1
|
Cardaci TD, VanderVeen BN, Huss AR, Bullard BM, Velázquez KT, Frizzell N, Carson JA, Price RL, Murphy EA. Decreased skeletal muscle intramyocellular lipid droplet-mitochondrial contact contributes to myosteatosis in cancer cachexia. Am J Physiol Cell Physiol 2024; 327:C684-C697. [PMID: 39010842 PMCID: PMC11427022 DOI: 10.1152/ajpcell.00345.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/20/2024] [Accepted: 07/08/2024] [Indexed: 07/17/2024]
Abstract
Cancer cachexia, the unintentional loss of lean mass, contributes to functional dependency, poor treatment outcomes, and decreased survival. Although its pathogenicity is multifactorial, metabolic dysfunction remains a hallmark of cachexia. However, significant knowledge gaps exist in understanding the role of skeletal muscle lipid metabolism and dynamics in this condition. We examined skeletal muscle metabolic dysfunction, intramyocellular lipid droplet (LD) content, LD morphology and subcellular distribution, and LD-mitochondrial interactions using the Lewis lung carcinoma (LLC) murine model of cachexia. C57/BL6 male mice (n = 20) were implanted with LLC cells (106) in the right flank or underwent PBS sham injections. Skeletal muscle was excised for transmission electron microscopy (TEM; soleus), oil red O/lipid staining [tibialis anterior (TA)], and protein (gastrocnemius). LLC mice had a greater number (232%; P = 0.006) and size (130%; P = 0.023) of intramyocellular LDs further supported by increased oil-red O positive (87%; P = 0.0109) and "very high" oil-red O positive (178%; P = 0.0002) fibers compared with controls and this was inversely correlated with fiber size (R2 = 0.5294; P < 0.0001). Morphological analyses of LDs show increased elongation and complexity [aspect ratio: intermyofibrillar (IMF) = 9%, P = 0.046) with decreases in circularity [circularity: subsarcolemmal (SS) = 6%, P = 0.042] or roundness (roundness: whole = 10%, P = 0.033; IMF = 8%, P = 0.038) as well as decreased LD-mitochondria touch (-15%; P = 0.006), contact length (-38%; P = 0.036), and relative contact (86%; P = 0.004). Furthermore, dysregulation in lipid metabolism (adiponectin, CPT1b) and LD-associated proteins, perilipin-2 and perilipin-5, in cachectic muscle (P < 0.05) were observed. Collectively, we provide evidence that skeletal muscle myosteatosis, altered LD morphology, and decreased LD-mitochondrial interactions occur in a preclinical model of cancer cachexia.NEW & NOTEWORTHY We sought to advance our understanding of skeletal muscle lipid metabolism and dynamics in cancer cachexia. Cachexia increased the number and size of intramyocellular lipid droplets (LDs). Furthermore, decreases in LD-mitochondrial touch, contact length, and relative contact along with increased LD shape complexity with decreases in circularity and roundness. Dysregulation in lipid metabolism and LD-associated proteins was also documented. Collectively, we show that myosteatosis, altered LD morphology, and decreased LD-mitochondrial interactions occur in cancer cachexia.
Collapse
Affiliation(s)
- Thomas D Cardaci
- Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, Columbia, South Carolina, United States
| | - Brandon N VanderVeen
- Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, Columbia, South Carolina, United States
| | - Alexander R Huss
- Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, Columbia, South Carolina, United States
| | - Brooke M Bullard
- Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, Columbia, South Carolina, United States
| | - Kandy T Velázquez
- Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, Columbia, South Carolina, United States
- Columbia Department of Veterans Affairs Health Care System, Columbia, South Carolina, United States
| | - Norma Frizzell
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina School of Medicine, Columbia, South Carolina, United States
| | - James A Carson
- Department of Kinesiology and Sports Management, JL Huffines Institute for Sports Medicine & Human Performance, Texas A&M University, College Station, Texas, United States
| | - Robert L Price
- Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, South Carolina, United States
| | - E Angela Murphy
- Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, Columbia, South Carolina, United States
| |
Collapse
|
2
|
Heyne E, Zeeb S, Junker C, Petzinna A, Schrepper A, Doenst T, Koch LG, Britton SL, Schwarzer M. Exercise Training Differentially Affects Skeletal Muscle Mitochondria in Rats with Inherited High or Low Exercise Capacity. Cells 2024; 13:393. [PMID: 38474357 DOI: 10.3390/cells13050393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 02/20/2024] [Accepted: 02/22/2024] [Indexed: 03/14/2024] Open
Abstract
Exercise capacity has been related to morbidity and mortality. It consists of an inherited and an acquired part and is dependent on mitochondrial function. We assessed skeletal muscle mitochondrial function in rats with divergent inherited exercise capacity and analyzed the effect of exercise training. Female high (HCR)- and low (LCR)-capacity runners were trained with individually adapted high-intensity intervals or kept sedentary. Interfibrillar (IFM) and subsarcolemmal (SSM) mitochondria from gastrocnemius muscle were isolated and functionally assessed (age: 15 weeks). Sedentary HCR presented with higher exercise capacity than LCR paralleled by higher citrate synthase activity and IFM respiratory capacity in skeletal muscle of HCR. Exercise training increased exercise capacity in both HCR and LCR, but this was more pronounced in LCR. In addition, exercise increased skeletal muscle mitochondrial mass more in LCR. Instead, maximal respiratory capacity was increased following exercise in HCRs' IFM only. The results suggest that differences in skeletal muscle mitochondrial subpopulations are mainly inherited. Exercise training resulted in different mitochondrial adaptations and in higher trainability of LCR. HCR primarily increased skeletal muscle mitochondrial quality while LCR increased mitochondrial quantity in response to exercise training, suggesting that inherited aerobic exercise capacity differentially affects the mitochondrial response to exercise training.
Collapse
Affiliation(s)
- Estelle Heyne
- Department of Cardiothoracic Surgery, Jena University Hospital, Friedrich Schiller University of Jena, 07747 Jena, Germany
| | - Susanne Zeeb
- Department of Cardiothoracic Surgery, Jena University Hospital, Friedrich Schiller University of Jena, 07747 Jena, Germany
| | - Celina Junker
- Department of Cardiothoracic Surgery, Jena University Hospital, Friedrich Schiller University of Jena, 07747 Jena, Germany
| | - Andreas Petzinna
- Department of Cardiothoracic Surgery, Jena University Hospital, Friedrich Schiller University of Jena, 07747 Jena, Germany
| | - Andrea Schrepper
- Department of Cardiothoracic Surgery, Jena University Hospital, Friedrich Schiller University of Jena, 07747 Jena, Germany
| | - Torsten Doenst
- Department of Cardiothoracic Surgery, Jena University Hospital, Friedrich Schiller University of Jena, 07747 Jena, Germany
| | - Lauren G Koch
- Department of Physiology and Pharmacology, College of Medicine and Life Sciences, The University Toledo, Toledo, OH 43606, USA
| | - Steven L Britton
- Department of Anesthesiology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Michael Schwarzer
- Department of Cardiothoracic Surgery, Jena University Hospital, Friedrich Schiller University of Jena, 07747 Jena, Germany
| |
Collapse
|
3
|
Alemany M. The Metabolic Syndrome, a Human Disease. Int J Mol Sci 2024; 25:2251. [PMID: 38396928 PMCID: PMC10888680 DOI: 10.3390/ijms25042251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/29/2024] [Accepted: 01/31/2024] [Indexed: 02/25/2024] Open
Abstract
This review focuses on the question of metabolic syndrome (MS) being a complex, but essentially monophyletic, galaxy of associated diseases/disorders, or just a syndrome of related but rather independent pathologies. The human nature of MS (its exceptionality in Nature and its close interdependence with human action and evolution) is presented and discussed. The text also describes the close interdependence of its components, with special emphasis on the description of their interrelations (including their syndromic development and recruitment), as well as their consequences upon energy handling and partition. The main theories on MS's origin and development are presented in relation to hepatic steatosis, type 2 diabetes, and obesity, but encompass most of the MS components described so far. The differential effects of sex and its biological consequences are considered under the light of human social needs and evolution, which are also directly related to MS epidemiology, severity, and relations with senescence. The triggering and maintenance factors of MS are discussed, with especial emphasis on inflammation, a complex process affecting different levels of organization and which is a critical element for MS development. Inflammation is also related to the operation of connective tissue (including the adipose organ) and the widely studied and acknowledged influence of diet. The role of diet composition, including the transcendence of the anaplerotic maintenance of the Krebs cycle from dietary amino acid supply (and its timing), is developed in the context of testosterone and β-estradiol control of the insulin-glycaemia hepatic core system of carbohydrate-triacylglycerol energy handling. The high probability of MS acting as a unique complex biological control system (essentially monophyletic) is presented, together with additional perspectives/considerations on the treatment of this 'very' human disease.
Collapse
Affiliation(s)
- Marià Alemany
- Faculty of Biology, Universitat de Barcelona, 08028 Barcelona, Catalonia, Spain
| |
Collapse
|
4
|
Bar-Tana J. TorS - Reframing a rational for type 2 diabetes treatment. Diabetes Metab Res Rev 2024; 40:e3712. [PMID: 37615286 DOI: 10.1002/dmrr.3712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 05/11/2023] [Accepted: 08/04/2023] [Indexed: 08/25/2023]
Abstract
The mammalian target of rapamycin complex 1 syndrome (Tors), paradigm implies an exhaustive cohesive disease entity driven by a hyperactive mTORC1, and which includes obesity, type 2 diabetic hyperglycemia, diabetic dyslipidemia, diabetic cardiomyopathy, diabetic nephropathy, diabetic peripheral neuropathy, hypertension, atherosclerotic cardiovascular disease, non-alcoholic fatty liver disease, some cancers, neurodegeneration, polycystic ovary syndrome, psoriasis and other. The TorS paradigm may account for the efficacy of standard-of-care treatments of type 2 diabetes (T2D) in alleviating the glycaemic and non-glycaemic diseases of TorS in T2D and non-T2D patients. The TorS paradigm may generate novel treatments for TorS diseases.
Collapse
|
5
|
Miner GE, So CM, Edwards W, Ragusa JV, Wine JT, Wong Gutierrez D, Airola MV, Herring LE, Coleman RA, Klett EL, Cohen S. PLIN5 interacts with FATP4 at membrane contact sites to promote lipid droplet-to-mitochondria fatty acid transport. Dev Cell 2023; 58:1250-1265.e6. [PMID: 37290445 PMCID: PMC10525032 DOI: 10.1016/j.devcel.2023.05.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 01/19/2023] [Accepted: 05/16/2023] [Indexed: 06/10/2023]
Abstract
Cells adjust their metabolism by remodeling membrane contact sites that channel metabolites to different fates. Lipid droplet (LD)-mitochondria contacts change in response to fasting, cold exposure, and exercise. However, their function and mechanism of formation have remained controversial. We focused on perilipin 5 (PLIN5), an LD protein that tethers mitochondria, to probe the function and regulation of LD-mitochondria contacts. We demonstrate that efficient LD-to-mitochondria fatty acid (FA) trafficking and ß-oxidation during starvation of myoblasts are promoted by phosphorylation of PLIN5 and require an intact PLIN5 mitochondrial tethering domain. Using human and murine cells, we further identified the acyl-CoA synthetase, FATP4 (ACSVL4), as a mitochondrial interactor of PLIN5. The C-terminal domains of PLIN5 and FATP4 constitute a minimal protein interaction capable of inducing organelle contacts. Our work suggests that starvation leads to phosphorylation of PLIN5, lipolysis, and subsequent channeling of FAs from LDs to FATP4 on mitochondria for conversion to fatty-acyl-CoAs and subsequent oxidation.
Collapse
Affiliation(s)
- Gregory E Miner
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Christina M So
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Whitney Edwards
- Department of Biology and Genetics, McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Integrative Program for Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Joey V Ragusa
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jonathan T Wine
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Daniel Wong Gutierrez
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Michael V Airola
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Laura E Herring
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Rosalind A Coleman
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Eric L Klett
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Sarah Cohen
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
6
|
Braz V, Selim L, Gomes G, Costa ML, Mermelstein C, Gondim KC. Blood meal digestion and changes in lipid reserves are associated with the post-ecdysis development of the flight muscle and ovary in young adults of Rhodnius prolixus. JOURNAL OF INSECT PHYSIOLOGY 2023; 146:104492. [PMID: 36801397 DOI: 10.1016/j.jinsphys.2023.104492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/03/2023] [Accepted: 02/16/2023] [Indexed: 06/18/2023]
Abstract
Rhodnius prolixus is a hemimetabolous, hematophagous insect, and both nymphs and adults feed exclusively on blood. The blood feeding triggers the molting process and, after five nymphal instar stages, the insect reaches the winged adult form. After the final ecdysis, the young adult still has a lot of blood in the midgut and, thus, we have investigated the changes in protein and lipid contents that are observed in the insect organs as digestion continues after molting. Total midgut protein content decreased during the days after the ecdysis, and digestion was finished fifteen days later. Simultaneously, proteins and triacylglycerols present in the fat body were mobilized, and their contents decreased, whereas they increased in both the ovary and the flight muscle. In order to evaluate the activity of de novo lipogenesis of each organ, the fat body, ovary and flight muscle were incubated in the presence of radiolabeled acetate, and the fat body showed the highest efficiency rate (around 47%) to convert the taken up acetate into lipids. The levels of de novo lipid synthesis in the flight muscle and ovary were very low. When 3H-palmitate was injected into the young females, its incorporation by the flight muscle was higher than by the ovary or the fat body. In the flight muscle, the 3H-palmitate was similarly distributed amongst triacylglycerols, phospholipids, diacylglycerols and free fatty acids, while in the ovary and fat body it was mostly found in triacylglycerols and phospholipids. The flight muscle was not fully developed after the molt, and at day two no lipid droplets were observed. At day five, very small lipid droplets were present, and they increased in size up to day fifteen. The diameter of the muscle fibers also increased from day two to fifteen, as well as the internuclear distance, indicating that muscle hypertrophy occurred along these days. The lipid droplets from the fat body showed a different pattern, and their diameter decreased after day two, but started to increase again at day ten. The data presented herein describes the development of the flight muscle after the final ecdysis, and modifications that occur regarding lipid stores. We show that, after molting, substrates that are present in the midgut and fat body are mobilized and directed to the ovary and flight muscle, for the adults of R. prolixus to be ready to feed and reproduce.
Collapse
Affiliation(s)
- Valdir Braz
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Lukas Selim
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Geyse Gomes
- Laboratório de Diferenciação Muscular, Instituto de Ciências Biomédicas, UFRJ Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Manoel Luis Costa
- Laboratório de Diferenciação Muscular, Instituto de Ciências Biomédicas, UFRJ Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Claudia Mermelstein
- Laboratório de Diferenciação Muscular, Instituto de Ciências Biomédicas, UFRJ Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Katia C Gondim
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
7
|
Barrett JS, Whytock KL, Strauss JA, Wagenmakers AJM, Shepherd SO. High intramuscular triglyceride turnover rates and the link to insulin sensitivity: influence of obesity, type 2 diabetes and physical activity. Appl Physiol Nutr Metab 2022; 47:343-356. [PMID: 35061523 DOI: 10.1139/apnm-2021-0631] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Large intramuscular triglyceride (IMTG) stores in sedentary, obese individuals have been linked to insulin resistance, yet well-trained athletes exhibit high IMTG levels whilst maintaining insulin sensitivity. Contrary to previous assumptions, it is now known that IMTG content per se does not result in insulin resistance. Rather, insulin resistance is caused, at least in part, by the presence of high concentrations of harmful lipid metabolites, such as diacylglycerols and ceramides in muscle. Several mechanistic differences between obese sedentary individuals and their highly trained counterparts have been identified, which determine the differential capacity for IMTG synthesis and breakdown in these populations. In this review, we first describe the most up-to-date mechanisms by which a low IMTG turnover rate (both breakdown and synthesis) leads to the accumulation of lipid metabolites and results in skeletal muscle insulin resistance. We then explore current and potential exercise and nutritional strategies that target IMTG turnover in sedentary obese individuals, to improve insulin sensitivity. Overall, improving IMTG turnover should be an important component of successful interventions that aim to prevent the development of insulin resistance in the ever-expanding sedentary, overweight and obese populations. Novelty: A description of the most up-to-date mechanisms regulating turnover of the IMTG pool. An exploration of current and potential exercise/nutritional strategies to target and enhance IMTG turnover in obese individuals. Overall, highlights the importance of improving IMTG turnover to prevent the development of insulin resistance.
Collapse
Affiliation(s)
- J S Barrett
- Research Institute for Sport & Exercise Sciences, Liverpool John Moores University, Liverpool, UK
| | - K L Whytock
- Translational Research Institute, AdventHealth, Orlando, FL 32804, USA
| | - J A Strauss
- Research Institute for Sport & Exercise Sciences, Liverpool John Moores University, Liverpool, UK
| | - A J M Wagenmakers
- Research Institute for Sport & Exercise Sciences, Liverpool John Moores University, Liverpool, UK
| | - S O Shepherd
- Research Institute for Sport & Exercise Sciences, Liverpool John Moores University, Liverpool, UK
| |
Collapse
|
8
|
Lavin KM, Coen PM, Baptista LC, Bell MB, Drummer D, Harper SA, Lixandrão ME, McAdam JS, O’Bryan SM, Ramos S, Roberts LM, Vega RB, Goodpaster BH, Bamman MM, Buford TW. State of Knowledge on Molecular Adaptations to Exercise in Humans: Historical Perspectives and Future Directions. Compr Physiol 2022; 12:3193-3279. [PMID: 35578962 PMCID: PMC9186317 DOI: 10.1002/cphy.c200033] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
For centuries, regular exercise has been acknowledged as a potent stimulus to promote, maintain, and restore healthy functioning of nearly every physiological system of the human body. With advancing understanding of the complexity of human physiology, continually evolving methodological possibilities, and an increasingly dire public health situation, the study of exercise as a preventative or therapeutic treatment has never been more interdisciplinary, or more impactful. During the early stages of the NIH Common Fund Molecular Transducers of Physical Activity Consortium (MoTrPAC) Initiative, the field is well-positioned to build substantially upon the existing understanding of the mechanisms underlying benefits associated with exercise. Thus, we present a comprehensive body of the knowledge detailing the current literature basis surrounding the molecular adaptations to exercise in humans to provide a view of the state of the field at this critical juncture, as well as a resource for scientists bringing external expertise to the field of exercise physiology. In reviewing current literature related to molecular and cellular processes underlying exercise-induced benefits and adaptations, we also draw attention to existing knowledge gaps warranting continued research effort. © 2021 American Physiological Society. Compr Physiol 12:3193-3279, 2022.
Collapse
Affiliation(s)
- Kaleen M. Lavin
- Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Cell, Developmental, and Integrative Biology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
- Center for Human Health, Resilience, and Performance, Institute for Human and Machine Cognition, Pensacola, Florida, USA
| | - Paul M. Coen
- Translational Research Institute for Metabolism and Diabetes, Advent Health, Orlando, Florida, USA
- Sanford Burnham Prebys Medical Discovery Institute, Orlando, Florida, USA
| | - Liliana C. Baptista
- Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Medicine, Division of Gerontology, Geriatrics and Palliative Care, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Margaret B. Bell
- Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Cell, Developmental, and Integrative Biology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Devin Drummer
- Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Cell, Developmental, and Integrative Biology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Sara A. Harper
- Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Medicine, Division of Gerontology, Geriatrics and Palliative Care, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Manoel E. Lixandrão
- Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Cell, Developmental, and Integrative Biology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Jeremy S. McAdam
- Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Cell, Developmental, and Integrative Biology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Samia M. O’Bryan
- Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Cell, Developmental, and Integrative Biology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Sofhia Ramos
- Translational Research Institute for Metabolism and Diabetes, Advent Health, Orlando, Florida, USA
- Sanford Burnham Prebys Medical Discovery Institute, Orlando, Florida, USA
| | - Lisa M. Roberts
- Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Medicine, Division of Gerontology, Geriatrics and Palliative Care, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Rick B. Vega
- Translational Research Institute for Metabolism and Diabetes, Advent Health, Orlando, Florida, USA
- Sanford Burnham Prebys Medical Discovery Institute, Orlando, Florida, USA
| | - Bret H. Goodpaster
- Translational Research Institute for Metabolism and Diabetes, Advent Health, Orlando, Florida, USA
- Sanford Burnham Prebys Medical Discovery Institute, Orlando, Florida, USA
| | - Marcas M. Bamman
- Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Cell, Developmental, and Integrative Biology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
- Center for Human Health, Resilience, and Performance, Institute for Human and Machine Cognition, Pensacola, Florida, USA
| | - Thomas W. Buford
- Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Medicine, Division of Gerontology, Geriatrics and Palliative Care, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
9
|
Scopel Poltronieri T, de Paula NS, Chaves GV. Skeletal muscle radiodensity and cancer outcomes: A scoping review of the literature. Nutr Clin Pract 2021; 37:1117-1141. [PMID: 34752653 DOI: 10.1002/ncp.10794] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Patients with cancer are more prone to experience myosteatosis than healthy individuals. The aim of this review was to summarize the methodologies applied for low skeletal muscle radiodensity (SMD) assessment in oncology patients, as well as to describe the major findings related to SMD and cancer outcomes. This scoping review included studies that were published until November 2020 in English, Portuguese, or Spanish; were performed in humans diagnosed with cancer, adult and/or elderly, of both sexes; investigated SMD through computed tomography of the region between the third and fifth lumbar vertebrae, considering at least two muscular groups; and evaluated clinical and/or surgical outcomes. Eighty-eight studies met the inclusion criteria (n = 37,583 patients). Survival was the most evaluated outcome. Most studies reported a significant association between low SMD and unfavorable outcomes. However, this relationship was not clear for survival, antineoplastic treatment, and surgical complications, potentially because of the unstandardized approaches for the assessment of SMD and inadequate study design. Future studies should address these issues to provide an in-depth understanding of the clinical relevance of SMD in cancer outcomes as well as how SMD is influenced by individuals and tumor-related characteristics in patients with cancer.
Collapse
Affiliation(s)
- Taiara Scopel Poltronieri
- Department of Nutrition, Cancer Hospital II, National Cancer Institute José Alencar Gomes da Silva (INCA), Rio de Janeiro, Rio de Janeiro, Brazil.,Postgraduate Program in Medical Sciences, Endocrinology, Faculty of Medicine, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Nathália Silva de Paula
- Department of Nutrition, Cancer Hospital II, National Cancer Institute José Alencar Gomes da Silva (INCA), Rio de Janeiro, Rio de Janeiro, Brazil
| | - Gabriela Villaça Chaves
- Department of Nutrition, Cancer Hospital II, National Cancer Institute José Alencar Gomes da Silva (INCA), Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
10
|
Ke W, Reed JN, Yang C, Higgason N, Rayyan L, Wählby C, Carpenter AE, Civelek M, O’Rourke EJ. Genes in human obesity loci are causal obesity genes in C. elegans. PLoS Genet 2021; 17:e1009736. [PMID: 34492009 PMCID: PMC8462697 DOI: 10.1371/journal.pgen.1009736] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 09/24/2021] [Accepted: 07/23/2021] [Indexed: 12/13/2022] Open
Abstract
Obesity and its associated metabolic syndrome are a leading cause of morbidity and mortality. Given the disease's heavy burden on patients and the healthcare system, there has been increased interest in identifying pharmacological targets for the treatment and prevention of obesity. Towards this end, genome-wide association studies (GWAS) have identified hundreds of human genetic variants associated with obesity. The next challenge is to experimentally define which of these variants are causally linked to obesity, and could therefore become targets for the treatment or prevention of obesity. Here we employ high-throughput in vivo RNAi screening to test for causality 293 C. elegans orthologs of human obesity-candidate genes reported in GWAS. We RNAi screened these 293 genes in C. elegans subject to two different feeding regimens: (1) regular diet, and (2) high-fructose diet, which we developed and present here as an invertebrate model of diet-induced obesity (DIO). We report 14 genes that promote obesity and 3 genes that prevent DIO when silenced in C. elegans. Further, we show that knock-down of the 3 DIO genes not only prevents excessive fat accumulation in primary and ectopic fat depots but also improves the health and extends the lifespan of C. elegans overconsuming fructose. Importantly, the direction of the association between expression variants in these loci and obesity in mice and humans matches the phenotypic outcome of the loss-of-function of the C. elegans ortholog genes, supporting the notion that some of these genes would be causally linked to obesity across phylogeny. Therefore, in addition to defining causality for several genes so far merely correlated with obesity, this study demonstrates the value of model systems compatible with in vivo high-throughput genetic screening to causally link GWAS gene candidates to human diseases.
Collapse
Affiliation(s)
- Wenfan Ke
- Department of Biology, College of Arts and Sciences, University of Virginia, Charlottesville, Virginia, United States of America
| | - Jordan N. Reed
- Department of Biomedical Engineering, School of Engineering and Applied Science, University of Virginia, Charlottesville, Virginia, United States of America
| | - Chenyu Yang
- Department of Biology, College of Arts and Sciences, University of Virginia, Charlottesville, Virginia, United States of America
| | - Noel Higgason
- Department of Biology, College of Arts and Sciences, University of Virginia, Charlottesville, Virginia, United States of America
| | - Leila Rayyan
- Department of Biology, College of Arts and Sciences, University of Virginia, Charlottesville, Virginia, United States of America
| | - Carolina Wählby
- Department of Information Technology and SciLifeLab, Uppsala University, Uppsala, Sweden
| | - Anne E. Carpenter
- Imaging Platform, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Mete Civelek
- Department of Biomedical Engineering, School of Engineering and Applied Science, University of Virginia, Charlottesville, Virginia, United States of America
- Center for Public Health Genomics, School of Medicine, University of Virginia, Charlottesville, Virginia, United States of America
| | - Eyleen J. O’Rourke
- Department of Biology, College of Arts and Sciences, University of Virginia, Charlottesville, Virginia, United States of America
- Department of Cell Biology, School of Medicine, University of Virginia, Charlottesville, Virginia, United States of America
- * E-mail:
| |
Collapse
|
11
|
Tanaka S, Madokoro S, Inaoka PT, Yamazaki T. Blood lipid profile changes in type 2 diabetic rats after tail suspension and reloading. Lipids Health Dis 2021; 20:84. [PMID: 34334135 PMCID: PMC8327430 DOI: 10.1186/s12944-021-01511-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 07/22/2021] [Indexed: 11/10/2022] Open
Abstract
Purpose The effects of the tail suspension and reloading on the protein and lipid metabolism in muscle and blood in type 2 diabetes mellitus (T2DM) are unclear. This study evaluated the hypothesis that skeletal muscle catabolism is greater in T2DM than in non-diabetes mellitus (non-DM) rats and that the activity-dependent changes in the intramuscular lipid accumulation and blood lipid profile are poorer in T2DM than in non-DM rats. Methods T2DM and non-DM rats were suspended for two weeks followed by reloading for two weeks. The muscle and blood were then examined. Results In contrast to our hypothesis, there was no marked difference between the T2DM and non-DM groups in terms of the skeletal muscle catabolism and activity-dependent changes in intramuscular lipid accumulation. However, the blood lipid profile increased in the T2DM group compared to the non-DM group. One interesting finding in this study was the decrease in non-high-density lipoprotein (non-HDL) cholesterol levels after one week of reloading followed by a significant increase in the non-HDL cholesterol levels after two weeks of reloading in the T2DM group. Conclusion These results suggest that a dramatic increase in activity after a period of inactivity may rapidly improve the blood lipid profile in T2DM rats. Supplementary Information The online version contains supplementary material available at 10.1186/s12944-021-01511-y.
Collapse
Affiliation(s)
- Shoji Tanaka
- Department of Rehabilitation, Faculty of Health Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, 5-11-80 Kodatsuno, Kanazawa, 920-0942, Japan.
| | - Sachiko Madokoro
- Department of Rehabilitation, Faculty of Health Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, 5-11-80 Kodatsuno, Kanazawa, 920-0942, Japan
| | - Pleiades Tiharu Inaoka
- Department of Rehabilitation, Faculty of Health Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, 5-11-80 Kodatsuno, Kanazawa, 920-0942, Japan
| | - Toshiaki Yamazaki
- Department of Rehabilitation, Faculty of Health Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, 5-11-80 Kodatsuno, Kanazawa, 920-0942, Japan
| |
Collapse
|
12
|
Zembroski AS, Andolino C, Buhman KK, Teegarden D. Proteomic Characterization of Cytoplasmic Lipid Droplets in Human Metastatic Breast Cancer Cells. Front Oncol 2021; 11:576326. [PMID: 34141606 PMCID: PMC8204105 DOI: 10.3389/fonc.2021.576326] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 05/10/2021] [Indexed: 12/19/2022] Open
Abstract
One of the characteristic features of metastatic breast cancer is increased cellular storage of neutral lipid in cytoplasmic lipid droplets (CLDs). CLD accumulation is associated with increased cancer aggressiveness, suggesting CLDs contribute to metastasis. However, how CLDs contribute to metastasis is not clear. CLDs are composed of a neutral lipid core, a phospholipid monolayer, and associated proteins. Proteins that associate with CLDs regulate both cellular and CLD metabolism; however, the proteome of CLDs in metastatic breast cancer and how these proteins may contribute to breast cancer progression is unknown. Therefore, the purpose of this study was to identify the proteome and assess the characteristics of CLDs in the MCF10CA1a human metastatic breast cancer cell line. Utilizing shotgun proteomics, we identified over 1500 proteins involved in a variety of cellular processes in the isolated CLD fraction. Interestingly, unlike other cell lines such as adipocytes or enterocytes, the most enriched protein categories were involved in cellular processes outside of lipid metabolism. For example, cell-cell adhesion was the most enriched category of proteins identified, and many of these proteins have been implicated in breast cancer metastasis. In addition, we characterized CLD size and area in MCF10CA1a cells using transmission electron microscopy. Our results provide a hypothesis-generating list of potential players in breast cancer progression and offers a new perspective on the role of CLDs in cancer.
Collapse
Affiliation(s)
- Alyssa S Zembroski
- Department of Nutrition Science, Purdue University, West Lafayette, IN, United States
| | - Chaylen Andolino
- Department of Nutrition Science, Purdue University, West Lafayette, IN, United States
| | - Kimberly K Buhman
- Department of Nutrition Science, Purdue University, West Lafayette, IN, United States
| | - Dorothy Teegarden
- Department of Nutrition Science, Purdue University, West Lafayette, IN, United States
| |
Collapse
|
13
|
Turner MC, Rimington RP, Martin NRW, Fleming JW, Capel AJ, Hodson L, Lewis MP. Physiological and pathophysiological concentrations of fatty acids induce lipid droplet accumulation and impair functional performance of tissue engineered skeletal muscle. J Cell Physiol 2021; 236:7033-7044. [PMID: 33738797 DOI: 10.1002/jcp.30365] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 02/11/2021] [Accepted: 03/08/2021] [Indexed: 12/19/2022]
Abstract
Fatty acids (FA) exert physiological and pathophysiological effects leading to changes in skeletal muscle metabolism and function, however, in vitro models to investigate these changes are limited. These experiments sought to establish the effects of physiological and pathophysiological concentrations of exogenous FA upon the function of tissue engineered skeletal muscle (TESkM). Cultured initially for 14 days, C2C12 TESkM was exposed to FA-free bovine serum albumin alone or conjugated to a FA mixture (oleic, palmitic, linoleic, and α-linoleic acids [OPLA] [ratio 45:30:24:1%]) at different concentrations (200 or 800 µM) for an additional 4 days. Subsequently, TESkM morphology, functional capacity, gene expression and insulin signaling were analyzed. There was a dose response increase in the number and size of lipid droplets within the TESkM (p < .05). Exposure to exogenous FA increased the messenger RNA expression of genes involved in lipid storage (perilipin 2 [p < .05]) and metabolism (pyruvate dehydrogenase lipoamide kinase isozyme 4 [p < .01]) in a dose dependent manner. TESkM force production was reduced (tetanic and single twitch) (p < .05) and increases in transcription of type I slow twitch fiber isoform, myosin heavy chain 7, were observed when cultured with 200 µM OPLA compared to control (p < .01). Four days of OPLA exposure results in lipid accumulation in TESkM which in turn results in changes in muscle function and metabolism; thus, providing insight ito the functional and mechanistic changes of TESkM in response to exogenous FA.
Collapse
Affiliation(s)
- Mark C Turner
- School of Sport, Exercise and Health Sciences, National Centre for Sport and Exercise Medicine, Loughborough University, Loughborough, UK.,Leicester Biomedical Research Centre, University Hospitals of Leicester NHS Trust, Leicester, UK.,Centre for Sport, Exercise and Life Sciences, Research Institute for Health and Wellbeing, Coventry University, Coventry, UK
| | - Rowan P Rimington
- School of Sport, Exercise and Health Sciences, National Centre for Sport and Exercise Medicine, Loughborough University, Loughborough, UK
| | - Neil R W Martin
- School of Sport, Exercise and Health Sciences, National Centre for Sport and Exercise Medicine, Loughborough University, Loughborough, UK
| | - Jacob W Fleming
- School of Sport, Exercise and Health Sciences, National Centre for Sport and Exercise Medicine, Loughborough University, Loughborough, UK
| | - Andrew J Capel
- School of Sport, Exercise and Health Sciences, National Centre for Sport and Exercise Medicine, Loughborough University, Loughborough, UK
| | - Leanne Hodson
- Oxford Center for Diabetes, Endocrinology and Metabolism, Oxford Biomedical Research Centre, Radcliffe Department of Medicine, Churchill Hospital, University of Oxford, Oxford, UK
| | - Mark P Lewis
- School of Sport, Exercise and Health Sciences, National Centre for Sport and Exercise Medicine, Loughborough University, Loughborough, UK
| |
Collapse
|
14
|
Tavian D, Maggi L, Mora M, Morandi L, Bragato C, Missaglia S. A novel PNPLA2 mutation causing total loss of RNA and protein expression in two NLSDM siblings with early onset but slowly progressive severe myopathy. Genes Dis 2021; 8:73-78. [PMID: 33569515 PMCID: PMC7859421 DOI: 10.1016/j.gendis.2019.07.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 07/12/2019] [Accepted: 07/22/2019] [Indexed: 12/21/2022] Open
Abstract
Neutral lipid storage disease with myopathy (NLSDM) is a rare autosomal recessive disorder, due to an enzymatic error of lipid metabolism. Patients present always with skeletal muscle myopathy and variable cardiac and hepatic involvement. NLSDM is caused by mutations in the PNPLA2 gene, which encodes the adipose triglyceride lipase (ATGL). Here we report the molecular characterization and clinical findings of two NLSDM siblings carrying the novel c.187+1G > C homozygous PNPLA2 mutation, localized in the splice site of intron 2. Molecular analyses revealed that neither aberrant PNPLA2 mRNA isoforms, nor ATGL mutated protein were detectable in patient's cells. Clinically, both patients presented early onset muscle weakness, in particular of proximal upper limb muscles. In almost 15 years, muscle damage affected also distal upper limbs. This is a NLSDM family, displaying a severe PNPLA2 mutation in two siblings with clinical presentation characterized by an early onset, but a slowly evolution of severe myopathy.
Collapse
Affiliation(s)
- Daniela Tavian
- Laboratory of Cellular Biochemistry and Molecular Biology, CRIBENS, Università Cattolica del Sacro Cuore, pz Buonarroti 30, Milan, 20145, Italy
- Department of Psychology, Università Cattolica del Sacro Cuore, Largo Gemelli 1, Milan, 20123, Italy
| | - Lorenzo Maggi
- Neuromuscular Diseases and Neuroimmunology Unit, Fondazione IRCCS Istituto Neurologico “Carlo Besta”, Milan, Italy
| | - Marina Mora
- Neuromuscular Diseases and Neuroimmunology Unit, Fondazione IRCCS Istituto Neurologico “Carlo Besta”, Milan, Italy
| | - Lucia Morandi
- Neuromuscular Diseases and Neuroimmunology Unit, Fondazione IRCCS Istituto Neurologico “Carlo Besta”, Milan, Italy
| | - Cinzia Bragato
- Neuromuscular Diseases and Neuroimmunology Unit, Fondazione IRCCS Istituto Neurologico “Carlo Besta”, Milan, Italy
- PhD program in Neuroscience, University of Milano-Bicocca, Via Cadore 48, Monza, 20900, Italy
| | - Sara Missaglia
- Laboratory of Cellular Biochemistry and Molecular Biology, CRIBENS, Università Cattolica del Sacro Cuore, pz Buonarroti 30, Milan, 20145, Italy
- Department of Psychology, Università Cattolica del Sacro Cuore, Largo Gemelli 1, Milan, 20123, Italy
| |
Collapse
|
15
|
Lee SJ, Choi SE, Lee HB, Song MW, Kim YH, Jeong JY, Kang Y, Kim HJ, Kim TH, Jeon JY, Lee KW. A Class I Histone Deacetylase Inhibitor Attenuates Insulin Resistance and Inflammation in Palmitate-Treated C2C12 Myotubes and Muscle of HF/HFr Diet Mice. Front Pharmacol 2020; 11:601448. [PMID: 33362555 PMCID: PMC7758468 DOI: 10.3389/fphar.2020.601448] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 11/09/2020] [Indexed: 12/18/2022] Open
Abstract
Histone deacetylase (HDAC) inhibitors, which regulate gene expression by inhibiting the deacetylation of histones and nonhistone proteins, have been shown to exert a wide array of biological effects; these include anti-cancer, anti-obesity, and anti-diabetes effects, as well as cardiovascular-protective activity. However, the effects of class I HDAC inhibition on lipotoxicity in C2C12 myotubes and skeletal muscle tissue remain poorly understood. In this study, we investigated the molecular mechanism underlying the protective effect of class I HDAC inhibition under lipotoxic conditions, i.e., in palmitate (PA)-treated C2C12 myotubes and skeletal muscle tissue in high fat (HF)/high fructose (HFr) diet mice. PA treatment of C2C12 myotubes increased HDAC3 protein expression and impaired mitochondrial oxidation, resulting in increased mitochondrial ROS generation and an accumulation of intracellular triglycerides (TG). Prolonged exposure led to increased inflammatory cytokine expression and insulin resistance. In contrast, MS-275, a class I HDAC inhibitor, dramatically attenuated lipotoxicity, preventing PA-induced insulin resistance and inflammatory cytokine expression. Similar beneficial effects were also seen following HDAC3 knockdown. In addition, MS-275 increased the mRNA expression of peroxisome proliferator activator receptor γ-coactivator 1α (PGC1α) and mitochondrial transcription factor A (TFAM), which serve as transcriptional coactivators in the context of mitochondrial metabolism and biogenesis, and restored expression of peroxisome proliferator-activated receptor alpha (PPARα), medium-chain acyl-coenzyme A dehydrogenase (MCAD), enoyl-CoA hydratase, and 3-hydroxyacyl CoA dehydrogenase (EHHADH). In vivo, treatment of HF/HFr-fed mice with MS-275 ameliorated hyperglycemia, insulin resistance, stress signals, and TNF-α expression in skeletal muscle. Taken together, these results suggest that HDAC3 inhibition rather than HDAC1/2 inhibition by MS-275 protects against lipotoxicity in C2C12 myotubes and skeletal muscle, and may be effective for the treatment of obesity and insulin resistance.
Collapse
Affiliation(s)
- Soo Jin Lee
- Department of Endocrinology and Metabolism, Ajou University School of Medicine, Suwon, South Korea
| | - Sung-E Choi
- Department of Physiology, Ajou University School of Medicine, Suwon, South Korea
| | - Han Byeol Lee
- Department of Endocrinology and Metabolism, Ajou University School of Medicine, Suwon, South Korea.,Department of Biomedical Science, The Graduate School, Ajou University, Suwon, South Korea
| | - Min-Woo Song
- Department of Endocrinology and Metabolism, Ajou University School of Medicine, Suwon, South Korea.,Department of Biomedical Science, The Graduate School, Ajou University, Suwon, South Korea
| | - Young Ha Kim
- Division of Cosmetics and Biotechnology, Hoseo University, Asan-si, South Korea
| | - Jae Yeop Jeong
- Department of Endocrinology and Metabolism, Ajou University School of Medicine, Suwon, South Korea
| | - Yup Kang
- Department of Physiology, Ajou University School of Medicine, Suwon, South Korea
| | - Hae Jin Kim
- Department of Endocrinology and Metabolism, Ajou University School of Medicine, Suwon, South Korea
| | - Tae Ho Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Seoul Medical Center, Seoul, South Korea
| | - Ja Young Jeon
- Department of Endocrinology and Metabolism, Ajou University School of Medicine, Suwon, South Korea
| | - Kwan Woo Lee
- Department of Endocrinology and Metabolism, Ajou University School of Medicine, Suwon, South Korea
| |
Collapse
|
16
|
Høgset H, Horgan CC, Armstrong JPK, Bergholt MS, Torraca V, Chen Q, Keane TJ, Bugeon L, Dallman MJ, Mostowy S, Stevens MM. In vivo biomolecular imaging of zebrafish embryos using confocal Raman spectroscopy. Nat Commun 2020; 11:6172. [PMID: 33268772 PMCID: PMC7710741 DOI: 10.1038/s41467-020-19827-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 10/28/2020] [Indexed: 12/18/2022] Open
Abstract
Zebrafish embryos provide a unique opportunity to visualize complex biological processes, yet conventional imaging modalities are unable to access intricate biomolecular information without compromising the integrity of the embryos. Here, we report the use of confocal Raman spectroscopic imaging for the visualization and multivariate analysis of biomolecular information extracted from unlabeled zebrafish embryos. We outline broad applications of this method in: (i) visualizing the biomolecular distribution of whole embryos in three dimensions, (ii) resolving anatomical features at subcellular spatial resolution, (iii) biomolecular profiling and discrimination of wild type and ΔRD1 mutant Mycobacterium marinum strains in a zebrafish embryo model of tuberculosis and (iv) in vivo temporal monitoring of the wound response in living zebrafish embryos. Overall, this study demonstrates the application of confocal Raman spectroscopic imaging for the comparative bimolecular analysis of fully intact and living zebrafish embryos.
Collapse
Affiliation(s)
- Håkon Høgset
- Department of Materials, Department of Bioengineering and Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, UK
| | - Conor C Horgan
- Department of Materials, Department of Bioengineering and Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, UK
| | - James P K Armstrong
- Department of Materials, Department of Bioengineering and Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, UK
| | - Mads S Bergholt
- Department of Materials, Department of Bioengineering and Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, UK
- Department of Craniofacial Development & Stem Cell Biology, Kings College London, Tower Wing, Guy's Hospital, London, SE1 9RT, UK
| | - Vincenzo Torraca
- Department of Infection Biology, London School of Hygiene & Tropical Medicine, Keppel Street, London, WC1E 7HT, UK
| | - Qu Chen
- Department of Materials, Department of Bioengineering and Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, UK
| | - Timothy J Keane
- Department of Materials, Department of Bioengineering and Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, UK
| | - Laurence Bugeon
- Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK
| | - Margaret J Dallman
- Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK
| | - Serge Mostowy
- Department of Infection Biology, London School of Hygiene & Tropical Medicine, Keppel Street, London, WC1E 7HT, UK
| | - Molly M Stevens
- Department of Materials, Department of Bioengineering and Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, UK.
| |
Collapse
|
17
|
Daemen S, Gemmink A, Paul A, Billecke N, Rieger K, Parekh SH, Hesselink MKC. Label-free CARS microscopy reveals similar triacylglycerol acyl chain length and saturation in myocellular lipid droplets of athletes and individuals with type 2 diabetes. Diabetologia 2020; 63:2654-2664. [PMID: 32880685 PMCID: PMC7641925 DOI: 10.1007/s00125-020-05266-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 07/17/2020] [Indexed: 01/17/2023]
Abstract
AIMS/HYPOTHESIS Intramyocellular lipid (IMCL) content associates with development of insulin resistance, albeit not in insulin-sensitive endurance-trained athletes (trained). Qualitative and spatial differences in muscle lipid composition may underlie this so-called athlete's paradox. Here we studied triacylglycerol (TAG) composition of individual myocellular lipid droplets (LDs) in trained individuals and individuals with type 2 diabetes mellitus. METHODS Trained ([Formula: see text] 71.0 ± 1.6 ml O2 [kg lean body mass (LBM)]-1 min-1), normoglycaemic (fasting glucose 5.1 ± 0.1 mmol/l) individuals and untrained ([Formula: see text] 36.8 ± 1.5 ml O2 [kg LBM]-1 min-1) individuals with type 2 diabetes (fasting glucose 7.4 ± 0.5 mmol/l), with similar IMCL content (3.5 ± 0.7% vs 2.5 ± 0.3%, p = 0.241), but at opposite ends of the insulin sensitivity spectrum (glucose infusion rate 93.8 ± 6.6 vs 25.7 ± 5.3 μmol [kg LBM]-1 min-1 for trained individuals and those with type 2 diabetes, respectively) were included from our database in the present study. We applied in situ label-free broadband coherent anti-Stokes Raman scattering (CARS) microscopy to sections from skeletal muscle biopsies to measure TAG acyl chain length and saturation of myocellular LDs. This approach uniquely permits examination of individual LDs in their native environment, in a fibre-type-specific manner, taking into account LD size and subcellular location. RESULTS Despite a significant difference in insulin sensitivity, we observed remarkably similar acyl chain length and saturation in trained and type 2 diabetic individuals (chain length: 18.12 ± 0.61 vs 18.36 ± 0.43 number of carbons; saturation: 0.37 ± 0.05 vs 0.38 ± 0.06 number of C=C bonds). Longer acyl chains or higher saturation (lower C=C number) could be detected in subpopulations of LDs, i.e. large LDs (chain length: 18.11 ± 0.48 vs 18.63 ± 0.57 carbon number) and subsarcolemmal LDs (saturation: 0.34 ± 0.02 vs 0.36 ± 0.04 C=C number), which are more abundant in individuals with type 2 diabetes. CONCLUSIONS/INTERPRETATION In contrast to reports of profound differences in the lipid composition of lipids extracted from skeletal muscle from trained and type 2 diabetic individuals, our in situ, LD-specific approach detected only modest differences in TAG composition in LD subpopulations, which were dependent on LD size and subcellular location. If, and to what extent, these modest differences can impact insulin sensitivity remains to be elucidated. Graphical abstract.
Collapse
Affiliation(s)
- Sabine Daemen
- Department of Nutrition and Movement Sciences, NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, the Netherlands
| | - Anne Gemmink
- Department of Nutrition and Movement Sciences, NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, the Netherlands
| | - Alexandra Paul
- Department of Biology and Biological Engineering, Division of Chemical Biology, Chalmers University of Technology, Gothenburg, Sweden
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, USA
| | - Nils Billecke
- Department of Molecular Spectroscopy, Max Planck Institute for Polymer Research, Mainz, Germany
| | - Katrina Rieger
- Department of Molecular Spectroscopy, Max Planck Institute for Polymer Research, Mainz, Germany
| | - Sapun H Parekh
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, USA.
- Department of Molecular Spectroscopy, Max Planck Institute for Polymer Research, Mainz, Germany.
| | - Matthijs K C Hesselink
- Department of Nutrition and Movement Sciences, NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, the Netherlands.
| |
Collapse
|
18
|
Cloherty AP, Olmstead AD, Ribeiro CM, Jean F. Hijacking of Lipid Droplets by Hepatitis C, Dengue and Zika Viruses-From Viral Protein Moonlighting to Extracellular Release. Int J Mol Sci 2020; 21:E7901. [PMID: 33114346 PMCID: PMC7662613 DOI: 10.3390/ijms21217901] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 10/15/2020] [Accepted: 10/20/2020] [Indexed: 02/06/2023] Open
Abstract
Hijacking and manipulation of host cell biosynthetic pathways by human enveloped viruses are essential for the viral lifecycle. Flaviviridae members, including hepatitis C, dengue and Zika viruses, extensively manipulate host lipid metabolism, underlining the importance of lipid droplets (LDs) in viral infection. LDs are dynamic cytoplasmic organelles that can act as sequestration platforms for a unique subset of host and viral proteins. Transient recruitment and mobilization of proteins to LDs during viral infection impacts host-cell biological properties, LD functionality and canonical protein functions. Notably, recent studies identified LDs in the nucleus and also identified that LDs are transported extracellularly via an autophagy-mediated mechanism, indicating a novel role for autophagy in Flaviviridae infections. These developments underline an unsuspected diversity and localization of LDs and potential moonlighting functions of LD-associated proteins during infection. This review summarizes recent breakthroughs concerning the LD hijacking activities of hepatitis C, dengue and Zika viruses and potential roles of cytoplasmic, nuclear and extracellular LD-associated viral proteins during infection.
Collapse
Affiliation(s)
- Alexandra P.M. Cloherty
- Amsterdam UMC, Amsterdam Institute for Infection & Immunity, Department of Experimental Immunology, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; (A.P.M.C.); (C.M.S.R.)
| | - Andrea D. Olmstead
- Department of Microbiology and Immunology, Life Sciences Institute, University of British Columbia, 3559–2350 Health Sciences Mall, Vancouver, BC V6T1Z3, Canada;
| | - Carla M.S. Ribeiro
- Amsterdam UMC, Amsterdam Institute for Infection & Immunity, Department of Experimental Immunology, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; (A.P.M.C.); (C.M.S.R.)
| | - François Jean
- Department of Microbiology and Immunology, Life Sciences Institute, University of British Columbia, 3559–2350 Health Sciences Mall, Vancouver, BC V6T1Z3, Canada;
| |
Collapse
|
19
|
Zhao X, Li X, Shi X, Karpac J. Diet-MEF2 interactions shape lipid droplet diversification in muscle to influence Drosophila lifespan. Aging Cell 2020; 19:e13172. [PMID: 32537848 PMCID: PMC7433001 DOI: 10.1111/acel.13172] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Revised: 04/05/2020] [Accepted: 05/05/2020] [Indexed: 12/12/2022] Open
Abstract
The number, size, and composition of lipid droplets can be influenced by dietary changes that shift energy substrate availability. This diversification of lipid droplets can promote metabolic flexibility and shape cellular stress responses in unique tissues with distinctive metabolic roles. Using Drosophila, we uncovered a role for myocyte enhancer factor 2 (MEF2) in modulating diet-dependent lipid droplet diversification within adult striated muscle, impacting mortality rates. Muscle-specific attenuation of MEF2, whose chronic activation maintains glucose and mitochondrial homeostasis, leads to the accumulation of large, cholesterol ester-enriched intramuscular lipid droplets in response to high calorie, carbohydrate-sufficient diets. The diet-dependent accumulation of these lipid droplets also correlates with both enhanced stress protection in muscle and increases in organismal lifespan. Furthermore, MEF2 attenuation releases an antagonistic regulation of cell cycle gene expression programs, and up-regulation of Cyclin E is required for diet- and MEF2-dependent diversification of intramuscular lipid droplets. The integration of MEF2-regulated gene expression networks with dietary responses thus plays a critical role in shaping muscle metabolism and function, further influencing organismal lifespan. Together, these results highlight a potential protective role for intramuscular lipid droplets during dietary adaptation.
Collapse
Affiliation(s)
- Xiao Zhao
- Department of Molecular and Cellular MedicineTexas A&M University Health Science CenterBryanTXUSA
| | - Xiaotong Li
- Department of Molecular and Cellular MedicineTexas A&M University Health Science CenterBryanTXUSA
| | - Xiangyu Shi
- Department of Molecular and Cellular MedicineTexas A&M University Health Science CenterBryanTXUSA
| | - Jason Karpac
- Department of Molecular and Cellular MedicineTexas A&M University Health Science CenterBryanTXUSA
| |
Collapse
|
20
|
Held NM, Wefers J, van Weeghel M, Daemen S, Hansen J, Vaz FM, van Moorsel D, Hesselink MKC, Houtkooper RH, Schrauwen P. Skeletal muscle in healthy humans exhibits a day-night rhythm in lipid metabolism. Mol Metab 2020; 37:100989. [PMID: 32272236 PMCID: PMC7217992 DOI: 10.1016/j.molmet.2020.100989] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 03/26/2020] [Accepted: 03/31/2020] [Indexed: 12/17/2022] Open
Abstract
OBJECTIVE Human energy metabolism is under the regulation of the molecular circadian clock; we recently reported that mitochondrial respiration displays a day-night rhythm under study conditions that are similar to real life. Mitochondria are interconnected with lipid droplets, which are of importance in fuel utilization and play a role in muscle insulin sensitivity. Here, we investigated if skeletal muscle lipid content and composition also display day-night rhythmicity in healthy, lean volunteers. METHODS Skeletal muscle biopsies were obtained from 12 healthy lean male volunteers every 5 h over a 24 h period. Volunteers were provided with standardized meals, and biopsies were taken 4.5 h after each last meal. Lipid droplet size and number were investigated by confocal microscopy. Additionally, the muscle lipidome was assessed using UPLC/HRMS-based semi-targeted lipidomics. RESULTS Confocal microscopy revealed diurnal differences in intramyocellular lipid content (P < 0.05) and lipid droplet size in oxidative type 1 muscle fibers (P < 0.01). Lipidomics analysis revealed that 13% of all detected lipids displayed significant day-night rhythmicity. The most rhythmic lipid species were glycerophospholipids and diacylglycerols (DAG), with the latter being the largest fraction (>50% of all rhythmic species). DAG levels showed a day-night pattern with a trough at 1 PM and a peak at 4 AM. CONCLUSIONS Using two distinct methods, our findings show that myocellular lipid content and whole muscle lipid composition vary across the day-night cycle under normal living conditions. In particular, day-night rhythmicity was present in over half of the DAG lipid species. Future studies are needed to investigate whether rhythmicity in DAG is functionally related to insulin sensitivity and how this might be altered in prediabetes.
Collapse
Affiliation(s)
- Ntsiki M Held
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC, University of Amsterdam, Amsterdam Gastroenterology and Metabolism, Amsterdam Cardiovascular Sciences, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands
| | - Jakob Wefers
- Department of Nutrition and Movement Sciences, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, P.O. Box 616, 6200 MD Maastricht, the Netherlands
| | - Michel van Weeghel
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC, University of Amsterdam, Amsterdam Gastroenterology and Metabolism, Amsterdam Cardiovascular Sciences, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands; Core Facility Metabolomics, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands
| | - Sabine Daemen
- Diabetes Research Center, Washington University, St. Louis, MO 63110, USA
| | - Jan Hansen
- Department of Nutrition and Movement Sciences, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, P.O. Box 616, 6200 MD Maastricht, the Netherlands
| | - Frédéric M Vaz
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC, University of Amsterdam, Amsterdam Gastroenterology and Metabolism, Amsterdam Cardiovascular Sciences, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands; Core Facility Metabolomics, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands
| | - Dirk van Moorsel
- Department of Nutrition and Movement Sciences, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, P.O. Box 616, 6200 MD Maastricht, the Netherlands
| | - Matthijs K C Hesselink
- Department of Nutrition and Movement Sciences, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, P.O. Box 616, 6200 MD Maastricht, the Netherlands
| | - Riekelt H Houtkooper
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC, University of Amsterdam, Amsterdam Gastroenterology and Metabolism, Amsterdam Cardiovascular Sciences, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands.
| | - Patrick Schrauwen
- Department of Nutrition and Movement Sciences, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, P.O. Box 616, 6200 MD Maastricht, the Netherlands.
| |
Collapse
|
21
|
Wilhelmsen A, Mallinson J, Jones R, Cooper S, Taylor T, Tsintzas K. Chronic effects of high-intensity interval training on postprandial lipemia in healthy men. J Appl Physiol (1985) 2019; 127:1763-1771. [PMID: 31622161 DOI: 10.1152/japplphysiol.00131.2019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The aim of this study was to determine the chronic (≥72 h postexercise) effects of high-intensity interval training (HIIT) on postprandial lipemia and metabolic markers in healthy volunteers. Eight physically active young men (mean ± SD: age 22 ± 3 yr, height 1.77 ± 0.07 m, body mass 67.7 ± 6.2 kg) underwent two 6-h mixed-meal tolerance tests and resting vastus lateralis muscle biopsies before the first session and ≥72 h after the final session of 4 wk of HIIT [16 sessions in total; 10 × 60-s bouts of cycling at 90% maximal oxygen uptake (V̇o2max), interspersed with 60-s intervals at 45% V̇o2max]. Arterialized and deep venous blood samples from across the forearm, brachial artery blood flow measurements, and whole-body indirect calorimetry data were obtained before, and at regular intervals for 6 h after, consumption of a standardized mixed meal. The main findings revealed that, when assessed ≥72 h postexercise, postprandial free fatty acid (FFA) uptake across the forearm was increased in response to exercise training (P = 0.025). However, 4 wk of HIIT did not alter fasting or postprandial circulating triglyceride concentrations or their tissue uptake, despite a 10.2% ± 7.7% improvement in V̇o2max (P = 0.004). Protein content of adipose triglyceride lipase in the vastus lateralis at rest was reduced by 25% ± 21% (P = 0.01). Collectively, these findings suggest that 4 wk of HIIT enhances postprandial clearance of FFA when assessed ≥72 h postexercise but does not confer persisting (training) adaptations in postprandial triglyceridemia.NEW & NOTEWORTHY When assessed ≥72 h after the last exercise session, 4 wk of high-intensity interval training (HIIT) did not improve triglyceridemia but enhanced free fatty acid uptake into muscle with a concurrent reduction in skeletal muscle adipose triglyceride lipase protein content. This suggests that previously reported acute reductions in postprandial triglyceridemia following a single bout of HIIT do not translate to sustained improvements after 4 wk of HIIT, supporting the concept of frequent exercise for the maintenance of lipemic control.
Collapse
Affiliation(s)
- Andrew Wilhelmsen
- MRC Versus Arthritis Centre for Musculoskeletal Ageing Research, School of Life Sciences, University of Nottingham, Queen's Medical Centre, Nottingham, United Kingdom
| | - Joanne Mallinson
- MRC Versus Arthritis Centre for Musculoskeletal Ageing Research, School of Life Sciences, University of Nottingham, Queen's Medical Centre, Nottingham, United Kingdom
| | - Robert Jones
- MRC Versus Arthritis Centre for Musculoskeletal Ageing Research, School of Life Sciences, University of Nottingham, Queen's Medical Centre, Nottingham, United Kingdom
| | - Scott Cooper
- MRC Versus Arthritis Centre for Musculoskeletal Ageing Research, School of Life Sciences, University of Nottingham, Queen's Medical Centre, Nottingham, United Kingdom
| | - Tariq Taylor
- MRC Versus Arthritis Centre for Musculoskeletal Ageing Research, School of Life Sciences, University of Nottingham, Queen's Medical Centre, Nottingham, United Kingdom
| | - Kostas Tsintzas
- MRC Versus Arthritis Centre for Musculoskeletal Ageing Research, School of Life Sciences, University of Nottingham, Queen's Medical Centre, Nottingham, United Kingdom
| |
Collapse
|
22
|
Bezci SE, Werbner B, Zhou M, Malollari KG, Dorlhiac G, Carraro C, Streets A, O'Connell GD. Radial variation in biochemical composition of the bovine caudal intervertebral disc. JOR Spine 2019; 2:e1065. [PMID: 31572982 PMCID: PMC6764789 DOI: 10.1002/jsp2.1065] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 07/19/2019] [Accepted: 08/02/2019] [Indexed: 12/18/2022] Open
Abstract
Bovine caudal discs have been widely used in spine research due to their increased availability, large size, and mechanical and biochemical properties that are comparable to healthy human discs. However, despite their extensive use, the radial variations in bovine disc composition have not yet been rigorously quantified with high spatial resolution. Previous studies were limited to qualitative analyses or provided limited spatial resolution in biochemical properties. Thus, the main objective of this study was to provide quantitative measurements of biochemical composition with higher spatial resolution than previous studies that employed traditional biochemical techniques. Specifically, traditional biochemical analyses were used to measure water, sulfated glycosaminoglycan, collagen, and DNA contents. Gravimetric water content was compared to data obtained through Raman spectroscopy and differential scanning calorimetry. Additionally, spatial distribution of lipids in the disc's collagen network was visualized and quantified, for the first time, using multi-modal second harmonic generation (SHG) and Coherent anti-Stokes Raman (CARS) microscopy. Some heterogeneity was observed in the nucleus pulposus, where the water content and water-to-protein ratio of the inner nucleus were greater than the outer nucleus. In contrast, the bovine annulus fibrosus exhibited a more heterogeneous distribution of biochemical properties. Comparable results between orthohydroxyproline assay and SHG imaging highlight the potential benefit of using SHG microscopy as a less destructive method for measuring collagen content, particularly when relative changes are of interest. CARS images showed that lipid deposits were distributed equally throughout the disc and appeared either as individual droplets or as clusters of small droplets. In conclusion, this study provided a more comprehensive assessment of spatial variations in biochemical composition of the bovine caudal disc.
Collapse
Affiliation(s)
- Semih E. Bezci
- Department of Mechanical EngineeringUniversity of CaliforniaBerkeleyCalifornia
| | - Benjamin Werbner
- Department of Mechanical EngineeringUniversity of CaliforniaBerkeleyCalifornia
| | - Minhao Zhou
- Department of Mechanical EngineeringUniversity of CaliforniaBerkeleyCalifornia
| | | | - Gabriel Dorlhiac
- Berkeley Biophysics ProgramUniversity of CaliforniaBerkeleyCalifornia
| | - Carlo Carraro
- Department of Chemical and Biomolecular EngineeringUniversity of CaliforniaBerkeleyCalifornia
| | - Aaron Streets
- Berkeley Biophysics ProgramUniversity of CaliforniaBerkeleyCalifornia
- Department of BioengineeringUniversity of CaliforniaBerkeleyCalifornia
- Chan‐Zuckerberg BiohubSan FranciscoCalifornia
| | - Grace D. O'Connell
- Department of Mechanical EngineeringUniversity of CaliforniaBerkeleyCalifornia
- Department of Orthopaedic SurgeryUniversity of CaliforniaSan FranciscoCalifornia
| |
Collapse
|
23
|
Zhong W, Fan B, Cong H, Wang T, Gu J. Oleic acid-induced perilipin 5 expression and lipid droplets formation are regulated by the PI3K/PPARα pathway in HepG2 cells. Appl Physiol Nutr Metab 2019; 44:840-848. [PMID: 31274012 DOI: 10.1139/apnm-2018-0729] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Perilipin 5 (Plin5), a member of the PAT (Perilipin, ADRP, and Tip47) protein family, has been implicated in the regulation of cellular neutral lipid accumulation in nonalcoholic fatty liver diseases. However, the underlying regulatory mechanisms of Plin5 are not clear. The goal of the present study was to explore the mechanism of oleic acid (OA)-induced Plin5 expression in HepG2 cells. We found that the expression of Plin5 was increased during OA-induced lipid droplets formation in a dose- and time-dependent manner. During this process of OA-stimulated lipid droplets formation, peroxisome proliferator-activated receptor alpha (PPARα) was also upregulated. When PPARα activation was blocked by GW6471, OA-induced Plin5 expression and lipid droplets formation were effectively ablated. We further found that the phosphoinositide 3-kinase (PI3K) inhibitor LY294002 was able to downregulate both PPARα and Plin5 expression and lipid droplets formation. Thus, we concluded that PI3K may, at least in part, act upstream of PPARα to regulate Plin5 expression and lipid droplets formation in HepG2 cells.
Collapse
Affiliation(s)
- Wenxia Zhong
- a Department of Endocrinology and Metabolism, Institute of Endocrinology, Liaoning Provincial Key Laboratory of Endocrine Diseases, The First Affiliated Hospital of China Medical University, Shenyang 110001, PR China
| | - Bin Fan
- b Department of Neurology, Shenjing Hospital, China Medical University, Shenyang 110022, PR China
| | - Huiying Cong
- a Department of Endocrinology and Metabolism, Institute of Endocrinology, Liaoning Provincial Key Laboratory of Endocrine Diseases, The First Affiliated Hospital of China Medical University, Shenyang 110001, PR China
| | - Tianyu Wang
- a Department of Endocrinology and Metabolism, Institute of Endocrinology, Liaoning Provincial Key Laboratory of Endocrine Diseases, The First Affiliated Hospital of China Medical University, Shenyang 110001, PR China
| | - Jianqiu Gu
- a Department of Endocrinology and Metabolism, Institute of Endocrinology, Liaoning Provincial Key Laboratory of Endocrine Diseases, The First Affiliated Hospital of China Medical University, Shenyang 110001, PR China
| |
Collapse
|
24
|
Longo M, Zatterale F, Naderi J, Parrillo L, Formisano P, Raciti GA, Beguinot F, Miele C. Adipose Tissue Dysfunction as Determinant of Obesity-Associated Metabolic Complications. Int J Mol Sci 2019; 20:ijms20092358. [PMID: 31085992 PMCID: PMC6539070 DOI: 10.3390/ijms20092358] [Citation(s) in RCA: 831] [Impact Index Per Article: 166.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 05/09/2019] [Accepted: 05/10/2019] [Indexed: 02/07/2023] Open
Abstract
Obesity is a critical risk factor for the development of type 2 diabetes (T2D), and its prevalence is rising worldwide. White adipose tissue (WAT) has a crucial role in regulating systemic energy homeostasis. Adipose tissue expands by a combination of an increase in adipocyte size (hypertrophy) and number (hyperplasia). The recruitment and differentiation of adipose precursor cells in the subcutaneous adipose tissue (SAT), rather than merely inflating the cells, would be protective from the obesity-associated metabolic complications. In metabolically unhealthy obesity, the storage capacity of SAT, the largest WAT depot, is limited, and further caloric overload leads to the fat accumulation in ectopic tissues (e.g., liver, skeletal muscle, and heart) and in the visceral adipose depots, an event commonly defined as “lipotoxicity.” Excessive ectopic lipid accumulation leads to local inflammation and insulin resistance (IR). Indeed, overnutrition triggers uncontrolled inflammatory responses in WAT, leading to chronic low-grade inflammation, therefore fostering the progression of IR. This review summarizes the current knowledge on WAT dysfunction in obesity and its associated metabolic abnormalities, such as IR. A better understanding of the mechanisms regulating adipose tissue expansion in obesity is required for the development of future therapeutic approaches in obesity-associated metabolic complications.
Collapse
Affiliation(s)
- Michele Longo
- Department of Translational Medicine, Federico II University of Naples, 80131 Naples, Italy.
- URT Genomic of Diabetes, Institute of Experimental Endocrinology and Oncology, National Research Council, 80131 Naples, Italy.
| | - Federica Zatterale
- Department of Translational Medicine, Federico II University of Naples, 80131 Naples, Italy.
- URT Genomic of Diabetes, Institute of Experimental Endocrinology and Oncology, National Research Council, 80131 Naples, Italy.
| | - Jamal Naderi
- Department of Translational Medicine, Federico II University of Naples, 80131 Naples, Italy.
- URT Genomic of Diabetes, Institute of Experimental Endocrinology and Oncology, National Research Council, 80131 Naples, Italy.
| | - Luca Parrillo
- Department of Translational Medicine, Federico II University of Naples, 80131 Naples, Italy.
- URT Genomic of Diabetes, Institute of Experimental Endocrinology and Oncology, National Research Council, 80131 Naples, Italy.
| | - Pietro Formisano
- Department of Translational Medicine, Federico II University of Naples, 80131 Naples, Italy.
- URT Genomic of Diabetes, Institute of Experimental Endocrinology and Oncology, National Research Council, 80131 Naples, Italy.
| | - Gregory Alexander Raciti
- Department of Translational Medicine, Federico II University of Naples, 80131 Naples, Italy.
- URT Genomic of Diabetes, Institute of Experimental Endocrinology and Oncology, National Research Council, 80131 Naples, Italy.
| | - Francesco Beguinot
- Department of Translational Medicine, Federico II University of Naples, 80131 Naples, Italy.
- URT Genomic of Diabetes, Institute of Experimental Endocrinology and Oncology, National Research Council, 80131 Naples, Italy.
| | - Claudia Miele
- Department of Translational Medicine, Federico II University of Naples, 80131 Naples, Italy.
- URT Genomic of Diabetes, Institute of Experimental Endocrinology and Oncology, National Research Council, 80131 Naples, Italy.
| |
Collapse
|
25
|
Skeletal Muscle Lipid Droplets and the Athlete's Paradox. Cells 2019; 8:cells8030249. [PMID: 30875966 PMCID: PMC6468652 DOI: 10.3390/cells8030249] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 03/07/2019] [Accepted: 03/12/2019] [Indexed: 12/17/2022] Open
Abstract
The lipid droplet (LD) is an organelle enveloped by a monolayer phospholipid membrane with a core of neutral lipids, which is conserved from bacteria to humans. The available evidence suggests that the LD is essential to maintaining lipid homeostasis in almost all organisms. As a consequence, LDs also play an important role in pathological metabolic processes involving the ectopic storage of neutral lipids, including type 2 diabetes mellitus (T2DM), atherosclerosis, steatosis, and obesity. The degree of insulin resistance in T2DM patients is positively correlated with the size of skeletal muscle LDs. Aerobic exercise can reduce the occurrence and development of various metabolic diseases. However, trained athletes accumulate lipids in their skeletal muscle, and LD size in their muscle tissue is positively correlated with insulin sensitivity. This phenomenon is called the athlete’s paradox. This review will summarize previous studies on the relationship between LDs in skeletal muscle and metabolic diseases and will discuss the paradox at the level of LDs.
Collapse
|