1
|
Hulm S, Timmins RG, Hickey JT, Maniar N, Lin YC, Knaus KR, Heiderscheit BC, Blemker SS, Opar DA. The Structure, Function, and Adaptation of Lower-Limb Aponeuroses: Implications for Myo-Aponeurotic Injury. SPORTS MEDICINE - OPEN 2024; 10:133. [PMID: 39718717 DOI: 10.1186/s40798-024-00789-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 10/24/2024] [Indexed: 12/25/2024]
Abstract
The aponeurosis is a large fibrous connective tissue structure within and surrounding skeletal muscle and is a critical component of the muscle-tendon unit (MTU). Due to the lack of consensus on terminology and the heterogeneous nature of the aponeurosis between MTUs, there are several questions that remain unanswered. For example, the aponeurosis is often conflated with the free tendon rather than being considered an independent structure. This has subsequent implications when interpreting data regarding the structure, function, and adaptation of the aponeuroses from these studies. In recent years, a body of work has emerged to suggest that acute injury to the myo-aponeurotic complex may have an impact on return-to-sport timeframes and reinjury rates. Therefore, the purpose of this review is to provide a more detailed understanding of the morphology and mechanical behaviour common to all aponeuroses, as well as the unique characteristics of specific lower-limb aponeuroses that are commonly injured. This review provides the practitioner with a current understanding of the mechanical, material, and adaptive properties of lower limb aponeuroses and suggests directions for future research related to the myo-aponeurotic complex.
Collapse
Affiliation(s)
- Scott Hulm
- School of Behavioural and Health Sciences, Australian Catholic University, Melbourne, 115 Victoria Parade, Fitzroy, VIC, 3065, Australia.
- Sports Performance, Recovery, Injury and New Technologies (SPRINT) Research Centre, Australian Catholic University, Melbourne, 115 Victoria Parade, Fitzroy, VIC, 3065, Australia.
| | - Ryan G Timmins
- School of Behavioural and Health Sciences, Australian Catholic University, Melbourne, 115 Victoria Parade, Fitzroy, VIC, 3065, Australia
- Sports Performance, Recovery, Injury and New Technologies (SPRINT) Research Centre, Australian Catholic University, Melbourne, 115 Victoria Parade, Fitzroy, VIC, 3065, Australia
| | - Jack T Hickey
- Sports Performance, Recovery, Injury and New Technologies (SPRINT) Research Centre, Australian Catholic University, Melbourne, 115 Victoria Parade, Fitzroy, VIC, 3065, Australia
- Department of Sport Science and Nutrition, Maynooth University, County Kildare, Ireland
| | - Nirav Maniar
- School of Behavioural and Health Sciences, Australian Catholic University, Melbourne, 115 Victoria Parade, Fitzroy, VIC, 3065, Australia
- Sports Performance, Recovery, Injury and New Technologies (SPRINT) Research Centre, Australian Catholic University, Melbourne, 115 Victoria Parade, Fitzroy, VIC, 3065, Australia
| | - Yi-Chung Lin
- School of Behavioural and Health Sciences, Australian Catholic University, Melbourne, 115 Victoria Parade, Fitzroy, VIC, 3065, Australia
- Sports Performance, Recovery, Injury and New Technologies (SPRINT) Research Centre, Australian Catholic University, Melbourne, 115 Victoria Parade, Fitzroy, VIC, 3065, Australia
| | - Katherine R Knaus
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Bryan C Heiderscheit
- Badger Athletic Performance Program, Department of Orthopedics and Rehabilitation, University of WI‑Madison, Madison, WI, USA
| | - Silvia S Blemker
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA
| | - David A Opar
- School of Behavioural and Health Sciences, Australian Catholic University, Melbourne, 115 Victoria Parade, Fitzroy, VIC, 3065, Australia
- Sports Performance, Recovery, Injury and New Technologies (SPRINT) Research Centre, Australian Catholic University, Melbourne, 115 Victoria Parade, Fitzroy, VIC, 3065, Australia
| |
Collapse
|
2
|
Bourantanis A, Nomikos N, Wang W. Biomechanical Insights in Ancient Greek Combat Sports: A Static Analysis of Selected Pottery Depictions. Sports (Basel) 2024; 12:317. [PMID: 39728857 DOI: 10.3390/sports12120317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 11/10/2024] [Accepted: 11/18/2024] [Indexed: 12/28/2024] Open
Abstract
BACKGROUND Though ancient Greece preserves many pictures of combat sports, there is limited research in terms of biomechanical analysis of their sports. This research aimed to investigate the Pankration postures of ancient Greek athletics, expecting to bridge the gap between historical sports practices and contemporary biomechanical applications. METHODS This study employed computer vision (OpenPose) to analyze two images, one as readiness and another as kicking postures, from ancient Greek Pankration by constructing a static multi-segmental model. Using Newton's Laws, the models simulated the postures as presented in historical depictions, estimated joint forces and moments, and calculated weight distribution and ground reaction forces for these postures. RESULTS For the readiness posture, it was found that the right hind leg experienced significant forces, with the highest moment at the knee joint, while the ankle and hip joints showed similar slightly lower moments. The front leg encountered lower forces and moments. For the kick posture, the supporting leg experienced the highest moment at the knee, while the kicking leg showed minimal moments at the ankle, knee, and hip. CONCLUSIONS The static analysis provided quantitative estimates of joint forces and moments in the depicted Pankration postures, suggesting that these postures were biomechanically effective for their intended functions in combat. While the analysis cannot confirm whether ancient athletes deliberately applied biomechanical principles, the results highlight the potential of biomechanical modeling to enhance our understanding of ancient sports practices. The research demonstrates the possible benefits of integrating static analysis with historical elements to study the physical demands and techniques of ancient combat sports.
Collapse
Affiliation(s)
- Andreas Bourantanis
- Department of Orthopaedic and Trauma Surgery, School of Medicine, University of Dundee, Dundee DD1 9SY, UK
| | - Nikitas Nomikos
- Department of Health Sciences and Sports, Medical School, National and Kapodistrian University of Athens, Mikras Asias 75, 11527 Athens, Greece
| | - Weijie Wang
- Department of Orthopaedic and Trauma Surgery, School of Medicine, University of Dundee, Dundee DD1 9SY, UK
| |
Collapse
|
3
|
Bischof K, Moitzi AM, Stafilidis S, König D. Impact of Collagen Peptide Supplementation in Combination with Long-Term Physical Training on Strength, Musculotendinous Remodeling, Functional Recovery, and Body Composition in Healthy Adults: A Systematic Review with Meta-analysis. Sports Med 2024; 54:2865-2888. [PMID: 39060741 PMCID: PMC11561013 DOI: 10.1007/s40279-024-02079-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/09/2024] [Indexed: 07/28/2024]
Abstract
INTRODUCTION Over the past decade, collagen peptide (CP) supplements have received considerable attention in sports nutrition research. These supplements have shown promising results in improving personal health, enhancing athletic performance, and preventing injuries in some but not all studies. OBJECTIVE A systematic review and meta-analysis of randomized controlled trials (RCTs) has been conducted to investigate the effects of long-term daily collagen peptide (CP) supplementation on strength, musculotendinous adaptation, functional recovery, and body composition in healthy adults, both with and without concurrent exercise interventions over several weeks. METHODS The PRISMA with PERSiST guidelines were followed for this systematic literature review, which was conducted in December 2023 using PubMed, Scopus, CINAHL, and SPORTDiscus databases. Eligible studies included healthy, normal to overweight adults over 17 years of age who engaged in exercise and daily collagen peptide (CP) supplementation for a minimum of 8 weeks (except one 3-week trial only included for maximal strength). Studies examining recovery-related outcomes were also eligible if they included a 1-week supplementation period without exercise. Methodological study quality was assessed using the PEDro scale. A random-effects model with standardized mean differences (SMD) of change scores was chosen to calculate overall effect sizes. RESULTS Nineteen studies comprising 768 participants were included in both the systematic review and meta-analysis. Results indicate statistically significant effects in favor of long-term CP intake regarding fat-free mass (FFM) (SMD 0.48, p < 0.01), tendon morphology (SMD 0.67, p < 0.01), muscle architecture (SMD 0.39, p < 0.01), maximal strength (SMD 0.19, p < 0.01), and 48 h recovery in reactive strength following exercise-induced muscle damage (SMD 0.43, p = 0.045). The GRADE approach revealed a moderate certainty of evidence for body composition, a very low certainty for tendon morphology and mechanical properties, and a low certainty for the remaining. CONCLUSION This systematic review and meta-analysis represents the first comprehensive investigation into the effects of long-term CP supplementation combined with regular physical training on various aspects of musculoskeletal health in adults. The findings indicate significant, though of low to moderate certainty, evidence of improvements in fat-free mass (FFM), tendon morphology, muscle mass, maximal strength, and recovery in reactive strength following exercise-induced muscle damage. However, further research is required to fully understand the mechanisms underlying these effects, particularly regarding tendon mechanical properties and short-term adaptations to collagen peptide (CP) intake without exercise, as observed in recovery outcomes. Overall, CP supplementation appears promising as a beneficial adjunct to physical training for enhancing musculoskeletal performance in adults. Open Science Framework (Registration DOI: https://doi.org/10.17605/OSF.IO/WCF4Y ).
Collapse
Affiliation(s)
- Kevin Bischof
- Section for Nutrition, Exercise and Health, Department of Sports Science, Centre for Sports Science and University Sports, University of Vienna, Vienna, Austria.
- Vienna Doctoral School of Pharmaceutical, Nutritional and Sport Sciences, University of Vienna, Vienna, Austria.
| | - Anna Maria Moitzi
- Section for Nutrition, Exercise and Health, Department for Nutrition, Faculty of Life Sciences, University of Vienna, Vienna, Austria
- Vienna Doctoral School of Pharmaceutical, Nutritional and Sport Sciences, University of Vienna, Vienna, Austria
| | - Savvas Stafilidis
- Department for Biomechanics, Kinesiology and Computer Science in Sport, Centre for Sports Science and University Sports, University of Vienna, Vienna, Austria
| | - Daniel König
- Section for Nutrition, Exercise and Health, Department for Nutrition, Faculty of Life Sciences, University of Vienna, Vienna, Austria
- Section for Nutrition, Exercise and Health, Department of Sports Science, Centre for Sports Science and University Sports, University of Vienna, Vienna, Austria
- Vienna Doctoral School of Pharmaceutical, Nutritional and Sport Sciences, University of Vienna, Vienna, Austria
| |
Collapse
|
4
|
Weidlich K, Domroes T, Bohm S, Arampatzis A, Mersmann F. Addressing muscle-tendon imbalances in adult male athletes with personalized exercise prescription based on tendon strain. Eur J Appl Physiol 2024; 124:3201-3214. [PMID: 38842575 PMCID: PMC11519156 DOI: 10.1007/s00421-024-05525-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 05/30/2024] [Indexed: 06/07/2024]
Abstract
PURPOSE Imbalances of muscle strength and tendon stiffness can increase the operating strain of tendons and risk of injury. Here, we used a new approach to identify muscle-tendon imbalances and personalize exercise prescription based on tendon strain during maximum voluntary contractions (εmax) to mitigate musculotendinous imbalances in male adult volleyball athletes. METHODS Four times over a season, we measured knee extensor strength and patellar tendon mechanical properties using dynamometry and ultrasonography. Tendon micromorphology was evaluated through an ultrasound peak spatial frequency (PSF) analysis. While a control group (n = 12) continued their regular training, an intervention group (n = 10) performed exercises (3 × /week) with personalized loads to elicit tendon strains that promote tendon adaptation (i.e., 4.5-6.5%). RESULTS Based on a linear mixed model, εmax increased significantly in the control group over the 9 months of observation (pCon = 0.010), while there was no systematic change in the intervention group (pInt = 0.575). The model residuals of εmax, as a measure of imbalances in muscle-tendon adaptation, demonstrated a significant reduction over time exclusively in the intervention group (pInt = 0.007). While knee extensor muscle strength increased in both groups by ~ 8% (pCon < 0.001, pInt = 0.064), only the intervention group showed a trend toward increased normalized tendon stiffness (pCon = 0.824, pInt = 0.051). PSF values did not change significantly in either group (p > 0.05). CONCLUSION These results suggest that personalized exercise prescription can reduce muscle-tendon imbalances in athletes and could provide new opportunities for tendon injury prevention.
Collapse
Affiliation(s)
- Kolja Weidlich
- Department of Training and Movement Sciences, Humboldt-Universität zu Berlin, Philippstr. 13, Haus 11, 10115, Berlin, Germany
- Berlin School of Movement Science, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Theresa Domroes
- Department of Training and Movement Sciences, Humboldt-Universität zu Berlin, Philippstr. 13, Haus 11, 10115, Berlin, Germany
- Berlin School of Movement Science, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Sebastian Bohm
- Department of Training and Movement Sciences, Humboldt-Universität zu Berlin, Philippstr. 13, Haus 11, 10115, Berlin, Germany
- Berlin School of Movement Science, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Adamantios Arampatzis
- Department of Training and Movement Sciences, Humboldt-Universität zu Berlin, Philippstr. 13, Haus 11, 10115, Berlin, Germany
- Berlin School of Movement Science, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Falk Mersmann
- Department of Training and Movement Sciences, Humboldt-Universität zu Berlin, Philippstr. 13, Haus 11, 10115, Berlin, Germany.
- Berlin School of Movement Science, Humboldt-Universität zu Berlin, Berlin, Germany.
| |
Collapse
|
5
|
Labonte D, Holt NC. Beyond power limits: the kinetic energy capacity of skeletal muscle. J Exp Biol 2024; 227:jeb247150. [PMID: 39234652 PMCID: PMC11529885 DOI: 10.1242/jeb.247150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 08/29/2024] [Indexed: 09/06/2024]
Abstract
Muscle is the universal agent of animal movement, and limits to muscle performance are therefore an integral aspect of animal behaviour, ecology and evolution. A mechanical perspective on movement makes it amenable to analysis from first principles, and so brings the seeming certitude of simple physical laws to the challenging comparative study of complex biological systems. Early contributions on movement biomechanics considered muscle energy output to be limited by muscle work capacity, Wmax; triggered by seminal work in the late 1960s, it is now held broadly that a complete analysis of muscle energy output must also consider muscle power capacity, for no unit of work can be delivered in arbitrarily brief time. Here, we adopt a critical stance towards this paradigmatic notion of a power limit, and argue that the alternative constraint to muscle energy output is imposed instead by a characteristic kinetic energy capacity, Kmax, dictated by the maximum speed with which the actuating muscle can shorten. The two critical energies can now be directly compared, and define the physiological similarity index, Γ=Kmax/Wmax. It is the explanatory power of this comparison that lends weight to a shift in perspective from muscle power to kinetic energy capacity, as is argued through a series of illustrative examples. Γ emerges as an important dimensionless number in musculoskeletal dynamics, and sparks novel hypotheses on functional adaptations in musculoskeletal 'design' that depart from the parsimonious evolutionary null hypothesis of geometric similarity.
Collapse
Affiliation(s)
- David Labonte
- Department of Bioengineering, Imperial College London, London SW7 2AZ, UK
| | - Natalie C. Holt
- Department of Evolution, Ecology and Organismal Biology, University of California Riverside, Riverside, CA 92521, USA
| |
Collapse
|
6
|
Mohamed AA. Development of air therapy as a novel therapeutic branch in the field of rehabilitation. PHYSIOTHERAPY RESEARCH INTERNATIONAL 2024; 29:e2122. [PMID: 39152768 DOI: 10.1002/pri.2122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 07/01/2024] [Accepted: 08/08/2024] [Indexed: 08/19/2024]
Abstract
BACKGROUND AND PURPOSE Developing technology in the field of rehabilitation is vital to accelerate recovery and decrease the side effects of current modalities. Rehabilitation is a challenging science in which the main challenge is not just treating the patient but also to shorten the rehabilitation time and avoid harmful effects. Thus, this review demonstrates the possible design and effects of air therapy as a novel treatment branch besides hydrotherapy, electrotherapy, and manual therapy in the field of rehabilitation. METHODS The search was conducted over clinical trials, literature reviews, and systematic reviews on the possible effects of treatments that may have similar effects to the newly developed air therapy. This search was conducted in the Web of Science, Scopus, EBSCO, and Medline databases. RESULTS Air therapy could be used to improve the function of mechanoreceptors, improve circulation and microcirculation, decrease pain, the release of trigger points, regain the elasticity of soft tissues, treat acute and chronic inflammations, decrease muscle cramps and spasticity, strengthen muscle, and decrease muscle fatigue and Decreasing muscle fatigue and delayed muscle soreness. CONCLUSION Air therapy is a novel treatment modality that can be used effectively in the field of rehabilitation. Air therapy could be a valuable and safe treatment in rehabilitation.
Collapse
Affiliation(s)
- Ayman A Mohamed
- Basic Sciences Department, Faculty of Physical Therapy, Beni-suef University, Beni-Suef, Egypt
- Basic Sciences Department, Faculty of Physical Therapy, Nahda University, Beni-Suef, Egypt
| |
Collapse
|
7
|
Faulks T, Sansone P, Walter S. A Systematic Review of Lower Limb Strength Tests Used in Elite Basketball. Sports (Basel) 2024; 12:262. [PMID: 39330739 PMCID: PMC11435599 DOI: 10.3390/sports12090262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/16/2024] [Accepted: 08/26/2024] [Indexed: 09/28/2024] Open
Abstract
BACKGROUND Basketball players rely on their lower limb strength for speed and agility. Therefore, it is important for strength and conditioning coaches to seek methods to assess and develop lower limb strength. OBJECTIVES This study aimed to identify tests and variables used to assess lower body strength among elite basketball players and to provide normative values for the commonly used strength tests. METHODS A review of PubMed, MEDLINE, Scopus, and SPORTDiscus was performed following the Preferred Reporting Items for Systematic Reviews and Meta-Analysis guidelines. The risk of bias was assessed using the Joanna Briggs Institute cross-sectional and cohort checklists. RESULTS Among the twelve reviewed studies, seven strength tests and five outcome variables were used. The most frequently used lower limb strength tests were the back squat (nine studies) and isometric mid-thigh pull (IMTP) (three studies), both reporting one repetition maximum (1RM) and peak force metrics. The most frequently used lower limb strength test was the back squat among males and IMTP among females. CONCLUSIONS Among elite basketball players, the back squat 1RM is the most used lower limb strength test. However, across studies, a large variability was evidenced, which suggests that lower limb testing procedures are heterogeneous in this population.
Collapse
Affiliation(s)
- Tom Faulks
- Faculty of Health, University of Canterbury, Christchurch 8041, New Zealand
| | - Pierpaolo Sansone
- Department of Movement, Human and Health Sciences, University of Rome “Foro Italico”, 00135 Rome, Italy
- Research Center for High Performance Sport, UCAM Universidad Católica de Murcia, 30107 Murcia, Spain
| | - Sibi Walter
- Faculty of Health, University of Canterbury, Christchurch 8041, New Zealand
| |
Collapse
|
8
|
Coelho-Júnior HJ, da Silva Aguiar S, de Oliveira Gonçalves I, Álvarez-Bustos A, Rodríguez-Mañas L, Uchida MC, Marzetti E. Agreement and Associations between Countermovement Jump, 5-Time Sit-To-Stand, Lower-Limb Muscle Power Equations, and Physical Performance Tests in Community-Dwelling Older Adults. J Clin Med 2024; 13:3380. [PMID: 38929908 PMCID: PMC11205156 DOI: 10.3390/jcm13123380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/02/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
Objectives: The present study examined the agreement and associations of the 5-time sit-to-stand (5STS) test, the countermovement jump test, and lower-limb muscle power equations with a set of physical performance tests in older adults. Methods: Five hundred and thirty-four community-dwelling older adults were recruited for the study. Lower-limb muscle power measures included 5STS, the countermovement jump test, and muscle power equations. Isometric handgrip strength, timed "up-and-go!", the 6 min walking test, one-leg stand, and walking speed at usual and fast paces were used to assess physical performance. Pearson's correlations and Bland-Altman analyses were conducted to examine associations among muscle power measures. Linear and multiple regressions were run to explore associations of 5STS, the countermovement jump test, and muscle power equations with physical performance tests. Results: Weak correlations were observed among lower-limb muscle power measures. Bland-Altman results indicated important differences among the countermovement jump test, 5STS, and muscle power equations. Results of multiple linear regressions indicated that 5STS, the countermovement jump test, and muscle power equations were significantly associated with measures of muscle strength and mobility. However, only 5STS was significantly associated with balance. Conclusions: Our results indicate that the performance on the countermovement jump test and 5STS is weakly correlated with lower-limb muscle power equations. The only exception was the correlation found between the countermovement jump test and relative muscle power, highlighting the importance of accounting for body mass in muscle power evaluations. Muscle power measures were similarly associated with performance on handgrip strength, timed "up-and-go!", and the 6 min walking test. The exclusive association of 5STS with balance suggests that a reassessment of 5STS muscle power equations may be warranted.
Collapse
Affiliation(s)
- Hélio José Coelho-Júnior
- Department of Geriatrics, Orthopedics and Rheumatology, Center for Geriatric Medicine (Ce.M.I.), Università Cattolica del Sacro Cuore, Largo F. Vito 1, 00168 Rome, Italy
| | - Samuel da Silva Aguiar
- University Centre UDF, Faculty of Physical Education, 704/904 Seps Eq 702/902, Brasília 70390-045, Brazil;
- Graduate Program in Physical Education, Federal University of Mato Grosso, Av. Fernando Corrêa da Costa 2367 Bairro Boa Esperança, Cuiabá 78060-900, Brazil
| | | | - Alejandro Álvarez-Bustos
- Centro de Investigación Biomédica en Red Sobre Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Av. Monforte de Lemos 3-5, 28029 Madrid, Spain; (A.Á.-B.); (L.R.-M.)
| | - Leocadio Rodríguez-Mañas
- Centro de Investigación Biomédica en Red Sobre Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Av. Monforte de Lemos 3-5, 28029 Madrid, Spain; (A.Á.-B.); (L.R.-M.)
| | - Marco Carlos Uchida
- Applied Kinesiology Laboratory, School of Physical Education, University of Campinas, Av. Érico Veríssimo 701, Campinas 13083-851, Brazil;
| | - Emanuele Marzetti
- Department of Geriatrics, Orthopedics and Rheumatology, Center for Geriatric Medicine (Ce.M.I.), Università Cattolica del Sacro Cuore, Largo F. Vito 1, 00168 Rome, Italy
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, Largo A. Gemelli 8, 00168 Rome, Italy
| |
Collapse
|
9
|
Fukunishi A, Kutsuzawa K, Owaki D, Hayashibe M. Synergy quality assessment of muscle modules for determining learning performance using a realistic musculoskeletal model. Front Comput Neurosci 2024; 18:1355855. [PMID: 38873285 PMCID: PMC11171420 DOI: 10.3389/fncom.2024.1355855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 05/13/2024] [Indexed: 06/15/2024] Open
Abstract
How our central nervous system efficiently controls our complex musculoskeletal system is still debated. The muscle synergy hypothesis is proposed to simplify this complex system by assuming the existence of functional neural modules that coordinate several muscles. Modularity based on muscle synergies can facilitate motor learning without compromising task performance. However, the effectiveness of modularity in motor control remains debated. This ambiguity can, in part, stem from overlooking that the performance of modularity depends on the mechanical aspects of modules of interest, such as the torque the modules exert. To address this issue, this study introduces two criteria to evaluate the quality of module sets based on commonly used performance metrics in motor learning studies: the accuracy of torque production and learning speed. One evaluates the regularity in the direction of mechanical torque the modules exert, while the other evaluates the evenness of its magnitude. For verification of our criteria, we simulated motor learning of torque production tasks in a realistic musculoskeletal system of the upper arm using feed-forward neural networks while changing the control conditions. We found that the proposed criteria successfully explain the tendency of learning performance in various control conditions. These result suggest that regularity in the direction of and evenness in magnitude of mechanical torque of utilized modules are significant factor for determining learning performance. Although the criteria were originally conceived for an error-based learning scheme, the approach to pursue which set of modules is better for motor control can have significant implications in other studies of modularity in general.
Collapse
Affiliation(s)
- Akito Fukunishi
- Department of Robotics, Graduate School of Engineering, Tohoku University, Sendai, Japan
| | | | | | | |
Collapse
|
10
|
Day JM, Merriman H. Upper extremity soft tissue stiffness measured with shear wave elastography: A between-day reliability study. Shoulder Elbow 2024; 16:159-168. [PMID: 38655409 PMCID: PMC11034466 DOI: 10.1177/17585732231179115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 05/11/2023] [Accepted: 05/14/2023] [Indexed: 04/26/2024]
Abstract
Background Imbalances in soft tissue stiffness (STS) of the pectoralis and common wrist extensors (CWEs) can adversely alter upper extremity function. Shear wave elastography (SWE) has the capacity to provide precise, repeatable, objective data on STS. The purpose of this study was to determine the between-day intrarater reliability for the pectoralis and CWE tendon stiffness as measured by SWE. Methods STS measured by the shear wave modulus (kilopascals (kPa)) was captured bilaterally on the pectoralis major, pectoralis minor, and CWE tendon using 2D SWE ultrasound imaging (GE Logiq S8, 9 L transducer) on two separate days. Within examiner intraclass correlation coefficients (ICC (3, 3)) with 95% confidence intervals, standard error of the measure, and minimal detectable changes were calculated. Results The investigators recruited 10 healthy participants (mean age = 23.50 ± 1.43). Between day intrarater reliability values were obtained for the dominant pectoralis major ICC = 0.70 (-0.15, -0.93), nondominant pectoralis major ICC = 0.63 (-0.30, -0.91), dominant pectoralis minor ICC = 0 .72(-0.04, -0.93), nondominant pectoralis minor ICC = 0.75(0.08, -0.94), dominant CWE tendon ICC = 0.75(-0.08, -0.94), and nondominant CWE tendon ICC = 0.75(-0.12, -0.94). Discussion Our data demonstrate acceptable reliability but future studies should include methods that control for variables known to effect STS.
Collapse
Affiliation(s)
- Joseph M Day
- Department of Physical Therapy, University of Dayton, Ohio, USA
| | - Harold Merriman
- Department of Physical Therapy, University of Dayton, Ohio, USA
| |
Collapse
|
11
|
Tecchio P, Raiteri BJ, Hahn D. Eccentric exercise ≠ eccentric contraction. J Appl Physiol (1985) 2024; 136:954-965. [PMID: 38482578 DOI: 10.1152/japplphysiol.00845.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 03/04/2024] [Accepted: 03/04/2024] [Indexed: 04/17/2024] Open
Abstract
Whether eccentric exercise involves active fascicle stretch is unclear due to muscle-tendon unit (MTU) series compliance. Therefore, this study investigated the impact of changing the activation timing and level (i.e., preactivation) of the contraction on muscle fascicle kinematics and kinetics of the human tibialis anterior during dynamometer-controlled maximal voluntary MTU-stretch-hold contractions. B-mode ultrasound and surface electromyography were used to assess muscle fascicle kinematics and muscle activity levels, respectively. Although joint kinematics were similar among MTU-stretch-hold contractions (∼40° rotation amplitude), increasing preactivation increased fascicle shortening and stretch amplitudes (9.9-23.2 mm, P ≤ 0.015). This led to increasing positive and negative fascicle work with increasing preactivation. Despite significantly different fascicle kinematics, similar peak fascicle forces during stretch occurred at similar fascicle lengths and joint angles regardless of preactivation. Similarly, residual force enhancement (rFE) following MTU stretch was not significantly affected (6.5-7.6%, P = 0.559) by preactivation, but rFE was strongly correlated with peak fascicle force during stretch (rrm = 0.62, P = 0.003). These findings highlight that apparent eccentric exercise causes shortening-stretch contractions at the fascicle level rather than isolated eccentric contractions. The constant rFE despite different fascicle kinematics and kinetics suggests that a passive element was engaged at a common muscle length among conditions (e.g., optimal fascicle length). Although it remains unclear whether different fascicle mechanics trigger different adaptations to eccentric exercise, this study emphasizes the need to consider MTU series compliance to better understand the mechanical drivers of adaptation to exercise.NEW & NOTEWORTHY Apparent eccentric exercises do not result in isolated eccentric contractions, but shortening-stretch contractions at the fascicle level. The amount of fascicle shortening and stretch depends on the preactivation during the exercise and cannot be estimated from the muscle-tendon unit (MTU) or joint kinematics. As different fascicle mechanics might trigger different adaptations to eccentric exercise, muscle-tendon unit series compliance and muscle preactivation need to be considered when eccentric exercise protocols are designed.
Collapse
Affiliation(s)
- Paolo Tecchio
- Human Movement Science, Faculty of Sport Science, Ruhr University Bochum, Bochum, Germany
| | - Brent J Raiteri
- Human Movement Science, Faculty of Sport Science, Ruhr University Bochum, Bochum, Germany
- School of Human Movement and Nutrition Sciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Daniel Hahn
- Human Movement Science, Faculty of Sport Science, Ruhr University Bochum, Bochum, Germany
- School of Human Movement and Nutrition Sciences, The University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
12
|
Sahinis C, Kellis E. Distal hamstrings tendons mechanical properties at rest and contraction using free-hand 3-D ultrasonography. Scand J Med Sci Sports 2024; 34:e14621. [PMID: 38597348 DOI: 10.1111/sms.14621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 03/10/2024] [Accepted: 03/17/2024] [Indexed: 04/11/2024]
Abstract
Tendon properties impact human locomotion, influencing sports performance, and injury prevention. Hamstrings play a crucial role in sprinting, particularly the biceps femoris long head (BFlh), which is prone to frequent injuries. It remains uncertain if BFlh exhibits distinct mechanical properties compared to other hamstring muscles. This study utilized free-hand three-dimensional ultrasound to assess morphological and mechanical properties of distal hamstrings tendons in 15 men. Scans were taken in prone position, with hip and knee extended, at rest and during 20%, 40%, 60%, and 80% of maximal voluntary isometric contraction of the knee flexors. Tendon length, volume, cross-sectional area (CSA), and anteroposterior (AP) and mediolateral (ML) widths were quantified at three locations. Longitudinal and transverse deformations, stiffness, strain, and stress were estimated. The ST had the greatest tendon strain and the lowest stiffness as well as the highest CSA and AP and ML width strain compared to other tendons. Biceps femoris short head (BFsh) exhibited the least strain, AP and ML deformation. Further, BFlh displayed the highest stiffness and stress, and BFsh had the lowest stress. Additionally, deformation varied by region, with the proximal site showing generally the lowest CSA strain. Distal tendon mechanical properties differed among the hamstring muscles during isometric knee flexions. In contrast to other bi-articular hamstrings, the BFlh high stiffness and stress may result in greater energy absorption by its muscle fascicles, rather than the distal tendon, during late swing in sprinting. This could partly account for the increased incidence of hamstring injuries in this muscle.
Collapse
Affiliation(s)
- Chrysostomos Sahinis
- Department of Physical Education and Sport Sciences at Serres, Laboratory of Neuromechanics, Aristotle University of Thessaloniki, Serres, Greece
| | - Eleftherios Kellis
- Department of Physical Education and Sport Sciences at Serres, Laboratory of Neuromechanics, Aristotle University of Thessaloniki, Serres, Greece
| |
Collapse
|
13
|
Day JM, Merriman H. Common Wrist-Extensor Tendon and Pectoralis Muscle Stiffness in Healthy Recreational Tennis Players. J Sport Rehabil 2024; 33:174-180. [PMID: 38377986 DOI: 10.1123/jsr.2023-0202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 12/21/2023] [Accepted: 01/06/2024] [Indexed: 02/22/2024]
Abstract
CONTEXT Imbalances in upper-extremity soft tissue stiffness may play a role in the development of shoulder and elbow musculoskeletal injuries in tennis players. Ultrasound shear wave elastography provides quantifiable and specific data regarding muscle stiffness. The purpose of this study was to compare tendon and muscle stiffness in healthy tennis players to nontennis players. DESIGN Cross-sectional study. METHODS The shear wave modulus, measured in kilopascals, was obtained for the dominant pectoralis major, pectoralis minor, and common wrist-extensor tendon using 2-dimensional shear wave elastography ultrasound imaging (GE Logiq S8, L9 linear transducer). Independent t test was run to compare age, body mass index, and the activity index score between both groups. Within-day intrarater reliability was assessed using a within-examiner intraclass correlation coefficients (ICC [3, 1]) with 95% confidence intervals. A multivariate general linear model was run to compare the mean differences between the tennis and nontennis players for each of the soft tissues. RESULTS Twenty-six individuals (13 tennis players and 13 nontennis players) were recruited. Within-day ICCs were very good (ICC > .78 for the pectoralis musculature) and excellent (ICC > .94 for the common wrist extensor). Common extensor tendon stiffness was significantly higher in tennis players compared to nontennis players (mean difference = 114.8 [61.8], confidence interval, -22.8 to 252.5 kPa for the dominant arm [P = .039]). Mean pectoralis major and minor stiffness differences were not significant (P > .214). CONCLUSIONS Common wrist-extensor stiffness in healthy recreational tennis players is higher than those who do not play tennis. Therefore, clinicians may need to facilitate a greater soft tissue stiffness response with resistance training when rehabilitating recreational tennis players as compared to those not playing tennis. Additional normative data on a larger sample of recreational tennis players should be collected.
Collapse
Affiliation(s)
- Joseph M Day
- Department of Physical Therapy, University of Dayton, Dayton, OH, USA
| | - Harold Merriman
- Department of Physical Therapy, University of Dayton, Dayton, OH, USA
| |
Collapse
|
14
|
Sukanen M, Khair RM, Ihalainen JK, Laatikainen-Raussi I, Eon P, Nordez A, Finni T. Achilles tendon and triceps surae muscle properties in athletes. Eur J Appl Physiol 2024; 124:633-647. [PMID: 37950761 PMCID: PMC10858159 DOI: 10.1007/s00421-023-05348-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 10/23/2023] [Indexed: 11/13/2023]
Abstract
PURPOSE The aim of this study was to investigate internal Achilles tendon (AT) displacement, AT shear wave velocity (SWV), and triceps surae (TS) muscle shear modulus in athletes. METHODS Internal AT displacement was assessed using ultrasound during isometric contraction. Shear wave elastography was used to assess AT SWV (m × s-1) at rest and TS muscle shear modulus (kPa) during passive ankle dorsiflexion. RESULTS A total of 131 athletes participated in this study. Athletes who had not exercised within two days had greater AT non-uniformity and mean anterior tendon displacement, and lower SWV at the proximal AT measurement site (mean difference [95% CI]: 1.8 mm [0.6-2.9], p = 0.003; 1.6 mm [0.2-2.9], p = 0.021; - 0.9 m × s-1 [- 1.6 to - 0.2], p = 0.014, respectively). Male basketball players had a lower mean AT displacement compared to gymnasts (- 3.7 mm [- 6.9 to - 0.5], p = 0.042), with the difference localised in the anterior half of the tendon (- 5.1 mm [- 9.0 to - 1.1], p = 0.022). Male gymnasts had a smaller absolute difference in medial gastrocnemius-minus-soleus shear modulus than basketball players (59.6 kPa [29.0-90.2], p < 0.001) and track and field athletes (52.7 kPa [19.2-86.3], p = 0.004). Intraclass correlation coefficients of measurements ranged from 0.720 to 0.937 for internal AT displacement, from 0.696 to 0.936 for AT SWE, and from 0.570 to 0.890 for TS muscles. CONCLUSION This study provides a reliability assessment of muscle and tendon SWV. The relative differences in passive TS muscle shear modulus suggest sport-specific adaptation. Importantly, in healthy individuals, lower AT displacement after exercise may reflect the time required for tendon recovery.
Collapse
Affiliation(s)
- Maria Sukanen
- Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland.
| | - Ra'ad M Khair
- Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - Johanna K Ihalainen
- Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
| | | | - Pauline Eon
- Nantes Université, Movement-Interactions-Performance, MIP, UR 4334, F-44000, Nantes, France
| | - Antoine Nordez
- Nantes Université, Movement-Interactions-Performance, MIP, UR 4334, F-44000, Nantes, France
- Institut Universitaire de France, Paris, France
| | - Taija Finni
- Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
| |
Collapse
|
15
|
Crawford SK, Wille CM, Joachim MR, Lee KS, Heiderscheit BC. Ultrasound shear wave seeds reduced following hamstring strain injury but not after returning to sport. Insights Imaging 2024; 15:7. [PMID: 38191955 PMCID: PMC10774410 DOI: 10.1186/s13244-023-01571-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 11/17/2023] [Indexed: 01/10/2024] Open
Abstract
OBJECTIVES The purpose of the study was to investigate differences in ultrasound shear wave speed (SWS) between uninjured and injured limbs following hamstring strain injury (HSI) at time of injury (TOI), return to sport (RTS), and 12 weeks after RTS (12wks). METHODS This observational, prospective, cross-sectional design included male and female collegiate athletes who sustained an HSI. SWS imaging was performed at TOI, RTS, and 12wks with magnetic resonance imaging. SWS maps were acquired by a musculoskeletal-trained sonographer at the injury location of the injured limb and location-matched on the contralateral limb. The average SWS from three 5 mm diameter Q-boxes on each limb were used for analysis. A linear mixed effects model was performed to determine differences in SWS between limbs across the study time points. RESULTS SWS was lower in the injured limb compared to the contralateral limb at TOI (uninjured - injured limb difference: 0.23 [0.05, 0.41] m/s, p = 0.006). No between-limb differences in SWS were observed at RTS (0.15 [-0.05, 0.36] m/s, p = 0.23) or 12wks (-0.11 [-0.41, 0.18] m/s, p = 0.84). CONCLUSIONS The SWS in the injured limb of collegiate athletes after HSI was lower compared to the uninjured limb at TOI but not at RTS or 12 weeks after RTS. CRITICAL RELEVANCE STATEMENT Hamstring strain injury with structural disruption can be detected by lower injured limb shear wave speed compared to the uninjured limb. Lack of between-limb differences at return to sport may demonstrate changes consistent with healing. Shear wave speed may complement traditional ultrasound or MRI for monitoring muscle injury. KEY POINTS • Ultrasound shear wave speed can non-invasively measure tissue elasticity in muscle injury locations. • Injured limb time of injury shear wave speeds were lower versus uninjured limb but not thereafter. • Null return to sport shear wave speed differences may correspond to structural changes associated with healing. • Shear wave speed may provide quantitative measures for monitoring muscle elasticity during recovery.
Collapse
Affiliation(s)
- Scott K Crawford
- Department of Kinesiology, University of Wisconsin-Madison, 1300 University Ave, Madison, WI, 53706, USA.
- Department of Orthopedics & Rehabilitation, University of Wisconsin-Madison, 1685 Highland Ave, Madison, WI, 53705, USA.
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA.
| | - Christa M Wille
- Department of Orthopedics & Rehabilitation, University of Wisconsin-Madison, 1685 Highland Ave, Madison, WI, 53705, USA
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA
- Badger Athletic Performance Program, University of Wisconsin-Madison, Madison, WI, USA
| | - Mikel R Joachim
- Department of Orthopedics & Rehabilitation, University of Wisconsin-Madison, 1685 Highland Ave, Madison, WI, 53705, USA
- Badger Athletic Performance Program, University of Wisconsin-Madison, Madison, WI, USA
| | - Kenneth S Lee
- Department of Radiology, University of Wisconsin-Madison, Madison, WI, USA
| | - Bryan C Heiderscheit
- Department of Orthopedics & Rehabilitation, University of Wisconsin-Madison, 1685 Highland Ave, Madison, WI, 53705, USA
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA
- Badger Athletic Performance Program, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
16
|
Liao J, Majidi C, Sitti M. Liquid Metal Actuators: A Comparative Analysis of Surface Tension Controlled Actuation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2300560. [PMID: 37358049 DOI: 10.1002/adma.202300560] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 06/09/2023] [Indexed: 06/27/2023]
Abstract
Liquid metals, with their unique combination of electrical and mechanical properties, offer great opportunities for actuation based on surface tension modulation. Thanks to the scaling laws of surface tension, which can be electrochemically controlled at low voltages, liquid metal actuators stand out from other soft actuators for their remarkable characteristics such as high contractile strain rates and higher work densities at smaller length scales. This review summarizes the principles of liquid metal actuators and discusses their performance as well as theoretical pathways toward higher performances. The objective is to provide a comparative analysis of the ongoing development of liquid metal actuators. The design principles of the liquid metal actuators are analyzed, including low-level elemental principles (kinematics and electrochemistry), mid-level structural principles (reversibility, integrity, and scalability), and high-level functionalities. A wide range of practical use cases of liquid metal actuators from robotic locomotion and object manipulation to logic and computation is reviewed. From an energy perspective, strategies are compared for coupling the liquid metal actuators with an energy source toward fully untethered robots. The review concludes by offering a roadmap of future research directions of liquid metal actuators.
Collapse
Affiliation(s)
- Jiahe Liao
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, Heisenbergstr. 3, 70569, Stuttgart, Germany
| | - Carmel Majidi
- Robotics Institute, Mechanical Engineering, Carnegie Mellon University, 5000 Forbes Ave, Pittsburgh, PA, 15213, USA
| | - Metin Sitti
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, Heisenbergstr. 3, 70569, Stuttgart, Germany
- Institute for Biomedical Engineering, ETH Zürich, Zürich, 8092, Switzerland
- School of Medicine, College of Engineering, Koç University, Istanbul, 34450, Turkey
| |
Collapse
|
17
|
Blazevich AJ, Fletcher JR. More than energy cost: multiple benefits of the long Achilles tendon in human walking and running. Biol Rev Camb Philos Soc 2023; 98:2210-2225. [PMID: 37525526 DOI: 10.1111/brv.13002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 07/12/2023] [Accepted: 07/17/2023] [Indexed: 08/02/2023]
Abstract
Elastic strain energy that is stored and released from long, distal tendons such as the Achilles during locomotion allows for muscle power amplification as well as for reduction of the locomotor energy cost: as distal tendons perform mechanical work during recoil, plantar flexor muscle fibres can work over smaller length ranges, at slower shortening speeds, and at lower activation levels. Scant evidence exists that long distal tendons evolved in humans (or were retained from our more distant Hominoidea ancestors) primarily to allow high muscle-tendon power outputs, and indeed we remain relatively powerless compared to many other species. Instead, the majority of evidence suggests that such tendons evolved to reduce total locomotor energy cost. However, numerous additional, often unrecognised, advantages of long tendons may speculatively be of greater evolutionary advantage, including the reduced limb inertia afforded by shorter and lighter muscles (reducing proximal muscle force requirement), reduced energy dissipation during the foot-ground collisions, capacity to store and reuse the muscle work done to dampen the vibrations triggered by foot-ground collisions, reduced muscle heat production (and thus core temperature), and attenuation of work-induced muscle damage. Cumulatively, these effects should reduce both neuromotor fatigue and sense of locomotor effort, allowing humans to choose to move at faster speeds for longer. As these benefits are greater at faster locomotor speeds, they are consistent with the hypothesis that running gaits used by our ancestors may have exerted substantial evolutionary pressure on Achilles tendon length. The long Achilles tendon may therefore be a singular adaptation that provided numerous physiological, biomechanical, and psychological benefits and thus influenced behaviour across multiple tasks, both including and additional to locomotion. While energy cost may be a variable of interest in locomotor studies, future research should consider the broader range of factors influencing our movement capacity, including our decision to move over given distances at specific speeds, in order to understand more fully the effects of Achilles tendon function as well as changes in this function in response to physical activity, inactivity, disuse and disease, on movement performance.
Collapse
Affiliation(s)
- Anthony J Blazevich
- Centre for Human Performance, School of Medical and Health Sciences, Edith Cowan University, 270 Joondalup Drive, Joondalup, Western Australia, Australia
| | - Jared R Fletcher
- Department of Health and Physical Education, Mount Royal University, 4825 Mount Royal Gate SW, Calgary, Alberta, Canada
| |
Collapse
|
18
|
Coskun M, Sendur HN, Cerit MN, Babayeva A, Cerit ET, Yalcin MM, Altinova AE, Akturk M, Karakoc MA, Toruner FB. Assessment of forearm muscles with ultrasound shear wave elastography in patients with acromegaly. Pituitary 2023; 26:716-724. [PMID: 37899388 DOI: 10.1007/s11102-023-01352-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/24/2023] [Indexed: 10/31/2023]
Abstract
PURPOSE The effects of acromegaly on soft tissues, bones and joints are well-documented, but information on its effects on muscle mass and quality remains limited. The primary goal of this study is to assess the sonoelastographic features of forearm muscles in patients with acromegaly. METHOD Forty-five patients with acromegaly and 45 healthy controls similar in terms of gender, age, and body mass index (BMI) were included in a single-center, multidisciplinary, cross-sectional study. The body composition was analyzed using bioelectrical impedance analysis (BIA), and height-adjusted appendicular skeletal muscle index (hSMI) was calculated. The dominant hand's grip strength was also measured. Two radiologists specialized in the musculoskeletal system employed ultrasound shear wave elastography (SWE) to assess the thickness and stiffness of brachioradialis and biceps brachii muscles. RESULTS The acromegaly group had significantly higher thickness of both the biceps brachii (p = 0.034) and brachioradialis muscle (p = 0.046) than the control group. However, the stiffness of the biceps brachii (p = 0.001) and brachioradialis muscle (p = 0.001) was lower in the acromegaly group than in the control group. Disease activity has not caused a significant difference in muscle thickness and stiffness in the acromegaly group (p > 0.05). The acromegaly group had a higher hSMI (p = 0.004) than the control group. The hand grip strength was similar between the acromegaly and control group (p = 0.594). CONCLUSION The patients with acromegaly have an increased muscle thickness but decreased muscle stiffness in the forearm muscles responsible for elbow flexion. Acromegaly can lead to a permanent deterioration of the muscular structure regardless of the disease activity.
Collapse
Affiliation(s)
- Meric Coskun
- Department of Endocrinology and Metabolism, Faculty of Medicine, Gazi University, Emniyet Street, Yenimahalle, Ankara, 06100, Turkey.
| | - Halit Nahit Sendur
- Department of Radiology, Faculty of Medicine, Gazi University, Ankara, 06100, Turkey
| | - Mahi Nur Cerit
- Department of Radiology, Faculty of Medicine, Gazi University, Ankara, 06100, Turkey
| | - Afruz Babayeva
- Department of Endocrinology and Metabolism, Faculty of Medicine, Gazi University, Emniyet Street, Yenimahalle, Ankara, 06100, Turkey
| | - Ethem Turgay Cerit
- Department of Endocrinology and Metabolism, Faculty of Medicine, Gazi University, Emniyet Street, Yenimahalle, Ankara, 06100, Turkey
| | - Mehmet Muhittin Yalcin
- Department of Endocrinology and Metabolism, Faculty of Medicine, Gazi University, Emniyet Street, Yenimahalle, Ankara, 06100, Turkey
| | - Alev Eroglu Altinova
- Department of Endocrinology and Metabolism, Faculty of Medicine, Gazi University, Emniyet Street, Yenimahalle, Ankara, 06100, Turkey
| | - Mujde Akturk
- Department of Endocrinology and Metabolism, Faculty of Medicine, Gazi University, Emniyet Street, Yenimahalle, Ankara, 06100, Turkey
| | - Mehmet Ayhan Karakoc
- Department of Endocrinology and Metabolism, Faculty of Medicine, Gazi University, Emniyet Street, Yenimahalle, Ankara, 06100, Turkey
| | - Fusun Balos Toruner
- Department of Endocrinology and Metabolism, Faculty of Medicine, Gazi University, Emniyet Street, Yenimahalle, Ankara, 06100, Turkey
| |
Collapse
|
19
|
Li D, Lu R. Research progress in pelvic floor ultrasound for assessing the morphology and function of levator ani muscle in women. ZHONG NAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF CENTRAL SOUTH UNIVERSITY. MEDICAL SCIENCES 2023; 48:1267-1273. [PMID: 37875368 PMCID: PMC10930840 DOI: 10.11817/j.issn.1672-7347.2023.220577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Indexed: 10/26/2023]
Abstract
Pelvic floor ultrasound can clearly visualize the position and morphology of pelvic floor organs, observe the pelvic organ prolapse in real-time, and quantify and analyze the degree of the levator ani muscle injury, which is the most common imaging method to assess the morphology and function of the levator ani muscle to date. The different ultrasound imaging techniques provide a variety of indicators, each with its own advantages and limitations.Furthermore, two-dimensional ultrasound is the basis of imaging, but it fails to detect cross-sectional images of the pelvic floor; three-dimensional ultrasound can acquire the axial plane of the levator hiatus; tomographic ultrasound imaging allows real-time observation of the levator ani muscle injury; shear wave elastography can provide a quantitative assessment of the contractility and elastic characteristics of the levator ani muscle in real-time. It is of great significance to summarize the basic principles of various ultrasound imaging techniques, summarize the ultrasound image characteristics of levator ani muscle and its hiatus in different populations and different states, and explore the cut-off values and diagnostic criteria-related ultrasound parameters for improving the diagnostic efficiency of pelvic floor ultrasound for levator ani muscle injury, leading to reducing missed diagnosis and misdiagnosis of lesions.
Collapse
Affiliation(s)
- Duo Li
- Department of Ultrasonography, Xiangya Hospital, Central South University, Changsha 410008.
| | - Rong Lu
- Department of Gynecology, Xiangya Hospital, Central South University, Changsha 410008, China.
| |
Collapse
|
20
|
Kohsaka H. Linking neural circuits to the mechanics of animal behavior in Drosophila larval locomotion. Front Neural Circuits 2023; 17:1175899. [PMID: 37711343 PMCID: PMC10499525 DOI: 10.3389/fncir.2023.1175899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 06/13/2023] [Indexed: 09/16/2023] Open
Abstract
The motions that make up animal behavior arise from the interplay between neural circuits and the mechanical parts of the body. Therefore, in order to comprehend the operational mechanisms governing behavior, it is essential to examine not only the underlying neural network but also the mechanical characteristics of the animal's body. The locomotor system of fly larvae serves as an ideal model for pursuing this integrative approach. By virtue of diverse investigation methods encompassing connectomics analysis and quantification of locomotion kinematics, research on larval locomotion has shed light on the underlying mechanisms of animal behavior. These studies have elucidated the roles of interneurons in coordinating muscle activities within and between segments, as well as the neural circuits responsible for exploration. This review aims to provide an overview of recent research on the neuromechanics of animal locomotion in fly larvae. We also briefly review interspecific diversity in fly larval locomotion and explore the latest advancements in soft robots inspired by larval locomotion. The integrative analysis of animal behavior using fly larvae could establish a practical framework for scrutinizing the behavior of other animal species.
Collapse
Affiliation(s)
- Hiroshi Kohsaka
- Graduate School of Informatics and Engineering, The University of Electro-Communications, Chofu, Tokyo, Japan
- Department of Complexity Science and Engineering, Graduate School of Frontier Science, The University of Tokyo, Chiba, Japan
| |
Collapse
|
21
|
Holt NC, Mayfield DL. Muscle-tendon unit design and tuning for power enhancement, power attenuation, and reduction of metabolic cost. J Biomech 2023; 153:111585. [PMID: 37126884 PMCID: PMC10949972 DOI: 10.1016/j.jbiomech.2023.111585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 04/06/2023] [Indexed: 05/03/2023]
Abstract
The contractile elements in skeletal muscle fibers operate in series with elastic elements, tendons and potentially aponeuroses, in muscle-tendon units (MTUs). Elastic strain energy (ESE), arising from either work done by muscle fibers or the energy of the body, can be stored in these series elastic elements (SEEs). MTUs vary considerably in their design in terms of the relative lengths and stiffnesses of the muscle fibers and SEEs, and the force and work generating capacities of the muscle fibers. However, within an MTU it is thought that contractile and series elastic elements can be matched or tuned to maximize ESE storage. The use of ESE is thought to improve locomotor performance by enhancing contractile element power during activities such as jumping, attenuating contractile element power during activities such as landing, and reducing the metabolic cost of movement during steady-state activities such as walking and running. The effectiveness of MTUs in these potential roles is contingent on factors such as the source of mechanical energy, the control of the flow of energy, and characteristics of SEE recoil. Hence, we suggest that MTUs specialized for ESE storage may vary considerably in the structural, mechanical, and physiological properties of their components depending on their functional role and required versatility.
Collapse
Affiliation(s)
- N C Holt
- Department of Evolution, Ecology and Organismal Biology, University of California Riverside, 900 University Avenue, Riverside, CA 92521, USA.
| | - D L Mayfield
- Department of Evolution, Ecology and Organismal Biology, University of California Riverside, 900 University Avenue, Riverside, CA 92521, USA
| |
Collapse
|
22
|
Bernabei M, Lee SSM, Perreault EJ, Sandercock TG. Axial stress determines the velocity of shear wave propagation in passive but not active muscles in vivo. J Appl Physiol (1985) 2023; 134:941-950. [PMID: 36861673 PMCID: PMC10069958 DOI: 10.1152/japplphysiol.00125.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 02/27/2023] [Accepted: 02/27/2023] [Indexed: 03/03/2023] Open
Abstract
Ultrasound shear wave elastography can be used to characterize mechanical properties of unstressed tissue by measuring shear wave velocity (SWV), which increases with increasing tissue stiffness. Measurements of SWV have often been assumed to be directly related to the stiffness of muscle. Some have also used measures of SWV to estimate stress, since muscle stiffness and stress covary during active contractions, but few have considered the direct influence of muscle stress on SWV. Rather, it is often assumed that stress alters the material properties of muscle, and in turn, shear wave propagation. The objective of this study was to determine how well the theoretical dependency of SWV on stress can account for measured changes of SWV in passive and active muscles. Data were collected from six isoflurane-anesthetized cats; three soleus muscles and three medial gastrocnemius muscles. Muscle stress and stiffness were measured directly along with SWV. Measurements were made across a range of passively and actively generated stresses, obtained by varying muscle length and activation, which was controlled by stimulating the sciatic nerve. Our results show that SWV depends primarily on the stress in a passively stretched muscle. In contrast, the SWV in active muscle is higher than would be predicted by considering only stress, presumably due to activation-dependent changes in muscle stiffness. Our results demonstrate that while SWV is sensitive to changes in muscle stress and activation, there is not a unique relationship between SWV and either of these quantities when considered in isolation.NEW & NOTEWORTHY Ultrasound shear wave elastography may be an inexpensive way to measure muscle stress in passive muscle. Here, using a cat model we directly measured shear wave velocity (SWV), muscle stress, and muscle stiffness. Our results show that SWV depends primarily on the stress in a passively stretched muscle. In contrast, the SWV in active muscle is higher than would be predicted by considering only stress, presumably due to activation-dependent changes in muscle stiffness.
Collapse
Affiliation(s)
- Michel Bernabei
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois, United States
- Shirley Ryan Ability Lab, Chicago, Illinois, United States
| | - Sabrina S M Lee
- Department of Physical Therapy and Human Movement Sciences, Northwestern University, Chicago, Illinois, United States
| | - Eric J Perreault
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois, United States
- Shirley Ryan Ability Lab, Chicago, Illinois, United States
- Department of Physical Medicine and Rehabilitation, Northwestern University, Chicago, Illinois, United States
| | - Thomas G Sandercock
- Department of Neuroscience, Northwestern University, Chicago, Illinois, United States
| |
Collapse
|
23
|
Alt T, Roos T, Nolte K, Modenbach D, Knicker AJ, Jaitner T. Modulating the Nordic Hamstring Exercise From "Zero to Hero": A Stepwise Progression Explored in a High-Performance Athlete. J Athl Train 2023; 58:329-337. [PMID: 35984720 PMCID: PMC11215643 DOI: 10.4085/1062-6050-0010.22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND The Nordic hamstring exercise (NHE) is commonly implemented to selectively improve eccentric knee-flexor strength. However, the standard version of the exercise (leveled shanks, extended hip joint) is too strenuous for most individuals, whose muscle activity rapidly decreases at extended knee angles. Hitherto, a gradual approach to the exercise has been missing. In this exploratory case study, we investigated elite performance to introduce a stepwise progression to the NHE. OBJECTIVE To determine the extent to which exercise modifications (shank inclination, additional load, hip flexion) altered NHE mechanics. DATA COLLECTION AND ANALYSIS One male long jumper (age = 33 years, height = 171 cm, mass = 69 kg) with high-level expertise in the NHE performed 20 exercise variations. The corresponding kinematics, kinetics, and electromyographic activity of the biceps femoris long head (BFlh) and semitendinosus (ST) muscles were evaluated. RESULTS Exercise variations demonstrated gradually increased peak moments from 69% (zigzag pose) to 154% (inclined bent single-legged version) versus a standard NHE. Shank inclination and additional load elicited small to moderate effects on peak moments, BFlh, and ST (0.24 ≤ d ≤ 0.72), whereas hip flexion largely affected all tested variables (2.80 ≤ d ≤ 6.66), especially muscle activity (BFlh = -63%; ST = -55% of maximal voluntary isometric contraction). COMMENTARY These insights will help practitioners and scientists design multifaceted stepwise NHE progressions by creating differentiated stimuli that best match the strength capacities of individuals and address their specific needs.
Collapse
Affiliation(s)
- Tobias Alt
- Department of Biomechanics, Performance Analysis and Strength & Conditioning, Olympic Training and Testing Centre Westphalia, Dortmund, Germany
| | - Tilman Roos
- Institute of Sport Science, Otto-von-Guericke University, Magdeburg, Germany
| | - Kevin Nolte
- Department for Sport and Sport Science, TU Dortmund University, Germany
| | - Dominik Modenbach
- Department for Sport and Sport Science, TU Dortmund University, Germany
| | - Axel J. Knicker
- Institute of Movement & Neuroscience, German Sport University, Cologne
- Research Centre of Elite Sport (Momentum), Cologne, Germany
| | - Thomas Jaitner
- Department for Sport and Sport Science, TU Dortmund University, Germany
| |
Collapse
|
24
|
Komiya M, Maeda N, Tsutsumi S, Ishihara H, Mizuta R, Nishikawa Y, Arima S, Kaneda K, Ushio K, Urabe Y. Effect of postural differences on the activation of intrinsic foot muscles during ramp-up toe flexion in young men. Gait Posture 2023; 102:112-117. [PMID: 36990037 DOI: 10.1016/j.gaitpost.2023.03.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/17/2023] [Accepted: 03/24/2023] [Indexed: 03/31/2023]
Abstract
BACKGROUND Intrinsic foot muscle exercises are used in clinical and sports practice to improve performance. Force generation during toe flexion is greater in the standing posture than in the sitting posture; nonetheless, the mechanism underlying the activation of intrinsic foot muscles during force generation and whether there exists a difference between these two postures still remain unclear. RESEARCH QUESTION Are the activities of intrinsic foot muscles affected by standing and sitting postures during gradual force generation? METHODS Seventeen men participated in the laboratory based cross-sectional study. Each participant performed a force ramp-up toe flexion task from 0% to 80% of the maximal toe flexor strength (MTFS) in sitting and standing postures. High-density surface electromyography signals obtained during the task were determined by calculating the root mean square (RMS). Additionally, modified entropy and coefficient of variation (CoV) were calculated at 20-80 % MTFS for each 10 % MTFS. RESULTS The RMS between the two postures indicated an interaction effect (p < 0.01). Post-hoc analyses revealed that intrinsic foot muscle activity during the ramp-up task was significantly higher in the standing posture than in the sitting posture at 60 % MTFS (67.53 ± 15.91 vs 54.64 ± 19.28 % maximal voluntary contraction [MVC], p = 0.03), 70 % MTFS (78.11 ± 12.93 vs 63.28 ± 18.65 % MVC, p = 0.01), and 80 % MTFS (81.78 ± 14.07 vs 66.90 ± 20.32 % MVC, p = 0.02). In the standing posture, the modified entropy at 80 % MTFS was lower than that at 20 % MTFS (p = 0.03), and the CoV at 80 % MTFS was higher than that at 20 % MTFS (p = 0.03). SIGNIFICANCE These results indicated that posture selection is important for high-intensity exercises of the intrinsic foot muscles, such as resistance training. Thus, improving performance related to toe flexor strength might be more effective when conducted under adequate weight-bearing situations, such as in the standing posture.
Collapse
Affiliation(s)
- Makoto Komiya
- Department of Sport Rehabilitation, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan.
| | - Noriaki Maeda
- Department of Sport Rehabilitation, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan
| | - Shogo Tsutsumi
- Department of Sport Rehabilitation, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan
| | - Honoka Ishihara
- Department of Sport Rehabilitation, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan
| | - Rami Mizuta
- Department of Sport Rehabilitation, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan
| | - Yuichi Nishikawa
- Faculty of Frontier Engineering, Institute of Science & Engineering, Kanazawa University, Kanazawa, Japan
| | - Satoshi Arima
- Department of Sport Rehabilitation, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan
| | - Kazuki Kaneda
- Department of Sport Rehabilitation, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan
| | - Kai Ushio
- Department of Rehabilitation Medicine, Hiroshima University Hospital, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan; Sports Medical Center, Hiroshima University Hospital, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan
| | - Yukio Urabe
- Department of Sport Rehabilitation, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan
| |
Collapse
|
25
|
Comfort P, Haff GG, Suchomel TJ, Soriano MA, Pierce KC, Hornsby WG, Haff EE, Sommerfield LM, Chavda S, Morris SJ, Fry AC, Stone MH. National Strength and Conditioning Association Position Statement on Weightlifting for Sports Performance. J Strength Cond Res 2023; 37:1163-1190. [PMID: 36952649 DOI: 10.1519/jsc.0000000000004476] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2023]
Abstract
ABSTRACT Comfort, P, Haff, GG, Suchomel, TJ, Soriano, MA, Pierce, KC, Hornsby, WG, Haff, EE, Sommerfield, LM, Chavda, S, Morris, SJ, Fry, AC, and Stone, MH. National Strength and Conditioning Association position statement on weightlifting for sports performance. J Strength Cond Res XX(X): 000-000, 2022-The origins of weightlifting and feats of strength span back to ancient Egypt, China, and Greece, with the introduction of weightlifting into the Olympic Games in 1896. However, it was not until the 1950s that training based on weightlifting was adopted by strength coaches working with team sports and athletics, with weightlifting research in peer-reviewed journals becoming prominent since the 1970s. Over the past few decades, researchers have focused on the use of weightlifting-based training to enhance performance in nonweightlifters because of the biomechanical similarities (e.g., rapid forceful extension of the hips, knees, and ankles) associated with the second pull phase of the clean and snatch, the drive/thrust phase of the jerk and athletic tasks such as jumping and sprinting. The highest force, rate of force development, and power outputs have been reported during such movements, highlighting the potential for such tasks to enhance these key physical qualities in athletes. In addition, the ability to manipulate barbell load across the extensive range of weightlifting exercises and their derivatives permits the strength and conditioning coach the opportunity to emphasize the development of strength-speed and speed-strength, as required for the individual athlete. As such, the results of numerous longitudinal studies and subsequent meta-analyses demonstrate the inclusion of weightlifting exercises into strength and conditioning programs results in greater improvements in force-production characteristics and performance in athletic tasks than general resistance training or plyometric training alone. However, it is essential that such exercises are appropriately programmed adopting a sequential approach across training blocks (including exercise variation, loads, and volumes) to ensure the desired adaptations, whereas strength and conditioning coaches emphasize appropriate technique and skill development of athletes performing such exercises.
Collapse
Affiliation(s)
- Paul Comfort
- University of Salford, Greater Manchester, United Kingdom
- Edith Cowan University, Perth, Australia
| | - G Gregory Haff
- University of Salford, Greater Manchester, United Kingdom
- Edith Cowan University, Perth, Australia
| | - Timothy J Suchomel
- University of Salford, Greater Manchester, United Kingdom
- Carroll University, Waukesha, Wisconsin
| | | | | | | | - Erin E Haff
- University of Salford, Greater Manchester, United Kingdom
- Australian Weightlifting Federation, Chandler, Australia
| | | | - Shyam Chavda
- London Sports Institute, Middlesex University, London, United Kingdom
- British Weightlifting, Leeds, United Kingdom
| | | | | | | |
Collapse
|
26
|
Li H, Peng F, Lyu S, Ji Z, Li X, Liu M. Newly compiled Tai Chi (Bafa Wubu) promotes lower extremity exercise: a preliminary cross sectional study. PeerJ 2023; 11:e15036. [PMID: 36935910 PMCID: PMC10019341 DOI: 10.7717/peerj.15036] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 02/20/2023] [Indexed: 03/14/2023] Open
Abstract
Background Tai Chi (Bafa Wubu) is a new type of simplified Tai Chi widely practiced by Tai Chi enthusiasts that has developed and perfected simplified Tai Chi movement and enriched Tai Chi practice methods. When practicing, Tai Chi athletes and enthusiasts can choose the Bafa Wubu movements to practice according to their physical conditions. The purpose of this article is to discuss the mechanism by which Bafa Wubu promotes lower extremity exercise from the perspective of exercise biomechanics. Objectives This article aims to explore the scientific training methods and technical characteristics of Bafa Wubu, and its contribution to comprehensive exercise of the lower extremities, by analyzing the biomechanical characteristics of the lower extremities of participants who practice Bafa Wubu at different levels and by comparing their ground reaction force, lower limb joints, and muscles during Bafa Wubu. Methods A total of 16 male participants were recruited and divided into an amateur group (N = 8) and a professional group (N = 8). The data were collected by a BTS 3D infrared-based motion capture system, and Kistler 3D force plate. The lower extremity joint forces and muscle strength were calculated by anybody simulation software with inverse dynamics. Results During elbowing and leaning sideways with steps sideways (ELS), the ground reaction force of the professional group was significantly higher than that of the amateur group in the sagittal, vertical, and frontal axes (P < 0.01). While stepping forward, backward, and sideways, the professional group's joints loading at the hip, knee, and ankle was always higher in the vertical direction (P < 0.01). Furthermore, during warding off with steps forward (WOF), laying with steps forward (LF), and rolling back with steps backward (RBB), hip joint loading increased in the med-lat direction. During actions with steps backward and sideways, the professional group's ankle flexion/extension torque and hip abduction/rotation torque were significantly larger than those of the amateur group (P < 0.01). Different actions in Bafa Wubu activate muscles to different degrees, whereas the iliacus is mainly responsible for stabilizing postures when practitioners perform standing knee lifting motions. Conclusions Professional groups who have been practicing Tai Chi (Bafa Wubu) for a long time have higher ground reaction force, and the force on the three joints of the lower extremities is different for various movements, which has positive significance for exercising the joints of the lower extremities. In addition, various motions activate muscles of different types at different levels. For amateurs to practice different movements to stimulate the muscles, targeted areas of practice promote the lower extremity muscles' synergistic force. In summary, the muscles and joints of the lower extremity can obtain comprehensive and balanced exercise through Bafa Wubu.
Collapse
Affiliation(s)
- Haojie Li
- School of P.E and Sports, Beijing Normal University, Beijing, Haidian, China
| | - Fang Peng
- Department of PE, Peking University, Beijing, Haidian, China
| | - Shaojun Lyu
- School of P.E and Sports, Beijing Normal University, Beijing, Haidian, China
| | - Zhongqiu Ji
- School of P.E and Sports, Beijing Normal University, Beijing, Haidian, China
| | - Xiongfeng Li
- School of P.E and Sports, Beijing Normal University, Beijing, Haidian, China
| | - Mingyu Liu
- School of P.E and Sports, Beijing Normal University, Beijing, Haidian, China
| |
Collapse
|
27
|
Paton BM, Read P, van Dyk N, Wilson MG, Pollock N, Court N, Giakoumis M, Head P, Kayani B, Kelly S, Kerkhoffs GMMJ, Moore J, Moriarty P, Murphy S, Plastow R, Stirling B, Tulloch L, Wood D, Haddad F. London International Consensus and Delphi study on hamstring injuries part 3: rehabilitation, running and return to sport. Br J Sports Med 2023; 57:278-291. [PMID: 36650032 DOI: 10.1136/bjsports-2021-105384] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/16/2022] [Indexed: 01/19/2023]
Abstract
Hamstring injuries (HSIs) are the most common athletic injury in running and pivoting sports, but despite large amounts of research, injury rates have not declined in the last 2 decades. HSI often recur and many areas are lacking evidence and guidance for optimal rehabilitation. This study aimed to develop an international expert consensus for the management of HSI. A modified Delphi methodology and consensus process was used with an international expert panel, involving two rounds of online questionnaires and an intermediate round involving a consensus meeting. The initial information gathering round questionnaire was sent to 46 international experts, which comprised open-ended questions covering decision-making domains in HSI. Thematic analysis of responses outlined key domains, which were evaluated by a smaller international subgroup (n=15), comprising clinical academic sports medicine physicians, physiotherapists and orthopaedic surgeons in a consensus meeting. After group discussion around each domain, a series of consensus statements were prepared, debated and refined. A round 2 questionnaire was sent to 112 international hamstring experts to vote on these statements and determine level of agreement. Consensus threshold was set a priori at 70%. Expert response rates were 35/46 (76%) (first round), 15/35 (attendees/invitees to meeting day) and 99/112 (88.2%) for final survey round. Statements on rehabilitation reaching consensus centred around: exercise selection and dosage (78.8%-96.3% agreement), impact of the kinetic chain (95%), criteria to progress exercise (73%-92.7%), running and sprinting (83%-100%) in rehabilitation and criteria for return to sport (RTS) (78.3%-98.3%). Benchmarks for flexibility (40%) and strength (66.1%) and adjuncts to rehabilitation (68.9%) did not reach agreement. This consensus panel recommends individualised rehabilitation based on the athlete, sporting demands, involved muscle(s) and injury type and severity (89.8%). Early-stage rehab should avoid high strain loads and rates. Loading is important but with less consensus on optimum progression and dosage. This panel recommends rehabilitation progress based on capacity and symptoms, with pain thresholds dependent on activity, except pain-free criteria supported for sprinting (85.5%). Experts focus on the demands and capacity required for match play when deciding the rehabilitation end goal and timing of RTS (89.8%). The expert panellists in this study followed evidence on aspects of rehabilitation after HSI, suggesting rehabilitation prescription should be individualised, but clarified areas where evidence was lacking. Additional research is required to determine the optimal load dose, timing and criteria for HSI rehabilitation and the monitoring and testing metrics to determine safe rapid progression in rehabilitation and safe RTS. Further research would benefit optimising: prescription of running and sprinting, the application of adjuncts in rehabilitation and treatment of kinetic chain HSI factors.
Collapse
Affiliation(s)
- Bruce M Paton
- Institute of Sport Exercise and Health (ISEH), University College London, London, UK .,Physiotherapy Department, University College London Hospitals NHS Foundation Trust, London, UK.,Division of Surgery and Intervention Science, University College London, London, UK
| | - Paul Read
- Institute of Sport Exercise and Health (ISEH), University College London, London, UK.,Division of Surgery and Intervention Science, University College London, London, UK.,School of Sport and Exercise, University of Gloucestershire, Gloucester, UK
| | - Nicol van Dyk
- High Performance Unit, Irish Rugby Football Union, Dublin, Ireland.,Section Sports Medicine, University of Pretoria, Pretoria, South Africa
| | - Mathew G Wilson
- Division of Surgery and Intervention Science, University College London, London, UK.,Princess Grace Hospital, London, UK
| | - Noel Pollock
- Institute of Sport Exercise and Health (ISEH), University College London, London, UK.,British Athletics, London, UK
| | | | | | - Paul Head
- School of Sport, Health and Applied Science, St. Mary's University, London, UK
| | - Babar Kayani
- Trauma and Orthopaedic Surgery, University College London Hospitals NHS Foundation Trust, London, UK
| | - Sam Kelly
- Salford City Football Club, Salford, UK.,Blackburn Rovers Football Club, Blackburn, UK
| | - Gino M M J Kerkhoffs
- Orthopaedic Surgery and Sports Medicine, Amsterdam Movement Sciences, Amsterdam University Medical Centers, Amsterdam, The Netherlands.,Amsterdam Collaboration for Health and Safety in Sports (ACHSS), Amsterdam IOC Research Center, Amsterdam, The Netherlands
| | - James Moore
- Sports & Exercise Medicine, Centre for Human Health and Performance, London, UK
| | - Peter Moriarty
- Trauma and Orthopaedic Surgery, University College London Hospitals NHS Foundation Trust, London, UK
| | - Simon Murphy
- Medical Services, Arsenal Football Club, London, UK
| | - Ricci Plastow
- Trauma and Orthopaedic Surgery, University College London Hospitals NHS Foundation Trust, London, UK
| | | | | | - David Wood
- Trauma & Orthopaedic Surgery, North Sydney Orthopaedic and Sports Medicine Centre, Sydney, New South Wales, Australia
| | - Fares Haddad
- Institute of Sport Exercise and Health (ISEH), University College London, London, UK.,Division of Surgery and Intervention Science, University College London, London, UK.,Princess Grace Hospital, London, UK.,Trauma and Orthopaedic Surgery, University College London Hospitals NHS Foundation Trust, London, UK
| |
Collapse
|
28
|
Konrad A, Tilp M, Mehmeti L, Mahnič N, Seiberl W, Paternoster FK. The Relationship Between Lower Limb Passive Muscle and Tendon Compression Stiffness and Oxygen Cost During Running. J Sports Sci Med 2023; 22:28-35. [PMID: 36876188 PMCID: PMC9982528 DOI: 10.52082/jssm.2023.28] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 12/26/2022] [Indexed: 01/09/2023]
Abstract
Studies have reported that a stiff triceps surae muscle and tendon-aponeurosis and also a more compliant quadriceps muscle and tendon-aponeurosis, are related to lower oxygen cost during running. However, to date, no study has investigated in a single experiment how oxygen cost during running is related to the stiffness of the free tendons (Achilles tendon, patellar tendon) and all the superficial muscles of two major muscle groups for running (i.e., quadriceps, triceps surae). Thus, 17 male trained runners/triathletes participated in this study and visited the laboratory on three occasions. On the first day, the participants were familiarized with the tests. On the second day, the passive compression stiffness of the triceps surae muscle (i.e., gastrocnemii), Achilles tendon, quadriceps muscle (i.e., vastii, rectus femoris), and patellar tendon was non-invasively measured using a digital palpation device (MyotonPRO). In addition, an incremental test was applied to test the VO2max of the participants. Thereafter, in the third visit, after at least 48-h of rest, participants performed a 15-min run on the treadmill with a speed reflecting a velocity of 70% VO2max, to assess oxygen costs during running. The Spearman correlation showed a significant negative correlation between passive Achilles tendon compression stiffness and running oxygen consumption, with a large effect size (rρ = -0.52; CI (95%) -0.81 to -0.33; P = 0.03). Moreover, no further significant relationship between oxygen cost during running and the passive compression stiffness of the quadriceps muscle and patellar tendon, as well as the triceps surae muscle, was detected. The significant correlation indicates that a stiffer passive Achilles tendon can lead to a lower oxygen cost during running. Future studies will have to test the causality of this relationship with training methods such as strength training that are able to increase the Achilles tendon stiffness.
Collapse
Affiliation(s)
- Andreas Konrad
- Institute of Human Movement Science, Sport and Health, Graz University, Graz, Austria
- Associate Professorship of Biomechanics in Sports, Technical University of Munich, Munich, Germany
| | - Markus Tilp
- Institute of Human Movement Science, Sport and Health, Graz University, Graz, Austria
| | - Leutrim Mehmeti
- Associate Professorship of Biomechanics in Sports, Technical University of Munich, Munich, Germany
| | - Nik Mahnič
- Associate Professorship of Biomechanics in Sports, Technical University of Munich, Munich, Germany
| | - Wolfgang Seiberl
- Department of Human Sciences, Institute of Sport Science, Universität der Bundeswehr München, Neubiberg, Germany
| | - Florian K Paternoster
- Associate Professorship of Biomechanics in Sports, Technical University of Munich, Munich, Germany
| |
Collapse
|
29
|
Mackala K, Michalik K, Makaruk H. Sports Diagnostics-Maximizing the Results or Preventing Injuries. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:2470. [PMID: 36767837 PMCID: PMC9916279 DOI: 10.3390/ijerph20032470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 01/24/2023] [Indexed: 06/18/2023]
Abstract
Sports diagnostics is a comprehensive scientific concept and comprises an aspect of training monitoring and/or sports medicine [...].
Collapse
Affiliation(s)
- Krzysztof Mackala
- Department of Track and Field, Wroclaw University of Health and Sport Sciences, 51-612 Wrocław, Poland
| | - Kamil Michalik
- Department of Human Motor Skills, Wroclaw University of Health and Sport Sciences, 51-612 Wrocław, Poland
| | - Hubert Makaruk
- Faculty of Physical Education and Health, The Jozef Pilsudski University of Physical Education in Warsaw, 00-809 Biala Podlaska, Poland
| |
Collapse
|
30
|
Waldvogel J, Freyler K, Helm M, Monti E, Stäudle B, Gollhofer A, Narici MV, Ritzmann R, Albracht K. Changes in gravity affect neuromuscular control, biomechanics, and muscle-tendon mechanics in energy storage and dissipation tasks. J Appl Physiol (1985) 2023; 134:190-202. [PMID: 36476161 DOI: 10.1152/japplphysiol.00279.2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
This study evaluates neuromechanical control and muscle-tendon interaction during energy storage and dissipation tasks in hypergravity. During parabolic flights, while 17 subjects performed drop jumps (DJs) and drop landings (DLs), electromyography (EMG) of the lower limb muscles was combined with in vivo fascicle dynamics of the gastrocnemius medialis, two-dimensional (2D) kinematics, and kinetics to measure and analyze changes in energy management. Comparisons were made between movement modalities executed in hypergravity (1.8 G) and gravity on ground (1 G). In 1.8 G, ankle dorsiflexion, knee joint flexion, and vertical center of mass (COM) displacement are lower in DJs than in DLs; within each movement modality, joint flexion amplitudes and COM displacement demonstrate higher values in 1.8 G than in 1 G. Concomitantly, negative peak ankle joint power, vertical ground reaction forces, and leg stiffness are similar between both movement modalities (1.8 G). In DJs, EMG activity in 1.8 G is lower during the COM deceleration phase than in 1 G, thus impairing quasi-isometric fascicle behavior. In DLs, EMG activity before and during the COM deceleration phase is higher, and fascicles are stretched less in 1.8 G than in 1 G. Compared with the situation in 1 G, highly task-specific neuromuscular activity is diminished in 1.8 G, resulting in fascicle lengthening in both movement modalities. Specifically, in DJs, a high magnitude of neuromuscular activity is impaired, resulting in altered energy storage. In contrast, in DLs, linear stiffening of the system due to higher neuromuscular activity combined with lower fascicle stretch enhances the buffering function of the tendon, and thus the capacity to safely dissipate energy.NEW & NOTEWORTHY For the first time, the neuromechanics of distinct movement modalities that fundamentally differ in their energy management function have been investigated during overload systematically induced by hypergravity. Parabolic flight provides a unique experimental setting that allows near-natural movement execution without the confounding effects typically associated with load variation. Our findings show that gravity-adjusted muscle activities are inversely affected within jumps and landings. Specifically, in 1.8 G, typical task-specific differences in neuromuscular activity are reduced during the center of mass deceleration phase, resulting in fascicle lengthening, which is associated with energy dissipation.
Collapse
Affiliation(s)
- Janice Waldvogel
- Institute of Sport and Sport Science, University of Freiburg, Freiburg, Germany
| | - Kathrin Freyler
- Institute of Sport and Sport Science, University of Freiburg, Freiburg, Germany
| | - Michael Helm
- Institute of Sport and Sport Science, University of Freiburg, Freiburg, Germany
| | - Elena Monti
- Department of Biomedical Sciences, University of Padua, Padua, Italy.,Department of Neurosciences, Imaging and Clinical Science, University of Chieti "G. D'annunzio", Chieti, Italy
| | - Benjamin Stäudle
- Department of Medical Engineering and Technomathematics, Aachen University of Applied Sciences, Aachen, Germany
| | - Albert Gollhofer
- Institute of Sport and Sport Science, University of Freiburg, Freiburg, Germany
| | - Marco V Narici
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - Ramona Ritzmann
- Institute of Sport and Sport Science, University of Freiburg, Freiburg, Germany
| | - Kirsten Albracht
- Department of Medical Engineering and Technomathematics, Aachen University of Applied Sciences, Aachen, Germany.,Institute of Movement and Neurosciences, German Sport University Cologne, Cologne, Germany
| |
Collapse
|
31
|
Rojas-Rojas L, Espinoza-Álvarez ML, Castro-Piedra S, Ulloa-Fernández A, Vargas-Segura W, Guillén-Girón T. Muscle-like Scaffolds for Biomechanical Stimulation in a Custom-Built Bioreactor. Polymers (Basel) 2022; 14:polym14245427. [PMID: 36559794 PMCID: PMC9781371 DOI: 10.3390/polym14245427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/21/2022] [Accepted: 11/23/2022] [Indexed: 12/14/2022] Open
Abstract
Tissue engineering aims to develop in-vitro substitutes of native tissues. One approach of tissue engineering relies on using bioreactors combined with biomimetic scaffolds to produce study models or in-vitro substitutes. Bioreactors provide control over environmental parameters, place and hold a scaffold under desired characteristics, and apply mechanical stimulation to scaffolds. Polymers are often used for fabricating tissue-engineering scaffolds. In this study, polycaprolactone (PCL) collagen-coated microfilament scaffolds were cell-seeded with C2C12 myoblasts; then, these were grown inside a custom-built bioreactor. Cell attachment and proliferation on the scaffolds were investigated. A loading pattern was used for mechanical stimulation of the cell-seeded scaffolds. Results showed that the microfilaments provided a suitable scaffold for myoblast anchorage and that the custom-built bioreactor provided a qualified environment for the survival of the myoblasts on the polymeric scaffold. This PCL-based microfilament scaffold located inside the bioreactor proved to be a promising structure for the study of skeletal muscle models and can be used for mechanical stimulation studies in tissue engineering applications.
Collapse
Affiliation(s)
- Laura Rojas-Rojas
- Materials Science and Engineering School, Instituto Tecnológico de Costa Rica, Cartago 30101, Costa Rica
- Physics School, Instituto Tecnológico de Costa Rica, Cartago 30101, Costa Rica
- Correspondence: ; Tel.: +506-25502284
| | - María Laura Espinoza-Álvarez
- Materials Science and Engineering School, Instituto Tecnológico de Costa Rica, Cartago 30101, Costa Rica
- Biology School, Instituto Tecnológico de Costa Rica, Cartago 30101, Costa Rica
| | | | | | | | - Teodolito Guillén-Girón
- Materials Science and Engineering School, Instituto Tecnológico de Costa Rica, Cartago 30101, Costa Rica
| |
Collapse
|
32
|
Wagner CM, Warneke K, Bächer C, Liefke C, Paintner P, Kuhn L, Brauner T, Wirth K, Keiner M. Despite Good Correlations, There Is No Exact Coincidence between Isometric and Dynamic Strength Measurements in Elite Youth Soccer Players. Sports (Basel) 2022; 10:175. [PMID: 36355825 PMCID: PMC9692642 DOI: 10.3390/sports10110175] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/03/2022] [Accepted: 11/07/2022] [Indexed: 02/23/2024] Open
Abstract
Speed strength performances are substantially dependent on maximum strength. Due to their importance, various methods have been utilized to measure maximum strength (e.g., isometric or dynamic) with discussed differences regarding transferability to sport-specific movements dependent upon the testing procedure. The aim of this study was to analyze whether maximum isometric force (MIF) during isometric back squats correlates with maximum strength measurements of the one repetition maximum (1RM) in the squat, with countermovement jump (CMJ) performance, and with drop jump (DJ) performances in elite youth soccer players (n = 16, 18.4 ± 1.5 [range: 17-23] years old). Additionally, concordance correlation coefficients (CCC, [ρc]) between isometric and dynamic measurements were calculated to verify whether one measurement can actually reproduce the results of the other. To improve comprehension, differences between isometric and dynamic testing values were illustrated by providing differences between both testing conditions. For this, the mean absolute error (MAE) and the mean absolute percentage error (MAPE) were calculated. To reach equality in scale, the 1RM measures were multiplicated by 9.81 to obtain a value of N. The 1RM demonstrated correlations of τ = |0.38| to |0.52| with SJ and CMJ performances, while MIF demonstrated correlations of τ = |0.21| to |0.32|. However, the correlations of both 1RM and MIF with the DJ reactive strength index (RSI = jump height /contact time) from different falling heights were of no statistical significance. The data showed significant correlations between both the absolute (τ = |0.54|) and the relative (τ = |0.40|) performances of 1RM and MIF, which were confirmed by CCC of ρc= |0.56| to |0.66|, respectively. Furthermore, the MAE and MAPE showed values of 2080.87 N and 67.4%, respectively. The data in this study show that, despite good correlations, there is no exact coincidence between isometric and dynamic strength measurements. Accordingly, both measurements may only represent an estimation of maximal strength capacity and cannot be substituted for each other. Therefore, maximal strength should be tested by using high similarity in the contraction condition, as it is used in the training process to counteract underestimation in strength because of unfamiliarity with the testing condition.
Collapse
Affiliation(s)
- Carl-M. Wagner
- Department of Training Science, German University of Health & Sport, 85737 Ismaning, Germany
| | - Konstantin Warneke
- Department for Exercise, Sport and Health, Leuphana University, 21335 Lüneburg, Germany
| | - Christoph Bächer
- Department of Training Science, German University of Health & Sport, 85737 Ismaning, Germany
- SSV Jahn Regensburg, 93059 Regensburg, Germany
| | | | | | - Larissa Kuhn
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Torsten Brauner
- Department of Training Science, German University of Health & Sport, 85737 Ismaning, Germany
| | - Klaus Wirth
- Faculty of Training and Sports Science, University of Applied Science Wiener Neustadt, 2700 Vienna, Austria
| | - Michael Keiner
- Department of Training Science, German University of Health & Sport, 85737 Ismaning, Germany
| |
Collapse
|
33
|
Lazarczuk SL, Maniar N, Opar DA, Duhig SJ, Shield A, Barrett RS, Bourne MN. Mechanical, Material and Morphological Adaptations of Healthy Lower Limb Tendons to Mechanical Loading: A Systematic Review and Meta-Analysis. Sports Med 2022; 52:2405-2429. [PMID: 35657492 PMCID: PMC9474511 DOI: 10.1007/s40279-022-01695-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/20/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND Exposure to increased mechanical loading during physical training can lead to increased tendon stiffness. However, the loading regimen that maximises tendon adaptation and the extent to which adaptation is driven by changes in tendon material properties or tendon geometry is not fully understood. OBJECTIVE To determine (1) the effect of mechanical loading on tendon stiffness, modulus and cross-sectional area (CSA); (2) whether adaptations in stiffness are driven primarily by changes in CSA or modulus; (3) the effect of training type and associated loading parameters (relative intensity; localised strain, load duration, load volume and contraction mode) on stiffness, modulus or CSA; and (4) whether the magnitude of adaptation in tendon properties differs between age groups. METHODS Five databases (PubMed, Scopus, CINAHL, SPORTDiscus, EMBASE) were searched for studies detailing load-induced adaptations in tendon morphological, material or mechanical properties. Standardised mean differences (SMDs) with 95% confidence intervals (CIs) were calculated and data were pooled using a random effects model to estimate variance. Meta regression was used to examine the moderating effects of changes in tendon CSA and modulus on tendon stiffness. RESULTS Sixty-one articles met the inclusion criteria. The total number of participants in the included studies was 763. The Achilles tendon (33 studies) and the patella tendon (24 studies) were the most commonly studied regions. Resistance training was the main type of intervention (49 studies). Mechanical loading produced moderate increases in stiffness (standardised mean difference (SMD) 0.74; 95% confidence interval (CI) 0.62-0.86), large increases in modulus (SMD 0.82; 95% CI 0.58-1.07), and small increases in CSA (SMD 0.22; 95% CI 0.12-0.33). Meta-regression revealed that the main moderator of increased stiffness was modulus. Resistance training interventions induced greater increases in modulus than other training types (SMD 0.90; 95% CI 0.65-1.15) and higher strain resistance training protocols induced greater increases in modulus (SMD 0.82; 95% CI 0.44-1.20; p = 0.009) and stiffness (SMD 1.04; 95% CI 0.65-1.43; p = 0.007) than low-strain protocols. The magnitude of stiffness and modulus differences were greater in adult participants. CONCLUSIONS Mechanical loading leads to positive adaptation in lower limb tendon stiffness, modulus and CSA. Studies to date indicate that the main mechanism of increased tendon stiffness due to physical training is increased tendon modulus, and that resistance training performed at high compared to low localised tendon strains is associated with the greatest positive tendon adaptation. PROSPERO registration no.: CRD42019141299.
Collapse
Affiliation(s)
- Stephanie L Lazarczuk
- School of Health Sciences and Social Work, Griffith University, Gold Coast, QLD, Australia.
- Griffith Centre of Biomedical and Rehabilitation Engineering (GCORE), Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia.
| | - Nirav Maniar
- School of Behavioural and Health Sciences, Australian Catholic University, Melbourne, VIC, Australia
- Sports Performance, Recovery, Injury and New Technologies (SPRINT) Research Centre, Australian Catholic University, Melbourne, VIC, Australia
| | - David A Opar
- School of Behavioural and Health Sciences, Australian Catholic University, Melbourne, VIC, Australia
- Sports Performance, Recovery, Injury and New Technologies (SPRINT) Research Centre, Australian Catholic University, Melbourne, VIC, Australia
| | - Steven J Duhig
- School of Health Sciences and Social Work, Griffith University, Gold Coast, QLD, Australia
- Griffith Centre of Biomedical and Rehabilitation Engineering (GCORE), Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia
| | - Anthony Shield
- School of Exercise and Nutrition Sciences and Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia
| | - Rod S Barrett
- School of Health Sciences and Social Work, Griffith University, Gold Coast, QLD, Australia
- Griffith Centre of Biomedical and Rehabilitation Engineering (GCORE), Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia
| | - Matthew N Bourne
- School of Health Sciences and Social Work, Griffith University, Gold Coast, QLD, Australia
- Griffith Centre of Biomedical and Rehabilitation Engineering (GCORE), Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia
| |
Collapse
|
34
|
Spinal Cord Circuits: Models and Reality. NEUROPHYSIOLOGY+ 2022. [DOI: 10.1007/s11062-022-09927-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
35
|
Hurley KL, Bassett JR, Monroy JA. Active muscle stiffness is reduced during rapid unloading in muscles from TtnD112-158 mice with a large deletion to PEVK titin. J Exp Biol 2022; 225:276067. [DOI: 10.1242/jeb.243584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 07/13/2022] [Indexed: 11/20/2022]
Abstract
Evidence suggests that the giant muscle protein, titin functions as a tunable spring in active muscle. However, the mechanisms for increasing titin stiffness with activation are not well understood. Previous studies have suggested that during muscle activation, titin binds to actin which engages the PEVK region of titin thereby increasing titin stiffness. In this study, we investigated the role of PEVK titin in active muscle stiffness during rapid unloading. We measured elastic recoil of active and passive soleus muscles from TtnD112-158 mice characterized by a 75% deletion of PEVK titin and increased passive stiffness. We hypothesized that activated TtnD112-158 muscles are more stiff than wild type muscles due to the increased stiffness of PEVK titin. Using a servomotor force lever, we compared the stress–strain relationships of elastic elements in active and passive muscles during rapid unloading and quantified the change in stiffness upon activation. Results show that the elastic modulus of TtnD112-158 muscles increased with activation. However, elastic elements developed force at 7% longer lengths and exhibited 50% lower active stiffness in TtnD112-158 soleus muscles than wild type muscles. Thus, despite having a shorter, stiffer PEVK segment, during rapid unloading, TtnD112-158 soleus muscles exhibited reduced active stiffness compared to wild type soleus muscles. These results are consistent with the idea that PEVK titin contributes to active muscle stiffness, however, the reduction in active stiffness of TtnD112-158 muscles suggests that other mechanisms compensate for the increased PEVK stiffness.
Collapse
Affiliation(s)
| | | | - Jenna A. Monroy
- 3 W.M. Keck Science Department, Claremont Colleges, Claremont, CA, USA
| |
Collapse
|
36
|
O'Neill MC, Demes B, Thompson NE, Larson SG, Stern JT, Umberger BR. Adaptations for bipedal walking: Musculoskeletal structure and three-dimensional joint mechanics of humans and bipedal chimpanzees (Pan troglodytes). J Hum Evol 2022; 168:103195. [PMID: 35596976 DOI: 10.1016/j.jhevol.2022.103195] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/19/2022] [Accepted: 03/19/2022] [Indexed: 11/25/2022]
Abstract
Humans are unique among apes and other primates in the musculoskeletal design of their lower back, pelvis, and lower limbs. Here, we describe the three-dimensional ground reaction forces and lower/hindlimb joint mechanics of human and bipedal chimpanzees walking over a full stride and test whether: 1) the estimated limb joint work and power during the stance phase, especially the single-support period, is lower in humans than bipedal chimpanzees, 2) the limb joint work and power required for limb swing is lower in humans than in bipedal chimpanzees, and 3) the estimated total mechanical power during walking, accounting for the storage of passive elastic strain energy in humans, is lower in humans than in bipedal chimpanzees. Humans and bipedal chimpanzees were compared at matched dimensionless and dimensional velocities. Our results indicate that humans walk with significantly less work and power output in the first double-support period and the single-support period of stance, but markedly exceed chimpanzees in the second double-support period (i.e., push-off). Humans generate less work and power in limb swing, although the species difference in limb swing power was not statistically significant. We estimated that total mechanical positive 'muscle fiber' work and power were 46.9% and 35.8% lower, respectively, in humans than in bipedal chimpanzees at matched dimensionless speeds. This is due in part to mechanisms for the storage and release of elastic energy at the ankle and hip in humans. Furthermore, these results indicate distinct 'heel strike' and 'lateral balance' mechanics in humans and bipedal chimpanzees and suggest a greater dissipation of mechanical energy through soft tissue deformations in humans. Together, our results document important differences between human and bipedal chimpanzee walking mechanics over a full stride, permitting a more comprehensive understanding of the mechanics and energetics of chimpanzee bipedalism and the evolution of hominin walking.
Collapse
Affiliation(s)
- Matthew C O'Neill
- Department of Anatomy, Midwestern University, Glendale, AZ 85308, USA.
| | - Brigitte Demes
- Department of Anatomical Sciences, Stony Brook University School of Medicine, Stony Brook, NY 11794, USA
| | - Nathan E Thompson
- Department of Anatomy, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, NY 11568, USA
| | - Susan G Larson
- Department of Anatomical Sciences, Stony Brook University School of Medicine, Stony Brook, NY 11794, USA
| | - Jack T Stern
- Department of Anatomical Sciences, Stony Brook University School of Medicine, Stony Brook, NY 11794, USA
| | - Brian R Umberger
- School of Kinesiology, University of Michigan, Ann Arbor, MI 48109-2013, USA
| |
Collapse
|
37
|
Arshad V, Rodrigue H. Towards the Development of Variable Elasticity Devices. IEEE Robot Autom Lett 2022. [DOI: 10.1109/lra.2022.3143258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
38
|
Single skeletal muscle fiber mechanical properties: a muscle quality biomarker of human aging. Eur J Appl Physiol 2022; 122:1383-1395. [DOI: 10.1007/s00421-022-04924-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 02/23/2022] [Indexed: 12/25/2022]
|
39
|
Zullo L, Di Clemente A, Maiole F. How octopus arm muscle contractile properties and anatomical organization contribute to the arm functional specialization. J Exp Biol 2022; 225:274827. [PMID: 35244172 DOI: 10.1242/jeb.243163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 02/25/2022] [Indexed: 10/18/2022]
Abstract
Octopus arms are highly flexible structures capable of complex motions and are used in a wide repertoire of behaviors. Movements are generated by the coordinated summation of innervation signals to packed arrays of muscles oriented in different directions and moving based on their anatomical relationships. In this study, we investigated the interplay between muscle biomechanics and anatomical organization in the Octopus vulgaris arm to elucidate their role in different arm movements. We performed isometric and isotonic force measurements on isolated longitudinal (L) and transverse (T) arm muscles and showed that L has a higher rate of activation and relaxation, lower twitch-to-tetanus ratio, and lower passive tension than T muscles, thus prompting their use as faster and slower muscles, respectively. This points to the use of L in more graded responses, such as those involved in precise actions, and T in intense and sustained actions, such as motion stabilization and posture maintenance. Once activated, the arm muscles exert forces that cause deformations of the entire arm, which are determined by the amount, location, properties and orientation of their fibers. Here, we show that, although continuous, the arm manifests a certain degree of morphological specialization, where the arm muscles have a different aspect ratio along the arm. This possibly supports the functional specialization of arm portion observed in various motions, such as fetching and crawling. Hence, the octopus arm as a whole can be seen as a 'reservoir' of possibilities where different types of motion may emerge at the limb level through the co-option of the muscle contractile properties and structural arrangement.
Collapse
Affiliation(s)
- Letizia Zullo
- Center for Micro-BioRobotics & Center for Synaptic Neuroscience and Technology (NSYN), Istituto Italiano di Tecnologia, Largo Rosanna Benzi 10, 16132 Genova, Italy.,IRCSS, Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132 Genova, Italy
| | - Alessio Di Clemente
- Center for Micro-BioRobotics & Center for Synaptic Neuroscience and Technology (NSYN), Istituto Italiano di Tecnologia, Largo Rosanna Benzi 10, 16132 Genova, Italy.,Department of Experimental Medicine, University of Genova, Viale Benedetto XV, 3, 16132 Genova, Italy
| | - Federica Maiole
- Center for Micro-BioRobotics & Center for Synaptic Neuroscience and Technology (NSYN), Istituto Italiano di Tecnologia, Largo Rosanna Benzi 10, 16132 Genova, Italy.,Department of Experimental Medicine, University of Genova, Viale Benedetto XV, 3, 16132 Genova, Italy
| |
Collapse
|
40
|
Falisse A, Afschrift M, De Groote F. Modeling toes contributes to realistic stance knee mechanics in three-dimensional predictive simulations of walking. PLoS One 2022; 17:e0256311. [PMID: 35077455 PMCID: PMC8789163 DOI: 10.1371/journal.pone.0256311] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 01/10/2022] [Indexed: 11/18/2022] Open
Abstract
Physics-based predictive simulations have been shown to capture many salient features of human walking. Yet they often fail to produce realistic stance knee and ankle mechanics. While the influence of the performance criterion on the predicted walking pattern has been previously studied, the influence of musculoskeletal mechanics has been less explored. Here, we investigated the influence of two mechanical assumptions on the predicted walking pattern: the complexity of the foot model and the stiffness of the Achilles tendon. We found, through three-dimensional muscle-driven predictive simulations of walking, that modeling the toes, and thus using two-segment instead of single-segment foot models, contributed to robustly eliciting physiological stance knee flexion angles, knee extension torques, and knee extensor activity. Modeling toes also slightly decreased the first vertical ground reaction force peak, increasing its agreement with experimental data, and improved stance ankle kinetics. It nevertheless slightly worsened predictions of ankle kinematics. Decreasing Achilles tendon stiffness improved the realism of ankle kinematics, but there remain large discrepancies with experimental data. Overall, this simulation study shows that not only the performance criterion but also mechanical assumptions affect predictive simulations of walking. Improving the realism of predictive simulations is required for their application in clinical contexts. Here, we suggest that using more complex foot models might contribute to such realism.
Collapse
Affiliation(s)
- Antoine Falisse
- Department of Bioengineering, Stanford University, Stanford, California, United States of America
- Department of Movement Sciences, KU Leuven, Leuven, Belgium
- * E-mail:
| | - Maarten Afschrift
- Department of Mechanical Engineering, Robotics Core Lab of Flanders Make, KU Leuven, Leuven, Belgium
- Department of Human Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | | |
Collapse
|
41
|
Christensen BA, Lin DC, Schwaner MJ, McGowan CP. Elastic energy storage across speeds during steady-state hopping of desert kangaroo rats (Dipodomys deserti). J Exp Biol 2022; 225:273978. [PMID: 35019972 DOI: 10.1242/jeb.242954] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 12/30/2021] [Indexed: 11/20/2022]
Abstract
Small bipedal hoppers, including kangaroo rats, are thought to not benefit from substantial elastic energy storage and return during hopping. However, recent species-specific material properties research suggests that, despite relative thickness, the ankle extensor tendons of these small hoppers are considerably more compliant than had been assumed. With faster locomotor speeds demanding higher forces, a lower tendon stiffness suggests greater tendon deformation and thus a greater potential for elastic energy storage and return with increasing speed. Using the elastic modulus values specific to kangaroo rat tendons, we sought to determine how much elastic energy is stored and returned during hopping across a range of speeds. In vivo techniques were used to record tendon force in the ankle extensors during steady-speed hopping. Our data support the hypothesis that the ankle extensor tendons of kangaroo rats store and return elastic energy in relation to hopping speed, storing more at faster speeds. Despite storing comparatively less elastic energy than larger hoppers, this relationship between speed and energy storage offer novel evidence of a functionally similar energy storage mechanism, operating irrespective of body size or tendon thickness, across the distal muscle-tendon units of both small and large bipedal hoppers.
Collapse
Affiliation(s)
- Brooke A Christensen
- Department of Biological Sciences, University of Idaho, Moscow ID, USA.,Department of Ecology and Evolutionary Biology, University of California, Irvine, Irvine CA, USA
| | - David C Lin
- Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman WA, USA.,Department of Integrative Physiology and Neuroscience, Washington State University, Pullman WA, USA.,Washington Center for Muscle Biology, Washington State University, Pullman WA, USA
| | - M Janneke Schwaner
- Department of Biological Sciences, University of Idaho, Moscow ID, USA.,Department of Ecology and Evolutionary Biology, University of California, Irvine, Irvine CA, USA
| | - Craig P McGowan
- Department of Biological Sciences, University of Idaho, Moscow ID, USA.,Washington Center for Muscle Biology, Washington State University, Pullman WA, USA.,Keck School of Medicine of the University of Southern California, Los Angeles CA, USA
| |
Collapse
|
42
|
He X, Qiu J, Cao M, Ho YC, Leong HT, Fu SC, Ong MTY, Fong DTP, Yung PSH. Effects of Deficits in the Neuromuscular and Mechanical Properties of the Quadriceps and Hamstrings on Single-Leg Hop Performance and Dynamic Knee Stability in Patients After Anterior Cruciate Ligament Reconstruction. Orthop J Sports Med 2022; 10:23259671211063893. [PMID: 35005050 PMCID: PMC8733370 DOI: 10.1177/23259671211063893] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 09/16/2021] [Indexed: 11/15/2022] Open
Abstract
Background: Understanding the role of neuromuscular and mechanical muscle properties in knee functional performance and dynamic knee stability after anterior cruciate ligament reconstruction (ACLR) may help in the development of more focused rehabilitation programs. Purpose: To compare the involved and uninvolved limbs of patients after ACLR in terms of muscle strength, passive muscle stiffness, muscle activation of the quadriceps and hamstrings, hop performance, and dynamic knee stability and to investigate the association of neuromuscular and mechanical muscle properties with hop performance and dynamic knee stability. Study Design: Cross-sectional study; Level of evidence, 3. Method: The authors studied the quadriceps and hamstring muscles in 30 male patients (mean ± SD age, 25.4 ± 4.1 years) who had undergone unilateral ACLR. Muscle strength was measured using isokinetic testing at 60 and 180 deg/s. Passive muscle stiffness was quantified using ultrasound shear wave elastography. Muscle activation was evaluated via electromyographic (EMG) activity. Hop performance was evaluated via a single-leg hop test, and dynamic knee stability was evaluated via 3-dimensional knee movements during the landing phase of the hop test. Results: Compared with the uninvolved limb, the involved limb exhibited decreased peak torque and shear modulus in both the quadriceps and hamstrings as well as delayed activity onset in the quadriceps (P < .05 for all). The involved limb also exhibited a shorter hop distance and decreased peak knee flexion angle during landing (P < .05 for both). Decreased peak quadriceps torque at 180 deg/s, the shear modulus of the semitendinosus, and the reactive EMG activity amplitude of the semimembranosus were all associated with shorter hop distance (R2 = 0.565; P < .001). Decreased quadriceps peak torque at 60 deg/s and shear modulus of the vastus medialis were both associated with smaller peak knee flexion angle (R2 = 0.319; P < .001). Conclusion: In addition to muscle strength deficits, deficits in passive muscle stiffness and muscle activation of the quadriceps and hamstrings were important contributors to poor single-leg hop performance and dynamic knee stability during landing. Further investigations should include a rehabilitation program that normalizes muscle stiffness and activation patterns during landing, thus improving knee functional performance and dynamic knee stability.
Collapse
Affiliation(s)
- Xin He
- Department of Orthopaedics & Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Jihong Qiu
- Department of Orthopaedics & Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Mingde Cao
- Department of Orthopaedics & Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Yui Chung Ho
- Department of Orthopaedics & Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Hio Teng Leong
- Department of Orthopaedics & Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Sai-Chuen Fu
- Department of Orthopaedics & Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Michael Tim-Yun Ong
- Department of Orthopaedics & Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Daniel T P Fong
- National Centre for Sport and Exercise Medicine, School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
| | - Patrick Shu-Hang Yung
- Department of Orthopaedics & Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
43
|
McBride JM. Muscle Actuators, Not Springs, Drive Maximal Effort Human Locomotor Performance. J Sports Sci Med 2021; 20:766-777. [PMID: 35321123 PMCID: PMC8488820 DOI: 10.52082/jssm.2021.766] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 09/20/2021] [Indexed: 05/19/2023]
Abstract
The current investigation examined muscle-tendon unit kinematics and kinetics in human participants asked to perform a hopping task for maximal performance with variational preceding milieu. Twenty-four participants were allocated post-data collection into those participants with an average hop height of higher (HH) or lower (LH) than 0.1 m. Participants were placed on a customized sled at a 20º angle while standing on a force plate. Participants used their dominant ankle for all testing and their knee was immobilized and thus all movement involved only the ankle joint and corresponding propulsive unit (triceps surae muscle complex). Participants were asked to perform a maximal effort during a single dynamic countermovement hop (CMH) and drop hops from 10 cm (DH10) and 50 cm (DH50). Three-dimensional motion analysis was performed by utilizing an infrared camera VICON motion analysis system and a corresponding force plate. An ultrasound probe was placed on the triceps surae muscle complex for muscle fascicle imaging. HH hopped significantly higher in all hopping tasks in comparison to LH. In addition, the HH group concentric ankle work was significantly higher in comparison to LH during all of the hopping tasks. Active muscle work was significantly higher in HH in comparison to LH as well. Tendon work was not significantly different between HH and LH. Active muscle work was significantly correlated with hopping height (r = 0.97) across both groups and hopping tasks and contributed more than 50% of the total work. The data indicates that humans primarily use a motor-driven system and thus it is concluded that muscle actuators and not springs maximize performance in hopping locomotor tasks in humans.
Collapse
Affiliation(s)
- Jeffrey M McBride
- Neuromuscular & Biomechanics Laboratory, Beaver College of Health Sciences, Department of Health & Exercise Science, Appalachian State University, North Carolina, USA
| |
Collapse
|
44
|
Application of Leg, Vertical, and Joint Stiffness in Running Performance: A Literature Overview. Appl Bionics Biomech 2021; 2021:9914278. [PMID: 34721664 PMCID: PMC8553457 DOI: 10.1155/2021/9914278] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 09/08/2021] [Accepted: 09/17/2021] [Indexed: 12/01/2022] Open
Abstract
Stiffness, the resistance to deformation due to force, has been used to model the way in which the lower body responds to landing during cyclic motions such as running and jumping. Vertical, leg, and joint stiffness provide a useful model for investigating the store and release of potential elastic energy via the musculotendinous unit in the stretch-shortening cycle and may provide insight into sport performance. This review is aimed at assessing the effect of vertical, leg, and joint stiffness on running performance as such an investigation may provide greater insight into performance during this common form of locomotion. PubMed and SPORTDiscus databases were searched resulting in 92 publications on vertical, leg, and joint stiffness and running performance. Vertical stiffness increases with running velocity and stride frequency. Higher vertical stiffness differentiated elite runners from lower-performing athletes and was also associated with a lower oxygen cost. In contrast, leg stiffness remains relatively constant with increasing velocity and is not strongly related to the aerobic demand and fatigue. Hip and knee joint stiffness are reported to increase with velocity, and a lower ankle and higher knee joint stiffness are linked to a lower oxygen cost of running; however, no relationship with performance has yet been investigated. Theoretically, there is a desired “leg-spring” stiffness value at which potential elastic energy return is maximised and this is specific to the individual. It appears that higher “leg-spring” stiffness is desirable for running performance; however, more research is needed to investigate the relationship of all three lower limb joint springs as the hip joint is often neglected. There is still no clear answer how training could affect mechanical stiffness during running. Studies including muscle activation and separate analyses of local tissues (tendons) are needed to investigate mechanical stiffness as a global variable associated with sports performance.
Collapse
|
45
|
Cox SM, DeBoef A, Salzano MQ, Katugam K, Piazza SJ, Rubenson J. Plasticity of the gastrocnemius elastic system in response to decreased work and power demand during growth. J Exp Biol 2021; 224:jeb242694. [PMID: 34522962 PMCID: PMC10659036 DOI: 10.1242/jeb.242694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 09/08/2021] [Indexed: 11/20/2022]
Abstract
Elastic energy storage and release can enhance performance that would otherwise be limited by the force-velocity constraints of muscle. Although functional influence of a biological spring depends on tuning between components of an elastic system (the muscle, spring-driven mass and lever system), we do not know whether elastic systems systematically adapt to functional demand. To test whether altering work and power generation during maturation alters the morphology of an elastic system, we prevented growing guinea fowl (Numida meleagris) from jumping. We compared the jump performance of our treatment group at maturity with that of controls and measured the morphology of the gastrocnemius elastic system. We found that restricted birds jumped with lower jump power and work, yet there were no significant between-group differences in the components of the elastic system. Further, subject-specific models revealed no difference in energy storage capacity between groups, though energy storage was most sensitive to variations in muscle properties (most significantly operating length and least dependent on tendon stiffness). We conclude that the gastrocnemius elastic system in the guinea fowl displays little to no plastic response to decreased demand during growth and hypothesize that neural plasticity may explain performance variation.
Collapse
Affiliation(s)
- Suzanne M. Cox
- Biology Department, Duke University, Durham, NC 27708, USA
- Biomechanics Laboratory, Department of Kinesiology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Adam DeBoef
- Biomechanics Laboratory, Department of Kinesiology, The Pennsylvania State University, University Park, PA 16802, USA
- The Department of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Matthew Q. Salzano
- Biomechanics Laboratory, Department of Kinesiology, The Pennsylvania State University, University Park, PA 16802, USA
- Integrative and Biomedical Physiology, The Pennsylvania State University, University Park, PA 16802, USA
- Department of Kinesiology, The University of Massachusetts, Amherst, Amherst, MA 01003, USA
| | - Kavya Katugam
- Biomechanics Laboratory, Department of Kinesiology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Stephen J. Piazza
- Biomechanics Laboratory, Department of Kinesiology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Jonas Rubenson
- Biomechanics Laboratory, Department of Kinesiology, The Pennsylvania State University, University Park, PA 16802, USA
- Integrative and Biomedical Physiology, The Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
46
|
Merkel MFR, Hellsten Y, Magnusson SP, Kjaer M. Tendon blood flow, angiogenesis, and tendinopathy pathogenesis. TRANSLATIONAL SPORTS MEDICINE 2021. [DOI: 10.1002/tsm2.280] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Max Flemming Ravn Merkel
- Institute of Sports Medicine Department of Orthopedic Surgery Copenhagen University Hospital ‐ Bispebjerg‐Frederiksberg University of Copenhagen Copenhagen Denmark
- Department of Nutrition, Exercise and Sports University of Copenhagen Copenhagen Denmark
| | - Ylva Hellsten
- Department of Nutrition, Exercise and Sports University of Copenhagen Copenhagen Denmark
| | - Stig Peter Magnusson
- Institute of Sports Medicine Department of Orthopedic Surgery Copenhagen University Hospital ‐ Bispebjerg‐Frederiksberg University of Copenhagen Copenhagen Denmark
- Center for Healthy Aging Department of Clinical Medicine University of Copenhagen Copenhagen Denmark
| | - Michael Kjaer
- Institute of Sports Medicine Department of Orthopedic Surgery Copenhagen University Hospital ‐ Bispebjerg‐Frederiksberg University of Copenhagen Copenhagen Denmark
- Center for Healthy Aging Department of Clinical Medicine University of Copenhagen Copenhagen Denmark
| |
Collapse
|
47
|
Davi SM, Brancati RJ, DiStefano LJ, Lepley AS, Lepley LK. Suppressed quadriceps fascicle behavior is present in the surgical limbs of those with a history of ACL reconstruction. J Biomech 2021; 129:110808. [PMID: 34666248 DOI: 10.1016/j.jbiomech.2021.110808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 10/05/2021] [Accepted: 10/06/2021] [Indexed: 10/20/2022]
Abstract
The balance of published data have largely focused on adaptations in muscle and fiber size after anterior cruciate ligament reconstruction (ACLR), failing to account for the dynamic changes in the behavior of the muscles' contractile elements that strongly contribute to force production. To better understand the sources of quadriceps dysfunction, the purpose of our research was to determine if alterations in fascicle behavior are present after ACLR. Unilateral ACLR individuals (9 m/9f; 21 ± 3 yrs; 1.74 ± 0.12 m;71.58 ± 13.31 kg; months from surgery:38 ± 36) and healthy controls (3 m/6f; 23 ± 2 yrs; 1.67 ± 0.10 m; 63.51 ± 10.11 kg) participated. In-vivo vastus lateralis fascicle behavior was recorded using ultrasonography during three maximal isokinetic knee extensions (60°·s-1). Fascicle length, angle, and shortening velocity were calculated and analyzed from rest to peak torque. Peak knee extension torque was averaged between isokinetic trials (Nm·kg-1). Group by limb interactions were assessed using separate two-way analyses of variance and were further evaluated by comparing 95% confidence intervals where appropriate. Significant interactions were present for fascicle angle at peak torque (P = 0.01), fascicle length excursion (P = 0.05), fascicle angle excursion (P < 0.01), fascicle shortening velocity (P = 0.05) and strength (P = 0.03). Upon post-hoc evaluation, the surgical limb displayed altered in-vivo fascicle behavior compared to all limbs (P < 0.05) and reduced strength compared to the contralateral and right control limbs (P < 0.05). No other significant interactions were present (P > 0.05). Our data show that those with a history of ACLR have fascicles that are slower, lengthen less and operate with lower angles relative to the axis of force production. Altered fascicle behavior after ACLR may be an important underlying factor to explaining the protracted quadriceps dysfunction.
Collapse
Affiliation(s)
- Steven M Davi
- Department of Kinesiology, The University of Connecticut, Storrs, CT, United States
| | | | - Lindsay J DiStefano
- Department of Kinesiology, The University of Connecticut, Storrs, CT, United States
| | - Adam S Lepley
- School of Kinesiology, University of Michigan, Ann Arbor, MI, United States
| | - Lindsey K Lepley
- School of Kinesiology, University of Michigan, Ann Arbor, MI, United States.
| |
Collapse
|
48
|
Bowen CH, Sargent CJ, Wang A, Zhu Y, Chang X, Li J, Mu X, Galazka JM, Jun YS, Keten S, Zhang F. Microbial production of megadalton titin yields fibers with advantageous mechanical properties. Nat Commun 2021; 12:5182. [PMID: 34462443 PMCID: PMC8405620 DOI: 10.1038/s41467-021-25360-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 08/05/2021] [Indexed: 02/07/2023] Open
Abstract
Manmade high-performance polymers are typically non-biodegradable and derived from petroleum feedstock through energy intensive processes involving toxic solvents and byproducts. While engineered microbes have been used for renewable production of many small molecules, direct microbial synthesis of high-performance polymeric materials remains a major challenge. Here we engineer microbial production of megadalton muscle titin polymers yielding high-performance fibers that not only recapture highly desirable properties of natural titin (i.e., high damping capacity and mechanical recovery) but also exhibit high strength, toughness, and damping energy - outperforming many synthetic and natural polymers. Structural analyses and molecular modeling suggest these properties derive from unique inter-chain crystallization of folded immunoglobulin-like domains that resists inter-chain slippage while permitting intra-chain unfolding. These fibers have potential applications in areas from biomedicine to textiles, and the developed approach, coupled with the structure-function insights, promises to accelerate further innovation in microbial production of high-performance materials.
Collapse
Affiliation(s)
- Christopher H Bowen
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, One Brookings Drive, Saint Louis, MO, USA
| | - Cameron J Sargent
- Division of Biological & Biomedical Sciences, Washington University in St. Louis, One Brookings Drive, Saint Louis, MO, USA
| | - Ao Wang
- Department of Mechanical Engineering, Northwestern University, Evanston, IL, USA
| | - Yaguang Zhu
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, One Brookings Drive, Saint Louis, MO, USA
| | - Xinyuan Chang
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, One Brookings Drive, Saint Louis, MO, USA
| | - Jingyao Li
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, One Brookings Drive, Saint Louis, MO, USA
| | - Xinyue Mu
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, One Brookings Drive, Saint Louis, MO, USA
| | - Jonathan M Galazka
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, USA
| | - Young-Shin Jun
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, One Brookings Drive, Saint Louis, MO, USA
| | - Sinan Keten
- Department of Mechanical Engineering, Northwestern University, Evanston, IL, USA
| | - Fuzhong Zhang
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, One Brookings Drive, Saint Louis, MO, USA.
- Division of Biological & Biomedical Sciences, Washington University in St. Louis, One Brookings Drive, Saint Louis, MO, USA.
- Institute of Materials Science & Engineering, Washington University in St. Louis, One Brookings Drive, Saint Louis, MO, USA.
| |
Collapse
|
49
|
Waanders JB, Murgia A, DeVita P, Franz JR, Hortobágyi T. Age does not affect the relationship between muscle activation and joint work during incline and decline walking. J Biomech 2021; 124:110555. [PMID: 34167020 DOI: 10.1016/j.jbiomech.2021.110555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 05/26/2021] [Accepted: 05/31/2021] [Indexed: 10/21/2022]
Abstract
Older compared with younger adults walk with different configurations of mechanical joint work and greater muscle activation but it is unclear if age, walking speed, and slope would each affect the relationship between muscle activation and net joint work. We hypothesized that a unit increase in positive but not negative net joint work requires greater muscle activation in older compared with younger adults. Healthy younger (age: 22.1 yrs, n = 19) and older adults (age: 69.8 yrs, n = 16) ascended and descended a 7° ramp at slow (~1.20 m/s) and moderate (~1.50 m/s) walking speeds while lower-extremity marker positions, electromyography, and ground reaction force data were collected. Compared to younger adults, older adults took 11% (incline) and 8% (decline) shorter strides, and performed 21% less positive ankle plantarflexor work (incline) and 19% less negative knee extensor work (decline) (all p < .05). However, age did not affect (all p > .05) the regression coefficients between the muscle activation integral and positive hip extensor or ankle plantarflexor work during ascent, nor between that and negative knee extensor or ankle dorsiflexor work during descent. With increased walking speed, muscle activation tended to increase in younger but changed little in older adults across ascent (10 ± 12% vs. -1.0 ± 10%) and descent (3.6 ± 10.2% vs. -2.6 ± 7.7%) (p = .006, r = 0.47). Age does not affect the relationship between muscle activation and net joint work during incline and decline walking at freely-chosen step lengths. The electromechanical cost of joint work production does not underlie the age-related reconfiguration of joint work during walking.
Collapse
Affiliation(s)
- Jeroen B Waanders
- University of Groningen, University Medical Center Groningen, Center for Human Movement Sciences, Groningen, the Netherlands.
| | - Alessio Murgia
- University of Groningen, University Medical Center Groningen, Center for Human Movement Sciences, Groningen, the Netherlands
| | - Paul DeVita
- East Carolina University, Greenville, NC, United States
| | - Jason R Franz
- University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC, United States
| | - Tibor Hortobágyi
- University of Groningen, University Medical Center Groningen, Center for Human Movement Sciences, Groningen, the Netherlands; Institute of Sport Sciences and Physical Education, Faculty of Sciences, University of Pécs, Pécs, Hungary; Somogy County Kaposi Mór Teaching Hospital, Kaposvár, Hungary
| |
Collapse
|
50
|
Fitzgerald LF, Bartlett MF, Nagarajan R, Francisco EJ, Sup FC, Kent JA. Effects of old age and contraction mode on knee extensor muscle ATP flux and metabolic economy in vivo. J Physiol 2021; 599:3063-3080. [PMID: 33876434 DOI: 10.1113/jp281117] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 04/14/2021] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS We used 31-phosphorus magnetic resonance spectroscopy to quantify in vivo skeletal muscle metabolic economy (ME; mass-normalized torque or power produced per ATP consumed) during three 24 s maximal-effort contraction protocols: (1) sustained isometric (MVIC), (2) intermittent isokinetic (MVDCIsoK ), and (3) intermittent isotonic (MVDCIsoT ) in the knee extensor muscles of young and older adults. ME was not different between groups during the MVIC but was lower in older than young adults during both dynamic contraction protocols. These results are consistent with an increased energy cost of locomotion, but not postural support, with age. The effects of old age on ME were not due to age-related changes in muscle oxidative capacity or ATP flux. Specific power was lower in older than young adults, despite similar total ATP synthesis between groups. Together, this suggests a dissociation between cross-bridge activity and ATP utilization with age. ABSTRACT Muscle metabolic economy (ME; mass-normalized torque or power produced per ATP consumed) is similar in young and older adults during some isometric contractions, but less is known about potential age-related differences in ME during dynamic contractions. We hypothesized that age-related differences in ME would exist only during dynamic contractions, due to the increased energetic demand of dynamic versus isometric contractions. Ten young (Y; 27.5 ± 3.9 years, 6 men) and 10 older (O; 71 ± 5 years, 5 men) healthy adults performed three 24 s bouts of maximal contractions: (1) sustained isometric (MVIC), (2) isokinetic (120°·s-1 , MVDCIsoK ; 0.5 Hz), and (3) isotonic (load = 20% MVIC, MVDCIsoT ; 0.5 Hz). Phosphorus magnetic resonance spectroscopy of the vastus lateralis muscle was used to calculate ATP flux (mM ATP·s-1 ) through the creatine kinase reaction, glycolysis and oxidative phosphorylation. Quadriceps contractile volume (cm3 ) was measured by MRI. ME was calculated using the torque-time integral (MVIC) or power-time integral (MVDCIsoK and MVDCIsoT ), total ATP synthesis and contractile volume. As hypothesized, ME was not different between Y and O during the MVIC (0.12 ± 0.03 vs. 0.12 ± 0.02 Nm. s. cm-3 . mM ATP-1 , mean ± SD, respectively; P = 0.847). However, during both MVDCIsoK and MVDCIsoT , ME was lower in O than Y adults (MVDCIsoK : 0.011 ± 0.003 vs. 0.007 ± 0.002 J. cm-3 . mM ATP-1 ; P < 0.001; MVDCIsoT : 0.011 ± 0.002 vs. 0.008 ± 0.002; P = 0.037, respectively), despite similar muscle oxidative capacity, oxidative and total ATP flux in both groups. The lower specific power in older than young adults, despite similar total ATP synthesis between groups, suggests there is a dissociation between cross-bridge activity and ATP utilization with age.
Collapse
Affiliation(s)
- Liam F Fitzgerald
- Muscle Physiology Laboratory, Department of Kinesiology, University of Massachusetts Amherst, Amherst, MA, 01003, USA
| | - Miles F Bartlett
- Muscle Physiology Laboratory, Department of Kinesiology, University of Massachusetts Amherst, Amherst, MA, 01003, USA
| | - Rajakumar Nagarajan
- Human Magnetic Resonance Center, Institute for Applied Life Sciences, University of Massachusetts Amherst, Amherst, MA, 01003, USA
| | - Ericber Jimenez Francisco
- Mechatronics and Robotics Laboratory, Department of Mechanical & Industrial Engineering, University of Massachusetts Amherst, Amherst, MA, 01003, USA
| | - Frank C Sup
- Mechatronics and Robotics Laboratory, Department of Mechanical & Industrial Engineering, University of Massachusetts Amherst, Amherst, MA, 01003, USA
| | - Jane A Kent
- Muscle Physiology Laboratory, Department of Kinesiology, University of Massachusetts Amherst, Amherst, MA, 01003, USA
| |
Collapse
|