1
|
Wood CM, Wang J, Jung EH, Pelster B. The physiological consequences of a very large natural meal in a voracious marine fish, the staghorn sculpin (Leptocottus armatus). J Exp Biol 2023; 226:jeb246034. [PMID: 37675481 DOI: 10.1242/jeb.246034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 08/26/2023] [Indexed: 09/08/2023]
Abstract
Little information exists on physiological consequences when wild fish eat natural food. Staghorn sculpins at 10-13°C voluntarily consumed 15.8% of their body mass in anchovies. Gastric clearance was slow with >60% of the meal retained in the stomach at 48 h, and was not complete until 84 h. At 14-24 h post-feeding, pH was depressed by 3 units and Cl- concentration was elevated 2-fold in gastric chyme, reflecting HCl secretion, while in all sections of the intestine, pH declined by 1 pH unit but Cl- concentration remained unchanged. PCO2 and total ammonia concentration were greatly elevated throughout the tract, whereas PNH3 and HCO3- concentration were depressed. Intestinal HCO3- secretion rates, measured in gut sacs in vitro, were also lower in fed fish. Whole-animal O2 consumption rate was elevated approximately 2-fold for 72 h post-feeding, reflecting 'specific dynamic action', whereas ammonia and urea-N excretion rates were elevated about 5-fold. Arterial blood exhibited a modest 'alkaline tide' for about 48 h, but there was negligible excretion of metabolic base to the external seawater. PaCO2 and PaO2 remained unchanged. Plasma total amino acid concentration and total lipid concentration were elevated about 1.5-fold for at least 48 h, whereas small increases in plasma total ammonia concentration, PNH3 and urea-N concentration were quickly attenuated. Plasma glucose concentration remained unchanged. We conclude that despite the very large meal, slow processing with high efficiency minimizes internal physiological disturbances. This differs greatly from the picture provided by previous studies on aquacultured species using synthetic diets and/or force-feeding. Questions remain about the role of the gastro-intestinal microbiome in nitrogen and acid-base metabolism.
Collapse
Affiliation(s)
- Chris M Wood
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada, V6T 1Z4
- Bamfield Marine Sciences Centre, Bamfield, BC, Canada, V0R 1B0
- Department of Biology, McMaster University, Hamilton, ON, Canada, L8S 4K1
| | - Jun Wang
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada, V6T 1Z4
- Bamfield Marine Sciences Centre, Bamfield, BC, Canada, V0R 1B0
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Ellen H Jung
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada, V6T 1Z4
- Bamfield Marine Sciences Centre, Bamfield, BC, Canada, V0R 1B0
| | - Bernd Pelster
- Bamfield Marine Sciences Centre, Bamfield, BC, Canada, V0R 1B0
- Institute of Zoology, University of Innsbruck, 6020 Innsbruck, Austria
- Center for Molecular Biosciences, University Innsbruck, 6020 Innsbruck, Austria
| |
Collapse
|
2
|
Sebastiani J, Sabatelli A, McDonald MD. Mild hypoxia exposure impacts peripheral serotonin uptake and degradation in Gulf toadfish, Opsanus beta. J Exp Biol 2022; 225:275611. [PMID: 35662341 DOI: 10.1242/jeb.244064] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 05/30/2022] [Indexed: 11/20/2022]
Abstract
Plasma 5-HT homeostasis is maintained through the combined processes of uptake (via the 5-HT transporter SERT, and others), degradation (via monoamine oxidase, MAO), and excretion. Previous studies have shown that inhibiting SERT, which would inhibit 5-HT uptake and degradation, attenuates parts of the cardiovascular hypoxia reflex in Gulf toadfish (Opsanus beta), suggesting that these 5-HT clearance processes may be important during hypoxia exposure. Therefore, the goal of this experiment was to determine the effects of mild hypoxia on 5-HT uptake and degradation in the peripheral tissues of toadfish. We hypothesized that 5-HT uptake and degradation would be upregulated during hypoxia resulting in lower plasma 5-HT, with uptake occurring in the gill, heart, liver, and kidney. Fish were exposed to normoxia (97.6% O2 saturation, 155.6 torr), or 2-min, 40-min or 24 h mild hypoxia (50% O2 saturation, ∼80 torr), injected with radiolabeled [3H]5-HT and blood, urine, bile and tissues taken. Plasma 5-HT levels were reduced by 40% after 40 min of hypoxia exposure and persisted through 24 h. 5-HT uptake by the gill was upregulated following 2 min of hypoxia exposure, and degradation in the gill was upregulated at 40 min and 24 h. Interestingly, there was no change in 5-HT uptake by the heart and degradation in the heart decreased by 58% within 2 min of hypoxia exposure and by 85% at 24 h. These results suggest that 5-HT clearance is upregulated during hypoxia and is likely driven, in part, by mechanisms within the gill and not the heart.
Collapse
Affiliation(s)
- John Sebastiani
- Department of Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL, USA
| | - Allyson Sabatelli
- Department of Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL, USA
| | - M Danielle McDonald
- Department of Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL, USA
| |
Collapse
|
3
|
Amador MHB, McDonald MD. Is serotonin uptake by peripheral tissues sensitive to hypoxia exposure? FISH PHYSIOLOGY AND BIOCHEMISTRY 2022; 48:617-630. [PMID: 35583623 DOI: 10.1007/s10695-022-01083-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 05/10/2022] [Indexed: 06/15/2023]
Abstract
In the Gulf toadfish (Opsanus beta), the serotonin (5-HT) transporter (SERT) is highly expressed in the heart, and the heart and gill both demonstrate the capacity for SERT-mediated uptake of 5-HT from the circulation. Because 5-HT is a potent vasoconstrictor in fish, we hypothesized that hypoxia exposure may increase 5-HT uptake by these tissues-and increase excretion of 5-HT-to prevent branchial vasoconstriction that would hamper gas exchange. Spot sampling of blood, bile, and urine revealed that fish exposed to chronic hypoxia (1.83 ± 0.12 mg·L-1 O2 for 24-26 h) had 41% lower plasma 5-HT in the ventral aorta (immediately following the heart) than in the hepatic vein (immediately before the heart), suggesting enhanced cardiac 5-HT uptake during hypoxia. 5-HT concentrations in the bile were greater than those in the urine, but there were no effects of acute (1.31 ± 0.06 mg·L-1 O2 for 25 min) or chronic hypoxia on 5-HT levels in these fluids. In 5-HT radiotracer experiments, the presence of tracer in the bile decreased upon hypoxia exposure, but, surprisingly, neither acute nor chronic hypoxia-induced changes in [3H]5-HT uptake in the heart, gill, or other tissues. Given the likely impact of the hypoxia exposure on metabolic rate, future studies should examine the effects of a milder hypoxia exposure on 5-HT uptake into these tissues and the role of 5-HT degradation.
Collapse
Affiliation(s)
- Molly H B Amador
- Department of Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Science, University of Miami, 4600 Rickenbacker Causeway, Miami, FL, 33149, USA
| | - M Danielle McDonald
- Department of Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Science, University of Miami, 4600 Rickenbacker Causeway, Miami, FL, 33149, USA.
| |
Collapse
|
4
|
Sebastiani J, McDonald MD. The role of uptake and degradation in the regulation of peripheral serotonin dynamics in Gulf toadfish, Opsanus beta. Comp Biochem Physiol A Mol Integr Physiol 2021; 258:110980. [PMID: 34023534 DOI: 10.1016/j.cbpa.2021.110980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/11/2021] [Accepted: 05/12/2021] [Indexed: 10/21/2022]
Abstract
The neurotransmitter serotonin (5-hyroxytryptamine, 5-HT) is involved in a variety of peripheral processes. Arguably most notable is its role as a circulating vasoconstrictor in the plasma of vertebrates. Plasma 5-HT is maintained at constant levels under normal conditions through the processes of cellular uptake, degradation, and excretion, known collectively as clearance. However, the degree to which each individual component of clearance contributes to this whole animal response remains poorly understood. The goal of this experiment was to determine the extent to which transporter-mediated uptake and intracellular degradation contribute to 5-HT clearance in the model teleost Gulf toadfish (Opsanus beta). Fish that were treated with the 5-HT transport inhibitors fluoxetine, buproprion, and decynium-22 had 1.47-fold higher plasma 5-HT concentrations and a 40% decrease in clearance rate compared to control fish. In contrast, fish treated with the MAO inhibitor clorgyline had a 1.54-fold increase in plasma 5-HT with no change in clearance rate. The results show that transporter-mediated 5-HT uptake plays an important role in controlling circulating 5-HT and whole body 5-HT homeostasis.
Collapse
Affiliation(s)
- John Sebastiani
- Department of Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL, USA.
| | - M Danielle McDonald
- Department of Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL, USA
| |
Collapse
|
5
|
Cartolano MC, Babcock EA, McDonald MD. Evidence that Gulf toadfish use pulsatile urea excretion to communicate social status. Physiol Behav 2020; 227:113182. [PMID: 32976848 DOI: 10.1016/j.physbeh.2020.113182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 09/10/2020] [Accepted: 09/21/2020] [Indexed: 10/23/2022]
Abstract
Gulf toadfish (Opsanus beta), a highly territorial marine teleost species, are believed to communicate through chemicals released across the gill during pulsatile urea excretion. While freshwater teleost and crustacean urinary signals have been shown to relay information about dominance to reduce physical aggression in future encounters, the use of chemical signals to convey social status in marine teleosts is understudied. Behavior and urea excretion patterns were monitored in pairs of male toadfish during an initial agonistic encounter and in a 2nd encounter where a subset of pairs had their nares blocked to determine how olfaction, and thus chemical communication, play a role in establishing dominance. Anosmic toadfish did not experience increases in aggressive behavior, unlike other species previously studied. However, behavior and the pattern of urea excretion were disrupted in anosmic pairs compared to control pairs. Specifically, control subordinate fish had an increase in their dominance index during the 2nd encounter, a response that anosmic subordinate fish did not experience suggesting that without the ability to smell, subordinate fish cannot recognize their opponent and assess their fighting ability and have a reduced chance of winning. These anosmic subordinate fish also had an increase in pulse frequency, perhaps reflecting an increased effort in communication of status. Future research is needed to conclude if peaks in agonistic behavior are coordinated around the time of urea pules. However, the observed changes in behavior and pulsatile urea excretion due to anosmia in the present study provide evidence that toadfish use pulsatile urea excretion to release signals for chemical communication during agonistic encounters.
Collapse
Affiliation(s)
- Maria C Cartolano
- Department of Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL, USA.
| | - Elizabeth A Babcock
- Department of Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL, USA
| | - M Danielle McDonald
- Department of Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL, USA
| |
Collapse
|
6
|
Cartolano MC, Chng Y, McDonald MD. Do reproductive hormones control Gulf toadfish pulsatile urea excretion? Comp Biochem Physiol A Mol Integr Physiol 2019; 238:110561. [PMID: 31499168 DOI: 10.1016/j.cbpa.2019.110561] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 08/14/2019] [Accepted: 08/30/2019] [Indexed: 01/04/2023]
Abstract
Gulf toadfish (Opsanus beta) can excrete the majority of their nitrogenous waste as urea in distinct pulses across their gill. Urea pulses are controlled by cortisol and serotonin (5-HT) and are believed to contain chemical signals that may communicate reproductive and/or social status. The objectives of this study were to determine if reproductive hormones are involved in controlling pulsatile urea excretion, and if toadfish respond to prostaglandins as a chemical signal. Specifically, 11-ketotestosterone (11-KT), estradiol (E2), and the teleost pheromone prostaglandin E2 (PGE2) were investigated. Castration during breeding season did not affect pulsatile urea excretion but serial injections of 11-KT outside of breeding season did result in a 48% reduction in urea pulse size in fish of both sexes. Injections of E2 and PGE2, on the other hand, did not alter urea excretion patterns. Toadfish also did not pulse urea in response to waterborne exposure of PGE2 suggesting that this compound does not serve as a toadfish pheromone alone. Toadfish have significantly higher plasma 5-HT during breeding season compared to the months following breeding season. Future research should focus on the composition of the chemical signal in toadfish and the potential importance of seasonal changes in plasma 5-HT in toadfish pulsatile urea excretion and teleost reproduction in general.
Collapse
Affiliation(s)
- Maria C Cartolano
- Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL, USA.
| | - Yi Chng
- Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL, USA
| | - M Danielle McDonald
- Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL, USA
| |
Collapse
|
7
|
Cartolano MC, Gancel HN, Lonthair J, Wood CM, McDonald MD. Pulsatile urea excretion in Gulf toadfish: the role of circulating serotonin and additional 5-HT receptor subtypes. J Comp Physiol B 2019; 189:537-548. [DOI: 10.1007/s00360-019-01223-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 04/28/2019] [Accepted: 06/24/2019] [Indexed: 11/28/2022]
|
8
|
Cartolano MC, Tullis-Joyce P, Kubicki K, McDonald MD. Do Gulf Toadfish Use Pulsatile Urea Excretion to Chemically Communicate Reproductive Status? Physiol Biochem Zool 2019; 92:125-139. [PMID: 30657409 DOI: 10.1086/701497] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Gulf toadfish (Opsanus beta) are exceptionally capable of switching from excreting ammonia as their primary nitrogenous waste to excreting predominantly urea in distinct pulses across the gill. Previous studies suggest that these urea pulses may be used for intraspecific chemical communication. To determine whether pulsatile urea excretion communicates reproductive status, toadfish were sexed using ultrasound and delivered conspecific-conditioned seawater (CC-SW) that previously housed a conspecific of the opposite sex, a conspecific chemical alarm cue (avoidance control), or a prey cue (attraction control). Swim behavior, attraction to or avoidance of the cues, and changes in the pattern of pulsatile urea excretion were monitored during and after delivery. Gulf toadfish did not spend more time in zones that were delivered CC-SW or prey cue. However, male toadfish spent significantly more time swimming after the delivery of female cues than control seawater (SW). In contrast, toadfish did not appear to have an immediate avoidance response to the conspecific alarm cue. Additionally, significantly more toadfish pulsed within 7 h of CC-SW and prey cue delivery compared to control SW, and pulse frequency was 1.6 times greater in response to CC-SW than control SW. These results, in combination with increased urea production and excretion the during breeding season, suggest that toadfish may use pulsatile urea excretion to communicate with conspecifics when exposed to chemosensory cues from the opposite sex.
Collapse
|
9
|
Ern R, Esbaugh AJ. Effects of salinity and hypoxia-induced hyperventilation on oxygen consumption and cost of osmoregulation in the estuarine red drum (Sciaenops ocellatus). Comp Biochem Physiol A Mol Integr Physiol 2018; 222:52-59. [DOI: 10.1016/j.cbpa.2018.04.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 04/19/2018] [Accepted: 04/20/2018] [Indexed: 01/20/2023]
|
10
|
Amador MHB, McDonald MD. Molecular and functional characterization of the Gulf toadfish serotonin transporter (SERT; SLC6A4). J Exp Biol 2018; 221:jeb.170928. [DOI: 10.1242/jeb.170928] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 02/19/2018] [Indexed: 01/06/2023]
Abstract
The serotonin transporter (SERT) functions in the uptake of the neurotransmitter serotonin (5-HT) from the extracellular milieu and is the molecular target of the selective serotonin reuptake inhibitors (SSRIs), a common group of antidepressants. The current study comprehensively assesses the sequence, tissue distribution, transport kinetics, and physiological function of a teleost SERT. The 2,022-bp toadfish SERT sequence encodes a protein of 673 amino acids, which shows 83% similarity to zebrafish SERT and groups with SERT of other teleosts in phylogenetic analysis. SERT mRNA is ubiquitous in tissues and is expressed at high levels in the heart and, within the brain, in the cerebellum. SERT cRNA expressed in Xenopus laevis oocytes demonstrates a Km value of 2.08±0.45 µM, similar to previously reported Km values for zebrafish and human SERT. Acute systemic blockade of SERT by intraperitoneal administration of the SSRI fluoxetine (FLX) produces a dose-dependent increase in plasma 5-HT, indicating effective inhibition of 5-HT uptake from the circulation. As teleosts lack platelets, which are important 5-HT sequestration sites in mammals, the FLX-induced increase in plasma 5-HT suggests that toadfish tissues may normally be responsible for maintaining low 5-HT concentrations in the bloodstream.
Collapse
Affiliation(s)
- Molly H. B. Amador
- Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL 33149, USA
| | - M. Danielle McDonald
- Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL 33149, USA
| |
Collapse
|
11
|
Cartolano MC, Amador MHB, Tzaneva V, Milsom WK, McDonald MD. Extrinsic nerves are not involved in branchial 5-HT dynamics or pulsatile urea excretion in Gulf toadfish, Opsanus beta. Comp Biochem Physiol A Mol Integr Physiol 2017; 214:58-65. [PMID: 28887162 DOI: 10.1016/j.cbpa.2017.08.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 08/24/2017] [Accepted: 08/25/2017] [Indexed: 10/18/2022]
Abstract
Gulf toadfish (Opsanus beta) can switch from continuously excreting ammonia as their primary nitrogenous waste to excreting predominantly urea in distinct pulses. Previous studies have shown that the neurotransmitter serotonin (5-HT) is involved in controlling this process, but it is unknown if 5-HT availability is under central nervous control or if the 5-HT signal originates from a peripheral source. Following up on a previous study, cranial nerves IX (glossopharyngeal) and X (vagus) were sectioned to further characterize their role in controlling pulsatile urea excretion and 5-HT release within the gill. In contrast to an earlier study, nerve sectioning did not result in a change in urea pulse frequency. Total urea excretion, average pulse size, total nitrogen excretion, and percent ureotely were reduced the first day post-surgery in nerve-sectioned fish but recovered by 72h post-surgery. Nerve sectioning also had no effect on toadfish urea transporter (tUT), 5-HT transporter (SERT), or 5-HT2A receptor mRNA expression or 5-HT and 5-hydroxyindoleacetic acid (5-HIAA) abundance in the gill, all of which were found consistently across the three gill arches except 5-HIAA, which was undetectable in the first gill arch. Our findings indicate that the central nervous system does not directly control pulsatile urea excretion or local changes in gill 5-HT and 5-HIAA abundance.
Collapse
Affiliation(s)
- Maria C Cartolano
- Department of Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL, USA.
| | - Molly H B Amador
- Department of Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL, USA
| | - Velislava Tzaneva
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - William K Milsom
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada
| | - M Danielle McDonald
- Department of Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL, USA
| |
Collapse
|
12
|
Fulton J, LeMoine CMR, Bucking C, Brix KV, Walsh PJ, McDonald MD. A waterborne chemical cue from Gulf toadfish, Opsanus beta, prompts pulsatile urea excretion in conspecifics. Physiol Behav 2017; 171:92-99. [PMID: 28040487 DOI: 10.1016/j.physbeh.2016.12.037] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 12/23/2016] [Accepted: 12/27/2016] [Indexed: 11/25/2022]
Abstract
The Gulf toadfish (Opsanus beta) has a fully functional ornithine urea cycle (O-UC) that allows it to excrete nitrogenous waste in the form of urea. Interestingly, urea is excreted in a pulse across the gill that lasts 1-3h and occurs once or twice a day. Both the stress hormone, cortisol, and the neurotransmitter, serotonin (5-HT) are involved in the control of pulsatile urea excretion. This and other evidence suggests that urea pulsing may be linked to toadfish social behavior. The hypothesis of the present study was that toadfish urea pulses can be triggered by waterborne chemical cues from conspecifics. Our findings indicate that exposure to seawater that held a donor conspecific for up to 48h (pre-conditioned seawater; PC-SW) induced a urea pulse within 7h in naïve conspecifics compared to a pulse latency of 20h when exposed to seawater alone. Factors such as PC-SW intensity and donor body mass influenced the pulse latency response of naïve conspecifics. Fractionation and heat treatment of PC-SW to narrow possible signal candidates revealed that the active chemical was both water-soluble and heat-stable. Fish exposed to urea, cortisol or 5-HT in seawater did not have a pulse latency that was significantly different than seawater alone; however, ammonia, perhaps in the form of NH4Cl, was found to be a factor in the pulse latency response of toadfish to PC-SW and could be one component of a multi-component cue used for chemical communication in toadfish. Further studies are needed to fully identify the chemical cue as well as determine its adaptive significance in this marine teleost fish.
Collapse
Affiliation(s)
- Jeremy Fulton
- Department of Biology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Christophe M R LeMoine
- Department of Biology, University of Ottawa, Ottawa, ON K1N 6N5, Canada; Department of Biology, Brandon University, Brandon, MB R7A 6A9, Canada
| | - Carol Bucking
- Department of Biology, University of Ottawa, Ottawa, ON K1N 6N5, Canada; Department of Biology, York University, Toronto, ON M3J 1P3, Canada
| | - Kevin V Brix
- Department of Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL 33149, USA
| | - Patrick J Walsh
- Department of Biology, University of Ottawa, Ottawa, ON K1N 6N5, Canada; Department of Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL 33149, USA
| | - M Danielle McDonald
- Department of Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL 33149, USA.
| |
Collapse
|
13
|
Wright PA, Wood CM, Hiroi J, Wilson JM. (Uncommon) Mechanisms of Branchial Ammonia Excretion in the Common Carp (Cyprinus carpio) in Response to Environmentally Induced Metabolic Acidosis. Physiol Biochem Zool 2016; 89:26-40. [PMID: 27082522 DOI: 10.1086/683990] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Freshwater fishes generally increase ammonia excretion in acidic waters. The new model of ammonia transport in freshwater fish involves an association between the Rhesus (Rh) protein Rhcg-b, the Na(+)/H(+) exchanger (NHE), and a suite of other membrane transporters. We tested the hypothesis that Rhcg-b and NHE3 together play a critical role in branchial ammonia excretion in common carp (Cyprinus carpio) chronically exposed to a low-pH environment. Carp were exposed to three sequential environmental treatments-control pH 7.6 water (24 h), pH 4.0 water (72 h), and recovery pH 7.6 water (24 h)-or in a separate series were simply exposed to either control (72 h) or pH 4.0 (72 h) water. Branchial ammonia excretion was increased by ∼2.5-fold in the acid compared with the control period, despite the absence of an increase in the plasma-to-water partial pressure NH3 gradient. Alanine aminotransferase activity was higher in the gills of fish exposed to pH 4 versus control water, suggesting that ammonia may be generated in gill tissue. Gill Rhcg-b and NHE3b messenger RNA levels were significantly elevated in acid-treated relative to control fish, but at the protein level Rhcg-b decreased (30%) and NHE3b increased (2-fold) in response to water of pH 4.0. Using immunofluorescence microscopy, NHE3b and Rhcg-b were found to be colocalized to ionocytes along the interlamellar space of the filament of control fish. After 72 h of acid exposure, Rhcg-b staining almost disappeared from this region, and NHE3b was more prominent along the lamellae. We propose that ammoniagenesis within the gill tissue itself is responsible for the higher rates of branchial ammonia excretion during chronic metabolic acidosis. Unexpectedly, gill Rhcg-b does not appear to be important in gill ammonia transport in low-pH water, but the strong induction of NHE3b suggests that some NH4(+) may be eliminated directly in exchange for Na(+). These findings contrast with previous studies in larval zebrafish (Danio rerio) and medaka (Oryzias latipes), underlining the importance of species comparisons.
Collapse
|
14
|
Treatment with the selective serotonin reuptake inhibitor, fluoxetine, attenuates the fish hypoxia response. Sci Rep 2016; 6:31148. [PMID: 27499056 PMCID: PMC4976378 DOI: 10.1038/srep31148] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 07/14/2016] [Indexed: 12/16/2022] Open
Abstract
The selective serotonin reuptake inhibitor (SSRI) fluoxetine (FLX), the active ingredient of the antidepressant drug Prozac, inhibits reuptake of the neurotransmitter, serotonin (5-HT; 5-hydroxytryptamine), into cells by the 5-HT transporter (SERT). Given the role of 5-HT in oxygen detection and the cardiovascular and ventilatory responses of fish to hypoxia, we hypothesized that treatment of the Gulf toadfish, Opsanus beta, with FLX would interfere with their response to hypoxia. Toadfish treated intra-arterially with 3.4 μg.g−1 FLX under normoxic conditions displayed a transient tachycardia and a biphasic caudal arterial blood pressure (PCA) response that are in direct conflict with the typical hypoxia response. Fish injected intraperitoneally with FLX under normoxia had resting cardiovascular and ventilatory parameters similar to controls. Upon exposure to hypoxia, control toadfish exhibit a significant bradycardia, reduction in PCA and an increase in ventilatory amplitude (VAMP) without any changes in ventilatory frequency (fV). Fish treated IP with 10 μg.g−1 FLX showed an interference in the cardiovascular and ventilatory response to hypoxia. Interestingly, when treated with 25 μg.g−1 FLX, the bradycardia and VAMP response to hypoxia were similar to control fish while the PCA response to hypoxia was further inhibited. These results suggest that SERT inhibition by FLX may hinder survival in hypoxia.
Collapse
|
15
|
Ern R, Esbaugh AJ. Hyperventilation and blood acid–base balance in hypercapnia exposed red drum (Sciaenops ocellatus). J Comp Physiol B 2016; 186:447-60. [DOI: 10.1007/s00360-016-0971-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Revised: 02/02/2016] [Accepted: 02/12/2016] [Indexed: 01/07/2023]
|
16
|
Esbaugh AJ, Ern R, Nordi WM, Johnson AS. Respiratory plasticity is insufficient to alleviate blood acid–base disturbances after acclimation to ocean acidification in the estuarine red drum, Sciaenops ocellatus. J Comp Physiol B 2015; 186:97-109. [DOI: 10.1007/s00360-015-0940-6] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Revised: 09/23/2015] [Accepted: 10/04/2015] [Indexed: 01/10/2023]
|
17
|
Wright PA, Wood CM, Wilson JM. Rh vs pH: the role of Rhesus glycoproteins in renal ammonia excretion during metabolic acidosis in a freshwater teleost fish. J Exp Biol 2014; 217:2855-65. [DOI: 10.1242/jeb.098640] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Abstract
Increased renal ammonia excretion in response to metabolic acidosis is thought to be a conserved response in vertebrates. We tested the hypothesis that Rhesus (Rh) glycoproteins in the kidney of the freshwater common carp Cyprinus carpio play a critical role in regulating renal ammonia excretion during chronic metabolic acidosis. Exposure to water pH 4.0 (72 h) resulted in a classic metabolic acidosis with reduced plasma pHa, [HCO3-], no change in PCO2, and large changes in renal function. Urine [NH4+] as well as [titratable acidity–HCO3-] rose significantly over the acid exposure, but the profound reduction (5-fold) in urine flow rates eliminated the expected elevations in renal ammonia excretion. Low urine flow rates may be a primary strategy to conserve ions, as urinary excretion of Na+, Cl- and Ca2+ were significantly lower during the acid exposure relative to the control period. Interestingly, renal Rhcg1 mRNA and protein levels were elevated in acid relative to control groups, along with mRNA levels of several ion transporters, including the Na+/H+ exchanger (NHE3), H+ATPase and Na+/K+ATPase (NKA). Immunofluorescence microscopy showed a strong apical Rhcg1 signal in distal tubules. Taken together, these data show that renal Rh glycoproteins and associated ion transporters are responsive to metabolic acidosis, but conservation of ions through reduced urine flow rates takes primacy over renal acid-base regulation in the freshwater C. carpio. We propose that an “acid/base-ion balance” compromise explains the variable renal responses to metabolic acidosis in freshwater teleosts.
Collapse
|
18
|
Bucking C, Edwards SL, Tickle P, Smith CP, McDonald MD, Walsh PJ. Immunohistochemical localization of urea and ammonia transporters in two confamilial fish species, the ureotelic gulf toadfish (Opsanus beta) and the ammoniotelic plainfin midshipman (Porichthys notatus). Cell Tissue Res 2013; 352:623-37. [PMID: 23512140 DOI: 10.1007/s00441-013-1591-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Accepted: 02/14/2013] [Indexed: 12/29/2022]
Abstract
This study aims to illustrate potential transport mechanisms behind the divergent approaches to nitrogen excretion seen in the ureotelic toadfish (Opsanus beta) and the ammoniotelic plainfin midshipman (Porichthys notatus). Specifically, we wish to confirm the expression of a urea transporter (UT), which is found in the gill of the toadfish and which is responsible for the unique "pulsing" nature of urea excretion and to localize the transporter within specific gill cells and at specific cellular locations. Additionally, the localization of ammonia transporters (Rhesus glycoproteins; Rhs) within the gill of both the toadfish and midshipman was explored. Toadfish UT (tUT) was found within Na(+)-K(+)-ATPase (NKA)-enriched cells, i.e., ionocytes (probably mitochondria-rich cells), especially along the basolateral membrane and potentially on the apical membrane. In contrast, midshipman UT (pnUT) immunoreactivity did not colocalize with NKA immunoreactivity and was not found along the filaments but instead within the lamellae. The cellular location of Rh proteins was also dissimilar between the two fish species. In toadfish gills, the Rh isoform Rhcg1 was expressed in both NKA-reactive cells and non-reactive cells, whereas Rhbg and Rhcg2 were only expressed in the latter. In contrast, Rhbg, Rhcg1 and Rhcg2 were expressed in both NKA-reactive and non-reactive cells of midshipman gills. In an additional transport epithelium, namely the intestine, the expression of both UTs and Rhs was similar between the two species, with only subtle differences being observed.
Collapse
Affiliation(s)
- Carol Bucking
- Department of Biology, University of Ottawa, Ottawa, ON, Canada.
| | | | | | | | | | | |
Collapse
|
19
|
Frere AW, McDonald MD. The effect of stress on gill basolateral membrane binding kinetics of 5-ht2 receptor ligands: potential implications for urea excretion mechanisms. ACTA ACUST UNITED AC 2013; 319:237-48. [PMID: 23495168 DOI: 10.1002/jez.1788] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2012] [Revised: 11/13/2012] [Accepted: 02/06/2013] [Indexed: 11/07/2022]
Abstract
The goal of this study was to determine the relationship between cortisol and the toadfish serotonin 2A (5-HT2A ) receptor, which is believed to be responsible for the activation of the toadfish urea transporter, tUT. We hypothesize that elevations in cortisol would play a role in the regulation of the 5-HT2A receptor at the level of mRNA expression, ligand binding, and/or function. To test this idea, cortisol levels were manipulated by either crowding or through treatment with the cortisol synthesis blocker, metyrapone. Crowded fish had significantly higher circulating cortisol levels compared to uncrowded fish and cortisol levels in metyrapone-treated fish were significantly lower than saline-treated controls. No significant difference was measured in gill 5-HT2A mRNA expression levels between uncrowded and crowded, control- or metyrapone-treated fish. Furthermore, no significant difference was measured in [(3) H]-5-HT binding kinetics or in the competitive binding of the 5-HT2 agonist, α-methyl 5-HT, to isolated gill basolateral membranes of uncrowded or crowded toadfish. However, the binding maximum (Bmax ) of the 5-HT2A receptor antagonist, [(3) H]-ketanserin, was significantly different between all four groups of fish (metyrapone > control > crowded > uncrowded). Furthermore, metyrapone-treated fish excreted approximately twofold more urea compared to controls when injected with α-methyl 5-HT, a 5-HT2 receptor agonist shown to stimulate urea excretion. Our results suggest that cortisol may have differential effects on 5-HT receptor binding, which could have potential implications on the control of pulsatile urea excretion in toadfish.
Collapse
Affiliation(s)
- Alexander W Frere
- Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL 33149, USA
| | | |
Collapse
|
20
|
5-Hydroxytryptamine initiates pulsatile urea excretion from perfused gills of the gulf toadfish (Opsanus beta). Comp Biochem Physiol A Mol Integr Physiol 2012; 163:30-7. [DOI: 10.1016/j.cbpa.2012.04.027] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2012] [Revised: 04/25/2012] [Accepted: 04/25/2012] [Indexed: 11/22/2022]
|
21
|
Mager EM, Medeiros LR, Lange AP, McDonald MD. The toadfish serotonin 2A (5-HT(2A)) receptor: molecular characterization and its potential role in urea excretion. Comp Biochem Physiol A Mol Integr Physiol 2012; 163:319-26. [PMID: 22884998 DOI: 10.1016/j.cbpa.2012.07.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Revised: 07/24/2012] [Accepted: 07/25/2012] [Indexed: 12/20/2022]
Abstract
Based on early pharmacological work, the serotonin 2A (5-HT(2A)) receptor subtype is believed to be involved in the regulation of toadfish pulsatile urea excretion. The goal of the following study was to characterize the toadfish 5-HT(2A) receptor at a molecular level, to determine the tissues in which this receptor is predominantly expressed and to further investigate the pharmacological specificity of toadfish pulsatile urea excretion by examining the effect of ketanserin, a 5-HT(2A) receptor antagonist, on resting rates of pulsatile urea excretion. The full-length toadfish 5-HT(2A) receptor encodes a 496 amino acid sequence and shares 57-80% sequence identity to 5-HT(2A) receptors of other organisms, with 100% conservation among important ligand-binding residues. Toadfish 5-HT(2A) receptor mRNA expression was highest in the swim bladder and gonad, followed by the whole brain. All other tissues tested (esophagus, stomach, anterior intestine, posterior intestine, rectum, liver, kidney, heart, muscle and gill) had mRNA expression levels that were significantly less than whole brain. Toadfish 5-HT(2A) receptor mRNA expression within the brain was highest in the hindbrain, telencephalon and midbrain/diencephalon regions. Treatment with the 5-HT(2A) receptor antagonist, ketanserin, resulted in a significant decrease in the pulsatile component of spontaneous urea excretion due to a reduction in urea pulse size with no significant change in pulse frequency. These results lend further support for the 5-HT(2A) receptor in the regulation of pulsatile urea excretion in toadfish.
Collapse
Affiliation(s)
- Edward M Mager
- Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL 33149, USA
| | | | | | | |
Collapse
|
22
|
McDonald MD, Gilmour KM, Walsh PJ. New insights into the mechanisms controlling urea excretion in fish gills. Respir Physiol Neurobiol 2012; 184:241-8. [PMID: 22684040 DOI: 10.1016/j.resp.2012.06.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Revised: 05/31/2012] [Accepted: 06/01/2012] [Indexed: 12/28/2022]
Abstract
Not long ago, urea was believed to freely diffuse across plasma membranes. The discovery of specialized proteins to facilitate the movement of urea across the fish gill, similar to those found in mammalian kidney, was exciting, and at the same time, perplexing; especially considering the fact that, aside from elasmobranchs, most fish do not produce urea as their primary nitrogenous waste. Increasingly, it has become apparent that many fish do indeed produce at least a small amount of urea through various processes and continued work on branchial urea transporters in teleost and elasmobranch fishes has led to recent advances in the regulation of these mechanisms. The following review outlines the substantial progress that has been made towards understanding environmental and developmental impacts on fish gill urea transport. This review also outlines the work that has been done regarding endocrine and neural control of urea excretion, most of which has been collected from only a handful of teleost fish. It is evident that more research is needed to establish the endocrine and neural control of urea excretion in fish, including fish representative of more ancient lineages (hagfish and lamprey), and elasmobranch fish.
Collapse
Affiliation(s)
- M Danielle McDonald
- Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL 33149, USA.
| | | | | |
Collapse
|
23
|
Esbaugh AJ, Heuer R, Grosell M. Impacts of ocean acidification on respiratory gas exchange and acid-base balance in a marine teleost, Opsanus beta. J Comp Physiol B 2012; 182:921-34. [PMID: 22581071 DOI: 10.1007/s00360-012-0668-5] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Revised: 04/11/2012] [Accepted: 04/14/2012] [Indexed: 11/27/2022]
Abstract
The oceanic carbonate system is changing rapidly due to rising atmospheric CO(2), with current levels expected to rise to between 750 and 1,000 μatm by 2100, and over 1,900 μatm by year 2300. The effects of elevated CO(2) on marine calcifying organisms have been extensively studied; however, effects of imminent CO(2) levels on teleost acid-base and respiratory physiology have yet to be examined. Examination of these physiological processes, using a paired experimental design, showed that 24 h exposure to 1,000 and 1,900 μatm CO(2) resulted in a characteristic compensated respiratory acidosis response in the gulf toadfish (Opsanus beta). Time course experiments showed the onset of acidosis occurred after 15 min of exposure to 1,900 and 1,000 μatm CO(2), with full compensation by 2 and 4 h, respectively. 1,900-μatm exposure also resulted in significantly increased intracellular white muscle pH after 24 h. No effect of 1,900 μatm was observed on branchial acid flux; however, exposure to hypercapnia and HCO(3)(-) free seawater compromised compensation. This suggests branchial HCO(3)(-) uptake rather than acid extrusion is part of the compensatory response to low-level hypercapnia. Exposure to 1,900 μatm resulted in downregulation in branchial carbonic anhydrase and slc4a2 expression, as well as decreased Na(+)/K(+) ATPase activity after 24 h of exposure. Infusion of bovine carbonic anhydrase had no effect on blood acid-base status during 1,900 μatm exposures, but eliminated the respiratory impacts of 1,000 μatm CO(2). The results of the current study clearly show that predicted near-future CO(2) levels impact respiratory gas transport and acid-base balance. While the full physiological impacts of increased blood HCO(3)(-) are not known, it seems likely that chronically elevated blood HCO(3)(-) levels could compromise several physiological systems and furthermore may explain recent reports of increased otolith growth during exposure to elevated CO(2).
Collapse
Affiliation(s)
- Andrew J Esbaugh
- Division of Marine Biology and Fisheries, Rosenstiel School of Marine and Atmospheric Science, University of Miami, 4600 Rickenbacker Causeway, Miami, FL 33149, USA.
| | | | | |
Collapse
|
24
|
Rodela TM, Esbaugh AJ, Weihrauch D, Veauvy CM, McDonald MD, Gilmour KM, Walsh PJ. Revisiting the effects of crowding and feeding in the gulf toadfish, Opsanus beta: the role of Rhesus glycoproteins in nitrogen metabolism and excretion. J Exp Biol 2012; 215:301-13. [DOI: 10.1242/jeb.061879] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
SUMMARY
Models of branchial transport in teleosts have been reshaped by the recent discovery of Rhesus (Rh) glycoproteins, a family of proteins that facilitate the movement of NH3 across cell membranes. This study examines the effects of crowding and feeding on ammonia excretion in gulf toadfish (Opsanus beta) within the context of Rh glycoproteins and the ammonia-fixing enzyme, glutamine synthetase (GS). Four Rh isoforms (Rhag, Rhbg, Rhcg1 and Rhcg2) were isolated from toadfish. Tissue distributions showed higher levels of mRNA expression in the gills and liver, moderate levels in the intestine and lower levels in the stomach. Crowding significantly lowered branchial Rh expression and ammonia excretion rates in fasted toadfish. A comparison of Rh expression in the digestive tract revealed relatively low levels of Rhcg1 and Rhcg2 in the stomach and high mRNA abundance of Rhbg, Rhcg1 and Rhcg2 in the intestine of fasted, crowded toadfish. We speculate that these trends may reduce secretion and enhance absorption, respectively, to minimize the amount of ammonia that is lost through gastrointestinal routes. By contrast, these patterns of expression were modified in response to an exogenous ammonia load via feeding. Post-prandial ammonia excretion rates were elevated twofold, paralleled by similar increases in branchial Rhcg1 mRNA, gastric Rhcg1 mRNA and mRNA of all intestinal Rh isoforms. These changes were interpreted as an attempt to increase post-prandial ammonia excretion rates into the environment owing to a gradient created by elevated circulating ammonia concentrations and acidification of the digestive tract. Overall, we provide evidence that toadfish modulate both the expression of Rh isoforms and urea synthesis pathways to tightly control and regulate nitrogen excretion.
Collapse
Affiliation(s)
- Tamara M. Rodela
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada K1N 6N5
| | - Andrew J. Esbaugh
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada K1N 6N5
| | - Dirk Weihrauch
- Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba, Canada R3T 2N2
| | - Clémence M. Veauvy
- Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL 33149-1098, USA
| | - M. Danielle McDonald
- Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL 33149-1098, USA
| | - Kathleen M. Gilmour
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada K1N 6N5
| | - Patrick J. Walsh
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada K1N 6N5
| |
Collapse
|
25
|
Rodela TM, McDonald MD, Walsh PJ, Gilmour KM. Interactions between cortisol and Rhesus glycoprotein expression in ureogenic toadfish, Opsanus beta. J Exp Biol 2012; 215:314-23. [DOI: 10.1242/jeb.061895] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
SUMMARY
In their native environment, gulf toadfish excrete equal quantities of ammonia and urea. However, upon exposure to stressful conditions in the laboratory (i.e. crowding, confinement or air exposure), toadfish decrease branchial ammonia excretion and become ureotelic. The objective of this study was to determine the influences of cortisol and ammonia on ammonia excretion relative to expression of Rhesus (Rh) glycoproteins and the ammonia-fixing enzyme, glutamine synthetase (GS). In vivo infusions and/or injections were used to manipulate corticosteroid activity and plasma ammonia concentrations in ureotelic toadfish. Metyrapone treatment to lower circulating cortisol levels resulted in a 3.5-fold elevation of ammonia excretion rates, enhanced mRNA expression of two of the toadfish Rh isoforms (Rhcg1 and Rhcg2), and decreased branchial and hepatic GS activity. Correspondingly, cortisol infusion decreased ammonia excretion 2.5-fold, a change that was accompanied by reduced branchial expression of all toadfish Rh isoforms (Rhag, Rhbg, Rhcg1 and Rhcg2) and a twofold increase in hepatic GS activity. In contrast, maintenance of high circulating ammonia levels by ammonia infusion enhanced ammonia excretion and Rh expression (Rhag, Rhbg and Rhcg2). Toadfish treated with cortisol showed an attenuated response to ammonia infusion with no change in Rh mRNA expression or GS activity. In summary, the evidence suggests that ammonia excretion in toadfish is modulated by cortisol-induced changes in both Rh glycoprotein expression and GS activity.
Collapse
Affiliation(s)
- Tamara M. Rodela
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada K1N 6N5
| | - M. Danielle McDonald
- Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL 33149-1098, USA
| | - Patrick J. Walsh
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada K1N 6N5
| | - Kathleen M. Gilmour
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada K1N 6N5
| |
Collapse
|
26
|
Rodela TM, Esbaugh AJ, McDonald MD, Gilmour KM, Walsh PJ. Evidence for transcriptional regulation of the urea transporter in the gill of the Gulf toadfish, Opsanus beta. Comp Biochem Physiol B Biochem Mol Biol 2011; 160:72-80. [PMID: 21740977 DOI: 10.1016/j.cbpb.2011.06.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2011] [Revised: 06/24/2011] [Accepted: 06/24/2011] [Indexed: 02/01/2023]
Abstract
Ureotelic Gulf toadfish (Opsanus beta) do not excrete urea continuously; instead, urea is accumulated internally until a branchial urea transport mechanism is activated to facilitate the excretion of urea in distinct pulses. This unusual pulsatile urea excretion pattern is regulated, in part, by permissive declines in circulating cortisol concentrations. The current study examined toadfish urea transporter (tUT) and glucocorticoid receptor (GR) transcript levels in toadfish gill following chronic (days) and acute (hours) changes in corticosteroid activity. Experimentally lowering circulating cortisol did not significantly alter tUT mRNA abundance but increased GR mRNA. On an acute timescale, a 6.2-fold upregulation of tUT mRNA occurred 12 to 18 h following a urea pulse event with no change in GR mRNA. In silico analysis of an isolated 1.2 kb fragment, upstream promoter region of the tUT gene, revealed 6 putative glucocorticoid response element (GRE) half sites. In vivo reporter assays of the tUT promoter fragment demonstrated relative luciferase activity was enhanced 3.4- and 9.8-fold following exposure to moderate (via a 48 h crowding stress) and high (via infusion for 48 h) cortisol. We conclude that a GRE-mediated upregulation of mRNA may be required to maintain tUT activity by offsetting post-transcriptional and/or post-translational changes that may be associated with chronically elevated plasma cortisol.
Collapse
Affiliation(s)
- Tamara M Rodela
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada.
| | | | | | | | | |
Collapse
|
27
|
Barimo JF, Walsh PJ, McDonald MD. Diel Patterns of Nitrogen Excretion, Plasma Constituents, and Behavior in the Gulf Toadfish (Opsanus beta) in Laboratory versus Outdoor Mesocosm Settings. Physiol Biochem Zool 2010; 83:958-72. [DOI: 10.1086/656427] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
28
|
Medeiros LR, Mager EM, Grosell M, McDonald MD. The serotonin subtype 1A receptor regulates cortisol secretion in the Gulf toadfish, Opsanus beta. Gen Comp Endocrinol 2010; 168:377-87. [PMID: 20488186 DOI: 10.1016/j.ygcen.2010.05.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2009] [Revised: 02/26/2010] [Accepted: 05/12/2010] [Indexed: 11/16/2022]
Abstract
It is well established that serotonin (5-HT; 5-hydroxytryptamine) plays a role in mammalian regulation of the hypothalamic-pituitary-adrenal (HPA) axis via the 5-HT receptor subtype 1A (5-HT(1A)). To date, there has not been a comprehensive investigation of the molecular, pharmacological and physiological aspects of the 5-HT(1A) receptor and its role in the activation of the hypothalamic-pituitary-interrenal (HPI) axis in teleost fish. The 5-HT(1A) receptor of the Gulf toadfish (Opsanus beta) was cloned and sequenced, showing 67.5% amino acid similarity to the human homologue. The 5-HT(1A) receptor was distributed throughout the brain, with the whole brain containing significantly higher levels of 5-HT(1A) mRNA compared to all other tissues and the midbrain/diencephalon region containing significantly higher levels of transcript than any other brain region. Substantial levels of transcript were also found in the pituitary, while very low levels were in the kidney that contains the interrenal cells. Xenopus oocytes injected with toadfish 5-HT(1A) receptor cRNA displayed significantly higher binding of [(3)H]5-HT that was abolished by the mammalian 5-HT(1A) receptor agonist, 8-OH-DPAT, indicating a conserved binding site of the toadfish 5-HT(1A) receptor and a high specificity for the agonist. Supporting this, binding of [(3)H]5-HT was not affected by the mammalian 5-HT(1B) receptor agonist, 5-nonyloxytryptamine, the 5-HT(7) receptor antagonist, SB269970, or the 5-HT(2) receptor agonist, alpha-methylserotonin. Confirming these molecular and pharmacological findings, intravenous injection of 8-OH-DPAT stimulated the HPI axis to cause a 2-fold increase in circulating levels of cortisol. The present study of the 5-HT(1A) receptor in a single teleost species illustrates the high conservation of this 5-HT receptor amongst vertebrates.
Collapse
Affiliation(s)
- Lea R Medeiros
- Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL 33149-1098, USA.
| | | | | | | |
Collapse
|
29
|
Wood CM, Grosell M, McDonald MD, Playle RC, Walsh PJ. Effects of waterborne silver in a marine teleost, the gulf toadfish (Opsanus beta): effects of feeding and chronic exposure on bioaccumulation and physiological responses. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2010; 99:138-148. [PMID: 20472311 DOI: 10.1016/j.aquatox.2010.04.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2010] [Revised: 04/06/2010] [Accepted: 04/13/2010] [Indexed: 05/29/2023]
Abstract
Marine teleosts drink seawater, and the digestive tract is a key organ of osmoregulation. The gastro-intestinal tract therefore offers a second site for the potential uptake and toxicity of waterborne metals, but how these processes might interact with the digestive functions of the tract has not been investigated previously. We therefore compared the responses of adult gulf toadfish (Opsanus beta, collected from the wild) to a chronic 22d exposure to waterborne Ag (nominally 200 microg L(-1)=1.85 micromol L(-1)), in the presence or absence of daily satiation feeding (shrimp). Ag exposure did not affect voluntary feeding rate. Feeding reduced the net whole body accumulation of Ag by >50%, with reductions in liver concentrations (high) and white muscle concentrations (relatively low) playing the largest quantitative roles. Feeding also protected against Ag buildup in the esophagus-stomach and kidney, and increased biliary and urinary Ag concentrations. The gill was the only tissue to show the opposite response. Although terminal plasma Na(+), Cl(-), and Mg(2+) concentrations were unaffected, there were complex interactive effects on osmoregulatory functions of the gastro-intestinal tract, including drinking rate, gut fluid volumes, and intestinal base secretion rates. At the end of the exposure, the plasma clearance kinetics of an arterially injected tracer dose of (110 m)Ag were faster in toadfish that had been chronically exposed to waterborne Ag, and (110 m)Ag accumulation in their red blood cells was reduced. After 32 h, higher amounts of (110 m)Ag were found in bile and urine, but lower amounts in the intestine of the Ag-exposed toadfish; there were no other differences in tissue-specific distribution. The results suggest that feeding reduces waterborne Ag uptake through the digestive tract and alters physiological responses, while chronic exposure enhances regulatory functions. The time-dependent actions of the liver in Ag scavenging and detoxification are highlighted.
Collapse
Affiliation(s)
- Chris M Wood
- Department of Biology, McMaster University, 1280 Main St. West, Hamilton, Ontario, Canada.
| | | | | | | | | |
Collapse
|
30
|
McDonald MD, Gilmour KM, Walsh PJ, Perry SF. Cardiovascular and respiratory reflexes of the gulf toadfish (Opsanus beta) during acute hypoxia. Respir Physiol Neurobiol 2010; 170:59-66. [DOI: 10.1016/j.resp.2009.12.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2009] [Revised: 12/11/2009] [Accepted: 12/26/2009] [Indexed: 10/20/2022]
|
31
|
Rodela TM, Gilmour KM, Walsh PJ, McDonald MD. Cortisol-sensitive urea transport across the gill basolateral membrane of the gulf toadfish (Opsanus beta). Am J Physiol Regul Integr Comp Physiol 2009; 297:R313-22. [DOI: 10.1152/ajpregu.90894.2008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Gulf toadfish ( Opsanus beta) use a unique pulsatile urea excretion mechanism that allows urea to be voided in large pulses via the periodic insertion or activation of a branchial urea transporter. The precise cellular and subcellular location of the facilitated diffusion mechanism(s) remains unclear. An in vitro basolateral membrane vesicle (BLMV) preparation was used to test the hypothesis that urea movement across the gill basolateral membrane occurs through a cortisol-sensitive carrier-mediated mechanism. Toadfish BLMVs demonstrated two components of urea uptake: a linear element at high external urea concentrations, and a phloretin-sensitive saturable constituent ( Km = 0.24 mmol/l; Vmax = 6.95 μmol·mg protein−1·h−1) at low urea concentrations (<1 mmol/l). BLMV urea transport in toadfish was unaffected by in vitro treatment with ouabain, N-ethylmaleimide, or the absence of sodium, conditions that are known to inhibit sodium-coupled and proton-coupled urea transport in vertebrates. Transport kinetics were temperature sensitive with a Q10 > 2, further suggestive of carrier-mediated processes. Our data provide evidence that a basolateral urea facilitated transporter accelerates the movement of urea between the plasma and gills to enable the pulsatile excretion of urea. Furthermore, in vivo infusion of cortisol caused a significant 4.3-fold reduction in BLMV urea transport capacity in lab-crowded fish, suggesting that cortisol inhibits the recruitment of urea transporters to the basolateral membrane, which may ultimately affect the size of the urea pulse event in gulf toadfish.
Collapse
|
32
|
Rodela TM, McDonald MD, Walsh PJ, Gilmour KM. The regulatory role of glucocorticoid and mineralocorticoid receptors in pulsatile urea excretion of the gulf toadfish,Opsanus beta. J Exp Biol 2009; 212:1849-58. [DOI: 10.1242/jeb.026997] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARYGulf toadfish, Opsanus beta, are one among a group of unusual teleosts that excrete urea as their predominant nitrogen end product in response to stressful conditions. Under conditions of crowding or confinement,fasted toadfish excrete the majority of their nitrogen waste in large pulses of urea (>90% of total nitrogen) lasting up to 3 h. An earlier study demonstrated that cortisol has an inhibitory influence on urea pulse size. The present study tested the hypothesis that cortisol mediates changes in urea pulse size in ureotelic toadfish through the glucocorticoid receptor (GR) and not the mineralocorticoid receptor (MR). In vivo pharmacological investigations were used to manipulate the corticosteroid system in crowded toadfish, including experimentally lowering plasma cortisol levels by the injection of metyrapone, blocking cortisol receptors through exposure to either RU-486 (GR antagonist) and spironolactone (MR antagonist), or through exogenous infusion of the tetrapod mineralocorticoid aldosterone (tetrapod MR agonist). The data demonstrate that lowering the activity of cortisol, either by inhibiting its synthesis or by blocking its receptor, resulted in a two- to threefold increase in pulse size with no accompanying change in pulse frequency. Treatment with spironolactone elicited a minor (∼1.5-fold)reduction in pulse size, as did aldosterone treatment, suggesting that the anti-mineralocorticoid spironolactone has an agonistic effect in a piscine system. In summary, the evidence suggests that urea transport mechanisms in pulsing toadfish are upregulated in response to low cortisol, mediated primarily by GRs, and to a lesser extent MRs.
Collapse
Affiliation(s)
- Tamara M. Rodela
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada K1N 6N5
| | - M. Danielle McDonald
- Rosenstiel School of Marine and Atmospheric Science, University of Miami,Miami, FL 33149, USA
| | - Patrick J. Walsh
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada K1N 6N5
| | - Kathleen M. Gilmour
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada K1N 6N5
| |
Collapse
|
33
|
McDonald MD, Vulesevic B, Perry SF, Walsh PJ. Urea transporter and glutamine synthetase regulation and localization in gulf toadfish gill. J Exp Biol 2009; 212:704-12. [PMID: 19218522 DOI: 10.1242/jeb.015875] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023]
Abstract
The goal of the present study was to investigate the role of circulating cortisol and urea in the transcriptional regulation of branchial glutamine synthetase (GS), which incorporates NH(3) into glutamate to form glutamine, and the toadfish urea transporter, tUT, which is involved in urea excretion across the gill of the gulf toadfish. GS (of which there are two isoforms, LGS and GGS) and tUT mRNA expression and activity were measured in toadfish exposed to treatments that would induce variable stress responses. In addition, the role of circulating urea in tUT regulation was investigated by infusing toadfish with urea alone or in combination with intraperitoneal injection of RU486, a corticosteroid type II receptor antagonist. There was a 4.8-fold upregulation in the mRNA expression of the gill-specific GS isoform (GGS) in response to cortisol infusion and a similar upregulation in the more ubiquitous isoform (LGS). Furthermore, there was a significant 1.9-fold and 3.3-fold upregulation in the mRNA expression of the toadfish urea transporter, tUT, in response to stress through crowding or exogenous cortisol loading through infusion, respectively. In addition, tUT was found to have a urea-sensitive component to transcriptional regulation that was independent of circulating cortisol concentrations. However, the changes measured in mRNA expression of GGS, LGS and tUT did not correspond with changes in protein activity. To determine the cell type(s) involved in glutamine production and urea excretion, we attempted to localize GGS, LGS and tUT using in situ hybridization. This study is the first to show that GGS and tUT expression appear to occur in gill mitochondria-rich cells of toadfish, suggesting that these cells play a combined glutamine production and urea excretion role, which may have implications for predator avoidance.
Collapse
Affiliation(s)
- M Danielle McDonald
- Rosenstiel School of Marine and Atmospheric Science, University of Miami, 4600 Rickenbacker Causeway, Miami, FL 33149 USA.
| | | | | | | |
Collapse
|
34
|
McDonald MD, Walsh PJ. Aglomerular kidney function when challenged with exogenous MgSO4 loading or environmental MgSO4 depletion. ACTA ACUST UNITED AC 2008; 307:676-87. [PMID: 17891756 DOI: 10.1002/jez.a.421] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The goal of this study was to investigate the role of MgSO4 in aglomerular kidney function, independent of changes in NaCl. The renal handling of MgSO4 was manipulated by intravenous infusion of an isoosmotic solution containing 80 mmol/L MgSO4 or through exposure to an environment that was reduced in MgSO4 concentration by 90%. Intravenous infusion resulted in a transient increase in circulating Mg2+ and SO4 (2-) levels; however, the concentration of both divalent ions in the urine remained elevated throughout the entire infusion period. Infusion also resulted in a transient increase in urine flow rate and apparent glomerular filtration rate, measured using the glomerular filtration rate marker, [3H] PEG 4000. Exposure to MgSO4-depleted conditions resulted in a significant decrease in plasma and urine concentrations of Mg2+ and in the urine concentrations of SO4 (2-); correspondingly, urine flow rate was significantly depressed. The urinary excretion of both Mg2+ and SO4 (2-) demonstrated nonlinear saturation kinetics. The urinary excretion of Mg2+ was significantly correlated with plasma Mg2+ concentration (r=0.75, P=0.04) and yielded a Michealis constant (Km) of 1.67+/-1.43 mmol/L; P=0.26 and a maximal velocity (Vmax) of 117.4+/-47.0 micromol/kg/hr; P=0.046. The urinary excretion of SO4 (2-) was significantly correlated with plasma SO4 (2-) concentration (r=0.94, P<0.02) with a Km of 0.76+/-0.54; P=0.26 and a Vmax of 59.3+/-13.1; P=0.02.
Collapse
Affiliation(s)
- M Danielle McDonald
- Division of Marine Biology and Fisheries Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, Florida 33149-1098.
| | | |
Collapse
|
35
|
Wood CM, Grosell M. A critical analysis of transepithelial potential in intact killifish (Fundulus heteroclitus) subjected to acute and chronic changes in salinity. J Comp Physiol B 2008; 178:713-27. [DOI: 10.1007/s00360-008-0260-1] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2008] [Revised: 03/11/2008] [Accepted: 03/13/2008] [Indexed: 11/30/2022]
|
36
|
McDonald MD, Gilmour KM, Barimo JF, Frezza PE, Walsh PJ, Perry SF. Is urea pulsing in toadfish related to environmental O2 or CO2 levels? Comp Biochem Physiol A Mol Integr Physiol 2007; 146:366-74. [PMID: 17196858 DOI: 10.1016/j.cbpa.2006.11.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2006] [Revised: 11/12/2006] [Accepted: 11/14/2006] [Indexed: 11/17/2022]
Abstract
The neurochemical, serotonin (5-hydroxytryptamine; 5-HT) is involved in the regulation of toadfish pulsatile urea excretion as well as the teleost hypoxia response. Thus, the goal of this study was to determine whether environmental conditions that activate branchial chemoreceptors also trigger pulsatile urea excretion in toadfish, since environmental dissolved oxygen levels in a typical toadfish habitat show significant diel fluctuations, often reaching hypoxic conditions at dawn. Toadfish were fitted with arterial, venous and/or buccal catheters and were exposed to various environmental conditions, and/or injected with the O(2) chemoreceptor agonist NaCN or the 5-HT(2) receptor agonist alpha-methyl-5HT. Arterial PO(2), as well as ammonia and urea excretion were monitored. Natural fluctuations in arterial PO(2) levels in toadfish did not correlate with the occurrence of a urea pulse. Chronic exposure (24 h) of toadfish to hyperoxia was without effect on nitrogen excretion, however, exposure to hypoxia caused a significant reduction in the frequency of urea pulses, and exposure to hypercapnia resulted in a reduction in the percentage of nitrogen waste excreted as urea. Of toadfish exposed acutely to hypoxia, 20% pulsed within 1 h, whereas none pulsed after normoxic or hypercapnic treatments. Furthermore, 20% of fish injected intravenously with NaCN pulsed within 1 h of injection, but no fish pulsed after injection of NaCN into the buccal cavity. To test whether environmental conditions affected 5-HT(2) receptors, toadfish were injected with alpha-methyl-5HT, which elicits urea pulses in toadfish. No significant differences in pulse size occurred among the various environmental treatments. Our findings suggest that neither the environmental conditions of hypoxia, hyperoxia or hypercapnia, nor direct branchial chemoreceptor activation by NaCN play a major role in the regulation of pulsatile urea excretion in toadfish.
Collapse
Affiliation(s)
- M Danielle McDonald
- Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, Florida, 33149-1098, USA.
| | | | | | | | | | | |
Collapse
|
37
|
McDonald MD, Smith CP, Walsh PJ. The physiology and evolution of urea transport in fishes. J Membr Biol 2007; 212:93-107. [PMID: 17264987 DOI: 10.1007/s00232-006-0869-5] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2005] [Accepted: 07/20/2006] [Indexed: 11/25/2022]
Abstract
This review summarizes what is currently known about urea transporters in fishes in the context of their physiology and evolution within the vertebrates. The existence of urea transporters has been investigated in red blood cells and hepatocytes of fish as well as in renal and branchial cells. Little is known about urea transport in red blood cells and hepatocytes, in fact, urea transporters are not believed to be present in the erythrocytes of elasmobranchs nor in teleost fish. What little physiological evidence there is for urea transport across fish hepatocytes is not supported by molecular evidence and could be explained by other transporters. In contrast, early findings on elasmobranch renal urea transporters were the impetus for research in other organisms. Urea transport in both the elasmobranch kidney and gill functions to retain urea within the animal against a massive concentration gradient with the environment. Information on branchial and renal urea transporters in teleost fish is recent in comparison but in teleosts urea transporters appear to function for excretion and not retention as in elasmobranchs. The presence of urea transporters in fish that produce a copious amount of urea, such as elasmobranchs and ureotelic teleosts, is reasonable. However, the existence of urea transporters in ammoniotelic fish is curious and could likely be due to their ability to manufacture urea early in life as a means to avoid ammonia toxicity. It is believed that the facilitated diffusion urea transporter (UT) gene family has undergone major evolutionary changes, likely in association with the role of urea transport in the evolution of terrestriality in the vertebrates.
Collapse
Affiliation(s)
- M D McDonald
- NIEHS Marine and Freshwater Biomedical Sciences Center, Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, Florida 33149-1098, USA.
| | | | | |
Collapse
|
38
|
Wood CM, Du J, Rogers J, Brauner CJ, Richards JG, Semple JW, Murray BW, Chen XQ, Wang Y. Przewalski’s Naked Carp (Gymnocypris przewalskii): An Endangered Species Taking a Metabolic Holiday in Lake Qinghai, China. Physiol Biochem Zool 2007; 80:59-77. [PMID: 17160880 DOI: 10.1086/509212] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/28/2006] [Indexed: 11/03/2022]
Abstract
The naked carp is an endangered cyprinid that migrates annually between freshwater rivers, where it spawns, and Lake Qinghai, where it feeds and grows. Lake Qinghai is a high-altitude lake (3,200 m) in western China that currently exhibits the following composition (in mmol L(-1): [Na(+)] 200, [Cl(-)] 173, [Mg(2+)] 36, [Ca(2+)] 0.23, [K(+)] 5.3, total CO(2) 21, titration alkalinity 29; osmolality 375 mOsm kg(-1); pH 9.3), but concentrations are increasing because of water diversion and climate change. We studied the physiology of river water to lake water transfer. When river fish are transferred to lake water, there is a transitory metabolic acidosis followed by a slight respiratory alkalosis, and hemoconcentration occurs. All plasma electrolytes rise over the initial 48 h, and final levels in lake water-acclimated fish are very close to lake water concentrations for [Na(+)], [Cl(-)], [K(+)], and osmolality, whereas [Ca(2+)] continues to be regulated well above ambient levels. However, [Mg(2+)] rises to a much greater extent (fourfold in 48 h); final plasma levels in lake fish may reach 12 mmol L(-1) but are still much lower than in lake water (36 mmol L(-1)). At the same time, urine flow rate decreases drastically to <5% of river water values; only the renal excretion of Mg(2+) is maintained. Both gill and kidney Na(+),K(+)-ATPase rapidly decline, with final levels in lake water fish only 30% and 70%, respectively, of those in river water fish. Metabolic rate also quickly decreases on exposure to lake water, with O(2) consumption and ammonia-N excretion rates eventually falling to only 60% and 30%, respectively, of those in river fish, while plasma ammonia rises fivefold. The fish appear to be benefiting from a metabolic holiday at present because of decreases in iono- and osmoregulatory costs while in lake water; elevated plasma [Mg(2+)] and ammonia may be additional factors depressing metabolic rate. If the lake continues to dehydrate, these benefits may change to pathology.
Collapse
Affiliation(s)
- Chris M Wood
- Department of Biology, McMaster University, Hamilton, Ontario L8S 4K1, Canada.
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Rodela TM, Wright PA. Metabolic and neuroendocrine effects on diurnal urea excretion in the mangrove killifish Rivulus marmoratus. ACTA ACUST UNITED AC 2006; 209:2704-12. [PMID: 16809461 DOI: 10.1242/jeb.02289] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In mangrove killifish Rivulus marmoratus, urea excretion (J(urea)) follows a distinct diurnal pattern with the highest rates between 12:00 h and 18:00 h. We investigated the regulating mechanisms that underlie temporal rhythms in J(urea) in R. marmoratus. We hypothesized that the daily pattern of J(urea) in R. marmoratus is (1) due to diurnal changes in urea synthesis rates and ultimately metabolic rate and/or (2) controlled by neuroendocrine messengers. Oxygen consumption and whole body urea content in R. marmoratus demonstrated a clear diurnal pattern with maximum rates for both parameters occurring at 12:00 h. A strong synchrony between diurnal patterns of oxygen consumption, whole body urea content and J(urea) implicated metabolic regulation of the diurnal J(urea) pattern. Ketanserin, a 5-HT(2) receptor antagonist, and RU-486, a cortisol receptor antagonist, were used to test the second hypothesis. Increasing antagonist concentrations of either ketanserin or RU-486 resulted in dose-dependent decreases in J(urea). Application of a single dose of either antagonist significantly decreases J(urea) for up to 12 and 6 h for ketanserin and RU-48, respectively. Repeated exposure to doses of either ketanserin or RU-486 did not abolish the diurnal pattern in J(urea); however, there was a significant decrease in the amplitude of the rates. Taken together, these findings indicate that the diurnal pattern of J(urea) in R. marmoratus are regulated by both metabolic and neuroendocrine factors. We propose that cortisol and 5-HT influence the absolute rate of urea excretion by altering the permeability of the gill membrane to urea and/or the rate of urea synthesis.
Collapse
Affiliation(s)
- Tammy M Rodela
- Department of Integrative Biology, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | | |
Collapse
|
40
|
Nichols JW, Brown S, Wood CM, Walsh PJ, Playle RC. Influence of salinity and organic matter on silver accumulation in Gulf toadfish (Opsanus beta). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2006; 78:253-61. [PMID: 16675040 DOI: 10.1016/j.aquatox.2006.03.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2005] [Revised: 03/17/2006] [Accepted: 03/20/2006] [Indexed: 05/09/2023]
Abstract
To help extend the freshwater based biotic ligand model for silver (Ag) into brackish and saltwater conditions, 50g Gulf toadfish (Opsanus beta) were acclimated to 2.5%, 5%, 10%, 20%, 40%, 80%, or 100% salt water and exposed for 6d to 1.0microM AgNO(3), with or without 10mg C/L organic matter. Suwannee River natural organic matter collected by reverse osmosis was used. Silver accumulation in toadfish gills and plasma decreased as salinity increased, indicating low bioavailability of AgCl complexes. Complexation of Ag by organic matter, normally important in freshwater conditions, was less important as salinity increased. Although relatively little intestinal Ag uptake was observed, both liver and bile accumulated Ag from water imbibed past the isosmotic salinity point ( approximately 1/3 salt water). Toadfish also produced intestinal carbonate pellets, minerals which did not influence Ag accumulation. Our results further stress the importance of Ag speciation, physiological mechanisms, and intestinal Ag uptake when modelling Ag uptake and toxicity beyond freshwater conditions.
Collapse
Affiliation(s)
- Joel W Nichols
- Department of Biology, Wilfrid Laurier University, 75 University St., Waterloo, Ont., Canada N2L3C5.
| | | | | | | | | |
Collapse
|
41
|
McDonald MD, Grosell M. Maintaining osmotic balance with an aglomerular kidney. Comp Biochem Physiol A Mol Integr Physiol 2006; 143:447-58. [PMID: 16483812 DOI: 10.1016/j.cbpa.2005.12.029] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2005] [Revised: 12/16/2005] [Accepted: 12/18/2005] [Indexed: 11/19/2022]
Abstract
The gulf toadfish, Opsanus beta, is a marine teleost fish with an aglomerular kidney that is highly specialized to conserve water. Despite this adaptation, toadfish have the ability to survive when in dilute hypoosmotic seawater environments. The objectives of this study were to determine the joint role of the kidney and intestine in maintaining osmotic and ionic balance and to investigate whether toadfish take advantage of their urea production ability and use urea as an osmolyte. Toadfish were gradually acclimated to different salinities (0.5, 2.5, 5, 10, 15, 22, 33, 50 and 70 ppt (1.5%, 7.5%, 15%, 30%, 45%, 67%, 100%, 151% and 212% seawater)) and muscle tissue, urine, blood and intestinal fluids were analyzed for ion and in some cases urea concentration. The renal and intestinal ionoregulatory processes of toadfish responded to changes in salinity and when gradually acclimated, toadfish maintain a relatively constant plasma osmolality at environmental salinities of 5 to 50 ppt. However, at salinities lower (2.5 ppt) or higher (70 ppt) than this range, a significant deviation from resting plasma and urine osmolality as well as changes in muscle water content was measured, suggesting osmoregulatory difficulties at these salinities. The renal system compensates for dilute seawater by reducing Na+ reabsorption by the bladder, which allowed excess water to be excreted. In the case of hypersalinity, Na+ reabsorption was increased, which resulted in a conservation of water and the concentration of Mg2+, Cl-, SO(4)2- and urea. A similar pattern was observed within the gastrointestinal system. Notably, Mg2+, HCO3- and SO4(2-) were the dominant ions in the intestinal fluid under control and hypersaline conditions due to the absorption of Na+, Cl- and water. When exposed to dilute seawater conditions, the absorption of Na+ was greatly reduced which likely increased water elimination. As a result of decreased environmental levels and a reduction in drinking rate, Mg2+ and SO4(2-) in intestinal fluids under hypoosmotic conditions were greatly reduced. While urea did play a minor role in renal osmoregulation, toadfish appear to preferentially regulate Na+ and to some extend Cl- in urine and intestinal fluids.
Collapse
Affiliation(s)
- M Danielle McDonald
- Rosenstiel School of Marine and Atmospheric Science, University of Miami, 4600 Rickenbacker Causeway, Miami, Florida 33149-1098, USA.
| | | |
Collapse
|
42
|
Barimo JF, Walsh PJ. The effects of acute and chronic ammonia exposure during early life stages of the gulf toadfish, Opsanus beta. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2005; 75:225-37. [PMID: 16171879 DOI: 10.1016/j.aquatox.2005.08.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2005] [Revised: 08/11/2005] [Accepted: 08/13/2005] [Indexed: 05/04/2023]
Abstract
The gulf toadfish (Opsanus beta) is unusual among teleosts in that it is facultatively ureotelic and adults and juveniles have a particularly high tolerance to environmental ammonia. Male toadfish brood their offspring in confined nests. It has been hypothesized that the potential accumulation of ammonia in nests from the male and the offspring, coupled with suspected low ammonia tolerance in offspring would provide the selective pressure necessary for excretion of the less toxic urea by adult toadfish. This study examines this so-called 'nest-fouling' hypothesis through acute and chronic ammonia toxicity testing on early life stages of O. beta. In addition, nitrogen elimination was examined among embryos, yolk-sac larvae and juveniles where we found an ontogenic shift from ammonotely to ureotely with advancing life history stages. The acute ammonia 96 h LC50 values for embryos and larvae were 63.6 and 5.45 mmol-Nl(-1) total ammonia (TAmm), respectively. Thus, these early life stages are more tolerant to ammonia than either juveniles or adults and LC50 values are at least 2 orders of magnitude greater than concentrations naturally occurring at nest sites. Furthermore, 40 days exposures at mean and maximum NH3 concentrations normally found within nests revealed no observable detrimental effects. In fact, growth in terms of wet or dry weight was greatest at the maximum NH3 concentration. We therefore conclude that the nest-fouling hypothesis is not a viable explanation for ureotely in the gulf toadfish.
Collapse
Affiliation(s)
- John F Barimo
- Division of Marine Biology and Fisheries, Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL 33149-1098, USA.
| | | |
Collapse
|
43
|
Sloman KA, McDonald MD, Barimo JF, Lepage O, Winberg S, Wood CM, Walsh PJ. Does Pulsatile Urea Excretion Serve as a Social Signal in the Gulf ToadfishOpsanus beta? Physiol Biochem Zool 2005; 78:724-35. [PMID: 16086266 DOI: 10.1086/432140] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/07/2005] [Indexed: 11/03/2022]
Abstract
This study evaluated the hypothesis that the pulsatile excretion of urea by toadfish could serve as a social signal. In the first experiment, physiological parameters were measured in pairs of dominant and subordinate toadfish. Subordinate toadfish had elevated concentrations of circulating plasma cortisol, an effect maintained even after cannulation. In the second experiment, one fish of a pair was injected with 14C-urea, and the occurrence of urea pulses during social encounters was documented. Social status did not influence the order of pulsing, that is, whether a dominant or subordinate fish pulsed first during a social encounter. However, in seven out of eight pairs, both toadfish pulsed within 2 h of each other, indicating some form of communication between fish. In the third and final experiment, the response of toadfish to urea (natural or synthetic) was observed. There was a tendency for toadfish to avoid synthetic urea but there was no apparent behavioural response to water containing toadfish urea. Pulsing events do not appear to play an integral role during social encounters as previously hypothesised, but the close timing of pulses in toadfish pairs suggests some transfer of information.
Collapse
Affiliation(s)
- Katherine A Sloman
- School of Biological Sciences, University of Plymouth, Plymouth, Devon PL4 8AA, United Kingdom.
| | | | | | | | | | | | | |
Collapse
|
44
|
Evans DH, Piermarini PM, Choe KP. The Multifunctional Fish Gill: Dominant Site of Gas Exchange, Osmoregulation, Acid-Base Regulation, and Excretion of Nitrogenous Waste. Physiol Rev 2005; 85:97-177. [PMID: 15618479 DOI: 10.1152/physrev.00050.2003] [Citation(s) in RCA: 1653] [Impact Index Per Article: 82.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The fish gill is a multipurpose organ that, in addition to providing for aquatic gas exchange, plays dominant roles in osmotic and ionic regulation, acid-base regulation, and excretion of nitrogenous wastes. Thus, despite the fact that all fish groups have functional kidneys, the gill epithelium is the site of many processes that are mediated by renal epithelia in terrestrial vertebrates. Indeed, many of the pathways that mediate these processes in mammalian renal epithelial are expressed in the gill, and many of the extrinsic and intrinsic modulators of these processes are also found in fish endocrine tissues and the gill itself. The basic patterns of gill physiology were outlined over a half century ago, but modern immunological and molecular techniques are bringing new insights into this complicated system. Nevertheless, substantial questions about the evolution of these mechanisms and control remain.
Collapse
Affiliation(s)
- David H Evans
- Department of Zoology, University of Florida, Gainesville 32611, USA.
| | | | | |
Collapse
|
45
|
|
46
|
Wood CM, McDonald MD, Walker P, Grosell M, Barimo JF, Playle RC, Walsh PJ. Bioavailability of silver and its relationship to ionoregulation and silver speciation across a range of salinities in the gulf toadfish (Opsanus beta). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2004; 70:137-157. [PMID: 15522431 DOI: 10.1016/j.aquatox.2004.08.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2004] [Revised: 07/22/2004] [Accepted: 08/18/2004] [Indexed: 05/24/2023]
Abstract
Silver is taken up as a Na(+) analog (Ag(+)) by freshwater organisms, but little is known about its bioavailability in relation to salinity. Adult Opsanus beta were acclimated to 2.5, 5, 10, 20, 40, 60, 80, and 100% seawater (Cl(-)=545 mM) and exposed for 24 h to 2.18 microg L(-1) silver as (110m)Ag-labelled AgNO(3), a concentration close to the U.S. EPA marine criterion and less than 0.1% of the acute 96-h LC50 in seawater. Plasma osmolality, Na(+), and Cl(-) remained approximately constant from 100% down to 20-40% seawater, thereafter declining to 89% (osmolality) and 82% (Na(+), Cl(-)) of seawater values at the lowest salinity (2.5% seawater), while plasma Mg(2+) was invariant. Ionic measurements in intestinal fluids and urine supported the view that above the isosmotic point (about 32% seawater), toadfish drink the medium, absorb Na(+), Cl(-), and water across the gastrointestinal tract, actively excrete Na(+) and Cl(-) across the gills, and secrete Mg(2+) into the urine. Below this point, toadfish appear to stop drinking, actively take up Na(+) and Cl(-) at the gills, and retain ions at the kidney. Silver accumulation varied greatly with salinity, by nine-fold (whole body), 26-fold (gill tissue), and 18-fold (liver), with the maxima occurring in 2.5% seawater, the minima in 40% seawater (close to the isosmotic point), and slightly greater values at higher salinities. Highest silver concentrations occurred in liver, second highest in gills, intermediate concentrations in kidney, spleen, and gastrointestinal tissues, and lowest in swim bladder and white muscle, though patterns changed with salinity. There were substantial biliary but minimal urinary levels of silver. The salinity-dependent pattern of silver accumulation best correlated with the abundance of the neutral complex AgCl(0), though the presence of small amounts of Ag(+) at the lowest salinities may also have been important. In contrast, silver accumulation in the esophagus-stomach was greatest in 100% seawater and least at the isosmotic salinity (five-fold variation), a pattern probably explained by drinking and silver uptake into the blood through the gills. Models of silver bioavailability across salinity must consider the presence of silver-binding ligands on both gills and gastrointestinal tract, changing silver speciation, and the changing ionoregulatory physiology of the organism.
Collapse
Affiliation(s)
- Chris M Wood
- Department of Biology, McMaster University, 1280 Main St. West, Hamilton, Ont., Canada L8S 4K1.
| | | | | | | | | | | | | |
Collapse
|
47
|
McDonald MD, Wood CM, Grosell M, Walsh PJ. Glucocorticoid receptors are involved in the regulation of pulsatile urea excretion in toadfish. J Comp Physiol B 2004; 174:649-58. [PMID: 15517282 DOI: 10.1007/s00360-004-0456-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/05/2004] [Indexed: 10/26/2022]
Abstract
The objectives of this study were to characterize the pattern of pulsatile urea excretion in the gulf toadfish in the wake of exogenous cortisol loading and to determine the receptors involved in the regulation of this mechanism. Toadfish were fitted with indwelling arterial catheters and were infused with isosmotic NaCl for 48 h after which fish were treated with cortisol alone, cortisol + peanut oil, cortisol + RU486 (a glucocorticoid receptor antagonist) or cortisol + spironolactone (a mineralocorticoid receptor antagonist). Upon cortisol loading, fish treated with cortisol alone, cortisol + oil or cortisol + spironolactone experienced a two- to threefold reduction in pulsatile urea excretion. This reduction was due to a decrease in urea pulse size with no effect on pulse frequency compared to values measured during the control NaCl infusion period. In addition, these fish showed an increase in plasma urea concentrations upon treatment. These apparent effects of cortisol treatment were abolished in fish treated with cortisol + RU486. In contrast, these fish showed an increase in pulsatile urea excretion mediated by a twofold increase in pulse size with no change in frequency. Likewise, fish treated with cortisol + RU486 showed a significant decrease in plasma urea concentrations over the course of the experiment. The findings of this study indicate that high levels of cortisol reduce pulsatile urea excretion by decreasing pulse size. In addition, it appears that glucocorticoid receptors and not mineralocorticoid receptors are involved in the regulation of the toadfish pulsatile urea excretion mechanism.
Collapse
Affiliation(s)
- M D McDonald
- Department of Biology, McMaster University, Hamilton, Ontario L8S 4K1, Canada.
| | | | | | | |
Collapse
|
48
|
McDonald MD, Walsh PJ. Dogmas and controversies in the handling of nitrogenous wastes:5-HT2-like receptors are involved in triggering pulsatile urea excretion in the gulf toadfish,Opsanus beta. J Exp Biol 2004; 207:2003-10. [PMID: 15143134 DOI: 10.1242/jeb.00957] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARYWhen injected arterially, serotonin (5-hydroxytryptamine; 5-HT) has been shown to elicit naturally sized urea pulse events in the gulf toadfish, Opsanus beta. The goal of the present study was to determine which 5-HT receptor(s) was involved in mediating this serotonergic stimulation of the pulsatile excretion mechanism. Toadfish were surgically implanted with caudal arterial catheters and intraperitoneal catheters and injected with either 8-OH-DPAT (1 μmol kg–1), a selective 5-HT1A receptor agonist, α-methyl-5-HT (1 μmol kg–1), a 5-HT2 receptor agonist, or ketanserin, a 5-HT2 receptor antagonist (0.01, 0.1, 1 and 10 μmol kg–1) plus α-methyl-5-HT. 8-OH-DPAT injection did not mediate an increase in urea excretion, ruling out the involvement of 5-HT1A receptors in pulsatile excretion. However, within 5 min,α-methyl-5-HT injection caused an increase in the excretion of urea in>95% (N=27) of the fish injected, with an average pulse size of 652±102 μmol N kg–1 (N=26). Withα-methyl-5-HT injection there was no corresponding increase in ammonia or [3H]PEG 4000 permeability. Urea pulses elicited byα-methyl-5-HT were inhibited in a dose-dependent fashion by the 5-HT2 receptor antagonist ketanserin, which at low doses caused a significant inhibition of pulse size and at higher doses significantly inhibited the occurrence of pulsatile excretion altogether. However, neither 8-OH-DPAT nor α-methyl 5-HT injection had an effect on plasma cortisol or plasma urea concentrations. These findings suggest the involvement of a 5-HT2-like receptor in the regulation of pulsatile urea excretion.
Collapse
Affiliation(s)
- M Danielle McDonald
- Division of Marine Biology and Fisheries, NIEHS Marine and Freshwater Biomedical Science Center, Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, Florida 33149-1098, USA.
| | | |
Collapse
|
49
|
Wood CM, McDonald MD, Sundin L, Laurent P, Walsh PJ. Pulsatile urea excretion in the gulf toadfish: mechanisms and controls. Comp Biochem Physiol B Biochem Mol Biol 2003; 136:667-84. [PMID: 14662293 DOI: 10.1016/s1096-4959(03)00169-6] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Opsanus beta expresses a full complement of ornithine-urea cycle (OUC) enzymes and is facultatively ureotelic, reducing ammonia-N excretion and maintaining urea-N excretion under conditions of crowding/confinement. The switch to ureotelism is keyed by a modest rise in cortisol associated with a substantial increase in cytosolic glutamine synthetase for trapping of ammonia-N and an upregulation of the capacity of the mitochondrial OUC to use glutamine-N. The entire day's urea-N production is excreted in 1 or 2 short-lasting pulses, which occur exclusively through the gills. The pulse event is not triggered by an internal urea-N threshold, is not due to pulsatile urea-N production, but reflects pulsatile activation of a specific branchial excretion mechanism that rapidly clears urea-N from the body fluids. A bidirectional facilitated diffusion transporter, with pharmacological similarity to the UT-A type transporters of the mammalian kidney, is activated in the gills, associated with an increased trafficking of dense-cored vesicles in the pavement cells. An 1814 kB cDNA ('tUT') coding for a 475-amino acid protein with approximately 62% homology to mammalian UT-A's has been cloned and facilitates phloretin-sensitive urea transport when expressed in Xenopus oocytes. tUT occurs only in gill tissue, but tUT mRNA levels do not change over the pulse cycle, suggesting that tUT regulation occurs at a level beyond mRNA. Circulating cortisol levels consistently decline prior to a pulse event and rise thereafter. When cortisol is experimentally clamped at high levels, natural pulse events are suppressed in size but not in frequency, an effect mediated through glucocorticoid receptors. The cortisol decline appears to be permissive, rather than the actual trigger of the pulse event. Fluctuations in circulating AVT levels do not correlate with pulses; and injections of AVT (at supraphysiological levels) elicit only minute urea-N pulses. However, circulating 5-hydroxytryptamine (5-HT) levels fluctuate considerably and physiological doses of 5-HT cause large urea-N pulse events. When the efferent cranial nerves to the gills are sectioned, natural urea pulse events persist, suggesting that direct motor output from the CNS to the gill is not the proximate control.
Collapse
Affiliation(s)
- Chris M Wood
- Department of Biology, McMaster University, 1280 Main St West, Hamilton, ON, Canada L8S 4K1.
| | | | | | | | | |
Collapse
|
50
|
Walsh PJ, Mayer GD, Medina M, Bernstein ML, Barimo JF, Mommsen TP. A second glutamine synthetase gene with expression in the gills of the gulf toadfish (Opsanus beta). J Exp Biol 2003; 206:1523-33. [PMID: 12654891 DOI: 10.1242/jeb.00251] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We characterized the expression of the nitrogen metabolism enzyme glutamine synthetase [GSase; L-glutamate: ammonia ligase (ADP-forming), E.C. 6.3.1.2] in tissues of the gulf toadfish Opsanus beta subjected to unconfined (ammonotelic) and confined (ureotelic) conditions. Enzymological results demonstrate that mass-specific GSase activities rank in the order of brain > liver > stomach approximately kidney > intestine > gill > heart/spleen > muscle. When tissue mass is used to calculate a glutamine synthetic potential, the liver has the greatest, followed by muscle > stomach and intestine, with minor contributions from the remaining tissues. Additionally, during confinement stress, GSase activity increases significantly only in liver (fivefold) and muscle (twofold), tissues that previously showed significant expression of the other enzymes of urea synthesis. Western analyses of samples on SDS gels demonstrated that GSase-specific protein content reflected enzyme activity, and all tissues except muscle had a single, similarly sized GSase subunit of 49.4 kDa; muscle showed staining of two bands of 36.8 and 98.9 kDa, which may possibly result from another gene product or post-translational modification. RT-PCR and RACE-PCR revealed the presence of a second GSase cDNA from gill tissue that shares only 73% nucleotide and amino acid sequence similarity with the GSase cDNA previously cloned from liver, and that lacks a mitochondrial leader-targeting sequence. RT-PCR and restriction digestion experiments demonstrated that mRNA from the original 'liver' GSase is expressed in all tissues examined (liver, gill, stomach, intestine, kidney, brain and muscle), whereas the new 'gill' form shows expression primarily in the gill. Gill GSase activity shows apparently exclusive expression in the soluble compartment, while other tissues expressing the 'liver' form show both cytoplasmic and mitochondrial activities. Phylogenetic analysis of a number of GSases demonstrates that the toadfish gill GSase has a greater affinity for a clade that includes the Xenopus GSase genes and one of two Fugu GSase genes, than it has for a clade containing the toadfish liver GSase and other described teleost GSase genes. The results are discussed in the context of a prior hypothesis on an ammonia-trapping mechanism in the gill of the toadfish.
Collapse
Affiliation(s)
- Patrick J Walsh
- NIEHS Marine and Freshwater Biomedical Sciences Center, Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL 33149, USA.
| | | | | | | | | | | |
Collapse
|