1
|
Chou PC, Huang YC, Yu S. Mechanisms of Epigenetic Inheritance in Post-Traumatic Stress Disorder. Life (Basel) 2024; 14:98. [PMID: 38255713 PMCID: PMC10817356 DOI: 10.3390/life14010098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/22/2023] [Accepted: 01/05/2024] [Indexed: 01/24/2024] Open
Abstract
Post-traumatic stress disorder (PTSD) is a psychiatric disorder that causes debilitating functional impairment in patients. Observations from survivors of traumatic historical events solidify that this disease is not only associated with personal experiences but can also be inherited from familial traumas. Over the past decades, researchers have focused on epigenetic inheritance to understand how responses to adverse experiences can be passed down to future generations. This review aims to present recent findings on epigenetic markers related to PTSD and research in the intergenerational inheritance of trauma. By understanding the information, we hope that epigenetic markers can act as biochemical measurements for future clinical practice.
Collapse
Affiliation(s)
- Pei-Chen Chou
- School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
| | - Yu-Chi Huang
- Department of Psychiatry, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan;
| | - Sebastian Yu
- Department of Dermatology, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Dermatology, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan
- Master of Public Health Degree Program, National Taiwan University, Taipei 10617, Taiwan
- Neuroscience Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| |
Collapse
|
2
|
Belmonte KCD, Holmgren EB, Wills TA, Gidday JM. Epigenetic conditioning induces intergenerational resilience to dementia in a mouse model of vascular cognitive impairment. Alzheimers Dement 2022; 18:1711-1720. [PMID: 35170835 PMCID: PMC9790554 DOI: 10.1002/alz.12616] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 12/10/2021] [Accepted: 01/10/2022] [Indexed: 01/28/2023]
Abstract
INTRODUCTION Epigenetic stimuli induce beneficial or detrimental changes in gene expression, and consequently, phenotype. Some of these phenotypes can manifest across the lifespan-and even in subsequent generations. Here, we used a mouse model of vascular cognitive impairment and dementia (VCID) to determine whether epigenetically induced resilience to specific dementia-related phenotypes is heritable by first-generation progeny. METHODS Our systemic epigenetic therapy consisted of 2 months of repetitive hypoxic "conditioning" (RHC) prior to chronic cerebral hypoperfusion in adult C57BL/6J mice. Resultant changes in object recognition memory and hippocampal long-term potentiation (LTP) were assessed 3 and 4 months later, respectively. RESULTS Hypoperfusion-induced memory/plasticity deficits were abrogated by RHC. Moreover, similarly robust dementia resilience was documented in untreated cerebral hypoperfused animals derived from RHC-treated parents. CONCLUSIONS Our results in experimental VCID underscore the efficacy of epigenetics-based treatments to prevent memory loss, and demonstrate for the first time the heritability of an induced resilience to dementia.
Collapse
Affiliation(s)
- Krystal Courtney D. Belmonte
- Department of OphthalmologyLouisiana State University School of MedicineLSUHSCNew OrleansLouisianaUSA,Department of PhysiologyLouisiana State University School of MedicineLSUHSCNew OrleansLouisianaUSA
| | - Eleanor B. Holmgren
- Department of Cell Biology and AnatomyLouisiana State University School of MedicineLSUHSCNew OrleansLouisianaUSA
| | - Tiffany A. Wills
- Department of Cell Biology and AnatomyLouisiana State University School of MedicineLSUHSCNew OrleansLouisianaUSA,Neuroscience Center of ExcellenceLouisiana State University School of MedicineLSUHSCNew OrleansLouisianaUSA
| | - Jeff M. Gidday
- Department of OphthalmologyLouisiana State University School of MedicineLSUHSCNew OrleansLouisianaUSA,Department of PhysiologyLouisiana State University School of MedicineLSUHSCNew OrleansLouisianaUSA,Neuroscience Center of ExcellenceLouisiana State University School of MedicineLSUHSCNew OrleansLouisianaUSA,Department of Biochemistry and Molecular BiologyLouisiana State University School of MedicineLSUHSCNew OrleansLouisianaUSA
| |
Collapse
|
3
|
An epigenetic association analysis of childhood trauma in psychosis reveals possible overlap with methylation changes associated with PTSD. Transl Psychiatry 2022; 12:177. [PMID: 35501310 PMCID: PMC9061740 DOI: 10.1038/s41398-022-01936-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 04/12/2022] [Accepted: 04/13/2022] [Indexed: 11/20/2022] Open
Abstract
Patients with a severe mental disorder report significantly higher levels of childhood trauma (CT) than healthy individuals. Studies have suggested that CT may affect brain plasticity through epigenetic mechanisms and contribute to developing various psychiatric disorders. We performed a blood-based epigenome-wide association study using the Childhood Trauma Questionnaire-short form in 602 patients with a current severe mental illness, investigating DNA methylation association separately for five trauma subtypes and the total trauma score. The median trauma score was set as the predefined cutoff for determining whether the trauma was present or not. Additionally, we compared our genome-wide results with methylation probes annotated to candidate genes previously associated with CT. Of the patients, 83.2% reported CT above the cutoff in one or more trauma subtypes, and emotional neglect was the trauma subtype most frequently reported. We identified one significant differently methylated position associated with the gene TANGO6 for physical neglect. Seventeen differentially methylated regions (DMRs) were associated with different trauma categories. Several of these DMRs were annotated to genes previously associated with neuropsychiatric disorders such as post-traumatic stress disorder and cognitive impairments. Our results support a biomolecular association between CT and severe mental disorders. Genes that were previously identified as differentially methylated in CT-exposed subjects with and without psychosis did not show methylation differences in our analysis. We discuss this inconsistency, the relevance of our findings, and the limitations of our study.
Collapse
|
4
|
Zutshi I, Gupta S, Zanoletti O, Sandi C, Poirier GL. Early life adoption shows rearing environment supersedes transgenerational effects of paternal stress on aggressive temperament in the offspring. Transl Psychiatry 2021; 11:533. [PMID: 34657124 PMCID: PMC8520526 DOI: 10.1038/s41398-021-01659-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 09/25/2021] [Accepted: 10/04/2021] [Indexed: 11/21/2022] Open
Abstract
Prenatal experience and transgenerational influences are increasingly recognized as critical for defining the socio-emotional system, through the development of social competences and of their underlying neural circuitries. Here, we used an established rat model of social stress resulting from male partner aggression induced by peripubertal (P28-42) exposure to unpredictable fearful experiences. Using this model, we aimed to first, characterize adult emotionality in terms of the breadth of the socio-emotional symptoms and second, to determine the relative impact of prenatal vs postnatal influences. For this purpose, male offspring of pairs comprising a control or a peripubertally stressed male were cross-fostered at birth and tested at adulthood on a series of socio-emotional tests. In the offspring of peripubertally stressed males, the expected antisocial phenotype was observed, as manifested by increased aggression towards a female partner and a threatening intruder, accompanied by lower sociability. This negative outcome was yet accompanied by better social memory as well as enhanced active coping, based on more swimming and longer latency to immobility in the forced swim test, and less immobility in the shock probe test. Furthermore, the cross-fostering manipulation revealed that these adult behaviors were largely influenced by the post- but not the prenatal environment, an observation contrasting with both pre- and postnatal effects on attacks during juvenile play behavior. Adult aggression, other active coping behaviors, and social memory were determined by the predominance at this developmental stage of postnatal over prenatal influences. Together, our data highlight the relative persistence of early life influences.
Collapse
Affiliation(s)
- Ipshita Zutshi
- Laboratory of Behavioral Genetics, Brain Mind Institute, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland.
- Neuroscience Institute and Department of Neurology, Langone Medical Center, New York University, New York, NY, USA.
| | - Sonakshi Gupta
- Laboratory of Behavioral Genetics, Brain Mind Institute, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland
- Pharmacy Department, Birla Institute of Technology & Science Pilani, Hyderabad Campus, Hyderabad, India
| | - Olivia Zanoletti
- Laboratory of Behavioral Genetics, Brain Mind Institute, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland
| | - Carmen Sandi
- Laboratory of Behavioral Genetics, Brain Mind Institute, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland.
| | - Guillaume L Poirier
- Laboratory of Behavioral Genetics, Brain Mind Institute, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland.
| |
Collapse
|
5
|
Nilsson E, Ben Maamar M, Skinner MK. Environmental impacts on sperm and oocyte epigenetics affect embryo cell epigenetics and transcription to promote the epigenetic inheritance of pathology and phenotypic variation. Reprod Fertil Dev 2021; 33:102-107. [PMID: 38769672 DOI: 10.1071/rd20255] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024] Open
Abstract
Previous studies have demonstrated that exposure to environmental factors can cause epigenetic modifications to germ cells, particularly sperm, to promote epigenetic and transcriptome changes in the embryo. These germ cell and embryo cell epigenetic alterations are associated with phenotypic changes in offspring. Epigenetic inheritance requires epigenetic changes (i.e. epimutations) in germ cells that promote epigenetic and gene expression changes in embryos. The objective of this perspective is to examine the evidence that germ cell epigenome modifications are associated with embryo cell epigenetic and transcriptome changes that affect the subsequent development of all developing somatic cells to promote phenotype change. Various epigenetic changes in sperm, including changes to histone methylation, histone retention, non-coding RNA expression and DNA methylation, have been associated with alterations in embryo cell epigenetics and gene expression. Few studies have investigated this link for oocytes. The studies reviewed herein support the idea that environmentally induced epigenetic changes in germ cells affect alterations in embryo cell epigenetics and transcriptomes that have an important role in the epigenetic inheritance of pathology and phenotypic change.
Collapse
Affiliation(s)
- Eric Nilsson
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA 99164-4236, USA
| | - Millissia Ben Maamar
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA 99164-4236, USA
| | - Michael K Skinner
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA 99164-4236, USA; and Corresponding author
| |
Collapse
|
6
|
Belmonte KCD, Harman JC, Lanson NA, Gidday JM. Intra- and intergenerational changes in the cortical DNA methylome in response to therapeutic intermittent hypoxia in mice. Physiol Genomics 2019; 52:20-34. [PMID: 31762411 DOI: 10.1152/physiolgenomics.00094.2019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Recent evidence from our laboratory documents functional resilience to retinal ischemic injury in untreated mice derived from parents exposed to repetitive hypoxic conditioning (RHC) before breeding. To begin to understand the epigenetic basis of this intergenerational protection, we used methylated DNA immunoprecipitation and sequencing to identify genes with differentially methylated promoters (DMGPs) in the prefrontal cortex of mice treated directly with the same RHC stimulus (F0-RHC) and in the prefrontal cortex of their untreated F1-generation offspring (F1-*RHC). Subsequent bioinformatic analyses provided key mechanistic insights into how changes in gene expression secondary to promoter hypo- and hypermethylation might afford such protection within and across generations. We found extensive changes in DNA methylation in both generations consistent with the expression of many survival-promoting genes, with twice the number of DMGPs in the cortex of F1*RHC mice relative to their F0 parents that were directly exposed to RHC. In contrast to our hypothesis that similar epigenetic modifications would be realized in the cortices of both F0-RHC and F1-*RHC mice, we instead found relatively few DMGPs common to both generations; in fact, each generation manifested expected injury resilience via distinctly unique gene expression profiles. Whereas in the cortex of F0-RHC mice, predicted protein-protein interactions reflected activation of an anti-ischemic phenotype, networks activated in F1-*RHC cortex comprised networks indicative of a much broader cytoprotective phenotype. Altogether, our results suggest that the intergenerational transfer of an acquired phenotype to offspring does not necessarily require the faithful recapitulation of the conditioning-modified DNA methylome of the parent.
Collapse
Affiliation(s)
- Krystal Courtney D Belmonte
- Department of Ophthalmology, Louisiana State University School of Medicine, Health Sciences Center, New Orleans, Louisiana.,Department of Physiology, Louisiana State University School of Medicine, Health Sciences Center, New Orleans, Louisiana
| | - Jarrod C Harman
- Department of Ophthalmology, Louisiana State University School of Medicine, Health Sciences Center, New Orleans, Louisiana.,Neuroscience Center of Excellence, Louisiana State University School of Medicine, Health Sciences Center, New Orleans, Louisiana
| | - Nicholas A Lanson
- Department of Ophthalmology, Louisiana State University School of Medicine, Health Sciences Center, New Orleans, Louisiana
| | - Jeffrey M Gidday
- Department of Ophthalmology, Louisiana State University School of Medicine, Health Sciences Center, New Orleans, Louisiana.,Department of Physiology, Louisiana State University School of Medicine, Health Sciences Center, New Orleans, Louisiana.,Neuroscience Center of Excellence, Louisiana State University School of Medicine, Health Sciences Center, New Orleans, Louisiana
| |
Collapse
|
7
|
Eck S, Wörz S, Müller-Ott K, Hahn M, Biesdorf A, Schotta G, Rippe K, Rohr K. A spherical harmonics intensity model for 3D segmentation and 3D shape analysis of heterochromatin foci. Med Image Anal 2016; 32:18-31. [DOI: 10.1016/j.media.2016.03.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Revised: 03/07/2016] [Accepted: 03/09/2016] [Indexed: 12/01/2022]
|
8
|
Epigenetic Inheritance and Its Role in Evolutionary Biology: Re-Evaluation and New Perspectives. BIOLOGY 2016; 5:biology5020024. [PMID: 27231949 PMCID: PMC4929538 DOI: 10.3390/biology5020024] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 04/26/2016] [Accepted: 05/11/2016] [Indexed: 01/08/2023]
Abstract
Epigenetics increasingly occupies a pivotal position in our understanding of inheritance, natural selection and, perhaps, even evolution. A survey of the PubMed database, however, reveals that the great majority (>93%) of epigenetic papers have an intra-, rather than an inter-generational focus, primarily on mechanisms and disease. Approximately ~1% of epigenetic papers even mention the nexus of epigenetics, natural selection and evolution. Yet, when environments are dynamic (e.g., climate change effects), there may be an “epigenetic advantage” to phenotypic switching by epigenetic inheritance, rather than by gene mutation. An epigenetically-inherited trait can arise simultaneously in many individuals, as opposed to a single individual with a gene mutation. Moreover, a transient epigenetically-modified phenotype can be quickly “sunsetted”, with individuals reverting to the original phenotype. Thus, epigenetic phenotype switching is dynamic and temporary and can help bridge periods of environmental stress. Epigenetic inheritance likely contributes to evolution both directly and indirectly. While there is as yet incomplete evidence of direct permanent incorporation of a complex epigenetic phenotype into the genome, doubtlessly, the presence of epigenetic markers and the phenotypes they create (which may sort quite separately from the genotype within a population) will influence natural selection and, so, drive the collective genotype of a population.
Collapse
|
9
|
Bechard AR, Lewis MH. Transgenerational effects of environmental enrichment on repetitive motor behavior development. Behav Brain Res 2016; 307:145-9. [PMID: 27059336 DOI: 10.1016/j.bbr.2016.04.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 04/01/2016] [Accepted: 04/04/2016] [Indexed: 12/27/2022]
Abstract
The favorable consequences of environmental enrichment (EE) on brain and behavior development are well documented. Much less is known, however, about transgenerational benefits of EE on non-enriched offspring. We explored whether transgenerational effects of EE might extend to the development of repetitive motor behaviors in deer mice. Repetitive motor behaviors are invariant patterns of movement that, across species, can be reduced by EE. We found that EE not only attenuated the development of repetitive behavior in dams, but also in their non-enriched offspring. Moreover, maternal behavior did not seem to mediate the transgenerational effect we found, although repetitive behavior was affected by reproductive experience. These data support a beneficial transgenerational effect of EE on repetitive behavior development and suggest a novel benefit of reproductive experience.
Collapse
Affiliation(s)
- Allison R Bechard
- Department of Psychology, University of Florida, Gainesville, FL, USA.
| | - Mark H Lewis
- Department of Psychology, University of Florida, Gainesville, FL, USA; Department of Psychiatry, McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| |
Collapse
|
10
|
Lahiri DK, Maloney B, Bayon BL, Chopra N, White FA, Greig NH, Nurnberger JI. Transgenerational latent early-life associated regulation unites environment and genetics across generations. Epigenomics 2016; 8:373-87. [PMID: 26950428 DOI: 10.2217/epi.15.117] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The origin of idiopathic diseases is still poorly understood. The latent early-life associated regulation (LEARn) model unites environmental exposures and gene expression while providing a mechanistic underpinning for later-occurring disorders. We propose that this process can occur across generations via transgenerational LEARn (tLEARn). In tLEARn, each person is a 'unit' accumulating preclinical or subclinical 'hits' as in the original LEARn model. These changes can then be epigenomically passed along to offspring. Transgenerational accumulation of 'hits' determines a sporadic disease state. Few significant transgenerational hits would accompany conception or gestation of most people, but these may suffice to 'prime' someone to respond to later-life hits. Hits need not produce symptoms or microphenotypes to have a transgenerational effect. Testing tLEARn requires longitudinal approaches. A recently proposed longitudinal epigenome/envirome-wide association study would unite genetic sequence, epigenomic markers, environmental exposures, patient personal history taken at multiple time points and family history.
Collapse
Affiliation(s)
- Debomoy K Lahiri
- Department of Psychiatry, Stark Neurosciences Research Institute, Indiana University School of Medicine, 320 West 15th Street, Indianapolis, IN 46202, USA.,Department of Medical & Molecular Genetics, Indiana University School of Medicine, 320 West 15th Street, Indianapolis, IN 46202, USA
| | - Bryan Maloney
- Department of Psychiatry, Stark Neurosciences Research Institute, Indiana University School of Medicine, 320 West 15th Street, Indianapolis, IN 46202, USA
| | - Baindu L Bayon
- Department of Medical & Molecular Genetics, Indiana University School of Medicine, 320 West 15th Street, Indianapolis, IN 46202, USA
| | - Nipun Chopra
- Department of Psychiatry, Stark Neurosciences Research Institute, Indiana University School of Medicine, 320 West 15th Street, Indianapolis, IN 46202, USA
| | - Fletcher A White
- Department of Anesthesia, Stark Neurosciences Research Institute, Indiana University School of Medicine, 320 West 15th Street, Indianapolis, IN 46202, USA
| | - Nigel H Greig
- Translational Gerontology Branch, National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | - John I Nurnberger
- Department of Psychiatry, Stark Neurosciences Research Institute, Indiana University School of Medicine, 320 West 15th Street, Indianapolis, IN 46202, USA.,Department of Medical & Molecular Genetics, Indiana University School of Medicine, 320 West 15th Street, Indianapolis, IN 46202, USA
| |
Collapse
|
11
|
Gidday JM. Extending injury- and disease-resistant CNS phenotypes by repetitive epigenetic conditioning. Front Neurol 2015; 6:42. [PMID: 25784897 PMCID: PMC4345883 DOI: 10.3389/fneur.2015.00042] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Accepted: 02/18/2015] [Indexed: 01/12/2023] Open
Abstract
Significant reductions in the extent of acute injury in the CNS can be achieved by exposure to different preconditioning stimuli, but the duration of the induced protective phenotype is typically short-lasting, and thus is deemed as limiting its clinical applicability. Extending the period over which such adaptive epigenetic changes persist – in effect, expanding conditioning’s “therapeutic window” – would significantly broaden the potential applications of such a treatment approach in patients. The frequency of the conditioning stimulus may hold the key. While transient (1–3 days) protection against CNS ischemic injury is well established preclinically following a single preconditioning stimulus, repetitively presenting preconditioning stimuli extends the duration of ischemic tolerance by many weeks. Moreover, repetitive intermittent postconditioning enhances post-ischemic recovery metrics and improves long-term survival. Intermittent conditioning is also efficacious for preventing or delaying injury in preclinical models of chronic neurodegenerative disease, and for promoting long-lasting functional improvements in a number of other pathologies as well. Although the detailed mechanisms underlying these protracted kinds of neuroplasticity remain largely unstudied, accumulating empirical evidence supports the contention that all of these adaptive phenotypes are epigenetically mediated. Going forward, additional preclinical demonstrations of the ability to induce sustained beneficial phenotypes that reduce the burden of acute and chronic neurodegeneration, and experimental interrogations of the regulatory constructs responsible for these epigenetic responses, will accelerate the identification of not only efficacious but also practical, adaptive epigenetics-based treatments for individuals with neurological disease.
Collapse
Affiliation(s)
- Jeffrey M Gidday
- Department of Neurosurgery, Washington University School of Medicine , St. Louis, MO , USA ; Department of Ophthalmology and Visual Sciences, Washington University School of Medicine , St. Louis, MO , USA ; Department of Cell Biology and Physiology, Washington University School of Medicine , St. Louis, MO , USA
| |
Collapse
|
12
|
Tzanoulinou S, Sandi C. The Programming of the Social Brain by Stress During Childhood and Adolescence: From Rodents to Humans. Curr Top Behav Neurosci 2015; 30:411-429. [PMID: 26728172 DOI: 10.1007/7854_2015_430] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
The quality and quantity of social experience is fundamental to an individual's health and well-being. Early life stress is known to be an important factor in the programming of the social brain that exerts detrimental effects on social behaviors. The peri-adolescent period, comprising late childhood and adolescence, represents a critical developmental window with regard to the programming effects of stress on the social brain. Here, we discuss social behavior and the physiological and neurobiological consequences of stress during peri-adolescence in the context of rodent paradigms that model human adversity, including social neglect and isolation, social abuse, and exposure to fearful experiences. Furthermore, we discuss peri-adolescent stress as a potent component that influences the social behaviors of individuals in close contact with stressed individuals and that can also influence future generations. We also discuss the temporal dynamics programmed by stress on the social brain and debate whether social behavior alterations are adaptive or maladaptive. By revising the existing literature and defining open questions, we aim to expand the framework in which interactions among peri-adolescent stress, the social brain, and behavior can be better conceptualized.
Collapse
Affiliation(s)
- Stamatina Tzanoulinou
- Department of Fundamental Neurosciences, University of Lausanne, Rue Du Bugnon 9, CH-1005, Lausanne, Switzerland
| | - Carmen Sandi
- Brain Mind Institute, School of Life Sciences, Ecole Polytechnique Federale de Lausanne (EPFL), CH-1050, Lausanne, Switzerland.
| |
Collapse
|
13
|
Lewis CR, Olive MF. Early-life stress interactions with the epigenome: potential mechanisms driving vulnerability toward psychiatric illness. Behav Pharmacol 2014; 25:341-51. [PMID: 25003947 PMCID: PMC4119485 DOI: 10.1097/fbp.0000000000000057] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Throughout the 20th century a body of literature concerning the long-lasting effects of the early environment was produced. Adverse experiences in early life, or early-life stress (ELS), is associated with a higher risk of developing various psychiatric illnesses. The mechanisms driving the complex interplay between ELS and adult phenotype has baffled many investigators for decades. Over the last decade, the new field of neuroepigenetics has emerged as one possible mechanism by which ELS can have far-reaching effects on adult phenotype, behavior, and risk for psychiatric illness. Here we review two commonly investigated epigenetic mechanisms, histone modifications and DNA methylation, and the emerging field of neuroepigenetics as they relate to ELS. We discuss the current animal literature demonstrating ELS-induced epigenetic modulation of gene expression that results in altered adult phenotypes. We also briefly discuss other areas in which neuroepigenetics has emerged as a potential mechanism underlying environmental and genetic interactions.
Collapse
Affiliation(s)
- Candace Renee Lewis
- Arizona State University, Tempe, AZ, 930 S McAllister Ave, Tempe, AZ 85281, , Phone: (602) 680 – 8786
| | - Michael Foster Olive
- Arizona State University, Tempe, AZ, 930 S McAllister Ave, Tempe, AZ 85281, , Phone: (480) 727-9557
| |
Collapse
|
14
|
Abstract
Most organisms, including ourselves, are exposed to environmental stressors at various points during life, and responses to such stressors have been optimised by evolution to give the best fitness outcomes. It is expected that environmental change will substantially increase long-term stress exposure in many animal groups in the coming decades. A major challenge for biologists is to understand and predict how this will influence individuals, populations and ecosystems, and over what time scale such effects will occur. This requires a multi-disciplinary approach, combining studies of mechanisms with studies of fitness consequences for individuals and their descendants. In this review, I discuss the positive and negative fitness consequences of responses to stressful environments, particularly during early life, and with an emphasis on studies in birds. As many of the mechanisms underlying stress responses are highly conserved across the vertebrate groups, the findings from these studies have general applicability when interpreted in a life history context. One important route that has recently been identified whereby chronic stress exposure can affect health and longevity over long time frames is via effects on telomere dynamics. Much of this work has so far been done on humans, and is correlational in nature, but studies on other taxa, and experimental work, are increasing. I summarise the relevant aspects of vertebrate telomere biology and critically appraise our current knowledge with a view to pointing out important future research directions for our understanding of how stress exposure influences life histories.
Collapse
Affiliation(s)
- Pat Monaghan
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, Graham Kerr Building, University of Glasgow, Glasgow G12 8QQ, UK
| |
Collapse
|
15
|
Shojaei Saadi HA, O'Doherty AM, Gagné D, Fournier É, Grant JR, Sirard MA, Robert C. An integrated platform for bovine DNA methylome analysis suitable for small samples. BMC Genomics 2014; 15:451. [PMID: 24912542 PMCID: PMC4092217 DOI: 10.1186/1471-2164-15-451] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Accepted: 05/28/2014] [Indexed: 01/16/2023] Open
Abstract
Background Oocytes and early embryos contain minute amounts of DNA, RNA and proteins, making the study of early mammalian development highly challenging. The study of the embryo epigenome, in particular the DNA methylome, has been made accessible thanks to the possibility of amplifying specific sequences according to their initial methylation status. This paper describes a novel platform dedicated to the genome-wide study of bovine DNA methylation, including a complete pipeline for data analysis and visualization. The platform allows processing and integrating of DNA methylome and transcriptome data from the same sample. Procedures were optimized for genome-wide analysis of 10 ng of DNA (10 bovine blastocysts). Bovine sperm and blastocysts were compared as a test of platform capability. Results The hypermethylation of bovine sperm DNA compared to the embryo genome was confirmed. Differentially methylated regions were distributed across various classes of bovine sperm genomic feature including primarily promoter, intronic and exonic regions, non-CpG-island regions (shore, shelf and open-sea) and CpG islands with low-to-intermediate CpG density. The blastocyst genome bore more methylation marks than sperm DNA only in CpG islands with high CpG density. Long-terminal-repeat retrotransposons (LTR), LINE and SINE were more methylated in sperm DNA, as were low-complexity repetitive elements in blastocysts. Conclusions This is the first early embryo compatible genome-wide epigenetics platform for bovine. Such platforms should improve the study of the potential epigenetic risks of assisted reproductive technologies (ART), the establishment sequence of embryonic cell lines and potential deviations in both gene expression and DNA methylation capable of having long-term impact. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-451) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Claude Robert
- Laboratory of Functional Genomics of Early Embryonic Development, Institut des nutraceutiques et des aliments fonctionnels, Faculté des sciences de l'agriculture et de l'alimentation, Pavillon des services, Université Laval, Québec G1V 0A6, Canada.
| |
Collapse
|