1
|
Ghafoor MH, Song BL, Zhou L, Qiao ZY, Wang H. Self-Assembly of Peptides as an Alluring Approach toward Cancer Treatment and Imaging. ACS Biomater Sci Eng 2024; 10:2841-2862. [PMID: 38644736 DOI: 10.1021/acsbiomaterials.4c00491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Cancer is a severe threat to humans, as it is the second leading cause of death after cardiovascular diseases and still poses the biggest challenge in the world of medicine. Due to its higher mortality rates and resistance, it requires a more focused and productive approach to provide the solution for it. Many therapies promising to deliver favorable results, such as chemotherapy and radiotherapy, have come up with more negatives than positives. Therefore, a new class of medicinal solutions and a more targeted approach is of the essence. This review highlights the alluring properties, configurations, and self-assembly of peptide molecules which benefit the traditional approach toward cancer therapy while sparing the healthy cells in the process. As targeted drug delivery systems, self-assembled peptides offer a wide spectrum of conjugation, biocompatibility, degradability-controlled responsiveness, and biomedical applications, including cancer treatment and cancer imaging.
Collapse
Affiliation(s)
- Muhammad Hamza Ghafoor
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Ben-Li Song
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Lei Zhou
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing 100190, China
| | - Zeng-Ying Qiao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Hao Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, PR China
| |
Collapse
|
2
|
Yang Y, Yang Y, Hou Z, Wang T, Wu P, Shen L, Li P, Zhang K, Yang L, Sun S. Comprehensive review of materials, applications, and future innovations in biodegradable esophageal stents. Front Bioeng Biotechnol 2023; 11:1327517. [PMID: 38125305 PMCID: PMC10731276 DOI: 10.3389/fbioe.2023.1327517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 11/27/2023] [Indexed: 12/23/2023] Open
Abstract
Esophageal stricture (ES) results from benign and malignant conditions, such as uncontrolled gastroesophageal reflux disease (GERD) and esophageal neoplasms. Upper gastrointestinal endoscopy is the preferred diagnostic approach for ES and its underlying causes. Stent insertion using an endoscope is a prevalent method for alleviating or treating ES. Nevertheless, the widely used self-expandable metal stents (SEMS) and self-expandable plastic stents (SEPS) can result in complications such as migration and restenosis. Furthermore, they necessitate secondary extraction in cases of benign esophageal stricture (BES), rendering them unsatisfactory for clinical requirements. Over the past 3 decades, significant attention has been devoted to biodegradable materials, including synthetic polyester polymers and magnesium-based alloys, owing to their exceptional biocompatibility and biodegradability while addressing the challenges associated with recurring procedures after BES resolves. Novel esophageal stents have been developed and are undergoing experimental and clinical trials. Drug-eluting stents (DES) with drug-loading and drug-releasing capabilities are currently a research focal point, offering more efficient and precise ES treatments. Functional innovations have been investigated to optimize stent performance, including unidirectional drug-release and anti-migration features. Emerging manufacturing technologies such as three-dimensional (3D) printing and new biodegradable materials such as hydrogels have also contributed to the innovation of esophageal stents. The ultimate objective of the research and development of these materials is their clinical application in the treatment of ES and other benign conditions and the palliative treatment of malignant esophageal stricture (MES). This review aimed to offer a comprehensive overview of current biodegradable esophageal stent materials and their applications, highlight current research limitations and innovations, and offer insights into future development priorities and directions.
Collapse
Affiliation(s)
- Yaochen Yang
- Department of Gastroenterology, Endoscopic Center, Engineering Research Center of Ministry of Education for Minimally Invasive Gastrointestinal Endoscopic Techniques, Shengjing Hospital of China Medical University, Shenyang, China
- Research Center for Biomedical Materials, Engineering Research Center of Ministry of Education for Minimally Invasive Gastrointestinal Endoscopic Techniques, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yuanyuan Yang
- Department of Gastroenterology, Endoscopic Center, Engineering Research Center of Ministry of Education for Minimally Invasive Gastrointestinal Endoscopic Techniques, Shengjing Hospital of China Medical University, Shenyang, China
| | - Zhipeng Hou
- Research Center for Biomedical Materials, Engineering Research Center of Ministry of Education for Minimally Invasive Gastrointestinal Endoscopic Techniques, Shengjing Hospital of China Medical University, Shenyang, China
| | - Tingting Wang
- Department of Gastroenterology, Endoscopic Center, Engineering Research Center of Ministry of Education for Minimally Invasive Gastrointestinal Endoscopic Techniques, Shengjing Hospital of China Medical University, Shenyang, China
| | - Peng Wu
- Department of Gastroenterology, Endoscopic Center, Engineering Research Center of Ministry of Education for Minimally Invasive Gastrointestinal Endoscopic Techniques, Shengjing Hospital of China Medical University, Shenyang, China
| | - Lufan Shen
- Department of Gastroenterology, Endoscopic Center, Engineering Research Center of Ministry of Education for Minimally Invasive Gastrointestinal Endoscopic Techniques, Shengjing Hospital of China Medical University, Shenyang, China
| | - Peng Li
- Liaoning Research Institute for Eugenic Birth and Fertility, China Medical University, Shenyang, China
| | - Kai Zhang
- Department of Gastroenterology, Endoscopic Center, Engineering Research Center of Ministry of Education for Minimally Invasive Gastrointestinal Endoscopic Techniques, Shengjing Hospital of China Medical University, Shenyang, China
| | - Liqun Yang
- Research Center for Biomedical Materials, Engineering Research Center of Ministry of Education for Minimally Invasive Gastrointestinal Endoscopic Techniques, Shengjing Hospital of China Medical University, Shenyang, China
- Liaoning Research Institute for Eugenic Birth and Fertility, China Medical University, Shenyang, China
| | - Siyu Sun
- Department of Gastroenterology, Endoscopic Center, Engineering Research Center of Ministry of Education for Minimally Invasive Gastrointestinal Endoscopic Techniques, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
3
|
Tang Y, Xu H, Wang X, Dong S, Guo L, Zhang S, Yang X, Liu C, Jiang X, Kan M, Wu S, Zhang J, Xu C. Advances in preparation and application of antibacterial hydrogels. J Nanobiotechnology 2023; 21:300. [PMID: 37633883 PMCID: PMC10463510 DOI: 10.1186/s12951-023-02025-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 07/24/2023] [Indexed: 08/28/2023] Open
Abstract
Bacterial infections, especially those caused by drug-resistant bacteria, have seriously threatened human life and health. There is urgent to develop new antibacterial agents to reduce the problem of antibiotics. Biomedical materials with good antimicrobial properties have been widely used in antibacterial applications. Among them, hydrogels have become the focus of research in the field of biomedical materials due to their unique three-dimensional network structure, high hydrophilicity, and good biocompatibility. In this review, the latest research progresses about hydrogels in recent years were summarized, mainly including the preparation methods of hydrogels and their antibacterial applications. According to their different antibacterial mechanisms, several representative antibacterial hydrogels were introduced, such as antibiotics loaded hydrogels, antibiotic-free hydrogels including metal-based hydrogels, antibacterial peptide and antibacterial polymers, stimuli-responsive smart hydrogels, and light-mediated hydrogels. In addition, we also discussed the applications and challenges of antibacterial hydrogels in biomedicine, which are expected to provide new directions and ideas for the application of hydrogels in clinical antibacterial therapy.
Collapse
Affiliation(s)
- Yixin Tang
- Department of Biochemistry, College of Basic Medical Sciences, Jilin University, Changchun, 130021 Jilin China
| | - Huiqing Xu
- Department of Biochemistry, College of Basic Medical Sciences, Jilin University, Changchun, 130021 Jilin China
| | - Xue Wang
- Department of Biochemistry, College of Basic Medical Sciences, Jilin University, Changchun, 130021 Jilin China
| | - Shuhan Dong
- Department of Biochemistry, College of Basic Medical Sciences, Jilin University, Changchun, 130021 Jilin China
- Department of Preventive Medicine, School of Public Health, Jilin University, Changchun, 130021 Jilin China
| | - Lei Guo
- Department of Biochemistry, College of Basic Medical Sciences, Jilin University, Changchun, 130021 Jilin China
| | - Shichen Zhang
- Department of Biochemistry, College of Basic Medical Sciences, Jilin University, Changchun, 130021 Jilin China
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Jilin University, Changchun, 130021 Jilin China
| | - Xi Yang
- Department of Biochemistry, College of Basic Medical Sciences, Jilin University, Changchun, 130021 Jilin China
| | - Chang Liu
- Department of Biochemistry, College of Basic Medical Sciences, Jilin University, Changchun, 130021 Jilin China
| | - Xin Jiang
- Department of Biochemistry, College of Basic Medical Sciences, Jilin University, Changchun, 130021 Jilin China
| | - Mujie Kan
- Department of Biochemistry, College of Basic Medical Sciences, Jilin University, Changchun, 130021 Jilin China
| | - Shanli Wu
- Department of Biochemistry, College of Basic Medical Sciences, Jilin University, Changchun, 130021 Jilin China
| | - Jizhou Zhang
- Department of Biochemistry, College of Basic Medical Sciences, Jilin University, Changchun, 130021 Jilin China
| | - Caina Xu
- Department of Biochemistry, College of Basic Medical Sciences, Jilin University, Changchun, 130021 Jilin China
| |
Collapse
|
4
|
Li L, Duns GJ, Dessie W, Cao Z, Ji X, Luo X. Recent advances in peptide-based therapeutic strategies for breast cancer treatment. Front Pharmacol 2023; 14:1052301. [PMID: 36794282 PMCID: PMC9922721 DOI: 10.3389/fphar.2023.1052301] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 01/19/2023] [Indexed: 01/31/2023] Open
Abstract
Breast cancer is the leading cause of cancer-related fatalities in female worldwide. Effective therapies with low side effects for breast cancer treatment and prevention are, accordingly, urgently required. Targeting anticancer materials, breast cancer vaccines and anticancer drugs have been studied for many years to decrease side effects, prevent breast cancer and suppress tumors, respectively. There are abundant evidences to demonstrate that peptide-based therapeutic strategies, coupling of good safety and adaptive functionalities are promising for breast cancer therapy. In recent years, peptide-based vectors have been paid attention in targeting breast cancer due to their specific binding to corresponding receptors overexpressed in cell. To overcome the low internalization, cell penetrating peptides (CPPs) could be selected to increase the penetration due to the electrostatic and hydrophobic interactions between CPPs and cell membranes. Peptide-based vaccines are at the forefront of medical development and presently, 13 types of main peptide vaccines for breast cancer are being studied on phase III, phase II, phase I/II and phase I clinical trials. In addition, peptide-based vaccines including delivery vectors and adjuvants have been implemented. Many peptides have recently been used in clinical treatments for breast cancer. These peptides show different anticancer mechanisms and some novel peptides could reverse the resistance of breast cancer to susceptibility. In this review, we will focus on current studies of peptide-based targeting vectors, CPPs, peptide-based vaccines and anticancer peptides for breast cancer therapy and prevention.
Collapse
Affiliation(s)
- Ling Li
- Hunan Engineering Technology Research Center for Comprehensive Development and Utilization of Biomass Resources, College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou, China
| | - Gregory J. Duns
- Hunan Engineering Technology Research Center for Comprehensive Development and Utilization of Biomass Resources, College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou, China
| | - Wubliker Dessie
- Hunan Engineering Technology Research Center for Comprehensive Development and Utilization of Biomass Resources, College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou, China
| | - Zhenmin Cao
- Hunan Engineering Technology Research Center for Comprehensive Development and Utilization of Biomass Resources, College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou, China
| | - Xiaoyuan Ji
- Academy of Medical Engineering and Translational Medicine, Medical College, Tianjin University, Tianjin, China
| | - Xiaofang Luo
- Hunan Engineering Technology Research Center for Comprehensive Development and Utilization of Biomass Resources, College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou, China
| |
Collapse
|
5
|
Zhao B, Chen S, Hong Y, Jia L, Zhou Y, He X, Wang Y, Tian Z, Yang Z, Gao D. Research Progress of Conjugated Nanomedicine for Cancer Treatment. Pharmaceutics 2022; 14:1522. [PMID: 35890416 PMCID: PMC9315807 DOI: 10.3390/pharmaceutics14071522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 07/14/2022] [Accepted: 07/19/2022] [Indexed: 12/05/2022] Open
Abstract
The conventional cancer therapeutic modalities include surgery, chemotherapy and radiotherapy. Although immunotherapy and targeted therapy are also widely used in cancer treatment, chemotherapy remains the cornerstone of tumor treatment. With the rapid development of nanotechnology, nanomedicine is believed to be an emerging field to further improve the efficacy of chemotherapy. Until now, there are more than 17 kinds of nanomedicine for cancer therapy approved globally. Thereinto, conjugated nanomedicine, as an important type of nanomedicine, can not only possess the targeted delivery of chemotherapeutics with great precision but also achieve controlled drug release to avoid adverse effects. Meanwhile, conjugated nanomedicine provides the platform for combining several different therapeutic approaches (chemotherapy, photothermal therapy, photodynamic therapy, thermodynamic therapy, immunotherapy, etc.) with the purpose of achieving synergistic effects during cancer treatment. Therefore, this review focuses on conjugated nanomedicine and its various applications in synergistic chemotherapy. Additionally, the further perspectives and challenges of the conjugated nanomedicine are also addressed, which clarifies the design direction of a new generation of conjugated nanomedicine and facilitates the translation of them from the bench to the bedside.
Collapse
Affiliation(s)
- Bin Zhao
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China; (B.Z.); (S.C.); (L.J.); (Y.Z.); (X.H.); (Y.W.); (Z.T.)
- Department of Epidemiology, Shaanxi Provincial Cancer Hospital, Xi’an 710061, China
| | - Sa Chen
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China; (B.Z.); (S.C.); (L.J.); (Y.Z.); (X.H.); (Y.W.); (Z.T.)
- Shaanxi Provincial Centre for Disease Control and Prevention, Xi’an 710054, China
| | - Ye Hong
- Center of Digestive Endoscopy, Shaanxi Provincial Cancer Hospital, Xi’an 710061, China;
| | - Liangliang Jia
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China; (B.Z.); (S.C.); (L.J.); (Y.Z.); (X.H.); (Y.W.); (Z.T.)
| | - Ying Zhou
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China; (B.Z.); (S.C.); (L.J.); (Y.Z.); (X.H.); (Y.W.); (Z.T.)
| | - Xinyu He
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China; (B.Z.); (S.C.); (L.J.); (Y.Z.); (X.H.); (Y.W.); (Z.T.)
| | - Ying Wang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China; (B.Z.); (S.C.); (L.J.); (Y.Z.); (X.H.); (Y.W.); (Z.T.)
| | - Zhongmin Tian
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China; (B.Z.); (S.C.); (L.J.); (Y.Z.); (X.H.); (Y.W.); (Z.T.)
| | - Zhe Yang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China; (B.Z.); (S.C.); (L.J.); (Y.Z.); (X.H.); (Y.W.); (Z.T.)
- Research Institute of Xi’an Jiaotong University, Hangzhou 311200, China
| | - Di Gao
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China; (B.Z.); (S.C.); (L.J.); (Y.Z.); (X.H.); (Y.W.); (Z.T.)
| |
Collapse
|
6
|
Synthesis, Self-Assembly, and Cell Responses of Aromatic IKVAV Peptide Amphiphiles. Molecules 2022; 27:molecules27134115. [PMID: 35807362 PMCID: PMC9267992 DOI: 10.3390/molecules27134115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/21/2022] [Accepted: 05/23/2022] [Indexed: 02/04/2023] Open
Abstract
Synthetic bioactive aromatic peptide amphiphiles have been recognized as key elements of emerging biomedical strategies due to their biocompatibility, design flexibility, and functionality. Inspired by natural proteins, we synthesized two supramolecular materials of phenyl-capped Ile-Lys-Val-Ala-Val (Ben-IKVAV) and perfluorophenyl-capped Ile-Lys-Val-Ala-Val (PFB-IKVAV). We employed UV-vis absorption, fluorescence, circular dichroism, and Fourier-transform infrared spectroscopy to examine the driving force in the self-assembly of the newly discovered materials. It was found that both compounds exhibited ordered π-π interactions and secondary structures, especially PFB-IKVAV. The cytotoxicity of human mesenchymal stem cells (hMSCs) and cell differentiation studies was also performed. In addition, the immunofluorescent staining for neuronal-specific markers of MAP2 was 4.6 times (neural induction medium in the presence of PFB-IKVAV) that of the neural induction medium (control) on day 7. From analyzing the expression of neuronal-specific markers in hMSCs, it can be concluded that PFB-IKVAV may be a potential supramolecular biomaterial for biomedical applications.
Collapse
|
7
|
V D, P J S, Rajeev N, S AL, Chandran A, G B G, Sadanandan S. Recent Advances in Peptides-Based Stimuli-Responsive Materials for Biomedical and Therapeutic Applications: A Review. Mol Pharm 2022; 19:1999-2021. [PMID: 35730605 DOI: 10.1021/acs.molpharmaceut.1c00983] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Smart materials are engineered materials that have one or more properties that are introduced in a controlled fashion by surrounding stimuli. Engineering of biomacromolecules like proteins into a smart material call for meticulous artistry. Peptides have grabbed notable attention as a preferred source for smart materials in the medicinal field, promoted by their versatile chemical and biophysical attributes of biocompatibility, and biodegradability. Recent advances in the synthesis of multifunctional peptides have proliferated their application in diverse domains: agriculture, nanotechnology, medicines, biosensors, therapeutics, and soft robotics. Stimuli such as pH, temperature, light, metal ions, and enzymes have vitalized physicochemical properties of peptides by augmented sensitivity, stability, and selectivity. This review elucidates recent (2018-2021) advances in the design and synthesis of smart materials, from stimuli-responsive peptides followed by their biomedical and therapeutic applications.
Collapse
Affiliation(s)
- Devika V
- Department of Chemistry, Amrita Vishwa Vidyapeetham, Amritapuri 690525, India
| | - Sreelekshmi P J
- Department of Chemistry, Amrita Vishwa Vidyapeetham, Amritapuri 690525, India
| | - Niranjana Rajeev
- Department of Chemistry, Amrita Vishwa Vidyapeetham, Amritapuri 690525, India
| | - Aiswarya Lakshmi S
- Department of Chemistry, Amrita Vishwa Vidyapeetham, Amritapuri 690525, India
| | - Amrutha Chandran
- Department of Chemistry, Amrita Vishwa Vidyapeetham, Amritapuri 690525, India
| | - Gouthami G B
- Department of Chemistry, Amrita Vishwa Vidyapeetham, Amritapuri 690525, India
| | - Sandhya Sadanandan
- Department of Chemistry, Amrita Vishwa Vidyapeetham, Amritapuri 690525, India
| |
Collapse
|
8
|
Araki Y, Shirakata H, Nakagawa T, Ubukata T, Yokoyama Y, Kawamura I. Fluorescent hydrogel based on self-assembling acridonylalanine-phenylalanine. CHEM LETT 2022. [DOI: 10.1246/cl.220170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Yuzuha Araki
- Graduate School of Engineering Science, Yokohama National University, 79-5, Tokiwadai, Hodogaya, Yokohama 240-8501, Japan
| | - Hiroki Shirakata
- Graduate School of Engineering Science, Yokohama National University, 79-5, Tokiwadai, Hodogaya, Yokohama 240-8501, Japan
| | - Tetsuya Nakagawa
- Graduate School of Engineering Science, Yokohama National University, 79-5, Tokiwadai, Hodogaya, Yokohama 240-8501, Japan
- Graduate School of Engineering, Yokohama National University, 79-5, Tokiwadai, Hodogaya, Yokohama 240-8501, Japan
| | - Takashi Ubukata
- Graduate School of Engineering Science, Yokohama National University, 79-5, Tokiwadai, Hodogaya, Yokohama 240-8501, Japan
- Graduate School of Engineering, Yokohama National University, 79-5, Tokiwadai, Hodogaya, Yokohama 240-8501, Japan
| | - Yasushi Yokoyama
- Graduate School of Engineering, Yokohama National University, 79-5, Tokiwadai, Hodogaya, Yokohama 240-8501, Japan
| | - Izuru Kawamura
- Graduate School of Engineering Science, Yokohama National University, 79-5, Tokiwadai, Hodogaya, Yokohama 240-8501, Japan
- Graduate School of Engineering, Yokohama National University, 79-5, Tokiwadai, Hodogaya, Yokohama 240-8501, Japan
| |
Collapse
|
9
|
Miki T, Kajiwara K, Nakayama S, Hashimoto M, Mihara H. Effects of Hydrophobic Residues on the Intracellular Self-Assembly of De Novo Designed Peptide Tags and Their Orthogonality. ACS Synth Biol 2022; 11:2144-2153. [PMID: 35302350 DOI: 10.1021/acssynbio.2c00058] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Protein assemblies forming nano- to micro-sized structures underlie versatile biological events in living systems. For mimicking and engineering these protein assemblies through a bottom-up approach, self-assembling peptides (SAPs) that form nanofibril structures via β-sheets serve as potential practical tags. Nevertheless, the development of SAP tags is still in its infancy, and insight into the relationship between peptide sequences and intracellular self-assembly is limited. In this study, we focused on hydrophobic residues in SAPs and examined the self-assembly of SAP-tagged superfolder GFPs (green fluorescent proteins) in COS-7 cells. Based on XEXK (X; hydrophobic amino acids: F, L, I, V, W, or Y) sequence units, we designed a panel of Xn peptides with different hydrophobic residues (X) and chain lengths (n). We observed that the self-assembly propensity, the size of the assemblies, the influence on protein denaturation, and the subcellular localization differed significantly depending on the hydrophobic amino acid. F9, L9, I7, and V13 peptides formed μm-scaled granules, W13 formed small oligomeric clusters in the cytoplasm, and Y15 formed assemblies in the nucleus. In addition, we investigated the orthogonality of their interaction. Strikingly, W13- and Y15-tagged proteins interacted independently and formed two distinct assemblies in cells. Herein, we have demonstrated the great opportunities for rationalizing artificial protein assemblies and orthogonal structures in an intracellular context using the designed SAPs.
Collapse
Affiliation(s)
- Takayuki Miki
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan
| | - Keigo Kajiwara
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan
| | - Sae Nakayama
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan
| | - Masahiro Hashimoto
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan
| | - Hisakazu Mihara
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan
| |
Collapse
|
10
|
Gray VP, Amelung CD, Duti IJ, Laudermilch EG, Letteri RA, Lampe KJ. Biomaterials via peptide assembly: Design, characterization, and application in tissue engineering. Acta Biomater 2022; 140:43-75. [PMID: 34710626 PMCID: PMC8829437 DOI: 10.1016/j.actbio.2021.10.030] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 09/23/2021] [Accepted: 10/20/2021] [Indexed: 12/16/2022]
Abstract
A core challenge in biomaterials, with both fundamental significance and technological relevance, concerns the rational design of bioactive microenvironments. Designed properly, peptides can undergo supramolecular assembly into dynamic, physical hydrogels that mimic the mechanical, topological, and biochemical features of native tissue microenvironments. The relatively facile, inexpensive, and automatable preparation of peptides, coupled with low batch-to-batch variability, motivates the expanded use of assembling peptide hydrogels for biomedical applications. Integral to realizing dynamic peptide assemblies as functional biomaterials for tissue engineering is an understanding of the molecular and macroscopic features that govern assembly, morphology, and biological interactions. In this review, we first discuss the design of assembling peptides, including primary structure (sequence), secondary structure (e.g., α-helix and β-sheets), and molecular interactions that facilitate assembly into multiscale materials with desired properties. Next, we describe characterization tools for elucidating molecular structure and interactions, morphology, bulk properties, and biological functionality. Understanding of these characterization methods enables researchers to access a variety of approaches in this ever-expanding field. Finally, we discuss the biological properties and applications of peptide-based biomaterials for engineering several important tissues. By connecting molecular features and mechanisms of assembling peptides to the material and biological properties, we aim to guide the design and characterization of peptide-based biomaterials for tissue engineering and regenerative medicine. STATEMENT OF SIGNIFICANCE: Engineering peptide-based biomaterials that mimic the topological and mechanical properties of natural extracellular matrices provide excellent opportunities to direct cell behavior for regenerative medicine and tissue engineering. Here we review the molecular-scale features of assembling peptides that result in biomaterials that exhibit a variety of relevant extracellular matrix-mimetic properties and promote beneficial cell-biomaterial interactions. Aiming to inspire and guide researchers approaching this challenge from both the peptide biomaterial design and tissue engineering perspectives, we also present characterization tools for understanding the connection between peptide structure and properties and highlight the use of peptide-based biomaterials in neural, orthopedic, cardiac, muscular, and immune engineering applications.
Collapse
Affiliation(s)
- Vincent P Gray
- Department of Chemical Engineering, University of Virginia, Charlottesville, VA, 22903, United States
| | - Connor D Amelung
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, 22903, United States
| | - Israt Jahan Duti
- Department of Chemical Engineering, University of Virginia, Charlottesville, VA, 22903, United States
| | - Emma G Laudermilch
- Department of Chemical Engineering, University of Virginia, Charlottesville, VA, 22903, United States
| | - Rachel A Letteri
- Department of Chemical Engineering, University of Virginia, Charlottesville, VA, 22903, United States.
| | - Kyle J Lampe
- Department of Chemical Engineering, University of Virginia, Charlottesville, VA, 22903, United States; Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, 22903, United States.
| |
Collapse
|
11
|
Gatto E, Toniolo C, Venanzi M. Peptide Self-Assembled Nanostructures: From Models to Therapeutic Peptides. NANOMATERIALS 2022; 12:nano12030466. [PMID: 35159810 PMCID: PMC8838750 DOI: 10.3390/nano12030466] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/24/2022] [Accepted: 01/26/2022] [Indexed: 11/25/2022]
Abstract
Self-assembly is the most suitable approach to obtaining peptide-based materials on the nano- and mesoscopic scales. Applications span from peptide drugs for personalized therapy to light harvesting and electron conductive media for solar energy production and bioelectronics, respectively. In this study, we will discuss the self-assembly of selected model and bioactive peptides, in particular reviewing our recent work on the formation of peptide architectures of nano- and mesoscopic size in solution and on solid substrates. The hierarchical and cooperative characters of peptide self-assembly will be highlighted, focusing on the structural and dynamical properties of the peptide building blocks and on the nature of the intermolecular interactions driving the aggregation phenomena in a given environment. These results will pave the way for the understanding of the still-debated mechanism of action of an antimicrobial peptide (trichogin GA IV) and the pharmacokinetic properties of a peptide drug (semaglutide) currently in use for the therapy of type-II diabetes.
Collapse
Affiliation(s)
- Emanuela Gatto
- PEPSA-LAB, Department of Chemical Science and Technologies, University of Rome, Tor Vergata, 00133 Rome, Italy;
| | - Claudio Toniolo
- Department of Chemical Sciences, University of Padua, 35131 Padua, Italy;
| | - Mariano Venanzi
- PEPSA-LAB, Department of Chemical Science and Technologies, University of Rome, Tor Vergata, 00133 Rome, Italy;
- Correspondence: ; Tel.: +39-06-7259-4468
| |
Collapse
|
12
|
Piras CC, Kay AG, Genever PG, Fitremann J, Smith DK. Self-assembled gel tubes, filaments and 3D-printing with in situ metal nanoparticle formation and enhanced stem cell growth. Chem Sci 2022; 13:1972-1981. [PMID: 35308847 PMCID: PMC8848986 DOI: 10.1039/d1sc06062g] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 01/16/2022] [Indexed: 12/18/2022] Open
Abstract
This paper reports simple strategies to fabricate self-assembled artificial tubular and filamentous systems from a low molecular weight gelator (LMWG). In the first strategy, tubular ‘core–shell’ gel structures based on the dibenzylidenesorbitol-based LMWG DBS-CONHNH2 were made in combination with the polymer gelator (PG) calcium alginate. In the second approach, gel filaments based on DBS-CONHNH2 alone were prepared by wet spinning at elevated concentrations using a ‘solvent-switch’ approach. The higher concentrations used in wet-spinning prevent the need for a supporting PG. Furthermore, this can be extended into a 3D-printing method, with the printed LMWG objects showing excellent stability for at least a week in water. The LMWG retains its unique ability for in situ precious metal reduction, yielding Au nanoparticles (AuNPs) within the tubes and filaments when they are exposed to AuCl3 solutions. Since the gel filaments have a higher loading of DBS-CONHNH2, they can be loaded with significantly more AuNPs. Cytotoxicity and viability studies on human mesenchymal stem cells show that the DBS-CONHNH2 and DBS-CONHNH2/alginate hybrid gels loaded with AuNPs are biocompatible, with the presence of AuNPs enhancing stem cell metabolism. Taken together, these results indicate that DBS-CONHNH2 can be shaped and 3D-printed, and has considerable potential for use in tissue engineering applications. Simple fabrication and 3D-printing methods are used to generate tubes and filaments from self-assembled gels, which can be loaded in situ with gold nanoparticles, with the resulting gels encouraging stem cell proliferation.![]()
Collapse
Affiliation(s)
- Carmen C. Piras
- Department of Chemistry, University of York, Heslington, York, YO10 5DD, UK
| | - Alasdair G. Kay
- Department of Biology, University of York, Heslington, York, YO10 5DD, UK
| | - Paul G. Genever
- Department of Biology, University of York, Heslington, York, YO10 5DD, UK
| | - Juliette Fitremann
- IMRCP, UMR 5623, CNRS, Université de Toulouse, 118 Route de Narbonne, F-31062 Toulouse, France
| | - David K. Smith
- Department of Chemistry, University of York, Heslington, York, YO10 5DD, UK
| |
Collapse
|
13
|
Ariga K, Lvov Y, Decher G. There is still plenty of room for layer-by-layer assembly for constructing nanoarchitectonics-based materials and devices. Phys Chem Chem Phys 2021; 24:4097-4115. [PMID: 34942636 DOI: 10.1039/d1cp04669a] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Nanoarchitectonics approaches can produce functional materials from tiny units through combination of various processes including atom/molecular manipulation, chemical conversion, self-assembly/self-organization, microfabrication, and bio-inspired procedures. Existing fabrication approaches can be regarded as fitting into the same concept. In particular, the so-called layer-by-layer (LbL) assembly method has huge potential for preparing applicable materials with a great variety of assembling mechanisms. LbL assembly is a multistep process where different components can be organized in planned sequences while simple alignment options provide access to superstructures, for example helical structures, and anisotropies which are important aspects of nanoarchitectonics. In this article, newly-featured examples are extracted from the literature on LbL assembly discussing trends for composite functional materials according to (i) principles and techniques, (ii) composite materials, and (iii) applications. We present our opinion on the present trends, and the prospects of LbL assembly. While this method has already reached a certain maturity, there is still plenty of room for expanding its usefulness for the fabrication of nanoarchitectonics-based materials and devices.
Collapse
Affiliation(s)
- Katsuhiko Ariga
- WPI Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan. .,Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561, Japan
| | - Yuri Lvov
- Institute for Micromanufacturing, Louisiana Tech University, Ruston, LA, 71272, USA
| | - Gero Decher
- WPI Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan. .,Université de Strasbourg, Faculté de Chimie and CNRS Institut Charles Sadron, F-67000 Strasbourg, France.,International Center for Frontier Research in Chemistry, F-67083 Strasbourg, France
| |
Collapse
|
14
|
Suzuki S, Sawada T, Serizawa T. Identification of Water-Soluble Polymers through Discrimination of Multiple Optical Signals from a Single Peptide Sensor. ACS APPLIED MATERIALS & INTERFACES 2021; 13:55978-55987. [PMID: 34735134 DOI: 10.1021/acsami.1c11794] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The pollution of water environments is a worldwide concern. Not only marine pollution by plastic litter, including microplastics, but also the spillage of water-soluble synthetic polymers in wastewater have recently gained increasing attention due to their potential risks to soil and water environments. However, conventional methods to identify polymers dissolved in water are laborious and time-consuming. Here, we propose a simple approach to identify synthetic polymers dissolved in water using a peptide-based molecular sensor with a fluorophore unit. Supervised machine learning of multiple fluorescence signals from the sensor, which specifically or nonspecifically interacted with the polymers, was applied for polymer classification as a proof of principle demonstration. Aqueous solutions containing different polymers or multiple polymer species with different mixture ratios were identified successfully. We found that fluorophore-introduced biomolecular sensors have great potential to provide discriminative information regarding water-soluble polymers. Our approach based on the discrimination of multiple optical signals of water-soluble polymers from peptide-based molecular sensors through machine learning will be applicable to next-generation sensing systems for polymers in wastewater or natural environments.
Collapse
Affiliation(s)
- Seigo Suzuki
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1-H121 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Toshiki Sawada
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1-H121 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
- Precursory Research for Embryonic Science and Technology, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi-shi, Saitama 332-0012, Japan
| | - Takeshi Serizawa
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1-H121 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| |
Collapse
|
15
|
Babut T, Semsarilar M, Rolland M, Quemener D. Nano-Fibrous Networks from Co-Assembly of Amphiphilic Peptide and Polyelectrolyte. Polymers (Basel) 2021; 13:polym13223983. [PMID: 34833282 PMCID: PMC8621722 DOI: 10.3390/polym13223983] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/09/2021] [Accepted: 11/16/2021] [Indexed: 12/02/2022] Open
Abstract
Organize the matter on an increasingly small scale is sought in order to increase the performance of materials. In the case of porous materials, such as filtration membranes, a compromise must be found between the selectivity provided by this nanostructuring and a permeability in particular linked to the existing pore volume. In this work, we propose an innovative waterborne approach consisting in co-assembling peptide amphiphiles (PA) which will provide nanostructuring and polyelectrolytes which will provide them with sufficient mechanical properties to sustain water pressure. C16-V3A3K3G-NH2 PA nanocylinders were synthesized and co-assembled with poly(sodium 4-styrenesulfonate) (PSSNa) into porous nano-fibrous network via electrostatic interactions. The ratio between C16-V3A3K3G-NH2 and PSSNa was studied to optimize the material structure. Since spontaneous gelation between the two precursors does not allow the material to be shaped, various production methods have been studied, in particular via tape casting and spray-coating. Whereas self-supported membranes were mechanically weak, co-assemblies supported onto commercial ultrafiltration membranes could sustain water pressure up to 3 bars while a moderate permeability was measured confirming the existence of a percolated network. The produced membrane material falls into the ultrafiltration range with a pore radius of about 7.6 nm.
Collapse
|
16
|
Miki T, Hashimoto M, Nakai T, Mihara H. A guide-tag system controlling client enrichment into Y15 peptide-based granules for an in-cell protein recruitment assay. Chem Commun (Camb) 2021; 57:11338-11341. [PMID: 34642717 DOI: 10.1039/d1cc03450b] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Self-assembling peptides (SAPs) are valuable building blocks for the fabrication of artificial supramolecules. We developed a guide-tag system that concentrates client proteins into SAP-based scaffolds in cellular environments at various enrichment levels. This system provides a tool to analyse the protein-protein interactions caused by protein clustering in cells.
Collapse
Affiliation(s)
- Takayuki Miki
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan.
| | - Masahiro Hashimoto
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan.
| | - Taichi Nakai
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan.
| | - Hisakazu Mihara
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan.
| |
Collapse
|
17
|
Feng R, Ni R, Chau Y. Altered Peptide Self-Assembly and Co-Assembly with DNA by Modification of Aromatic Residues. ChemMedChem 2021; 16:3559-3564. [PMID: 34528415 DOI: 10.1002/cmdc.202100440] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 09/14/2021] [Indexed: 01/18/2023]
Abstract
Aromatic residues are widely used as building blocks for driving self-assemblies in natural and designer biomaterials. The noncovalent interactions involving aromatic rings determine proteins' structure and biofunction. Here, we studied the effects of changes in the proximity of the aromatic rings in a self-assembling peptide for modulating interactions involving the aromatic residues. By changing the distance between the aromatic ring and peptide backbone and replacing the side chain with a sulfur atom, we altered the nanostructures and gene transfection efficiency of peptide-DNA co-assemblies. This study demonstrates the significance of subtle alterations in aromatic interactions and facilitates deeper understanding of the aromatic-involving interactions.
Collapse
Affiliation(s)
- Ruilu Feng
- Department of Chemical and Biological Engineering, Hong Kong University of Science and Technology, Clearwater Bay, Kowloon, Hong Kong, China
| | - Rong Ni
- Department of Chemical and Biological Engineering, Hong Kong University of Science and Technology, Clearwater Bay, Kowloon, Hong Kong, China.,Hong Kong Branch of the Guangdong Southern Marine Science and Engineering Laboratory (Guangzhou), Hong Kong University of Science and Technology, Clearwater Bay, Kowloon, Hong Kong, China
| | - Ying Chau
- Department of Chemical and Biological Engineering, Hong Kong University of Science and Technology, Clearwater Bay, Kowloon, Hong Kong, China
| |
Collapse
|
18
|
Hata Y, Serizawa T. Robust Gels Composed of Self-Assembled Cello-oligosaccharide Networks. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2021. [DOI: 10.1246/bcsj.20210234] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Yuuki Hata
- Division of Biomedical Engineering, National Defense Medical College Research Institute, 3-2 Namiki, Tokorozawa, Saitama 359-8513, Japan
| | - Takeshi Serizawa
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1-H121 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| |
Collapse
|
19
|
Biofunctional supramolecular hydrogels fabricated from a short self-assembling peptide modified with bioactive sequences for the 3D culture of breast cancer MCF-7 cells. Bioorg Med Chem 2021; 46:116345. [PMID: 34416510 DOI: 10.1016/j.bmc.2021.116345] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/27/2021] [Accepted: 07/30/2021] [Indexed: 11/24/2022]
Abstract
Self-assembling peptides are a type of molecule with promise as scaffold materials for cancer cell engineering. We have reported a short self-assembling peptide, (FFiK)2, that had a symmetric structure connected via a urea bond. In this study, we functionalized (FFiK)2 by conjugation with various bioactive sequences for the 3D culture of cancer cells. Four sequences, RGDS and PHSRN derived from fibronectin and AG73 and C16 derived from laminin, were selected as bioactive sequences to promote cell adhesion, proliferation or migration. (FFiK)2, and its derivatives could co-assemble into supramolecular nanofibers displaying bioactive sequences and form hydrogels. MCF-7 cells were encapsulated in functionalized peptide hydrogels without significant cytotoxicity. Encapsulated MCF-7 cells proliferated under 3D culture conditions. MCF-7 cells proliferated with spheroid formation in hydrogels that displayed RGDS or PHSRN sequences, which will be able to be applied to drug screening targeting cancer stem cells. On the other hand, since MCF-7 cells migrated in a 3D hydrogel that displayed AG73, we could construct the metastatic model of breast cancer cells, which is helpful for the elucidation of breast cancer cells and drug screening against cancer cells under metastatic state. Therefore, functionalized (FFiK)2 hydrogels with various bioactive sequences can be used to regulate cancer cell function for tumor engineering and drug screening.
Collapse
|
20
|
Li L, Xie L, Zheng R, Sun R. Self-Assembly Dipeptide Hydrogel: The Structures and Properties. Front Chem 2021; 9:739791. [PMID: 34540806 PMCID: PMC8440803 DOI: 10.3389/fchem.2021.739791] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 08/09/2021] [Indexed: 01/20/2023] Open
Abstract
Self-assembly peptide-based hydrogels are well known and popular in biomedical applications due to the fact that they are readily controllable and have biocompatibility properties. A dipeptide is the shortest self-assembling motif of peptides. Due to its small size and simple synthesis method, dipeptide can provide a simple and easy-to-use method to study the mechanism of peptides' self-assembly. This review describes the design and structures of self-assembly linear dipeptide hydrogels. The strategies for preparing the new generation of linear dipeptide hydrogels can be divided into three categories based on the modification site of dipeptide: 1) COOH-terminal and N-terminal modified dipeptide, 2) C-terminal modified dipeptide, and 3) uncapped dipeptide. With a deeper understanding of the relationship between the structures and properties of dipeptides, we believe that dipeptide hydrogels have great potential application in preparing minimal biocompatible materials.
Collapse
Affiliation(s)
- Liangchun Li
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, China
| | - Li Xie
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, China
| | - Renlin Zheng
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, China
| | - Rongqin Sun
- School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang, China
| |
Collapse
|
21
|
Maji S, Shrestha LK, Ariga K. Nanoarchitectonics for Hierarchical Fullerene Nanomaterials. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2146. [PMID: 34443975 PMCID: PMC8400563 DOI: 10.3390/nano11082146] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 08/19/2021] [Accepted: 08/19/2021] [Indexed: 12/12/2022]
Abstract
Nanoarchitectonics is a universal concept to fabricate functional materials from nanoscale building units. Based on this concept, fabrications of functional materials with hierarchical structural motifs from simple nano units of fullerenes (C60 and C70 molecules) are described in this review article. Because fullerenes can be regarded as simple and fundamental building blocks with mono-elemental and zero-dimensional natures, these demonstrations for hierarchical functional structures impress the high capability of the nanoarchitectonics approaches. In fact, various hierarchical structures such as cubes with nanorods, hole-in-cube assemblies, face-selectively etched assemblies, and microstructures with mesoporous frameworks are fabricated by easy fabrication protocols. The fabricated fullerene assemblies have been used for various applications including volatile organic compound sensing, microparticle catching, supercapacitors, and photoluminescence systems.
Collapse
Affiliation(s)
- Subrata Maji
- Center for Functional Sensor & Actuator (CFSN), Research Center for Functional Materials, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044, Japan;
| | - Lok Kumar Shrestha
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044, Japan;
| | - Katsuhiko Ariga
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044, Japan;
- Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba 277-0827, Japan
| |
Collapse
|
22
|
Firipis K, Nisbet DR, Franks SJ, Kapsa RMI, Pirogova E, Williams RJ, Quigley A. Enhancing Peptide Biomaterials for Biofabrication. Polymers (Basel) 2021; 13:polym13162590. [PMID: 34451130 PMCID: PMC8400132 DOI: 10.3390/polym13162590] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/30/2021] [Accepted: 07/30/2021] [Indexed: 12/20/2022] Open
Abstract
Biofabrication using well-matched cell/materials systems provides unprecedented opportunities for dealing with human health issues where disease or injury overtake the body’s native regenerative abilities. Such opportunities can be enhanced through the development of biomaterials with cues that appropriately influence embedded cells into forming functional tissues and organs. In this context, biomaterials’ reliance on rigid biofabrication techniques needs to support the incorporation of a hierarchical mimicry of local and bulk biological cues that mimic the key functional components of native extracellular matrix. Advances in synthetic self-assembling peptide biomaterials promise to produce reproducible mimics of tissue-specific structures and may go some way in overcoming batch inconsistency issues of naturally sourced materials. Recent work in this area has demonstrated biofabrication with self-assembling peptide biomaterials with unique biofabrication technologies to support structural fidelity upon 3D patterning. The use of synthetic self-assembling peptide biomaterials is a growing field that has demonstrated applicability in dermal, intestinal, muscle, cancer and stem cell tissue engineering.
Collapse
Affiliation(s)
- Kate Firipis
- Biofab3D, Aikenhead Centre for Medical Discovery, St Vincent’s Hospital Melbourne, Fitzroy, VIC 3065, Australia; (K.F.); (R.M.I.K.); (E.P.)
- Biomedical and Electrical Engineering, School of Engineering, RMIT University, Melbourne, VIC 3000, Australia
| | - David R. Nisbet
- Laboratory of Advanced Biomaterials, The Australian National University, Acton, Canberra, ACT 2601, Australia; (D.R.N.); (S.J.F.)
- The Graeme Clark Institute, Faculty of Engineering and Information Technology, Melbourne, VIC 3000, Australia
- Faculty of Medicine, Dentistry and Health Services, The University of Melbourne, Melbourne, VIC 3000, Australia
| | - Stephanie J. Franks
- Laboratory of Advanced Biomaterials, The Australian National University, Acton, Canberra, ACT 2601, Australia; (D.R.N.); (S.J.F.)
| | - Robert M. I. Kapsa
- Biofab3D, Aikenhead Centre for Medical Discovery, St Vincent’s Hospital Melbourne, Fitzroy, VIC 3065, Australia; (K.F.); (R.M.I.K.); (E.P.)
- Biomedical and Electrical Engineering, School of Engineering, RMIT University, Melbourne, VIC 3000, Australia
- Department of Medicine, Melbourne University, St Vincent’s Hospital Melbourne, Fitzroy, VIC 3064, Australia
| | - Elena Pirogova
- Biofab3D, Aikenhead Centre for Medical Discovery, St Vincent’s Hospital Melbourne, Fitzroy, VIC 3065, Australia; (K.F.); (R.M.I.K.); (E.P.)
- Biomedical and Electrical Engineering, School of Engineering, RMIT University, Melbourne, VIC 3000, Australia
| | - Richard J. Williams
- Biofab3D, Aikenhead Centre for Medical Discovery, St Vincent’s Hospital Melbourne, Fitzroy, VIC 3065, Australia; (K.F.); (R.M.I.K.); (E.P.)
- Institute of Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Waurn Ponds, VIC 3216, Australia
- Correspondence: (R.J.W.); (A.Q.)
| | - Anita Quigley
- Biofab3D, Aikenhead Centre for Medical Discovery, St Vincent’s Hospital Melbourne, Fitzroy, VIC 3065, Australia; (K.F.); (R.M.I.K.); (E.P.)
- Biomedical and Electrical Engineering, School of Engineering, RMIT University, Melbourne, VIC 3000, Australia
- Department of Medicine, Melbourne University, St Vincent’s Hospital Melbourne, Fitzroy, VIC 3064, Australia
- Correspondence: (R.J.W.); (A.Q.)
| |
Collapse
|
23
|
Chen G, Shrestha LK, Ariga K. Zero-to-Two Nanoarchitectonics: Fabrication of Two-Dimensional Materials from Zero-Dimensional Fullerene. Molecules 2021; 26:molecules26154636. [PMID: 34361787 PMCID: PMC8348140 DOI: 10.3390/molecules26154636] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/26/2021] [Accepted: 07/26/2021] [Indexed: 11/16/2022] Open
Abstract
Nanoarchitectonics of two-dimensional materials from zero-dimensional fullerenes is mainly introduced in this short review. Fullerenes are simple objects with mono-elemental (carbon) composition and zero-dimensional structure. However, fullerenes and their derivatives can create various types of two-dimensional materials. The exemplified approaches demonstrated fabrications of various two-dimensional materials including size-tunable hexagonal fullerene nanosheet, two-dimensional fullerene nano-mesh, van der Waals two-dimensional fullerene solid, fullerene/ferrocene hybrid hexagonal nanosheet, fullerene/cobalt porphyrin hybrid nanosheet, two-dimensional fullerene array in the supramolecular template, two-dimensional van der Waals supramolecular framework, supramolecular fullerene liquid crystal, frustrated layered self-assembly from two-dimensional nanosheet, and hierarchical zero-to-one-to-two dimensional fullerene assembly for cell culture.
Collapse
Affiliation(s)
- Guoping Chen
- Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561, Japan;
| | - Lok Kumar Shrestha
- WPI Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Ibaraki, Tsukuba 305-0044, Japan;
| | - Katsuhiko Ariga
- Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561, Japan;
- WPI Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Ibaraki, Tsukuba 305-0044, Japan;
- Correspondence:
| |
Collapse
|
24
|
Yamaguchi S, Ohashi N, Minamihata K, Nagamune T. Photodegradable avidin-biotinylated polymer conjugate hydrogels for cell manipulation. Biomater Sci 2021; 9:6416-6424. [PMID: 34195701 DOI: 10.1039/d1bm00585e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Protein-synthetic polymer hybrid hydrogels crosslinked via protein-ligand binding are promising materials for the three-dimensional culture of various cells, while photo-responsive hydrogels have been widely used for the spatio-temporal control of cell functions and patterning. Photo-responsive protein-polymer hybrid hydrogels are therefore attractive candidates for use in cell and artificial tissue fabrication; however, no examples combining these properties have been reported to date. Herein, a photodegradable hydrogel consisting of avidin and biotinylated polyethylene glycol (PEG) was developed as a multi-functional matrix for cell culture and sorting. A four-branched PEG with a biotinylated photocleavable group at the end of each chain was crosslinked with avidin to produce a photodegradable hydrogel. A cytokine-dependent immunocyte was successfully cultured in the hydrogel by supplying cytokine from a medium layered on the hydrogel. Additionally, the adhesion and survival of fibroblasts could be controlled by decorating the hydrogel with a biotinylated cell-adhesive peptide. Cells embedded in the hydrogels could be recovered without cell damage as a result of light-induced hydrogel degradation. Moreover, model target cells expressing red fluorescent protein were selectively liberated from a hydrogel containing cells of different colors by irradiating with a targeted light. Owing to both the selective biotin-binding ability of avidin and the photocleavable properties of the synthetic polymer, the hydrogels were easy to prepare and decorate with functional molecules; they provided an internal structure suitable for cell culture, and allowed light-guided cell manipulation. The hydrogels are therefore expected to contribute to various cell fabrication processes as useful cell engineering and sorting tools.
Collapse
Affiliation(s)
- Satoshi Yamaguchi
- Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan. and PRESTO, Japan Science and Technology Agency (JST), 4-1-8 Hon-cho, Kawaguchi, Saitama 351-0198, Japan
| | - Noriyuki Ohashi
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Kosuke Minamihata
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Moto-oka, Fukuoka 819-0395, Japan
| | - Teruyuki Nagamune
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| |
Collapse
|
25
|
Firipis K, Boyd-Moss M, Long B, Dekiwadia C, Hoskin W, Pirogova E, Nisbet DR, Kapsa RMI, Quigley AF, Williams RJ. Tuneable Hybrid Hydrogels via Complementary Self-Assembly of a Bioactive Peptide with a Robust Polysaccharide. ACS Biomater Sci Eng 2021; 7:3340-3350. [PMID: 34125518 DOI: 10.1021/acsbiomaterials.1c00675] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Synthetic materials designed for improved biomimicry of the extracellular matrix must contain fibrous, bioactive, and mechanical cues. Self-assembly of low molecular weight gelator (LMWG) peptides Fmoc-DIKVAV (Fmoc-aspartic acid-isoleucine-lysine-valine-alanine-valine) and Fmoc-FRGDF (Fmoc-phenylalanine-arginine-glycine-aspartic acid-phenylalanine) creates fibrous and bioactive hydrogels. Polysaccharides such as agarose are biocompatible, degradable, and non-toxic. Agarose and these Fmoc-peptides have both demonstrated efficacy in vitro and in vivo. These materials have complementary properties; agarose has known mechanics in the physiological range but is inert and would benefit from bioactive and topographical cues found in the fibrous, protein-rich extracellular matrix. Fmoc-DIKVAV and Fmoc-FRGDF are synthetic self-assembling peptides that present bioactive cues "IKVAV" and "RGD" designed from the ECM proteins laminin and fibronectin. The work presented here demonstrates that the addition of agarose to Fmoc-DIKVAV and Fmoc-FRGDF results in physical characteristics that are dependent on agarose concentration. The networks are peptide-dominated at low agarose concentrations, and agarose-dominated at high agarose concentrations, resulting in distinct changes in structural morphology. Interestingly, at mid-range agarose concentration, a hybrid network is formed with structural similarities to both peptide and agarose systems, demonstrating reinforced mechanical properties. Bioactive-LMWG polysaccharide hydrogels demonstrate controllable microenvironmental properties, providing the ability for tissue-specific biomaterial design for tissue engineering and 3D cell culture.
Collapse
Affiliation(s)
- Kate Firipis
- Biofab3D, Aikenhead Centre for Medical Discovery, St Vincent's Hospital Melbourne, Fitzroy, VIC 3065, Australia.,Biomedical and Electrical Engineering, School of Engineering, RMIT University, Melbourne, VIC 3000, Australia
| | - Mitchell Boyd-Moss
- Biofab3D, Aikenhead Centre for Medical Discovery, St Vincent's Hospital Melbourne, Fitzroy, VIC 3065, Australia.,Biomedical and Electrical Engineering, School of Engineering, RMIT University, Melbourne, VIC 3000, Australia.,Institute of Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Waurn Ponds, VIC 3216, Australia
| | - Benjamin Long
- Faculty of Science and Technology, Federation University, Mt. Helen, VIC 3350, Australia
| | - Chaitali Dekiwadia
- RMIT Microscopy and MicroAnalysis Facility (RMMF), RMIT University, Melbourne, Vic 3000, Australia
| | - William Hoskin
- Faculty of Science and Technology, Federation University, Mt. Helen, VIC 3350, Australia
| | - Elena Pirogova
- Biomedical and Electrical Engineering, School of Engineering, RMIT University, Melbourne, VIC 3000, Australia
| | - David R Nisbet
- Laboratory of Advanced Biomaterials, The Australian National University, Acton, Canberra 2601, Australia
| | - Robert M I Kapsa
- Biofab3D, Aikenhead Centre for Medical Discovery, St Vincent's Hospital Melbourne, Fitzroy, VIC 3065, Australia.,Biomedical and Electrical Engineering, School of Engineering, RMIT University, Melbourne, VIC 3000, Australia.,ARC Centre of Excellence in Electromaterials Science, Department of Medicine, Melbourne University, St Vincent's Hospital Melbourne, Fitzroy, Victoria 3065, Australia.,Department of Medicine, St Vincent's Hospital Melbourne, University of Melbourne, Fitzroy, Vic 3065, Australia
| | - Anita F Quigley
- Biofab3D, Aikenhead Centre for Medical Discovery, St Vincent's Hospital Melbourne, Fitzroy, VIC 3065, Australia.,Biomedical and Electrical Engineering, School of Engineering, RMIT University, Melbourne, VIC 3000, Australia.,ARC Centre of Excellence in Electromaterials Science, Department of Medicine, Melbourne University, St Vincent's Hospital Melbourne, Fitzroy, Victoria 3065, Australia.,Department of Medicine, St Vincent's Hospital Melbourne, University of Melbourne, Fitzroy, Vic 3065, Australia
| | - Richard J Williams
- Biofab3D, Aikenhead Centre for Medical Discovery, St Vincent's Hospital Melbourne, Fitzroy, VIC 3065, Australia.,Institute of Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Waurn Ponds, VIC 3216, Australia
| |
Collapse
|
26
|
Hong H, Zou Q, Liu Y, Wang S, Shen G, Yan X. Supramolecular Nanodrugs Based on Covalent Assembly of Therapeutic Peptides toward In Vitro Synergistic Anticancer Therapy. ChemMedChem 2021; 16:2381-2385. [PMID: 33908190 DOI: 10.1002/cmdc.202100236] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Indexed: 01/07/2023]
Abstract
Therapeutic peptides have attracted significant attention in clinical applications due to their advantages in biological origination and good biocompatibility. However, the therapeutic performance of peptides is usually hindered by their short half-lives in blood and inferior activity. Herein, supramolecular nanodrugs of therapeutic peptides are constructed by covalent assembly of chemotherapeutic peptides through genipin cross-linking. The resulting nanodrugs have intense absorbance in the near-infrared region and high photothermal conversion efficiencies, leading to the possibility of photothermal therapy. The combination of photothermal therapy and chemotherapy using the nanodrugs shows synergistic therapeutic effects on cancer cells. Hence, covalent assembly not only maintains the chemotherapeutic activities of the peptides but also triggers supramolecular photothermal effects, demonstrating that the covalent assembly of therapeutic peptides through genipin cross-linking is an efficient approach in constructing supramolecular nanodrugs toward synergistic anticancer therapy.
Collapse
Affiliation(s)
- Huadong Hong
- Anhui Provincial Engineering Research Center for Polysaccharide Drugs Institute of Synthesis and Application of Medical Materials Department of Pharmacy, Wannan Medical College Jinghu, Wuhu, 241001, Anhui, China
| | - Qianli Zou
- State Key Laboratory of Biochemical Engineering Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China.,Center of Advanced Pharmaceuticals and Medical Materials School of Pharmacy, Anhui Medical University, Hefei, 230032, China
| | - Yamei Liu
- State Key Laboratory of Biochemical Engineering Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| | - Shaozhen Wang
- Anhui Provincial Engineering Research Center for Polysaccharide Drugs Institute of Synthesis and Application of Medical Materials Department of Pharmacy, Wannan Medical College Jinghu, Wuhu, 241001, Anhui, China
| | - Guizhi Shen
- Nanjing IPE Institute of Green Manufacturing Industry, Nanjing, 211135, China
| | - Xuehai Yan
- State Key Laboratory of Biochemical Engineering Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| |
Collapse
|
27
|
Miki T, Nakai T, Hashimoto M, Kajiwara K, Tsutsumi H, Mihara H. Intracellular artificial supramolecules based on de novo designed Y15 peptides. Nat Commun 2021; 12:3412. [PMID: 34099696 DOI: 10.1038/s41467-021-23794-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 05/17/2021] [Indexed: 12/11/2022] Open
Abstract
De novo designed self-assembling peptides (SAPs) are promising building blocks of supramolecular biomaterials, which can fulfill a wide range of applications, such as scaffolds for tissue culture, three-dimensional cell culture, and vaccine adjuvants. Nevertheless, the use of SAPs in intracellular spaces has mostly been unexplored. Here, we report a self-assembling peptide, Y15 (YEYKYEYKYEYKYEY), which readily forms β-sheet structures to facilitate bottom-up synthesis of functional protein assemblies in living cells. Superfolder green fluorescent protein (sfGFP) fused to Y15 assembles into fibrils and is observed as fluorescent puncta in mammalian cells. Y15 self-assembly is validated by fluorescence anisotropy and pull-down assays. By using the Y15 platform, we demonstrate intracellular reconstitution of Nck assembly, a Src-homology 2 and 3 domain-containing adaptor protein. The artificial clusters of Nck induce N-WASP (neural Wiskott-Aldrich syndrome protein)-mediated actin polymerization, and the functional importance of Nck domain valency and density is evaluated.
Collapse
Affiliation(s)
- Takayuki Miki
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Kanagawa, Japan.
| | - Taichi Nakai
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Kanagawa, Japan
| | - Masahiro Hashimoto
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Kanagawa, Japan
| | - Keigo Kajiwara
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Kanagawa, Japan
| | - Hiroshi Tsutsumi
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Kanagawa, Japan
| | - Hisakazu Mihara
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Kanagawa, Japan
| |
Collapse
|
28
|
Serizawa T, Tanaka S, Sawada T. Control of parallel versus antiparallel molecular arrangements in crystalline assemblies of alkyl β-cellulosides. J Colloid Interface Sci 2021; 601:505-516. [PMID: 34090028 DOI: 10.1016/j.jcis.2021.05.117] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 05/15/2021] [Accepted: 05/20/2021] [Indexed: 11/28/2022]
Abstract
HYPOTHESIS The precise control of parallel versus antiparallel molecular arrangements in synthetic assemblies of biorelated molecules is an attractive research focus from both scientific and technological viewpoints. However, little is known about cellulose-based synthetic assemblies. We hypothesized the existence of potential parameters, such as temperature, salt concentration, salt species, and solvent species, for controlling the molecular arrangement in assemblies of alkyl β-cellulosides with different alkyl chain lengths. EXPERIMENTAL The self-assembly of alkyl β-cellulosides was triggered by neutralization-induced water insolubilization. The crystal structures of the cellulose moieties in the assemblies were characterized by attenuated total reflection-Fourier transform infrared absorption spectroscopy and wide-angle X-ray diffraction measurements. The morphologies of the assemblies were also characterized by scanning electron, atomic force, and transmission electron microscopy. FINDINGS The temperature for the self-assembly, the concentration and species of inorganic salt in the self-assembly solution, and the solvent species (namely, the addition of water-miscible organic solvents into the self-assembly solution) strongly affected the molecular arrangement of the assemblies. The observations suggested that hydrophobic effects between the alkyl groups of the alkyl β-cellulosides and/or interactions of the alkyl β-cellulosides with solvent species were potential factors for controlling the molecular arrangement.
Collapse
Affiliation(s)
- Takeshi Serizawa
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan.
| | - Shoki Tanaka
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Toshiki Sawada
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan; Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi-shi, Saitama 332-0012, Japan
| |
Collapse
|
29
|
Kuddannaya S, Zhu W, Chu C, Singh A, Walczak P, Bulte JWM. In Vivo Imaging of Allografted Glial-Restricted Progenitor Cell Survival and Hydrogel Scaffold Biodegradation. ACS APPLIED MATERIALS & INTERFACES 2021; 13:23423-23437. [PMID: 33978398 PMCID: PMC9440547 DOI: 10.1021/acsami.1c03415] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Transplanted glial-restricted progenitor (GRP) cells have potential to focally replace defunct astrocytes and produce remyelinating oligodendrocytes to avert neuronal death and dysfunction. However, most central nervous system cell therapeutic paradigms are hampered by high initial cell death and a host anti-graft immune response. We show here that composite hyaluronic acid-based hydrogels of tunable mechanical strengths can significantly improve transplanted GRP survival and differentiation. Allogeneic GRPs expressing green fluorescent protein and firefly luciferase were scaffolded in optimized hydrogel formulations and transplanted intracerebrally into immunocompetent BALB/c mice followed by serial in vivo bioluminescent imaging and chemical exchange saturation transfer magnetic resonance imaging (CEST MRI). We demonstrate that gelatin-sensitive CEST MRI can be exploited to monitor hydrogel scaffold degradation in vivo for ∼5 weeks post transplantation without necessitating exogenous labeling. Hydrogel scaffolding of GRPs resulted in a 4.5-fold increase in transplanted cell survival at day 32 post transplantation compared to naked cells. Histological analysis showed significant enhancement of cell proliferation as well as Olig2+ and GFAP+ cell differentiation for scaffolded cells compared to naked cells, with reduced host immunoreactivity. Hence, hydrogel scaffolding of transplanted GRPs in conjunction with serial in vivo imaging of cell survival and hydrogel degradation has potential for further advances in glial cell therapy.
Collapse
Affiliation(s)
- Shreyas Kuddannaya
- The Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, The Johns Hopkins School of Medicine, Baltimore, Maryland 21205, United States
- Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, The Johns Hopkins School of Medicine, Baltimore, Maryland 21205, United States
| | - Wei Zhu
- The Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, The Johns Hopkins School of Medicine, Baltimore, Maryland 21205, United States
- Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, The Johns Hopkins School of Medicine, Baltimore, Maryland 21205, United States
| | - Chengyan Chu
- The Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, The Johns Hopkins School of Medicine, Baltimore, Maryland 21205, United States
- Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, The Johns Hopkins School of Medicine, Baltimore, Maryland 21205, United States
| | - Anirudha Singh
- Department of Urology, the James Buchanan Brady Urological Institute, The Johns Hopkins School of Medicine, Baltimore, Maryland 21287, United States
- Department of Chemical & Biomolecular Engineering, The Johns Hopkins School of Medicine, Baltimore, Maryland 21205, United States
| | - Piotr Walczak
- Center for Advanced Imaging Research, Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland, Baltimore, Maryland 21201, United States
| | - Jeff W M Bulte
- The Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, The Johns Hopkins School of Medicine, Baltimore, Maryland 21205, United States
- Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, The Johns Hopkins School of Medicine, Baltimore, Maryland 21205, United States
- Department of Chemical & Biomolecular Engineering, The Johns Hopkins School of Medicine, Baltimore, Maryland 21205, United States
- Department of Biomedical Engineering, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
- Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| |
Collapse
|
30
|
Ariga K, Fakhrullin R. Nanoarchitectonics on living cells. RSC Adv 2021; 11:18898-18914. [PMID: 35478610 PMCID: PMC9033578 DOI: 10.1039/d1ra03424c] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 05/21/2021] [Indexed: 12/12/2022] Open
Abstract
In this review article, the recent examples of nanoarchitectonics on living cells are briefly explained. Not limited to conventional polymers, functional polymers, biomaterials, nanotubes, nanoparticles (conventional and magnetic ones), various inorganic substances, metal-organic frameworks (MOFs), and other advanced materials have been used as components for nanoarchitectonic decorations for living cells. Despite these artificial processes, the cells can remain active or remain in hibernation without being killed. In most cases, basic functions of the cells are preserved and their resistances against external assaults are much enhanced. The possibilities of nanoarchitectonics on living cells would be high, equal to functional modifications with conventional materials. Living cells can be regarded as highly functionalized objects and have indispensable contributions to future materials nanoarchitectonics.
Collapse
Affiliation(s)
- Katsuhiko Ariga
- WPI Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS) 1-1 Namiki Tsukuba Ibaraki 305-0044 Japan
- Graduate School of Frontier Sciences, The University of Tokyo 5-1-5 Kashiwanoha Kashiwa Chiba 277-8561 Japan
| | - Rawil Fakhrullin
- Institute of Fundamental Medicine and Biology, Kazan Federal University Kreml uramı 18 Kazan 42000 Republic of Tatarstan Russian Federation
| |
Collapse
|
31
|
Abstract
In science and technology today, the crucial importance of the regulation of nanoscale objects and structures is well recognized. The production of functional material systems using nanoscale units can be achieved via the fusion of nanotechnology with the other research disciplines. This task is a part of the emerging concept of nanoarchitectonics, which is a concept moving beyond the area of nanotechnology. The concept of nanoarchitectonics is supposed to involve the architecting of functional materials using nanoscale units based on the principles of nanotechnology. In this focus article, the essences of nanotechnology and nanoarchitectonics are first explained, together with their historical backgrounds. Then, several examples of material production based on the concept of nanoarchitectonics are introduced via several approaches: (i) from atomic switches to neuromorphic networks; (ii) from atomic nanostructure control to environmental and energy applications; (iii) from interfacial processes to devices; and (iv) from biomolecular assemblies to life science. Finally, perspectives relating to the final goals of the nanoarchitectonics approach are discussed.
Collapse
Affiliation(s)
- Katsuhiko Ariga
- WPI Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan. and Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561, Japan
| |
Collapse
|
32
|
Kaur J, Mishra V, Singh SK, Gulati M, Kapoor B, Chellappan DK, Gupta G, Dureja H, Anand K, Dua K, Khatik GL, Gowthamarajan K. Harnessing amphiphilic polymeric micelles for diagnostic and therapeutic applications: Breakthroughs and bottlenecks. J Control Release 2021; 334:64-95. [PMID: 33887283 DOI: 10.1016/j.jconrel.2021.04.014] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/12/2021] [Accepted: 04/15/2021] [Indexed: 12/15/2022]
Abstract
Amphiphilic block copolymers are widely utilized in the design of formulations owing to their unique physicochemical properties, flexible structures and functional chemistry. Amphiphilic polymeric micelles (APMs) formed from such copolymers have gained attention of the drug delivery scientists in past few decades for enhancing the bioavailability of lipophilic drugs, molecular targeting, sustained release, stimuli-responsive properties, enhanced therapeutic efficacy and reducing drug associated toxicity. Their properties including ease of surface modification, high surface area, small size, and enhanced permeation as well as retention (EPR) effect are mainly responsible for their utilization in the diagnosis and therapy of various diseases. However, some of the challenges associated with their use are premature drug release, low drug loading capacity, scale-up issues and their poor stability that need to be addressed for their wider clinical utility and commercialization. This review describes comprehensively their physicochemical properties, various methods of preparation, limitations followed by approaches employed for the development of optimized APMs, the impact of each preparation technique on the physicochemical properties of the resulting APMs as well as various biomedical applications of APMs. Based on the current scenario of their use in treatment and diagnosis of diseases, the directions in which future studies need to be carried out to explore their full potential are also discussed.
Collapse
Affiliation(s)
- Jaskiran Kaur
- School of Pharmaceutical sciences, Lovely Professional University, Jalandhar-Delhi G.T Road, Phagwara, Punjab, India
| | - Vijay Mishra
- School of Pharmaceutical sciences, Lovely Professional University, Jalandhar-Delhi G.T Road, Phagwara, Punjab, India
| | - Sachin Kumar Singh
- School of Pharmaceutical sciences, Lovely Professional University, Jalandhar-Delhi G.T Road, Phagwara, Punjab, India.
| | - Monica Gulati
- School of Pharmaceutical sciences, Lovely Professional University, Jalandhar-Delhi G.T Road, Phagwara, Punjab, India
| | - Bhupinder Kapoor
- School of Pharmaceutical sciences, Lovely Professional University, Jalandhar-Delhi G.T Road, Phagwara, Punjab, India
| | | | - Gaurav Gupta
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura Mahal Road, Jaipur, India
| | - Harish Dureja
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, Haryana, India
| | - Krishnan Anand
- Department of Chemical Pathology, School of Pathology, Faculty of Health Sciences and National Health Laboratory Service, University of the Free State, Bloemfontein, South Africa
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Gopal L Khatik
- National Institute of Pharmaceutical Education and Research, Bijnor-Sisendi road, Sarojini Nagar, Lucknow, Uttar Pradesh 226301, India
| | - Kuppusamy Gowthamarajan
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamil Nadu, India; Centre of Excellence in Nanoscience & Technology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamil Nadu, India
| |
Collapse
|
33
|
Ariga K, Shionoya M. Nanoarchitectonics for Coordination Asymmetry and Related Chemistry. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2021. [DOI: 10.1246/bcsj.20200362] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Katsuhiko Ariga
- World Premier International (WPI) Research Centre for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
- Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561, Japan
| | - Mitsuhiko Shionoya
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
34
|
Ariga K. Progress in Molecular Nanoarchitectonics and Materials Nanoarchitectonics. Molecules 2021; 26:1621. [PMID: 33804013 PMCID: PMC7998694 DOI: 10.3390/molecules26061621] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/12/2021] [Accepted: 03/12/2021] [Indexed: 11/24/2022] Open
Abstract
Although various synthetic methodologies including organic synthesis, polymer chemistry, and materials science are the main contributors to the production of functional materials, the importance of regulation of nanoscale structures for better performance has become clear with recent science and technology developments. Therefore, a new research paradigm to produce functional material systems from nanoscale units has to be created as an advancement of nanoscale science. This task is assigned to an emerging concept, nanoarchitectonics, which aims to produce functional materials and functional structures from nanoscale unit components. This can be done through combining nanotechnology with the other research fields such as organic chemistry, supramolecular chemistry, materials science, and bio-related science. In this review article, the basic-level of nanoarchitectonics is first presented with atom/molecular-level structure formations and conversions from molecular units to functional materials. Then, two typical application-oriented nanoarchitectonics efforts in energy-oriented applications and bio-related applications are discussed. Finally, future directions of the molecular and materials nanoarchitectonics concepts for advancement of functional nanomaterials are briefly discussed.
Collapse
Affiliation(s)
- Katsuhiko Ariga
- WPI Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan;
- Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561, Japan
| |
Collapse
|
35
|
Thursch LJ, Lima TA, Schweitzer-Stenner R, Alvarez NJ. The impact of thermal history on the structure of glycylalanylglycine ethanol/water gels. J Pept Sci 2021; 27:e3305. [PMID: 33619869 DOI: 10.1002/psc.3305] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 01/07/2021] [Accepted: 01/26/2021] [Indexed: 12/30/2022]
Abstract
This work revisits several open questions regarding the mechanisms of GAG fibril formation and structure as a function of temperature. The authors recently hypothesized that there is a solubility limit of GAG in ethanol/water that induces self-assembly. In other words, not all peptides can participate in fibrillization and some fraction is still soluble in solution. We show via FTIR spectroscopy that, indeed, free peptides are still present in solution after fibril formation, strongly supporting the solubility model. Furthermore, previous work showed GAG self-assembled into right-handed (phase I) or left-handed (phase II) chiral structures depending on temperature. In this study, we analyze the crystalline structure of phase I and II gels via WAXS and SAXS to compare their crystalline structures and order. Rheological measurements were used to investigate the response of the fibrillar network to temperature. They reveal that the ability of the peptide to self-assemble depends on the solubility at a given temperature and not on thermal history. Furthermore, the gel softening point, the linear viscoelastic gel microstructure, and relaxation spectrum are very similar between phase I and phase II. Overall, the temperature only affects the chirality of the fibrils and the formation kinetics.
Collapse
Affiliation(s)
- Lavenia J Thursch
- Department of Chemical and Biological Engineering, Drexel University, Philadelphia, PA, USA
| | - Thamires A Lima
- Department of Chemical and Biological Engineering, Drexel University, Philadelphia, PA, USA
| | | | - Nicolas J Alvarez
- Department of Chemical and Biological Engineering, Drexel University, Philadelphia, PA, USA
| |
Collapse
|
36
|
Rauf S, Susapto HH, Kahin K, Alshehri S, Abdelrahman S, Lam JH, Asad S, Jadhav S, Sundaramurthi D, Gao X, Hauser CAE. Self-assembling tetrameric peptides allow in situ 3D bioprinting under physiological conditions. J Mater Chem B 2021; 9:1069-1081. [DOI: 10.1039/d0tb02424d] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Tetrameric peptide-based bioinks allow the printing of 3D cell-laden scaffolds under true physiological conditions avoiding harsh UV or chemical treatment.
Collapse
|
37
|
Ariga K. Nanoarchitectonics Revolution and Evolution: From Small Science to Big Technology. SMALL SCIENCE 2020. [DOI: 10.1002/smsc.202000032] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- Katsuhiko Ariga
- World Premier International (WPI) Research Center for Materials Nanoarchitectonics (MANA) National Institute for Materials Science (NIMS) 1-1 Namiki Tsukuba 305-0044 Japan
- Department of Advanced Materials Science Graduate School of Frontier Sciences The University of Tokyo 5-1-5 Kashiwanoha Kashiwa Chiba 277-8561 Japan
| |
Collapse
|
38
|
Serizawa T, Maeda T, Yamaguchi S, Sawada T. Aqueous Suspensions of Cellulose Oligomer Nanoribbons for Growth and Natural Filtration-Based Separation of Cancer Spheroids. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:13890-13898. [PMID: 33135411 DOI: 10.1021/acs.langmuir.0c02294] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In vitro growth of cancer spheroids (CSs) and the subsequent separation of CSs from a 2D or 3D cell culture system are important for fundamental cancer studies and cancer drug screening. Although biopolymer-based or synthetic hydrogels are suitable candidates to be used as 3D cell culture scaffolds, alternatives with better processing capabilities are still required to set up cell culture microenvironment. In this study, we show that aqueous suspensions of crystalline nanoribbons composed of cellulose oligomers have a potential for CS growth and separation. The nanoribbon suspensions in serum-containing cell culture media fixed single cancer cells and CSs with large sizes in a 3D space, leading to suspension cultures for CS growth corresponding to culture time. Well-grown CSs were easily separated from the suspensions by natural filtration using a mesh filter with a suitable pore size. Cell viability tests revealed negligible cytotoxicity of the nanoribbons. In addition, physical damages to CSs by the separation procedures were negligible. Stable suspensions of biocompatible nanomaterials will thus provide novel microenvironments for growth and separation of diverse cell aggregates.
Collapse
Affiliation(s)
- Takeshi Serizawa
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Tohru Maeda
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Saeko Yamaguchi
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Toshiki Sawada
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
- Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi-shi, Saitama 332-0012, Japan
| |
Collapse
|
39
|
Wu A, Guo Y, Li X, Xue H, Fei J, Li J. Co‐assembled Supramolecular Gel of Dipeptide and Pyridine Derivatives with Controlled Chirality. Angew Chem Int Ed Engl 2020; 60:2099-2103. [DOI: 10.1002/anie.202012470] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Indexed: 12/11/2022]
Affiliation(s)
- Aoli Wu
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Lab of Colloid, Interface and Chemical Thermodynamics Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
| | - Yongxian Guo
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Lab of Colloid, Interface and Chemical Thermodynamics Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Xianbao Li
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Lab of Colloid, Interface and Chemical Thermodynamics Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Huimin Xue
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Lab of Colloid, Interface and Chemical Thermodynamics Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Jinbo Fei
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Lab of Colloid, Interface and Chemical Thermodynamics Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
| | - Junbai Li
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Lab of Colloid, Interface and Chemical Thermodynamics Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
40
|
Wu A, Guo Y, Li X, Xue H, Fei J, Li J. Co‐assembled Supramolecular Gel of Dipeptide and Pyridine Derivatives with Controlled Chirality. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202012470] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Aoli Wu
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Lab of Colloid, Interface and Chemical Thermodynamics Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
| | - Yongxian Guo
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Lab of Colloid, Interface and Chemical Thermodynamics Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Xianbao Li
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Lab of Colloid, Interface and Chemical Thermodynamics Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Huimin Xue
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Lab of Colloid, Interface and Chemical Thermodynamics Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Jinbo Fei
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Lab of Colloid, Interface and Chemical Thermodynamics Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
| | - Junbai Li
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Lab of Colloid, Interface and Chemical Thermodynamics Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
41
|
Misiak P, Markiewicz KH, Szymczuk D, Wilczewska AZ. Polymeric Drug Delivery Systems Bearing Cholesterol Moieties: A Review. Polymers (Basel) 2020; 12:E2620. [PMID: 33172152 PMCID: PMC7694753 DOI: 10.3390/polym12112620] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/30/2020] [Accepted: 11/04/2020] [Indexed: 12/21/2022] Open
Abstract
This review aims to provide an overview of polymers comprising cholesterol moiety/ies designed to be used in drug delivery. Over the last two decades, there have been many papers published in this field, which are summarized in this review. The primary focus of this article is on the methods of synthesis of polymers bearing cholesterol in the main chain or as side chains. The data related to the composition, molecular weight, and molecular weight distribution of polymers are presented. Moreover, other aspects, such as forms of carriers, types of encapsulated drugs, encapsulation efficiency and capacity, are also included.
Collapse
Affiliation(s)
- Paweł Misiak
- Faculty of Chemistry, University of Bialystok, Ciolkowskiego 1k, 15-245 Bialystok, Poland; (K.H.M.); (D.S.)
| | | | | | - Agnieszka Z. Wilczewska
- Faculty of Chemistry, University of Bialystok, Ciolkowskiego 1k, 15-245 Bialystok, Poland; (K.H.M.); (D.S.)
| |
Collapse
|
42
|
Ariga K. Molecular recognition at the air-water interface: nanoarchitectonic design and physicochemical understanding. Phys Chem Chem Phys 2020; 22:24856-24869. [PMID: 33140772 DOI: 10.1039/d0cp04174b] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Although molecular recognition at the air-water interface has been researched for over 30 years, investigations on its fundamental aspects are still active research targets in current science. In this perspective article, developments and future possibilities of molecular recognition at the air-water interface from pioneering research efforts to current examples are overviewed especially from the physico-chemical viewpoints. Significant enhancements of binding constants for molecular recognition are actually observed at the air-water interface although molecular interactions such as hydrogen bonding are usually suppressed in aqueous media. Recent advanced analytical strategies for direct characterization of interfacial molecules also confirmed the promoted formation of hydrogen bonding at the air-water interfaces. Traditional quantum chemical approaches indicate that modulation of electronic distributions through effects from low-dielectric phases would be the origin of enhanced molecular interactions at the air-water interface. Further theoretical considerations suggest that unusual potential changes for enhanced molecular interactions are available only within a limited range from the interface. These results would be related with molecular recognition in biomolecular systems that is similarly supported by promoted molecular interactions in interfacial environments such as cell membranes, surfaces of protein interiors, and macromolecular interfaces.
Collapse
Affiliation(s)
- Katsuhiko Ariga
- WPI Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan.
| |
Collapse
|
43
|
Nam SH, Jang J, Cheon DH, Chong SE, Ahn JH, Hyun S, Yu J, Lee Y. pH-Activatable cell penetrating peptide dimers for potent delivery of anticancer drug to triple-negative breast cancer. J Control Release 2020; 330:898-906. [PMID: 33152392 DOI: 10.1016/j.jconrel.2020.10.063] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 10/29/2020] [Accepted: 10/30/2020] [Indexed: 02/06/2023]
Abstract
We developed a pH-activatable cell-penetrating peptide dimer LH2 with histidine residues, which can penetrate cells, specifically in weak acidic conditions, even at few tens of nanomolar concentrations. LH2 effectively delivered paclitaxel into triple-negative breast cancer cells, MDA-MB-231, via formation of non-covalent complexes (PTX-LH2(M)) or covalent conjugates (PTX-LH2(C)). Moreover, LH2 showed prolonged circulation in the body and enhanced accumulation in tumors. Both PTX-LH2(M) and PTX-LH2(C) showed strong antitumor effects in a triple-negative breast cancer grafted mouse model at an extremely low dosage.
Collapse
Affiliation(s)
- So Hee Nam
- Department of Chemistry, Seoul National University, Gwanak-ro 1, Gwanak-gu, Seoul 08826, Republic of Korea.
| | - Joomyung Jang
- Department of Chemistry, Seoul National University, Gwanak-ro 1, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Dae Hee Cheon
- Department of Chemistry, Seoul National University, Gwanak-ro 1, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Seung-Eun Chong
- Department of Chemistry, Seoul National University, Gwanak-ro 1, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Joon Hyung Ahn
- Department of Chemistry, Seoul National University, Gwanak-ro 1, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Soonsil Hyun
- Department of Chemistry and Education, Seoul National University, Gwanak-ro 1, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Jaehoon Yu
- Department of Chemistry and Education, Seoul National University, Gwanak-ro 1, Gwanak-gu, Seoul 08826, Republic of Korea.
| | - Yan Lee
- Department of Chemistry, Seoul National University, Gwanak-ro 1, Gwanak-gu, Seoul 08826, Republic of Korea.
| |
Collapse
|
44
|
Ariga K, Mori T, Kitao T, Uemura T. Supramolecular Chiral Nanoarchitectonics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1905657. [PMID: 32191374 DOI: 10.1002/adma.201905657] [Citation(s) in RCA: 110] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 12/26/2019] [Indexed: 05/06/2023]
Abstract
Exploration of molecular functions and material properties based on the control of chirality would be a scientifically elegant approach. Here, the fabrication and function of chiral-featured materials from both chiral and achiral components using a supramolecular nanoarchitectonics concept are discussed. The contents are classified in to three topics: i) chiral nanoarchitectonics of rather general molecular assemblies; ii) chiral nanoarchitectonics of metal-organic frameworks (MOFs); iii) chiral nanoarchitectonics in liquid crystals. MOF structures are based on nanoscopically well-defined coordinations, while mesoscopic orientations of liquid-crystalline phases are often flexibly altered. Discussion on the effects and features in these representative materials systems with totally different natures reveals the universal importance of supramolecular chiral nanoarchitectonics. Amplification of chiral molecular information from molecules to materials-level structures and the creation of chirality from achiral components upon temporal statistic fluctuations are universal, regardless of the nature of the assemblies. These features are thus surely advantageous characteristics for a wide range of applications.
Collapse
Affiliation(s)
- Katsuhiko Ariga
- WPI-MANA, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
- Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8561, Japan
| | - Taizo Mori
- WPI-MANA, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
- Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8561, Japan
| | - Takashi Kitao
- Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8561, Japan
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Takashi Uemura
- Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8561, Japan
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
- CREST, Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan
| |
Collapse
|
45
|
Song J, Jia X, Ariga K. Interfacial nanoarchitectonics for responsive cellular biosystems. Mater Today Bio 2020; 8:100075. [PMID: 33024954 PMCID: PMC7529844 DOI: 10.1016/j.mtbio.2020.100075] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 08/26/2020] [Accepted: 08/28/2020] [Indexed: 01/08/2023] Open
Abstract
The living cell can be regarded as an ideal functional material system in which many functional systems are working together with high efficiency and specificity mostly under mild ambient conditions. Fabrication of living cell-like functional materials is regarded as one of the final goals of the nanoarchitectonics approach. In this short review article, material-based approaches for regulation of living cell behaviors by external stimuli are discussed. Nanoarchitectonics strategies on cell regulation by various external inputs are first exemplified. Recent approaches on cell regulation with interfacial nanoarchitectonics are also discussed in two extreme cases using a very hard interface with nanoarchitected carbon arrays and a fluidic interface of the liquid-liquid interface. Importance of interfacial nanoarchitectonics in controlling living cells by mechanical and supramolecular stimuli from the interfaces is demonstrated.
Collapse
Affiliation(s)
- Jingwen Song
- Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8561, Japan
| | - Xiaofang Jia
- World Premier International (WPI) Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, 305-0044, Japan
| | - Katsuhiko Ariga
- Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8561, Japan
- World Premier International (WPI) Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, 305-0044, Japan
| |
Collapse
|
46
|
Abraham BL, Toriki ES, Tucker NJ, Nilsson BL. Electrostatic interactions regulate the release of small molecules from supramolecular hydrogels. J Mater Chem B 2020; 8:6366-6377. [PMID: 32596699 PMCID: PMC7429908 DOI: 10.1039/d0tb01157f] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Supramolecular hydrogels have great potential as biomaterials for sustained delivery of therapeutics. While peptide-based supramolecular hydrogels have been developed that show promise for drug delivery applications, the high cost of production has limited their widespread adoption. Low molecular weight (LMW) supramolecular hydrogels are emerging as attractive and inexpensive alternatives to peptide-based hydrogels. We recently reported novel cationic fluorenylmethyloxycarbonyl-modified phenylalanine (Fmoc-Phe) hydrogels for localized and sustained in vivo release of an anti-inflammatory agent for functional pain remediation. In an effort to further elucidate design principles to optimize these materials for delivery of a variety of molecular agents, we herein report a systematic examination of electrostatic effects on the release of cargo molecules from Fmoc-Phe derived hydrogels. Specifically, we interrogate the release of cationic, anionic, and neutral cargo molecules from a series of cationic and anionic Fmoc-Phe derived hydrogels. We observed that cargo was readily released from the hydrogels except when the cargo and hydrogel network had complementary charges, in which case the cargo was highly retained in the network. These results demonstrate that the electrostatic characteristics of both the hydrogel network and the specific cargo are critical design parameters in the formulation of LMW supramolecular hydrogel systems in the development of next-generation materials for drug delivery applications.
Collapse
Affiliation(s)
- Brittany L Abraham
- Department of Chemistry, University of Rochester, Rochester, NY 14627-0216, USA.
| | - Ethan S Toriki
- Department of Chemistry, University of Rochester, Rochester, NY 14627-0216, USA.
| | - N'Dea J Tucker
- Department of Chemistry, University of Rochester, Rochester, NY 14627-0216, USA.
| | - Bradley L Nilsson
- Department of Chemistry, University of Rochester, Rochester, NY 14627-0216, USA.
| |
Collapse
|
47
|
Ariga K, Jia X, Song J, Hill JP, Leong DT, Jia Y, Li J. Nanoarchitektonik als ein Ansatz zur Erzeugung bioähnlicher hierarchischer Organisate. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202000802] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Katsuhiko Ariga
- WPI Research Center for Materials Nanoarchitectonics (MANA) National Institute for Materials Science (NIMS) 1-1 Namiki Tsukuba Ibaraki 305-0044 Japan
- Graduate School of Frontier Sciences The University of Tokyo 5-1-5 Kashiwanoha Kashiwa Chiba 277-8561 Japan
| | - Xiaofang Jia
- WPI Research Center for Materials Nanoarchitectonics (MANA) National Institute for Materials Science (NIMS) 1-1 Namiki Tsukuba Ibaraki 305-0044 Japan
| | - Jingwen Song
- Graduate School of Frontier Sciences The University of Tokyo 5-1-5 Kashiwanoha Kashiwa Chiba 277-8561 Japan
| | - Jonathan P. Hill
- WPI Research Center for Materials Nanoarchitectonics (MANA) National Institute for Materials Science (NIMS) 1-1 Namiki Tsukuba Ibaraki 305-0044 Japan
| | - David Tai Leong
- Department of Chemical & Biomolecular Engineering National University of Singapore Singapore 117585 Singapur
| | - Yi Jia
- Beijing National Laboratory for Molecular Sciences (BNLMS) CAS Key Lab of Colloid, Interface and Chemical Thermodynamics Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
| | - Junbai Li
- Beijing National Laboratory for Molecular Sciences (BNLMS) CAS Key Lab of Colloid, Interface and Chemical Thermodynamics Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
| |
Collapse
|
48
|
Ariga K, Jia X, Song J, Hill JP, Leong DT, Jia Y, Li J. Nanoarchitectonics beyond Self-Assembly: Challenges to Create Bio-Like Hierarchic Organization. Angew Chem Int Ed Engl 2020; 59:15424-15446. [PMID: 32170796 DOI: 10.1002/anie.202000802] [Citation(s) in RCA: 122] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Indexed: 01/04/2023]
Abstract
Incorporation of non-equilibrium actions in the sequence of self-assembly processes would be an effective means to establish bio-like high functionality hierarchical assemblies. As a novel methodology beyond self-assembly, nanoarchitectonics, which has as its aim the fabrication of functional materials systems from nanoscopic units through the methodological fusion of nanotechnology with other scientific disciplines including organic synthesis, supramolecular chemistry, microfabrication, and bio-process, has been applied to this strategy. The application of non-equilibrium factors to conventional self-assembly processes is discussed on the basis of examples of directed assembly, Langmuir-Blodgett assembly, and layer-by-layer assembly. In particular, examples of the fabrication of hierarchical functional structures using bio-active components such as proteins or by the combination of bio-components and two-dimensional nanomaterials, are described. Methodologies described in this review article highlight possible approaches using the nanoarchitectonics concept beyond self-assembly for creation of bio-like higher functionalities and hierarchical structural organization.
Collapse
Affiliation(s)
- Katsuhiko Ariga
- WPI Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan.,Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8561, Japan
| | - Xiaofang Jia
- WPI Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Jingwen Song
- Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8561, Japan
| | - Jonathan P Hill
- WPI Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - David Tai Leong
- Department of Chemical & Biomolecular Engineering, National University of Singapore, Singapore, 117585, Singapore
| | - Yi Jia
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Junbai Li
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| |
Collapse
|
49
|
Hata Y, Kojima T, Maeda T, Sawada T, Serizawa T. pH‐Triggered Self‐Assembly of Cellulose Oligomers with Gelatin into a Double‐Network Hydrogel. Macromol Biosci 2020; 20:e2000187. [DOI: 10.1002/mabi.202000187] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/08/2020] [Indexed: 12/17/2022]
Affiliation(s)
- Yuuki Hata
- Department of Chemical Science and EngineeringSchool of Materials and Chemical TechnologyTokyo Institute of Technology 2‐12‐1‐H121 Ookayama Meguro‐ku Tokyo 152‐8550 Japan
| | - Tomoya Kojima
- Department of Chemical Science and EngineeringSchool of Materials and Chemical TechnologyTokyo Institute of Technology 2‐12‐1‐H121 Ookayama Meguro‐ku Tokyo 152‐8550 Japan
| | - Tohru Maeda
- Department of Chemical Science and EngineeringSchool of Materials and Chemical TechnologyTokyo Institute of Technology 2‐12‐1‐H121 Ookayama Meguro‐ku Tokyo 152‐8550 Japan
| | - Toshiki Sawada
- Department of Chemical Science and EngineeringSchool of Materials and Chemical TechnologyTokyo Institute of Technology 2‐12‐1‐H121 Ookayama Meguro‐ku Tokyo 152‐8550 Japan
- Precursory Research for Embryonic Science and TechnologyJapan Science and Technology Agency 4‐1‐8 Honcho Kawaguchi‐shi Saitama 332‐0012 Japan
| | - Takeshi Serizawa
- Department of Chemical Science and EngineeringSchool of Materials and Chemical TechnologyTokyo Institute of Technology 2‐12‐1‐H121 Ookayama Meguro‐ku Tokyo 152‐8550 Japan
| |
Collapse
|
50
|
Li X, Li Q, Fei J, Jia Y, Xue H, Zhao J, Li J. Self-Assembled Dipeptide Aerogels with Tunable Wettability. Angew Chem Int Ed Engl 2020; 59:11932-11936. [PMID: 32314502 DOI: 10.1002/anie.202005575] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Indexed: 12/11/2022]
Abstract
Constructing supramolecular materials with tunable properties and functions is a great challenge due to the complex competition between multiple assembly pathways. Herein, we report that dipeptides can self-assemble into aerogels with entirely different surface wettability through precisely controlling the assembly pathways. Charged groups or aromatic residues are selectively exposed on the surface of their nanoscale building blocks which results either in a superhydrophilic or highly hydrophobic surface. With this special property, single component dipeptide aerogels can play diverse roles in medical care applications. This study suggests great promise in the synthesis of supramolecular materials with different targeted functions from the same molecular unit.
Collapse
Affiliation(s)
- Xianbao Li
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qi Li
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| | - Jinbo Fei
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Yi Jia
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Huimin Xue
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jie Zhao
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Junbai Li
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|