; body size is instead the most important factor.
Collapse
Affiliation(s)
- Eleanor Bath
- Department of Zoology, Edward Grey Institute, University of OxfordOxford, OX1 3PS, UK
| | - Stuart Wigby
- Department of Zoology, Edward Grey Institute, University of OxfordOxford, OX1 3PS, UK
| | - Claire Vincent
- Department of Zoology, Edward Grey Institute, University of OxfordOxford, OX1 3PS, UK
| | - Joseph A Tobias
- Department of Zoology, Edward Grey Institute, University of OxfordOxford, OX1 3PS, UK
| | - Nathalie Seddon
- Department of Zoology, Edward Grey Institute, University of OxfordOxford, OX1 3PS, UK
| |
Collapse
|
43
|
Svendsen JC, Tirsgaard B, Cordero GA, Steffensen JF. Intraspecific variation in aerobic and anaerobic locomotion: gilthead sea bream (Sparus aurata) and Trinidadian guppy (Poecilia reticulata) do not exhibit a trade-off between maximum sustained swimming speed and minimum cost of transport. Front Physiol 2015; 6:43. [PMID: 25741285 PMCID: PMC4330683 DOI: 10.3389/fphys.2015.00043] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 01/29/2015] [Indexed: 11/17/2022] Open
Abstract
Intraspecific variation and trade-off in aerobic and anaerobic traits remain poorly understood in aquatic locomotion. Using gilthead sea bream (Sparus aurata) and Trinidadian guppy (Poecilia reticulata), both axial swimmers, this study tested four hypotheses: (1) gait transition from steady to unsteady (i.e., burst-assisted) swimming is associated with anaerobic metabolism evidenced as excess post exercise oxygen consumption (EPOC); (2) variation in swimming performance (critical swimming speed; Ucrit) correlates with metabolic scope (MS) or anaerobic capacity (i.e., maximum EPOC); (3) there is a trade-off between maximum sustained swimming speed (Usus) and minimum cost of transport (COTmin); and (4) variation in Usus correlates positively with optimum swimming speed (Uopt; i.e., the speed that minimizes energy expenditure per unit of distance traveled). Data collection involved swimming respirometry and video analysis. Results showed that anaerobic swimming costs (i.e., EPOC) increase linearly with the number of bursts in S. aurata, with each burst corresponding to 0.53 mg O2 kg−1. Data are consistent with a previous study on striped surfperch (Embiotoca lateralis), a labriform swimmer, suggesting that the metabolic cost of burst swimming is similar across various types of locomotion. There was no correlation between Ucrit and MS or anaerobic capacity in S. aurata indicating that other factors, including morphological or biomechanical traits, influenced Ucrit. We found no evidence of a trade-off between Usus and COTmin. In fact, data revealed significant negative correlations between Usus and COTmin, suggesting that individuals with high Usus also exhibit low COTmin. Finally, there were positive correlations between Usus and Uopt. Our study demonstrates the energetic importance of anaerobic metabolism during unsteady swimming, and provides intraspecific evidence that superior maximum sustained swimming speed is associated with superior swimming economy and optimum speed.
Collapse
Affiliation(s)
- Jon C Svendsen
- Molecular Eco-physiology, Interdisciplinary Center of Marine and Environmental Research, University of Porto Porto, Portugal ; Fisheries and Maritime Museum Esbjerg, Denmark
| | - Bjørn Tirsgaard
- Marine Biological Section, Biological Institute, University of Copenhagen Helsingør, Denmark
| | - Gerardo A Cordero
- Ecology, Evolution, and Organismal Biology, Iowa State University Ames, IA, USA
| | - John F Steffensen
- Marine Biological Section, Biological Institute, University of Copenhagen Helsingør, Denmark
| |
Collapse
|
44
|
Wofford SJ, Earley RL, Moore PA. Evidence for assessment disappears in mixed-sex contests of the crayfish, Orconectes virilis. BEHAVIOUR 2015. [DOI: 10.1163/1568539x-00003265] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
During agonistic interactions, decisions about contest persistence can be informed by assessment of one’s own energy or time expenditure (self-assessment), one’s own expenditure combined with opponent inflicted costs (cumulative assessment), or through information exchange with an opponent (mutual assessment). Females and males can be expected to exhibit different strategies for contest resolution due to contrasting energetic requirements and resource valuation. We examined the assessment strategies crayfish employ during same-sex and mixed-sex fights. Two individuals interacted for 15 min, and fight duration and times spent at various intensity levels were quantified. Results indicated that both sexes employ a self-assessment strategy during same-sex fights. Evidence for assessment during mixed-sex fights was notably weaker, suggesting the resolution of mixed-sex fights involves different behavioural elements and/or sources of information. In species where mixed-sex fights are common year-round, the lack of common rules can lead to greater energy expenditure for both sexes.
Collapse
Affiliation(s)
- Sarah J. Wofford
- aBowling Green State University, 217 Life Sciences Building, Bowling Green, OH 43402, USA
- bUniversity of Michigan Biological Station, 9133 Biological Road, Pellston, MI 49769, USA
| | - Ryan L. Earley
- cUniversity of Alabama, 300 Hackberry Lane Box 870344, Tuscaloosa, AL 35487, USA
| | - Paul A. Moore
- aBowling Green State University, 217 Life Sciences Building, Bowling Green, OH 43402, USA
- bUniversity of Michigan Biological Station, 9133 Biological Road, Pellston, MI 49769, USA
| |
Collapse
|
45
|
Killen SS, Mitchell MD, Rummer JL, Chivers DP, Ferrari MCO, Meekan MG, McCormick MI. Aerobic scope predicts dominance during early life in a tropical damselfish. Funct Ecol 2014. [DOI: 10.1111/1365-2435.12296] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Shaun S. Killen
- Institute of Biodiversity, Animal Health and Comparative Medicine; College of Medical, Veterinary and Life Sciences; University of Glasgow; Glasgow G12 8QQ UK
| | - Matthew D. Mitchell
- School of Marine and Tropical Biology; James Cook University; Townsville Qld 4811 Australia
- ARC Centre of Excellence for Coral Reef Studies; James Cook University; Townsville Qld 4811 Australia
| | - Jodie L. Rummer
- ARC Centre of Excellence for Coral Reef Studies; James Cook University; Townsville Qld 4811 Australia
| | - Douglas P. Chivers
- Department of Biology; University of Saskatchewan; Saskatoon Saskatchewan Canada S7N 5E2
| | - Maud C. O. Ferrari
- Department of Biomedical Sciences; WCVM; University of Saskatchewan; Saskatoon Saskatchewan S7N 5B4 Canada
| | - Mark G. Meekan
- UWA Ocean Sciences Centre (MO96); Australian Institute of Marine Science; 35 Stirling Highway Crawley Western Australia 6009 Australia
| | - Mark I. McCormick
- School of Marine and Tropical Biology; James Cook University; Townsville Qld 4811 Australia
- ARC Centre of Excellence for Coral Reef Studies; James Cook University; Townsville Qld 4811 Australia
| |
Collapse
|
46
|
Kleeberg I, Pamminger T, Jongepier E, Papenhagen M, Foitzik S. Forewarned is forearmed: aggression and information use determine fitness costs of slave raids. Behav Ecol 2014. [DOI: 10.1093/beheco/aru084] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
47
|
Stockley P, Campbell A. Female competition and aggression: interdisciplinary perspectives. Philos Trans R Soc Lond B Biol Sci 2013; 368:20130073. [PMID: 24167303 PMCID: PMC3826202 DOI: 10.1098/rstb.2013.0073] [Citation(s) in RCA: 117] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
This paper introduces a Theme Issue combining interdisciplinary perspectives in the study of female competition and aggression. Despite a history of being largely overlooked, evidence is now accumulating for the widespread evolutionary significance of female competition. Here, we provide a synthesis of contributions to this Theme Issue on humans and other vertebrates, and highlight directions for future research. Females compete for resources needed to survive and reproduce, and for preferred mates. Although female aggression takes diverse forms, under most circumstances relatively low-risk competitive strategies are favoured, most probably due to constraints of offspring production and care. In social species, dominance relationships and threats of punishment can resolve social conflict without resort to direct aggression, and coalitions or alliances may reduce risk of retaliation. Consistent with these trends, indirect aggression is a low cost but effective form of competition among young women. Costs are also minimized by flexibility in expression of competitive traits, with aggressive behaviour and competitive signalling tailored to social and ecological conditions. Future research on female competition and the proximate mediators of female aggression will be greatly enhanced by opportunities for interdisciplinary exchange, as evidenced by contributions to this Theme Issue.
Collapse
Affiliation(s)
- Paula Stockley
- Mammalian Behaviour and Evolution Group, Institute of Integrative Biology, University of Liverpool, Leahurst Campus, Chester High Road, Neston CH64 7TE, UK
| | - Anne Campbell
- Science Laboratories, Department of Psychology, Durham University, Durham DH1 3LE, UK
| |
Collapse
|
48
|
Seebacher F, Beaman J, Little AG. Regulation of thermal acclimation varies between generations of the short-lived mosquitofish that developed in different environmental conditions. Funct Ecol 2013. [DOI: 10.1111/1365-2435.12156] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Frank Seebacher
- School of Biological Sciences A08; University of Sydney; Sydney New South Wales 2006 Australia
| | - Julian Beaman
- School of Biological Sciences A08; University of Sydney; Sydney New South Wales 2006 Australia
| | - Alexander G. Little
- School of Biological Sciences A08; University of Sydney; Sydney New South Wales 2006 Australia
| |
Collapse
|
49
|
Stead N. SOON-TO-BE MOSQUITOFISH MUMS GET AGGRESSIVE. J Exp Biol 2013. [DOI: 10.1242/jeb.084632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|